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The whole is equal to the sum of its parts.
Euclid
The whole is greater than the sum of its parts.
Max Wertheimer

Preview

The material in the previous chapter began a transition from image processing
methods whose mput and output are images, to methods in which the inputs are
images, but the outputs are attributes extracted from those images (in the sense
defined in Section 1.1). Segmentation is another major step in that direction.

Segmentation subdivides an image into its constituent regions or objects. The
level to which the subdivision is carried depends on the problem being solved.
That is, segmentation should stop when the objects of interest in an application
have been isolated. For example, in the automated inspection of electronic as-
semblies, interest lies in analyzing images of the products with the objective of
determining the presence or absence of specific anomalies, such as missing com-
ponents or broken connection paths. There s no point in carrying segmenta-
tion past the level of detail required to identify those elements.

Segmentation of nontrivial images is one of the most difficult tasks in image
processing. Segmentation accuracy determines the eventual success or failure
of computerized analysis procedures. For this reason, considerable care should
be taken to improve the probability of rugged segmentation. In some situations,
such as industrial inspection applications, at least some measure of control over
the environment is possible at times. The experienced image processing system
designer invariably pays considerable attention to such opportunities. In other
applications, such as autonomous target acquisition, the system designer has no
control of the environment. Then the usual approach 1s to focus on selecting

Image Segmentation
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FIGURE 10.1 A
general 3 X 3
mask.

the types of sensors most ltkely to enhance the objects of inlerest while dimin-
ishing the contribution of irrelevant image detail. A good example is the use of
infrared imaging by the military to detect objccts with strong heat signatures,
such as equipment and troops in motion.

Image segmentation algorithms generally are based on one of two basic prop-
erties of intensity values: discontinuity and similarity, In the first category, the
approach is to partition an image based on abrupt changes in intensity, such as
edges in an image. The principal approaches in the second category are based
on partitioning an image into regions that are similar according to a set of pre-
defined criteria. Thresholding, region growing, and region splitting and merging
are examples of methods in this category.

In this chapter we discuss a number of approaches in the two categories just
mentioned. We begin the development with methods suitable for detecting gray-
level discontinuities such as points, lines, and edges. Edge detection in particu-
lar has been a staple of segmentation algorithms for many years. In addition to
edge detection per se, we also discuss methods for connecting edge segments and
for “assembling” edges into region boundaries. The discussion on edge detection
is followed by the introduction of various thresholding techniques. Threshold-
ing also is a fundamental approach to segmentation that enjoys a significant
degree of popularity, especially in applications where speed is an important fac-
tor. The discussion on thresholding is followed by the development of several
region-oriented segmentation approaches. We then discuss a morphological ap-
proach Lo segmentation called watershed segmentarion. This approach is par-
ticularly attractive because it combines several of the positive aftributes of
segmentation based on the techniques presented in the first part of the chap-
ter. We conclude the chapter with a discussion on the use of motion cues for
image segmentation.

Detection of Discontinuities

In this section we present several techniques for detecting the three basic types
of gray-level discontinuities in a digital image: points. lines, and edges. The most
common way to look for discontinuities js to run a mask through the image in the
manner described in Section 3.5. For the 3 X 3 mask shown in Fig. 10.1. this pro-
cedure involves computing the sum of products of the coefficients with the gray

wy W, 25
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10.1 » Detection of Discontinuities

Jevels contained in the region encompassed by the mask. Thatis, with reference
to Eq. (3.3-3). the response of the mask at any point in the image is given by

R = Wy 2 T WyZy T At 7(/;929

Q
PE
1=1

where z; 1s the gray level of the pixel associated with mask coefficient w,. As
usual. the response of the mask 1s defined with respect to its center location. The
details for implementing mask operations are discusscd in Section 3.5.

(10.1-1)

Point Detection

The detection of isolated points in an image is straightforward in principle.
Using the mask shown in Fig. 10.2(a), we say that a point has been detected al
the Jocation on which the mask is centered if

Rl =T (10.1-2)

where 7 is a nonnegative threshold and R is given by Eq. (10.1-1). Basically,
this formulation measures the weighted differences between the center point
and its neighbors. The idea is that an isolated point (a point whose gray level is
significantly different from its background and which 1s Jocated in a homoge-
neous or nearly homogeneous arca) will be quite different from its surround-
ings, and thus be easily detectable by this type of mask. Note that the mask in
Fig. 10.2(a) is the same as the mask shown in Fig. 3.39(d) in connection with
Laplacian operations. However, the emphasis here is strictly on the detection of
points. That is, the only differences that are considered of interest are those

569
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FIGURE 10.2

(2) Point
detection mask.
(b) X-ray image
of a turbine blade
with a porosity.
(c) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Lid.)
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EXAMPLE 10.1:
Detection of
isolated points in
an image.

FIGURE 10.3 Line
masks.

large enough (as determined by T) to be considered isolated points. Note that
the mask coefficients sum to zero, indicating that the mask response will be
zero in areas of constant gray level.

B We illustrate segmentation of isolated points from an image with the aid of
Fig. 10.2(b), which shows an X-ray image of a jet-engine turbine blade with a
porosity in the upper, right quadrant of the image. There is a single black pixel
embedded within the porosity. Figure 10.2(c) is the result of applying the point
detector mask to the X-ray image, and Fig. 10.2(d) shows the result of using
Eq. (10.1-2) with T equal to 90% of the highest absolute pixel value of the image
in Fig. 10.2(c). (Threshold selection is discussed in detail in Section 10.3.) The
single pixel is clearly visible in this image (the pixel was enlarged manually so
that it would be visible after printing). This type of detection process is rather
specialized because it is based on single-pixel discontinuities that have a ho-
mogeneous background in the area of the detector mask. When this condition
is not satisfied, other methods discussed in this chapter are more suitable for
detecting gray-level discontinuities. .

16.1.2 Line Detection

The next level of complexity is line detection. Consider the masks shown in Fig. 10.3.
If the first mask were moved around an image, it would respond more strongly to
lines (one pixel thick) oriented horizontally. With a constant background, the max-
imum response would result when the line passed through the middle row of the
mask. This 1s easily verified by sketching a simple array of 1’s with a line of a dif-
ferent gray level (say, 5’s) running horizontally through the array. A similar ex-
periment would reveal that the second mask in Fig. 10.3 responds best to lines
oriented at +45°; the third mask to vertical lines; and the fourth mask to lines in
the —45° direction. These directions can be established also by noting that the pre-
ferred direction of each mask is weighted with a larger coefficient (i.e., 2) than
other possible directions. Note that the coefficients in each mask sum to zero, in-
dicating a zero response from the masks in areas of constant gray level.

Let R, R,, R;, and R, denote the responses of the masks in Fig. 10.3, from
left to right, where the R’s are given by Eq. (10.1-1). Suppose that the four masks
are run individually through an image. If, at a certain point in the image,
|R{| > |R/|,forallj # i, that point is said to be more likely associated with a line

in the direction of mask i. For example, if at a point in the image, |R,| > |R)| for
T T P S T L T A T B 1 2 | 4 2 | 1| 2
2 | 2| 2 1l 2| a1 2 |2l a2 ]|
S 2 I N I L T B R O T =

Horizontal +45° Vertical —45°



10.1 .

j = 2.3.4.that particular point is said to be more likely associated with a hor-
1zontal linc. Alternatively, we may be interested in detecting lines in a specified
direction. In this case, we would use the mask associated with that direction and
threshold s output. as in Eq. (10.1-2). In other words. if we are interested in de-
tecting all the lines in an image in the direchon defined by a given mask, we
simply run the mask through the image and threshold the absolute value of the
result. The points that are left ave the strongest responses, which, for lines one
pixel thick, correspond closest to the directon defined by the mask. The fol-
lowing example illustrates this procedure.

Figure 10.4(a) shows a digitized (binary) portion ot a wire-bond mask (or an
electronic circuit. Suppose that we are interested in inding all the lines that are
one pixel thick and arc oriented at —45°. For this purposc, we use Lhe Jast mask
shown in Fig. 10.3. The absolute value of the result is shown in Fig. 10.4(b). Note
that all vertical and honzontal components of the 1image were eliminated, and
thal the components ol the original image that tend toward a —43° direction

Detection of Discontinuities
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EXAMPLE 10.2:
Deltection of hincs
in a specified
direction.

a

b c

FIGURE 10.4
llustration of hne
delection.

(a) Binary wire-
bongd mask.

(b) Absolute
value of result
after processing
with —45° line
dclector.

(c) Result of
thresholding
image (b).
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produced the strongest responses in Fig. 10.4(b). In order to determine which
lines best fit the mask, we simply threshold this image. The resuit of using a
threshold equal to the maximum value in the image is shown in Fig. 10.4(c).
The maximum value is a good choice for a threshold in applications such as this
because the input image is binary and we are looking for the strongest responses.
Figure 10.4(c) shows in white all points that passed the threshold test. In this
casc, the procedure extracted the only line segment that was one pixel thick
and oriented at —45° (the other component of the image oriented in this direc-
tion in the top, left quadrant is not one pixel thick). The isolated points shown
in Fig. 10.4(c) are points that also had similarly strong responses to the mask.
In the original image, these points and their immediate neighbors are oriented
in such as way that the mask produced a maximum response at those isolated
locations. These isolated points can be detected using the mask in Fig. 10.2(a)
and then deleted, or they could be deleted using morphological erosion, as
discussed in the last chapter. o

16.1.3 Edge Detection

Although point and line detection certainly are important in any discussion on
segmentation, edge detection is by far the most common approach for detect-
ing meaningful discontinuities in gray level. In this section we discuss approaches
for implementing first- and second-order digital derivatives for the detection of
edges in an image. We introduced these derivatives in Section 3.7 in the context
of image enhancement. The focus in this section is on their properties for edge
detection. Some of the concepts previously introduced are restated briefly here
for the sake continuity in the discussion.

Basic formulation

Edges were introduced informally in Section 3.7.1. In this section we look at
the concept of a digital edge a little closer. Intuitively, an edge is a set of con-
nected pixels that lie on the boundary between two regions. However, we al-
ready went through some length in Section 2.5.2 to explain the difference
between an edge and a boundary. Fundamentally, as we shall see shortly, an
edge 1s a “local” concept whereas a region boundary, owing to the way it 1s de-
fined, 1s a more global idea. A reasonable definition of “edge” requires the abil-
ity to measure gray-level transitions in a meaningful way.

We start by modeling an edge intuitively. This will lead us to a formalism jn
which “meaningful” transitions in gray levels can be measured. Intuitively, an
ideal edge has the properties of the model shown in Fig. 10.5(a). An ideal edge
according to this model is a set of connected pixels (in the vertical direction
here), each of which is located at an orthogonal step transition in gray level (as
shown by the horizontal profile in the figure).

In practice, optics, sampling, and other image acquisition imperfections yield
edges that are blurred, with the degree of blurring being determined by factors
such as the quality of the image acquisition system, the sampling rate, and illu-
mination conditions under which the image is acquired. As a result, edges are
more closely modeled as having a “ramplike” profile, such as the one shown in
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Model of an ideal digital cdge Mode) of a ramp digital edge ab

FIGURE 10.5
(a) Model of an
ideal digital edge.
(b) Model ol a
\ | ramp edge. The

' slope of the camp
is propartional to
the degree of
blurring m the
cdge.

Gray-level profile Cray-level profile
ol a horizontal line of a horizontal bne
through the image through Ihe ipage

Fig. 10.5(b). The slope of the ramp is inversely proportional to the degree of
blurring in the edge. In this model. we no longer have a thin (one pixel thick)
path. Instead, an edge point now is any point contained n the ramp, and an
edge would then be a set of such points that are connected. The “thickness” of
the edge 1s deteymined by the length of the ramp. as it transitions from an mni-
tial to a final gray level. This length is determined by the slope. which. in turn,
is determined by the degree of blurming. This makes sense: Blurred edges tend
to be thick and sharp edges tend to be thin.

Figure 10.6(a) shows the image from which the close-up in Fig. 10.5(b) was
extracted. Figure 10.6(b) shows a horizontal gray-leve) profile of the cdge
between the two regions. This figure also shows the first and second deriva-
tives of the gray-level profile. The first dertvative is positive at the points of
(ransition into and out of the ramp as we move from le(l to right along the
profile; it is constant for points in the ramp: and is zero m areas ol constant
gray level. The second derivative is positive at the transition associated with the
dark side of the edge. negative at the transition associated with the light side
of the edge. and zero along the ramp and in arcas of constant gray level. The
signs of the dertvatives in Fig. 10.6(b) would be reversed for an edge thal tran-
sitions {rom light to dark.

We conclude from these observations that the magnitude of the first derjv-
ative can be used to detect the presence of an edge at a point in an tmage (i.e..
to determine i a point 1s on a ramp). Simlarly, the sign of the second deriva-
tive can be used to determine whether an cdge pixel lies on the dark or light side
of an edge. We note two additional properties of the second derivative around
an edge: (1) It produces twa values for every edge in an image (an undesirable
fcatuye): and (2) an imaginary straight line joining the extreme positive and
negative values of the second derivative would cross zero near the midpoint of
the edge. This zero-crossing property of the second derivative is quite vse(ul
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ab

FIGURE 10.6

(a) Two regions
separated by a
vertical edge.

(b) Detail near
the edge, showing
a gray-level
profile, and the
first and second
derivatives of the
profile.

EXAMPLE 10.3:
Behavior of the
first and second
derijvatives
around a nosy
edge.

Image Segmentation

I-Lj ~ B e & +

Grav-level profile

First

derivative

Second
dertivative

for locating the centers of thick edges, as we show later in this section. Finally,
we note that some edge models make usc of a smooth transition into and out
of the ramp (Problem 10.5). However, the conclusions at which we arrive in the
following discussion are the same. Also, it is evident from this discussion that we
are dealing here with local measures (thus the comment made in Section 2.5.2
about the local nature of edges).

Although attention thus far has been imited to a 1-D horizontal protilc, a
similar argument applies to an edge of any ortentation in an image. We simply
define a profile perpendicular to the edge direction at any desired point and
interpret the results as in the preceding discussion.

©1 The edges shown in Fig. 10.5 and 10.6 are free of noise. The image segments
in the first column in Fig. 10.7 show close-ups of four ramp edges separating a
black region on the left and a white region on the right. It is important to keep
in mind that the entire transition from black to white is a single edge. The image
segment at the top, left is free of noise. The other three images in the [irst col-
umn of Fig. 10.7 are corrupted by additive Gaussian noise with zero mean and
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TR

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noisec of mean 0 and ¢ = 0.0,0.1.1.0, and 10.0, respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative
images and gray-level profiles.

a oo D
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standard deviation of 0.1,1.0,and 10.0 gray levels, respectively. The graph shown
below each of these images is a gray-level profile of a horizontal scan line pass-
ing through the image.

The images 1n the second column of Fig. 10.7 are the first-order derivatives
of the tmages on the left (we discuss computation of the first and second image
derivatives in the following section). Consider, for example, the center image at
the top. As discussed in connection with Fig. 10.6(b), the derivative is zero in the
constant black and white regions. These are the two black arcas shown in the de-
rivative image. The derivative of a constant ramp is a constant, equal to the
slope of the ramp. This constant area in the derivative image 1$ shown 1n gray.
As we move down the center column, the derivatives become increasmgly dif-
ferent from the noiseless case. In fact, it would be diflicult to associate the last
profile in that column with a ramp edge. What makes these results interesting
is that the noise really is almost invisible in the images on the left column. The
last image is a slightly grainy, but this corruption is almost imperceptible. These
examples are good illustrations of the sensitivity of derivatives to noise.

As expected, the second derivative is even more sensitive to noise. The sec-
ond derivative of the noiseless image is shown in the top, right image. The thin
black and while lines are the positive and negative components explained in
Fig. 10.6. The gray in these uimages represents zero due to scaling. We note that
the only noisy second derivative that resembles the noiseless case is the one
corresponding to noise with a standard deviation of 0.1 gray levels. The other
two second-derivative images and profiles clcarly illustrate that it would be dif-
ficult indeed to detect their positive and negative components, which are the
truly useful features of the second derivative in terms of edge detcction.

The fact that fairly little noise can have such a significant impact on the two
key derivatives used for edge detcction in images is an important issue 1o keep
in mind. In particular, image simoothing should be a serious considcration prior
to the use of derivatives in applications where noise with levels similar to thosc
we have just discussed is likely to be present.

Based on this example and on the three paragraphs that precede it, we are
led to the conclusion that, to be classified as a meaningful edge point, the tran-
sition in gray level associated with that point has to be significantly stronger
than the background at that point. Since we are dealing with local computa-
tions, the method of choice to determine whether a value s “significant™ or not
1s to use a threshold. Thus, we define a point in an image as being an edge point
if its two-dimensional first-order derivative is greater than a specified threshold.
A set of such points that are connected according to a predefined criterion of
connectedness (see Section 2.5.2) is by definition an edge. The term edge segment
generally is used if the edge is short in relation to the dimensions of the image.
A kcy problem n segmentation is to assemble edge segments into longer edges,
as explained mn Section 10.2. An alternate definition if we elect to use the sec-
ond-derivative is simply to define the edge points in an image as the zero cross-
ings of its second derivative. The definition of an edge in this case is the same
as above. [t is important to note that these definitions do not guarantee success
in finding edges in an image. They simply give us a formalism to look for them.
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As in Chapter 3, first-order derivatives in an image are computed using the gra-
dient. Second-order derivatives are obtained using the Laplacian.

Gradient operators

First-order derivatives of a digital image are based on various approxima-
tions of the 2-D gradient. The gradient of an image f(x, y) at location (x. y)
1s defined as the vector

of

G, | | ax )

Vf—[Gy:l— af | (10.1-3)
ay

It is well known from vector analysis that the gradient vector points n the
direction of maximum rate of change of f at coordinates (x, y).

An important quantity in edge detection is the magnitude of this vector,
denoted Vf, where

Vf = mag(Vf) = (G2 + G2|'" (10.1-4)

This quantity gives the maximum rate of increase of f(x. v) per unit distance
in the direction of VE. It 1s a common (although not strictly correct) practice to
refer to Vf also as Lhe gradient. We will adhere to convention and also use this
term interchangeably, differentiating between the vector and its magnitude only
in cases in which confusion is likely.

The direction of the gradient vector also is an important quantity. Let
a(x, y) represent the direction angle of the vector VE at (x, y). Then, from
vector analysis,

a(x,y) = tan™ (gj (10.1-5)
G,/
where the angle is measured with respect to the x-axis. The direction of an edge
at (x, y) is perpendicular 1o the direction of the gradient vector at that point.
Computation of the gradient of an image is based on obtaining the partial de-
rivatives 3f /dx and af /9y at every pixel location. Let the 3 X 3 area shown in
Fig. 10.8(a) represent the gray levels in a neighborhood of an image. As dis-
cussed in Section 3.7.3, one of the simplest ways to implement a first-order par-
tial derivative at point ¢ is to use the tollowing Roberts cross-gradient operators:

G_r = (Z() - Zs) (101-6)
and
G, = (Z’.R — z,f,). (10.1-7)

These derivatives can be implemented for an entire image by using the masks
shown in Fig. 10.&(b) with the procedure discussed in Section 3.5.

Masks of size 2 X 2 are awkward to implement because they do not have a
clear center. An approach using masks of sizc 3 X 3 is given by

G =(z+m+tz)-—(a+tu+ay) (10.1-8)

Seeimnde froni caver
Consult the book web site
tor 7 brief review of vec-
tor unalysis
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FIGURE 10.8
A 3 X 3 region of 2 i, P
an image (the z's ! “ ?
are gray-level
valL.ws) and _1 0 0 o
various masks
used to compute
the gradient at 0 1 I 0
point labeled zs.
Roberts
—1 -1 ~1 -1 0 1
0 0 0 -1 0 1
1 1 ] —1 0 ]
Prewiit
-1 -2 =1 -1 0 1
0 0 0 ~2 0 2
1 2 1 -1 0 1
Sobel
and
G_\, = (Z3 + 6 t Zg) - (Z] + 2z, + 27). (10]—9)

In this formulation, the difference between the first and third rows of the 3 X 3
image region approximates the derivative in the x-direction, and the difference
between the third and first columns approximates the derivative in the y-direction.
The masks shown in Figs. 10.8(d) and (e), called the Prewitt operators, can be used
to implement these two equations.

A slight variation of these two equations uses a weight of 2 in the center
coefficient:

G, =(z; + 2z5 + 20) — (2, + 22, + z5) (10.1-10)
and
G, = (23 + 2z + 20) — (2, + 224 + 7). (10.1-11)

A weight value of 2 is used to achieve some smoothing by giving more impor-
tance to the center point (Problem 10.8). Figures 10.8(f) and (g), called the Sobe!
operators, are used to implement these two equations. The Prewitt and Sobel
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operators are among the most used in practice for computing digital gradients.
The Prewitt masks are simpler to implement than the Sobel masks, but the lat-
ler have slightly superior noise-suppression characteristics, an important issue
when dealing with derivatives. Note that the coefficients in all the masks shown
in Fig. 10.8 sum to 0, indicating that they give a response of 0 in areas ol con-
stant gray Jevel, as expected of a derivative operator.

The masks just discussed are used to oblain the gradient components G, and
(7,. Computation of the gradient requires that these two components be com-
bined in the manner shown in Eq. (10.1-4). However, this implementation is
not always desirable because of the computational burden required by squares
and square roots. An approach used frequently 1s to approximate the gradient
by absolute values:

Vf &~ |G + |G, (10.1-12)

This equation is much more attractive computationaily, and it still preserves rel-
ative changes in gray levels. As discussed in Section 3.7.3, the price paid for this
advantage is that the resulting {ilters will not be isotropic (invariant to rotation)
in general. However, this is not an issue when masks such as the Prewitt and
Sobel masks are used to compute G, and G,. These masks give isotropic results
only for vertical and borizontal edges, so even if we used Eq. (10.1-4) to com-
pute the gradient, the results would be 1sotropic only for edges 1n those direc-
tions. In this case, Eqgs. (10.1-4} and (10.1-12) give the same result (Problem 10.6).

[t 1s possible to modify the 3 X 3 masks in Fig. 10.8 so that they have their
strongest responses along the diagonal directions. The two additional Prewitt and
Sobel masks for detecting discontinuities in the diagonal directions are shown
in Fig. 10.9.

Figure 10.10 llustrates the response of the two components of the gradient,

G| and \GyL as well as the gradient image formed from the sum of these (wo
0 1 1 ‘ —1 -1 0
-1 0 1 -1 0 1
=1 -1 {} 0 1 1
Prewitt
0 l 2 =2 -1 0
~| 0 1 -1 0 1
-2 -l 0 0! J 2
ab :
¢ d Sobel

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.

EXAMPLE 10.4;
INustration of the
gradient and tts
components,



580  Chopter 10 # [mage Segmentation

ab
cd

FIGURE 10.10
(a) Onginal

image. (b) |G,].
componens of the

gradient in the
x-direction.

componen( in the

y-direction.
(d) Gradient
image. |G| +

G-

components. The dircctionality of the two components i1s evident in Figs. 10.10(b)
and (c). Note in particular how strong the roof tile, horizontal brick joints, and
horizontal segments of the windows are in Fig. 10.10(b). By contrast, Fig. 10.10(c)
favors the vertical components, such as the corner of the near wall, the vertical
components of the window, the vertical joints of the brick, and the Jamppost on
the right side of the picture.

The original imagc is of reasonably high resolution (1200 X 1600 pixels) and,
at the distance the image was taken, the contribution made to tmage detail by
the wall bricks is still significant. This level of detail often is undesirable, and one
way to reduce it 1s to smooth the image. Figure 10.1] shows the same sequence
of images as i Fig. 10.10, but with the original image being smoothed first using
ad X 5Saveraging filter. The response of each mask now shows almost no con-
tribution due to the bricks, with the result being dominated mostly by the prin-
ctpal edges. Note that averaging caused the response of all edges to be weaker.

In Figs. 10.10 and 10.11, it is evident that the horizontal and vertical Sobel
masks respond about equally well to edges oriented 1n the minus and plus 45°
directions. If it is important to emphasize edges along the diagonal directions,
then one of the mask pairs in Fig. 10.9 should be used. The absolute responses
of the diagona) Sobel masks are shown in Fig. 10.12. The stronger diagonal re-
sponse of these masks is evident in this figure. Both diagonal masks have sim-
ilar response to horizontal and vertical edges but, as expected, their responsc in
these directions is weaker than the response of the horizontal and vertical Sobel
masks shown in Figs. 10.10(b) and 10.10(c).
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The Laplacian
The Laplacian of a 2-D function f(x. y) 1s a sccond-order derivative defined as
-2 -2
o
of ot

Vi = .
! ax? Ay~

(10.1-13)

Digital approximations to the Laplacian were introduced in Section 3.7.2. For
a3 X 3Jregion.one of the iwo forms encountered most frequently (n practice 1s

VP‘,(‘=42_< *(Zz*F 24—}- Zh*”z‘\;) (]01_14)

ab
c d

FIGURE 10.11
Same sequence as
in Fig. 10.10. but
wilh the original
image smoothed
witha 5 X35
averaging [ilter.

ab

FIGURE 10.12
Diagonal edge
detection.,

(a) Result of using
the mask in

Fig. 10.9(c).

() Result of using
the mask in

Fig. 10.9(d). The
input in both cases
was Fig. 10.11(a).
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FIGURE 10.13
Laplacian masks
used to
implement

Egs. (10.1-14) and
(10.1-15),
respectively.

0 -1 0 -1 -] -1
-1 4 -1 -1 8§ -1
0 -1 0 -] =1 -1

where the z’s are defined in Fig. 10.8(a). A digital approximation including the
diagonal neighbors is given by

sz = 8z5 — (Zl Tt 3ty Tttt 29)~ (10.1-15)

Masks for implementing these two equations are shown in Fig. 10.13. We note
from these masks that the implementations of Egs. (10.1-14) and (10.1-15) are
isotropic for rotation increments of 90° and 45°, respectively.

The Laplacian generally is not used in 1ts original form for edge detection for
several reasons: As a second-order derivative, the Laplacian typically 1s unac-
ceptably sensitive to noise (Fig. 10.7). The magnitude of the Laplacian produces
double edges (see Figs. 10.6 and 10.7), an undesirable effect because it compli-
cates segmentation. Finally, the Laplacian is unable to detect edge direction.
For these reasons, the role of the Laplacian in segmentation consists of (1) using
its zero-crossing property for edge location, as mentioned earlier in this sec-
tion, or (2) using it for the complementary purpose of establishing whether a
pixel is on the dark or light side of an edge, as we show in Section 10.3.6.

In the first category, the Laplacian is combined with smoothing as a precursor
to finding edges via zero-crossings. Consider the function

h(r) =—e % (10.1-16)

where # = x* + y*and o is the standard deviation. Convolving this function with
an image blurs the image, with the degree of blurring being determined by the
value of ¢. The Laplacian of h (the second derivative of & with respect to r) is
, TPt -o?]
Veh(r) = —_T—|e : (10.1-17)
This function is commonly referred to as the Laplacian of a Gaussian (LoG) be-
cause Eq. (10.1-16) is in the form of a Gaussian function. Figure 10.14 shows a
3-D plot, image, and cross section of the LoG function. Also shownisa 5 X §
mask that approximates V2. This approximation is not unique. Its purpose is
to capture the essential shape of V?h; that is, a positive central term, surround-
ed by an adjacent negative region that increases in value as a function of distance
from the origin, and a zero outer region. The coefficients also must sum to zero,
so that the response of the mask is zero in areas of constant gray level. A mask
this small 1s useful only for images that are essentially noise free. Due to its
shape, the Laplacian of a Gaussian sometimes is called the Mexican hat function.
Because the second derivative is a linear operation, convolving an image
with VA is the same as convolving the image with the Gaussian smoothing
function of Eq. (10.1-16) first and then computing the Laplacian of the result.
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Thus, we see that the purpose of the Gaussian function in the LoG formulation
is to smooth the image, and the purpose of the Laplacian operator is to provide
an image with zero crossings used Lo establish the location of edges. Smoothing
the image reduces the effect of noise and, in principle, it counters the increased
effect of noise caused by the sccond derivatives of the Laplacian. It is of inter-
est to note that neurophysiological experiments carried out in the early 1980s
(Ullman [1981], Marr [1982]) provide evidence that certain aspects of human vi-
sion can be modeled mathematically in the basic form of Eq. (10.1-17).

@ Figure 10.15(a) shows the angiogram image discussed in Section 1.3.2. Fig-
ure 10.15(b) shows the Sobel gradient of this image, included here for compar-
ison. Figure 10.15(c) js a spatial Gaussian function (with a standard deviation
of five pixels) used to obtain a 27 X 27 spatial smoothing mask. The mask was
obtained by sampling this Gaussian function at equal intervals. Figure 10.15(d)
18 the spatial mask used to implement Eq. (10.1-15). Figure 10.15(e) is the LoG
image obtained by smoothing the original image with the Gaussian smoothing
mask, followed by application of the Laplacian mask (this image was cropped
to eliminate the border effects produced by the smoothing mask). As noted in
the preceding paragraph, V2h can be computed by application of (¢) followed
by (d). Employing this procedure provides more control over the smoothing
function, and often results in two masks that are much smaller when compared
with a single composite mask that implements Eq. (10.1-17) directly. A com-
posite mask usually is larger because it must incorporate the more complex
shape shown in Fig. 10.14(a).
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FIGURE 10.14
Laplacian of a
Gaussian (LoG).
(a) 3-D plot.

(b) Image (black
is negative, gray is
the zero plane,
and while 1s
positive).

(c) Cross section
showing zevo
Crossings.

(d) 5 X 5 mask
approximation to
the shape of (a).

EXAMPLE 10.5:
Edge finding by
2€r0 crossings.
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FIGURE 10.15 (a) Oviginal image. (b) Sabe! gradient (shown for comparison). (¢) Spatial Gaussian smooth-
ing (unction. (d) Laplacian mask. (e) LoG. () Thresholded LoG. (g) Zero crossings. (Original image courtesy
of Dr. David R, Pickens, Department of Radiology and Radiologjcal Sciences. Vanderbitt University Medical
Center.) :



10.2 ® Edge Linking and Boundary Detection 585

The LoG result shown in Fig. 10.15(e) 1s the image from which zero crossings
are computed to find edges. One straightforward approach for approximating
zero crossings is 1o threshold the LoG image by setting all its positive values to,
say, white, and all negative valucs to black. The result is shown in Fig. 10.15(f).
The logic behind this approach is that zero crossings occur between positive
and negative values of the Laplacian. Finally, Fig. 10.15(g) shows the estimated
zero crossings, obtained by scanning the thresholded image and noting the tran-
sitions between black and white.

Comparing Figs. 10.15(b) and (g) reveals several interesting and important
differences. First, we note that the edges in the zero-crossing image are thinner
than the gradient edges. This is a characteristic of zero crossings that makes this
approach attractive. On the other hand, we see in Fig. 10.15(g) that the edges de-
termined by zero crossings form numerous closed loops. This so-called spaghetti
effect 1s one of the most serious drawbacks of thismethod. Another major draw-
back 1s the computation of zero crossings, which is the foundation of the method.
Although it was reasonably straightforward in this example, the computation of
zero crossings presents a challenge in general, and considerably more sophisti-
cated techniques often are required to obtain acceptable results (Huertas and
Medione [1986]).

Zero-crossing methods are of interest because of their noise reduction capabil-
tties and potential for rugged performance. However, the linutations just noted pre-
sent a significant barrier in practical applications. For this reason, edge-finding
techniques based on various implementations of the gradient still are used more fre-
quently than zero crossings in the implementation of segmentation algorithms, =

£I%] Edge Linking and Boundary Detection

ol

[deally, the methods discussed in the previous section should yield pixels lying
only on edges. In practice, this set of pixels seldom characterizes an edge com-
pletely because of noise, breaks in the edge from nonuniform illumination, and
other effects that introduce spurious lntensity discontinuities. Thus edge detec-
tion algorithms typically are followed by linking procedures to assemble edge
pixels into meaningful edges. Several basic approaches are suited (o this purpose.

10.2.1 Local Processing

One of the simplest approaches for linking edge points is to analyze the charac-
teristics of pixels in a small neighborhood (say,3 X 3 or 5 X 5) about every point
(x, y) in an image that has been labeled an edge point by one of the techniques
discussed in the previous section. All points that are similar according to a set of
predefined criteria are linked, forming an edge of pixels that share those cnteria.

The two principal properties used for establishing similarity of edge pixels in
this kind of analysis are (1) the strength of the response of the gradient operator
used to produce the edge pixel; and (2) the direction of the gradient vector. The
first property is given by the value of Vf, as defined in Eq. (10.1-4) or (10.1-12).
Thus an edge pixel with coordinates (x,, y,) in a predefined neighborhood of
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EXAMPLE 10.6:
Edge-point

linking bascd on
local processing,.
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FIGURE 10.16

(a) Input image.
(b) G, component
of the gradient.
(¢) G, component
of the gradient.
(d) Result of edge
linking. (Courtesy
of Perceptics
Corporation.)
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(x, v).is similar in magnitude to the pixel at (x, y) if
~Vf(-x- y) = vf(«\'na ,V())‘ =L
where £ 1s a nonnegative threshold.
The direction (angle) of the gradient vector is given by Eq. (10.1-5). An edge

pixel al (x,, yy) in the predefined neighborhood of (x. y) has an angle similar
to the pixel at (x, y) if

(10.2-1)

la(x, y) = alxg. )| < A (10.2-2)

where A 1s a nonnegative angle threshold. As noted in Eq. (10.1-5). the direc-
tion of the edge at (x, y) is perpendicular to the direction of the gradicnt vec-
tor at that point.

A pointin the predefined neighborhood of (x, y) i1s linked to the pixel at (x. y)
1I[ both magnitude and direction criteria are satis(ied. This process is repeated at
every location in the image. A record must be kept of linked points as the center
of the neighborhood is moved from pixel to pixel. A simple bookkeeping proce-
dure 1s to assign a different gray level to each set of linked edge pixels.

To illustrate the foregoing procedure, consider Fig. 10.16(a), which shows an
image of the rear of a vehicle. The objective is to find rectangles whosc sizes
makes them suitable candidates for license plates. The formation of these rec-
tangles can be accomplished by detecting strong horizontal and vertical edges.
Figures 10.16(b) and (c¢) show vertical and horizontal edges obtained by using
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the horizontal and vertical Sobel operators. Figure 10.16{d) shows the result of
linking all points that simultaneously had a gradient value greater than 25 and
whose gradient directions did not differ by more than 15°. The Korizontal hines
were formed by sequentially applying these criteria to every row of Fig, 10.16(c).
A sequential column scan of Fig. 10.16(b) yielded the vertical lines. Further pro-
cessing consisted of linking edge segments separated by small breaks and delet-
ing 1solated short segments. As Fig. 10.16(d) shows, the rectangle corresponding
to the license plate was one of the few rectangles detected in the image. It would
be a simple matter to locate the license plate based on these rectangles (the
width-to-height ratio of the license plate rectangle has a distinctive 2:1

proportion for U.S plates). 5

! Global Processing via the Hough Transform

In this section, points are linked by determining [first if they lie on a curve of
specified shape. Unlike the local analysis method discussed i Section 10.2.1, we
now consider global relationships between pixels.

Given n points in an image, suppose that we want to find subsets of these
points that lic on straight lines. One possible solution is to first find all lines de-
termined by every pair of poimnts and then find all subsets of points that are
close to particular lines. The problem with this procedure is that it involves find-
ing n(n — 1)/2 ~ n* lines and then performing (n)(n(n — 1))/2 ~ n* com-
parisons of every point to all lines. This approach is computationally prohibitive
in all but the most trivial applications.

Hough {1962] proposed an alternative approach, commonly referred to as the
Hough transform. Consider a point { x;, y;) and the general equation of a straight
lin¢ in slope-intercept form. y; = ax; + b. Infinitely many lines pass through
(x;, v,), but they alt satisfy the equation y; = ax; + b for varying values of « and
h. However, writing this equation as b = —x,a + y, and considering the ab-plane
(also called parameter space) vields the equation of a single line for a fixed pair
(x,-, yf-). Furthermore, a second point (xj, yj) also has a line 10 paramcter space as-
saciated with it, and this line intersects the line associated with {x;, v;) at (@', 5"),
where o’ is the slope and b’ the intercept of the line containing both (x,, ) and
(x;, y;) n the xy-plane. In [act. all points contained on this line have lines in pa-
rameter space that intersect at (¢, »'). Figure 10.17 illustrates these concepts.

\c (. 34) \E

T +

ab

FIGURE 10.17
(a) xy-plane.
(b) Parameter
space.

587
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FIGURE 10.18
Subdivision of the
parameter plane
for use i the
Hough transform.

max > b
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The computational attractiveness of the Flough transform arises from subdi-
viding the parameter space into so-called accumularor cells, as illustrated in
Fig. 10.18, where (@, @) a0d (Bpay, bmin) are the expected ranges of slope
and intercept values The cell at coordinates (i, j), with accumulator value A4, ),
corresponds to the square associated with parameter space coordinates (a,, b]»).
Initially, these cells are set 1o zero. Then, for every point (x;, y,) in the image
plane, we let the parameter a equal each of the allowed subdivision values on the
a-axis and solve for the corresponding b using the equation b = —x,a + y,.The
resulting b’s are then rounded off to the nearest allowed value in the b-axis. If a
choice of a, results in solution b,, we let A(p, g) = A(p,g) + 1. At the end of
this procedure, a value of Q in A(i, j) corresponds to Q points in the xy-plane
lying on the line y = g;x + b;. The number of subdivisions in the ab-plane de-
termines the accuracy of the colinearity of these points.

Note that subdividing the a axis into XK increments gives, for every point
(x4, yx), K values of b corresponding to the K possible values of 2. With n image
points, this method involves nK computations. Thus the procedure just discussed
is linear in n,and the product nK does not approach the number of computations
discussed at the beginning of this section unless K approaches or exceeds n.

A problem with using the equation y = ax + b to represent a line is that
the slope approaches infinity as the line approaches the vertijcal. One way
around this difficulty 1s to use the normal representation of a line:

Xcosh + ysinh = p. (10.2-3)

Figure 10.19(a) illustrates the geometrical interpretation of the parameters used
in Eq. (10.2-3). The use of this representation in constructing a table of accu-
mujators is 1dentical to the method discussed for the slope-intercept represen-
tation. Instead of straight lines, however, the loci are sinusoidal curves in the
po-plane. As before, Q) collinear points lying on a line x cosf; + ysin8, = p;
yield Q sinusoidal curves that intersect at {p,, 8;) in the parameter space. In-
crementing 6 and solving for the corresponding p gives Q entries in accumulator
A(i, j) associated with the cell determined by (p;, 6;). Figure 10.19(b) illustrates
the subdivision of the parameter space.
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FIGURE 10.19
{a) Normal
representation of
a line.
(b) Subdivision of
O see sa s the pﬂ-plane nto
cells.

b =
.

pmax

The range of angle 8 is +90°, measured with respect to the x-axis. Thus with ref-
erence to Fig. 10.19(a), a horizontal line has @ = 0°, with p being equal to the pos-
itive x-intercept. Similarly, a vertical line has 8 = 90°, with p being equal to the
positive y-intercept,or 8 = —90° with p being equal to the negative y-intercept.

Figure 10.20 illustrates the Hough transform based on Eq. (10.2-3). Fig- EXAMPLE 10.7:
ure 10.20(a) shows an image with five labeled poinis. Each of these points is  Ilustration of the
mapped onto the p#-plane, as shown in Fig. 10.20(b). The range of 6 values is 1ough transform.
+90°, and the range of the p-axis is +/2D, where D is the distance between cor-
ners in the image. Unlike the transform based on using the slope intercept, each
of these curves has a different sinusoidal shape. The horizontal line resulting
from the mapping of pownt 1 is a special case of a sinusoid with zero amplitude.

The colnearity detection property of the Hough transform 1s illustrated
Fig. 10.20{c). Point A (not to be confused with accumulator values) denotes the
intersection of the curves corresponding to points 1, 3, and 5 in the xy-image
plane. The location of point A indicates that thesc three points lie on a straight
line passing through the origin (p = 0) and oriented at —45°. Similarly, the curves
inlersecting at point B in the parameter space indicate that points 2,3,and 4 he
on a straight line oriented at 45° and whose distance from the origin is one-half
the diagonal distance from the origin of the image to the opposite corner.

Finally, Fig. 10.20(d) indicates the fact that the Hough transform exhibits a re-
flective adjacency relationship at the right and left edges of the parameter space.

This property, shown by the points marked A, B, and C in Fig. 10.20(d), 1s the
result of the manner in which 8 and p change sign at the £90° boundaries. &

Although the focus so far has been on straight lines, the Hough transforin is
applicable to any function of the form g(v,¢) = 0, where v is a vector of coordi-
nates and c is a vector of coefficients. For example, the points lying on the circle

(x—cf+(-a)=d (10.2-4)

can be detected by using the approach just discussed. The basic difference 1s
the presence of three paramcters (¢, ¢,, and ¢3), which results in a 3-D parameter
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FIGURE 10.20
IMustration of the

Hough transform.

(Courtesy of Mr.
D. R. Cate, Texas
[nstruments. {nc.)
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space with cubelike cells and accumulators of the form A(/, j, k). The procedure
is to increment ¢; and ¢, solve for the ¢y that satisties Eq. (10.2-4), and update
the accumulator corresponding to the cell associated with the triplet (¢, ¢,, c_;).
Clearly, the complexity of the Hough transform is proportional to the number
of coordinates and coefficients in a given functional representation. Further
generalizations of the Hough transform to detect curves with no sitmple analytic
representations arc possible, as is the application of the transtorm to gray-scale
imagcs. Several references dealing with these extensions arc included at the
end of this chapter.

We now return to the edge-linking problem. An approach based on the
Hough transform i1s as follows:

Compute the gradient of an image and threshold it to obtain a binary image.
Specify subdivisions in the pf-plane.

Examine the counts of the accumulator cells for high pixcl concentrations.
Examine the relationship (principally for continuity) between pixels in a
chosen cell.

el A

The concept of continuity in this case usually is based on computing the distance
between disconnected pixels 1dentified during traversal of the set of pixels corre-
sponding to a given accumulator cell. A gap at any point is significant if the distance
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betwcen that point and its closest neighbor exceeds a certain threshold. (See Sec-
tion 2.5 for a discussion of connectivity, neighborhoods, and distance measures.)

Figure 10.21(a) shows an acrial infrared image containing two hangars and
a runway. Figure 10.21(b) 1s a thresholded gradient image obtained using the
Sobel operators discussed in Section 10.1.3 (note the small gaps in the borders
of the runway). Figure 10.21(c) shows the Hough transform of the gradient
image. Figure 10.21(d) shows (in white) the set of pixels linked according to the
criteria that (1) they belonged to one of the three accumulator cells with the
highest count, and (2) no gaps were longer than five pixels. Note the dlsap-
pearance of the gaps as a result of linking.

10,27 Global Processing via Graph-Theoretic Techniques

In this section we discuss a global approach for edge detection and linking based
on representing edge segments in the form of a graph and searching the graph
for low-cost paths that correspond to significant edges. This representation pro-
vides a rugged approach that performs well in the presence of noise. As might
be expected, the procedure is considerably more complicated and requires more
processing time than the methods discussed so far.

¢ Edge Linking and Boundary Detection
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FIGURE 10.21

(a) Infrarcd
image.

(b) Thresholded
gradient image.
(¢) Hough
transforn.

(d) Linked pixels.
(Courtesy of Mr.
D. R. Cate, Texas
Instruments. Inc.)

EAMPLE 10.8:
Using the Hough
transform for
edge linking.
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FIGURE 10.22
Edge element
between pixels p
and g.

® . .
® pe ' X7
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We begin the development with some basic definitions. A graph G = (N, U) is
a finite, nonempty set of nodes N, together with a set U of unordered pairs of dis-
tinct elements of V. Each pair (;, n,) of Uts called an arc. A graph in which the arcs
are directed 1s called a directed graph. If an arc 1s directed from node #; to node n;,
then #; is said to be a successor of the parent node n;. The process of idenlilying the
successors of a node is called expansion of the node. In each graph we define lev-
els, such that level O consists of a single node, called the start or root node, and the
nodes in the last level are called goal nodes. A cost ¢(n;. n;} can be associated with
every arc (n,-, n/-).A sequence of nodes 1, n,,..., 1, with each node »; being a suc-
cessor of node n;_,, 1s called a parh from n, to . The cost of the entire path is

k
c = > elniqy ). (10.2-5)

i=2
The following discussion is simplified if we define an edge element as the bound-
ary between two pixels p and ¢, such that p and g are 4-neighbors, as Fig. 10.22
illustrates. Edge elements are identified by the xy-coordinates ol points p and
g. In other words, the edge element in Fig. 10.22 is defined by the pairs
(xp, yp)(xm v,). Consistent with the definition given in Section 10.1.3, an edge
1s a sequence of connected edge elements.

We can illustrate how the concepts just discussed apply to edge detection

using the 3 X 3 image shown in Fig. 111.23(a). The outer numbers are pixel

1 3
1 | ® ® @ ® El ® ® @ ®
(3] [1] [s] (6] 1] (5] 6] |1
2 [ ® ® :] @ e ® ] e
(6] (0] (6] (7] [0] 6] 17] (0]
1
3 | L ] ° m 1? 7 e ® L ®
[7] [3] (7) (1] ? [3] 7 “] (3
abec

FIGURE 10.23 (a) A 3 X 3 image region. (b) Edge segments and their costs. (¢) Edge corresponding (o the
lowest-cost path in the graph shown in Fig. 10.24.
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coordinates and the numbers in brackets represent gray-level values. Each edge
element, defined by pixels p and g, has an associated cost, defined as

c(p.q) = H - |f(p) — f(q)] (10.2-6)

where H is the highest gray-level value 1n the image (7 in this case), and f(p)
and f(q) are the gray-level values of p and g, respectively. By convention, the
point p is on the right-hand side of the direction of travel along edge elements,
For example, the edge segment (1, 2)(2, 2) is between points (1,2) and (2, 2)
in Fig. 10.23(b). If the direction of travel is to the right, then p is the point
with coordinates (2,2) and g is point with coordinates (1, 2); therefore,
¢c(p,q) =7 — [7 — 6] = 6. This cost is shown in the box below the edge seg-
ment. If, on the other hand, we are traveling 1o the /eft between the same two
points, then p is point (1, 2) and g is (2, 2). In this case the cost is 8, as shown
above the edge segment in Fig. 10.23(b). To simplify the discussion, we as-
sume that edges start in the top row and terminate in the last row, so that the
first element of an edge can be only between points (1,1), (1,2) or (1,2),
(1, 3). Similarly, the last edge element has to be between points (3, 1), (3, 2)
or (3,2), (3,3). Keep in mind that p and g are 4-neighbors, as noted earlier.
Figure 10.24 shows the graph for this problem. Each node (rectangle) in the
graph corresponds to an edge element from Fig. 10.23. An arc exists between two
nodes if the two corresponding edge elements taken in succession can be part

FIGURE 10.24
Graph for the
image in

Fig. 10.23(a). The
Jowest-cost path is
shown dashed.

(2.1)(2.2)

L (3,13.2)
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EXAMPLE 10.9:
Edge [inding by
graph search.

of an edge. As in Fig. 1(1.23(b), the cost of each edge segment, computed using
Eq. (10.2-6), is shown in a box on the side of the arc leading into the corre-
sponding node. Goal nodes are shown shaded. The minimum cost path is shown
dashed, and the edge corresponding to this path is shown in Fig. 10.23(c).

In general, the problem of finding a mintmum-cost path is not trtvial in terms
of computation. Typically, the approach is to sacrifice optimality for the sake of
speed, and the following algorithm represents a class of procedures that use
heuristics in order to reduce the search effort. Let r(n) be an estimate of the cost
of a mimimum-cost path from the start node s to a goal node, where the path 1s
constrained to go through . This cost can be expressed as the estimate of the
cost of a minimum-cost path from s to 1 plus an estimate of the cost of that path
from n to a goal node; that is,

r(n) = g(n) + hin). (10.2-7)

Here, g(#n) can be chosen as the lowest-cost path from s to » found so far, and
h(n) is obtained by vsing any available heuristic information (such as expand-
ing only certain nodes based on previous costs in getting to that node). An al-
gorithm that uses r(n) as the basis for performing a graph search 1s as follows:

Step 1: Mark the start node OPEN and set g(s) = 0.

Step 2: I no node 15 OPEN exif with failure; otherwise, continue.

Step 3: Mark CLOSED the OPEN node n whose estimate r(n) computed
from Eq. (10.2-7) is smallest. (Ties for minimum r values are resolved arbi-
trarily, but always in favor of a goal node.)

Step 4: 1T n is a goal node, exit with the solution path obtained by tracing
back through the pointers; otherwise, continue.

Step 5: Expand node #n, generating all of its successors. (If there are no suc-
cessors go to step 2.)

Step 6: 11 a successor n; is not marked, sct

r(n) = g(n) + c(n. ny),
mark it OPEN. and direct pointers from it back to a.
Step 7: 1If a successor #; is marked CLOSED or OPEN, update 1its value by
letting

g'(m) = min[g(n), g(n) + c(n, n)].
Mark OPEN those CLOSED successors whose g’ values were thus lowered
and redirect to n the pointers from all nodes whaosc g’ values were lowered.
Go tostep 2.

This algorithm does not guarantee a minimum-cost path; its advantage is
specd via the use of heuristics. However, if A(n} is a lower bound on the cost of
the minimal-cost path from node » to a goal node, the procedure indeed yields
an optimal path to a goal (Hart et al. [1968]). If no heuristic information is avail-
able (that is, = 0), the procedure reduces o the uniform-cost algorithn of
Dijkstra [1959].

i Figure 10.25 shows an image of a noisy chromosome silbouette and an edge
found using a heuristic graph search based on the algorithm developed in this
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section. The edge s shown in white. superimposed on the original image. Note
that in this case the edge and the boundary of the object are approximately the
same. The cost was based on Eq. (10.2-6), and Lhe heuristic used at any point on
the graph was to determinc and use the optimum path {or five levels down from
that point. Considering the amount of noise present in this image, the graph-
search approach yiclded a reasonably accurate result.

. Thresholding

Because of 1ts intuitive properties and simplicity of implemenptation, image
thresholding enjoys a central position in applications of image segmentation.
Simple thresholding was first introduced in Section 3.1, and we have used 1t in
various discussions in the preceding chapters. In this section. we introduce
thresholding in a more formal way and extend 1t to techniques that are consid-
erably more general than what has been presented thus far.

Foundation

Suppose that the gray-level histogram shown in Fig. 10.26(a) corresponds to an
image, f(x, y), composed of light objects on a dark background,n such a way
that object and background pixels have gray levels grouped into two dominant
modes. One obvious way to extract the objects from the background is o select
a threshold 7 that separates these modes. Then any point (x, y) for which
f(x.v) > T is called an object point. otherwise. the point is called a background
point. This is the type of thresholding introduced in Section 3.1.

Figure 10.26(b) shows a slightly more general case of this approach, where
three dominant modes characterize the image histogram (for example, two types

Thresholding 595

FIGURE 10.25
Image of noisy
chromosomce
silhouetie and
edge boundary
(in white)
determined by
graph search.
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FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single thresh-
old, and (b) multiple thresholds.

of light objects on a dark background). Here, multilevel thresholding classifies
a point (x, y) as belonging to one object class if T, < (x, y) = T, to the other
object class if f(x, y) > T, and to the background if f(x, y) = 7,. In general,
segmentation problems requiring multiple thresholds are best solved using re-
gion growing methods, such as those discussed in Section 10.4.

Based on the preceding discussion, thresholding may be viewed as an oper-
ation that involves tests against a function 7 of the form

T =T[x,y, p(x,y). f(x.y)] (10.3-1)

where f(x, y) is the gray level of point (x, y) and p(x, y) denotes some local
property of this point—for example, the average gray level of a neighborhood
centered on (x, y). A thresholded image g(x, y) is defined as

1 if f(x,y) >T

g(x,y) = {0 t Flx y) =T, (10.3-2)

Thus, pixels labeled 1 (or any other convenient gray level) correspond to objects,
whereas pixels labeled 0 (or any other gray level not assigned to objects) cor-
respond to the background.

When T depends only on f(x, y) (that is, only on gray-level values) the
threshold is called global. If T depends on both f(x, y) and p(x, y}, the thresh-
old is called local. If, in addition, T depends on the spatial coordinates x and y,
the threshold is called dynamic or adaptive.

10.3.2 The Role of Illumination

In Section 2.3.4 we introduced a simple model in which an image f(x, y) is formed
as the product of a reflectance component r(x, y) and an illumination compo-
nent i(x, y).The purpose of this section is to use this model to discuss briefly the
effect of illumination on thresholding, especially on global thresholding.
Consider the computer generated reflectance function shown in Fig. 10.27(a).
The histogram of this function, shown in Fig. 10.27(b), is clearly bimodal and could
be partitioned easily by placing a single global threshold, 7, in the histogram
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FIGURE 10.27

(a) Computer
generated
rellectance
function,

(b) Histogram of
reflectance
function.

(c) Computer
gencrated
illumination
[unction.

(d) Product of (a)
and (c¢).

(e) Histogram of
product image.
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valley. Multiplying the reflectance function in Fig. 10.27(a) by the illumination
function shown in Fig. 10.27(c) yields the image shown in Fig. 10.27(d). Fig-
ure 10.27(e) shows the histogram of this image. Note that the original valley was
virtually eliminated, making segmentation by a single threshold an impossible
task. Although we seldom have the refleclance function by itself to work with. this
simple lustration shows thal the veflective nature of objects and background
could be such that they are easily separable. However, the image resulting from
pooy (in this case nonuniform) illumination could be quite difficult to segment.

The reason why the histogram in Fig. 10.27(¢) is so distorted can be explained
with aid of the discussion in Section 4.5. From Eq. (4.5-1),

Sxoy) = ix, y)r(xoy). (10.3-3)
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EXAMPLE 10.10:
Global
thresholding.

Taking the natural logarithm of this equation yields a sum:

g(x,y) = Inf(x,y)
= Ini{x, y) + Inr(x,y) (10.3-4)

={(x,y) + r(x, y)

From probability theory (Papoulis [1991]),if i’(x. y) and #'(x, y) are indepen-
dent random variables, the histogram of z(x, y) 1s given by the convolution of
the histograms of /’(x. y) and r'(x, y). If i(x, y) were constant,’(x, y) would be
consiant also, and its histogram would be a simple spike (like an impulse). The
convolution of this impulselike function with the histogram of r’(x, y) would
leave the basic shape of this histogram unchanged (recall from the discussion
in Section 4.2.4 that convolution of a function with an impulse copies the func-
tion at the location of the impulse). But if /'( x, y) had a broader histogram (re-
sulting from nonuniform illumination), the convolution process would smear
the histogram of r'(x, y), yielding a histogram for z{x, y) whose shape could be
quite different from that of the histogram of #'(x, y). The degree of distortion
depends on the broadness of the histogram of i’(x, y), which in turn depends on
the nonuniformity of the illumination function.

We have dealt with the logarithm of f(x, y),instead of dealing with the image
function directly, but the essence of the problem is clearly explained by using
the logarithm (o separate the illumination and reflectance components. This ap-
proach allows histogram formation to be viewed as a convolution process, thus
explaining why a distinct valley in the histogram of the reflectance function
could be smeared by improper jllumination.

When access to the illumination source is available, a solution frequently
used in practice to compensate for nonuniformity is to project the illumination
pattern onto a constant, white reflective surface. This yields an image
g(x,y) = ki(x.y),where k is a constant that depends on the surface and i(x. y)
1s the illumination pattern. Then, for any image f(x, y) = i(x, y)r(x, y) obtained
with the same illumination function. simply dividing f(x, y) by g(x, y) vields a
normalized function A{x. y) = f(x,y)/g(x,y) = r(x,y)/k. Thus,if r(x, y) can
be segmented by using a single threshold 7, then A(x, y) can be segmented by
using a single threshold of value T /k.

10.5.3 Basic Global Thresholding

With relerence to the discussion in Section 10.3.1, the simplest of all thresh-
olding techniques 1s to partition the image histogram by using a single global
threshold, T, as illustrated in Fig. 10.26(a). Segmentation is then accomplished
by scanning the image prxel by pixel and labeling each pixel as object or back-
ground, depending on whether the gray level of that pixel is greater or less than
the value of 7. As indicated earlier, the success of this method depends entirely
on how well the histogram can be partitioned.

&2 Figure 10.28(a) shows a simple image, and Fig. 10.28(b) shows its histogram.
Figure 10.28(c) shows the result of segmenting Fig. 10.28(a) by using a thresh-
old T midway between the maximum and minimum gray levels. This threshold
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achicved a “clean™ segmentation by eliminaling the shadows and leaving only
the objects themselves. The objects of interest in this case are darker than the
background, so any pixel with a gray level =7 was Jabeled black (0), and any
pixel with a gray level >7 was labeled white (255). The key objective is mere-
ly to generate a binary image, so the black—white relationship could be reversed.

The type of global thresholding just described can be expected to be suc-
cessful in highly controlled environments. One of the areas in which this often
is possible is in industrial inspection applications, where control of the illumi-
nation usually is feasible. 8

The threshold in the preceding example was specified by using a heuristic
approach, based on visual jnspection of the histogram. The following algorithm
can be used to obtain 7 automatically:

1. Select an initial estimate for 7.

2. Segment the image using 7. This will produce two groups of pixels: G, con-
sisting of all pixels with gray level values >7 and G, consisting of pixels
with values <T.

3. Compute the average gray level values p; and u, for the pixels in regions
G, and G,.

Thresholding
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FIGURE 10.28
(a) Original
image. (b) Image
histogram.

(¢) Result of
global
thresholding with
T midway
between the
waximum and
minimum gray
levels.
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EXAMPLE 10.11:

Image
segmentation
using an
estimaled global
threshold.

EXAMPLE 10.12:

Basic adaptive
thresholding.

4. Compute a new threshold value:

1
T ==

5 () + pa):

S. Repeat steps 2 through 4 until the difference in 7 in successive iterations
is smaller than a predefined parameter 7,,.

When there is reason to believe that the background and object occupy com-
pavable areas in the image, a good initial value for T is the average gray level
of the image. When objects are small compared to the area occupied by the
background (or vice versa), then one group of pixels will dominate the his-
togram and the average gray level is not as good an initial choice. A more ap-
propriate initial value for T in cases such as this s a value midway between the
maximum and mintmum gray levels. The parameter 7,, is used to stop the algo-
rithm after changes become small in terms of this parameter. This is used when
speed of iteration is an important issue.

i Figure 10.29 shows an example of segmentation based on a threshold esti-
mated using the preceding algorithm. Figure 10.29(a) 1s the original image. and
Fig. 10.29(b) is the image histogram. Note the clear valley of the histogram. Ap-
plication of the iterative algorithm resulted in a value of 125.4 after three iter-
ations starting with the average gray fevel and 7,) = 0. The result obtained using
T = 125 to scgment the original image is shown in Fig. 10.29(c). As expected
fron the clear separation of modes in the histogram, the segmentation between
object and background was very effective. i

13.52.7 Basic Adaptive Thresholding

As illustrated in Fig. 10.27, imaging factors such as uneven illumination can
transform a perfectly segmentable histogram into a histogram that cannot be
partitioned effectively by a single global threshold. An approach for handling
such a situation is to divide the original image into subimages and then utilize
a diflerent threshold to segment each subimage. The key issues in this approach
are how Lo subdivide the image and how to estimate the threshold for each re-
sulting subimage. Since the threshold used for each pixel depends on the loca-
tion of the pixel in terms of the subimages, this type of thresholding is adaptive.
We illustrate adaptive thresholding with a simple example. A more compre-
hensive example is given in the next section.

&1 Figure 10.30(a) shows the image from Fig. 10.27(d), which we concluded
could not be thresholded effectively with a single global threshold. In tact,
Fig.10.30(b) shows the result of thresholding the image with a global threshold
manually placed in the valley of its histogram [see Fig. 10.27(¢)]. One approach
to reduce the effcct of nonuniform illumination is to subdivide the image into
smaller subimages, such that the illumination of each subimage is approximately
uniform. Figure 10.30(c) shows such a partition, obtained by subdividing the
umage into four equal parts, and then subdividing each part by four again.
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All the subimages that did not contain a boundary between object and back-
ground had variances of less than 75. All subimages containing boundaries had
variances in excess of 100. Each subimage with variance greater than 100 was
segmented with a threshold computed for that subunage using the algorithm dis-
cussed in the previous sectton. The initial value for 7 in each case was selected
as the point midway between the minimum and maximum gray levels in the
subimage. All subimages with variance less than 100 were treated as one com-
posite image, which was segmented using a single threshold estimated using the
same algorithm.

The result of segmentation using this procedure is shown in Fig. 10.30(d).
With the exception of two subimages, the improvement over Fig. 10.30(b) is

a b

(v
FIGURE 10.29
(a) Original
image. (b) Image
histogram.
(c) Result of
segmentation with
the threshold
estimated by
iteration.
(Original courtesy
of the National
Institute of
Standards and
Technology.)



602  Chopter 10 = Jmage Segmentation

ab
c d

FIGURE 10.30
(a) Original
image. (b) Resuli
of global
thresholding.
(c) Image
subdivided into
individual
subimages.

(d) Result of
adaptive
thresholding,

evident. The boundary between object and background in cach of the improp-
erly segmented subimages was small and dark, and the resulting histogram was
almost unimodal. Figure 10.31(a) shows the top improperly segmented subim-
age [vom Fig. 10.30(c) and the subimagce dircctly above it, which was segment-
ed properly. The histogram of the subimage that was properly scgmeated 1s
clearly bimodal, with well-defined peaks and valley. The other histogram is al-
mos( unimodal. with no cleav distinction between object and background.
Figure 10.31(d) shows the failed subimage further subdivided into much
smaller subimages, and Fig. 10.31(e) shows the histogram of the top, le(t small
subimage. This subimage contains the transition between object and background.
This smaller subimage has a clearly bimodal histogram and should be easily
segmentable. This, in fact, s the case, as shown (n Fig. L0.31(f). This figure alsa
shows (he segmeutation of all the ather small subimages. All these subimages
had a nearly unimodat histogram, and their average gray leve) was closer to the
object than to the background. so they were all classified as object. It is left as
a project for the reader 1o show that considerably morc accurate segmentation
can be achieved by subdividing the entire image in Fig. 10.30(a) into sublmagcs
of the size shown in Fig. 10.31(d). ,,

Optimal Global and Adaptive Thresholding

In this section we discuss a method for estimating thresholds that produce the
minimum average segmentation error. As an illustration, the method is applied
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FIGURE 10.31 (a) Properly and improperly segmented subimages from Fig. 10.30. (b)—(¢) Corresponding
histograms. (d) Further subdivision of the improperly scgmented subimage. (e) Histogram of small subim-

age at lop. lefL. (f) Result ol adaptively segmenting (d).

to a problem that requires solution of several important issues found frequently
in the practical application of thresholding.

Suppose that an image contaims only two principal gray-level repious. Let z
denote gray-level values. We can view these values as random quantities. and
their histogram may be considered an estimate of their probability density func-
tion (PDF), p(z). This overall density function is the sum or mixture of two den-
sities, one for the light and the other for the dark regions in the image.
Furthermore, the mixture parameters are proportional to the relative arcas of
the dark and light regions. If the form of the densities 1s known or assumed, 1t
1s possible to determine an optimal threshold (in terms of minimum error) for
segmenting the image into the two distinct regions.

Figure 10.32 shows two probability density functions. Assume that the larger
of the two PDFs corresponds to the background levels while the smaller one

See inide tront oo
Consull the baak web site
for a briel review of prob-
ability (beory
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FIGURE 10.32
Gray-level
probability
density {unctions
of two regions
an image.

p(2)
¢

— p2(2)
/

describes the gray levels of objects in the image. The mixture probability den-
sity function describing the overall gray-level variation in the image is

p(z) = Pipi(z) + Popofz). (10.3-5)

Here, P, and P; are the probabilities of occurrence of the two classes of pixels;
that is, P, is the probability (a number) that a random pixel with value z is an
object pixel. Similarly, £; is the probability that the pixel is a background pixel.
We are assuming that any given pixel belongs either to an object or to the back-
ground, so that

Animage 1s segmented by classifying as background all pixels with gray levels
greater than a threshold T (see Fig. 10.32). All other pixels are called object
pixels. Our main objective is to select the value of 7 that mimmizes the average
error in making the decisions that a given pixel belongs to an object or to the
background.

Recall that the probability of a random vanable having a value in the interval
[a. b]1s the integral of its probability density function from a to b, which is the
area of the PDF curve between these two limits. Thus, the probability of
erroneously classifying a background point as an object point is

E\(T) = [sz(z) dz. (10.3-7)

o =0

This is the area under the curve of p,(z) to the left of the threshold. Similarly,
the probability of erroreously classifying an object point as background is

Fy(T) = / m(z) dz, (10.3-8)
ST
which is the area under the curve of p,(z) to the right of 7. Then the overall
probability of error 1s
E(T) = RE(T) + P ET). (10.3-9)

Note how the quantities E, and F;, are weighted (given importance) by the prob-
ability of occurrence of object or background pixels. Note also that the sub-
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scripts are opposites. This is simple to explain. Consider, for example, the extreme
case in which background points are known never to occut. In this case P, = 0.
The contribution to the overall error ( £) of classifying a background point as
an object point (E,) should be zeroed out because background points are known
never to occur. This is accomplished by multiplying £, by P, = 0. If background
and object points are equally likely to occur, then the weights are £, = P, = 0.5.

To find the threshold value for which this error is minimal requires ditfer-
entiating £(7T) with respect to T (using Leibniz’s rule) and equating the result
to 0. The result 1s

Pip(T) = P,py(T). (10.3-10)

This equation is solved for 7 to find the optimum threshold. Note thatif P, = P,
then the optimum threshold is where the curves for p\(z) and p,(z) intersect
(sce Fig. 10.32).

Obtaining an analytical expression for 7T requires that we know the equa-
tions for the two PDFs. Estimating these densities in practice is not always fea-
sible, and an approach used often is to employ densities whose parameters are
reasonably simple to obtain. One of the principal densities used in this manner
is the Gaussian density, which is completely characterized by two parameters:
the mean and the variance. In this case,

r

[z, '::"‘_“ztlz

P[ - 2 2 P’) - 2
) = A = 203 10.3-11
P(2) \/Z—wcrlé \/2_77026 ( )

where u,; and o] are the mean and variance of the Gaussian density of one class
of pixels (say, objects) and w, and o3 are the mean and variance of the other class.
Using this equation in the general solution of Eq. (10.3-10) results 1o the fol-
lowing solution for the threshold 7:

AT>*+ BT +C =0 (10.3-12)
where
A=ol— 03
B = 2(u03 — m0?) (10.3-13)
C = aips — asud + 201263 In(o, P /o P).

Since a quadratic equation has two possible solutions, two threshold values may
be required to obtain the optimal solution.

If the variances are equal,o° = o} = o3, a single threshold is sufficient:
+ 2 P.
y e B e B ln(—3>. (10.3-14)
2 T M P

If P, = P, the optimal threshold is the average of the means. The same is true
if o = 0.Delermining the optimal threshold may be similarly accomplished for
other densities of known form, such as the Raleigh and log-normal densities.
Instead of assuming a functional form for p(z), a minimum mean-square-
error approach may be used to estimate a composite gray-level PDF of an image

605
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EXAMPLE 10.13:

Use of optimum
thresholding for
image
segmentation.

ab

FIGURE 10.33 A
cardivangiogram
before and after
preprocessing,
(Chow and
Kaneko.)

(rom the image histogram. For example, the mean square error between the
(continuos) mixture density p(z) and the (discrete) image histogram h(z,) is

Com, = % Z[ﬁ(z,) - h(z)]’

where an n-point histogram is assumed. The principal reason for estimating the
complcte density 1s to determine the presence or absence dominant modes in
the PDF. For example, two dommant modes typically indicate the presence of
edges in the image (or region) over which the PDF is computed.

In general, determining analytically the parameters that mmimize this mean
square error is not a simple matter. Even for the Gaussian case, the straight-
forward computation of equating the partial derivatives to (} leads to a set of si-
multaneous transcendental equations that usuajly can be solved only by
numerical procedures, such as a conjugate gradients or Newton’s method for
simultaneous nonlinear equations.

(10.3-15)

" The following is one of the earhiest (and still one of the most instructive)
examples of segmentation by optimum thresholding in image processing. This
example is particularly interesting at this junction because it shows how seg-
mentation results can be improved by employing preprocessing techniques
based on methods developed in our discussion of image enhancement. In ad-
dition, the example also illustrates the use of local histogram estimation and
adaptive thresholding. The general problem is to outline automatically the
boundanes of heart ventricles in cardioangiograms (X-ray images of a heart
that has been injected with a contrast medium). The approach discussed here
was developed by Chow and Kaneko [1972] for outlining boundaries of the left
ventricle of the heart.

Prior to segmentation, all images were preprocessed as follows: (1) Each
pixel was mapped with a log function (see Section 3.2.2) to counter exponen-
tial effects caused by radioactive absorption. (2) An image obtained before ap-
plication ol the contrast medium was subtracted from cach image captured after
the medium was injected in order to removc the spinal column present in both
images (see Section 3.4.1). (3) Several angiograms were summed in order to re-
duce random noise (see Section 3.4.2). Figure 10.33 shows a cardioangiogram
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before and after preprocessing (an explanation of the regions marked A and B
1s given in the following paragraph).

In order to compute the optimal thresholds, each preprocessed image was
subdivided into 49 regions by placing a 7 X 7 grid with 50% overlap over each
image (all original images shown in this example are of size 256 X 256 pixels).
Each of the 49 resulting overlapped regions contained 64 X 64 pixels. Fig-
ures 10.34(a) and 10.34(b) are the histograms of the regions marked A and B
in Fig. 10.33(b). Note that the histogram for region A clearly is bimoda), indi-
cating the presence of a boundary. The histogram for region B, however, is uni-
modal, indicating the absence of two markedly distinct regions.

After all 49 histograms were computed, a test of bimodality was performed
to reject the unimodal histograms. The remaining histograms were then fitted by
bimodal Gaussian density curves [see Eq. (10.3-11)] using a conjugate gradient
hill-climbing method to minimize the error function given in Eq. (10.3-15).The
X’s and O’s in Fig. 10.34(a) are two fits to the histogram shown in black dots. The
optimum thresholds were then obtained by using Eqgs. (10.3-12) and (10.3-13).

At this stage of the process only the regions with bimodal histograms were
assigned thresholds. The thresholds for the remaining regions were obtained by
interpolating these thresholds. Then a second interpolation was carried out point
by point by using neighboring threshold values so that, at the end of the pro-
cedure, every point in the image had been assigned a threshold. Finally, a bina-
ry decision was carried out for each pixel using the rule

flx,y) = {(1) i y) =T

otherwise

where T, was the threshold assigned to Jocation (x, y) in the image [note that
these are adaptive thresholds, because they depend on the spatial coordinates
(x, y)]. Boundaries were obtained by taking the gradient of the binary picture.
Figure 10.35 shows the boundaries superimposed on the original image. Con-
sidering the variability and complexity of the images involved, this procedure
yielded excellent segmentation results. B

ab

o FIGURE 10.34

x, Histograms (black
. *e dots) of (a) region
S o : A, and (b) region
. B in Fig. 10.33(b).
(Chow and
Kaneko.)

Number of points
Number of points

<—Dark Bright — -—Dark Bright —
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FIGURE 10.35
Cardioangiogram
showing
superimposed
boundaries.
(Chow and
Kaneko.)

+0.%.% Use of Boundary Characteristics for Histogram
Improvement and Local Thresholding

Based on the discussions in the previous five sections, it is intuitively evident that
the chances of selecting a “good” threshold are enhanced considcrably if the his-
togram peaks are tall, narrow, symmetric, and separated by deep valleys. One
approach for improving the shape of histograms is to consider only those pix-
els that lie on or near the edges between objects and the background. An im-
mediate and obvious improvement is that histograms would be less dependent
on the relative sizes of objects and the background. For instance. the histogram
of an image composed of a small object on a large background area (or vice
versa) would be dominated by a large peak because of the high concentration
of one type of pixels. Figures 10.30 and 10.31 are a good illustration of how seg-
mentation performance is affected by this condition.

If only the pixels on or near the edge between object and the background
were used, the resulting histogram would have peaks of approximately the same
height. In addition. the probability that any of those given pixels lies on an ob-
ject would be approximately equal to the probability that it lies on the back-
ground, thus improving the symmetry of the histogram peaks. Finally, as
indicated in the following paragraph, using pixels that satisfy some simple mea-
sures based on gradient and Laplacian operators has a tendency to deepen the
valley between histogram peaks.

The principal problem with the approach just discussed 1s the imphcit as-
sumption that the edges between objects and background arc known. This in-
formation clearly is not available during segmentation, as finding a division
between objects and background is precisely what segmentation is all about.
However, from the discussion in Section 10.1.3, an indication of whether a pixel
is on an edge may be obtained by computing its gradient. In addition, use of
the Laplacian can yield information regarding whether a given pixel lies on the
dark or light side of an edge. The average value of the Laplacian is 0 at the tran-
sition of an edge (see Fig. 10.6), so in practice the valleys of histograms formed
from the pixels selected by a gradient/Laplacian criterion can be expected to be
sparsely populated. This property produces the highly desirable deep valleys
discussed previously.
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The gradient Vf at any point (x, y) in an image is given by Eq. (10.1-4) or
(10.1-12). Similarly, the Laplacian V?f is given by Eq. (10.1-14) or (10.1-15).
These two quantities may be used to form a three-level image, as follows:

0 HVf<T
s(x,y) =<+ ifVf=T and V¥,=0 (10.3-16)
— V=T and V¥ <0

where the symbols 0, +, and — represent any three distinct gray levels, 7is a thresh-
old, and the gradient and Laplacian are computed at every point (x, y). For a dark
object on a light background, and with reference to Fig. 10.6, the use of
Eq. (10.3-16) produces an image s(x, y) in which (1) all pixels that are not on an
edge (as determined by Vf being less than T') are labeled 0; (2) all pixels on the
dark side of an edge are labeled +; and (3) all pixels on the light side of an edge
are labeled —. The symbols + and — in Eq. (10.3-16) are reversed for a light object
on a dark background. Figure 10.36 shows the labeling produced by Eq. (10.3-16)
for an image of a dark, underlined stroke written on a light background.

The information obtained with this procedure can be used to generate a seg-
mented, binary image in which 1’s correspond to objects of interest and 0’s cor-
respond to the background. The transition (along a horizontal or vertical scan
line) from a light background to a dark object must be characterized by the oc-
currence of a — followed by a + in s{x, y). The interior of the object is com-
posed of pixels that are labeled either 0 or +. Finally, the transition from the
object back to the background is characterized by the occurrence of a + fol-
lowed by a —. Thus a horizontal or vertical scan line containing a section of an
object has the following structure:

()= H)0or+)(+ —)(+)

FIGURE 10.36
Image of a
handwritten
stroke coded by
using

Eq. (10.3-16).
(Courtesy of IBM
Corporation.)
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a
b

FIGURE 10.37
(a) Original
image. (b) [mage
segmented by

local thresholding.

(Courtesy of IBM
Corporation.)

EXAMPLE 10.14:
Jmage
segmentagon by
local thresholding,

FIGURE 10.38
Histogram ol
pixels with
gradients greater
than S. (Courlesy
of IBM
Corporation.)
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where (---) represents any combination of +, —. and 0. The innermost paren-
theses contain object points and are labeled 1. All other pixels along the same
scan line are labeled 0, with the exception of any other sequence of (0 or +)
bounded by (—.+) and (+. —).

<" Figure 10.37(a) shows an image of an ordinary scenic bank check. Figure 10.38
shows the histogram as a function of gradient values [or pixels with gradients
greater than S. Note that this histogram has two dominant modes that are sym-
metric, nearly of the same height. and are separated by a distinct valley. Finally.
Fig. 10.37(b) shows the segmented image obtained by using Eq. (10.3-16) with 7
at or ncar the midpoint of the valley. The result was made binary by using the se-
quence analysis just discussed. Note that this example is an illustration of local
thresholding, as defined in Eq. (10.3-1), because the value of 7" was determined
from a histogram of the gradient and Laplacian, which are local properties.

1506
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Thresholds Based on Several Variables

So far we have been concerned with thresholding gray levels. In some cases. a
sensor can make available more than one variable to characterize each pixel in
an image, and thus allow multispectral theresholding. As discussed in some de-
tail in Section 6.7, color imaging is a good example. in which cach pixel s char-
aclerized by three RGB values. In this case, constructing a 3-D “histogram”
becomes possible. The basic procedure 1s analogous to the method used for one
variable. For example, {or an image with three variables (RGB components),
cach having 16 possible fcvels.a 16 X [6 X 16 grid (cube) is formed. Inserted
in each cell of the cube s the number of pixels whose RGB components have
values corresponding to the coovdinates de(ining the Jocation of that pavticular
ccll. Each entry 1s then divided by the total number of pixels in the image to form
a normalized histogram.

The concept of thresholding now becomics one of finding clusters of points
in 3-D space. Suppose, for cxample, that & significant clusters of pounts are found
in the histogram. The unage can be segmented by assigning one arbitrary value
(say, white) to pixcls whose RGB components are closer to one cluster and an-
other value (say. black) to the other pixcls mn the image. This concept is easily
extendablc to more components and cevtainly to more clusters. The principal chf-
ficulty 1s that cluster seceking becomes an incrcasingly complex task as the num-
ber of variabfes increases. Cluster-seeking methods can be found, for example.
in the books by Duda. Hart. and Stork [200) ], and Tou and Gonzalez [1974].

-~ The image shown in Fig. 10.39(a) is a monochrome picture of a color pho-
tograph. The oviginal color image is composed of three 16-level RGB images.
The scarfis a vivid red, and the hair and facial colors are light and different in
spectral characternistics from the window and other background features.
Figure 10.39(b) was obtained by thresholding about oue of the histogram clus-
ters corresponding to facial tones. Note that the window. which in the monochrome

abe

FIGURE 10.39 () Original color image shown as a monochrome picture. (b) Segmentat
ors close to lacial tones. (¢) Segmentation of red components.

Thresholding 611

EXAMPLE 10.15:
Muluspectral
thresholding.

on of pixels with col-
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picture s close in gray-level value to the hair, does not appear in the segmented
image because of the use of multispectral characteristics to separate these two re-
gions. Figure 10.39(c) was obtained by thresholding about a cluster close to the red
axis. In this case only the scar( and part of a flower (which is red also) appeared
in the segmented result. The threshold used to obtain both results was a distance
of one cell. Thus any pixel whose components were outside the cell enclosing the
center of the cluster in question was classified as background (black). Pixels whose

components placed them inside the cell were coded white. =

As discussed in Scction 6.7, color segmentation can be based on any of the
color models introduced in Chapter 6. For instance, hue and saturation are im-
portant properties in numerous applications dealing with the use of imaging
for automated inspection. These properties are particularly important in at-
tempts to emulate the equivalent function performed by humans, such as in the
inspection of fruits for ripeness or in the inspection of manufactured goods. As
mentioned in Chapter 6, the Hue. Saturation, Intensity (HSI) model 1s ideal for
these types of applications because 11 1s closely related to the way in which hu-
mans describe the perception of color. A segmentation approach using the hue
and saturation compounents of a color signal also is particularly attractive, be-
cause it involves 2-D data clusters that are easier 10 analyze than,say, the 3-D
clusters nceded for RGB segmentation.

| Region-Based Segmentation

The abjective of segmentation is to partition an image into regions. In Sec-
tions 10.1 and 0.2 we approached this problem by finding boundaries between
tegions based on discontinuities in gray levels, whereas in Section 10.3 seg-
mentation was accomplished via thresholds based on the distribution of pixel
properties, such as gray-level values or color. In this section we discuss seg-
mentation techniques that are based on [inding the regions directly.

1.4.1 Basic Formulation

Let R represent the entire image region. We may view segmentation as a process
that partitions R 1nto n subregions, 8, R,,..., R,,, such that

(a) L”JR,- = R.
i=1

(b) R;is a connected region,i = 1,2,...,n.
(¢) RiNR; = Sforalliandj,i+# .

(d) P%R,) = TRUE fori = 1,2,....,n.

(e) P(R;,UR;) = FALSE fori # j.

Here, P(R;) is a logical predicate defined over the points in set R, and & is
the null set.

Condition (a) indicates that the segmentation must be complete; that is, every
pixel must be in a region. Condition (b) requires that points in a region must be
connected in some predefined sense (see Section 2.5.2 regarding connectivity).
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Condttion (c) indicates that the regions must be disjoint. Condition (d) deals with
the properties that must be satisfied by the pixels in a segmented region—for ex-
ample P(R;) = TRUE if all pixels in R; have the same gray level. Finally, condi-
tion (e) indicates that regions K; and R; are different in the sense of predicate P.

1044 Region Growing

As its name implies, region growing is a procedure that groups pixels or subre-
gions into larger regions based on predefined criteria. The basic approach is to
start with a set of “seed” points and from these grow regions by appending to
each seed those neighboring pixels that have properties similar to the seed (such
as specific ranges of gray level or color).

Selecting a set of one or more starting points often can be based on the na-
ture of the problem, as will be shown in Example 10.16. When a priori infor-
maltion is not available. the procedure is to compute at every pixel the same set
of properties that ultimately will be used to assign pixels to regions during the
growing process. It the result of these computations shows clusters of values,
the pixels whose properties place them near the centroid of these clusters can
be used as seeds.

The selection of similarity criteria depends not only on the problem under
consideration, but also on the type of image data available. For example. the
analysis of land-use satellite imagery depends heavily on the use of color. This
problem would be significantly more difficult, or even impossibie, to handle
without the inherent information available n color images. When the images are
monochrome, region analysis must be carried out with a set of descriptors based
on gray levels and spatial properties (such as moments or texture}. We discuss
descriptors useful for region characterization in Chapter 11.

Descriptors alone can yield misleading results if connectivity or adjacency in-
formation 15 not used 1o the region-growing process. For example, visualize a ran-
dom arrangement of pixels with only three distinct gray-level values. Grouping
pixels with the same gray leve! to form a “region” without paying attention to
connectivity would yicld a segmentation result that is meaningless in the con-
text of this discussion.

Another problem in region growing is the (ormulation of a stopping rule.
Basically, growing a region should stop when no more pixels satisty the criteria
for inclusion in that region. Critenia such as gray level, texture, and color, are
Jocal in nature and do not take into account the “history™ of region growth. Ad-
ditional criteria that increase the power of a region-growing algorithm utilize the
concept of size, likeness between a candidate pixel and the pixels grown so far
(such as a comparison of the gray level of a candidate and the average gray
level of the grown region), and the shape of the region being grown. The use of
these types of descriptors is based on the assumption that a model of expected
results ts al least partially available.

Figure 10.40(a) shows an X-ray image of a weld (the horizontal dark region)
containing several cracks and poerosities (the bright, white streaks running hor-
1izontally through the middle of the image). We wish to use region growing Lo seg-
ment the regions of the weld fallures. These segmented features could be used

EXAMPLE 10.16:
Application of
TEZION growing in
weld inspection.
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ab
cd

FIGURE 10.40

(a) Image
showing defective
welds. (b) Seed
pomts. {c) Result

of region growing.

(d) Boundaries of
segmented
defective welds
(in black).
(Original image
courtesy of
X-TEK Systems,
Lid)).

for inspection, for inclusion in a database of historical studies, for controlling an
automated welding system, and {or other numerous applications.

The first order of business is to determine the initial seed points. In this ap-
plication, it 1s known that pixels of defective welds fend 1o have the maximum
allowable digita) value (255 n this case). Based on this information, we select-
ed as starting points all pixels having values of 255. The points thus extracied
from the original image are shown in Fig. 10.40(b). Note that many of the points
are clustered mto seed regions.

The next step is to choose criteria for region growing. In this particular ex-
ample we chose two criteria for a pixel to be annexed to a yegion: (1) The ab-
solute gray-level difference between any pixel and the seed had to be less than
65. This number 15 based on the histogram shown in Fig. 10.4]1 and represents
the difference between 255 and the location of the first major valley 1o the Jeft,
which 1s representative of the highest gray level value 1n the dark weld regron.
(2) To be included in one of the regions, the pixel had to be 8-connected to at
least one pixel in that region. If a pixel was found to be connected to more than
one region, the regions werc merged.

Figure 10.40(c) shows the regions that resulted by starting with the seeds in
Fig. 10.40(b) and utilizing the criteria defined in the previous paragraph. Sv-
perimposing the boundaries ol these regions on the original image [Fig. 10.40(4d)]
reveals that the region-growing procedure did indeed segment the defective
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welds with an acceptable degree of accuracy. It is of interest to notc that it was
not necessary to specity any stopping rules in this case because the criteria for
region growing were sufficient to isolate the features of interest. -

It was mentioned in Section 10.3.1 1n connection with Fig. 10.26(b) that prob-
lems having multimodal histograms generally are best solved using region-based
approaches. The histogram shown tn Fig. 10.41 1s an excellent example of a
“clean™ multimodal histogram. This histogram and the results in Example 10.16
confirm the assertion that. even with well-behaved histograms, multilevel thresh-
olding is a difficult proposiuion. Based on the results of Example 10.16, it should
be intuitively obvious that this problem cannot be solved effectively by any rea-
sonably general method of automatic threshold selection based on gray levels
alone. The uvse of connectiviry was fundamental in solving the probJem.

10.1.3 Region Splitting and Merging

The procedure just discussed grows regions from a set of seed pomnts. An alter-
native 1s to subdivide an image initially into a set of arbitrary, disjointed regions
and then merge and/or split the regions in an attempt to satisfy the conditions
stated in Section 10.4.1. A spht and merge algorithm that iteratively works
toward satisfying these constraints 1s developed next.

Let R represent the entfire image region and select a predicate P. One ap-
proach for segmenting R 1s to subdivide it successively into smaller and small-
er quadrant regions so that, for any region R,, P(R,) = TRUE. We start with the
entire region. If P(R) = FALSE, we divide the image into quadrants. If P 1s
FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so
on. This particular splitting technique has a convenjent representation in the
form of a so-called quadtree (that is, a tree in which nodes have exactly four de-
scendants), as illustrated in Fig. 10.42. Note that the root of the tree corresponds
to the entire ymage and that each node corresponds to a subdivision. In this
case, only R, was subdivided further.

FIGURE 10.41
Histogram of
Fig. 10.40(a).
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FIGURE 10.42

(a) Partitioned
image.

{b) Corresponding
quadtree.

EXAMPLE 10.17:
Spht and merge.

abe

FIGURE 10.43

(a) Original
Image. {(b) Result
ol spht and merge
procedure.

(¢} Result of
thresholding (a}.

Chapter 10 &= Image Segmentation

IT only splitting were used, the final partition likely would contain adjacent
regions with identical properties. This drawback may be remedied by allowing
merging, as well as splitting. Satisfying the constraints of Section 10.4.1 requires
merging only adjacent regions whose combined pixels satisfy the predicate P.
That is, two adjacent regions R; and R, are merged only if P(Rj- UR,) = TRUE.

The preceding discussion may be summarized by the following procedure, in
which, at any step we

1. Splitinto four disjoint quadrants any region R, for which P(R;) = FALSE.
2. Merge any adjacent regions R, and R, for which P(RJ- L Rk) = TRUE.
3. Stop when no further merging or splitting 1s possible.

Several variations of the preceding basic theme are possible. For example, one
possibility 1s to split the image initially into a set of blocks. Further splitting 13
carried out as described previously, but merging s initially limited to groups of
four blocks that are descendants in the quadtree representation and that satis-
ty the predicate P. When no further mergings of this type are possible, the pro-
cedure 1s terminated by one final merging of regions satisfying step 2. At this
point. the merged regions may be of different sizes. The principal advantage of
this approach is that it uses the same quadtree for splitting and merging, until
the final merging step.

0 Figure 10.43(a) shows a simple image. We define P(R;) = TRUE if at least
80% of the pixels in R, have the property |z; — m,| < 20, where z, 1s the gray
level of the jth pixel in R;. m; 1s the mean gray level of that region, and o; 1s the
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standard deviation of the gray levels in R;. If P(R;) = TRUE under this con-
dition, the values of all the pixels in R, were set equal to »,. Splitting and merg-
ing was done using the algorithm outlined previously. The result of applying
this technique to the image in Fig. 10.43(a) 1s shown in Fig. 10.43(b). Note that
the image was segmented perfectly. The image shown in Fig. 10.43(c) was ob-
tained by thresholding Fig. 10.43(a), with a threshold placed midway between
the two principal peaks of the histogram. The shading (and the stem of the leaf)
were erroneously eliminated by the thresholding procedure. 2

As used in the preceding example, properties based on the mean and stan-
dard deviation of pixels in a region attempt to quantify the texture of a region
(see Section 11.3.3 for a discussion on texture). The concept of fexture segmen-
tation is based on using measures of texture for the predicates P(R;). That is, we
can perform texture segmentation by any of the methods discussed in this sec-
rion by specifying predicates based on texture content.

. Segmentation by Morphological Watersheds

Thus far, we have discussed segmentation based on three principal concepts:
(a) detection of discontinuities, (b) thresholding, and (c) region processing. Each
of these approaches was found to have advantages (for example, speed in the
case of global thresholding) and disadvantages ({or example, the need for post-
processing, such as edge linking, in methods based on detecting discontinuities
in gray levels). In this section we discuss an approach based on the concept of
so-called morphological watersheds. As will become evident in the following
discussion, segmentation by watersheds embodies many of the concepts of the
other three approaches and, as such, often produces more stable segmentation
results, including continuous segmentation boundarjes. This approach also pro-
vides a sumple framework for incorporating knowledge-based constraints (see
Fig. 1.23) in the segmcntation process.

Basic Concepts

The concept of watersheds is based on visualizing an image in three dimen-
sions: two spatial coordinates versus gray levels. In such a “topographic” mnter-
pretation, we consider three types of points: (a) points belonging to a regional
minimum; (b) points at which a drop of water, if placed at the location of any
of those points, would fall with certainty to a single minimum; and (c) points at
which water would be equally hikely to fall to more than one such mimimum. For
a particular regional minimum, the set of points satisfying condition (b) 1s called
the catchment basin or watershed of that minimum. The points satisfying con-
dition (c¢) form crest lines on the topographic surface and are termed divide
lines or watershed lines.

The principal objective of segmentation algorithms based on these concepts
1s to find the watershed lines. The basic idea 1s simple: Suppose that a hole is
punched in each regional minimum and that the entire topography is flooded
from below by letting water tise through the holes at a uniform rate. When the
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FIGURE 10.44

(a) Onriginal
image.

(b) Topographic
view. {¢)-(d) Two

stages of llooding.

rising watev in distinct catchment basins is about to merge, a dam is built to pre-
vent the merging. The flooding will eventually reach a stage when only the tops
of the dams are visible above the water line. These dam boundarics coyrespond
to the divide hmes ol the watersheds. Therefore, they are the (continuous) bound-
aries extracted by a watershed segmentation algorithm.

These 1deas can be explained further with the aid of Fig. 10.44. Figure 10.44(a)
shows a simple gray-scale image and Fig. 10.44(b) is a topographic view, in which
the height of the “mountains™is proportional to gray-level values in the inpul
image. For ease ol interpretation, the backsides of structures are shaded. This
1s not to be conlused with gray-level values; only the general topography of the
three-dimensional represcntation is of interest. In order to prevent the rising
water from spilling out through the edges of the structure, we imagine the
perimeter of the entire topography (image) being enclosed by dams of height
greater than the highest possible mountain. whose value is determined by the
highest possible gray-level value in the mput image.

Suppose that a hole 1s punched in each regional minimum [shown as dark
areas in Fig. 10.44(b)| and that the entire topoaraphy is flooded from bhelow
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by letting water rise through the holes at a vimform rale. Figure 10.44(c) shows
the first stage of flooding. where the “water,” shown in light gray, has covered
only arcas that correspond to the very dark background in the image. In
Figs. 10.44(d) and (e) we see that the watcr now has risen into the first and sec-
ond catchment basins, respectively. As the water continues to rise, it will even-
tually overflow from one catchment basin into another. The first indication of
this 1s shown in 10.44(t). Here, water from the left basin actually overflowed
into the basin on the right and a short “dam™ (consisting of single pixels) was
built to prevent waler from merging at that level of flooding (the details of
dam building are discussed in the following section). The effect is more pro-
nounced as water continues to rise. as shown in Fig. 10.44(g). This figure shows
a longer dam belween the two catchment basins and another dam in the top
part ol the right basin. The latter dam was built to prevent merging of water
from that basin with water (rom areas corresponding to the background. This
process 1s continued until the maximum level of flooding (corresponding to
the highest gray-level value in the image) is reached. The {inal dams corre-
spond to the watershed lines. which are the desired segmentation result. The

3
%
s

e AN

L
[N
N

.
-
3
1

]
¥,

619

e [
gh

FIGURE 10.44
(Continued)

(¢) Result of
further flooding.
(f) Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them). (g) Longer
dams. (h) Final
watershed
(segmentation)
hines. (Courtesy of
Dr.S. Beucher,
CMM/Ecole des
Mines de Paris.)
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result for this example s shown in Fig. 10.44(h) as a dark, one-pixel-thick path
superimposed on the original image. Note the important property that the
watershed lines form a connected path, thus giving continuous boundaries be-
tween regions.

One of the principal applications of watershed segmentation is in the ex-
traction of nearly uniform (bloblike) objects from the background. Regions
characterized by small variations in gray levels have small gradient values. Thus,
In practice, we often see watershed segmentation apphed to the gradient of an
image, rather than to the image itself. In this formulation, the regional minima
of catchment basins correlate nicely with the small value of the gradient corre-
sponding to the objects of interest.

3

10.5.2 Dam Construction

Before proceeding, let us consider how to construct the dams or watershed lines
required by watershed segmentation algorithms. Dam construction 1s based on
binary images, which are members of 2-D integer space Z? (see Section 2.4.2).
The simplest way to construct dams separating sets of binary points is to use
morphological dilation (see Section 9.2.1).

The basics of how to construct dams using dilation are illustrated in Fig. 10.45.
Figure 10.45(a) shows portions of two catchment basins at flooding step n — |
and Fig. 10.45(b) shows the result at the next flooding step, n. The water has
spilled from one basin to the other and. therefore, a dam must be built to keep
this from happening. In order to be consistent with notation to be introduced
shortly, let M; and M, denote the sets of coordinates of points in two regional
minima. Then let the set of coordinates of points in the carchment basin associ-
ated with these two minima at stage n — 1 of flooding be denoted by C,_(M,)
and C,_,(M,), respectively. These are the two black regions shown in
Fig. 10.45(a). :

Let the union of these two sets be denoted by C(n — 1]. There are two con-
nected components in Fig. 10.45(a) (see Section 2.5.2 regarding connected com-
ponents) and only one connected component in Fig. 10.45(b). This connected
component encompasses the earlier two components, shown dashed. The fact
that two connected components have become a single component indicates that
water between the two catchment basins has merged at flooding step n. Let this
connected component be denoted g. Note that the two components from step
n — 1 can be extracted from g by performing the simple AND operation
q N C[n — 1].We note also that all points belonging to an individual catchment
basin form a single connected component.

Suppose that each of the connected components in Fig. 10.45(a) is dilated
by the structuring element shown in Fig. 10.45(c), subject to two conditions:
(1) The dilation has to be constrained to g (this means that the center of the
structuring element can be located only at points in ¢ during dilation), and
(2) the dilation cannot be performed on points that would cause the sets being
dilated to merge (become a single connected component). Figure 10.45(d) shows
that a first dilation pass (in light gray) expanded the boundary of each original
connected component. Note that condition (1) was satisfied by every point
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[] First dilation
Second dilation
X} Dam points

a

i
FIGURE 10.45 (a) Two parually (Jooded calchment basins at stage n — 1 of flooding.
(b) Flooding at stage s, showing thar walter has spilled between basins ({or clarity, water

is shown i white rather than black). (¢) Structuring element used for dilation. (d) Re-
sult of dilation and dam canstruction.
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during dilation, and condition (2) did not apply to any point during the dilation
process; thus the boundary of each region was expanded uniformly.

In the second dilation (shown in medium gray), several points failed condi-
tion (1) while meeting condition (2), resulting in the broken perimeter shown
 the figure. It also is evident that the only points in g that satisfy the two con-
ditions under consideration describe the one-pixel-thick connected path shown
crossed-hatched in Tig. 10.45(d). This path constitutes the desired separating
dam at stage n of flooding. Coustruction of the dam at this level of flooding is
completed by setting all the points in the path just determined to a value preater
than the maximum gray-level value of the image. The height of all dams is gen-
erally set at | plus the maximum allowed value in the image. This will prevent
waler from crossing over the part of the completed dam as the level of flood-
g 1s increased. It 1s important to note that dams built by this procedure, which
are the desired segmentation boundaries, are connected components. In other
words, this method eliminates the problems of broken segmentation lines.

Although the procedure just described is based on a simple example, the
method used for more complex situations is exactly the same, including the use
of the 3 X 3 symmetric structuring element shown in Fig. 10.45(c).

1.5 Watershed Segmentation Algorithm

Let M|, M,,..., My be sets denoting the coordinates of the points in the regional
minima of an image g(x, v). As indicated at the end of Section 10.5.1, this typ-
ically will be a gradient image. Let C(M,-) be a set denoting the coordinates of
the points in the catchment basin associated with regional minimum M, (recall
that the points in any catchment basin form a connected component). The no-
tation min and max will be used to denote the minimum and maximum values
of g(x. y). Finally, let T'[n] represcnt the set of coordinates (s, ) for which
g(s.1) < n.Thatis,

T(n] = {(s.1)|g(s,t) < n}. (10.5-1)
Geometrically, 7 n] is the set of coordinates of points in g(x, y) lying below
the plane g{x, y) = n.

The topography will be flooded in integer flood increments, from
n = mmn + 1ton = max + 1. At any step » of the flooding process, the algo-
rithm needs to know the number of points below the flood depth. Conceptual-
Iy, suppose that the coordinates in T[n] that are below the plane g{x, y) = nare
“marked” black, and all other coordinates are marked white. Then when we
look “down” on the xy-plane at any increment »n of flooding, we will see a bi-
nary image in which black points correspond to points in the function that are
below the plane g{x, y) = n.This interpretation is quite useful in helping un-
derstand the following discussion.

Let C,(M;) denote the set of coordinates of points in the catchment basin
associated with minimum M, that are flooded at stage n. With reference to
the discussion in the previous paragraph, C,(M;} may be viewed as a binary
image given by

(M) = C(M) N T[n. (10.5-2)
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In other words, C,(M;) = 1 at location (x, y) if (x, y)eC(M;) AND
(x, y) e T[n]; otherwise C,(M;) = 0.The geometrical interpretation of this re-
sult is straightforward. We are simply using the AND operator to isolate at stage
n of flooding the portion of the binary image in T[n] that is associated with re-
gional minimum A,;.

Next, we let C[n] denote the union of the flooded catchment basins portions
at stage n:

Cln) = JCuM,). (10.5-3)
Then C[max + 1] is the union of all catchment basins:
R
Clmax + 1] = {JC(M)). (10.5-4)
i=1

It can be shown (Problem 10.29) that the elements in both C,(M,) and T[n] are
never replaced during execution of the algorithm, and that the number of ele-
ments in these {wo sets either increases or remains the same as »n increases.
Thus, it follows that C[n — 1] is a subset of C[n). According to Eqs. (10.5-2)
and (10.5-3), C[n] is a subset of T'[n], so it follows that C[n — 1] is a subset of
T[n]. From this we have the important result that each connected component
of C[n — 1] is contained in exactly one connected component of T n].

The algorithm for finding the watershed lines 1s initialized with
Clmin + 1] = T[min + 1]. The algorithm then proceeds recursively, assum-
ing at step »n that C[n — 1] has been constructed. A procedure for obtaining
C[n] from C[n — 1] is as follows. Let O denote the set of connected compo-
nents in 7'[n]. Then, for each connected component g e Q[n], there are three
possibilities:

(a) gNC[n — 1]is empty.
(b) g C[n — 1] contains one connected component of C[n — 1].
(¢) ¢gMNC[n — 1] contains more than one connected component of C[n — 1].

Construction of C[#n] from C[rn — 1] depends on which of these three conditions
holds. Condition (a) occurs when a new minimum is encountered, in which case
connected component g is incorporated into C[n — 1] to form C[#n]. Condition
(b) occurs when ¢ lies within the catchment basin of some regional minimum,
in which case g is incorporated into C[n — 1] to form C[n]. Condition (c) oc-
curs when all, or part, of a ridge separating two or more catchment basins is en-
countered. Further flooding would cause the water level in these catchment
basins to merge. Thus a dam (or dams if more than two catchment basins are in-
volved) must be built within ¢ to prevent overflow between the catchment
basins. As explained in the previous section, a one-pixel-thick dam can be con-
structed when needed by dilating g Y C[n — 1] with a 3 X 3 structuring ele-
ment of 1’s, and constraining the dilation to g.

Algorithm efficiency is improved by using only values of n that correspond
to existing gray-level values in g(x, y); we can determine these values, as well
as the values of min and max, from the histogram of g(x, y).
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FIGURE 10.46
(a) Image of
blobs. {(b) Image
gradient.

(c) Watershed
lines.

(d) Watershed
lines
superimposed on
original image.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)

EXAMPLE 10.18:

DNlustration of the
watershed
segmentation
algorithm.

Consider the image and its gradient, shown in Figs. 10.46(a) and (b).
respectively. Application of the watershed ailgorithm just described yielded the
watershed lines (white paths) of the gradient image shown in Fig. 10.46(c). These
segmentation boundaries are shown superimposed on the original image in
Fig.10.46(d). As noted at the beginning of this section, the segmentation bound
aries have the important property of being connected paths. '

17 % <4 The Use of Markers

Direct application of the watershed segmentation algorithm in the form dis-
cussed in the previous section generally leads to oversegmeniation due to notse
and other local irregularities of the gradient. As shown in Fig. 10.47, overseg-
mentation can be serious enough to render the result of the algorithm virtual-
ly useless. In this case, this means a large number of segmented regions. A
practical solution to this problem is to limit the number of allowable regions by
incorporating a preprocessing stage designed to bring additional knowledge
Into the segmentation procedure.

An approach used to control oversegmentation is based on the concept of
markers. A marker 15 a connected component belonging to an image. We have
internal markers, associated with objects of interest, and external markers,
associated with the background. A procedure for marker selection typically will
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consist of two principal steps: (1) preprocessing; and (2) definition of a set of ¢cri-
teria that markers must satisfy. To illustrate, consider Fig. 10.47(a) again. Part of
the problem that led to the oversegmented result in Fig. 10.47(b) is the large
number of potential minima. Because of their size, many of these minima real-
ly are irrelevant detail. As has bcen pointed out several times in earlier discus-
sions, an effective method for minimizing the effect of small spatial detail is to
filter the image with a smoothing filter. This is an appropriate preprocessing
scheme in this particular case.

Suppose that we define an internal marker in this case as (1) a region that is
surrounded by points of higher “altitude;” (2) such that the ponts m the region
form a connected component; and (3) in which all the poiuts in the connected
component have the same gray-level value. After the image was smoothed, the
internal markers resulting from this definition are shown as light gray, bloblike re-
gions in Fig. 10.48(a). Next, the watershed algorithm was applied Lo the stnoothed
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FIGURE 10.47

(a) Electrophoresis
image. (b) Result
of applying the
watershed
segmentation
algorithm to the
gradient image.
Oversegmenlation
is evident.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Panis.)

ab

FIGURE 10.48

(a) Image showing
internal markers
(light gray regions)
and external
markers
(watershed lines).
(b) Result of
scgmentation. Note
the improvement
over Fig. 10.47(b).
(Courtesy of Dr. S.
Beucher.
CMM/Ecole des
Mines de Paris.)
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image, under the restriction that these internal mavkers be the only allowed
regional minima. Figure 10.48(a) shows the resulting watershed Jines. These wa-
tershed lines are defined as the external markers. Note that the points along the
watershed lines are good candidates for the background because they pass along
the highest points between neighboring markers.

The external markers shown i Fig. 10.48(a) effectively partition the jmage
into regions, with each region contaming a single internal marker and part of the
background. The problem is thus reduced to partitioning each of these regions
into two: a single object and its background. We can bring to bear on this sim-
plified problem many of the segmentation techniques discussed earlier in this
chapter. Another approach is simply to apply the watershed segmentation al-
gorithm to each individual region. In other words, we simply take the gradient
of the smoothed image [as in Fig. 10.46(b)| and then restrict the algorithm to op-
erate on a single watershed that contains the marker in that particular region.
The result obtained using this approach is shown in 10.48(b). The improvement
over the image in 10.47(b) is evident.

Marker selection can range from simple procedures based on gray-level val-
ues and connectivity, as was just illustrated, to more complex descriptions in-
volving size, shape, location, relative distances, texture content, and so on (se¢
Chapter 11 regarding descriptors). The pointis that using markers brings a pri-
ori knowledge to bear on the segmeutation problem. The reader is reminded
that humans often aid segmentation and higher-level tasks in every-day vision
by using a priori knowledge, one of the most familiar being the use of context.
Thus, the fact that segmentation by watersheds offers a framework that can
make effective use of this type of knowledge is a significant advantage of this
method.

. The Use of Motion in Segmentation

Motion is a powerful cue used by humans and many animals to extract objects
of interest from a background of irrelevant detail. In imaging applications, mo-
tion arises from a relative displacement between the sensing system and the
scene being viewed, such as in robotic applications, autonomous navigalion.
and dynamic scene analysis. In the following sections we cousider the use of
motion in segmentation both spatially and in the frequency domain.

.01 Spatial Techniques
Basic approach

One of the simplest approaches for detecting changes between (wo1mage frames
f(x, v, 1,) and flx. y. t,-) taken at times 7, and ¢;, respectively, 1s to compare the
two 1mages pixel by pixel. One procedure for doing this is to form a difference
image. Suppose that we have a reference image countaining only stationary com-
ponents. Comparing this image against a subsequent image of the same scene.
but including a moving object, results in the difference of the two images can-
celing the stationary eleménts, leaving onlv nonzero entries that correspond to
the nonstationary image components.
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A difference image between two images taken at times ¢; and ¢, may be
defined as

U e - S > T
dijlx.y) = {0 otherwise

where T'is a specified threshold. Note that d,,(x, y) has a value of 1 at spatial
coordinates (x, y) only if the gray-level difference between the two images is
appreciably different at those coordinates, as determined by the specified thresh-
old 7' Tt1s assumed that all images are of the same size. Finally, we note that the
values of the coordinates (x. y) in Eq. (10.6-1) span the dimensions of these
images, so that the difference image d,;(x, y) also is of same size as the images
In the sequence.

In dynamic image processing, all pixels in 4;,(x, y) with value 1 are consid-
ered the result of object motion. This approach is applicable only if the two im-
agcs arc registered spatially and if the illumination is relatively constant within
the bounds established by T. In practice, 1-valued entries ind;( x, y) often arjse
as a result of noise. Typically, these entries are isolaled points in the difference
mmage, and a simple approach to their removal i1s to form 4- or 8-connected re-
gions of 1’sin d,;(x, y) and then ignore any region that has less than a prede-
termined number of entries. Although il may result in ignoring small and/or
slow-moving objects, this approach improves the chances that the remaining
enlries in the difference image actually are the result of motion.

(10.6-1)

Accumulative differences

[solated entries resulting from noise is not an insignificant problem when trying
to extract motion components from a sequence of images. Although the number
of these entries can be reduced by a thresholded connectivity analysis, this filtcring
process can also remove small or slow-moving objects as noted in the previous
section. One way to address this problem is by considering changes at a pixel lo-
cation over several frames, thus infroducing a “memory” into the process. The
1dea 1s to ignore changes that occur only sporadically over a frame sequence and
can therefore be attributed to random noise.

Consider a sequence of image frames f(x, y,1,), f(x, y.t5),..., f(x, y, 1,) and
let f(x, y, t,) be the reference image. An accumulative difference image (ADI)
is formed by comparing this reference image with every subsequent image in the
sequence. A counter for each pixel location in the accumulative image 1s incre-
mented every time a difference occurs at that pixel location between the ref-
erence and an image in the sequence. Thus when the kth frame 1s being
compared with the reference, the entry in a given pixel of the accumulative
image gives the number of times the gray level at that position was different
from the corresponding pixel value in the reference image. Differences are es-
tablished, for example, by using Eq. (10.6-1).

Often useful is consideration of three types of accumulative difference im-
ages: absolute, positive, and negative ADIs. Assuming that the gray-level values
of the moving objects are larger than the background, these three types of ADIs
are defined as follows. Let R(x, y) denote the reference image and, to simplify
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EXAMPLE 10.19:

Computation of
the absolute.
positive, and
negative
accumulative

difference images.

abec

Image Segmentation

the notation, lel & denote t,, so that f(x, y. k) = f(x, y, r,(). We assume that
R{x.y) = f(x.y,1). Then, for any £ > 1, and keeping in mind that the values
of the ADIs are counts, we define the following for all relevant values of (x. y):

Ar(x,y) +1 if |[R(x,y) = flxoy k)| > T
Aulx = ‘ 10.6-2
o y) {Ak_l(.\‘. y) otherwise ( )

N S Pa(xoy) it[R(x.y) = [lx v k)] >T
Filx.y) = {Pk_l(x, y) otherwise (10.6-3)

and
_ Ny + 1 i [R(y) = flay k)] < T

Nilx. y) = {N,(_,(x, y) otherwise (10.6-4)

where A (x, 1), P(x, y). and N (x. y) are the absolute, positive, and negative
ADIs. respectively, after the kth image in the sequence js encountered.

It)s understood that these ADIs start out with all zero values (counts). Note
also that the ADIs are the same size as the images in the sequence. As noted pre-
viously. the images in the sequence are all assumed to be of the same size. Fi-
nally, we note that the order of the inequalities and sigos of the thresholds in
Eqs (10.6-3) and (10.6-4) are reversed if the gray-level vaJues of the background
pixels are greater than the levels of the inoving objects.

Figure 10.49 shows the three ADIs displayed as intensity isnages (or a rec-
tangular object of dimension 75 X 50 pixels that is moving in a southeasterly di-
rection at a speed of SV2 pixels per frame. The images are of size 256 X 256
pixcls. We note the following: (1) The nonzero area of the positive ADT is equal
to the size of the moving object. (2) The location of the positive ADI corre-
sponds to the location of the moving object in the reference frame. (3) The num-
ber of counts in the positive ADI stops increasing when the moving object is
displaced completely with respect to the same object in the reference [rame.

FIGURE 10.49 ADIs of a rectangular object moving in a southcasterly direction. (a) Absolute ADI. (b) Posi-
tive ADI. (c) Negative ADI.
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(4) The absolute ADI contains the regions ol the positive and negative ADT.
(5) The direction and speed of the moving object can be determined from the
entries in the absolute and negative ADIs. '

Establishing a reference image

A key (o the success of the {echniques discussed in the preceding two sections
is having a reference image against which subsequent comparisons can be made.
As indicaled, the dilference between two images in a dynamic imaging problem
has the tendency to cancel all stationary components, leaving only inmage ele-
ments that correspond to noise and to the moving objects. The noise problem
can be handled by the filtering approach mentioned earlier or by forming au ac-
cumulative dif(erence image, as discussed in the preceding section.

In practice, obtaining a reference image with only stationary elements s not
always possible. and building a reference from a set of images containing one
or more moving objects becomes necessary. This necessity applies particularly
to situations descnbing busy scenes or in cases where frequent updating is rc-
quired. One procedure for generating a reference image is as follows. Consid-
er the first image 1n a sequence to be the reference image. When a nonstationary
component has moved completely out of its position in the reference frame,
the corresponding background in the present frame can be duplicated in the
location originally occupied by the object in the reference frame. When all mov-
ing objects have moved completely out of their original positions. a reference
image containing only stationary components will have been crcated. Object
displacement can be established by monitoring the changes in the positive ADI.
as indicated in the preceding section.

" Figures 10.50(a) and (b) show two image frames of a tvaffic intersection. The
first image is considered the reference. and the second depicts the same scene
somc lime later. The objective is to remove the principal moving objccts in the
reference tmage In order to create a static image. Although there are other
smaller moving objccts, the principal moving feature is the automobile at the in-
tersection moving from left to right. For illustrative purposes we (ocus on this
object. By monitoring the changes in the positive ADIL it is possible to determine
the initial position of a moving object, as explained previously. Once the area

abc

FIGURE 10.50 Building a static reference image, (a) and (b) Two frames 1 a sequence.
(c) Eastbound automobile subtracted from (a) and the background restored from the
corresponding avea in (b). (Jain and Jam.)

EXAMPLE 10.20:
Building a
relerence mage.
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occupied by this object is identified, the object can be removed from the image
by subtraction. By looking at the frame in the sequence at which the positive
ADI stopped changing, we can copy from this image the area previously occu-
pied by the moving object in the initial frame. This area then 1s pasted onto the
image from which the object was cut out, thus restoring the background of that
area. If this 1s done for all moving objects, the result is a reference image with
only static components against which we can compare subsequent {rames for
motion detection, as explained in the previous two sections. The result of re-
moving the east-bound moving vehicle in this case is shown in Fig. 10.50(c). =

b ]

10.6.2 Frequency Domain Techniques

In this section we consider the problem of determining motion estimates via a
Fourier transform formulation. Consider a sequence f(x, y,1),7 = 0, 1,...,
K — 1, of K digital image frames of size M X N generated by a stationary
camera. We begin the development by assuming that all frames have a homo-
geneous background of zero intensity. The exception 1s a single. 1-pixel object
of unit intensity that is moving with constant velocitly. Suppose that for frame
one ({ = 0) the image plane is projected onto the x-axis; that is, the pixel in-
tensities are summed across the columns. This operation yields a 1-D array
with M entries that are 0, except at the location where the object is projected.
Multiplying the components of the array by exp [j27m]xAt}, x=0,172,. ..,
M — 1, with the object at coordinates (x', y') at that instant of time, produces
a sum equal fo exp [;'27Ta1 x’.f_\..r]. In this notation g, Is a posttive integer, and Af
is the time interval between frames.

Suppose that in frame two (¢ = 1) the object has moved to coordinates
(x' + 1,y");thatis, it has moved 1 pixel parallel to the x-axis. Then repeating the
projection procedure discussed in the previous paragraph yields Lhe sum
exp[j2ma,(x' + 1)At]. If the object continues to move 1 pixel location per frame,
then, at any integer instant of time, the result is exp[j27ra](x' + 1)Atf), which,
using Euler’s formula, may be expressed as

P 0M — cog[2ma (x4 ()At] + jsin[2ma,(x + ()Ar] (10.6-5)

forr = 0,1,...,K — 1.In other words, this procedure yields a complex sinusoid
with frequency a,. If the object were moving #, pixels (in the x-direction) be-
tween frames, the sinusoid would have frequency v, 4, . Because f varies between
0 and K — 1 in integer increments, restricting 4, to integer values causes the
discrete Fourter transform of the complex smusoid to have two peaks—one lo-
cated at frequency v, @, and the other at X — v,a,.This latter peak is the result
of symmeltry in the discrete Fourier transform, as discussed in Section 4.6, and
may be ignored. Thus a peak search in the Fourier spectrum yields v a,. Divi-
sion of this quantity by «, yields »,, which is the velocity compounent in the
x-direction, as the frame rate 1s assumed (o be known. A similar argument would
yield v,, the component of velocity in the y-direction.

A sequence of frames in which no motion takes place produces 1dentical
exponential terms, whose Fourier transform would consist of a single peak at a
frequency of 0 (a single dc term). Therefore, because the operations discussed
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so far are linear, the general case involving one or more moving objects in an
arbitrary static background would have a Fourier transform with a peak at dec
corresponding to static image components and peaks at locations proportional
to the velocities of the objects.

These concepts may be summartzed as follows. For a sequence of K digital
images of size M X N, the sum of the weighted projections onto the x axis at
any integer instant of time is

M-—IN—|

gla) =2 Ef (x.y, )P =01, K~ 1. (10.6-6)

=0 y=

Simlarly, the sum of the projections onto the y-axis is

N—IM-I
glha) =3 S ey, 0)e? (=01, ,K -1 (10.6-7)
v={ x=0)

where, as noted already, 4, and a, are positive integers.
The 1-D Fourier transforms of Eqs. (10.6-6) and (10.6-7), respectively, are

K-
Glu,.a,) = }5 S et a)e? Ky =0,1,0 K — 1 (10.6-8)
=0
and
1 K—1
Gy(uz, a,) = X Zg‘(t a, )e 1Atk u, = 0,1,..., K — 1. (10.6-9)
=0

In practice, computation of these transforms is carried out using an FFT algo-
rithm, as discussed in Section 4.6.
The {requency-velocity relationship is

Ml = CII’U; (10-6'10)
and
Uy = 0. (10.6-11)

[n this formulation the unit of velocity 15 in pixels per total frame time. For ex-
ample, v, = 1018 interpreted as a motion of 10 pixels in X frames. For frames
that are taken uniformly, the actual physical speed depends on the frame rate
and the distance between pixels. Thusif v, = 10, K = 30, the frame rate is two
images per second, and the distance between pixels 1s 0.5 m, then the actual
physical speed in the x-direction is

v, = (10 pixels)(0.5 m/pixel}(2 frames/s) /(30 frames)
= 1/3m/s.
The sign of the x-component of the velocity is obtained by computing

_ PRelsdr.a)] (10.6-12)
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EXAMPLE 10.21:

Detection of a
small moving
object via the
frequency
domain.

FIGURE 10.51
LANDSAT
frame. (Cowart,
Snyder, and
Ruedger.)

and

s, = dzlm[g_r(r, a,)J

Because g, is sinusoidal. it can be shown that §,, and §,, will have the same
sign at an arbitrary point in time, 2. If the velocity component v, is positive.
Conversely. opposite signs in S, , and S, indicate a negative componend. If either
S\, or §,. 15 zero, we consider the next closest pomntin time,r = # + Ar. Similar
comments apply to computing the sign of »,.

Figures 10.51 through 10.54 tllustrate the effectiveness of the approach just
derived. Figure 10.51 shows ove of a 32-frame sequence of LANDSAT images
generated by adding white noise to a reference hmage. The sequence contains
a supcrimposed target moving at 0.5 pixel per frame in the x-direction and 1
pixe) per frame in the y-direction. The target, shown circled in Fig. 10.52. has a
Gaussian intensity distribution spread over a small (9-pixel) area and is nof eas-
ily discernible by eye. The results of computing Eqs. (10.6-8) and (10.6-9) with
a, = 6 and a2, = 4 are shown in Figs. 10.53 and 10.54, vespectively. The peak at
uy = 3in Fig 10.53 yields v, = 0.5 from Eq. (10.6-10). Stmilarly, the peak at in
Fig. 10.54 yields v, = 1.0 from Eq. (10.6-11).

Guidelines for the selection of a, and a, can be explained with the aid of
Figs. 10.53 and 10.54. For instance, suppose that we had vsed «, = 15 instead of
a, = 4.In that case the peaks in Fig. 10.54 would now be at17; = 15 and 17 because
v, = 1.0, which would be a sertously aliased result. As discussed in Section 2.4.4,
aliasing ts caused by undersampling (too {(ew frames in the present discussion, as
the range of u is determined by K). Because 1+ = av, one possibility is to select a
as the integer closest 0 @ = Uy, /Vmay, Where 11, 1s the aliasing frequency limi-
tation established K and v,,, 1s the maximum expected object velocity.
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FIGURE 10.53 Spectrum of Eq. (10.6-8) showing a peak at «;, = 3. (Rajala, Riddle, and

Snyder.)
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FIGURE 10.52
Intensity plot of
the image in

Fig. 10.51, with
the target circled.
(Rajala, Riddle,
and Snyder.)
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FIGURE 10.54
Spectrum of

Eq. (10.6-9)
showing a peak at
i, = 4. (Rajala,
Riddle, and
Snyder.)
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Summary

Image segmentation is an essential preliminary step in most automatic pictorial pattern

recognition and scene analysis problens. As indicated by the range of examples pre-

sented in Lhe previous sections, the choice of one segmentation technique over another -
ts dictated mostly by the peculiar characteristics of the problem being considered. The

methods discussed in this chapter, although far from exhaustive, are representative of

techniques commonly used in practice. The following references can be used as the basis

for further study of (his lopic.

References and Further Reading

Because of its central role in autonomous image pracessing, segnientation is a Lopic cov-
ered in most books dealing with image processing. image analysis. and computer vision.
The following books provide complementary and/or supplementary reading for our cov-
erage of this topic: Shapiro and Stockman [2001], Sonka et al. [1999], Petrou and Bos-
dogianni [1999], and Umbaugh [1998].

Work dealing with the use of masks to detect gray-lcvel disconlinuities (Section 10.1)
has a long history. Numerous masks have been proposed over the years: Roberts [1965].
Prewitt [1970], Kirsh [1971], Robinson [1976]. Frei and Chen [1977]. and Canny [1986].
A review article by Fram and Deutsch [1975] contains numerous masks and an evalua-
tion of their performance. The issue of mask performance, especially (or cdge detection,
still 1s an arca of considerable interest, as exemplified by Qian and Huang [1996], Wang
et al. [1996]. Heath el al. [1997, 1998], and Ando {2000]. Edge detection on color images
has been increasing in populanty for a number ol multisensing applications. See. for ex-
ample, Salinas, Abidi and Gonzalez [1996]; Zugaj and Lat(uati [1998]; Mirmehdi and
Petrou [2000]: and Plataniotis and Venetsanopoulos [2000]. The interplay between image
characteristic and mask performance also is a topic of current interest, as exemplified by
Ziou [2001). Our presentation of the zero-crossing properties of the Laplacian s based
on a paper by Marr and Hildredth [1980] and on the book by Marr [1982]. See also a
paper by Ciark [1989] on authenticating edges produced by zero-crossing algorithms.
(Corrections of parts of the Clark paper are given by Picch [1990].) As mentioned in
Section 10.1, zero crossing via the Laplacian of a Gaussian is an important approach
whose relative performance is still an active topic of research (Gunn [ 1998, 1999]).
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The Hough transform (Hough [1962]) has emerged over the past decade as a method
of choice for global pixel linking and curve detection. Numerous generalizations to the
basic transform discussed in this chapter have been proposed over the years. For exam-
ple, Lo and Tsai [1995] discuss an approach for detecting thick lines, Guil et al. [1995,1997]
deal with fast implementations of the Hough transform and detection of primitive curves,
Daul at al. [1998] discuss further generalizations for detecting elliptical arcs, and Shapiro
[1996] deals with implementation of the Hough transform for gray-scale images. The
algorithm presented in Section 10.2.3 is based on Martelli [1972, 1976). For additional
reading on heuristic graph searching, see Nilsson [1980], Umeyama [1988], and Sonka
et al. [1999].

As mentioned at the beginning of Section 10.3, thresholding techniques enjoy a sig-
nificant degree of popularity because they are simple to implement. It is not surprising
that there is a considerable body of work reported in the literature oun this topic. A good
appreciation of the extent of this literature can be gained from the review papers by
Sahoo et al. [1988] and by Lee et al. [1990]. We spent a significant level of effort in Sec-
tion 10.3.2 dealing with the effects of illumination on thresholding. The types of ap-
proaches used to deal with this problem are illustrated by the work of Perez and Gonzalez
[1987], Parker [1991], Murase and Nayar [1994], Bischsel [1998], and Drew et al. [1999].
For additional reading on the material in Sections 10.3.3 and 10.3.4, see Jain et al. [1995].
The early work of Chow and Kaneko [1972] discussed in Section 10.3.5 is still a standard
in terms of illustrating the key aspects of a threshold-based image segmentation solution.
Essentially the same can be said for the material presented in Section 10.3.6 (due to
White and Rohrer [1983]), which combines thresholding, the gradient, and the Laplacian
in the solution of a difficult segmentation problem. It 1s interesting to compare the fun-
damental similarilies in terms of image segmentation capabilily between these two ar-
ticles and work on thresholding done almost twenty years later (Cheriet et al. [1998],
Sauvola and Pietikainen [2000]). See also Liang et al. [2000] and Chan et al. [2000] for
alternate approaches to the problem of detecting boundaries in images similar in con-
cept to those studied by Chow and Kaneko.

See Fu and Mui [1981] for an early survey on the topic of region-oriented segmen-
tation. The works of Haddon and Boyce [1990] and of Pavlidis and Liow [1990] are
among the earliest efforts to integrate region and boundary information for the purpose
of segmentation. A newer region-growing approach proposed by Hojjatoleslamt and
Kittler [1998] also is of interest. For current basic coverage of region-oriented segmen-
tation concepts, see Shapiro and Stockman [2001] and Sonka et al. [1999].

Segmentation by watersheds was shown in Section 10.5 to be a powerful concept.
Early references dealing with segmentation by watersheds are Serra [1988], Beucher
[1990], and Beucher and Meyer {1992]. The paper by Baccar et al. [1996] discusses seg-
mentation based on data tusion and morphological watersheds. The progress in this ficld
in a little more than one decade is evident in a special issue of Patiern Recognition {2000],
devoted entirely to this topic. As indicated in our discussion in Section 10.5, one of the
key issues with watersheds is the problem of over segmentation. The papers by Naj-
manand and Schmitt (1996], Haris et al. [1998], and Bleau and Leon [2000] are illustra-
tive of approaches for dealing with this problem. Bieniek and Moga [2000] discuss a
watershed segmentation algorithm based on connected components.

The matcrial in Section 10.6.1 is from Jain, R. [1981]. See also Jain, Kasturi, and
Schunck [1995]. The material in Section 10.6.2 is from Rajala, Riddle, and Snyder {1983].
See also the papers by Shariat and Price [1990] and by Cumani et al. [1991]. The books
by Shapiro and Stockman [2001] and by Sonka et al. [1999] provide additional reading
regarding motion estimation.
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