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Image Segmentation 

The whole is  equal to the sum of its parts. 

The whole is greater than the sum of ifs parts. 

Max Wertheimer 

Preview 
The material in the previous chapter began a transition from image processing 
methods whose input and output are images, to methods in which the inputs are 
images, but the outputs are attributes extracted from those images (in the sense 
defined in Section 1.1). Segmentation is another major step in that direction. 

Segmentation subdivides an image into its constituent regions or objects.The 
level to which the subdivision is carried depends on the problem being solved. 
Thit is,segmentation should stop when the objects of interest in an application 
have been isolated. For example, in  the automated inspection of electronic as- 
semblies, interest lies in analyzing images of the. products with the objective of 
determining the presence or absence of specific anomalies, such as missing com- 
ponents or broken connection paths. There is no point in carrying segmenta- 
tion past the level of detail required to identify those elements. 

Segmentation of nontrivial images is one of the most difficult tasks in image 
processing. Segmentation accuracy determines the eventual success or failure 
of computerized analysis procedures. For this reason, considerable care should 
be taken to improve the probability of rugged segmentation. In some situations, 
such as industrial inspection applications, at  least some measure of control over 
the environment is possible at times. The experienced image processing system 
designer invariably pays considerable af tention to such opportunities. In other 
applications, such as autonomous target acquisition, the system designer has no 
control of the environment. Then the usual approach is to focus on selecting 



568 Chapter 10 .i Imagc Segrnentatioi~ 

the types of sensors most likely to enhance the objects of interest  while dimin- 
ishing the contribution of irrelevant image detail. A good example is the use oi 
infrared imaging by the miIitary to detect objccts with s t rong heat  signatures, 
such as equipment and troops in motion. 

Image. se-gmentation algorithnrs generally are  based on one of two basic prop- 
erties of in tensity values: discontinuity and similarity. In the fir-st category, the 
approach is to partition an image based on abrupt changes in intensity, such as 
edges in an image. The principal approaches in the second category are  based 
on partitiorling an image into regious tha t  are similar according to a set ofpre- 
defined criteria. Th rcsholding, region growing, and region splitting and merging 
are examples of methods in this category. 

In  this chapter w e  discuss a number of approaches in the two cate~ories just 
n ~ e n t i o n e d .  We bcgin the development with met hods suitable for detecting gray- 
level discontinuities such as points, lines, and edges. Edge detection in particu- 
lar has been a staple of segmentation algorilhrns for ~nany  years. In addition to 
edge detection per se, we also discuss methods for connecting edge segments and 
for "assemb1ing"edges info rcglon boundaries.The discussion on edge detection 
is followed by the introduction of various th re sho ld j~~g  techniques. Threshold- 
ing also is a fundamental approach to segmentation tha t  enjoys a signifjcsnt 
degree of popularity, especially i n  appIications where speed j s  an important fac- 
lor. The discussion on thresholding is followed by the dzvelopment of several 
region-oriented segmentation approaches. We then discuss a morphological ap- 
proach lo segmentation called watershed segn~clnlnrion. This approach is par- 
ticularly attractive because i r  combines sevcl-a1 of the positive attributes of 
segmentation based on the techniques presented in t h e  first part of the chap- 
ter. We conclude the chapter with a discussion 011 the use of rnotion cues for 
image segmentation. 

Detection of Discontinuities 
In  this section we present several techniques for detecting the  three basic types 
oilgray-level discontinuities in  a digital image: poi~~ts. lines, and edges.Thc most 
common way to look for discontinuities is to run a mask through the image in the 
manner described in Section 3.5. For the 3 X 3 mask shown in Fig. 10.1. this pro- 
cedure involves computing the sum of products of the coefficients with the gray 

FIGURE 10.1 A 
general 3 X 3 
mask. 
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levels contained in the region encompassed by the rnask.Thal is, wit11 reference 
to Eq. (3.5-3). the response of the mask a t  any point in the image is  givcn by 

wlier-e z i  is the gray level of the pixel associated with mask coefficient lo,. As 
usual. the 1,esponse of the mask is defined with respect to i t s  center 1ocation.Thc 
tletails for implementing mask operations are discussed in Section 3.5. 

: ':.I. l .  Point Detection 
The detectio~i of isolated points in a n  image i s  straightforward in principle. 
Usjng the  mask shown in Fig. 10.2(a), we say that  a point has been detectcd a1 
rhe locatio~l 011 which the mask is centered i f  

where T is a nonnegative threshold and R is given by Eq. (10.1-1). Basically, 
this lormulatjon measures the weighted differences bel-ween the cenrer point 
and its neighbors. ' f ie idea is t h a t  an isolclled poinl (a point whose gray level i s  
significantly different from its backgrouncl and which is located in a ho l~~oge-  
neous or ne;rrly homogeneous area) will be quite different from its surround- 
ings, and thus  be easily detectable by this type of mask.  Note that [lit: mask in 
Fig. lC).2(a) i s  the same A S  the mask shown in Fig. 3.39(d) ill connection with 
Laplacian opet-ations.Illowever, the emphasis 1-rer.e is strictly on the detcclion of 
poinrs.That is, thc only differences tha t  a r e  considered o f  interest are those 

FIGURE 10.2 
( i ~ )  Point 
detecrioll m a s k .  
(b) X-ray i ~ w ~ g e  
of A rurkine blade 
with a porosity. 
(c) ResulL- of point 
detection. 
(d) Rcsult of 
using Eq. (10.1 -2). 
(01,iginal image 
courtesy of 
X-TEK Systems 
Lld .) 
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large enough (as determined by T )  lo be considered isolated points. Note that  
the mask coefficients sum to zero, indicating that the mask response will be 
zero in areas of constant gray level. 

EXANJPLE 10.1: We illustrate segmentation of isolated points from an image with the aid of 
Detection of Fig. 10.2(b), which shows an X-ray image of a jet-engine turbine blade with a 
"'lated points in porosity in the upper, right quadrant of the irnage.There is a single black pixel 
an  image. 

embedded within the porosity. Figure 10.2(c) is the resu.lt of applying the point 
detector mask to the X-ray image, and Fig. 10.2(d) shows the result of using 
Eq. (10.1-2) with T equal to 90% of the highest absolute pixel value of the image 
in Fig. 10.2(c). (Threshold selection is discussed in detail in Section 10.3.) The 
single pixel is clearly visible in this image (the pixel was enlarged manually so 
that it would be visible after printing). This type of detection process is rather 
specialized because it is based on single-pixel discontinuities that have a ho- 
mogeneous background in the area of the detector mask. When this condition 
is not satisfied, other methods discussed in this chapter are more suitable for 
detecting gray-level discontinuities. W S ~  

1 8.1.2 Line Detec lion 
The next level of complexity is line detection. Consider the masks shown in Fig. 10.3. 
If the first mask were moved around an image, it would respond more strongly to 
lines (one pixel thick) oriented horizontally. With a constant background, the max- 
imum response would result when the line passed through the middle row of the 
mask.This is easily venfied by sketching a simple array of 1's with a line of a dif- 
ferent gray level (say, 5's) running horizontally through the array. A similar ex- 
periment would reveal that the second mask in Fig. 10.3 responds best to lines 
oriented at +45"; the third mask to vertical lines; and the fourth mask to lines in 
the -45" direction.These directions can be  established also by noting that the pre- 
ferred direction of each mask is weighted with a larger coefficient (i.e., 2) than 
other possible directions. Note that the coefficients in each mask sum to zero, in-  
dicating a zero response from the masks in areas of constant gray level. 

Let R , ,  R,, R,, and R4 denote the responses of the masks in Fig. 10.3, from 
left to right, where the R's are given by Eq. (10.1-1). Suppose that the four masks 
are run individually through an image. If, at a certain point in the image, 
I R ; ~  > I R , ~ ,  for all j # i, that point is said to be more likely associated with a line 
in the direction of mask i. For example, if at  a point in the image, R ,  1 > I R ,  for 

FIGURE 10.3 Line 
masks. 

Horizontal +45" Vertical -45" 
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j - 2,3.4, ~ l ~ a t  p a r r i c ~ ~ l a ~ .  point is said to be nzore likely associa red with a 1101.- 
izontal linc.Alternatively, wc may be interested in detecting liilcs in a specilied 
direction. In this case,we would usc l h e  mask associated with Illat clii~eclioli and 
thi.csho1d i ~ s  ou1pur.w in Eq. (10.1-2). I n  o ther  words. if we are inter-esled i l l  dc- 
iect jng all the lines in a n  image in [he direcrion defined by a given mask, we 
simply run the mask tl)l.ough the image and threshold the absolute value of the 
resu11.-lhe poirlls that are left are the str,ongest responses, which,  for lines one 
pixel [hick. correspor~d closcs~ t o  the di~-ection defitied by thc mask .  The fol- 
lowing exan~plc illustrales this p1.ocedu1.e. 

Figurc 10.4(a) shows a digitized (binary) portion of 21 wire-bond mask lor an EXAMPLE 10.2: 
electl.onic circuit. Suppose [hat we are interested in finding all the lines [hat are Delcction oflj~lcs 

one pixe l  thick arid arc 01-ienred at -45". For this p i~~posc ,  we usc [ h e  last mask in 5peci fictl 
direction. 

shown in Fig. 10.3.The absolute value o l  (he rzsillt is shown in Fig. 10.4(b). Note 
that all vertical and linri~onral coniponents of (lie image were eliinii~ared, and 
t l ~ a l  lhe cornl)onel~ts ol' t11e original image char tend toward a -45:' djreciion 

FIGURE 10.4 
lllustr-ario~i nl' 
delection. 
(a) Binary  wij 

borld ~nnsk .  
(b) Ahsol~~te 
value of r.esul1 
after proccssii 
with -45" lilw 
dc lecior. 
(s) ResuIt of 
thresliolcli~~g 
i1na5c. (h) .  

line 

.e - 
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produced the strongest responses in Fig. 10.4(b). In order to determine which 
lines best fit the mask, we simply threshold this image. The result of using a 
threshold equal to the maximum value in the image is shown in Fig. 10.4(c). 
The maximum value is a good choice for a threshold in applications such as this 
because the input image is binary and we are looking for the strongest responses. 
Figure 10.4(c) shows in white all points that passed the threshold test. In this 
casc, the procedure extracted the only line segment that was one pixel thick 
and oriented at -45' (the other component of the image oriented in this direc- 
tion in the top, left quadrant is not one pixel thick). The isolated points shown 
in Fig. 10.4(c) are points that also had similarly strong responses to the mask. 
In the original image, these points and their immediate neighbors are oriented 
in such as way that the mask produced a maximum response at those isoIated 
locations. These isolated points can be detected using the mask in Fig. 10.2(a) 
and then deleted, or they could be deleted using morphological erosion, as 
discussed in the last chapter. @I 

0.1.3 Edge Detection 

Although point and line detection certainly are important in any discussion on 
segmentation, edge detection is by far the most common approach for detect- 
ing meaningful discontinuities in gray level. In t h s  section we discuss approaches 
for implementing first- and second-order digital derivatives for the detection of 
edges in an irnage. We introduced these derivatives in Section 3.7 in the context 
of image enhancement. The focus in this section is on their properties for edge 
detection. Some of the concepts previously introduced are restated briefly here 
for the sake continuity in the discussion. 

Basic formulat ion 

Edges were introduced informally in Section 3.7.1. In this section we look at 
the concept of a digital edge a little closer. Intuitively, an edge is a set of con- 
nected pixels that lie on the boundary between two regions. However, we al- 
ready went through some length in Section 2.5.2 to explain the  difference 
between a n  edge and a boundary. Fundamentally, as we shall see shortly, an 
edge is a "local" concept whereas a region boundary, owing to the way it is de- 
fined, is a more global idea. A reasonable definition of "edge" requires the abil- 
ity to measure gray-level transitions in a meaningful way. 

We start by modeling an edge intuitively. This will lead us to a formalism jn 
which "meaningful" transitions in gray levels can be measured. Intuitively, an  
ideal edge has the properties of the model shown in Fig. 10.5(a). An ideal edge 
according to this model is a set of connected pixels (in the vertical direction 
here), each of which is located at an orthogonal step transition in gray level (as 
shown by the horizontal profile in the figure). 

In practice, optics, sampling, and other image acquisition imperfections yield 
edges that are blurred, with the degree of blurring being determined by factors 
such as the quality of the image acquisition system, .the sampling rate, and illu- 
mination conditions under which the image is acquired. As a result, edges are 
more closely modeled as having a "ramplike" profile, such as the one shown in  
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Model of a11 idcal cligiral ctlgr Model of a I-amp dipitill edge a b  
FIGURE 10.5 
( a )  Model of iln 

j ranlp edse. The 

i slope oT the c.anlp 
I I i~ ~ > c @ ~ ~ o ~ ~ ~ o I ) ~ I ~  tc) 

r- ~ h c  deg1.e~ of 
blu~'ri t lg 111 \hc 
cdge. 

Cir;\y.lcvcl prolile 
of  il h u r i ~ o ~ l l a l  lint 
~111.0ugh l l ~ c  image 

Fig. lO.S(h).  The slope of the ramp is inversely p~.oportional to the degree of 
blurring in the edge. I n  this model. we no longer- have a thin (one pixel th ick)  
path. Instead,  a n  edge point tlow i s  any point contained in the ramp, a n d  a n  
edge would then b t  a set ol  such poin~s that are  connected-The "(hick~less" of  
t h e  edge is dc~errnined by 11le length of the ramp. as i t  transitions from an ini- 
tial 1.0 a final gray level-This Icngth is  detei-minecl by the slope. which, i n  turn, 
IS determined hy (he degree of blur.l-ing.This makes sense: Blurt.ed edges lend 
to be thick and sharp edges rend to be thin. 

Figul-e 1 C).6(a) shows the  image from which the  close-up in Fig. I O.S(b) was 
estl-acted. Figure 10.6(b) S I I C ) W S  a I io r i~on~i~ l  s lay- level  prolile ol  the edge 
between the two I-egians. This figure also s l~ows  the first and second deriva- 
tives of the :ray-level profile. The first derivative is positive at the points of 
(ransition inlo and out of the ramp as we move from lell to right a l o n g  t h e  
profile: il is  constant foi- points iu the rnmp: and is zero ill areas  oC constant 
gray levcl.Thc second derivative is positive at the transition associated with the 
dnl-k side of the eclae. ~lcgat ive at the ~ r a n s i t  i on  associated with the  ljgllt side 
of the edge. and zero n l o ~ ~ g  the rnmp and in arcas o f  constant gray level. The  
signs of t h e  de~,ivativcs in Fig. 10.6(b) would hc reversed for a n  edge t h a l  tran- 
sitiuns Crom lighi to clark. 

We concluclc frorn [hese observations t h a t  the  magnitude of the  f i rst  deriv- 
ative can be used to detect \he presence of an edge a t  a poinl in an image (i.e.. 
to determine i f  i> point is on a ramp). Similarly, the sign of the second deriva- 
tive can bt: used lo  determine whether a n  edge pixel lies on the dark or Ijght side 
of a n  edge. We note two aclditional properries of the second derivative n ~ . o u n d  
;in eclge: (1) It pr.oduces two values for every edgc in all image (an undesirable 
feature): a n d  (2) a n  imaginary straight line joining the extcerne positive a n d  
negative values of the second dcrivative would cross zero near  the midpoii~t of 
the edge. 'Tljis zero-c~'ossir,g properly of the second derivative is quite useful 
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a b  
FIGURE 10.6 
(a) Two regions 
separated by ;l 
vertical edge. 
(b) Detail near 
th2 edge, showing 
a gr-ay-level 
profile. and the 
first and second 
derivatives of the 
profile. 

for loca tjng the centers of thick edges, as we show later in this secl~ion. Finally, 
we note that some edge models make use of a smooth transition into and out 
of the ramp (Problem 10.5). However. the coocIusions at which we arrive in the 
following discussion are the same. Also, i t  is evident from this discussion that wc 
are dealing here with local measures (thus the comment made in Section 2.5.2 
about the local nature of edges). 

Although attention thus f a r  has been limited to a I-D horizontal profilc, a 
similar argument applies to an edge of any  01-ientalion jn an image. We simply 
define a profile perpendicular to the edge direction at any desired point and 
interpret the results as in the preceding discussion. 

EXAMPLE 10.3 P The edges shown in Fig. 10.5 and 10.6 a r e  free of noise. The irnage segnlen ts 
Behavior of the in the first column in Fig. 10.7 show close-ups of f o u r  ramp edges separating n 

and  second black region on the left and a white region on the right. I t  is important to keep 
derivatives 
around a noisy in mind that the entire transition from black to while is a single edge.The iinage 
edge. segment a t  the top, left is free of noise. The other three images in the lirsr col- 

umn of Fig. 10.7 art: corrupted by additive Gaussian noise with zero meat] and 
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FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by 
random Gaussian noise of mean 0 and 0 - 0.0,O.l. 1.0, and 10.0, rcspec~ively. Second col- 
umn: first-derivative images and gray-levcl profiles. Third column: second-derivative 
images and gray-level pi.ofilcs. 
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standard deviation of 0.1,1.0, and 10.0 gray levels, respectively.The graph shown 
below each of these images is a gray-Level profile of a horizontal scan line pass- 
ing through the image. 

The images in the second column of Fig. 10.7 are the first-order derivatives 
of the images on the left: (we discuss computation o l  the first and second image 
derivatives in the following section). Consider, for example, the center image at 
the top. As discussed in connection with Fig. 10.6(b), the derivative is zero in the 
constant black and white regions.Tllese are the lwo black areas shown in the de- 
rivative image. The derivative of a constant ramp i s  a constant, equal to thc 
slope of the ramp.This constant area in the derivative imagc is shown in gray. 
As we move down the center column, the derivatives become increasingly dif- 
ferent from the noiseless case. I n  fact, i t  would bc diftic~rlt to associate thc lasl 
profile in that c o l u m ~ ~  with a ramp edge. What makes these results interesting 
is that the noise really is almost invisible in the images on the left column.The 
lasc image is a slightly grainy, but this corruptioli is a1 rnost imperceptible.Thcse 
exarnplcs are good illustl-ations of the sensitivily of derivatives to noise. 

As expected, the second derivative is even more sensitive to noisc. The sec- 
ond derivative of the noiseless image is shown in the top, right i~nage.The thin  
black and white lines are the positive and negative components explained in 
Fig. 10.6.Tlle gray in Lllese images represents zero due co scaling. We note that 
t l ~ c  only noisy second derivative that ~.c=sembIes the noiseless case is the one 
corresponding to noise with a standard deviation of 0.1 gray levels. T i e  other 
two second-derivative images and profiles clearly illustl-ate that  it would he dif- 
ficult indeed to detect their positive and negative components. which are the 
truly useful features of the second derivalive in terms ol edge delcction. 

The fact that Fairly little noise can have such a significant irnpact on the two 
key derivatives used for edge detcction in images is an important issue 10 keep 
in mind. In particular, image s~~loothing should be a scrious consideration prior 
to the use of derivatives in  applications where noise with levels similar to tl~osc 
we have just discussed is likely to bc present. I: 

Based on this cxilnlple and on the three paragraphs Lhat precede i t ,  we are 
led lo the conclusion chat, to be classified as a meaningt'ul edge point, the tran- 
sition in gray level associated with that point has to be significantly stronger 
than the background a t  that point. Since wc are dealing with local computa- 
tions, the method of choicc to determine whether a value is "significant" or not 
is to use a th~.eshold.Thus, we define a point in an image as being an rdgepoinr 
if its two-dimensional fii-st-order derivative is greatel- t11an a specified threshold. 
A set of such points that are corlnected according to a predefined criterion of 
connectedness (see Section 2.5.2) is by definition an eclgc.The term edge .vegn?etTf 

generally is used i f  the edge is short in relation to the dimensions of thc image. 
A key problem in segmentation is to assemble edge segments into longer edges, 
as explained in Section 10.2. An alternate definition i f  we elect to use the sec- 
ond-derivative is simply to define the edge points in an image as the zero cross- 
ings of its second derivative. The definition of an edge in this case is the same 
as above. Tt is important to note that these definitions do not guarantee success 
in finding edges in an image.They simply give us a formalism to look for them. 
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As in Chapter 3, first-order derivatives in  a n  image are computed using the gra- 
dient .  Second-order derivatives are obtained using the Laplacian. 

Gradient operators 

First-order derivatives of a digiral image a r e  based on various approxima- 
tions of the 2-D gradient.The gradient of an lmagr , f (s ,  y )  a t  locatlon (x .  y )  
is defined as  the vector 

<CL. mnde { I I ~ I  csvcr 

Consuh thc book wchsilr 

( 10.1-3) for a brief revcew of rcc- 
lor anrllysis 

I t  is well k n o w n  from vector analysis that  the gradient vector points in t he  
direction of maximum rate of change off at coordinates (x, y) .  

An important quant i ty  in  edge delection is the magnitude of th i s  vector, 
denoted Vj*.  where 

This quantity gives the maximum rate of increase of f  ( x .  it.) per unit distance 
in [he direction of Vf.  I t  is a comnlon (although not strictly correct) practice to 
refer to V f  atso as the gradient. We will adhere to convention and  also use this 
term interchangeably, differentiating between tile vector and its magnitude on ly  
in cases in wliich confusion is likely. 

The direction of the gradient  vector aIso is an important  quantity. Let 
o(x, y )  rcpreseut thc direcrion angle of the vector Vf a t  ( x .  y )  T h e n ,  from 
vector analysis, 

~ ( x ,  y)  = tan-' 

where the  angle is tneasured with respect to the x-axis.Tht: direction of an edge 
a1 ( x ,  y )  is yerpendiculnr to t h e  directjon of the gradient vector a t  that point. 

Con~putation of the gradient of an image is based on obtaining the partial de- 
rivatives i) f / d x  and il f l a y  at every pixel local ion. Ls t the 3 x 3 area shown i l l  

Fig. IO.S(a) represent the gray levels in a neighborhood of a n  image. As dis- 
cussed in Secrion 3.7.3, one of the simplest ways to implement a first-order par- 
tial derivative at poi111 zj is to use the followjrig Roberrs cuos,r-grndienr operotow: 

and 

These derivatives can be implerrlenred for an entire image by using the masks 
shown in  Fig. 10.8(b) with the  procedure discussed in Section 3.5. 

Masks of size 2 x 2 are awkward to implement because they do not have a 
clear center. An approach using masks of sjzc 3 X 3 is given by 

G,, = ( z 7  i- Zp + 29) - ( z ,  + 22 + z3) (10.1-8) 
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FIGURE 10.8 
A 3 X 3 region of 
a n  image (the 2's 
are gray-level  
values) and 
various masks 
used Lo compute 
t h e  gradienl at 
point labeled rj. 

Robcrts 

Sobcl 

and 

In th is  formulation, the difference between the first and third rows of the 3 X 3 
image region approximates the derivative in the x-direction, and the difference 
between the Lhird and first columns approximates the derivative in the y-direction. 
The masks shown in Fig. 10.8(d) and (e), called the Prewitt operators,can be used 
to impIement these two' equations. 

A slight variation of these two equations uses a weight of 2 in the center 
coefficient: 

and 

A weight value of 2 is used to achieve some smoothing by giving more impor- 
tance to the center point (Problem 10.8). Figures 10.8(f) and (g), calIed the Sobel 
operators, are used to implement these two equations. The Prewitt and Sobel 
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ope~.arors are among the mast used in practice for computing digital gradients. 
The Prewitt masks are simpler to  implement than the Sobel masks, but 1-h.e lat- 
ter have slightly superior noise-suppression charactel-istics, an'impal-tant issue 
when dealing with derivatives. Note illat the coefficients in all the masks shown 
in Fig. 10.8 sum to O ,  indicating that they give a response of 0 in areas ol con- 
siant gray level, as expected of a derivative operator. 

The masks just discussed are used to obtain the gradient components G, and 
G,. Computation of the gradient requires that these two components be com- 
bined in the manner shown in Eq. (10.1-4). However, this in~plementation is 
not always desirable because of the computational burden required by squares 
and square roots. An approach used frequently is to approximate the gradient 
by absolute values; 

This equation is mucl-r more attractive computationally, and it still preserves rel- 
ative changes in gray levels. As discussed in Section 3.7.3, the price paid for this 
advantage is that the resulting filters will not be isotropic (invariant to rotation) 
jn general. However. this is not an issue when masks such as the Prewilt and 
Sobel masks are used to compute G, and G,,.These masks give isotropic results 
o~ily for vertical and horizontal edges, so even if we used Eq. (10.1-4) to com- 
pute the gradient, the results would be isotropic only for edges in those direc- 
tions. In this case,Eqs. (10.1-4) and (10.1-12) give the same result (Problem 10.6). 

I t  is possiblc to modify the 3 x 3 masks in Fig. 10.6 so that  they have their 
st]-ongest responses along the diagonal directions.The two additio~ial Prewitt and 
Sobel masks for detecting disco~~tini~ities in the diagonal directions are shown 
in Fig. 10.9. 

Figure 10.10 il.lustrales the response ol' the two components of the gradient, EXAMPLE 10.4: 
G ,  and G , / ,  as well as the gradient image formed from the sum of these two Illusll.ation of the 

gl'ad~ent: and its 
components. 

a b  
c d Sohel 

FIGURE 10.9 Prcwitt and Sobel masks for detecting diagonal edges. 
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FIGURE 10.10 
(a )  0i.iginal 
image. (b) I G , ~ .  
cnmponenf of  the 
gradient in [he 
x-direction. 
(c) JG?.I~ 
cornponenl in I he  
y-di~.ection. 
(d) GI-adient 
image. (c ,  + L',,I. 

con~ponents.Tl~e dircclionalitqr of the two colnponents i s  widen[ in Figs 10.10(b) 
and (c). Note in particular how strong the roof tile, horizotltal brick joints, and  
horizontal segments of the windows are in Fig. 10,10(b). By contrast,Fig. 10.10(c) 
favors the vertical components, such as the corner of the tiear wall. the  vertical 
components of the window, the vertical joints of the brick, and the la~nppost on 
the right side of the pictlire. 

The original jmagc is of re:-lsonably Iiigh resolutio~i (1200 X l6OO pixels) and, 
at \he  dislai~ce the  image was taken, the contribution made to image detail by 
the wall bricks is still sjgnificanr.This level of dctail often is undesirable, and one 
way to reduce i t  is to smooth  the image. Figure 10.1 1 shows the same sequence 
of images as in Fig. 10.10, but with the original image being smoothed first using 
a 5 X 5 averaging fj[ter.The rcsponse of each mask now shows almost no con- 
tribution due  to the bricks. with the result being dominated ~nostly by the prin- 
cipal edges. Note that avelVagjng caused the response of all edges to be weaker. 

In Figs. 10.10 and 10.1 1, i l  is evident that the horizontal and  vet-tical Sobel 
lnasks respond about equally well to edges oriented in  the  millus and plus 45" 
directions. I f  i t  is important to emphasize edges along the diagonal directions. 
then one of the mask palrs in Fig. 10.9 should be used.The absolute responses 
of the diagonal Sobcl masks a re  showr~ in Fig. 10.12. The sIronget diagonal re- 
sponse of these n ~ a s k s  is evident in this figure. Both disgonal masks have s im-  
ilar Izsponse to horizontal and  vertical edges hut,  as espected, their response i n  
these directions is  weaker than  fhe response of the  ho1.izon~a1 and  vertical Sobel 
masks shown in Figs. lO.lO(b) and 10.10(c). - 
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FIGURE 10.1 1 
Same sequence a5 

image smoochrd 
with a 5 x 5 

. .. . 

The Laplacian 
The Laplacia11 of a 2 - 0  I'unclion f (s. y ) is a second-order derivative defined as 

Digi~al  approsimationl; ro thc  Laplacian wcre introduced in Section 3.7.2. For 
a 3 x -3 rcgiorl. one of  he t w o  fc~~ins  ei~coulltered most f~~equent ly  in practice is 
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FIGURE 10.13 
Laplacian masks 
used to 
implement 
Eqs. (10.1-14) and 
(10.1-IS), 
respectively. 

where the z's are defined in Fig. 10.8(a). A digital approximation including the 
diagonal neighbors is given by 

Masks for implementing these two equations are shown in Fig. 10.13. We note 
from these masks that the implementations of Eqs. (10.1-14) and (I 0.1-15) are 
isotropic for rotation increments of 90" and 45", respectively. 

The Laplacian generally is not used in its original form for edge detection for 
several reasons: As a second-order derivative, the Laplacian typically is unac- 
ceptably sensitive to noise (Fig. 10.7).The magnitude of the Laplacian produces 
double edges (see Figs. 10.6 and 10.7), an undesirable eflect because i t  complj- 
cates segmentation. Finally, the Laplacian is unable to detect edge direction. 
For these reasons, the role of the Laplacian in segmentation consists of (1) using 
its zero-crossing property for edge location, as mentioned earlier in tl1j.s sec- 
tion, or (2) using it for the complementary purpose of establishing whether a 
pixel is on the dark or light side of an edge, as we show in Section 10.3.6. 

In the first category, the Laplacian is combined with smoothing as a precursor 
to finding edges via zero-crossings. Consider the function 

rz -- 
7 

h ( r )  = -e 2u' (10.1-16) 

where 9 = x2 + Y2 and a is the standard deviation. Convolving this function with 
an image blurs the image, with the degree of blurring being determined by the , 

value of a .The Laplacian of h (the second derivative of h with respect to r) is 

This function is commonly referred to as the Laplacian of a Gaussi~in (LOG) be- 
cause Eq. (10.1-16) is in the form o l  a Gaussian function. Figure 10.14 shows a 
3-D plot, image, and cross section of the LOG function. Also shown is a 5 X 5 
mask that approximates V2h.  This approximation is not unique. Its purpose is 
to capture the essential shupe of V2h; that is, a positive central term, surround- 
ed by an adjacent negative region that increases in value as a function of distance 
from the origin, and a zero outer region.'fhe coefficients also must sum to zero, 
so that the response of the mask is zero in areas of constarlt gray level. A mask 
this small is useful only for images that are essentially noise free. Due to its 
shape, the Laplacian of a Gaussian sometimes is called the Mexican hat function. 

Because the second derivative is a linear operation, convolving an  image 
with V2h is the same as convolving the image with the Gaussian smoothing 
function of Eq. (10.1-16) first and then computing the Laplacian of the result. 
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showing zero 
crossings. 
(d) 5 X 5 mask 
approxima tion to 
the shape of (a). 

Tl-lus, we see that the purpose of the Gaussian function in the LOG formulation 
is to smooth the image, and the purpose of the Lnplacian opera tor is to provide 
an image with zero crossings used Lo establish the location of edges. Smoorhjng 
the image reduces the effect of noise and, in principle, it counters the increased 
effect of noise caused by the scco~ld derivatives of the Laplacian. It is of inter- 
est to note that neurophysiological experiments carried out  in the  early 1980s 
(Ullman [I981 1, Marr [1982]) provide evidence that certain aspects ol human vi- 
sion can be modeled mathematically in the basic form of Eq. (10.1-17). 

W Figure 10.15(a) shows the angiogranl image discussed in  Seclion 1.3.2. Fig- EXAMPLE 10.5: 
ure 10.15(b) shows the Sobel gradient of this image, included here for compar- Edge finding by 

ison. Figure 10.15(c) is a spatial Gaussian function (with a standard deviation crossi''~s* 

of five pixels) used to obtain a 27 x 27 spatiaI smoothing mask.The mask was 
obtained by sampling this Gaussian function at equal intervals. Figure 10.25(d) 
is the spatial mask used to implemcnr Eq. (10.1-25). Figure 10.15(e) is the LOG 
image obtained by srnootl~ing the original irnage with the Gaussian smoothing 
mask, foIlowed by application of the Laplacian mask (this image was cropped 
to eliminate the border effects produced by the srnootl~ing mask). As noted in 
the preceding paragraph. V'h can be computed by application of (c) followed 
by (d). Employing this procedure provides more control over the smoothing 
function, and ofterl results in two masks that are much smaller when compared 
with a single composite mask that implements Eq. (10.1-17) directly. A com- 
posite mask usually is larger because it must incorporate th.e more conlplex 
shape sh.own in Fig. 10.14(a). 



FIGURE 10.15 (a) Original irnage. (b) Sobel gradient (shown far comparison). (c) Spatial Gaussian smoorli- 
ing lunctioi~. (d )  Lapl;ician mask. ( e )  LOG. ( I )  Thresholded LOG. ( g )  Zero crossings. (Original inlirge courtesy 
ol Dl.. Davit1 R ,  Pickens, Deparl~nent of Radiology and Radiological Sciences. Vanderbilt Univrt.sily Medical 
cel\ler.) 
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The LOG result shown in Fig. 10.15(e) is the image from which zero crossings 
are computed to find edges. One straightforward approach for approximating 
zero crossings is ro threshold the LOG image by setting all its positive values to, 
say, white, and  all negative valucs to black.The result is shown in Fig. 10.15(f). 
'fie logic behind this approach is that zero crossings occur between positive 
and negative values of the Laplacian. Finally, Fig. lO.lS(g) shows the estimated 
zero crossings. obtained by scanning the threshorded image and noting the tran- 
sitions between black and white. 

Con-~paring Figs. 10.15(b) and (g) reveals several interesting a d  important 
differences. First, we note that the edges in the zero-crossing image are t h i n ~ e r  
than the gradient edges,This is a characteristic of zero crossings that makes this 
approach attractive. On the other hand, we see in Fig. lO.lS(g) that the edges de- 
termined by zero crossjngs form numerous closed loops-This so-called spaghetti 
effect is  one of the most serious drawbacks of this method. Another major draw- 
back is the computation of zero crossings, which is the foundation of the method. 
Altllough i t  was reasonably straightforward in this example, the computation of 
zero crossings presents a challenge in general, and considerably more sophisti- 
caled techniques often are required to obtain acceptable results (Huertas and 
Medione [1986]). 

Zero-crossing methods are of interest because of their noise reduction capabil- 
ities and po~ential for rugged performance. However, the limitations just noted pre- 
sent a significant barrier in practical applications. For this reason, edge-finding 
techniques based on various inlplementations of the gradient still are used more he- 
quently than zero crossings in the implementation of segmentation algorithms. !: 

.?-XI 1 I Edge Linking and Boundary Detection 
Ideally, the methods discussed in the previous section should yield pixels lying 
only on edges. In practice, this set of pixels seldom characterizes an edge com- 
pletely because of noise. breaks in the edge from nonuniform illumination, and 
other effects tha t  introduce spurious intensity discontinuities. Thus edge detec- 
tion algorithms typically are followed by linking procedures to assemble edge 
pixels into meaningful edges. Several basic approaches are suited to this purpose. 

113.2.1 Local Processing 

One of the simplest approaches for linking edge points is to analyze the charac- 
teristics of pixels in a stnall neighborhood (say, 3 x 3 or 5 x 5 )  about every point 
(x, y) in  an image that has been labeled a n  edge point by one of the techniques 
discussed in the previous sectjon. All points chat are similar accordir~g to a set of 
predefined criteria are linked, forming an edge of pixels that share rhose criteria. 

The two principal properties used for establishing similarity of edge pixels jn 
this kind of analysis are (1) the strength of the response of the gradient operator 
used to produce the edge pixel; and (2) the direction of the gradient vector.The 
first property is given by the value of V f ,  as defined in Eq. (20.1-4) or (10.1 -1 2). 
Thus an edge pixe l  with coordinates ( x o ,  yo) in a predefined neighborhood of 
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(s, jj), is similar in magnitude to the pixel at (x, y)  i f  

where E is a nonnegative threshold. 
The direction (angle) of the gradie~l l  vector is gjven by Eq. (10.1 -5).An edge 

pixel ar (x,,, ,v,,) in the predefined neighborhood of (x. )I)  has an angle similar 
to the pixel a1 (.Y, y) if 

where A is a nonr~egative angle threshold. As noted in Eq. (1.0.1 - S ) ,  the dil-ec- 
tion ol the edge at (s ,  y )  is perpcndiculor to the direction of the gl- a d' ~ c n t  vec- 
tor at that point. 

A point in the p~.edefinecl neighborl~ood of (x, y) is linked to the pixel a t  (.u. g )  
j l  both ~nagnitude ancl direction criteria are satisCied.This process is I-epeated at  
every location in the image. A record must be kept of linked points as the center 
of the neigl~borhoocl is ~novcd from pixel to pixel. A si~ilple booltkeeping p~~oce-  
dure is to assign a different gray level to each sel of linked edge pixels. 

EXAMPLE 10.6: To illustrate the foregoing procedure, considel Fig. 10.1 6(a), which shows an 
E~lgc-poinl image of  he rear- of a vehicle. The objective is to find rectangles whose sizes 
linkillg makes  them suilable candidates for license plates.The fol-mation of tlrese I-ec- 
local processing. 

tangles can he accomplishecl by detecting strong horizontal and vertical edges. 
Figures 10.16(b) and (c) SIIOW \~erlicill and horizontal edges obtained by using 

FIGURE 1 0.1 6 
(a) Jnpi11' image. 
( h )  C,, co~rlpo~lei~t 
of the gradient. 
(c) G ,  componenl 
of the g~~aclienl. 
(d) Reslilt of edge 
linking. (Courtesy 
of Perccptics 
Corpol-aLion.) 
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the llorizontal and vertical Sobel operators. Figure 10.16(d) shows the result of 
linking all points that sirnultaneoi~sly had a gradient value greater than 25 and 
whose gradient directions did not differ by morc than lSO.The korizontal lines 
were fol,~ned by sequentially applying these criteria to every row olFig. 10.16(c). 
A sequential column scan of Fig. lO.lG(b) yielded the vertical lines. Further pro- 
cessing consisted of linking edge segments separated by small breaks and delet- 
ing isolated short segments. As Fig. 10.16(4) shows, the recta~lgle corresponding 
to the license plate was one of the few rectangles detected in the image. It would 
be a sirnple matter to locate the license plate based on these rectang.les (the 
width-to-height ratio of the license plate rectangle has a distinctive 2:'l 
proportion for U.S, plates). ?,.~ 

, !? 

1 .  ..' ' Global Processing via the Hough Transform 
111 this section, points are linked by determining lirst i f  they lie on a curve of 
specified shape. Unlike the local analysis method discussed in Seclion 10.2.1, we 
llow consider global relationships between pjxels. 

Given n points in  an  image, suppose that we  want to find subsets of these 
points that lic on straight Lines. One possible solution is to first find al.1. lines de- 
termined by every pair of points and then find all subsets of points that are 
close to particular lines.The problem with this procedure is that it involves find- 
ing n(,t - 1)/2 - 11' lines and then performing (rz)(n(n - l )) /2 - n3 coin- 
parisons of every point to all lines.This approach is computationally prohibitive 
in all bu l  the most trivial applications. 

Hough [1962] proposed an alternative approach, commonly referred to as the 
No~lgh trrrns,fonn. Consider a point ( x i ,  y,) and the general equation of a straight 
line in slope-intercept forn~. yi = [lxi + b. Infinitely many lines pass through 
( x i ,  JJ , ) ,  but thcy all siltisfy the equation y; = axi + b for varying values of a and 
A. However, writing this equation as d =   xi^ + yi and considering the ob-plane 
(also called pornmeter space) yields the equation of a .single line for a fixed pair 
( x i ,  y j ) .  Furthermore, a second point (x,, j;) also has a line in parameter space as- 
sociated with it,and this line intersects the line associated with ( m i ,  y )  at (a', b'), 
where o' is the slope and h' the intercept of the line containing both ( x , ,  y,) and 
( x i ,  Y i )  in the  .ry-plane. In k t .  all points contained on this line have lines in pa- 
ranle ter space that intersect a t (ir',  1)'). Figure 10.17 illustrates these concepts. 

FIGURE 10.1 7 
(a) .wy-plane. 
(b) Parameter 
space. 
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FIGURE 10.18 
Subdivision of the 
parameter plane 
for use in the 
Hough transform. 

. . . . . . - - , 

The computational attractiveness of the tInugh transform arises from subdi- 
viding the parameter space into so-called accumularot. cells, as illustrated in 
Fig. 10.18, where ( o  ,,,, a,,,,,,) and (b ,,., bmi,) are t,he expected ranges of slope 
and intercept values Tile cell at coordinates (i, j), with accumulator value A(i, j ) ,  
corresponds to the square associated with parameter space coordinates (a,, b,). 
Taitiallg, these cells are set to zero. Then, for every point ( x , ,  y k )  in the image 
plane, we let the parameter n equal each of the altowed subdivision values o n  the 
a-axis and solve for the corresponding b using the equation b = -x, a + yk .The 
resulting b's are then rounded off to the nearest allowed value in the b-axis. If  a 
choice of a, results in solution b,, we let A ( p ,  q )  = A ( p ,  q )  + 1. At the end of 
this procedure, a value of Q in A(i, j )  corresponds to Q points in the xy-plane 
lying on the line y = air  t b,. The  number of subdivisions in the ab-plane dc- 
termines the accuracy of the colinearity of these points. 

Note that subdividing the a axis into K increments gives, for every point 
( x i , ,  y,) ,  K values of b corresponding to the K possible values of n .  With n image 
points, this method involves nK cornputations.Thus the procedure just discussed 
is linear in  n, and the product nK does not approach the number of computations 
discussed at the beginning of this section unless K approaches or exceeds n. 

A problem with using the equation y = ax t. b to represent a line is that  
the slope approaches infinity as the line approaches the vertical. One way 
around this difficulty is to use the normal representation of a line: 

.T cos 19 + y sin 0 = p. (1 0.2-3) 

Figure 10.19(a) illustrates the geometrical interpretation of the parameters used 
in Eq. (10.2-3). The use of this representation in constructing a table of accu- 
mulators is identical to the method discussed for the  slope-intercept represen- 
tation. Instead of straight lines, however, the loci are sinusoidal curves in the 
pd-plane. As before, Q collinear points lying on a line x cos 0, + y sin 0, = pi 
yield Q sinusoidal curves that intersect at  (p , ,  0,) in the parameter space. In- 
crementing 8 and solving for the corresponding p gives Q entries in accumulator 
A(i, j) associated wiih the cell determined by ( p , ,  0,). Figure 10.19(b) illustrates 
the subdivision of the parameter space. 
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a b  
FIGURE 10.19 
(a) Normal 
rcpresenrarion of 
a line. 
(b) Subdivision of 
the p8-plane into 
cells. 

The range of angle 8 is * 90°, measured with respect to the x-axisThus with xef- 
erence to Fig. 10.1 9(a), a horizol~tal line has 8 = On,  with p being equal to the pos- 
itive x-intercept. Similarly, a vertical line has 8 = 90°, with p being equal to the 
positive y-intercept, or 0 = -90°, with p being equal to the negative y-intercept. 

Tnl Figure 10.20 illustrates the Hough transform based on Eq. (10.2-3). Fig- EXAMPLE 10.7: 
ure 10.20(a) shows an image with five labeled points. Each of these points is lllustralion of the 

mapped onto the p8-plane, as shown in Fig. 10.20Ib)- T h e  range of 6' values is Hough t ransfn~m.  

k90C, and the range of the p-axis is f f i ~ ,  where D is the distance between cor- 
ners in the image. Unlike the transform based on using the slope intercept, each 
of these curves has a different sinusoidal shape. The horizontal line resulting 
from the mapping of point 1 is a special case of a sinusoid with zero amplitude. 

Tbe colinearity detection property of the Hough transform i.s illustrated in 
Fig. 10.20(c). Point A (not to be confused with accumulator values) denotes the 
intersection of the curves corresponding to points 1,3, and 5 in the xy-image 
plane. l? l~e  location of point A indicates that thesc three points lie on a straight 
line passing through the origin (p  = 0) and oriented at -45". Similarly, the curves 
inlersecting at point B in  the parameter space indicate that points 2 ,3 ,  and 4 lie 
on a straight line oriented at 4.5" and whose distance from the origin is one-half 
the diagonal distance horn the  origin of the image to the opposite corner. 

Finally. Fig. 10.20(d) indicates the fact that the Hough transform exhibits a re- 
flective adjacency relationship at the right and left edges of the parameter space. 
This property, shown by the points marked A, B, and C in Fig. 10.20(d), is the 
result of the  manner in which 8 and p change sign at the *9O0 boundaries. P 

Altl~ough the focus so far has been on straight lines, the Hough transform is 
applicable to any function of the form g(v, c) = 0, where v is a vector of coordi- 
nates and c is a vector of coefficients. For example, the points lying on the circle 

can be detected by using the approach just discussed. The basic difference is 
the presence of three parameters (c, , c2, and c,), which results in a 3-D parameter 
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FIGURE 10.20 
Illustration of the 
Hoi~gh transfornl. 
(Courtesy of Mr. 
D. R. Ca~e,Tcxas 
Ins t rume~~t s .  Inc.) 

space with cubelike cells and accumulators of the form A( i !  j, k).The procedure 
is to incremei~t c,  and c2, solve for the c, thal satisfies Eq. (10.2-4), and update 
the accu~nulator- correspo~lding to the cell associated with the triplet (c ,  , c2, c3) .  
Clearly, the complexity of the Hough transfo~.in is propo~-tional to the number 
of coordinates and coefficients in a given funcliona[ representation. Further 
generalizatjons of the Hough translorrn to detect curves with no sitnplc analytic 
representalions arc possible, as is the application of the transform to gray-scale 
imagcs. SeveraI references dealing with these extensions arc  included at the 
end of this chapter. 

We now return to the edge-linking problem. An approach based on the 
Hough transform is as follows: 

1 Colnpute the gradient of an image and threshold i t  to obtajn a binary image. 
2. Specify subdivisions i l l  the pft-plane. 
3. Examine the counts of the accumulator cells for high pixcl concentrations. 
4. Examine the relationship (principajly for continuity) between pixels in a 

chosen cell. 

Tile concept of continuity in this case usually is based on coiiiputing the distance 
between disconnected pixels identified during traversal of the set of pixels corre- 
sponding to a given accuinulator cell. A gap at any point is significant if the distance 
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a b 
c d 
FIGURE 10.2 1 
(a)  Inh.al-cd 
image. 
(b) Thresl~olded 
gradient image. 
(c) Hough  
Iransforni. 
(d)  Linked pixels. 
(Courtesy of MI-. 
D. R. Cnle,Tesas 
Instrurnencs. Inc.) 

betwcen that point and its closest neighbor exceeds a certain threshold. (See Sec- 
tion 2.5 for a discussion of connectivity, neighborhoods, and distance measures.) 

" Figurc 10.21(a) shows an aerial infrared image containing two hangars and  EAMPLE 10.8: 
a runway. Figure 10.21(b) is a thresholded gradient image obtained using the the  Hough 

I ransfo~ ni €01 Sobel operators discussed in Section 10.1.3 (note the small gaps in the borders edge link,ng,  
of the runway).  Figure 10.21 (c) shows the Hough transform of the gradient 
image. Figure 10.21(d) shows (in white) the set of pixels linked according to the 
criteria that (I) they belonged to one of the three accumulator celIs with the 
highest count, and  (2) no gaps were longer than five pixels. Note the disap- 
pearance of the gaps as a result of linking. T- 

: C.2.3 Global Processing via Graph-Theoretic Techniques 

Tn this section we discuss a global approach for edge detection and linking based 
on representing edge segments in the form of a graph and searching the graph 
lor low-cost paths that correspond to significant rdges.This representation pro- 
vides a rugged approach that performs wcll in the presence of noise. As might 
be expected, the procedure is considerably more complicated and requires more 
processing time than the methods discussed so far. 
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FIGURE 10.22 
Edge element 
between pixels p 
and y. 

We begin the development with some basic definitions A grllyh G = ( N ,  U )  is 
a fi~.lite,nonempty set of nodes N, together with a set U of unordered pairs of dis- 
tinct elements of N.  Each pair (n,, n,) of U i s  called an arc. A gl-aph in which tlre arcs 
are directed is called a directed graph. If an arc is directed from node laj to node ni, 
then ni is said to be a successor of the pnrent node nj.The process of idenlifying the 
successors of a node is called expansion of the node. In each gi-aph we define lev- 
els, such that level 0 consists of a single node, called the smrt 01. rout node, and the 
nodes in the last level are all4 goalnodes. A cost c(17~.  n j )  can be associated with 
every arc (n , ,  n j ) . A  sequence of nodes n, .  n?, . . . , n,, with each node ni being a suc- 
cessor of node ni-, , is called a pmh from n, to n,. The cost of the entire path is 

The following discussion is simplified if we define an  edge t lenzer~t  as the bound- 
ary between two pixels p and q, such that p and y are 4-neighbors, as Fig. .10.22 
illustrates. Edge elements are idex~tif ed by the xy-coordinates oC points p and 
q. In other words, the edge element in Fig. 10.22 is defined by the pairs 
(x,, y,)(x,,  y,). Consistent with the definition given in Section 10.1.3. an edgc 
is a sequence of connected edge elenients. 

We can illustrate how rhe concepts just discussed appJy to edge detection 
using the 3 X 3 image shown in Fig. 10.23(a). The ouler numbers are pixel 

a b c  

FIGURE 10-23 (a) A 3 X 3 image region. (6) Edge segnlents and their costs. (c) Edge corresponding l o  the 
lowest-cost path in the graph sllown i n  Fig. 10.24. 
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coordinates and the numbers in brackets represent gray-level values. Each edge 
element, defined by pixels p and q, has an associated cost, defined as 

where H is the highest gray-level value in the image (7 in this case), and f ( p )  
and f ( q )  are the gray-level values of p and q, respectively. By convention, the 
point p is on the right-hand side of t h e  direction of travel along edge elements. 
For example, t h e  edge segment ( 1 , 2 )  (2,2) is between points (1,2) and (2,2) 
in Fig. 10.23(b). If the  direction of t ravel  is to the right, then p is the point 
w i t h  coordinates ( 2 , 2 )  and  q is point with coordinates (1, 2); therefore, 
c ( p ,  q )  = 7 - [ 7  - 61 = 6.This cost is shown in  the box below the edge seg- 
ment. TI: on the other hand,  we are traveling to the left between the same two 
points, then y is point (1,2)  and q is (2,2). In  this case the cost is 8, as shown 
above t h e  edge segment in Fig. 10.23(b). To simplify the discussion, we as- 
sume that edges start in t h e  top row and terminate in  the last row, so that the  
first element of an edge can be oi~ly between points (1, I), (1 ,2 )  or  (1,2),  
(1,3). Similarly, the last edge element has to be between points (3, I ) ,  ( 3 . 2 )  
or (3, 2) ,  (3, 3 ) .  Keep in mind that  p and q are  4-neighbors, as noted earlier. 

Figure 10.24 shows the graph for this problem. Each node (rectangle) in the 
graph corresponds to an edge element from Fig. 10.23. An arc exists between two 
nodes if the two corresponding edge elements taken in succession can be part 

FIGURE 10.24 
Graph for the 
Lmagc in 
Fig. 10.23(a). The 
lowest-cost path is 
shown dashed. 



of an edge. As in Fig. 10.23(b), the cost of each edge segment, computed using 
Eq. (J.0.2-6), is shown in a box on the side of the arc leading into the corre- 
sponding node. Goal nodes are shown shaded.The minimum cost path i s  shown 
dashed, and the edge corresponding to this path i s  shown in Fig. 10.23(c). 

Jn general, the problem of finding a minimum-cost path is not trivial in terms 
of cornputation.Typically, the approach is to sacrifice optimality for the sake of 
speed, and the following algorithm represents a class of procedures that use 
heuristics in order to reduce the search effort. Let r ( n )  be an es~irnate of the cost 
of a minimum-cost path fro111 the start nodes to a goal node, where the path is 
constrained to go through n.This cost can be expressed as the estirnace of the 
cost of a minimum-cost path froms to plus an estimate of the cost of [hat path 
from n to a goal node; thar is, 

Here, g ( n )  can be chosen as the lowest-cost path from s to n found so far, and 
h ( n )  is obtained by using any available heuristic information (such as expand- 
ing only certain nodes based o n  previous costs in getting to that node). An al-  
gorithm that uses u ( / a )  as the basis for performing a graph search is as follows: 

Step I: Mark the start node OPEN and set g(s) = 0. 
Sfep 2: If no node is OPEN exit with failure; otherwise, continue. 
Step 3: Mark CLOSED the OPEN node n whose estimate r ( n )  computed 
from Eq. (10.2-7) is s~nallest. (Ties for r~linimum r values are resolved arbi- 
trarily, but always in favor of a goal node.) 
Step 4: If n is a goal node, exit with the solution path obtained by tracing 
back through the pointers; otherwise, continue. 
Sfep 5.- Expand node r z ,  generating all of its successors. (If t l~cre  are no suc- 
cessors go to step 2.) 
Step 6: If a successor j7; is not marked, set 

r(ni) = g ( n )  + c(n. ni). 

mark i t  OPEN. and direct pointers from it  back to n. 
Step 7: If a successor ni is marked CLOSEL) or OPEN, update its value by 
letting 

s f ( ~ i )  = rnin[g(s), g(n) -F c(n,  n , ) ] .  

Mark OPEN those CLOSED successors whose g' values were thus lowered 
and redirect to n the pointers from all nodes whosc g' values were lowei-ed. 
Go to step 2. 

This algorilhm docs not guarantee a minimum-cost path; its advantage is 
speed via the use of Ileuristics. However, if h(n) is a lower bound on the cost of 
the minimal-cost path from node n to a goal node, the procedure indeed yields 
an optimal path to a goal (Hart et  al. [1968]). If no heuristic information is avail- 
able (that is, h = O), the procedure reduces lo Ihe unffornt-cosl algoritknl of 
Dijkstra [1959]. 

EXAMPLE 10.9: 
Edge Cindinq by F; Figure 10.25 shows an image of a noisy chrornoso~iie sjlhouette and a n  edge 
graih search. - found using a heuristic graph search based on the algorithm developed in this 
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FIGURE 10.25 
J~nagc ot' ~loisy 
chromoron)c 
silhouette and 
edgc boundary 
( i n  white) 
detei.~niued by 
graph searcl~. 

seclion.The edge is shown in white. superimposed on the original image. Note 
that in th i s  case the edge and t he  boundary of the object are approximately the 
same.The cost was based on Eq. (10.2-6), and  Lhe heuristic used at  any point on 
the grap tl was Lo determinc and use the optimum path lor fjve levels down frum 
that point. Considering the amount of noise present in  this inlage, the graph- 
search appuoach yiclded a reasonably accurate result. -.? . ~ 

WCWI -. : Thresholding ."- . 

Because of i t s  intuitive properties and simplicity of  irnplernentation, image 
threst~olding enjoys a central position in applications of image segmentation. 
Simple thresholding was first introduced in Section 3.1, and we have used it in 
various discussions i n  [he preceding cl~aptcrs. I n  this section. we inrroduce 
thi-esholding in a more formal way and extend i t  to techniques that are consid- 
erably  more general than wha t  has  been presented rhus far. 

1 . , ' 1  1:. Foundation 

Suppose that the gray-level histogra~n shown in Fig. 10.26(a) corresponds to a11 
in~age, f'(.~: y) ,  composed of light objects on a dark background, in such a way  
that object and background pixels have gray levels grouped into two dominant 
mocles. One obvious way to extract the o bjecls from t h e  background is lo select 
a threshold T  hat separates these modes. Then any point ( r ,  y)  for wh ich  
f (.r. y)  > T is called an object poirqt; othenvise. the point is called a hnckgroll~zd 
poirrr. This i s  t h c  lype of thresholdjng introduced in  Seclioil 3.1. 

Figure 1.0.26(b) shows a slightly more general case of this approach, where 
three dominant modes charactcrize the image histogl-am (tor example, two types 
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FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single thresh- 
old, and (b) multiple thresholds. 

of light objects on a dark background). Here, multilevel thresholding classifies 
a point (x, y )  as belonging to one object class if T, < ( x ,  y )  5 T,, to the other 
object class iff ( x ,  y )  > T2, and to the background i f f  ( x ,  y)  5 TI .  In general, 
segmentation problems requiring multiple thresholds are best solved using re- 
gion growing methods, such as those discussed in Section 10.4. 

Based on the preceding discussion, thresholding may be viewed as an oper- 
ation that involves tests against a function T of the form 

where f ( x ,  y) is the gray level of point ( x ,  y)  and p ( x ,  y )  denotes some local 
property of this point-for example, the average gray level of a neighborhood 
centered on ( x ,  y) .  A thresholded image g(x, y) is defined as 

Thus, pixels labeled 1 (or any other convenient gray level) correspond to objects, 
whereas pixels labeled 0 (or any other gray level not assigned to objects) cor- 
respond to the background. 

When T depends only on f ( x ,  y )  (that is, only on gray-level values) the 
threshold is called global. If T depends on both f (x, y )  and p ( x ,  y), the thresh- 
old is called local. If, in addition, T depends on the spatial coordinates x and y ,  
the threshold is called dynamic or adaptive. 

% 0.3.2 The Role of Illumination 
In Section 2.3.4 we introduced a simple model in which an image f ( x ,  y) is formed 
as the product of a reflectance component r ( x ,  y)  and an illumination compo- 
nent i ( x ,  y).The purpose of this section is to use this model to discuss briefly the 
effect of illumination on thresholding, especially on global thresholding. 

Consider the computer generated reflectance function shown in Fig. 10.27(a). 
The histogram of  this function, shown in Fig. 10.27(b), is clearly bimodal and could 
be partitioned easily by placing a single global threshold, T, in the histogram 



valley. Multiplying the rellectance function in Fig. 10.27(a) by the illuminatiot~ 
f u n c ~ i o n  shown in  Fig. 10.27(c) yields 1 1 1 ~  image shown in  Fig. 10.27(d). Fig- 
ure 10.27(e) shows the his log ran^ of this image. Note that the original valley was 
virtually eliminaled, making segmentation by a single threshold an impossible 
task. Although w e  seldorn have [he refleclance function by itself to work with. this 
simple illus~ration shows thal rhe re€[ectivc nature of ob,jects and background 
could be such that they are easily sepal-able. However, the image I-esultjng from 
p o o ~  (in this case nonuniform) illumination could be quite difficult to segment. 

Tlic re;Lwi) why the hislogr'am iu  Fig. 10.27(e) is so distorted can be explained 
with aid of the cliscussion in Section 4.5. FI-om Eq. (4.5-L), 

FIGURE 10.27 
(a) Computer 
generaled 
reClcctance 
function. 
(b) Histogram of  
reflec~ancc 
funct ior~. 
(c) Computer 
uene1.a ted 
P 
illumination 
[unction. 
( d )  PI-oducr o€ (a) 
and ( c ) .  
( e )  Histogram of 
product icnage. 
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Taking the natural logarithm of this eqitation yields a sum: 

z(., Y )  = I n f ( x ,  Y )  
= Ini(x, y )  + Inr(x, y )  ( 10.3-4) 

= i l ( x ,  y )  + r l ( x ,  y ) .  

From probability theory (Papoulis [1991]), if i ' ( x .  y )  and r ' ( x ,  y) are indepen- 
dent random variables, the histogram of z(x, y)  is given by the corivolution of 
the histograms of i l ( x ,  y )  and r l ( x ,  y ) .  If i ( x ,  y)  were cor~slant, i l ( x ,  y )  would be 
constant also, and its histogram would be a simple spike (like an impulse).The 
convolution of this impulselike function with the histogram of r l ( x ,  y)  would 
leave the basic shape of this histogram unchanged (recall from the discussion 
in Section 4.2.4 that convolution of a function with an impulse copies the func- 
[ion at the location of the impulse). But if i'(x, y )  had a broader histogram (re- 
sulting from nonuniform illumination), t he  convolution process would smear 
the histogram of r ' ( x ,  y ) ,  yielding a histogram for z(x, y) whose shape could be 
quite different from that  of the histogram of r ' ( x ,  y). The degree of distortiotl 
depends on the broadness of the histogram of i l(r,  y),which in turn depends on 
the nonuniformity of the illumination functjon. 

We have dealt with the logarithm off (x, y),instead of dealing with the image 
function directly, but the essence of the problem i s  clearly explained by using 
rhe logarithm to separate the illumination and reflectance componentsThis ap- 
proach allows histogram fornlat-ion to be viewed as a co~~volution process, thus 
explajnjng why a distinct valley in the histogram of the reflectance function 
could be smeared by improper jllumination. 

When access to the illumination source is available, a solutjon frequently 
used in practice to compensate for nonuniformity is to project the illumination 
pattern on to a constant, white reflective surface.  This yields a n  image 
g ( x ,  y) = k i ( x ,  y ) ,  where k is a constant lhat depends on t h e  surface and i ( x .  y)  
is the illumination pattern.Then, for any image J ( x ,  y)  = i ( x ,  y ) r ( x ,  y) obtained 
with the same illumination function, simply dividing/(x, y )  by g ( x ,  y )  yields a 
normalized function h ( x ,  y )  = f ( x ,  y ) / g ( x ,  y )  = r ( . r ,  y)/k.Thus, if r ( x ,  y )  can 
Ile segmented by using a single threshold T ,  then h ( x ,  y)  can be segmented by 
using a single threshold of value T / k .  

102.3 Basic Global Thresholding 
With relerence to the discussion in Section 10.3.1, the simplest of all thresh- 
oIding techniques i s  to partition Lhe image histogram by using a single global 
threshold, T,  as illustrated in Fig. 10.26(a). Segmentation is then accomplished 
by scanning the image pixel by pixel and labeling each pixel as object or back- 
ground, depending on whether the gray level of tha t  pixel is greater or Iess than 
the value of T.  As indicated earlier, the success of this method depends entirely 
on how well the histogram can be partitioned. 

EXAMPLE 10.10: 3 Figure 10.28(a) shows a simple image, and Fig. 10.28(b) shows i ts histogram. 
Global Figure 10.2S(c) shows the  I-esult of segmenting Fig. 10.28(a) by using a thresh- 
thresliolding. old T midway between the maxinlunl and minin~um gray levels. This threshold 
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achicved a "clean" segmentation by eliminaling the shadows and leaving only 
the objects lhernselves, The objects of interest in this case are darker than the 
background, so a n y  pixel with a gray level I T  was labeled black (O), and any 
pixel with a gray level >T was labeled wlzite (255).Tlie key objectjve is mere- 
ly to generate a bjnaty image,so the black-white relationship could be reversed. 

The type of global thresholding just described can bz expected to be suc- 
cessful in highly controlled environments. One of the areas in which this often 
is possible is in jndustrjal irlspection applications, wher-e control of the illumi- 
nation usually is feasible. sq 

The tlireshold in the preceding example was specified by using a heuristic 
approach, based 011 visual inspection of the histogram.The following algorithm 
can be used to obtain T automatically: 

3. Selecl an initial estimate for T. 
2. Segment the image using T.Tl1i.s will produce two groups of pixels: G, con- 

sisting 01 all pixels with grav level values >T and G2 consisting of pixels 
with values 5 T .  

3. Compute t h e  average gray level values ,u, and pl~, for the pixels in regions 
G, and G,. 

a 
b c 
FIGURE 10.28 
(a) 0 t.igi11al 
image. (I,) Image 
hisrogram. 
(c) Result of 
gluhaI 
tlireslioldi~ig with 
T irlid way 
between the 
tnasimuni and 
tnininlum gray 
levels. 
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4. Con~pute a new threshold value: 

5. Repeat steps 2 through 4 until the difference in T i n  successive iterations 
is smaller than  a predefined parameter T,,. 

When there is reason to believe that the background and  object occupy coin- 
pal-able areas in the image, a good initial value for T is the average gray level 
of the image. When objects are small compared to the area occupied by the  
background (or vice versa), then one group of pixels will cloniinate the  his- 
tograni and  the average gray level is no1 as good an initial choice. A more ap- 
propriate initial value for Tin cases such as this is  a value midway between Ihc 
maximum and  minimum gray levels.The parameter T,, is used to stop the algo- 
rithm after changes become small in terms of this parameter. This is used when 
speed  of iteration is an important issue. 

EXAMPLE 10.11: 3 Figure 10.29 shows an example of segmentation based on a thr-eshold esti- 
Iniage mated using the preceding algorithm. Figure 10.29(a) i s  the original imagc, and 
segmelitatlon Fig. 10.29(b) 1s the image histogram. Note the clear valley of the hiscogi4ani.Ap- 
using a n  
esrirnil~ed global plication of the iterat~ve algorithm resulted in a value of  125.4 after three i ter- 
Lhreshold. a tjons starting with the average gray level and T,, = 0. The result obtaincd u s ~ n g  

T - 125 to scgment the original image is shown in Fig. 11>.29(c). As expected 
from the clear separation of modes in  the histogram, the segmentation between 
object and background was very effective. T 

'1 5.2.::\ Basic Adaptive Thresholding 

As illustrated in Fig. 10.27, imaging factors such as uneven illumination can 
t-ransform a perfectly segmentable histogram into a histogram that cannot be 
partitioned effectively by a single global threshold. A11 approach for handling 
such a situation is  to divide the original image into subimages and  then utilize 
a dillerent threshold to segment each subimage.Thc key issues in this approach 
are h o w  Lo subdivide the image and how to esrimate (he L~I-eshold fol- each re- 
sulting subimage. Since t h e  threshold used for each pixel depends on the loca- 
tion of the pixel in terms of the subimages, this type of thresholding is adaptive. 
We jllustrate adaptive thresholding with a simple example. A more compre- 
hznsive example is  given in the next  section. 

EXAMPLE 10.12: $3 Figure 10.30(a) shows the  image frorn Fig. 10.27(d), which we concluded 
Basic adaptive could not be thresholded effectively with a single global threshold. In fact, 
thresholding. Fiq. 10.30(b) shows the result of thresholding rhe Image with a global tl>resl~oId 

G 

manually placed in  the valley of its histogram [see Fig. 10.27(e)J. One approach 
to reduce the effect of nonuniform illumination is to subdivide the image jnto 
smallcr subimages, such that the illuminalion of each subimage is approximately 
unjform. Figure 10.3O(c) shows such a partition, obtained by subdividing the 
image into four  equal parts, and then subdividing each pan by four again. 
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Aj1 the  subimages that did not contain a boundary between object and back- 
ground had variances of less than 75.All subimages containing boundaries had 
variances in excess of 100. Each subimage with variance greater than 100 was 
segmented with a threshold computed for that subirnage using the algorithm dis- 
cussed in the previous section. The initial value for Tin each case was selected 
as the point midway between the  minimum and maximum gray levels in the 
subimage. All sublrnages with variance less than 100 were treated as one com- 
posite image, which was segmented using a single threshold estimated using the 
same algorithm. 

The result of segmentation using this procedure is shown in Fig. 10.30(d). 
With the exception of two subimages, the improvement over Fig. 10.30(b) is 

:a :b- 
.c 

FIGURE 10.29 
(a) Original 
image. (b) Image 
histogram. 
( c )  Result of 
segmentation with 
the threshold 
estimated by 
iteration. 
(Original courtesy 
of the National 
Institute of 
Standards and 
Technology.) 
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a b  
c d 

FIGURE 10.30 
(a) Original 
irnage. (b) Result 
of global 
rhresholding. 
( c )  11nagz 
subdividzd inlo 
individual 
su bi rn ages. 
(d) Result of 
adap ti1.e 
fh rcsholdina. 

evideni. The boundal-y between objcci and background in each of thc inlpr-op- 
erly segmented subimages was small and dark,and the resulti~lg llistogram was 
alnlost unirnodal. Figu1.e 10.31 (a) shows the top irnproperl y segmetlled sitbitn- 
age I'rorn Fig. 10.30(c) a n d  the subimagc dircctly abovc it,, which was segnien(- 
e d  pcoperly. The l ~ j s t o g ~ a m  of ihe subirnage t h a t  was properly scglnented is 
clearly bimodal. with well-defined peaks and vallev. The other l,isrogram is al- 
nos [  unjmoclal. with 110 clear distinction bclween object ancl backglnund. 

Figutz 10,31(d) shows Ihe failed subirnage fur(11e1. subdivided into much 
smaller subimages, and Fig. 10.31(e) shows (lie histogram of rhe top, left srnall 
subimage.This suhhnage contains the lransition bzlwccn objccc~ and background. 
This smaller subimage has a clearly binloclal histogl.am and sllould be easily 
segn~entable. This, in fact, is the case, as  shown in Fig. 10.3'1 ( f ) .  This figure also 
shows the segmentation of  all the olhcr srnall suhimages. All these subimages 
had a nearly ilnjnlodal hiscograin., and  their average gray Ievel was  close^. ro (he 
o l ~ j  ject t han  to the background. so they were all classified as object. I (  is lel't a s  
a projecl lor rl~e reader to show rhal consideleably lnorc accurale segmentation 
can be acl~ieved by subdividing the enlire jmage in Fig. 10.30(a) into subimages 
of the slze shown in Fig. 10.31 (d). :, . 

4 

f l r  f̂  : Optimal Global and Adaptive Thresholding 
In  this section we discuss a method for estimating thresholds tha t  procluce the 
minimum average segmentation errol-.As an illustration? the method is applied 



a b 
C 

e d f  

FIGURE 10.31 (i~) Proper.1 y and improperly segn~en ted suhim:lpes from Fig. 10.30. (b)-(c) Cor~.esponding 
hislogri\m~. (d) Further subdivision of the improperly scgineuted subirnage. ( e )  Histugran) oT 5n1all subim- 
age a1 Lop. 1 ~ 1 ' 1 .  ( f )  Result al' adaptively segmetlring (d). 

to a problem that requires solution of several important issues foui~d frequently 
i n  thc pi-actical application of thsesholding. 

Suppose that a n  iinage cor~tains only two pi.incipa1 gt.ay-level regions. Let z 
denore gray-level values. We can view these values as random quantities. and 
their Iiistog~.ani m a y  be considet.ed an s l i m a t e  of their probability density func- 
tion (PDF). p(z).This overall dcnsjty function is the suin 01. mjxture of two den- 
sities, one for thc light and the other for tile dark regions in  [he image. 
Furrhernlol.e, the mixture parameters are pi-ogortional to the relative areas of 
the  dark and light regions. I f  the form of the densities i s  k n o w n  or assumed, it 

' 1 , P wt r: 
is possible to dctcrn~ine an optimal threshold (ill terms of minimum errorj for 9 
segmenting the irnage into the two distinct regions. hcc ih-ibl~, l~bs~bl LO, L I 

(:olrxuII rhc I l c ~ i ~ k  \ r c l i  s i ~ c  Figure 10.32 shows two probability density functions. Assume chat the 1al.ger 
,i,l,,.ic,rr, r,uo 

of the two PDFs corresponds to the backgroui~d levels while thc srnaller one i\Ilililv cl\ccrr\,. 
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FIGURE 10.32 
Gray-level 
probability 
density [unctions 
of two regions i n  
an  image. 

describes the gray levels of objects in the image. The mixture probability den- 
sity function describing the overall gray-level variation in the image is 

Here, P, and Pz are the probabilities of occurrence of the two classes of pixels: 
that is, P, i s  the probability (a number) that a random pixel with value z is an 
object pixel Similarly, P, is the probability that t h e  pixel is a background pixel. 
We are assunling tha t any given pixel belongs either to an objecr or to t h e  back- 
ground, so that 

An image is segmented by classifyi~~g as background all pixels with gray 1e-vels 
greater than a threshold T (see Fig. 10.32). A11 other pixels are called objcct 
pixels. Our  main objective is to select the value of T that minimizes the average 
error in making the decisions that a given pixel belongs to an object or to the 
background. 

Recall [hat the probability of a random variable having a value in the interval 
[n, b]  is the integral of its probability density funclion from n to b, which is the 
area of the PDF curve between these two limits. Tl-rus, the probability o l  
rrroneo~lsly classitying a background point as an object point is 

7' 

E, ( T )  = / p.(z) dz .  
. -4% 

This is the area under the curve of p 2 ( z )  to the left of the thl-eshold. Similarly. 
the probability of erroneously classifying an object point as background is 

which is the area under the curve of y (2) to the right of T. Then the overall 
probability of error is 

Note how the quantities E., and E2 are weighted (given importance) by the prob- 
ability of occurrence of object or background pixels. Note also that the sub- 



scripts are opposites.This is sin~ple to explain. Consider, for example, the extreme 
case in which background points are known never to occur. In this case P, = 0. 
The contribution to the overall error (E) of classifying a background point as 
an object point (E,)  should be zeroed out because background points are known 
never lo occur.This is accomplished by multiplying E ,  by P2 = 0. If background 
and object points are equally likely to occur, then the weights are P, = P, = 0.5. 

To find the threshold value for which this error is minimal requires differ- 
entiating E ( T )  with respect to T (using Leibniz's rule) and equating the resull 
to 0. The result is 

This  equation is solved for T to find the optimum threshold. Note that if P, = P2! 
then the optimum threshold is where the curves For p , ( z )  and p , ( z )  intersect 
(see Fig. 10.32). 

Obtaining an analytical expression for T requires that we  know i:he equa- 
tions for the two PDFs. Estimating these densities in practice is not always fea- 
sible, and an approach used oCten is to enlploy densities whose parameters are 
reasonably simple to obtain. One of the principal densities used in this manner 
is the Gaussian density, which is completely characterized by two parameters: 
the Incan and the variance. In this case, 

where p,  and rr: are the mean and variance of the Gaussian density of one class 
of pixels (say, objects) and p2 and cri are the mean and variance of the other class. 
Using this equation in the general solution of Eq. (10.3-10) results in the foI- 
lowing solution for the threshold T: 

where 

Since a quadratic equation has two possible solutions, two threshold values may 
be required to obtain the optimal solution. 

I f  the variances are equal, o2 = g: = a:, a single threshold is sufficient: 

J f  P, = P,, the optimal threshold is the average of the means.The same is true 
i f  cr = 0. Delerrnining the optimal threshold may be similarIy accomplished for 
other densities of known form, such as the Raleigh and log-normal densities. 

Instead of assuming a functional form for p ( z ) ,  a minimum mean-square- 
error approach may be used to estimate a composite gray-level PDF of an image 
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Tram the image histogram. For example, the  mean  square error between the 
(continuos) mixture density p ( z )  and the (discrete) image histogram h ( z , )  is 

where an 12-point histogram i s  assurned.?he principal reason for estimating the  
complcte density is to determine the presence or absence d o r ~ i ~ l a ~ t  modes in 
the PDF. For example, two dominant modes typically indicate the PI-esencz of 
edges in the image (or ~~egiorl) over which the PDF is computed. 

111 general, determining analytically the parameters t l ~ a ~  mini~nize this meal) 
square error is not a sirnple matter. Evcn for the Gaussian case, the straight- 
forward computation of equaling the partial derivatives to 0 leads to a set ofsi- 
n l u l ~ a n e o u s  transcendental equations tha r  usually can be solved oilly by 
numerical procedures, such as a conjugate gradients or Newton's melhod for 
silnu I taneaus no11 linear equations. 

EXAMPLE 10.13: T' The following is one of the earlicst (and slill one of t h e  most instructive) 
Use of o ~ t j m u n l  exa~nples of segmentation by optimum thresholding in  image p~.ocessi~lg.'l'his 
thrrsho'ding example is particularly interesting at this junction because il sllows how seg- 
i m a ~ e  
segmentation. men tation results can be improved by employing preprocessing techniques 

based on methods developed in our discussion of image enha~~cenlenl .  In ad- 
dition, the example also illustrates the use of local histogram es i i~na t ion  and 
adaptive thresholding. Thc gciieral problem is to outline auro~natically [he 
boundaries of heart ventricles in ca~dioangiograms (X-ray iniages of a heart 
that has been injected with a contrast medium). The approach discussed here 
was developed by Chow and Kalicko [I9721 Cor outlining boundaries of the left 
ven~~*icle of the heart. 

Prior to segmentation5 all images were pi-eprocessed as follows: (1) Each 
pixel was mapped with a log function (see Seclio~l 3.2.2) to countel- exponen- 
tial effects caused by radioactive absorption. (2) An image obtained bel'oore ap- 
plication oC rhe contrast mediu~n was subtracred from each image caplured after 
the medium was injected in order to remove the spinal column present in both 
images (see Sectior~ 3.4.1). (3) Several ang iog~ams  were s u m m e d  in order to re- 
duce rarldonl noise (see Section 3.4.2). Figure 10.33 shows a cardioangiogram 

a b 
FIGURE 10.33 A 
cardioangiogram 
before and after 
prep~ocessi ng. 
(Chow and 
Kancko.) 



before and after preprocessing (an explanation of the regions marked A and B 
is given in the following paragraph). 

In order to compute the optimal thresholds, each preprocessed image was 
subdivided into 49 regions by placing a 7 X 7 grid with 50% overlap over each 
image (all original images shown in this example are of size 256 x 2.56 pixels). 
Each of the 49 resulting overlapped regions contained 64 X 64 pixels. Fig- 
ures 10.34(a) and 10.34(b) are the histograms of the regions marked A and B 
in Fig. 10.33(b). Note that the histogram for region A clearly is bimodal, indi- 
cating the presence of a boundary.The histogram for region B, however, is uni- 
modal, indicating the absence of two markedly distinct regions. 

After all 49 histograms were computed, a test of bimodality was performed 
to reject the unimodal histograms.The remaining histograms were then fitted by 
bimodal Gaussian density curves [see Eq. (10.3-ll)] using a conjugate gradient 
hill-climbing method to minimize the error function given in Eq. (10.3-15).The 
X's and 0 ' s  in Fig. 10.34(a) are two fits to the histogram shown in black dots.Tl~e 
optimum thresholds were then obtained by using Eqs. (10.3-12) and (10.3-13). 

At this stage of the process only the regions with bimodal histograms were 
assigned thresholds. The thresholds for the remaining regions were obtained by 
interpolating these thresholds. Then a second interpolation was carried out point 
by point by using neighboring threshold values so that, at the end of the pro- 
cedure, every point in  the image had bee11 assigned a threshoId. Finally, a bina- 
ry decision was carried out: for each pixel using Ihe rule 

1 iff  ( x ,  y )  2 T,, 
0 otherwise 

where T,, was the threshold assigned to location ( x ,  y) in the image [note that 
these are adaptive thresholds, because they depend on the spatial coordinales 
( x ,  y ) ] .  Boundaries were obtained by taking the gradient of the binary picture. 
Figure 10.35 shows the boundaries superimposed on the original image. Con- 
sidering the variability and complexity of the images involved, this procedure 
yielded excellent segmentation results. t% 

-Dark Bright - -Dark Bright - 

a b  
FIGURE 10.34 
Histograms (black 
dots) of (a) region 
A, and (b) region 
B in Fig. 10.33(b). 
(Chow and 
Kaneko.) 
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FIGURE 10.35 
Cardioangiogram 
showing 
superimposed 
bounda~.ies. 
(Chow and 
Kaneko.) 

- "  r . . 
L. . . m J 8 , ,  Use of Boundary Characteristics for Histogram 

Improvement and Local Thresholding 
Based on the discussions in the previous five sections,it is intuitively evident that 
the chances of selecting a "good" threshold are enhanced considc~-ably if the his- 
togram peaks arc tall, narrow, syn~n~etr ic ,  and separated by deep valleys. One 
approach for improving the shape of l~istograms is to consider only those pix- 
els that lie on o r  near the edges between objects and the background. An in)- 
mediate and obvious improvement is tliat liistograms would be less clependenl 
on the relative sizes of objects and the background. For instance. the histogram 
of an image composed of a small object 011 a large background area (or  vice 
versa) would be dominated by a large peak because of the liigl~ concentration 
of one type of pixels. Figures 10.30 and 10.31 are a good illustl-ation of how seg- 
mentation performance is affected by this condition. 

If only the pixels on o r  near thc edge between object and the background 
were used, the resultirlg histogram would have peaks of approximately the same 
height. In addition, the probability that any of those given pixels lies o n  an ob- 
ject would be approximately equal to  the probabilily that i t  lies on the back- 
ground, thus improving the symmetry of the hislogram peaks. Finally, as 
indicated in the following paragraph, using pixels that satisfy some sil-r~ple mea- 
sures based on  gradient and Laplacian operators has a tendency to deepen the 
valley between histogram peaks. 

The principal problem with the approach just discussed is the implicit as- 
sumption that the edges between objects andbackground arc known.'T'his in- 
formation clearly is not available during seglnen talion, as finding a division 
between objects and background is precisely what segn~entation is all about. 
However, from the discussion in Section 10.1.3, an indication of whether 21 pixel 
is on an edge may be obtained by computing its gradient. In addition, use of 
the Laplacian can yield information regarding whether a given pixel lies on the 
dark or liglit side of an edge.The average value of the Laplacian is 0 at the Iran- 
sition of an  edge (see Fig. 10.6), so in practice the valleys of liistograms formed 
from the pixels selected by a gradientllaplacian criterion can be expected to be 
sparsely populated. This property produces the highly desirable deep valleys 
discussed previously. 
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The gradient Vf at  any point (x, y) in an image is given by Eq. (10.1-4) or 
(10.1-12). Similarly, the Laplacian V2f is given by Eq. (10.1-14) or (10.1-15). 
These two quantities may be used to form a three-level image, as follows: 

O if Vf < T 
+ if Vf 2 T and v2f 2 0 
- if Vf 2 T and V2f < 0 

where the symbols 0, +, and - represent any three distinct gray levels, Tis a thresh- 
old, and the gradient and Laplacian are computed at every point (x, y). For a dark 
object on a light background, and with reference to Fig. 10.6, the use of 
Eq. (10.3-16) produces an image s ( x ,  y) in which (1) all pixels that are not on an 
edge (as determined by Vf being less than T) axe labeled 0; (2) all pixels on the 
dark side of an edge are labeled +; and (3) all pixels on the light side of an edge 
are labeled -.The symbols + and -in Eq. (10.3-16) are reversed for a light object 
on a dark background. Figure 10.36 shows the labeling produced by Eq. (10.3-16) 
for an image of a dark, underlined stroke written on a light background. 

The information obtained with this procedure can be used to generate a seg- 
mented, binary image in which 1 ' s  correspond to objects of interest and 0's cor- 
respond to the background. The transition (along a horizontal or vertical scan 
l ine) from a light background to a dark object must be characterized by the oc- 
currence of a - fol.lowed by a + in s(x,  y) .  The interior of the object is com- 
posed of pixels that are labeled either 0 or +. Finally, the transition from the 
object back to the background is characterized by the occurrence of a + fol- 
lowed by a -.Thus a horizontal or vertical scan line containing a section of an 
object has the foIlowing structure: 

FIGURE 10.36 
Image of a 
handwritten 
stroke coded by 
using 
Eq. (10.3- 16). 
(Courtesy of IBM 
Corporation.) 



610 Chapter 10 :a Image Seginentation 

a 
b 

FIGURE 10.37 
(a) Original 
image. (b) Iniage 
segrnen red by 
local thresholding. 
(Caul-tesy of IBM 
Corporar ion.) 

EXAMPLE LO. 14: 
I magc 
se_~menl;rtion hy 
local  thresholdir~g. 

FIGURE 10.38 
H isrogram ol' 
pixels with 
zradiet~ts gl-catel. 
than 5. (CourLcsy 
of I B M  
Corporal ion.) 

where  (..-) represents any cornbina~ion of -I, -. and 0. The innerrnos1 paren- 
tlieses contairl object poitits a n d  are labelcd 1 .  All olhei- pixels along the same 
scan line arc labeled 0, with the exception ol any other sequence ol' (0 01- +) 
bounded by (-, +) and (+. -). 

3 Figure '10.37(a) shows an image of an ordinary scenic hank check. Figure I(.).-3H 
shows the I~isrogram as a function 01 gradient values for pixets with gr a d '  ients 
grcater than 5. Note that this hislogram has two dominant modes that are sym- 
metric, nearly of the same height, and are separated by a distinct valley. Finally, 
Fig. 10.37(b) sllows the segmen red image obtained by using Eq. (10.3- 16) with 7 
at or ncal- the ~nidpoint of the vallcy.The result was made binary by using the se- 
quence an:llysis .just discussed. Note that this example is an illustration ol  local 
thresholding, as defined in Eq. (10.3-1): because the value of T was detel.niined 
horn a histogram of the gradient and Laplacian, which are local properties. E 

0 
5 to 14 15 to 24 25 and a bovc 

Gradicnt value 
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So fa]- we have been concerned with thresholdit~g gray levels. In  some cases. a 
sensor can makc available illore than one variable to cha[.acterize each pixel i l l  

all i Inage, and  L h us all ow ~nr t l l j s l )ech.~~I  117~1-e.rl1tAdi~1g AS discussed in some cle- 
rail in Sectiotl 6.7, color- irnagi~lg i s  a good exanlple, i t ]  which each pixel is char- 
ac~erized by lhree RGB values. I n  this case, cons t ruc~j r~g a 3-D  hist tog ran^" 
becomes possible.The basic procedure is analogous to the method used for one 
varialde. FOL exaniple. For a n  image with three variablcs (KGB co~nponenls), 
each having 16 possil,le Icvels. a I 6  X 16 X 16 grid (cube) is f 'or~ned.  I ~ l s e r ~ e d  
in each cell oC the cube is rht: number ol  pixels whose RGB con~pot~ents  have 
values corresponding to the coordinates derini~lg the location of chat particular 
ccll. Each entry is rhen dividcd by the total nu~i lber  of pixels in ths  image to form 
a not-n~nlij.ed histog~,anl.  

Thc concept of Ihresholdil~g now beconlcs one of finding clus[el.s of poi~lts  
i n  3-D space. Suppose, for cxaniple, that  K hignificant clusters of poitl~s are found 
i n  the hislogril~n. Thc image can bc scglnen ted by assigning one arbitrary value 
(say, white) to pixcls whose RGB cornponcnts are closer to one clustc~.axzd an- 
other value (say. black) to the other piscls the iniage. 1 1 i s  concept is easily 
extendal~lc to Illore components and certainly to mote clusters.Tlw principal dif- 
l'iculcy is that cluster seeking becomes a n  j~~ci.casingly complex task as thc nun?- 
1x1- or variables increases. Cluster-seeking methods can be  found, for cxarnplc. 
in t h e  hooks by Dud;). Hart, and  Stork [2001], a n d  Tou and Gouzalez [ I  9741. 

- The image shown in Fjg. 10..39(:\) is a monochrome picrui-e ot' a colol- pho- EX,\IMPLE 10.15: 
togi-aph. Tie  original color image is conlposed of tl11-ee 16-level R G B  images. Multjs~ccLl-ill 

'Ihe scarf is ;I vivid red. and the hair and facial colors are  lighr and different in  'h'e"'o'ding- 

specti-a1 cl~aracterislics from thc window and other  I~ackgrnund fea1ur.e~. 
Figure 10.39(6) was obtained b y  threshotdjng about one of the histogram clus- 

ters cot.rexl>o~~djng to facial tones Nole 1ha1 tlie window. which in the 1nonoc11ron)e 

a h c 

FIGURE 10.39 (it) Original colo~. image shown as a rnonochruo~e picture. (b) Scgmenration ol' pixels with col- 
01-s closc to racial Ioiics. (c) Segmenti~tion of I-ed cumponenls. 



612 Chapter 10 m lmage Segmentation 

picture is close in gray-level value to the hair, does not appear in the segmented 
image because of the use of multispectral characteristics to separate these two re- 
gions Figure 10.39(c) was obtained by thresholding about a cluster close lo the red 
axis. In this case only the scarf and part of a flower (which is red also) appeared 
in the segmented resull.The threshold used to obtain both results was ;a distance 
of one cell.Thus any pixel whose components were outside the cell enclosing the 
center of the cluster in question was classified as background (black). Pisels wl~ose 
components placed them inside the cell were coded white. -- 

w 

As discussed in Scction 6.7, color segmentation can be based on any of the 
color models introduced in Chapter 6 .  For instance, hue and saturation are im- 
portant properlies in numerous applications dealing with the use of imaging 
for automated inspection. These properties a re  particularly important in at- 
tempts to emulate [he equivalent function performed by humans, such as in the 
inspection of fruits for ripeness or in the inspection of manufactured goods. As  
mentioned in Chap te r  6, the Hue. Saturation, Intensity (I-ISI) model is ideal for 
these typ ts  of applicalio~~s because it- is closely related to the way in  which hu-  
mans  describe the perceptio~~ of co1or.A segmentation approach using the h u e  
and saturation components of a color signal also is particularly attractive, be- 
cause it  involves 2-D data clusters that are easier to analyze than,  say, the 3-D 
clusters needed for RGB segmentation. 

Region-Based Segmentation 

The objective oc segmer~tarion is to partition a n  image into regions. In Sec- 
tions 10.1 and L0.2 we approached this problem by finding boundaries between 
regions based on discontinuities in g ray  levels, whereas i n  Section 10.3 seg- 
mentation was accomplished via thresholds based on the distribution of pixel 
propzrties, such as gray-level values 01, color. In this section we discuss seg- 
mentation techniques that are based on Iinding the regions directly. 

1 fi.4. I Basic Formulation 

Let R represent the entire image region. We may view segmentation as  a process 
that partitions R into n subregions, R, ,  R,, . . . , R,, such that 

(a) U R, = R. 
;= 1 

(b) Ri is a connected region, i = 1,2,. . . , n. - 

(c) R, n R, = ;zI for all i and j ,  i # j .  
R;) = TRUE for i = 1 ,2 , .  . . , n. 
R, U I?,) = FALSE for i it j .  

Here, P(R , )  is a logical predicate defined over the points in set Ri and 0 is 
the null set. 

Condition (a) indicates tha t  the  segmentation must be complele; that  is, every 
pixel must be in a region. Condition (b) requires that points in a region must be 
connected in some predefined sense (see Section 2.5.2 regarding connectivity). 
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Condition (c) indicates rliat the regions must be disjoint. Condition (d) deals with 
the properties that  must be satisfied by the pixels in a segmented region-for ex- 
ample P(R;)  = TRUE if all pixels in Ri have the same gray level. Finally, condi- 
tion (e) indicates that regions R, and Ri are different in the sense of predicate P. 

31-42 Region Growing 

As its name implies, region growing is a procedure that groups pixels 01- subre- 
gions into larger regions based on predefined criteria.The basic approach is to 
start with a set of "seed" points and from these grow regions by appending to 
each seed those neighboringpixeIs that have properties similar to the seed (such 
as specific ranges ol gray level or color). 

Selectirig a set of one 01. more starting points often can be based on the na- 
ture of the problem, as will be shown in Example 10.16. When a priorj infor- 
ination is not available. the procedure i s  to cornpute at every pixel the same set 
oI properties that ult imately will be used to assign pixels to regions during the 
growing process. It' t h e  result of these computations shows clusters of values, 
the pixels whose properties place them near  the centroid of these clusters can 
be used as seeds. 

The selection of similarity crileria depends not only on the problem under 
consideration, but also on [he type of image data available. For example, the 
analysis of land-use satellite imagery depends heavily on the  use of color. This 
problem would be signifjcan tl y more difficult, or even impossible, to handle 
without the inherent information available in color images. When the images are 
monochrome, region analysis [nust be carried out with a set of descriptors based 
on gray levels a n d  spatial properties (such as moments or texture). We discuss 
clcscriptors useful lor. region clia~~acterization in Chapter 11. 

l3escripto1.s alone can yield misleading results if connectivity or adjacency in- 
formation is not used in the region-growing process. For example,visualize a ran- 
dom arrangement of pixels with only three distinct gray-level values. Grouping 
pixels with the same gray level t o  form a "rcgion" without paying attention to 
connectivity would yiclct a segmentation result that is meaningless in  the con- 
text of this discussio~~. 

Another problem in region growing is the Cormulation of a stopping rule. 
Basically, growing a region should stop when no more  pixels satisfy the criteria 
for inclusion in that region. Criteria such as gray level, texture, and color, are 
local in nature and do not take into accauiit the "historyl'of region growth. Ad- 
ditional criteria that increase the powei- of a region-growing algorithm utilize the 
concept of size, likeness between a candidate pixel and the pixels grown so far 
(such as a cornpurisoll of the gray level of a candidate an'd the average gray 
level of the grown region), and the shape of the region being grown.The use of 
these types of descriptors is based on the assulnption tha t  a model of expected 
results is ar least partially available. 

''; Figure 10.40(a) sl~clws an X-ray image of a weld (the horizontal dark region) EXAMPLE 10.16: 
containing several cracks and porosities (the bright, white streaks running hor- A~~l ica ' jo"  of 

izontally through the middle of the image). We wish to use region growing to seg- region growing in 
weld inspection. 

rnent t11c i.egiorls of the weld failures. Thcse segmented features could be used 
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a h  
c d 

FIGURE 10.40 
(a) Jmase 
showing de€ective 
wclds. (b) Seed 
points (c) Resulr 
of region goowing. 
(d)  Bol~ndaries of 
segmented 
d e k c  tivc welds 
(in black). 
(Original i~?lage 
courtesy of 

for j~~spection,for inclusion in a database of histol-ical studies, f o r  controlling an 
automared welding system, and  lor other numerous applications. 

The first order of business is to determine the initial seed points. In this ap-  
plication, i t  js known that  pjxels of defective welds f end  to have  the maximum 
allowable digital value (255 in  this case). Based on this inlormatjon, we select- 
ed as starting points all pjxels having va lues  oi 255. The points thus extracled 
from the original image are shown jn Fig. 10.4D(b). Note tha t  many of the poinrs 
are clustered into seed regions. 

Tt~e next step is to choose criteria for region growing. I n  this particular ex-  
ainple we chose two criteria for a pjxel to be annexed to a region: (1)  The ab- 
solute gay-level difference between any pixel a n d  the seed had lo be less than 
65. This nuinber is based on the histogram s h o w n  i n  Fig. 10.41 and ~.epresents 
the difference between 255 and the location of the first n la jo~ '  valley to the left, 
which is ~ep~.csentative of the highest gray level value in the dark weld region. 
(2) To be included in one of the regions, the- pixel had to be 8-connected to at 
least one  pjxel jn that region. If a pixel was found to be connectzd to more t l ~ a ~ l  
one region. the regions wc1.e merged. 

Figure 10.30(c) shows the regions that  1.esulted by starting with the seeds i n  
Fig. 10.40(b) and urilizing the criteria defined in (lie previous paragrapll. Su- 
perimposing the boundaries ol these regions on the original image [Fig. 10.40(d)] 
reveals tha t  the region-growing procedure did indeed segment the defective 
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12000 1,- I FIGURE 10.41 
Histogram of 
Fig. 10.40(a). 

welds with a n  acceprable degree of accuracy. It is of interest to notc t h a t  i t  was 
not necessary to  specify any stopping rules in this case because the criteria for 
region growing were sufficient to isolate the features of interest. F 

It was mentioned in Section 10.3.1 in connection with Fig. 10.26(b) that prob- 
lems having mu1 timodal histograms generally are best solved using region-based 
approaches-The histogram shown in Fig. 10.41 is an excellent example of a 
"clean" mu1 tirnodal histogram. Th is  histogram and the results in Example 10.16 
confirm the assertion that, even with well-behaved histograms, multilevel thresh- 
olding is a difficult proposition. Based on the results of Example 10.16, i t  should 
be intr~itively obvious that this problem cannot be solved effectively by any rea- 
sonably general method of automatic thresholcl selection based on gray levels 
alone.The use of corrneciivi~y was fundamental in solving the problem. 

: 0.3.3 Region Splitting and Merging 
The procedure just djscussed grows regions from a set of seed points. An alter- 
native is to subdivide an image initially into a set of arbitrary, disjointed regions 
and then  merge and/or split the regions in an  attempt to satisfy the conditions 
stated in Section 10.4.1. A split and merge algorithm that iteratively works 
toward satisfying these conslraints is developed next. 

Let R represent the entire image region and select a predicate P. One ap- 
proach for segrnen ting R is to  subdivide it  successively into smaller and small- 
er quadrant regions so  thal, for any region R,, P(R,)  = TRUE. We start with the 
entire region. If P ( R )  = FALSE, we divide the image inro quadrants. I f  P is 
FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so 
on.  This particular splitting technique has a convenient representation in the 
form of a so-called quadtree (that is, a tree in which nodes have exactly foul- de- 
scendants). as illustrated in Fig. 10.42. Note that t he  root of the tree corresponds 
to the  entire Image and that each node corresponds to  a subdivision. In  this 
case, only R, was subdivided further. 
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a b  

FIGURE 10.42 
(a) Parli tioned 
tmage. 
(b) Correspondi~~g 
quadtree. 

If only splitting were used, the final partition likely would contain adjacent 
regions with identical properties.Tt~is drawback may be I-emedied by allowing 
merging, as well as splitting. Satisfying the constraints of Section 10.4.1 requires 
merging only adjacent regions whose combined pixels satisfy ithe predicate P. 
That is, two adjacent regions Rj and Rx are merged only if P(R,  U R, ) = TRUE. 

The preceding discussion may be summarized by the following procedure, in 
which, at any step we 

1. Splil into lour disjoint quadrants any region Ri for which P(R,)  = FALSE. 
2. Merge any adjacent regions R, and R, for which P(H~ U R,) = TRUE. 
3. Stop when no further merging or splitting is possible. 

Several variatioiis of the preceding basic theme are possible. For example, onc 
possibility is to split the image initially into a set of blocks. Further splitting is 
carried out as described previously, but merging is initially limited to groups ol: 
four bIocks that are descendants in the quadtl-ec representation and that satis- 
fy the predicate P. When n o  further merging of this type are possible, the pro- 
cedure is terminated by one Cinal merging of regions satisfying step 2. A t  this 
point. the merged regions may be of different sizes.The principal advanlage of 
this approach is that jt uses the  same quadtree for splitting and me]-ging, until 
the final merging step. 

EXAMPLE 10.17: r" Figure 10.41(a) shows a simple image. We define P(R,)  = TRUE il at least 
Split and merge. 80% of t h e  pixels in R, have [he property lz, - m,l 5 Zu,, where z, is thc gi ay 

level of thelth pixel in R,. nz, is the mean gray level of that region, and u, i s  the 

a b c  

FIGURE 10.43 
(a) Original 
image. (b) Result 
ol split and merge 
procedure. 
(c) Result of 
thl-esholding (a). 
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standard deviation of the  gray levels in R;. II  P ( R ~ )  = TRUE under this con- 
dition, the values of all the pixels in R; were set equal to m,. Splitting and merg- 
ing was done  using the algorithm outlined previously The result of applying 
[his technique to the image in  Fig. 10.13(a) is show11 in Fig. 10.43(b). Note that 
the image was segmented perfectly. The image  show^^ in Fig. 10.43(c) was ob- 
tained by thresholding Fig. 10.43(a), with a threshold placed midway betwee11 
the two principal peaks of the histogtam.The shading (and the sten) of t h e  leaf) 
were erroneously eliminated by the threshold ing  procedu1.e. Q, 

As used in  the preceding example. properlies based on the mean and  stan- 
dard deviation of pixels in a region attempt to quantify the texrure of a region 
(see Section 11.3.3 for a discussio~l on texture).The concept of fexrrrre scgn?er?- 
rmion is based on using measures of texture for [he predicates P(R,) .  That is. we 
can perform texture segmentation by a n y  of the methods discussed in this sec- 
tion by specifying predicates based on texture contcn t. 

,q-- - - Segmentation by Morphological Watersheds 
u * 

Thus fkr, we have discussed segmentation based on three principal concepts: 
(a )  detection of discontinuilies. (b) thresl~olding, and (c) region processing. Each 
o l  these approaches was  found to have advantages (For example, speed in the 
case of global (hi-esholding) a n d  disadvantages (for example, the need for post- 
processing, such as  edge linking, in methods based on detecting discon tjnui ties 
in gray levels). In this section we discuss an approach based o n  the coilcept of 
so-called nzorplzological ware,-sheds. As will become evident in t h e  foLlowing 
discussion, segmentation by watersheds em bodies many of the concepts of the 
other three approaches and,  as such, often pi-oduces more stable segmentation 
rcsults, including continuous segmentation boundaries.This approach also pro- 
vides a simple framework for incorporating knowledge-based constraints (see 
Fig. 1.23) in the segmcntalion process. 

' 0.5-7 Basic Concepts 
The concept of warersheds is based on visualizing an image in three dimen- 
sions: two spatial coordinates versus gray levels. In such a "~opographic" inrer- 
preration, we consider three types of points: (a) points belonging to a regional 
minimum; (b) poinls at which a drop of water, if placed at the location of any 
of thosc points, would fall with certainty to a sjngle minimum; and  (c) points at 
which water would be equally likely t o  fall to more than one such minimum. For 
a particular regional rninimum,  he se l  of points satisfying condition (b)  is called 
the colchnto~r basin 01. ~torer~heti of that minimum.Tbe points satisfying con- 
dition (c) form crest lines on the ~opographic surface and  are termed divide 
lines or ~vutersherl lines. 

The principal objective of segmentation algorithms based on these concepts 
is to find the watershed lines. The basic idea is simple: Suppose that a hole is 
punched in each regional minimum and that the entire topography is flooded 
from below by letting water rise through the holes at a uniform rare. When the 
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a b 
c d 

FIGURE 10.44 
( a )  01.1ginaI 
1rnng.e. 
(h) Topngl-aphic 
view. (c)-(d) ‘live 
slagcs of i loodi~lg. 

rising water in  distincl calchlnerlr hasins is about co merge, L? dam i s  built to p1.e- 
vent t l~c  rne~.ging.The flooding will eventually reach a stage when only the tops 
of the dams are visible above (lie warel. Iine.Tiese dam boundaries corr.espo~ld 
to thc divide lines oT the watersheds.Therefore, they arc the (co~~tinuous) bound- 
aries at]-acted by a watershed segmentatLon algorithm. 

These ideas can be explained fur ther  with the ajd of Fig. 10.44. Figure 10.44(n) 
shows a simple gl-ay-scale image and Fig. 10.44(b) is a topographic vic~v, in which 
t l ~ e  height oC the "rnoun tains" is pl-oportional to gj-ay-level values i n  the inpul 
image. For ease ol' interpl-etation, the backsides of s~l - i~ctu~.es  are sl~aded.This 
is not lo he conl'used wit11 gray-level va1ues;only the general topogr-aptly of [he 
three-dimet~sional represcntaliou is of interest. In order to pl-even1 [lie rising 
water from spilling ou t  through t h e  edges of rhe structure. we imagine rtle 

perjrnecer of the entire topography (image) being enclosed by dams of height 
ereatel than the highesr possible mountain. whose value is deter~nined by the - 
highest possible gray-level value in thc input image. 

Suppose lha t a hole is punched 111 each regional t n i n i n ~ u ~ i i  [shown as  da rk  
a t a s  in Fig. 10.43(b)j and t h a t  the entire topography is flooded fi.o~n below 



10.5 ,': Segrncntat.ion by Morphological Watersheds 61 9 

by l e t t i n3  watel. through the hnles a t  a uniform ralc. Figure 10.44(c) shows 
[lie First stage of flooding. where the "wa ter,"show~l j r l  ljgh t gray, has covered 
only arc;ls that  correspnlld l o  Ihe v e r y  d a r k  back$]-ound in the i m a g e .  I n  
F i ~ s .  10.44(d) a n d  (e) we see that the watcr i iow has risen inlo [he firs1 and sec- 
ond catchmen t basins, 1.espectively. As the water continues to rise, i t  wiIl even- 
rually ovci~ftorv l'rom one catcl~ment basin i n t o  anotl1er.The first indicalion of 
this is shown in 10.44(f). Here, warcr from the I c f t  basin actually overflowed 
into the basin on fhe right a n d  a sho1.t "dam" (consisting of single pixels) was 
buill to prevent waiet, from m e r g i n g  at that level of flooding (the details of 
dam building are djscussed in tlic following section). The effect is more pro- 
noul~ced as w;) tev continues to rise. as shown in Fig. lO.IJ(g). This figure sl*lows 
a 1ongc1' dilm berween the two catchment basins and  another  clan) in the top 
part oC the right basin. The lat tcr dam was Ouill tc) prevenl merging of water 
f r o m  rha t hasill with waleis Cr0111 a r m s  correspondjng to the backgl-ound. This 
process is continued u n  ti1 the n l i ~ x i m u m  level of flooding (correspo~\di~lg to 
the highest gray-level value in [lie image) is reached. The final d a m s  cone-  
sponcl ro the watcrslied lines. whicll aIe the desired segmentation IZSU It. Tl~c  

=T e i - - 
3 i 6 h  
E 
E FIGURE 10.44 

t ( C O I I I ~ I ~ ~ ~ )  

1 ! 
(c) Rcsult oi 

-%' 

H I lurlher Ilooding. = 1 
--I - - -. - - 

i' / ( f )  Beginning nl  
- - : & '  " 

d - -*,\ merging of water - 
% 4' kg - - =' I'rom two 

3 1  - - - c a ~ c h n ~ e n  1 bas~nq 
(a short dam was 
built bctwcen 
then?) ( g )  Longcr 
darns. (11) F ~ n a l  
t r~a re  rshecl 
(segme~~ta l lon)  
lines. (Courtesy o i  
Dr. S. Beuchel-. 
CM M!Ecole des 
Mines de  Paris.) 
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result for this example is shown in Fig. 10.44(h) as a dark ,  one-pixel-thick path 
superimposzd on the original image. Note the important property that the 
watershed lines form a connected path ,  thus giving contjnuous boundaries be- 
tween regions. 

One  of the principal applications of watershed segmentation is in the ex- 
traction of nearly uniform (bloblike) objects from the background. Regions 
characterized by small variations in gray levels have smalI gradient values. Thus. 
in practice, we often see watershed segmentation applied to the gradient of a n  
image, rather than to the image itse[f. In this formulation, the regional minima 
of catchment basins correlate nicely with the small value of the gradient corre- 
sponding to the objects of interest. 

? @*Sa2 Dam Construction 

Before proceeding, let us consider how to construct the dams or watershed lines 
required by watershed segmentation algorithms. Dam construction is based on 
binary images, which are members of 2-D integer space Z* (see Section 2.4.2) .  
The simplest way to construct dams separating sets of binary points is to use 
n~orphological dilation (see Section 9.2.1). 

The basics of how to construct damsusing dilation are illustrated in Fig. 10.45. 
Figure 10.45(a) shows portions of t w o  catchment basins at flooding step n - 1 
and Fig. 10.4S(b) shows the result a t  the next flooding step, n.  The water has 
spilled from one basin to the other and, therefore, a dam must be built to keep 
this from happening. In order to be consistent with notalion to be introduced 
shortly, let M ,  and Mz denote the sets of coordinates of points in two regional 
minima.Then let the set of coordinates of points in the carchment basin associ- 
ated with these two minima at stage n - 1 of flooding be denoted by c,,-,(M,) 
and C,, - , (M,) .  respectively. These are the two black regions shown in 
Fig. 10.45(a). 

Let the union of these two sets be denoted by C [ n  - 11. Tl1el-e are two con- 
nected components in Fig. 10.45(a) (see Section 2.5.2 regarding connected com- 
ponents) and only one connected component in fig. 10.45(b). Th is  connected 
component encompasses the earlier two components, shown dashed. The fact 
that two connected components have become a single component indicates that  
water between the two ca~chrnent basins has merged at flooding step n. Let this 
connected component be denoted q. Note that the two components from step 
n - 1 can be extracted from q by performing the simple AND operation 
q n C [ n  - I]. We note also that all points belonging to an  individual catchment 
basin form a single connected component. 

Suppose that each of the connected components jn Fig. 10.45(a) is dilated 
by the structuring element shown in Fig. 10.45(c), subject to two conditions: 
(1) The dilation has to be constrained to q (this means that the center of the 
structuring element can be located only at points in q d u r i n g  dilation), and 
(2) the dilation cannot be performed on points tha t  would cause the sets bsing 
dilated to merge (become a single connected component). Figure 10.45(d) shows 
that a first dilarion pass (in light g ray)  expanded the boundary of each original 
connected component. Note that  condition ( I )  was satisfied by every poinr 
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............... 1 L---. I <,- 
Origin 

FIGURE 10.45 (a) Two parlially flooded calchinenr basins at stage n - 1 of flooding. 
(b) Flooding a[ stage  showing 1ha1 wale1 has spilled between basins (lor clariry, wa~cl -  
is s h o w n  in while ~'a~Jler than black). ( c )  Struccur.ing element used for dilation. (d) Ke- 
su l t  of dilation and dam construction. 
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during dilation, and condition (2) did not apply to any point during the dilation 
process; thus the boundary of each region was expanded uniforinly. 

In the second dilation (sllown in medium gray), several points failed condi- 
tion ( I )  while meeting condition (2) ,  resulting in the broken perimeter shown 
in the figure. It also is evident that the only points in q that sa tjsfy the two con- 
ditions undel-consideration describe the  one-pixel-thick connected path shown 
crossed-halched in Fig. 10.45(6). This path constitutes the desired separating 
dam at stage n of flooding. Construction of the dam at this level of flooding is 
completed by setting all the points in the path just determined to a value greater 
than the maximum gray-level vatue of the image.The height of all dams is gen- 
erally set at 1 plus the maximum allowed value in the image. This will prevenl 
water from crossing over Ihe part of the completed dam as the level of ilood- 
ing is increased. Tt is important to note that dams built by this procedure, wllich 
are the desired segrne~~ta t ioa  boundaries, are connected components. In other 
words, this method eliminates the problems of broken segmentation lines. 

Althougli the procedure just described is based on a simple exan~ple, the 
method used for more complex situations is exactly the same, including the use 
of the 3 X 3 symmetric structuring element shown in Fig. 10.45(c). 

F.S.3 Watershed Segmentation Algorithm 
Let M , ,  M,,. . . , M R  be sets denoting the coordin.nres of the points in the regional 
minima of an image g ( x ,  v ) .  As indicated at the end of Section 10.5.1, this typ- 
ically will be a g r a d i e ~ ~ t  image. Let e ( ~ , )  be a set denoting the coordinates of 
the points in the catchment basin associated with regional minimum Mi (recall 
that the points in  any catchment basin form a connected component). The no- 
tation n ~ i n  and max wi'l l be used to denote the rninin~um and maximum values 
of g ( x .  y ) .  Finally, let  Tin]  represent the set of coorditlates (s, f )  for which 
g(s, t )  < n That is, 

T [ n ]  = {(s. l )  1 g(s, t )  < n } .  ( 10.5-1) 

Geometrically, T [ n ]  is the set of coordinates o l  points in g ( x ,  y )  lying below 
the plane g ( x ,  y )  = n .  

The topography will be flooded in inreger flood increments, f rom 
n = min + 1 to n = max + 1.  At any step n ol  the flooding process, the algo- 
rithm needs to know the number of points below the flood depth. Conceptual- 
ly, suppose that the coordinates in T [ n ]  that are below the plane g(x, y )  = n are 
"marked" black, and all other coordinates are marked white. Then when we 
look "down" on the xy-plane at any increment n of flooding, we will see a bi- 
nary image in which black points correspond to points in the function that are 
below the plane g ( x ,  y)  = n. This interpretation is quite useful in helping un- 
derstand the following discussion. 

Let C, , (~U~)  denote the set of coordinates of points in the catchment basin 
associated with minimum M i  that are flooded at stage n. With reference to 
the discussion in the previous paragraph, C , ~ ( M ; )  may be viewed as a binary 
image given by 
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In other words, c,,(M,) = 1 at location ( x ,  y)  if (x, y )  E C ( M , )  A N D  
(x, y)  t T [ n ] ;  otherwise c,(M,) = O.The geometrical interpretation of this re- 
sult is straightfo~~ward. We are simply using the AND operator to isolate at stage 
n of flooding the portion of the binary image in T [ n ]  that is associated with re- 
gional minimum M,. 

Next, we let C [ n ]  denote the union of the flooded catchment basins portions 
at stage n: 

Then C[max + 1 1  is the union of all catchment basins: 

I t  can be shown (Problem 10.29) that the elements in both c,(M,) and T [ n ]  are 
never replaced during execution of the algorithm, and that the number of ele- 
ments in these two sets either increases or remains the same as n increases. 
Thus, it follows that C [ n  - 11 is a subset of C [ n ] .  According to Eqs. (10.5-2) 
and (10.5-3), C [ n ]  is a subset of T [ n ] ,  SO jt follows that C[n - I ]  is a subset of 
T [ n ] .  From this we have the important result that each connected component 
of C [ n  - 11 is contained in exactly one connected component of T [ I ~ ] .  

The algorithm for finding the watershed lines is initialized with 
C[rnjn + 11 = T[min + 11. The algorithm then proceeds recursively, assum- 
ing at step n that C[n - I ]  has been constructed. A procedure for obtaining 
C [ n ]  from C[n - 11 is as follows. Let Q denote the set of conilected compo- 
nents in T [ n ] .  Then, for each connected component q t Q[n], there are three 
possibilities: 

(a) q n C [ N  - 11 is empty. 
(b) q n C [ n  - I] contains one connected component of C[n - I ] .  
(c) y n C[n - 11 contains more than one connected component of C[n - 11. 

Construction of C [ n ]  from C [ n  - 1.1 depends on which of these three conditions 
l~olds. Condition (a) occurs when a new minimum is encountered, in which case 
connected component q is incorporated into C [ n  - 11 to form C [ n ] .  Condition 
(b) occurs when q lies within the catchment basin of some regional minimum, 
in which case q is incorporated into C [ n  - I] to form C [ n ] .  Condition (c) oc- 
curs when al.1, or part, of a ridge separating two or more catchment basins is en- 
countered. Further flooding would cause the water level jn these catchment 
basins to merge.Thus a dam (or dams if more tha~ l  two catchment basins are in- 
volved) must be built within q to prevent overflow between the catchment 
basins. As explained in the previous section, a one-pixel-thick dam can be con- 
structed when needed by dilating q n C [ n  - 11 with a 3 X 3 structuring ele- 
ment of l's, and constraining the djlation to q. 

Algorithm efficiency is improved by using only values of n that correspond 
to existing gray-level values in g(x ,  y);  we can determine these values, as well 
as the values of min and max, from the histogram of g(x, y ) .  
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FIGURE 10.46 
( a )  Image of 
blobs. (b) Image 
gradient. 
(c) Watershed 
lines. 
(d) Watershed 
lincs 
superimposed on 
original i m a w  

? '  
(Courtesy 01 Dr. 
S. Bcuclier. 
CMMIEcolc des 
Mines de Pal-is.) 

EXAMPLE 10.18: '":' Consider the image and  its gradienl,  shown i n  Figs. 10.46(a) and (b), 
Illusll-ation d ' t h t :  respectively. Application of [lie watershed algorithm just dcscl-ibcd yielded the 
water-shed watershed lines (while paths) of the gradient image sliown ill Fig. 10.46(c). Tliese 
segmentation 
algorithm. segmentation boundaries a]-e shown superimposed on the original image i n  

Fig. 10.46(d). As noted at the beginning of this sec~ioll ,  the segn~entation bound- 
aries have -the important property of being connected paths. , . 

' ?  " - 
. - The Use of Markers 

Direct application of the watershed segmentation algoi-ithm in the form dis- 
cussed in the previous section generally leads to oversegr7~enrntion due to noise 
and other local irregularities of the gradient. As shown in Fig. 10.47, ova-seg- 
mentation can be serious enough to render the result of the algorithln virtual- 
ly useless. 111 this case, this means a large n u ~ n b e r  of segmented regions. A 
practical solution to  this problcm is to l i~ni l  the number of allowable I-egions by 
incorporating a preprocessing stage designed to  bring addi t io~ial  knowledge 
into the segmentation procedure. 

An approach ~ ~ s e d  t o  control ovcrsegmentation is based on the concept o l  
markers. A nzorker js a connected co~nponen t  belonging to  an imagc. We have 
interrtnl markers, associated with objects of interest, and exiernal markers, 
associated with the background. A procedure for marker selection typically will 



10.5 ~2. Segmentation by Morphological Watersheds 625 

a b  

FIGURE 10.47 
(a) Electtopliot.esis 
image. (b) Result 
of applying Ihc 
w a t e r s l ~ e d  
s c g ~ n c n t a t i o n  
algorithm to the 
gradient image. 
Ovcrsegrnen Inlion 
is  cviden t. 
(Courtesy of Dl.. 
S.  Beuchev, 
CMMIEcole des 
Mines de Paris.) 

co~lsist of two principal steps: ( I )  preprocessing; and (2)  definition of a set of cri- 
teria that m a r k e r s  must satis€y.To illustrate, consider Fig. 10.47(a) again. Part ol' 
the problem that led to  the oversegmented result in Fig. 10.47(b) is the large 
number of potential minima. Because of their size, Inany of these minima real- 
ly are irrelevant detail. As has bcen pointed out several limes in earlier discus- 
sions, an effective method for minimizing the effecl of small spatial detail is to 
filter the image wit11 a smootl~ing filter. This is an appropriate preprocessing 
scheme in th i s  particular case. 

Suppose ~ h a c  we define an internal marker in this case as (1) a region that is 
su r i . ou~ lded  by points of higher "altitude:" (2) such that  the points in the region 
form a connected component; and (3) in which a11 Lhe points in the connected 
component have the same gray-level value. After the image was smoothed, the 
internal markers resulting fronl this definition are shown as lid1 t gray, bloblike re- 
gions in Fig. 10.48(a). Next, the  watershed algorithm was applied l o  the smoothed 

FIGURE 10.48 
(a) lmage sllowing 
internal markers 
(light gray regions) 
and exlel-nal 
markers  
(watershed lines). 
(b) Result of 
scgtnentaiion. Note 
the jn~p~~ovcmcnr  
over Fig. 10.47(b). 
(Cou1.1esy ol' Dl-. S. 
Beucher.. 
CMMIEcole des 
Mines dc Paris.) 
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irnage, under the restriction that  these internal market.s be the only allowed 
regional minima. Figure 10.48(a) shows the resulting watershed IinesThese wa- 
tershed lines are  defined as the external markers. Note thal the points along r l~e 
watershed lines arc good candidates for the background because thcv pass along 
the highest points between neighboxing markers. 

The external markers shown in Fig. 10.48(a) effectively partition the image 
into regions, with each region co~ltajning a single internal marker and part of the 
background. The problem is thus reduced to partitioning each of these regions 
inlo two: a single object and its background. Wc can bring to  bear on this sim- 
plified problem many of the  segmentation techniques discussed earlier in this 
chapter. Another  approach is simply to apply the watershed segmentation al-  
gorithm to  each individual region. In other words, we simply take the gradient 
of the smoothed image [as in Fig. 10.46(b)j and then r.esti.ict the algorithm to op- 
evale on a single watershed that contains the marker in  that particular region. 
The result obtained using this  approach is shown i n  10.4S(b).The improverncnl 
over the image i n  10.47(b) is evident. 

Marker select-ion can range from simple procedures based 011 gray-level val-  
ues and  connectiviry, as was just illustrated, ru more  complex descriptions in- 
volving size, shape, locatjon, relative distances, texturc conlent,  and so on (see 
Chapter 11 regarding descrip tors).The point is that using markers brings a pri- 
ori knowledge to bear on the segmentation problem. The reader  is reminded 
that humans often aid segmentation and  higher-level lasks in every-day vision 
by using a priori knowledge, one of the most  familiar being the use of context. 
Thus, the  fact t h a t  segmentation by watersheds offers a framework t h a t  can 
make effective use of th js  type of knowledge is a significant advantage of this 
method. 

*y,%...n,,f." 

I The Use of Motion in Segmentation 
1 + ? ' L  

Motion is a powerful cue used by humans  and many anirnals to extract okiecls 
of interest f rom a background of irrelevant detail. In jmaging applications, 1110- 

tion arises from a relative displacement between t h e  sensing systern and the 
scerle- bcing viewed, such as in robotic applications, autonomous navigalion. 
and c i y ~ ~ a m i c  scene analysis. In  the following sections we cousider the use o f  
[notion jn segmentalion both spatially and in the frequency domain. 

; 2. l  'i Spatial Techniques 
Basic approach 

One of the simplest approaches [or detecting changes between Iwo image frames 
f (1, y ,  I , )  a n d  f ( x ,  y. c j )  taken at  times I ,  and r,, respectively, is to compare the 
two images pixel by pixel. One procedure for doing rhis is to  form a difference 
image. Suppose that we have a reference image containing only stationary com- 
ponents. Comparing this jrnage against a subsequent image of the same scene. 
but including a moving object, results in rhe difference of the two images can- 
celi~lg the stationary elements, leaving onlv nonzero entries that correspond to 
the nonslationary image components. 
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A difference image between two images taken a t  times t i  and t ,  rnay bc 
defined as 

L ~ ; ; ( x ,  y )  = 
I I (  Y i - I (x, Y. 1,)I > T (10.6-1) 
0 otherwise 

where T is a specified threshold. Note that d,,(x, y)  has a value of I at spatial 
coordinates (x, y) only if the gray-level difference between the two images is 
appreciably different at those coordinates, as determined by the specified thresh- 
old T. It is assumed that all images are of the same size. Finally, we note that the 
values of the coordinates (x. y )  in Eq. (10.6-1) span the dimensions of these 
images, so that the difference image clji(x, y )  also is of same size as the images 
in t h e  sequence. 

In dynalr~ic image processing, all pixels in cl,,(x, v )  with value 1 ai-e consid- 
ered the result of object motion.This approach is applicable only if the two im- 
ages are registered spatially and if the jllumination is relatively constant wi t l~ i i~  
the bounds established by T. In practice, 1-valued entries in dji(x, y )  often arjse 
as a result of noise.Typically, these entries are isolaled points in the difference 
image, and a simple approach to their removal is to form 4- or 8-connected re- 
gions of 1's in d , , ( ~ ,  y )  and then ignore any region that has less than a prede- 
termined number of entries. Although il may result in ignoring small and/or 
slow-moving objects, this appl-oacli improves the cl~ances that the remaining 
enlries in the difference image actually are the result of motion. 

Accumulative differences 

Isolated entries resulting from noise is not an insignificant problem when trying 
to extract motion cornpoiierits from a sequence of images. Although the number 
of these entries can be reduced by a thresholded connectivity analysis, this filtcring 
process can also remove small or slow-moving objects as noted in ihe previous 
section. One way to address this problem is by considering changes at a pixel lo- 
cation over several frames, thus introducing a "memory" into the proccss. Tl ie 
idea is to ignore changes that occur only sporadically over a frame sequence and 
can therefore be attributed to random noise. 

Consider a sequence of image frames f (x, y .  t , ) ,  f (i;, y ,  t,),. . . , f ( x ,  y,  t,) and 
let f (x,  y, 1 , )  be the reference image. An accumula~ive difference image (ADI) 
js formed by cornparing this reference image with every subsequent image in the 
sequence. A counter for each pixel location in the accumulative image is incre- 
mented every time a difference occurs at that pixel location between the ref- 
erence and an  image in the sequence. Thus when t.he kt11 frame is being 
compared with the reference, the entry in a given pixel of the accumulative 
image gives the number of times thc gray level at that position was different 
from the corresponding pixel value in the reference image. Differences are es- 
tablished, for example, by using Eq. (10.6-1). 

Often useful is collsideratjon of t hrec types of accumulative difference im- 
ages: crb,c.olute,positive, and negative ADIs. Assuming that the gray-level values 
of the moving objects are larger than the background, these three types of ADIs  
are defined as fo:llows. Let R ( x ,  y)  denote thc reference image and, to simplify 
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[he  iotat ti an, lei k denote t , ,  so that  f ( r ,  11. k )  = f ( x ,  y ,  t , ) .  We assume i h a ~  
K ( x ,  y )  = , f ' ( x ,  Y, 1 ) .  T h e n ,  for any  k > 1, and keeping in mind that  1 he values 
of ttie ADls are colrrtts, we define the following for all r e l evan l  values ol' (s, v ) :  

A , - , ( ~ , ~ ) + I  i f I ~ ( , ~ , ) ~ ) - f ( x . y . k ~ l > T  
A, (s ,  y )  = 

A k - , ( - y .  y )  otherwise 

P k ( - r ,  y) = 
Pk- I (x. y )  + 1 il [ ~ ( x ,  y )  - ,f (,r, y l  k ) ]  > T 

(10.6-3) 
PL - 1  (-y3 ) I )  otherrvise 

a n d  

i N,-,(x, y)  + l if [ R ( + ,  y )  - f(r, y.  k ) ]  < -T 
4 ( x ,  Y )  = ( ' I  0.6-4) 

N , - ~ ( x , ~ )  otherwise 

where A , ( x ,  I ) ,  P , ( x ,  y ) .  2nd N k ( x ,  y)  are t.he absolute, positive, a n d  rlegative 
ADIs. respectively, after the kth image in the sequeilcc is encoi~n tered. 

It is uildei-stood tha t  these ADIs start out wit11 all z e r o  values (cou~~ls).  Note 
also rhat the ADTs are lhc same size as the images in the sequence.As noled ptx- 
viously. [he images in the  sequence are all assurned ro be of the same size. Fi- 
nally, w e  note that  the order of tlie inequalities and signs of t l~c tl~rcsllolds in 
Eqs (10.6-3) and  (1 0.6-4) are reversed if the gray-level values of the baclcground 
pixels a re  greater rhan [he levels of the moving objects. 

EXAMPLE 10.19: ' Figure 10.49 shows the three ADIs displayed as  jrltensity images lor a I-ec- 
Cclll~ucfltiofl of  tangular object of dinlension 75 X 50 pixels t h a t  is moving in a southeastel-ly dl- 
(he absolule. rection a t  a speed ol' 5 fi pixels per 11-anie. The images are of size 256 x 256 
posirivc. ancl 
tiegalive pixels. Wc note t h e  fotlowir~g: (1) Tile nonzero area of the positive AD1 is equal 

accumularive to the size of the moving object. (2) The locarion of t h e  positive AD1 corre- 
difference images. sponds ta the locatiotl o l  t h e  moving object in the reference frame. (3) The 1iunl- 

bcl of a w n  ts i n  the positive AD1 slops increasing when tlie moving object is 
displaced completely with respect to the same object i n  Lhe reference Ira~ne.  

a b c  

FIGURE 10.49 ADIs ol'a r e c t a n ~ u l a r  object moving i n  a soulhcastcrly direction. (a) Absolute AD]. (b)  Posi- 
tive ADI.  (c)  Negative ADI. 
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(4) The absolute AD1 contsins rhe regions oC t h e  positive and ncgalive ADI.  
(5) Tlie di~-cctiol~ a11d specd ot' the inovjng objccl can be deterlniried from the 
entries in the abso l~~ te  and negative ADIs. ,, . 

Establishing a reference image 

A kev co the success o f  the techniques discussed in rhe pi-eceding two sections 
is having a rcfel.ence image against whicli subsequent comparisons call be made. 
As i~idica~ed,  the dil'rerence bctween two images in a dynamic imaging proldem 
h a s  t-he tendency to cancel 2 \ 1 1  stationary components. leaving onty image ele- 
ments char cur~.espond lo noise 2nd to the rno\)illg objecls.Tlle noise problem 
can be lnndlcd bv \he f i t  tering approach mcrltioned earlier 01. by Sorming an ac- 
cuniulative diflerence image, as  cliscussed in tlie preceding secrion. 

I n  practice, obtaining a I-efel-cilce image wirb only stationary elements is not 
always possible. ancl bujlding a reference from a set of  irnages containing one 
01, more moving objects becomes necessary. T h i s  necessity applies pal-ticularly 
t o  situations dtrscl.ibing busy sccnes ot. in  cases w11e1.c frecluenr updating is IT- 

quire(!. One proccdul-e for generatjng a rcCerence irnagi: is as follows. Consid- 
er  he Eirst iniage i o  a sequcnce t o  be the refel-ence image. Whet1 n nonstalionary 
component has  roved completely oul of its position in the reference irarne. 
the corresponding background in the prcsent frame can be duplicated in the 
location originally occupied by the ohject in the refere~lce R.aine. When all mov- 
ing - ohjects . have moved col~~pletely out of the i r  original positions. a I-eference 
image contni~li~\p only st;~tionai-y co~nponcnts will have been crcaled. Objecl 
d i sp lace~ne~l~  ci~n he tst;tl!lishcd by ~nonitoring rhe changes in the positive ADT. 
as  inclicated in 1 lic pr.ecedi~lg section, 

' Figures 1 O.SO(a) a n d  (b) sliow (wo image fraules of a lrhafCic intel'sectio~~.Thc EXAMPLE 10.20: 
first image L is considered the I-efecttncc, and the second depicts the same scene Bui ld i1 l~a  

SOMC l ime Iatet'.771e obicclive is to reilmve thc principal movirlg objccts in  thc re icrcnce imacee. 

~*eferencc: image i n  orcler lo creaic a static irnage. Altl~ousI\ [here are other 
s~nallcr moving ol?jccrs, tile pt.incjpaI r~iovitig Feature is ~ l l e  automobile nl thc i n -  
cersectiorl 111oving honl left to r i ~ h t .  For ill ustra tivc purposes we locus on [his 
ohiect. By lnol\iroring r l i t :  clrallges in  the positive ADJ. i t  is possible to determine 
[he initial position ol' n moving object, as  explained previously. Once the area 

a b c  

FIGURE 10.50 Buildilig il sralic rc icrence i ~ ~ i ; ~ g c .  ( a )  and (b) Two frames io a sequence. 
(c) E;isrbound auromobilz s~iblracted fl-orn (a) ;.lnd the  b:tckground restored f r o m  the 
correspoiiclin~ area in (b). (Jain and Jain.) 
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occupied by this object is identified, the object can be relnoved from the image 
by subtraction, By looking at the frame in the sequence at which the positive 
AD1 stopped changing, we can copy from this image the area previously occu- 
pied by the moving object in the initial frame.This area then is pasted onto the 
image from which the object was cut out, thus restoring the background of that 
area. Tf this is done for all moving objects. the result is a reference image wilh 
only static components against which we can compare subsequent frames for 
motion detection, as explained in the previous two sections. The result of re- 
moving the east-bound moving vehicle in this case is shown in Fig. 10,50(c). @ 

: Owb,:! Frequency Domain Techniques 

In this section we consider the problem of determining motion estimates via a 
Fourier transform formulation. Consider a sequence f (x, y ,  t ) ,  t = 0,1,. . . , 
K - 1, of K digital image fraines of size -44 x N generated by a stationary 
camera. We begin the development by assuming that all frames have a homo- 
geneous background of zero intensity. The exception is a single, 1-pixel object 
of unit intensity that is rr~oving with constant velocity. Suppose that for frame 
one (C = 0) the image plane is projected or~ to  the x-axis; that is, the pixel in- 
tensities are summed across the columns. This operation yields a 1 - 0  array 
wilh M en tries that are 0, except at the location where the object is projected. 
Multiplying the components of the array by exp[j21ra, w ~ i ] ,  x = 0, 1, 2 ,  . . . , 
M - 1, with the object at coordinates (x', y') at that instant of Lime, produces 
a sum equal to exp [ j 2 m ,  X'AI]. In this notation a, is a positive integer, and At 
is the time interval between frames. 

Suppose that in frame two ( t  = 1) the object has moved to coordinates 
(x' -I- I ,  y'); that is, it has moved 1 pixel paral.le1 to rhe x-axis.Then repeating the 
projection procedure discussed in the previous paragraph yields rhe surn 
exp[j27ro,(xf + l ) ~ t ] .  If the object continues to move I pixel location per frame, 
then, at any integer instant of time, the result is exp[j21ra,(xf + r)Ar]. which, 
using Euler's formula, may be expressed as 

, j%m, (.ra+ r)af = cos[2rra, (xf + I )  A!] + , sin[2.rrol ( x '  + r)ht] (10.6-5) 

for t = 0,1,. . . ,K - I. In other words, this procedure yields a complex sinusoid 
with Frequency a,.  If t h e  object were moving v l  pixels (in the x-direction) be- 
tween frames, the sinusoid would have frequency @., a , .  Because [varies between 
0 and K - 1 in integer increments, restricting a, to integer values causes the 
discrete Fourier transform of the complex sinusoid to have two peaks--one lo- 
cated at  frequency v,  a, and the other at K - w ,  a, .This latter peak is the result 
of symmetry in the discrete Fourier transform, as discussed in Section 4.6, and 
may be ignored. Thus a peak search in the Fourier spectrum yields v,a,. Divi- 
sion of this quantity by n, yields v,, whicl~ is the velocity component in the 
x-direction, as the frame rate is assumed lo be known. A similar argument would 
yield v2,  t h e  component of velocity in the y-direction. 

A sequence of frames in which no motion lakes place produces identical 
exponential terrns,whose Fourier transform would consist of a single peak at a 
frequency of 0 (a single dc term).Therefore, because the operations discussed 
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so far are linear, t h e  general case involving one or more moving objects in an 
arbitrary static background would have a Fourier transform with a peak at dc 
corresponding to static image components and peaks at locations proportional 
to the velocities of the objects. 

These concepts may be summarized as follows. For a sequence of K digital 
images of size M x N ,  the sum of the weighted projections onto the x axis at 
any integer instant of time is 

Similarly, the sum of the projections onto the y-axis is 

where, as noted already, a, and n, are posilive integers. 
The 1-D Fourier transforms of Eqs. (10.6-6) and (10.6-71, respectively, are 

1 K - I  

G.,.(M, ; u , )  = -- C &(t, O , ) C - I ~ ~ ~ I ' ' ~  L ~ I  = n , ~ ,  . . . ,  K - 1 (10.6-8) 
K , = , I  

and 

In practice, computation of these transforms is carried our using an FFT algo- 
rithm, as discussed in Section 4.6. 

The frequency-velocity relalionship is 

and 

In this formulation the unit of velocity is in pixels per total frame time. For ex- 
ample, v l  = 10 is interpreted as a motion of 10 pixels in K frames. For Frames 
thal are take11 uniformly, the actual physical speed depends on the frame rate 
and the distance between pixeIs.Thus if  8 ,  = 10, K = 30, the frame rate is two 
images per second, and the distance between pixels is 0.5 m, then the actual 
physical speed in the x-direction i s  

vl  = (10 pixels)(O.S rn/pixel)(2 frarnes/s)/(30 frames) 

= 1/3 m/s. 

Tlie sign of thex-component of the velocity is obtained by computing 
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and 

EXAMPLE 10.21: 
Ds[cction of a 
small moving 
objecr via [he 
f l -eq~~ency 
domain.  

FIGURE 10.51 
LANDSAT 
Irame. (Cowart ,  
Snydei-. and  
R u e d ~ e r . )  

Because g ,  is sinusoidal. i t  can  be shown that S I T  and S,, -. will have the same 
sign at an arbitrary point in time, I ? .  if the velocity component  71, is positive. 
Conversely, opposire signs in S,, and S 2 . .  indicate a negative componcnl. If either 
S ,  , nr Sz, is zero, we consider the next closest point in time, i = n & At.  Similar 
comments apply co~nputing the sign of .u,. 

Figures 10.51 through 10.54 illustrate the efcectiveness ol the approach just 
derived. Figure 10.5.1 shows one of a 32-frame sequence of LANDSA'T images 
generated by adding white noise to a reference image. The sequence conlains 
a supcr.imposed target moving a t  0.5 pixel per frame in the x-dil-cction and 1 
pixel per frame in the y-dlrcclion. The target, shown circled in  Fig. 10.52. has a 
Gaussian intensity distribution spl-ead over a small (9-pixel) area and is not eas- 
ily discernible by eye. The results of computing Eqs. (10.6-8) and ( 10.6-9) with 
u, = 6 and o2 = 4 are shown in Figs. 10.53 and 10.54, respectively. The peak at 
1 1 ,  = 3 in Fig 10.53 yields u ,  = 0.5 from Eq. (10.6-1.0). Si~nilarly, the peak al in 
Fig. 10.54 yields .u2 = 1.0 from Eq. (10.6-11). 

Guidelines for the selection of a ,  and  n2 can  he explained with the  aid of 
Figs. 10.53 and 10.54. For instance, suppose that we had used n, = 15 jnstead of 
11, - 4.1n tha t  cisc tlie peaks in  Fig. 10.54 would now be at  11, = 15 and 17 because 
vz  = 1.0, which would he a seriously aliased result. As discussed i l l  Seclion 2.4.4, 
aliasing is caused by u~~dcrsaulpl ing (too iew frames in the present discussion, as 
the range of u is deternlined by K ) .  Because 1 1  = NU, one possibility is to select n 
as the integer closest Lo o = L I , , , ~ , , / ~ u ~ , ; , , ,  where I[,, ,  is the aliasing fi-equency limi- 
tation eslabl~shed K and v,,,,), is ihe maximum expected object velocity. 
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FIGURE 10.52 
Intensity plot of 
the image in 
Fig. 10.51, with 
the target circled. 
(Rajala. Riddle, 
and Snyder.) 

FIGURE 10.53 Spectrum of Eq. (10.6-8) showing a peak at ii, = 3. (Rajala, Riddle, and 
Snyder.) 
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FIGURE 10.54 1 00 
Spectrum of 
Eq. (10.6-9) 
showing a peak ar 
L r ,  = 4. (Rnjala, 
Riddle, and 
Snyder.) 

Summa y 
Image segmentation is an essential preliminary step in rnost alltomatic piclorial pattern 
recog~~itioll and scene analysis problems. As indicated by 111e range of exa~nples p1.e- 
senled in the previous sections, the choice of one segrncntation technique over another 
is dictated mostly by the peculiar chilracteristics of the  problem b e i i l ~  conside~.ed.Tlic 
methods discussed in this chapter, although far from exhaustive. ilre representative of 
tecl~niques comlnonly used in practice.The following refercnccs can be used as  he basis 
for fur-thcs study of this topic. 

References and Further Reading 
Because of i t s  central role in autonomous image processing,segn~entation is a topic cov- 
ered in mosl books dealillg with irnagc processing. imagc analysis. and col-rlpurcr vision. 
The following books provide complementary andfoi- supplen~entary rcading for our cov- 
erage of th.is topic: Sl~apiro and Stock~nan [20C)1], Sonka et al. [1999]. Pclrou and Bos- 
dogianni [1999], and U~nbaugli [Ic)98]. 

Work dcaling with the  use of masks ro dececr gray-lcvcl disconlinuities (Sect,ion 10.1) 
has a long hislory, Numerous masks have bccn proposed o v s ~ -  lhc years: Roberts [ I  9651. 
Prewitt [1970], Kirsli 119711, Robinson [1976].F1-ei and Chen [1977]. and C a n n y  [1086]. 
A review arliclc by Fram and Deutsch 119751 contains numerous masks and 311 e\~alua- 
lion of thcir pel-formance.Thc issue of mask perlornance. especially I'or edge detection, 
still is an area of considerable inlercst, as  exemplified by Qian and l-iua~lg [1996], Wang 
et al. [1996]. Heath e l  al. [1997,1998], and Arldo [2000]. Edge detection otl color i~llages 
has heen increasing in popularity for a number ol' inultisensing applications. See. for ex- 
ample, Salinas, Abidi and Gonzalez [1996]; Zugaj and Latluati [1998]; Mirrnehdi and 
Peirou [2000]; and Platanioiis and Venetsal~opoulos [2000].The interplay bctwecn image 
characteristic and mask performance also is a topic of current interest, as exemplified by 
Ziou [2001.]. Our presentation of the zcro-crossing properries of rlie Laplacian is based 
on a paper by Marr and Hildredlh [1.9SO] and on ttie book by Marr [lY82]. See also a 
paper by Clark [198Y] on authenticating edges produced by zer-o-CI-ossing algorilhrns. 
(Corrections of parts of the Clark paper are given by Piech [1990].) As mentioned in 
Section 10.1, zero cr-ossing via the Laplacian of a Gaussian is an i~nportant approach 
whose relative performar~ce is still an active topic of research (Gunu 11998, 19991). 
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The Hough transform (Hough [1962]) has emerged over the past decade as a method 
of choice for global pixel linking and curve detection. Numerous generalizations to the 
basic transform discussed in this chapter have been proposed over,the years. For exam- 
ple, Lo  and Tsai [I9951 discuss an approach for detecting thick lines, Guil et al. [ I  995,19971 
deal wilh fast implementations of the Hough transform and detection of primitive cul-ves, 
Daul at a1. [I99131 discuss further generalizations for detecting elliptical arcs, and Shapiro 
[I9961 deals with implementation of the Hough transform for gray-scale images. The 
algorithm presented in Section 10.2.3 is based on Martelli [1972, 19761. For addjtioilal 
reading on heuristic graph searching, see NiIsson [1980], 1Jmeyama [1988], ancl Sonka 
et al. [1999). 

As mentioned at the beginning of Section 10.3, thresholding techniques enjoy a sig- 
nificant degree of popularity because they are simple lo implement. It is not surprising 
that there is a considerable body of work reported in the literature on this topic. A good 
appreciatjon of the extent of this literature can be gained from the review papers by 
Sahoo et a]. 119881 and by Lee et al. [1990]. We spent a significant level of erfort in Sec- 
tion 10.3.2 dealing with the effects of illu~nination on thresholding. T l~e  types of ap- 
proaches used to deal with this problem are illustrated by the work of Perez and Gonmlez 
[1987], Parker [1991]. Murase and Nayar 119941, Biscllsel [1998], and Drew et al. [1999]. 
For additional reading on the material in Sections 10.3.3 and 10.3.4, see Jain et al. [ J  9951. 
The early work of Chow and Kaneko [I9721 discussed in Section 10.3.5 js still a standard 
in terms of illustratillg the key aspects of a threshold-based image segn~enlation solulion. 
Essentially the same can be said for the material presented in Sectjon 10.3.6 (due to 
White and Rohrer [1983]), which combines thresholding, the gradient,and the  Laplacian 
in the solution of a difficult segmentation problem. It is interesting to compare the fun- 
damental similarilies in terms of image segmentation capability between these two ar- 
ticles and work on thresholding done almost twenty years later (Cheriet el al. [1998], 
Sauvola and Pietikainen [2000]). See also Liang e t  al. [2000] and Chan et al. [2000] for 
allerrlate approaches to the problem of detecting boundaries in images sin~ilar in con- 
cept to  those studied by Chow and Kaneko. 

See Fu and Mui [I9811 for an  early survey on the topic of region-oriented segrnen- 
tation.The works of Haddon and Boyce [I9901 and of Pavlidis and Liow [I9901 are 
among the earliest efforts to integrate region and boundary information for the purpose 
of segmentation. A newer region-growing approach proposed by Hojjatoleslarni and 
Kjttler [I9981 also is of interest. For current basic coverage of region-oriented segmcn- 
tation concepts, see Shapiro and Stockman [200:l'.] and Sonka et a[. [I 9991. 

Segmentation by watersheds was shown in Section 10.5 to be a powerful concept. 
Early references dealing with segmentation by watersheds are Sen-a [1988], Beucher 
[1990], and Beuchcr and Meyer [1992].The paper by Baccar et al. [I9961 discusses seg- 
mentation based on data fusion and morphological watersheds.The progress in this field 
in a little more than one decade is evident i n  a special issue of Pattern Recognilion [2000], 
devoted entirely to this topic. As indicated in our discussion in Section 10.5, one of the 
key issues wilh watersheds is the problem of over segmentation, The papers by Naj- 
manand and Schmitt [1996], Haris et at. 119981, and Bleau and Leon [2000] are illustra- 
tive of approaches for dealing with this problem. Bieniek and Moga [2000] discuss a 
watershed segmcntation algorithm based on connected components. 

The malcrial in Section 10.6.1 is from Jain, R. [1981]. See also Jain. Kasturi, and 
Schunck [1995].The material in Section 10.6.2 is from Rajala, Riddle, and Snyder (1.9831. 
See also the papers by Shariat and Price [I9901 and by Cumani et al. [I 991-1. The books 
by Shapiro and Stockman [2001] and by Sonka et al.  [I9991 provide additional reading 
regarding motion estimation. 
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