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The idea of segmentation has ils roots in work by the Gestalt psychologists {e.g.,
Kohler), who studied the preferences exhibited by human beings in grouping or
organizing seis of shapes arranged in the visual field, Gestalt principles dictate cer-
fain grouping preferences based on features such as proximity, similarity, and con-
tinuwity, Other results had 1o do with figure/ground discrimination and optical illu-
sions. The latter have provided a fertile ground for vision theories Lo posi-
Gestalusis such as Gibson and Gregory, who emphasize that these grouping
mechanisms organize the scene into meaningful unis that are a significant step
toward image understanding.

In computer vision, grouping parts of a generalized image into units that are
homogeneous with respect to one or more characteristics {or features) results in a
segmented image. The segmented image extends the generalized image in a crucial
respect: it contains the beginnings of domain-dependent interpretation. AL this
descriptive level the internal domain-dependent models of objects begin to
influence the grouping of generalized image structures into units meaningful in the
domain, For instance, the model may supply crucial paramelers to segmentation
procedures,

In the segmentation process there are iwo imporiant aspects (o consider: one
is the data structure used to keep track of homogeneous groups of features; the
other is the transformation involved in computing the features.

Two basic zorts of segments are natural: boundaries and regions. These can
be used combined into a single descriptive structure, a set of nodes (one per
region), connected by arcs representing the *‘adjacency’” relation. The “dual™ of
this structure has arcs corresponding to boundaries connecting nodes representing
points where several regions meet, Chapters 4 and 5 describe segmentation with
respect to boundaries and regions respectively, emphasizing gray levels and gray-
level differences as indicators of segments. OF course, from the standpoint of the

Part i Segmented images



glgorithms involved, it is irrelevant whether the features are intensity gray levels
or intrinsic image values perhaps représenting motion, color, or range.

Texture and motion images are addressed in Chapters 6 and 7. Each has
several computationally difficull aspecis, and neither has received the attention
given static, nontextured images. However, each is very imporiant in the segmen-
lation enferprise.

Fiet 1 Segmented images 117



Boundary
Detection 4

4.1 ON ASSOCIATING EDGE ELEMENTS

Boundaries of objecis are perhaps the most important part of the hierarchy of struc-
tures thal links raw image data with their interpretation [Marr 1975). Chapter 3
described how various operators applied 1o raw image data can vield primitive edge
elements. However, sn image of only disconnected edge elements is relatively
featureless, additional processing must be done o group edge elements inlo sirog-
tures betler suited 1o the process of interpretation. The goal of the technigues in
this chapter is 1o perform a level of segmentation, that is, 1o make a coherenl one-
dimensional (edge) feature from many individual local edge elements. The feature
could correspond (o an object boundary or (0 any meaningful boundary belwesn
scene entities. The problems that edge-based segmentation algorithms have o
contend with are shown by Fig. 4.1, which is an image of the local edge elements
vielded by one common edge operator applicd o a chest radiograph. As can be
seen, the edge elements oflen exist where no meaningful scene boundary does,
and conversely often are absent where a boundary is. For example, consider the
boundaries of ribs as revealed by the edge elements. Missing edge elements and
exira edge elements both tend to frustraie the segmentation process,

The methods in this chapter are ordered according o the amount of
knowledpe incorporated into the grouping operation that maps edge elemeants into
boundaries. “Knowledge™ means implicit or explicit consirainis on the likelihood
of a given grouping. Such constraints may arise from general physical arguments
or (more often) from stronger restrictions placed on the image arising from
domain-dependent considerations. I there iz much knowledge, this implies that
the global form of the boundary and its relation o other image struclures is very
consiraingd. Liltle prior knowledge means that the segmeniation must procesd
more on the basis of local clues and evidence and general (domain-dependent) as-
sumptions with fewer expectations and constraints on the final resulting boundary.

119
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radipgraph,

These consiraints take many forms. Knowledge of where 1o expect a boun-
dary allows very restricted searches to verify the edge. In many such cases, the
domain knowledge determines the type of curve (ils parameterization or fune-
tional form) as well as the relevant *noise processes.”’ In images of polyhedra,
only straighi-edged boundaries are meaningful, and they will come together at
various sorts of vertices arising from corners, shadows ol corners, and occlusions.
Human rib boundaries appear approximately like conic sections in chest radio-
graphs, and radiographs have complex edge structures that can compete with rib
edges. All this specific knowledge can and should guide our choice of grouping
method,

If less is known about the specific image content, cne may have to fall back
on general world knowledge or heuristics that are true for most domains, For in-
stance, in the absence of evidence to the contrary, the shorter ling between two
points might be selected over a longer line, This sort of general principle is easily
built into evaluation functions for boundaries, and vsed in segmentation algo-
rithms that proceed by methodically searching for such groupings. If there are noa
priori restrictions on boundary shapes, a general contour-gxtraction method is
called for, such as edge following or linking of cdge elements.

The methods we shall examine are the following:

. Searching mear an approximate location. These are methods for refining a boun-
dary given an initial estimate.

2. The Hough trangform, This elegant and versatile technigue appears in various
guises throughout computer vision. In this chapter it is wsed to detect boun-
daries whose shape can be described in an analytical or tabular form.

3. Graph searching. This method represenis the image of edge elemenis as a
graph. Thus a boundary is a path through a graph. Like the Hough transform,
these techniques are quite generally applicable.

Ch 4 Favadey Detection



4,  Dynamic programming. This method is also very general. [t uses a mathemati-
cal formulation of the globally best boundary and can find boundaries in noisy
Images,

5. Comtowr following. This hill-climbing technique works best with good image
data.

4.2 SEARCHING MEAR AN APPROXIMATE LOCATION

If the approximate or a priori likely location of a boundary has been delermined
somehow, it may be used te guide the effort to refine that boundary [Kelly 1971).
The approximate location may have been found by one of the technigues below ap-
plied to & lower resolution image, or it may have been determined using high-level
knowledge.

4.2.1 Adjusting A Priori Boundaries

This idea was described by [Bolles 19771 (see Fig. 4.2). Local searches are carried
out at regular intervals along directions perpendicular 1o the approximate (a priori)
boundary. An edge operator is applied fo each of the discrete points along each of
these perpendicular directions, For esch such direction, the edge with ihe highest
magnitude is sebecied from among those whose orientations are nearly paraliel to
the langent at the point on the nearby a prior boundary. IF sufficiently many ele-
ments are found, their locations are fit with an analytic curve such as a low-degree
polynomial, and this curve becomes the representation of the boundary.

. Fig. 4.7 Search orentations frem an
'E' . appioximale Boiandary Healsin.

4.2.2 Non-linesr Correlation in Edge Space

In this correlation-like technigque, the a prieri boundary is treated as a rigid tem-
plaie, or piece of rigid wire along which edge operators are atlached like beads, The
a prion representation thus also contains relative locations atl which the existence
of edges will be tested (Fig. 4.3). An edge element returned by the edge-operator
application “*matches™ the a priori boundary if its contour is tangent 1o the 1em-
plate and its magnitude exceeds some threshold. The template 15 to be moved
around the image, and for each location, the number of matches i1s computed, IT
the number of maiches exceeds a threshold, the boundary location is declared Lo

Sec. 4.2 Searching near an Approaimate Location i



Fig. 4.3 A wemplate for edge-operaton
application,

be the current template location. If not, the template is moved to a different image
point and the process is repeated. Either the boundary will be located or there will
eventually be no more image points fo try.

4.2.3 Divide-and-Conguer Boundary Detection

This is a technique that is useful in the case thal a low-curvalure boundary is
known to ¢xist between two edge clements and the nodse levels in the image are
low (Algorithm 8.1). In this case, o find a boundary point in between the two
known points, search along the perpendiculars of the line joining the two points.
The point of maximum magnitade (if it is over some threshold) becomes a break
point on the boundary and the technique is applied recursively to the two line seg-
menis formed between the three known boundary points. (Some fix must be ap-
plied if the maximum is not unique.) Figure 4.4 shows one step in this process.
Divide-and-conquer boundary detection has been used 1o ouiline kidney boun-
daries on computed tomograms (these images were described in Section 2.3.4)
[Selfridge et al, 1979],

S,
-

. Flg. 4.4 [Divide and conguer technique.

Ch. 4 BFoimdary Detechion



Fig. 4.5 A e (a) in image space; (b} in parametsr spade.

4.3 THEHOUGH METHOD FOR CURVE DETECTION

Sec 43

The classical Hough technique for curve detection is applicable if little is known
gbout the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). [ts main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selecied that have a high likelihood of being on linear boundaries. The Hough
lechnique organizes these poinis into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data,

Consider the point x" in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand csatisfving "= mx"+ c. Regarding (x), ¢') as fixed, the last equation is
that of a ling in m—c space, or parameier space. Repeating this reasoning, a second
paint (x", ¥"') will also have an associated line in parameter space and, further-
more, these lines will intersect at the point {m’ ¢') which corresponds to the line
AR connecting these points. In fact, all points on the line A8 will yield lines in
parameter space which inter$é&t al the point (m’, ¢'), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1:  Line Detection with the Hough Algorithm
1. Quantize parameter space beélween approprisle maximum and minimum

values for ¢ and m.
2. Formanaccumulator array A (e, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient

The Hough Method for Curee Detection 123
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exceeds some threshold, increment all points in the accumulator array along
the appropriate ling, L.e.,

Ale, md= Alc, m) + 1
for mand csatisfying ¢ = =—mx + ywithin the limits of the digitization.

4. Local maxima in the accumulator array now correspond to collinear points in
the image array, The values of the sccumulator array provide a measure of the
number of points on the line,

This technigue is generally known as the Hough technique [Hough 1962].

Since m may be infinite in the slope-intercept equation, & beiter parameteri-
zation of the line is xsin @ + wcos# = r, This produces a sinusoidal curve in (r, 7)
space for fixed x, v, bul otherwise the procedure is unchanged.

The generalization of this technique to other curves is straightforward and
this method works for any curve f(x, a) = 0, where g is a parameter vector. (In
this chapter we often use the symbol fas various general flunctions unrelated 1o the
image gray-level function. } In the case of a circle parameterized by

x—a)l+ (p=pb1 = 2 (4.1)

for fixed x, the modificd algonithm 4.1 increments values of @, b, rlving on the sur-
face of a cong. Unfortunately, the compulation and the size of the accumulator ar-
ray increase exponentially as the number of paramelers, making this technigue
practical only for curves with a small number of parameters.

The Hough method is an efficient implementation of & generalized matched
filtering strategy (i.e., a template-matching paradigm). For instance, in the case of
a circle, imagine a template composed of a circle of 1's (at a fixed radius R) and 0's
everywhere else, If this template is convolved with the gradicnt image, the result is
the portion of the accumulator array A (g, b, R).

In its usual form, the technique yields a set of parameters for a curve that best
explains the data. The parameters may specify an infinite curve (e.g., a line or para-
bola). Thus, if a finite curve segment is desired, some further processing is neces-
sary (o establish end points.

4.3.1 Use al the Gradient

Dramatic reductions in the amount of computation can be achieved if the gradient
direction is integrated into the algorithm [Kimme et al. 1975). For example, con-
sider the problem of detecting a circle of fixed radius R.

Without gradient information, all values a, b lying on the circle given by
(4.1} are incremented. With the gradient direction, only the points near (4,8) in
Fig. 4.6 need be incremented. From geometrical considerations, the point (a,b) is
given by

Ch 4  Boundary Detection
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Fig 4.4 Reduction in computation with gradient information
g=x— rsing (4.2}
b= g+ rcosg

where ¢ (x) is the gradient angle returned by an edge operator. Implicit in these
equations i3 the assumption that the circle is the boundary of a disk that has gray
levels greater than its surroundings. These equations may also be derived by
differentiating (4.2), recognizing that dy/dx = tané, and solving for @ and b
between the resultant equation and (4.2). Similar methods can be applied to other
conics, In each case, the use of the gradient saves one dimension in the accumula-
tor array.

The gradient magnitude can also be used as a heuristic in the incrementing
procedure. Instead of incrementing by unity, the accumulator array location may
be incremented by a function of the gradient magnitude. This heuristic can balance
the magnitude of brightness change across a boundary with the boundary length,
but it can lead to detection of phantom lines indicated by a few bright points, or o
missing dim but coherent boundaries.

4.3.2 Some Examples

The Hough technique has been used successfully in a variety of domains. Some ex-
amples include the detection of human hemoglobin fingerprints [Ballard et al.
1975], the detection of tumors in chest films [Kimme et al, 1975), the detection of
storage tanks in aerial images [Lantz et al. 1978), and the detection of ribs in chest
radiographs [Wechsler and Sklansky 1977). Figure 4.7 shows the tumor-detection
application. A section of the chest film (Fig. 4.7b) is searched for disks of radius 3
units. In Fig. 4.7¢, the resultant accumulator array A [a, &, 3] is shown in a pictoral
fashion, by interpreting the array values as gray levels. This process is repeated for
various radil and then a set of likely circles 15 chosen by setting a radius-dependent
threshold for the accumulator array contents. This resalt is shown in Fig, 4.7d. The
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-1}

idl

Fig. 4.7 Using the Hough techmigue for circular shapes, {a) Radiograph. {6 Window. (<)
Accumulalar array for r= 3. ) Besulis of maxima desection

circular boundaries detected by the Hough technigue are overlaid on the original
image.

4.3.3 Trading Off Work in Parameter Space for Work in Image Space

Consider the example of detecting ellipses that are known (o be oriented so that a
principal axis is parallel to the x axis. These can be specified by four parameters.
Lizsing the equation for the ellipse together with itz derivative, and substituting for
the known gradient as before, one can solve for two paramelers, In the equation
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(x=xgh = (p=pp?
F * -
a [/
X s an edge point and x5, yo. @, and bare parameters. The equation for its deriva-
tive is

1 {4.3)

e—x) | =y &y _
@ p dx
where dv/dx = tan (x). The Hough algorithm becomes:

0 (4.4}

Algorithm 4.2: Hough technique applied 1o ellipses

For each discrete value of xand y, incremeni the poinl in parameler space given by
a, -E'-u g Vit where

i
= 4.5)
X P ante)®
g = ok b (4.6)

(1 + a’tan’e/p)"
that is,
Ala, b, xg, vo) = Ala, b, xg, vad + 1

For a and heach having m values the computational cost is proportional to m?,

Now suppose that we consider all pairwise combinations of edge elemenis.
This introduces two additional equations like (4.3) and (4.4), and now the four-
parameter poini can be determined exactly. That is, the following equations can be
solved for a unique xg, ¥y, a, b,

{x; — x)? 4 (ry — o) =

- - 1 (4.7a)

(x; —:xu]'! L —I.Fa:'z = (4.7b)
a b

x ﬂ—tIn + 2 ;tyu 'ﬁ -0 (4.7¢)

X3 ;! X . yr;fu % -0 (4.7d)

«i-‘-' = fandg l:-% is known from the edge operator)
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Their zolution is l2ft as an exercise. The amount of effort in the former case
was proportional 10 the product of the number of discrete values of a and b,
whereas this case involves effort proportional o the square of the number of edge
elements,

4.3.4 Generalizing the Hough Transiorm

Conzider the case where the object being sought has no simple analytic form, but
has a particular silhouette. Since the Hough techniguoe is so closely related o tem-
plate matching, and template matching can handle this case, it is not surprising that
the Hough technique can be generalized to handle this case also. Suppose for the
moment that the object appears in the image with known shape, orientation, and
scale. (If orientation and scale are unknown, they can be handled in the same way
that additional parameters were handled earlier.) Now pick a reference point in the
silhouette and draw a line to the boundary. At the boundary point compute the gra-
dient direction and store the reference point as a function of this direction. Thus it
is possible to precompute the location of the reference point from boundary points
given the gradient angle. The set of all such locations, indexed by gradient angle,
comprises a table termed the &-table [Ballard 1981]. Remember that the basic stra-
tegy of the Hough technigue is 1o compute the possible loci of reference poinis in
parameter space from edge point data in image space and incrément the parameter
points in an accumulator array. Figure 4 8 shows the relevant geometry and Table
4.1 shows the form of the R-table. For the moment, the reference point coordi-
nates (x., y.) arc the only parameters (assuming that rotation and scaling have
been fixed). Thus an edge point (x, ) with gradient orientation ¢ constrains the
possible reference points to be at {x + ry ($) cos [ay ()], y+r () sin (=, ($)]]
and so on,

St |
Yoo Fig. 4.8 Geometry used o form the
' R-Tahbhs.
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Table 4.1
INCREMEMTATION IN THE GEMERALIZED HOLWGH CASE

Argle measared
from figure boundary  Setof radii [r] where
fo referarnce poind =)
é T
By [ | rft
L= Ll RTRTS

The generalized Hough algorithm may be described as follows:

Algorithm 4.3: Generalized Hough

Step 0. Make a table (like Table 4.1) for the shape to be located.

Step 1. Form an  accumulator array  of possible  reference  poinis
A X i X mans Femmn - Femae) initialized 1o zero.

Step 2. For each edge poini do the following:

Siep2.1. Compute é(x)
Siep 2.2a. Calculate the possible cenifers; that is, for each table entry for
&, compate

x = x4rd cosleldl]

Yo = ptr g sinleld)]
Step2.2b.  Increment the accumulator array

Al y) = Alx, y) + 1

Step 3. Possible locations for the shape are given by maxima in array A.

The results of using this transform to detect a shape are shown in Fig. 4.9,
Figure 4.9a shows an image of shapes. The R-table has been made for the middle
shape. Figure 4.9b shows the Hough transform for the shape, that is, A (x, ¥}
displayed as an image. Figure 4.9c shows the shape given by the maxima of
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icl

Fig. 4.2 Applying the Generalized Hough techniéque. (a) Synibetic image. (b} Hough
Transform A Lx, 3.) for middle shape. (o} Detected shape. () 5ame shape in an serial
\Fnage setlng

Alx., ) overlaid on top of the image. Finally, Fig. 4.9d shows the Hough
transform used to detect a pond of the same shape in an aerial image.
What about the parameters of scale and rotation, 5 and &7 These are readily

accommodaied by expanding the accumulator array and doing more work in the in-
crementation step, Thusin step 1 the accumulator array is changed (o

{-I-:rm.-l. :-’-r maxs ¥rmin '..]'Ii'rl'l.ll' 'T—.un : an.n.- Hm.n :'“rl:.l'i]

and step 2.2a is changed 1o
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for each table entry for ¢ do
foreach § and @
x, = x+rldlScos [axld) + @]
¥ = p+rl@g)Ssin lalg) + 8]
Finally, step 2.2b is now
Alg, ¥, 5 0) = Az, y, 5 0) + 1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a st of nodes [n;| and arcs batween
nodes =< m;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or coses associated with them. The search for the boundary of an object
i5 cast as a search for the lowest-cost path between iwo nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s (x) and direction image ¢ (x). Now interpret the elements
of the direction image o (x) as nodes in a graph, each with a weighting factor s (x).
MNodes x,. x; have arcs between them if the contour directions ¢ (x,), ¢(x,) are ap-
propriaiely aligned with the arc directed in the same sense as the contour direction,
Figure 4,10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x, 10 x;, X, must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢(x,) and, furthermore, gix,)

}
i

vl I T8 et T
I

"

.
.
#
N
AN
'
B
.
l

| o

N

Fig. 4.10 [nterpreting a gradien image as & graph (see text).
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> T, gix;) > T, where Tis a chosen constant, and || [#{x,} — ¢ (x,}] mod 2=]| <
w2, (Any or all of these restrictions may be modified to suit the requirements of a

particular problem.)

To gencrate a path in a graph from x4 o Xz one can apply the well-known
technigue of heuristic search [Nilsson 1971, 1980]. The specific use of heuristic
search to follow edges in images was first proposed by [Martelli 1972]. Suppose:

1. That the path should follow contours that are directed from x, to xg

2. That we have a method for generating the successor nodes of 2 given node
{such as the heuristic described above)

3. That we have an evaluation function £(x,) which is an estimate of the optimal
cost path from x; 1o x constrained to go through x;

Nilsson expresses f(x,) as the sum of two components: g(x,), the estimated cost
of journeying from the start mode x; to x;, and # {x,), the estimated cost of the path
from x; (o xg, the goal mode.

With the foregoing preliminaries, the heuristic search algorithm (called the A
algorithm by Nilsson) can be stated as:

Algorithm 4.4: Heuristic Search (the A Algorithm)

1. “Expand™ the start node (put the successors on a list called OPEN with
pointers back to the start node).

2. Remove the node x; of minimum §rom OPEN. If x; = x4, (hen stop. Trace
back through pointers to find optimal path. ITOPEN iz empty, Fail.

3. Else expand node x,, putling successors on OPEN with pointers back to x,. Go
o step 2.

The component & (x;) plays an important role in the performance of the algorithm:
if & (x;) = 0 for all i, the algorithm is a mimirnm-cost search as opposed 10 a heuristic
search, If hix;) > k*(x,) (the actual optimal cost), the algorithm may run faster,
but may miss the minimum-cost path. If f{x,) < k*(x,), the search will always
produce & minimum-cost path, provided that & also satisfies the following con-
sistency condition:

If for any two nodes X, and X, & (%, :J-] is the minimum cost of getting from
X, to X; (if possible), then
kix, x) = h*(x,) = h*(x;}

With our edge elemenis, there is no guarantee that a path can be found since
there may be insurmountable gaps between x; and xg. Il finding the edge is cru-
cial, steps should be taken (o interpolate edge elemenits prier (o the search, or gaps
may be crossed by using the edge element definition of [Martelli 1972]. He defines
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edges on the image grid structure so that an edge can have a direction even though
there is no local gray-level change. This definition is depicted in Fig. 4.11a,

4.4.1 Good Evaluation Functions

A good evaluation function has componenis specific to the particular task as well as
components that are relatively task-independent. The latter componenis are dis-
cussed here,

1. Edge strength. Il edge strength is a factor, the cost of adding a particular edge
element at x can be included as

M = 5(x) where M = max s(x)

2. Curvanere. Il low-curvature boundaries are desirable, curvature can be meas-
ured as some monotonically increazsing funetion of

diff e (x,) — $ix,)]
whizre diff measures the angle between the edge elements at X, and x;.
3. Proximity fo an approximarion, If an approximate boundary is known, boun-
darics near this approximation can be favored by adding:
d = dist (x,,B)
to the cost measure. The dist operator measures the minimum distance of the
new point x; to the approximate boundary B,

4.  Extimates of the distance fo the goal, IT the curve is reasonably limear, poinis near
the goal may be favored by estimating h as d(x;, x,,,,), where dis a distance
Mmeasure,

Specific implementations of these measures appear in [Ashkar and Modestino
1978; Laster et al. 1978].

4.4.2 Finding All the Boundaries

What if the ohjective is to find 2 boundaries in the image using heuristic search?
In one system [Ramer 1975] Hueckel's operstor (Chapter 3) is used to obtain

s .

tal Lo el

Fig. 4.11 Successor convenlsns in hewristic search (see taxi).
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strokes, another name for the magnitude and direction of the local gray-level
changes. Then these strokes are combined by heuristic search 1o form sequences
of cdge clements called sireaks Streaks are an intermeadiate organization which are
used to assure g slightly broader coherence than is provided by the individual
Hueckel edges. A bidirectional search is used with four eight-neighbors defined in
front of the edge and four eight-neighbors behind the edge, as shown in Fig. 4.11b
The search algorithm is as follows:

. Scanthesiroke (edge) array for the most prominent edge.

2. Search in front of the edge until no More successors exist (.2, a gap is encoun-
tered).

3. Search behind the edge until no more predecessors exist.
4. If the bidirectional search generates a path of 3 or more strokes, the path is a
streak. Store it in a sireak hist and go 1o step 1.

Strokes that are parl of a streak cannot be reused; they are marked when used
and subsequently skipped.

There are other hewristic procedures for pruning the streaks to retain only
prime streaks. These are shown in Fig. 4.12. They are essentially similar to the re-
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Fl:: d 12  Operstions in the creation of prime sireaks.
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Fig. 4.13 Famer’s resulis

laxation operations described in Section 3.3.5. The resultant sireaks must sull be
analyred 1o determine the objects they represent, Nevertheless, this method
represents a cogent allempl 10 organize bottom-up edge following in an image. Fig.
4.13 shows an example of Ramer's technique
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4.4.3 Alternatives to the A Algorithm

The primary disadvantage with the heuristic search method is that the algorithm
must keep track of a set of current best paths (nodes), and this set may become
very large. These nodes represent tip nedes for the portion of the tree of possible
paths that has been already examined. Also, since all the costs are nonnegative, a
good path may eventually look expensive compared o tip nodes near the stan
node. Thus, paths from these newer nodes will be extended by the algorithm even
though, from a practical standpoint, they are unlikely. Because of these disadvan-
iages, other less rigorous search procedures have proven 10 be more practical, five
of which are described below.

Fruping the Tree af Alternatives

Al various points in the algorithm the tip nodes on the OPEM list can be
pruned in some way. For example, paths that are short or have a high cost per unit
length can be discriminated against. This pruning operation ¢an be carried out
whenever the number of alternative tp nodes excesds some bound.

Modified Depth-First Search

Depth-first search is a meaningful concept if the search space is structured as
a tree, Depth-first search means always evaluating the most recent expanded son,
This type of search is performed if the OPEN list is structured as a stack in the A
algorithm and the top node is always evaluated next. Modifications to this method
use an evaluation funciion F 1o rate the successor nodes and expand the best of
these. Practical examplies can be seen in [Ballard and Sklansky 1976; Wechsler and
Sklansky 1977; Persoon 1976].

Least Maximum Cost

In this elegant idea [Lester 1978], only the maximum-cost arc of each path is
kept as an estimate of g This iz like finding a mountain pass at minimum altitude.
The advaniage is that g does not build up continuously with depth in the search
tree, 50 that good paths may be followed for a long time. This technigue has been
applied to finding the boundaries of blood cells in optical microscope images. Some
results are shown in Fig. 4.14.

Branch and Bound

The crux of this methed is to have some upper bound on the cost of the path
[Chien and Fu 1974]. This may be known beforehand or may be computed by actu-
ally gencrating a path between the desired end points. Also, the evaluation func-
tion must be monoionically increasing with the length of the path. With these con-
ditions we start gencrating paths, excluding partial paths when they exceed the
currcnt bound,

Muodified Hewrisiic Search

sometimes an evaluation funcltion that assigns negative costs leads to good
resulis. Thus good paths keep getting better with respect to the evaluation func-
tion, avoiding the problem of having to look at all paths near the starting point.
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Fig. 4.14 Using lesst maximum cost in beusistic search to find cell boundareess in micro-
SOOPE MAages. la} A SLERE IN [he SEanch proocss (Bl The completed bowndary

However, the price paid is the sacrifice of the mathematical guarantes of finding
the least-cost path. This could be reflected in unsatsfactory boundaries. This
method has been used in cineangiograms with satisfactory resulits |Ashkar and
Modesting 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

Sec 4.5

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962 is a technigue for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max frilxy, xa, x5, x40 (4.8}
If nothing is known about &, the only technigue that guaraniees a global maximum

15 exhaustive enumeration of all combinations of discrete values of xy, ..., x4
Suppose that

i) = Iy Ly, xp) + b Ly, Xyl + My [.:l']. Xy 14.9)

x; only depends on x5 in &y, Maximize over x| In ) and tabulate the best value of
hy Lxy x3 foreach xy:

Jilxg) = max by (x;, x3) (4.101
w

Since the values of &5 and ky do not depend on x, they need not be considered at
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this point, Continué in this manner and eliminate x; by computing £ (xy) as

S bey) = maxlfy Geg) + hy Cxg, x30] (4.11)
and
I3 {1‘1] = X Lf: IIJ-: 4+ hylxy, 1'1]] {4.12)
Xy
so that finally
max b = max Jy (x;) (4.13)
Generalizing the example to N variables, where £ () = 0,
.-ru—] ::IIJ - I:_.ml E-irl-t Lt.:l—l:l F ﬁj—l g In}] ':4.1"}

max b x, ..., xy) = max fiy—; (ey)
LY iy

If each x, ook on 20 discrete values, then 1o compute fy (xy, ;) one must evaluate
the maximand for 20 diferent combinations of xy and xy., 0 that the resuliant
computational effort involves (& — 1)20% + 20 such evaluations. This is a striking
improvement over exhaustive evaluation, which would involve 20" evaluations of
!

Consider the artificial example summarized in Table 4.2. In this example,
gach x can lake on one of three discrete values. The &, are completely described by
their respective tables. For example, the value of 4,{0, 1} = 5, The solution steps
are summarized in Table 4.3, In step 1, Tor each x; the value of x; that maximizes
hylxy, x;) is computed. This is the largest entry in each of the columns of A Store
the function value as £ (x;) and the optimizing value of x, also as a function of x;.
In step 2, add f,(x3) to halxy, x;). This is dene by adding 7, to each row of h;,
thus compuling the quantity inside the braces of (4.11). Now 1o complete step 2,
for each x3, compute the x; that maximizes ks + ) by selecting the largest entry
in each row of the appropriate table. The rest of the steps are straightforward once
these are understood. The solution is found by tracing back through the tables, For
example, for x4 = 2 we see that the best x; 15 =1, and therefore the best x; 15 3 and
xy is 1. This step is denoted by arrows,
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Table 4.3
METHOD OF SOLUTION USING DYSAMIC PROGRAMMING
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4.5.2 Dynamic Programming for Images
To formulate the boundary-following procedure as dynamic programming, one

must define an evaluation function that embodies a notion of the ““best boundary™
[Momtanari 1971; Ballard 1976]. Suppose that a local edge detection operator is ap-
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plied 1o a gray-level picture to produce cdge magnitude and direction information.
Then one possible criterion for a “good boundary" is a weighted sum of high cu-
mulative edge strength and low cumulative curvature; that is, for an p-segment
CUrve,

~1
kix, ..., X, - isl’,:t}+n3:grl:1k, Xp 1) i4.16)
k= k=1
where the implicit constraint is that consecutive x;"s must be grid neighbors;
bx, — xS v2 (4.17)
E'{Ij.. I_H|} = diff lﬁ'{lﬁ}. '@{IH-]:]] {4]”

where & is nagative. The function g we lake to be edge strength, i.6., glx) = s(x),
Motice that this evaluation function is in the form of (4.9) and can be optimized in

sluges:

Jolxy ) =0 (4.19)
Fi1{xy) = max [5(x;} + egx;, x3) + folx; )] (4.200)
I*‘l*-q.;} — I‘IHIIJ [I*} + ﬂ'q[:*, :*..|} + -ﬂ—l{i.l:] {"1-21}

These equations can be put into the following steps:

Algorithm 4.5:  Dynamic Programming for Edge Finding

1. Setk=1.

2. Consider only x such that s (x) > T. For each of these x, define low-curvature
pixels *in front of ' the contour direction.

3. Each of these pixels may have a curve emanating from it. For k =1, the curve
i5 one pixel in length. Join the curve to x that optimizes the left-hand side of
the recursion equalion.

4. IFk=N, pick the best fy_; and stop. Dtherwise, set & = k + 1 and go to sicp
1.

This algorithm can be generalized to the case of picking a cwrve emanating from x
(that we have already generated): Find the end of that curve, and join the best of
three curves emanating from the end of that curve. Figure 4.15 shows this process.
The equations for the general case are
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Fig. 4.18 DP optimimtion for boundary iracing,

Solx) =0
Jilxy ) = maxls(x,) + agilx,, 1lx.,))
T

Y

+ fi-1 (x, )] (4.22)

where the curve length n is related to o« by a building sequence n (/) such that m (1)
= 1, n(L) = N, and n{f) = n{f=1) is a member of [n(k)|k =1, ..., = 1].
Also, 1(x,) is a function that extracts the tail pixel of the curve headed by x,.
Further details may be found in [Ballard 1976).

Resulis from the area of wmor detection in radiographs give a sense of this
method's performance. Here it is known that the boundary inscribes an approxi-
mately circular tumor, 5o that circular cues can be used (o assist the search. In Fig.
4.16, {a) shows the image containing the tumor, {b) shows the cues, and (c) shows
the boundary found by dynamic programming overlaid on the image.

Another application of dynamic programming may be found in the pseudo-
parallel road finder of Barrow [Barrow 1976).

4.5.1 Lower Resolution Evaluation Functions

In the dynamic programming formulation just developed, the components gix,}
and g (x,, X3} in the evaluation function are very localized; the variables x for
successive sand g are in fact constrained to be grid neighbors. This need not be the
case: The x can be very distant from each other without altering the basic tech-
nigue. Furthermore, the functions g and g need not be local gradient and absolute
curvature, respectively, but can be any functions defined on permissible x. This
general formulation of the problem for images was first described by [Fischler and
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Lap

Fig. 4.I6 Resulis ol DPF in Bopndary
racing. (a) Image contzining tumor. 1)
Conlour cses. {c) Resuliznd boundarny

Elschlager 1973). The Fischler and Elschlager formulation models an ohject as a
sel of parts and relations between parts, represented as a graph. Template func-
tions, denoted by g (x), measure how well a part of the model maiches a part of the
image al the point x. {These local functions may be defined in any manner whatso-
ever.) “Relational functions,™ denoted by g, (x, ¥), measure how well the posi-
tion of the match of the &k th part at (x) agrees with the position of the match of the
Jth part at (y),

The basic notions are shown by a technique simplified from [Chien and Fu
1974] to find the boundaries of lungs in chest films. The lung boundaries are
modeled with a polvgonal approximation defined by the five key poinis. These
points are the wp of the lung, the two clavicle-lung junctions, and the two lower
corners. To locale these points, local functions gix, ) are defined which should be
maximized when the corresponding point x, is correctly determined. Similarly,
gix;, ::J,:I i5 a function relating points x; and x,. In thelr case, Chien and Fu used
the following Tunctions;
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Tix)

template centered at x computed as
an aggregate of a 21 of chest radiographs

Tix—x,)rlx)
20 =X ‘wi‘ﬁrf’

and
#ix;, x,) = expected angular orientation of x, from x,
Fi=F

ALK

i

gilx, x;) = |8 (x;, x,) —arctan

With this formulation no further modifications are necessary and the solution may
be abtained by solving Eqgs. (4.19) through (4.21), as before. For purposes of com-
parison, this method was formalized using a lower-resolution objective function.
Figure 4.17 shows Chien and Fu's results using this method with five template
funciions,

4.5.4 Theoretical Questions about Dynamic Programming

The Tnteracrion Graph

This graph describes the interdependence of variables in the objective func-
tion. Im the examples the interaction graph was simple: Each variable depended on
only two others, resulting in the graph of Fig. 4.18a. A more complicated case is
the one in 4.18b, which describes an objective function of the following form:

BOY = by Gy, x2d + by (xg, x50 x0) + By lay xg, x50 xg)
For these cases the dynamic programming technique still applies, but the computa-
tional effort increases exponentially with the number of interdependencies. For
example, 1o eliminate x, in k3, all possible combinations of x; and x,; mus1 be con-
sidered. To eliminate x; in Aj, all possible combinations of x4, xs, and xg, and s0
forth.
Dynamic Programming versus Hewristic Search

It has been shown [Martelli 1976] that for finding a path in a graph between
twio points, which is an abstraction of the work we are doing here, heuristic search
methods can be more efficient than dynamic programming methods. However, the
podnt o remember aboutl dynamic programming 18 that it efficiently builds paths
from multiple starting poinis, I this is reqguired by a panicular task, then dynamic
programming would be the methed of choice, unless a very powerful hewristic
were available,

4.6 CONTOUR FOLLOWIMNG
If nothing 15 known about the boundary shape, but regions have been found in the
image, the boundary is recovered by one of the simplest edge-following opera-

tions: *“*blob finding™ in images. The ideas are easiest to present for binary images:

|
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Given a binary image, the goal is find the boundaries of all distinet regions in the
image.

Thizs can be done simply by a procedure that functions like Papert’s turtle
[Papert 1973; Duda and Hart 1973]:

1. Scan the image until a region pixel is encountered.
2. Ifitis a region pixel, turn left and step; else, turn right and step.
3. Termimate upon return io the starting pixel,

Figure 4.1% shows the path traced out by the procedure. This procedure requires
the region to be four-connecied for a consistent boundary. Parts of an eighi-
connecied region can be missed, Also, some bookkeeping is necessary 1o generale
an exaci sequence of boundary pixels without duplications.

A slightly more elaborate algorithm due 1o [Rosenfeld 1968] generates the
boundary pixels exactly. It works by first finding & four-connected background
pixel from a known boundary pixel. The next boundary pixel iz the first pixel en-
countered when the eight neighbors are examined in a counter clockwise order
from the background pixel. Many details have o be introduced into algorithms
that follow coniours of irregular eighi-connected figures, A good exposition of
these is given in [Rosenfeld and Kak 1976],

4.6.1 Extension to Gray-Level Images

The main idea behind contour following is 1o start with a point that is believed 10
be on the boundary and 1o keep extending the boundary by adding points in the
contour directions, The details of these operations vary from task 1o 1agk. The gen-
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Fig. 4.18 Imieraciion graphs for DP {see 1exi),

eralization of the contour follower to gray-level images uses local gradients with a
magnitude 5(x) and direction ¢ {x) associated with each peint x. ¢ points in the
direction of maximum change. If x is on the boundary of an image object, neigh-
boring points on the boundary should be in the general direction of the contour
directions, ¢{x) = =/2, as shown by Fig. 4.20. A represeniative procedure is
adapted from [Martelli 1976(:

. Assume that an edge has been detected up 1o a point x;. Move (o the point x;
admcent to x; in the direction perpendicular to the gradient of x,. Apply the
gradient operator 10 x,; if its magnitude is greater than (some) threshold, this
poini is added (o the edge.

2. Otherwise, compute the average gray level of the 3 = 3 array centerad on x,
compare it with a suitably chosen threshold, and determine whether x; is in-
side or culside the objecl.

3. Make another attempl with a point x;, adjacent to x, in the direction perpendic-
ular to the gradient at x; plus or minus (7/4), according to the outcome of the
previous fest,

5
o

ey

i
1
: - ek : ﬁ&

Fig. 4.19 Finding the bousdary i 4
bimary image.
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4.6.2 Generalization to Higher-Dimensional Image Data

The generalization of contour following to higher-dimensional spaces is straight-
forward [Liu 1977; Herman and Liu 1978). The search involved is, in fact, slightly
more complex than contour following and is more like the graph searching
meethods described in Section 4.4, Higher-dimensional image spaces arise when the
image has more than two spatial dimensions, is time-varying, or both. In these im-
ages the notion of a gradieni is the same {a vector describing the maximum gray-
level change and its corresponding direction), but the intuitive interpretation of
the corresponding edge element may be difficult. In three dimensions, edge ele-
ments are primitive surface elements, separating volumes of differing gray level.
The ohjective of contour following is to link together neighboring surface elements
with high gradient modulug values and similar orientations into larger boundaries.
In four dimensions, “‘edge elements’ are primitive volumes; contour following
links neighboring volumes with similar gradients,

The contour following approach works well when there is little noise present
and no “‘spurious™ boundaries. Unforiunately, if either of these conditions is
present, the contour-following algorithms are generally unsatisfactory, they are
easily thwarted by gaps in the data produced by noise, and readily follow spurious
boundaries. The methods described earlier in this chapter attempi 1o overcome
these difficulties through more elaborate models of the boundary structure.

EXERCISES

4.1 Specify a heuristic search algorithm that will work with “crack™ edges such as those in
Fig- 3.11.

4.2 Describe a modification of Algerithm 4.2 to detect parabolas in gray-bevel images.

4.3 Suppose that a relation & (x;, x,) is added to the model described by Fig. 4.13a so
ihat now the interaction graph is cyelical. Show formally how this changes the optimi-
zation steps described by Egs. (4.11) through (4.13),

4.4 Show formally that the Hough technique withoot gradienl direction information 5
equivalent 1o template matching (Chaptler 3).

Ch 4  Boundiry Detectiaon



4.5 Extend the Hough technique for ellipses described by Egs, (4.7a) through (4.7d) to
cllipses oriented at an arbitrary angbe & 10 the xaxis.

4.6 Show how (o use the generalized Hough technigue 1o detec! hexagons.
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Region
Growing | 5

5.1 REGIONS

Chapter 4 concentrated on the linear features (discontinuities of image gray level)
that ofien correspond to object boundaries, interesting serface detail, and so0 omn.
The *““dual™ problem to finding edges around regions of differing gray level is 1o
find the regions themselves, The goal of region growing i (0 use image characteris-
tics to map individual pixels in an inpul image 1o se1s of pixels called regions. An
image region might correspond to a world object or o meaningful part of one.

Of course, very simple procedures will derive a boundary from a connected
region of pixels, and conversely can fill a boundary 10 oblain a region. There are
several reasons why both region growing and line finding survive as basic segmen-
lation techniques despite their redundani-seeming nature. Although perfect re-
gions and boundaries are interconvertible, the processing (o find them initially
differs in character and applicability; besides, perfect edges or regions are not al-
ways required for an application. Region-finding and line-finding technigues can
cooperate 1o produce a more reliable segmentation.

The geometric characteristics of regions depend on the domain. Usually, they
are considered 1o be connected Iwo-dimensional areas. Whether regions can be
disconnected, non-simply connected (have holes), should have smooth boun-
daries, and so forth depends on the region-growing technique and the goals of the
work. Ultimately, it is often the segmentation goal to partition the entire image
into quasi-disgjoint regions, That is, regions have no two-dimensional overlaps, and
no pixel belongs to the interior of more than one region. However, there is no sin-
gle definition of region—they may be allowed to overlap, the whole image may not
be partitioned, and =0 forth.

Dwr discussion of region growers will begin with the most simple kinds and
progress o the moere complex, The most primitive region growers use only aggre-
gates of properties of local groups of pixels to determine regions. More sophisti-
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cated techniques ““grow™ regions by merging more primitive regions. To do thiz in
& struciured way requires sophisticated representations of the regions and boun-
daries. Also, the merging decisions can be complex, and can depend on descriptions
of the boundary struciure separating regions in addition to the region semantics, A
good survey of early techniques is [Zucker 1976).

The techniques we consider are:

1. Lovcal technigues. Pixels are placed in a region on the basis of their properties ar
the properties of their close neighbors.

2. Global rechnigues. Pixels are grouped inlo regions on the basis of the properties
of large nembers of pixels distributed throughout the image.

3. Splitring and mevging rechnigues. The foregoing techniques are related 1o indivi-
dual pixels or sets of pixels. State space techniques merge or split regions using
graph structures to represent the regions and boundaries. Both lecal and global
merging and splitting criteria can be used,

The effectiveness of region growing algorithms depends heavily on the appli-
cation area and input image. If the image is sufficiently simple, say a dark blob on a
light background, simple local techniques can be surprisingly effective. However,
on very difficult scenes, such as outdoor scenes, even the most sophisticated tech-
niques still may not produce a satisfactory segmentation. In this eveat, region
growing is sometimes used conservatively to preprocess the image for more
knowledgeable processes [Hanson and Riseman [978].

In discussing the specific algorithms, the following definitions will be helpful.
Regions &, are considered to be seis of points with the following properties:

x; inaregion R is connected o x, iff there

isa.';aquunr:a{!...".Ijistli:hl-halh and x, . (5.1}
are connected and all ithe points are in R.

R is a connected region if the set of poinis x in K has the (5.2)

property that every pair of points is connected.

I, the entire image = I:,I Ry (5.3)
k=1

R R =4+, i (5.4)

A set of regions satisfying (5.2) through (5.4) is known as a partition. In seg-
mentation algorithms, each region often is a unique, homogeneous arca. That is,
for some Boolean function H (R ) that measures region homogeneity,

H{R.) = true forall & (5.5)
HIR,|J R,) = false for = (5.6)

Note that R, does not have to be connected. A weaker but still useful criterion is
that neighboring regions nol be homogeneous.

Ch §  Repons Crowing



| 52 ALOCAL TECHNIQUE: BLOB COLORING
The counterpart o the edge racker for binary images is the blob-coloring algo-
rithm. Given a binary image containing four-connecied blobs of 1°s on a back-
ground of 07s, the objective is 1o “color each blob™; that is, assign each blob a

different label. To do this, scan the image from lefl 1o right and top 1o bottom with
a special L-shaped template shown in Fig. 5.1, The coloring algorithm is as follows,

Algorithm 5.1:  Blob Coloring
Let the initial color, & = 1. Scan the image from left to right and top to botiom.

If f{xz) = 0 then conlinue
else

begin

1 if ([ (xy) = 1 and flx; )} = 0)
then color {x.) = color {x}

if (f(x;) = 1and fix;) = 0}
then color {x-) := color (x;)

if (f{x; ) =1and flx;) =1)
then begin
calor (X} i = color (x; }
color {x; ) is equivalent to color (x,)
end
comment: (Wi Colors ane equivalent.

if (£ (x,) = Dand fixy) = 0)
then color (x; ) i= k k= k +1

comment: new color

end

Afer one complete scan of the image the color equivalences can be used (o assure
that each object has only one color. This binary image algorithm can be used as a
simple region-grower for gray-level images with the following modifications. Ifin a

= L Fig. 5.1 L-shaped womplate for bob
cilaring.
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gray-level image f(x.-) is approximately equal to F(x ), assign X~ 10 the same re-
gion (blob) as xg . This is equivalent to the condition f(xe) = fi{x;) = 1 in Al-
gorithm 5.1. The modifications 1o the steps in the algorithm are straightforward,

53 GLOBAL TECHMIQUES: REGION GROWING VIA THRESHOLDING

152

This approach assumes an object-background image and picks a threshold that
divides the image pixels into gither object or background:

x i8 part of the Objectiff Fix) > T
Oherwise it is part of the Background

The best way o pick the threshold Tis to search the histogram of gray levels,
assuming il 15 bimodal, and find the minimum separating the two peaks, as in Fig.
5.2, Finding the right valley between the peaks of a histogram can be difficult when
the histogram is nol a smooth function. Smoothing the histogram can help but
does not guaranies that the correct minimum can be found. An elegant method for
treating bimodal images assumes that the histogram is the sum of two composile
normal functions and determines the valley location from the normal parameters
[Chow and Kaneko 1972].

The single-threshold method is useful in simple siteations, bt primitive. For
example, the region pixels may not be connected, and further processing such as
that described in Chapter 2 may be necessary 1o smooth region boundaries and re-
move noise. A common problem with this techniguee occurs when the image has a
background of varying gray level, or when collections we would like 1o call regions
vary smoothly in gray level by more than the threshold, Two modifications of the
threshold approach to amelicrate the difficulty are: (1) high-pass filter the image to
deemphasize the low-Trequency background variation and then try the original
technique; and (2) use a spatially varying threshold method such as that of [Chow
and Kaneko 1972],

The Chow-Kaneko technigue divides the image up into rectangular subim-
ages and computes a threshold for each subimage. A subimage can fail 1o have a
threshold if its gray-level histogram is not bimodal, Such subimages receive inter-

Grwy hewsl
Fig- 5.8 Threshold dererminamion
Trshald from gray-level hissogram,
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polated thresholds from neighboring subimages that are bimodal, and finally the
entire picture 15 thresholded by wsing the separate thresholds for cach subimoge.

5.3.1 Thresholding in Multidimensional Space

An interesting variation 1o the basic thresholding paradigm uses color images; the
basic digital picture funcltion is vector-valued with red, blue, and green com-
ponents, This veclor is augmented with possibly nonlinear combinations of these
values so that the augmented picture vector has a number of components. The
idea is to re-represent the color solid redundantly and hope to find color parames
ters for which thresholding does the desired segmentation. One implementation of
this idea used the red, green, and blug color componenis; the intensity, saluration,
and hue components; and the N.T.S.C. ¥, I, @ components (Chapter 2) [Ohlander
etal. 19791

The idea of thresholding the components of a picture vector is used in a prim-
itive form for multispectral LANDSAT imagery [Robertson et al. 1973]. The novel
exlension in this algorithm is the recursive application of this technigue 1o nonrec-
tangular subregions.

The region partitioning i then as follows:

Algorithm 5.2:  Region Growing via Recursive Splitting

1. Consider the entire image a3 a region and compuie histograms for each of the
piciure vecior components.

2. Apply a peak-finding test to each histogram. I7 at least one component passes
the test, pick the component with the most significant peak and delermine two
thresholds, one either side of the peak (Fig. 5.3). Use these thresholds o
divide the region into subregions.

3. Each subregion may have a ““noisy™ boundary, so the binary representation of
the image achieved by thresholding is smoothed so that only a single con-
nected subregion remains. For binary smoothing see ch. & and [Rosenfeld and
Kak 1976].

4, Repeat steps 1 through 3 for each subregion until no new subregions are
created (no histograms have significant peaks).

A refinement of step 2 of this scheme is to create histograms in higher-
dimensional space [Hanson and Riseman 1978], Multiple regions are often in the
same histogram peak when a single measurement is used. The advaniage of the
multimeasurement histograms is that these different regions are ofien separated
into individual peaks, and hence the segmentation is improved, Figure 5.4 shows
some results using a three-dimensional RGH color space,

The figure shows the clear separation of peaks in the three-dimensional histo-
gram that is not evident in either of the one-dimensional histograms. How many
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dimensions should be used? Obviously, there is a trade-off here: As the dimen-
sionality becomes larger, the discrimination improves, but the histograms are
more expensive to compuie and noise effects may be more pronounced.

5.3.2 Hierarchical Refinement

This technique uses a pyramidal image representation (Section 3.7) [Harlow and
Eisenbeis 1973]. Region growing is applied to a coarse resolution image, When the
algorithm has terminated at one resolution level, the pixels near the boundaries of
regions are disassociated with their regions, The region-growing process is then re-
peated for just these pixels at a higher-resolution kevel, Figure 5.5 shows this struc-
fure.

54 SPLITTING ANMD MERGING

Sec. 5.4

Grivien a set of regions B, &= 1....,m, a low-level segmentation might require the
basic properties described in Section 5.1 1o hold. The important propertics from
the standpoint of segmentation are Eqs. (5.5) and (5.6).

If Eq. {5.5) is not satisfied for some &, it means that that region is inhomo-
geneous and should be split into subregions. If Eq. (5.6) is not satisfied for some /
and #, then regions fand fare collectively homogeneous and should be merged into
a simghe region,

In our previows discussions we used

true if all neighboring pairs of points
HIR) = in R aresuch that Fi{x) = Fiy) = T (5.7}
falze oltherwise
and
true if the points in & passa
HIR) = bimodality or peak 1est (5.8)
Talsa pitherwise
Splintineg amd Merging 155



Fig. 5.4 Multi-dimensional

kistograma in segmentabon, (a) Image
b RUIB histogram shoeang sucesssive
plamses through a 16 % 16 = b Lodar
space. (c) Segments. [See color insens.) {h
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Fig. 5.5 Hierarchical region refinement.

A way of working toward ithe satisfaction of these homogeneily criteria is the
split-and-merge algorithm [Horowitz and Paviidis 1974]). To use the algorithm it is
necessary to organize the image pixels into a pyramidal grid structure of regions. In
this grid structure, regions are organized into groups of four. Any region can be
split into four subregions {excepl a region consisting of only one pixel), and the ap-
propriate groups of four can be merged into a single larger region. This structure is
incorporated into the following region-growing algorithm.

Algorithm 5.3: Region Growing via Split and Merge [Horowitz and Pavlidis
1974]

1. Pick any grid structure, and homogeneity property A If for any region & in
that structure, A (R ) = false, split that region into four subregions. If for any
four appropriate regions K. ..., Ria, HiR: U Rz U Ria U Riq) = true,
merge them into a single region. When no regions can be further split or
merged, slop.

1. Ifthere are any neighboring regions R, and R, (perhaps of different sizes) such
that H (R ) R;) = true, merge these regions.

5.4.1 Stale-Space Approach to Region Growing

The “classical’” state-space approach of artificial intelligence [Nilsson 1971, 1980]
was first applied to region growing in [Brice and Fennema 1970] and significantly
extended in [Feldman and Yakimovsky 1974]. This approach regards the initial
(woedimensional image as a discrete state, where every sample poinl is a sepazale
region. Changes of state occur when a boundary between regions is either removed
or inserted. The problem then becomes one of searching allowable changes in state
to find the best partition.

Sec. 5.4 Splilting and Merging 157
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An important part of the state-space approach is the use of data structures to
allow regions and boundaries 10 be manipulated as wnits, This moves away from
earlier technigques, which labeled each individual pixel according 1o its region. The
high-level data structures do away with this expensive practice by representing re-
gions with their boundaries and then keeping track of what happens to these boun-
daries during split-and merge-operations,

5.4.2 Low-level Boundary Data Structures

A uselul representation for boundaries allows the splitting and merging of regions
to proceed in a simple manner [Brice and Fennema 1970). This representation in-
troduces the notien of a supergrid S to the image grid &. These grids are shown in
Fig. 3.6, where - and + correspond to supergrid and O 1o the subgrid. The
rﬁ:ilrﬁeqmiun is assumed 10 be four-connected (i.e., x| is a neighbor of x2 if||x1 —
x2]|l= 1),

With this notation boundaries of regions are directed crack edges (see Sec.
3.1} at the points marked +. That is, if point x, is 2 neighbor of x; and x; isin a
different region than x,, insert two edges for the boundaries of the regions contain-
ing x; and x, at the point + separating them, such that each edge traverses its as-
sociated region in a counterclockwise sense. This makes merge operations very
simple: To merge regions R, and R, remove edges of the opposite sense from the
boundary as shown in Fig. 5.7a. Similarly, to split a region along a line, insert edges
of the opposite sansa in nearby points, as shown in Fig. 5.7b.

The method of [Brice and Fennema 1970] uses three criteria for merging re-
giong, reflecting a transition from local measurements 10 global measuremenis,
These criteria use measures of boundary strength 5, and w, defined as

s = rix) = rix)] (5.9)

lu ifs < T
II.'*'-

0 ptherwise (5.10)

Fir. 5.7 Reglon operations on the grid streciure of Fig. 5.6
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where x; and x; are assumed to be on either side of a crack edge (Chapier 3). The
three criteria are applied sequentially in the following algorithm:

Algorithm 5.4: Region Growing via Boundary Melting (T, & = 1, 2, 3 are
preset thresholds)

1. For all neighboring pairs of points, remove the boundary between x; and x, il
i#= jand wy = 1. When no more boundaries can be removed, go to step 2.

2. Remove the boundary between R, and R, if
W
——2T: (5.11)
min [, gl »Ta

where Wis the sum of the wy, on the common boundary between R, and £,
that have perimeters p, and p, respectively, When no more boundaries can be
removed, golo step 3.

3. Remove the boundary between R, and K, if
Wz (5.12)

5.4.3 Graph-Oriented Region Structures

The Brice-Fennema data siructure stores boundaries explicitly but does not pro-
vide for explicit representation of regions. This is a drawback when regions must
be referred fo as unils. An adiunct scheme of region representation can be
developed using graph theory. This scheme represents both regions and their
boundaries explicitly, and this fecilitates the storing and indexing of their semantic
properiies,

The scheme is based on a special graph called the region ediecency graph, and
its ““dual graph.” In the region adjacency graph, nodes are regions and arcs exist
belween neighboring regions. This scheme is useful as a way of keeping track of re-
gions, even when they are inscribed on arbitrary nonplanar surfaces (Chapter 9),
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Consider the regions of an image shown in Fig. 5.8a, The region admacency
graph has a node in each region and an arc crossing each separate boundary seg-
ment, To allow a uniform treatment of these structures, define an artificial region
that surrounds the image. This node is shown in Fig. 53.8b. For regions on a plane,
the region adjacency graph is planar (can lie in a plang with no arcs intersecting)
and its edges are undirected, The “dual™ of this graph is also of interest. To con-
stuct the dual of the adjacency graph, simply place nodes in each separate region
and connect them with arcs wherever the regions are separated by an arc in the ad-
jacency graph. Figure 5.8c shows that the dual of the region adjacency graph is like
the original region boundary map; in Fig. 5.8b each arc may be associated with a
specific boundary segment and each node with a junclion between thres or more
boundary segments. By maintaining both the region adjgcency graph and its dual,
one can merge regions using the following algerithm:

Algorithm 5.5;  Merging Using the Region-Adjacency Graph and [ts Dual

Task: Merge neighboring regions R, and &;.

Phase 1, Update the region-adjacency graph.

1. Place edges between R, and all neighboring regions of R, {excluding, of
course, &) that do not already have edges between themselves and 8.

1. Delete R, and all its associated edges.

Phase I, Take care of the dual,

1. Delete the edges in the dual corresponding to the borders between K, and &,
2. Foreachof the nodes associated with these edges:

(a) if the resultant degree of the node is less than or equal 1o 2, delete the
node and join the two dangling edges into a single edge.

(b} otherwise, update the labels of the edges that were associated with §
ta reflect the new region label i

Figure 5.9 shows these operations.

55 INCORPORATION OF SEMANTICS
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Up te this point in our treatment of region growers, domain-dependent “seman-
tics'* has not explicitly appeared, In other words, region-merging decisions were
based on raw image daia and rather weak heuristics of general applicability about
the likely shape of boundaries, As in carly processing, the uwse of domain-
dependent knowledge can affect region finding, Possible interpretations of regions
can affect the splitting and merging process. For example, in an outdoor scene pos-
sible region interpretations might be sky, grass, or car. This kind of knowledge is
quite separate from but related 1o measurable region properties such as intensity

Ch. 5  Region Crowing
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Fig. 5.8 (a) Amimage partiticn. (h)
The region adgacency graph (solid Enes),
(¢} The dual of the adjacency graph
(solidd lEnesl,

and hue, An example shows how semantic labels for regions can guide the merging
process. This approach was originally developed in [Feldman and Yakimovsky
1974]. it has found application in several complex vision systems [Barrow and
Tenenbaum 1977, Hanson and Riseman 1978].

Early steps in the Feldman=Yakimovsky region grower used essentially the
same sieps as Brice-Fennema. Once réegions attain significant size, semantic cri-

t

Fig. 5.9 Moerging aperaiions using the reghan
SErging fegions separaied by dark boundary Ene.

500, 55 fncorporation of Semantics

b

adpcency graph and iis dual. (a) Before
{b) Afier merging
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teria are used. The region growing consists of four steps, as summed wp in the fol-
lowing algorithm:

Algorithm 5.6 Semantic Region Growing

Nonsemantic Criteria
Ty and T; are preset thresholds

1.

Merge regions i, J as long as they have one weak separating edge until no two
regions pass this test.
Merge regions |, jwhere §(i j) < T; where

&y + ay

80, j) = m:h
where ¢ and ¢, are ¢constants,
(area,)" + (area,)"

perimeter, « perimeter,

aff =

until no two regions pass this test. (This is a similar criterion to Algorithm 5.4,
step 1.)

Semantic Criteria

3.

Let B, be the boundary between R, and R,. Evaluate each B, with a Bayesian
decision function that measures the (conditional) probability that B, separates
two regions R, and R, of the same interpretation. Merge R, and R, if this condi-
tional probability is less than some threshold. Bepeat step 3 wntil no regions
pass the threshold test.

Evaluaie the interpretation of each region 8, with a Bayesian decision function
that measures the (conditional) probability that an interpretation is the correct
one for that region. Assign the interpretation (o the region with the highest
confidence of correct interpretation. Update the conditional probabilities for
different interpretations of neighbors, Repeat the entire process until all re-
gions have interpretation assignmenis,

The semantic portion of algorithm 5.6 had the goal of maximizing an evalua-

tion function measuring the probability of a correct interpretation (labeled parti-
tion), given the measurements on the boundaries and regions of the partition, An
expression for the evaluation function is (for a given partition and interpretations X
and 1):

max I |PIB; isaboundary between X and ¥ | measurements on B, ]|
1 [

% Tl |PIR, isan X | measurements on R,]}
% 11 |PIR, isan ¥ | measurements on R,])

Ch. 5 Region Growing



where Pstands for probability and I1 is the product operator,

How are these terms 1o be computed? Ideally, each conditional probability
function should be known 10 a reasonable degree of accuracy; then the 1erms can
be abtained by lookup.

However, the straightforward computation and representation of the condi-
tional probability functions requires a massive amount of work and slorage, An
approximation used in [Feldman and Yakimovsky 1974] is 1o quantize the mea-
surements and réepresent them in lerms of a classification tree. The conditional
probabilities can then be computed from data at the leaves of the tree. Figure 5.10
shows a hypothetical tree for the region measurements of inlensity and hue, and
interpretations ROAD, SKY, and CAR. Figure 5.11 shows the equivaleni tres for
two boundary measurements m and o and the same interpretations. These two
figures indicate that PIR, isa CAR|0 £ (< L0 £ b < H,] =, and P8 divides
two car regions [ M, £ m < Mo, N < n 5 Nyp= . These trees were created
by laborious trials with correct segmentations of (251 images.

Mow, finally, consider again step 3 of Algorithm 5.6, The probability that a
boundary B, between regions R, and R, is false is given by

Fy

Plan = 53 7 (5.13)
where
Py = Y |PIB, is between two subregions X  B,'s measuremenis)] {5.14a)
«[PIR, is X | measli=[P[R, is X | meas]|
P, = ¥ [PIB; isbetween X and ¥ | meas]) (5.14h)
Ly
£ WPIR, is X | meas ] =(PIR, is ¥ | meas]] .

Fig. 5.0 Hypothetical classification tree for region messrements showing 4
particular branch fior specific ranges of inbensy and hee
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Flg. 5.11 Hypothetical classification
tree for boandary measurements
showing a specific bramch for specific
ranges of [wo messuremens mand o

And for siep 4 of the algorithm,
PIR, is X1 | meas]
PIR, is X2 | meas]

where X1, X2 are the first and second most likely interpretations, respectively.
After the region is assigned interpretation X1, the neighbors are updated using

PLR; 15 X | meas]:=Prob [Rj is X | meas] (5.16)
x P|B; isbetween X and X1 |meas]

Confidence; = (5.15)

EXERCISES

5.1 In Algorithm 5.1, show how one can handle the case where colors are egquivalent. Do
you meed more than one pass over the image?

5.2 Show for ihe hewristic of Eq. (5.11) that
() IT; = W > P
m P,< P+HUT;—12)
whare P i3 the perimeter of R, U .H‘,, I Is the perimeier common 1o boih fand §
;:1:1??, = min (P P;). What does part (b} imply about the relation between T3 and
5.3 Wrile a “histogram-peak™ finder; that s, detect satisflying walleys in histograms
separating intuitive hills or peaks.

5.4 Suppose that regions are represented by a neighbor list structure. Each region has an
associated |ist of neighboring regions. Design a region-mesging algorithm based on
this structure,

5.5 Why dojunctions of regions in segmented images tend to be trihedral?

L6 Regions, boundaries, and junctions are the structurés bahind the region-adjacency
graph and its dual, Generalize these structures to three dimensions. [s another struc-
ture needed?

5.7 Generalize the graph of Figure 5.8 to three dimensions and develop the merging algo-
rithm analogous to Algorithm 5.5, (Hint: ses Exercise 5.6.)

Ch 5 Region Growing
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Texture 6

6.1 WHAT IS TEXTURE?

166

The notion of exture admits 1o no rigid description, but a dictionary definition of
texture as “‘something composed of closely interwoven elements™ is fairly apt.
The description of interwoven elements is intimately tied 10 the idea of wexiure
resolution, which one might think of as the average amount of pixels for exch dis-
cernable texture element. I this number 13 large, we can attempt 1o describe the
individual elements in some detail. However, as this number nears unity it be-
comes increasingly difficult 1w characterize these elements individually and they
merge into less distinct spatial patterns. To see this variability, we examing some
Lexiures.

Figure 6.1 shows *“cane,”” “paper,”” “coffee beans,” *brickwall,” *coins,”
and **wire braid™ after Brodatz's well-known book [Brodatz 1966). Five of these
examples are high-resolution textures: they show repeated primitive elements that
exhibil some Kind of variation. **Coffee beans,” “*brick wall** and “*coins’ all have
obvious primitives {even if it is not s0 obvious how Lo extract these from image
data), Two more examples further illustraie that one sometimes has (o be creative
in defining primitives. In “*cane'” the easiest primitives to deal with seem to be the
physical holes in the texture, whereas in “*wire braid'" it might be better to model
the physical relations of a loose weave of metallic wires. However, the paper tex-
ture does not fit nicely into this mold. This is not 10 say that there are not possibili-
tics for primitive elements. One is regions of lightness and darkness formed by the
ridges in the paper. A second possibility is to use the reflectance models described
in Section 3.5 to compute *'pits™” and “bumps.”” However, the elements seem to
be “‘just beyond our perceptual resolving power'" [Laws 1980], or in our terms, the
elements are very close in size to individual pixels,
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Structural models

Texture primitives
Statistical models

Six examples of 1exture, (n) Cane, (b} Paper, (c) Coffee beans. {d)
Texture gradients

Brick wall, deh Coles, (1 Wire braid,

1.
a
5
4.

The exposition of texture takes place under four main headings:

Fig, &.1

Whal i3 Tewlure
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We have already described texiure as being composed of elements of fexiure primi-
tives, The main point of additional discussion on texture primitives is to refine the
idea of a primitive and its relation io image resolution.

The main work that is unique 1o texture is that which describes how primi-
tives are related to the sim of recognizing or classifying the texiure. Two broad
classes of techniques have emerged and we shall study each in turn. The striiciting!
medel regards the primitives as forming a repeating patiern and describes such pai-
terns in terms of rules for generating them, Formally, these rules can be termed a
grammar. This model is best for describing texiures where there is much regulariny
in the placement of primitive elemenis and the texlore is imaged at high resolu-
tion. The *‘reptile™ lexture in Fig. 6.9 is an éxamplé thal can be handled by the
structured approach. The statistical model usually describes texture by statistical
rules governing the distribution and relation of gray levels. This works well for
many natural textures which have barely discernible primitives. The “paper’” tex-
ture 1% such an example. As we shall see, we cannat be too rigid abouwt this division
since statistical models can describe pattern-like textures and vice versa, bul in
general the dichotomy is helpful.

The examples suggest that texture is almost always a property of surfaces,
Indeed, as the example of Fig. 6.2 shows, human beings tend to relate texture ele-
ments of varying size 1o a plausible surface in three dimensions [Gibson 1930,
Stevens 1979). Technigues for determining surface orientation in this fashion are
termed texture gradiend techniques. The gradient is given both in terms of the
direction of greatest change in size of primitives and in terms of the spatial place-
ment of primitives. The notion of a gradient is very useful. For example, if the tex-
ture is embedded on a flat surface, the gradient points toward a vanishing point in
the image. The chapter concludes with algorithms for computing this gradient.
The gradient may be computed directly or indirectly via the computation of the
vanishing point,

/f—-_\ Flg- 8.2 Textune asa surfsce property
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6.2 TEXTURE PRIMITIVES

The notion of a primitive is central to texture. To highlight its importance, we shall
use the appelation rexe! (for texture element) [Kender 1978]. A texel is (loosely)
a visual primitive with certain invariant properties which occurs repeatedly in
different positions, deformations, and orientations inside a given area. One basic
invariant property of such a unit might be that its pixels have a constant gray level,
but more claborate properties related to shape are passible. (A detailed discussion
of planar shapes is deferred until Chapter 8.) Figure 6.3 shows examples of two
kinds of texels: (a) ellipses of approximately constant gray level and (b) linear edge
segmenis. Interestingly, these are nearly the two features selecied as 1exture prim-
itives by [Julesz, 1981], who has performed exiensive studies of human texture
perceplion,

For textures that can be described in 1two dimensions, image-based descrip-
tions are sufficient. Texture primitives may be pixels, or aggregates of pixels such
as curve segments or regions. The “coffee beans™ texiure can be described by an
image-based model: repeated dark ellipses on a lighter background. These models
describe equally well an image of texture or an image of a picture of iexture. The
mecthods for creating these aggregates were discussed in Chapters 4 and 5. As with
all image-based models, three-dimensional phenomena such as occlusion must be
handled indirectly. In contrast, structural approaches to lexture sometimes reguire
knowledge of the three-dimensional world producing the texture image. One ex-
ample of this is Brodatz"s “coins™ shown in Fig. 6.1. A three-dimensional model of
the way coins can be stacked is needed o understand this texture fully.

An important parl of the texel definition is thal primitives must occur repeal=
edly inside & given area, The question is: How many times? This can be answered
qualitatively by imagining a window that corresponds approximately 1o our field of
view superimposed on a very large texiured area. As this window is made smaller,
corresponding o moving the viewpoint closer 1o the texiure, fewer and fewer tex-
els are contained in it. Al some distance, the image in the window no longer

Fig. &3 Examples oftexels (ab Ellipses. (b} Linear ssgments
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appears lexiured, or if it does, translation of the window changes the perceived tex-
ure drastically. At this point we no longer have a texture, A similar effect occurs if
the window is made increasingly larger, corresponding to moving the ficld of view
farther away from the image. At some distance texiural details are blurred into
continuous ones and repeated elemenis are no longer visible as the window is
translated. {This is the basis for halftone images, which are highly textured pat-
lerns meant to be viewed from enough distance to blur the texture.) Thus the idea
of an appropriate resoluifon, of the number of texels in & subimage, is an implicit
part of our qualitative definition of wexture, I the resolution is appropriate, the @2x-
fure will be apparent and will “look the same™ as the field of view is translated
agross the texiured area. Most ofien the appropriate resolution is not known bui
must be computed, Ofien this computation is simpler 1o carry out than detailed
compulations characierizing the primitives and hence has been used as a precursor
to the laiter computations, Figure 6.4 shows such a resolution-like computation,
which examines the image for repeating peaks [Connors 1979).

Textures can be hierarchical, the hierarchies corresponding to different reso-
lutions. The “brick wall" texture shows such a hierarchy. At one resolution, the
highly structured pattern made by collections of bricks is in evidence; at higher
resolution, the variations of the texture of each brick are visible.

6.3 STRUCTURAL MODELS OF TEXEL PLACEMENT
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Highly patterned textures tesselate the plane in an ordered way, and thus we musi
understand the different ways in which this can be done. In a regular tesselation the
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polygons surrounding a vertex all have the same number of sides. Semiregular
tesselations have two kinds of polygons (differing in number of sides) surrounding
a vertex. Figure 2,11 depicts the regular tesselations of the plane. There are eight
semiregular tesselations of the plane, as shown in Fig. 6.5, These tesselations are
conveniently described by listing in order the number of sides of the polygons sur-

KX
XXX,
XXXX

l4. 8, B {3, & 3, 8

A
575078,
L5 L0

! r | \/
P LVAY
OO QRS
T APBLLK
YA Y AN
l.":!], 3 4 :] 3. 3, 4, 3. 4

Fig. 6.5 Semiregular tesselations.
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rounding each vertex. Thus a hexagonal tesselation is described by (6,6,6) and
every veriex in the tesselation of Fig. 6.5 can be denoted by the list (3,12,12). Itis
important (0 note that the {esselations of interest are those which describe the
placerment of primitives rather than the primitives themselves. When the primitives
define a tesselation, the tesselation describing the primitive placement will be the
dual of this graph in the sense of Section 5.4, Figure 6.6 shows these relationships.

Teusd Plassgres!

O remslarion Flg- 6.6 The primitive placement
tespeiation as the dual of che primitive
teszefation.

6.3.1 Grammatical Models

A powerful way of describing the rules that govern textural structure is through a
grammar. A grammar describes how to generate patterns by applying rewriting rules
to a small number of symbols. Through a small number of rules and symbols, the
grammar ¢an generate complex textural patterns. Of course, the symbols turn out
to be related to texels. The mapping between the stored model prototype texture
and an image of texture with real-world variations may be incorporated into the
grammar by attaching probabilities to different rules, Grammars with such rules
are termed stochastic [Fu 1974].

There is no unique grammar for & given texture; in fact, there are uswally
infinitely many choices for rules and symbols. Thus texiure grammars are
described as symiacrically ambiguous. Figure 6.7 shows a syntactically ambiguous
texture and two of the possible choices for primitives. This texture is also semani-
cally ambiguows [Zucker 1976) in that alternate ridges may be thought of in three
dimensions as coming oul of or going inlo the page.

There are many variants of the basic ides of formal grammars and we ghall
examine three of them: shape grammars, (ree gramenars, and array grammars. For
a basic reference, see [Hoperoft and Ullman 1979). Shape grammars are dis-
linguished from the other two by having high-level primitives that closely
correspond 1o the shapes in the texture. In the examples of tree grammars and ar-
ray grammars that we examine, texels are defined as pixels and this makes the

Ch. & Teature
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grammars correspondingly more complicated. A particular fexture that can be
described in eight rules in a shape grammar requires 85 rules in a tree grammar [Lu
and Fu 1978]. The compensating trade-off is that pixels are gratis with the image;
considerable processing must be done to derive the more complex primitives used
by the shape grammar.

\

6.3.2 Shape Grammars

A shape grammar [Stiny and Gips 1972] is defined as a four-wuple < ¥, ¥, R, 5>
where:

. F.isafinite set of shapes
Vo i% & finite set of shapes such that ¥, [} ¥, = ¢&

R is a finite set of ordered pairs (u, v) such that y is a shape consisting of ele-
ments of ¥," and vis a shape consisting of an element of ¥, combined with an
elementof V_

4, S5isashape consisting of an element of ¥, combined with an element of ¥_.

Elements of the set ¥, are called terminal shape elements (or terminals). Elements
of the set ¥, are called nonterminal shape elements (or markers). The scts ¥, and
¥, must be disjoint. Elements of the set ¥;” are formed by the finite arrangement
of one or more elements of ¥, in which any ¢lemenis and/or their mirror images
may be used a multiple number of times in any location, orientation, or scale. The
set ¥ = ¥ L) [Al, where A is the empty shape. The sets ¥, and ¥V, are
defined similarly. Elements (1, v) of R are called shape rules and are written o v.
ias called the lefi side of the rule; vithe right side of the rele. w and v usually are en-
closed in identical dashed rectangles 1o show the correspondence between the two
shapes. § is called the initial shape and normally contains a w such that there is a
(n, v) which is an element of R.
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A texture i generated from a shape grammar by beginning with the inital
shape and repeatedly applying the shape rules. The result of applying a shape rule
A toa given shape 5 is another shape, consisting of 3 with the right side of B substi-
tuted in & for an occurrence of the left side of R, Rule application 1o a shape
proceeds as follows:

I. Find part of the shape that is geometrically similar to the left side of a rule in
terms of both terminal elements and nonterminal elements (markers), There
must be a pne-to-one correspondence between the lerminals and markers in
the left side of the rule and the terminals and markers in the part of the shape
1o which the rule is 10 be applied.

2. Find the geometric transformations (scale, translation, rotation, mirror im-
age) which make the lefi side of the rule identical 1o the corresponding part in
the shape.

Y. Apply those transformations 1o the right side of the rule.
4, Substitute the transformed right side of the rule for the part of the shape that
corresponds 1o the lefl side of the rule.

The generation process is terminated when no rule in the grammar can be applied.
As a simple example, one of the many ways of specifying a hexagonal texture

(¥, Vs R, Slis
Vo= 1)
V= ' - |
Q=000 e
s={}
Hexagonal texiures can be generaled by the repeated application of the single rule
in R. They can be recognized by the application of the rule in the opposite direction
o a given lexture until the initial shape, 1, is produced. OF course, the rule will

generate only hexagonal textures. Similarly, the hexagonal texture in Fig. 6.8a will
be recognized but the varianis in Fig, 6.8b will not.

(6.1}

Fig. 5.8 Texiunes oo be recognized (seelexih,
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A more difficult example is given by the “'reptile”™ texture. Except for the oc-
casional new rows, a 13, 6, 3, 6] tesselation of primitives would model this texture
exactly. As shown in Fig. 6.9, the new row is introduced when a seven-sided pol-
yeon splits into a six-sided polvgon and a five-sided polygon, To capture this with a
shape grammar, we ¢xamine the dual of this graph, which is the primitive place-
ment graph, Fig. 6.9b. This graph provides a simple explanation of how the extra
row is created; that is, the diamond pattern splits into two. Notice that the dual
graph is composed solely of four-sided polygons but that some vertices are (4, 4, 4)
and some are (4,4, 4, 4.4 4}, A shape grammar for the dual is shown in Fig. 6.10.
The image texture can be obtained by forming the dual of this graph. One further
refinement should be added 10 rules (6) and (7); 50 that rule (7) is wsed less often,
the appropriaie probabilities should be associated with each rule. This would make
the grammar stochasiic,

ANOR,

¥

Fig. 6.9 [a) The repile iexture. (b) The replile texture as a (3, 6, 3, &) SEmireg-
ular pessekation with logal deformations.

6.3.3 Tree Grammars

The symbalic form of a trée grammar is very similar to that of a shape grammar. A
Erammar

G, = (¥, Vo r. R, 5}
i5 @ tree grammar il

¥, is a set of terminal symbaols

¥, 15 a set of symbaols such that
Vo M V=@

r: ¥, — N{where Nis the set of nonnegative integers)
is the rank associnted with symbols in V,

&is the start symb-ol

B iz the sel of rules of the form
XNo—x or Xp—x

b

with xin F,and Xy ... X, in Vg

For a tree grammar to generate arrays of pixels, it is necessary o choose some way
of embedding the tree in the array. Figure 6.11 shows two such embeddings.
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RN
= <>

Fig. 6,10 Shape grammar for the reptile texiere,

In the application to texture [Lu and Fu 1978, the notion of pyramids or
hierarchical levels of resolution in texture is used. One level describes the place-
ment of repeating patterns in exture windows—a rectangular texel placement
tesselation—and another level describes texels in terms of pixels, We shall illus-
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Fig. .11 Twa ways of smbedding a tred structure in &n arvay.

trate these ideas with Lu and Fu's grammar for “*wire braid.” The texture windows
are shown in Fig. 6.12a. Each of these can be described by a *‘sentence” in a
second tree grammar. The grammar is given by:

G,=(V, V. r R S)

where
Vo= [4, Cy)
Vo= (X, ¥ Z| 6.2
r=[0,1, 2}
R:X— A, or 4y
%
¥— i, ar )

z_d] urr,h

and the first embedding in Fig. 6.11 is used. The pattern inside each of these win-
dows is specified by another grammatical level:

[ G=(F, ¥, rRS)
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where
¥, = {1, 0]
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The application of these rules generates the two different patterns of pixels
shown in Fig. 6.13.

6.3.4 Array Grammars

Like tree grammars, array grammars use hierarchical levels of resolution [Milgram
and Rosenfeld 1971; Rosenfeld 1971). Array grammars are different from tree
grammars in that they do not use the tree-array embedding. Instead, prodigious
use of 2 blank or null symbol i used o make sure the rules are applied in appropri-
ate conlexts. A simple array grammar for gensrating a checkerboard pattern is

G={V., V. RI
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where

¥, = {0, 1] (corresponding to black and white pixels, respectively)
V,= b 5}

bisa “blank" symbol used to provide context for the application of the rules.
Another notational convenience is 1o use a subscripl (o denote the orientation of
symbols. For example, when describing the rules B we uses

0.6 — 0,1 where x is one of (U, D, L, R]

to summarize the four rules

00 b=p p—01  s0—10
Thus the checkerboard rule sot is given by
R:5—00orl
06— 0,1 xin U, D, L RI
16— 1,0

A compact encoding of textural patterns [Tavaramamurihy 1979] uses levels of ar-
ray grammars defined on a pyramid. The terminal symbols of one layer are the start
symbaols of the next grammatical layer defined lower down in the pyramid, This
corresponds nicely to the idea of having one grammar 1o generate primitives and
another (o generate the primitive placement lesselations.

Az another example, consider the herringbone pattern inm Fig. 6.14a, which is
composed of 43 arrays of a particular placement patiern as shown in Fig. 6.14b.
The following grammiar is sufficient 1o generate the placement pattern.

G.= |V V.. R 5]
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Fig. £13 Texture generaled by tree
Erammmar,

where
¥ = lal
¥, = [b 5]
R:§—a
aef = a.a xin{th D L R)

We have not been precise in specifying how the terminal symbol is projected onto
the lower level. Assume withoul loss of generality that it is placed in the upper
left-hand corner, the rest of the subarray being initially blank symbols. Thus a sim-
ple grammar for the primitive is

G.= (¥, ¥, R, 5|

I
a | @' | &' |
|5 | & | &
* @ | 8| &
@ | @ | @ | =

IRITIAL ARRAY AT LEVEL1

a' a | a o'
g |a|a]a
e |a'|&|a
a"|la'| a| a Fig. 6.14 Sicps in generating a
herringbans ieatiere with &n array
TERMINAL ARRAY AT LEVEL 1 FINAL AERAY gramrmar
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where

Fo= {0, 1)

¥V, = la, &)
a b & b 001 0
e & b b= 01 0 1
b b b 1 00 O

6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of “reptile’ or “wire
braid™; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Srarisical pattern recogrition is a
paradigm that can classify statistical variations in patterns. (There are other statise-
cal methods of describing texture [Pratt et al. 1981], but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes. )
There is a voluminous lilerature on paitern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the idzas
have much wider application than their wse here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in acrial images [Weszka
et al. 1976). The pattern recognition approach to the problem is to classily in-
slances of a texture in an image into a set of classes. For example, given the tex-
tures in Fig. 6.15, the choice might be between the classes “orchard,” **feld,™
*residential,”” “water.””

The basic nation of pattern recognition is the feaimre vecror. The feature vac-
tor v is a set of measurements (v, -+ w,| which is supposed to condense 1he
description of relevant properties of the textured image into a small, Euclidean
Jeature space of m dimensions, Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas-
urement values for a feature should be correlated with its class membership. Fig-
ure B.16 shows a two-dimensional space in which the features exhibit the desired
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure-
mients) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are wsed fo partitbon feature space into regions representing the different classes,
However, self ieaching can be done; the classifier derives its own pariitions.
Feature selection can be based on parametric or nonparametric models of the dis-
tributions of points in feature space. In the former case, analytic sclutions are
sometimes available. In the latter, feature vectors are clustered into groups which
are taken to indicate partitions. During a test phase the feature-space partitions arg
used to classify feature vectors from unknown samples. Figure 617 shows this
PrOCESS.

Given that the data are reasonably well behaved, there are many methods for
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].
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Fig. §.15 {conlp

One popular way of deing this is © use prototype points for each class and a
negarest-neighbor rule [Cover 1968]:

assign v Lo class w, il | minimizes
min &y, v ]

where v, is the proloiype point for class w,
Parametric technigues assume information about the feature veclor probabal-
ity distributions to find rules that maximize the likelihood of correct classification:

assign v Lo class w, il imaximizes

max pLw|v)
¥y ¥3
+ +
x =T = 2 o
* . o
= +
o
- o O o o + o
o ] E"'-' +
a g 0 I:"} o a o
Q o nu *
¥ r:

da} [ 3]

Fig. 6.1& Fealure space for jexiure discrimmination. (8) efecove featuses (k)

imefective features
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The distributions may also be uwsed to formulate rules that minimize errors.

Picking good features is the essence of patiern recognition. No elaborate for-
malism will work well for bad features such as those of Fig. 6.15b. On the other
hand, almost any method will work for very good features. For this reason, texture
is a good domain for pattern recognition: it is fairly easy 1o define features that (1)
cluster in feature space according to different classes, and (2) can separate (exture
classes.

The ensuing subsections describe features that have worked well, Theses sub-
sections are in reverse order from those of Section 6.2 in that we begin with
features defined on pixcls— Fourier subspaces, gray-level dependencies—and con-
clude with features defined on higher-level texels such as regions. However, the
lesson is the same as with the grammatical approach: hard work spent in obtaining
high-level primitives can both improve and simplify the lexture model. Space does
not permit & discussion of many texture features; instead, we limit ourselves to 3
few representative samples. For further reading, see [Haralick 1978].

6.4.1 Texture Energy

Fourier Domain Basis

I a texture is at all spatially periodic or directional, its power spectrum will
tend to have peaks for corresponding spatial frequencies, These peaks can form the
basis of features of & pattern recognition discriminator. One way o define features
i Lo search Fourier space directly [Bajesy and Lieberman 1976, Another is to par-
tition Fourier space into bins. Two kinds of bins, radial and angular, are commonly
used, as shown in Fig. 6.18. These bins, together with the Fourier power spectrum
are used 1o define features. If Fis the Fourier transform, the Fourier power spec-
trum is given by | F|*.

Radial features are given by

by = J S 1P WP s dv (6.5)
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where the limits of integration are defined by
i+ v <
D& uv<p=l

where [r; r3] is one of the radial bins and v is the vector (not related 10 v} defined
by different values of ry and r;. Radial features are correlated with lexture coarse-
ness. A smooth texture will have high values of Ii-“_.ﬁ for small radii, whereas a

coarse, grainy texture will tend vo have relatively higher values for larger radii.
Features that measure angular orientation are given by

Vo0, = [ [ 1F(u, v)F du dv (6.6)
where the limits of integration are defined by

# = un“{—: < i,

0 g, v £ =1

where [#), #,) is one of the sectors and v is defined by different values of @, and &,
These features exploit the sensitivity of the power spectrum 1o the directionality of
the texture. If a texture has as many lines or edges in a given direction 8, |F|* will
h:?d to have high values clustered around the direction in frequency space @ +
L P

Texnire Energy in the Spanal Domain

From Section 2.2.4 we know that the Fourier approach could also be carried
out in the image domain. This is the approach taken in [Laws 1980], The advantage
of this approach is that the basis is not the Fourier basis but & variant that 15 more
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matched to intuition about texture features. Figure 6.19 shows the most important
of Laws® 12 basis functions,

The image is first histogram-equalized (Section 3.2). Then 12 new images are
made by convolving the original image with each of the basis functions (i.e., f; =
J = hy for basis functions hy, .... fy3). Then each of these images is transformed
into an “‘energy’” image by the following transformation: Each pixel in the con-
volved image is replaced by an average of the absolute values in a local window of
15 = 15 pixels centerad over the pixel:

L= T (66D (6.7
XoF I wndow
The transformation f— fi, k = 1, ... 12 is termed a “‘fexiure energy transform'
by Laws and s analogous o the Fourier power spectrum. The £, & =1, ... 12
form a set of features for each point in the image which are used in a nearest-
neighbor classifier. Classification details may be found in [Laws 1980]. Ouwr in-
teresiis in the particular choice of basis functions used.

Figure &.20 shows a composile of natural textures [Brodatz 1966] used in
Laws's experiments. Each texture is digitized into a 128 x 128 pixel subimage. The
texture energy transforms were applied to this composite image and cach pixel was
classified into one of the eight categories. The average classification accuracy was
aboul 87% for interior regions of the subimages. This is a very good result for tex-
tures that are similar.

6.4.2 Spatial Gray-Level Dependence

Spatial gray-level dependence (SGLD) matrices are one of the most popular
sources of features [Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973]. The
SGLID approach computes an intermediate matrix of measures from the digitized
image data, and then defines features as functions on this intermediate matrix,
Given an image [ with a set of discrete gray levels I, we define for each of a st of
discrete values of dand & the intermediate matrix S (d, #) as follows:

8(i, jld @), an entry in the matrix, is the number of times gray level i i
oriented with respect to gray bevel Jsuch that where
filx)=f and fly)=j then
¥ = x + {dcosd, Jsind)

-

(-1 4 -5 -4 -1] B R |

=3 =ff =iF =f§ =3 -4 18 -3 16 -4

o a0 0o o o 6-24 3B-M 6

Z B 12 B 2 =& 16 =24 18 -4

b4 &8 4 1 L =d I_
=1 80 2 0 =f] 1 @ 2 @ -1

-2 B 4 0 -2 =i 2 8 0 -4

o 0 0 0 0 6 012 0 €] g 519 Laws basis functions (thess
2 0 -4 0 2 A 0 B 274 are the low-arder four of twelve actually
v 6 -2 O 1 (-1 @ 2 0 -] yeed)
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Fig. 6.3 (ab Texture composicg, {(b) Classification.

MNote that we the gray-level values appear as indices of the matrix 5, implying that
they are taken from some well-ordered discrete set @, ..., K. Since

5(d 8) = 5(d ¢ + =)

comman practice 1% o pestrict @ to multiples of =/4. Furthermore, information is
nol usually retained at both # and @ + . The reasoning for the latter step is that
for most texture discrimination tasks, the information is redundant. Thus we
define

Sid, 8) = % 15(d, #) + 5(d ¢ + w)]

The intermediate matrices 5 yield potential features. Commonly wsed features are:

1. Energy
E K
Eid o) =3 ¥ (50, jld 6)) (6.8)
i=0 j={
2. Entropy
i
HG 0 =3 5 S0 Jld 8 log 70, Jld, 0) (6.9)
=i j=0

3, Correlation

ror
z i (F=p )= VST fld @)

Cld, #) = =22 (6,100
ﬂ'xﬂ'}_
4. fmertia
E K
Id o) =% ¥ (- 80 jld 8} (6.11)
|-'|:|_|—|:|
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5. Local Homogeneity

L{Jﬂ}-ﬁf

= 1+ {f T+ G=F
where 5{i, j|d, #) is the (i, /) th element of (d, #), and

S0i jld. 8} (6.12)

g = f, f f 50, jld @) (6.13a)
=0 i)

ey = fr J f S{4 jld &) (6.13b)
=0 =0
i g i f 74, jld, 8) (6.13¢)
=0

and

ﬂ'y"}..“ (i=p, f‘. U fld. 8) {6.13d)

i=

One important aspect of this approach is that the features chosen do not have
psychological correlates [Tamura et al. 1978]. For example, none of the measures
described would take on specific values corresponding to our notions of “rough”
or “smooth,” Also, the texture gradient is difficult to define in terms of SGLD
feature values [Bajcsy and Lieberman 1976).

6.4.3 Region Texels

Region texels are an image-based way of defining primitives above the level of pix-
els. Rather than defining features directly as functions of pixels, a region segmen-
tation of the image is created first. Features can then be defined in terms of the
shape of the resultant regions, which are oflten meore intuitive than the pixel-
related features, Naturally, the approach of using edge elements is also possible.
We shall discuss this in the context of texture gradients.

The idea of using regions as texture primitives was pursued in [Maleson et al.
1977). In that implementation, all regions are ultimately modeled as ellipses and a
corresponding five-parameter shape description is computed for each region.
These parameters only defing gross region shape, but the five-parameter primi-
tives seem Lo work well for many domains. The texture image is segmented inlo
regions in two steps. Initially, the modified version of Algorithm 5.1 that works for
gray-level images is used. Figure 6.21 shows this example of the segmentation ap-
plied to a sample of “straw™ texture. Next, paramefiers of the region grower arc
controdled so0 as to encourage convex regions which are fit with ellipses. Figure 6.22
shows the resultant ellipsas for the “‘straw’” texture. One set of ellipse parameters
is Xg, @, b, # where x; is the origin, g and b are the major and minor axis lengths
and @ is the orientation of the major axis (Appendix 1). Besides these shape param-
eters, elliptical texels are alzo deseribed by their average gray level. Figure 6.23
gives a qualitative indication of how ranges on leature values reflect different lex-
els.
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6.5 THE TEXTURE GRADIENT

The importance of lexture in determining surface onentition was described by
Gibson [Gibson 1950], There are three ways in which this can be done. These
methods are depicted in Fig. 6.24, All these methods assume that he fexture is
embedded on a planar sy rface,

First, if the texture rmage has been scgmented into primitives. the MaAXimum
rate of change of the projected size of thege primitives constrains the orientation of

Fig, 6.22 Elfipses for straw lexhure.
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the plane in the following manner. The direction of maximum rate of change of
projected primitive size is the direction of the texture gradienr. The origntation of
this direction with respect o the image coordinate frame delermines how much
the plane is rotaied about the camers line of sight. The magnitude of the gradient
can help determine how much the plane is tlted with respect to the camera, but
knowledge about the camera geomeiry is also required, We have seen these ideas
before in the form of gradient space; the rotation and Lilt characlerization is a polar

cogrdinate representation of gradients.

1 teh

Fig. 6.24 Methads for calculating surface criemanos from mexiune
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The second way to measure surface orientation is by knowing the shape of
the texel itself. For example, a texture composed of circles appears as ellipses on
the tilted surface. The oricntation of the principal axes defines rotation with respect
to the camera, and the ratio of minor 10 major axes defines tilt [Stevens 1979].

Finally, if the texture s composed of a regular grid of texels, we can compute
vanishing poinis. For a perspeciive image, vanishing poinis on a plane P are the
projection onto the image plane of the points at infinity in a given direction. In the
examples here, the texels themselves are (conveniently) small line segments cn a
plane that are orignted in two orthogonal directions in the physical world, The gen-
eral method applies whenever the placement tesselation defines lines of texels,
Two vanishing points that arise from texels on the same surface can be used to
determine crientation as follows. The line joining the vanishing points provides
the orientation of the surface and the vertical position of the plane with respect to
the zaxis (i.e., the intersection of the line joining the vanishing points with x = 0}
determines the tilt of the planc.

Line segment textures indicate vanishing points [Kender 1978]. Asshown in
Fig. 6,23, these segments could arise quite naturally from an urban imzge of the
windows of a building which has been processed with an edge operator,

As discussed in Chapter 4, lines in images can be detected by detecting their
parameters with a Hough algorithm, For example, by using the line parameteriza-
tion

XCosE + painf = r
and by knowing the orientation of the line in terms of its gradient g = (dx, Ay).a
line segment (x, ¥, &x, Ay can be mapped into r, # space by using the relations

p - Uﬂﬁ"'_ﬁﬁ. (6.14)
Ax® + Ay

Ay
Ax

# = tan~’ (6.15)

These relationships can be derived by using Fig. 6.26 and some geometry. The
Cartesian coordinates of the r—& space vecilor are given by

a= [ﬂ (6.16)

Fig. 8.5 Onhogonal lne scgmenis comprising a [exiue
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Using this transformation, the set of line segmenis L, shown in Fig. 6.27 are all
mapped info a single point in r=@ space. Furthermore, the sei of lines L. which
have the same vanishing point (x, ».) project onto a circle in r—# space with the
line segment (10, 00, (x, y,)) as a diameter. This scheme has two drawbacks: (1)
vanishing points at infinity are projected into infinity, and (2) circles require some
effort 1o detect. Hence we are motivated 1o use the transform (x, y, Ax, Ay) =

—'E—. #| for some constant k. Now vanishing points at infinity are projected into the
origin and the locus of the set of points Ly is now a line, This line is perpendicular
to the veclor x, and ﬁ units from the origin, as shown in Fig. 6.25. It can be

¥

detected by a second stage of the Hough transform; each point a 15 mapped inlo an
r'—#" space. Forevery a, compuie all the r, & such that

acosd’ + bsind" = ' (6.17)

and merement that location in the approprate r, #' accumulator array. In this
second space a vanishing point is detected as

v I:I (6.18)
@ = tan”! i— (6.19)

12, ¥,

by
Fig. .27 Detecting the vanishing point with the Hough fransform.
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In Kender's application the texels and their placement tesselation are similar in
that the primitives are parallel 1o arcs in the placement tesselation graph, In a maore
general application the tesselation could be computed by connecting the centers of
primitives.

6.2

6.3

6.4

6,5

.6

6.7

6.8

EXERCISES

Dievise & compuier algorithm that, given a set of texels from each of & set of different
“windows" of the lextured image, checks 1o s2¢ of the resolution s appropriate. In
alher words, iy to formalize the discussion of resolution in Section 6.2,

Are any of the grammars in Section 6.3 suitahle for a parallel implementation (ie.,
parallel application of rules)? Discuss, illustrating your arguments with examples or
counterexpmpbes from each of the three main grammatical iypes {shape, tree, and ar-
Tay grAmmars).

Are shape, array, and tree grammars context free or contexi-sensitive as defined?
Can such grammars be transkated into *'traditional™ (string) grammars? I ngt, how
are they different; and if so0, why are they useful?

Show how the generalized Hough transform (Section 4.3} could be applied to texel
detection,

In an outdoors scene, there is the problem of different scales. For exampbs, consider
the grass. Grass that is close to an observer will appear “'sharp” and composed of
primitive clements, yet grass distant lrom an observer will be much more "fuzzy™
and homogeneous, Describe how one might handle this problem.

The texture encrgy ransform (Section 6.4.1) is equivalent 1o a set of Fourier-domain
operations, How do the texture energy features compare with the ring and secior
featuresT

The texture gradient is presumably a gradient in seme aspect of texture, What aspect
is it, and how might it be quantified so that exiure descriptions can be made gradient
independent?

Write a texture region grower and apply it to natural scenes,
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Motion 7

7.1 MOTION UNDERSTANDING

Motion imagery présenls many inieresting challenges 1o computer vision, bt
stalic scene analysis received more atlention in the 1960°s and 1970°%s. In part, this
may have been due 1o a technical problem: With most types of inpul media and
domains, molicn vision inpul is much mare voluminous than static vision inpul.
However, we believe that a more basic problem has been the assumption Lhal mao-
tion vision could best be undersioed (or implemented) as many static lrames
analyzed very quickly, with results linked up in temporal sequence, This character-
ization of motion vision is extreme bul perhaps illuminating, First, it assumes that
vision inwvolves processing static scenes, Second, it acknowledges that massive
amounis of data may be required. Third, in it motion understanding degencrates
to @ postprocessing step which is mostly a maiching operation—the differences or
similarities between (understood) frames are analyzed and recorded. The cxtreme
“*static is basic™ view is that motion is an unnaturally complex or difficult problem
becapse it is ill suited to the techniques available.

A maodified view is that object motion provides good image cues for segmen-
lation, much as color might. This approach leads (o the use of motion for segmen-
tation, so that motion gets a more basic role in the understanding process. In this
view, molion as such is useful for hasic image undersianding; a motion image se-
quence may actually be easier to understand than a stalic image, because the
effects of motion can help in segmentation. Recent examples may be found in
[Snyder 1981].

A further departure from the *‘static i basic’ view is thal motion under-
standing is qualitatively different from static vision. A logical extreme of this view
is thai there are many visual processing operations whose primitives are poaints in
motion, and that in fact static vision is the puzzle, being ill-suited to the needs and
mechanisms of bological systems. Serious work in computer motion understand-
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ing has begun even more réecently than computer vision as a whole, and it is (oo
early to dismiss any approach out of hand, There are domains and applications in
which the *'static is basic'” paradigm seems natural, but it also seems very resson-
able that animals have perceptual systems or subsystems for which “*motion is
basic.”

Section 7.2 is concerned with processing and understanding the “*flow™ of the
world image across the retina. Section 7.3 considers several technigues for under-
standing sequences of slatic images.

7.1.1 Domain Independent Understanding

Domain independent motion processing extracts information from time-varying
images using the weakest possible assumplions about the world. Processing that
merely transforms the input data into another image-like structure is in the pro-
vince of generalized image processing. However, il the motion processing aggre-
gates spatial information on the basis of a common feature, then the processing is a
form of segmentation.

The basic visual input for domain-independent work in motion vision under-
standing is oprieal fow. Although Helmholtz noted the striking immediacy of
three-dimensional perception mediated through motion [Helmholtz 1925], Gib-
son is usually credited with pioneering the theory that a primary visual stimulus for
motion is the flow of elements in the optic array, or pattern of luminance in the full
sphere of solid angle surrounding the observer [Gibson 1950, 1937, 1965, 1966].
Human beings undoubledly are sensitive to optical flow, as evidenced by the
“looming™ reflex {Schiff 1965], the effect of low on balance [Lee and Lishman
1975], and many other documented phenomena [Nakayama and Loomis 1974).
The basic input to an “‘optical Mow understander’™ is a continuously changing
visual field, which may be considered a field of vectors, each expressing the instan-
taneous change of position on the optic array of the image of a world point. A field
of such vectors is shown in Fig. 7.1. The extraction of the vectors from the chang-
ing image i5 a low-level operation often posited by optical flow rescarch; one com-
putational mechanism was given in Chapter 3. Flow may also be approximated in
an image sequence by matching and difference operations (Section 7.3.1).

Computer vision rescarchers have recently begun 1o concern themselves
wilh both the geometry and computational mechanisms that might be useful in the
understanding of optical flow [Homn and Schunck 1980; Clocksin 1980; Prager
1979 Prazdny 1979; Lawion 1981]. Many formalisms are in use, Cartesian, polar
space, and spherical coordinates all have their appeal in different situations;
differential vector geometry and simple analytic geometry are both used; even the
geometry of the eye or camera varies from one study to another. This chapter does
noi contain a **unified flow theory;"" instead it briefly describes several approaches,
each of which uses a different aspect of optical flow.

7.1.2 Domain Dependent Understanding

The use of models, or &t least stronger assumptions about the world, is comple-
mentary to domain-independent processing. The changing image, or even the field
of eptical low, can be treated as input to a model-driven vision process whose goal
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Flow field
is typically to segment the input into areas corresponding to meaningful world ob-
jecis, The optical Now field becomes just another component of the generalized im-
age, together with intensity, texture, or color. Motion often reveals information
similar to that from range data; Now and range are discontinuous al obpect boun-
daries, surface orientation may be derived, and so forth. Object (or world) mao-
tions determine image (or retinal) motions, we shall be explicit about which
motion we mean when confusion can oocur,

Section 7.3 describes how knowledge of object motion phenomena can help
in segmenting the fow feld. One wseful assumption is that the world contains rigid
bodies. Tests for rigid bodies and calculations using data from them are quite
useful—for example, the three-dimensional position of four points on a rigid ob-
ject may be determined uniguely from three views (Section 7.3.2). A weaker ob-
ject model, that they are assemblies of compound rigid pendula (linkages), is
cnough to accomplish successful segmentation of very sparse motion input which
consists only of images of the end points of links (Section 7.3.3). Section 7.3.4
describes work with a highly specific and detailed model which is used in several
ways to restrict low-level image processing and aid in three-dimensional interpreta-
tion of human motion images, Section 7.3.5 considers the processing of sequences
of segmenied images.

The coherence of most three-dimensional objecis and their continuity
through time are two general principles which, although occasionally violated,
guide many segmentation and poinl-matching heuristics. The assumed correspon-
dence of regions in images with objects is one exampie. Motion images provide
gnother example; object coherence implies the likelihood of many “continuity™
Lactually similarity) conditions on the positions and velocities of neighboring
image poinis,
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Here are five hewristics for use in matching points from images separated by a
small time interval [Prager 1979] (Fig. 7.2).

1. Maximum velocity. IT 2 world point is known 1o have a maximum velocity
with respect 10 a stationary imaging device, then il can move al most F dr
between two images made o time units apart. Thus given the location of the
point in one image (and some assumptions about depth), this constraint limits
where the poinl can appear on the second image.

2. Small velocity change. Since most visible physical objects have finite mass, this
heuristic is a consegence of physical laws and the assumption of a *small inter-
val™ between images, OF course, the definition of **small interval™ depends on
ihe definition of the velocity changes one desires Lo measure,
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Fig. 7.2 Five heuristics,
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3. Common motion. Spatially coherent objects ofien appear in succéssive images
as regions of points sharing a ““common motion,” It is inferesting that such a
wezk notion as common motion (and the related “*common position™) agtu-
ally can serve to segment very sparse scenes of a few points with very complex
motion behavior if a long-enough sequence of images is used (Sections 7.3.3
and 7.3.4).

4.  Consistent match. Two points from one image generally do not match a single
point from another image (exceptions arise from occlusions). This is one of
the main heuristics in the stereopsis algorithm described in Chapter 3.

5. Known motion, I @ world mode] can supply information about object motions,
perhaps retinal motions can be derived, predicted, and recognized.

In the discussions to follow these heuristics {and others) are often used or
implicitly 1aken as principles. A careful catalog of the probable behavior of objects
in motion i$ often & useful practical adjunct 0 a mathematical treatment. The
mathematics itgell must be based on a set of assumptions, and often these are
closely related 1o the phenomenalogical heuristics noted above,

7.2 UNDERSTANDING OPTICAL FLOW

This section describés some more direct calculations on optical flow, using no
other input information. Information may be obtained from flow that s2ems useful
both for survival in the world and (on a less existential level) for automated image
understanding. As with shape from shading rescarch (Chapter 31, the paradigm
here is often (o sce mathematically what information resides in the input and 1o use
this 10 suggest mechanisms for doing the computation, The fow inpul is assumed
1o be known {(Chapter 3 showed how to derive optical flow by local analysis of
changing intensity in the image).

7.2.1 Focus of Expansion

As one moves through a world of siatic objects, the visual world as projected on the
retina seems 1o flow past. In fact, for a given direction of translatory motion and
direction of gaze, the world seems to be flowing oul of one particular retinal point,
the focus of expansion (FOE), Each direction of metion and gaze induces a unique
FOE, which may be a point at infinity il the motion is parallel to the retinal (image)
plane.

These aspecis of optical Mow have been studied by computing the simulaled
flow pattern an obsarver would see while moving through a *“forest”™ of vertical
cylinders [Prager 1979) or Gaussian hills and valleys [Lawton 1981], Some sample
FOEs are shown in Fig. 7.3. Figure 7.3¢ shows a second FOE when the field of view
cofilains an object which is itsell in motion.

Our first medel of the imaging situation is a simplification of the imaging
geomelry given in Appendix 1. Let the viewpaoint be al the origin with the view
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Fig. 7.3 FOE for rectilingar observer motion. (b An mmage. (b) Later image. (o) Flow
shows different FOES for static e and movang ohject,

direction out along the positive Zaxis, and &1 the focal length £ = 1. Then the per-
speclive distortion equations simplify o
(1.1

X' =

ra |k

ra e

y - (1.2)

In the next two sections the letters i, v, and w (sometimes writien as func-
tions of §) denole world point velocity components, or the time derivatives of
world coordinates (x, y, z). Observer motion with instantaneous velocity (—d/dt,
~dy/dt, —dz/dt} = (=, —v, —w), keeping the coordinate system attached to the
viewpoinl, gives poinls in a stationary world & relative velocity (&, v, wl. Considara
point located at (xp. pg, 29) at some initial time, After a time interval ¢, its image
will b at

.51:'{|+Hf _}'u""“‘l‘

o+ oW Eg o owy (1.3)

(x) y) =
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Az rvaries, this perametric “*flow-path”™ equation is that of a straight ling; s [ goes
to minus infinity, the image of the point travels back along the straight line toward
& particular point on the image, namely,

BV

W

FOE = (7.4)

This focus of expansion 15 where the optical Mow onginates on the image. If the ob-
server changes direction (or objects in the world change their direction), the FOE
changes as well,

7.2.2 Adjacency, Depth, and Collision
The fow path equation of & point moving with a constant velocity reveals informa-

tion aboul its depth in 2. The information is not provided directly, since all flow
paths for points at a given depth do not look alike. However, there is the elegant re-

lation
D) _ oz}
Fir) wir) \15)

Here aguin wis dz/dr, and Vis 40/ de. Dis the distance along the straight fow path
from the FOE 1o the image of the point. Thus the distance/velocity ratio of the
point’s image is the same as the distance/velocity ratio of the world point. This
result is basic, bul perhaps not immediately obvious,

The above relation i called the tUme-to-adjacency relation, because the
right-hand side, z/w, i8 the z=distance of the point rom the image plane divided by
its velocity toward the plane. 11 is thus the time until the point passes through the
image plane. This basic time interval is clearly useful when dealing with world ob-
jects; it changes when the magnitude of the world point's velocity {or the
observer's) changes.

Knowing the depth of any point determines the depth of all others of the
same velocity w, for it follows from the two time to adjacency egquations of
the points that
Ilfl':'ﬂ;“} F.EH

i"r;':i'li'.ﬂ| ()

The time-to-adjacency equation allows easy determination of the world coor-
dinates of a point, scaled by its 7 velocity. I the observer is mobile and in control of

his own velocity, and if the world is stationary, such scaled coordinates may be use-
ful. Using the perspective distortion equations,

(7.6}

20r) =

(1) = % (1.7

i) W (7.8)

x(r) = X001 (7.9)
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As a last example, let us relate optical flow to the sensing of impending colli-
sions with world ohjects. The focal point of the imaging system, or origin of coordi-
nates, is at any instant headed “‘toward the focus of expansion,” whose image
coordinates are (u/w, v/ w). [tis thus traveling in the direction

o=(& XL (7.10)
W 8

and is following at any instant a path in the environment instaniancously defined
by the parametric equation

(%, p, 2) = p) = .r{ia.:. 'E' 1) {7.11}

where facts like a real scalar measure of time. Given this vector expression for the
path of the observer, one can apply well-known vector formulas from analytic solid
geometry to derive useful information about the relation of this path to world
painis, which are also veciors.

For example, the position P along the observer’s path at which a world point
approaches closest is given by

00 - x)
i P 7.

P 10 . 0 {7.12)
where O is the direction of observer motion and x the position of the world point,
Here the period () is the dot product operator. The squared distance {7 between
the observer and the world point at closest approach is then

= (x x) = (x-0F/{0-0) (7.13)

7.2.3 Surface Orientation and Edge Detection

It 15 possible 10 derive surface onentation and 1o characienize certain types of sur-
face discontinuities (edges) by their motion. A formalism, computer program, and
biologically motivated computational mechanism for these calculations was
developed in [Clocksin 1980].

This section outlines mainly the surface orientation aspect of this work, As
usual, the model is for a monocular observer, whose focal point is the origin of
coordinates. An unusual feature of the model is that the observer has & spherical
retina. The world is thus projected onto an *image unil sphere” instead of an im-
age plane. World points and surface orientation are represented in an observer-
centered Cartesian coordinate system. The image sphere has a spherical coordi-
nate system which may be conzidered as ‘longitude™ @ and “latitude’” ¢. These
coordinates bear no relation to the orientation of the retina. World points are then
determined by their image coordinates and a range r. An observer-centered Carte-
sian coordinate system is also useful, it is related to the sphere as shown in Fig. 7.4,
and by the transformations given in Appendix 1,

The fow of the image of a freely moving world point may be found through
the following derivation. As before, |2t the world velocity of the point (possibly in-
duced by observer motion) (dx/dy, dv/dr, do/d0) be written (w, v, w). Similarly,
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Fig. 7.4 Spherical coordinate spstem, and the definition of o and r.

write the angular velocities of the image point in the # and ¢ directions as

a8
& s (7.14)

g - % (7.15)

Then from the coordinate transformation equations of Appendix 1,
¥ = xtan# (1.16)

Differentiating and solving for d8/dr (written as &) gives
B m ¥ —uland 17
X .'EE‘EE { }

Substituting for x its spherical coordinate expression ¢ sind cos @ and simplifying
yields the general expression for flow in the # direction:

- Y o5t — u sing
& e {7.18)
The derivation of ¢ proceeds from the coordinate transformation equation
I = r OS5 (7.19)

Differentiating, solving for oy dr (written as €), and using
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E_xu+gu+zw 7
. - (7,200

vields the general expression for flow in the & direction:

- {_IH +ﬂ'|;:'.|i'}m5¢l_m {?J].}
A
Az usual, general point motions are rather complicated to deal with, and
mare consiraints are needed if the optic fow 15 o be *inverted” 1o discover much
about the oulside world. Let us then make the simplification that the world is sta-
tionary and the observer is traveling along the z direction at some speed 5 (This as-
sumption is briefly discussed below.} Explicitly, suppose that

E

p=f yv=0 w==5

Substituting these into the general flow equations (7.18) and (7.21) yields
simplified flow equations:

5=0 (7.22)
¢ = Ssing (7.23)

r
Thus ris a function of @ and ¢ and therefore sois €.

It i5 this simplified flow equation which forms the basis for surface orientation
calculation and edge detection. The goals are to assign to any point in the flow field
one of three interpretations: edge, sueface, or space and also o derive the type of
cdge and the orientation of the surface,

To find surface orientation, represent the surface normal of a surface E by
two angles o and  defined as in Fig. 7.4 with the two planes of o and 7 being the
RZand (R planes, respectively. The slant is measured relative to the line of sight,
denoted by R in the figure. o and = correspond to depth changes in “‘depth
profiles’” oriented along lines of constant & and ¢, respectively. Thus,

1

tanao = |—
r

dr
e [7.24)

ir
T (7.25)

Surface orientation is defined by o and = or equivalently by their tangents. A
surface perpendicular o the line of sight haso =+ =10,

Equations (7.24) and (7.25) assume the range ris known. However, one can
determine them without knowing r through the simplified flow equaticn, Eq.
{7.23). The latter may be writlen

r

tamT - |-I-'

_ Ssind
elid, &)

r

where e (8, &) gives the flow in the ¢ direction. Differentiating this with respect o
8 and ¢ gives
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Ar _ o ecosd —sin g (de/dp)
B 5 = (7.26)

Hr _ _ Ssind (e/dd)
ﬂ'ﬂ 2

(7.27T

These last three equations may be substituted into Egs. (7.24) and (7.25), and the
results may then be simplified to the following surface orientation equations:

tano = ¢olg — -:_?;Ine (7.28)
tany 7 = — -2 (it €} (7.29)
i %

These tangents are thus easily computed from optical flow. The resull does
not depend on velocily, and no depth scaling is required. In fact, absolute depth is
not computable unless we know more, such as the observer speed,

Turning brielly 1o edge perception: Although physical edges are a depth
phenomenon, in flow they are mirrored by ¢, the low measure that allows deter-
mination of orientation without depth. In particular, it is possible to demonstrate
that the Laplacian of € has singularities where the Laplacian of depth has singulari-
lies. An arc on the sphere projecis oul onto a “depth profile™ in the world, along
which depth may vary. If the arc is parameterized by o, relations among the depth
profile, flow profile, and the singularities in flow are shown in Fig. 7.5, Thus the
Laplacian of € provides infermation about edge type but not about edge depth.

The formal derivatiens are at an end. Implementing them in a computer pro-
gram or in & biological system requires solutions to saveral technical problems.
More detzils on the implementation of this model on a computer and a possible
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implementation using low-level physiological vision primitives appear in [Clocksin
1980]. There are some data on human performance for the tvpes of Lasks at-
templed by the program. The assumption of a fixed environment basically implies
that flow molions in the environment are likely 10 be interpreled as observer mo-
tions. This view 15 rather sirikingly borne oul by ““swaying room”” experiments
[Lee and Lishman 1973], in which a subject stands in 4 swayable visual environ.
ment. LA large, low-mass bollomless box suspended from above may be lowered
around the subject, giving him a room-like visual environment.) When the hang-
ing “‘room" is made 1o sway, the subject inside tends 1o lose balance. Further,
moving surfaces in the réal world are quite ofien objects of nterest, such as an-
irmals.

A survey of depth perception experiments [Braunstein 1976] points 1o mo-
tion a5 the dominant indicator of surface orientation perceplion. Random-dot
displays of monocular flow patterns [Rogers and Graham 1979] evoke striking per-
ceprions of solid oriented surfaces; fow may be adequate for shape and depth per-
ceplion even with no other depth information, The experiments on perceplion of
edges," or discoentinuities in Mow cauvsed by discontinuities in depth of textured
surfaces, are less common. Howewver, there have been enough 1o provide some
confirmation of the model.

The computational model s consistent with and has correctly predicted
paychological data on human thresholds for slant and edge perceplion in optical
Now fields. (The thresholds are on the amount of slant to the surface and the depth
difference of the edge sides.) The computational model can be used 1o determine
range, but only to poor accuracy; this happens to correspond with the human trait
that orientation is much more accurately determined by flow than is range. Quanti-
tatively, the accuracy of erientation and range determinations are the same for the
maodel and for human beings under similar conditions.

7.2.4 Egomotion

It is possible 1o extract information aboul complex observer mations Mrom optical
flow, although at considerable computational cost. In one formulation [Prazdny
1979], a model observer is allowed to follow any space curve in an environment of
slatignary objects, while al the same time tumming its head. It is possible 1o desive
formulae that determine the observer’s instantaneous velocity vector and head ro-
tational vector from a small number (six) of flow vectors in the image on a {stand-
ard fat) retina,

The equations that describe flow given observer motion and head rotation
can be quile compactly written by using vecior operators and a polar coordinate
system (similar 1o that of the last section). The inherent elegance and power of the
vector operations is well displayed in these calculations. Inverting the equations
results ina system of three cubic equations of 20 terms each. Such a system can be
solved by normal methods for simultaneous nonlinear equations, but the solutions
tend to be relatively sensitive 1o noise. In the noise-free case, the method seems o
perform quite adequately.

The calculation yields a method for deriving relative depth, or the ratio of the
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distances of points from the observer. An approximation to surface crientation
may be oblained using several relative depth measuremients in a small area and as-
suming that the surface normal varies slowly in (ne area.

7.3 UMDERSTAMDING IMAGE SECQQUENCES

An image sequence s an ordered sel of images. The image sequences of interest
here are samplings of four-dimensional space-time. Commonly, a8 in a movie, the
images are iwo-dimensional projections of a three-dimensional physical world, se-
quenced through time. Sometimes the sequence consists of two-dimensional im-
ages of essentially 1wo-dimensional slices of the three-dimensional world, se-
quenced through the third spatial dimension. Some of the technigues in this sec-
tion are useful in interpreting the three-dimensional nature of objects from such
spatial image sequences, bul the main concern here 15 with temporal image se-
quences. In many practical applications, the inpul must be such a sequence, and
continuous motion must be inferred from discrete location differences of image
painis. The thrust of work under these assumptions is often 1o extend static image
understanding by making models that incorporate or explain ohiects in motion, ex-
tending segmentation to work across time [Thompson 1979, Tsotsos 1980].

When asked why he was listening 1o a metronome ticking, Ezra Pound is said
o have replied that he did not listen to the ticks, but 1o the “‘spaces between
them." Like Pound, we take the ficks, or images, as given, and are really in-
terested in what goes on ““between the licks."" We usually want 1o determine and
describe how the images are related 1o each other. This information must be
derived from the stalic images, and two approaches immediately present them-
selves: broadly, the first 15 10 look for differences between the images, and the
second is bo look for similarities.

These two approaches are complementary, and are often used together, A
general paradigm for objecl-ornented motion analysis is the following:

1. Segment (describe) the individual images. This process may be complex,
yielding a relational structure or a segmentation into regions or edges, An im-
portant special case is the one in which the description (segmentation) process
is null and the description is just the image itself, For example, an initial high=
level static description is impossible if motion is (o be used as an aid (o seg-
mentation.

2. Compute and describe the differences or similarities between the descriptions
lor undescribed images).

3. Build a description of the sequence as a whole from the single-frame primitives
and descriptions of difference or similarity that are relevant (o the purpose at
hand.

7.3.1 Calculating Flow from Discrete Images

This meihod is a form of disparity calculation that is not only used for flow calcula-
tions, bul mav also be used for stereo matching or tracking applications, The com-
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putations are implemented with “‘relaxation™ techniques.

The Now calculations have so far assumed an underlying continuous image
which was densely sampled. With those assumptions and a few more the funda-
mental motion equation allows the calculation of flow (Chapter 3). The approach
of this section is to identify discrete poinis in the image that are very different from
their surround. Given such discrete points from each of two images at different
times, the problem becomes one of maiching a point in one image with the right
point (if it exists) in the other image. This matching problem is known as the
correspondence problem [Duda and Hart 1973, Aggarwal et al 1981). The solution
1o the correspondence problem in the case of motion is, of course, the optic flow.

One algorithm for matching distinet points from two different frames [Bar-
nard and Thompson 1979] breaks the matching problem into two steps. The first is
the identification of candidate maich poinis in each of the two frames. The second
i an ilerative algorithm which adjusis maich probabilities for pairs of match points.
After successlul termination of the algorithm, correct maiches have high probakhil-
ities and incorrect malches have very low probabilities.

The Moravec interest operator ([Moravee 1977); Section 3.2) produces can-
didate match points by measuring the distinctness of a local piece of the image
from its surround. Each frame is analyzed separately 50 that the end result s two
scts of points 5, and 5;, one from cach frame, which are candidates to be matched.
Candidates in ¥, are indexed by fand those in 54 by [

The iterative part of the algorithm is initialized with a data struciure for the
possible matches that explaits the heuristic that a point in the world does not move
large distances between frames. Potential malches for a given point X, in 5, the
first image, are all points ¥; in 53 such that

bz, — ¥l € Vo (7.30)

where vy, i5 the maximum disparity allowed between poinis. All points that are
selecied by the Moravec operator have a given disparity vector v, and are kepl as
possible maiches. Each disparity has an associated probability P, which changes
through time as the most likely disparities are found. The information kept for
each poini X; in §; looks like

(x (g, Py )lvy, By)--- (¥ P*)) (7.31)

where F*is a special symbol that denotes *“no match, ' and all the j, are members
of 53 Storing the Mow vectors v implicitly stores the corresponding point in 53
since ¥, = x, + v,,. Since the probabilities are adjusted iteratively, one final index
is needed 1o denote the iteration value so that P actually becomes F7forn 2 0.

The initial approximation for the probabilities P takes advantage of the
“common molion™ hewristic: I v, is the correct match point for x,, the image near
¥, should look like the image near x,. Thus Fj' can be defined by

0 o 1 1 i
Py T7 oy for x in 5 (7.32)
where
wy= X l0ix + dx, ) = fly, + dx, )P (7.33)
Lfm| g &
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and ¢ is constant. The updating formula is complex in form butl basically is a
weighted sum of neighboring match probabilities where the neighboring match is
consistent (i.e., has nearly the same velocity). A neighboring match k is consistent
if

The goodness of a particular match is measured by g,,, where
g - b b ! (7.35)
kamngighborof § [ .0 &l satizhes: (T J4)
and the probabilities are updated by
Pl =PI~ (d + Bg,) (7.36)
Py = JL— {1.37)
LE

4 En i e maich

where the function of Eq. (7.36) is to renormalize the probabilities and 4 and Bare
constants,

The following simplified example makes these ideas more concreie,

Consider the situation given in Fig. 7.6, where the points in (a) are from 5,
and the points in (b} are from $;. Using hypothetical values for P, an initial
match data siructure is, in terms of Eq. (7.31):

({4, 10) ((5, 00, 0.7) ({4, -5), 0.25) ({2, —-8), 0.05))
(14, 6) (5 4, 0.5) ((4,-1), 0.3} ({2, -4, 0.2))
(2,3 (7,7, 03) (6 2), 0.35) ({4, =1, 0.2D)

¥ ¥
- & =1 1] = w =1
Efl= B
El- w =3 Bp=
L
4 4|
[ |
2|~ S =3
] ] i i ] ] ] ] 1
1] 2 4 8 % 1] 2 4 ] 2 10 ”
fal 3]

Fig. 7.6 Discreie matching: a conorels example.
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Also, Dv..,. = 1, using the chesshoard norm. Using the updating formula (7.35),
the first set of g, s is given by

03 02 0
[gl=10 09 025
0 0 03

and the corresponding unnormalized probabilities, with 4 = 0.3 and 8= 3, are
1.11 0.875 0.015

[B)] = |0.15 279 0.80
0.09 0.105 0.65

which are normalized to be

0.55 0.44 001
[P)1=lo.04 075 0.21
0.11 0,12 074

50 after one iteration the maich structure is already starting to converge to the best
match of P, = 1, £, = 0for i = j. Note that in general P, and g, are, in matrix
form, sparse due 1o the consistency condition (7,34), To see the results for an ex-
ample of a more appropriate scale, consult Fig. 7.7,

7.3.2 Rigid Bodies irom Motion

The human visual system is predisposed 1o interprel (perceive) two-dimensional
projections of moving three-dimensional rigid objects as just that—moving rigid
objects. This facility is an interesting one, since it persists even when all three-
dimensions information is removed from any singhe static view. This sorl of result
has been known for some lime [Wallach and O'Connell 1953, Johansson 1964).
The ability (o interprel points as three-dimensional objects demonstrated by
Johansson means that the interpretation process does not rely solely on monitor-
ing the changes of angles and length of lines, as suggested by Wallach and
O Connell.

Of course any change between two lwo-dimensional projections of points in
three dirmensions can be explained by any number of configurations and motions.
Owir visual system only accepis a few interpretations, ofien only one. This one is, in
the world of moving objects in which we live, useally correct. This ability 1o reject
unlikely interpretations is consistent with a “*rigidity assumption™ [Ullman 1979):
Any set of elemenis undergoing a two-dimensional transformation which has a
unique interpretation as a rigid body moving in space should be so interpreted. 1t
seems likely that something like this rigidity assumption is built info our visual sys-
tem. However, saying that does not tell us much about how it could possibly work.
Below we consider the problem of obtaining three-dimensional structure from sels
of corresponding two-dimensional points.

One related area of work is the reconstruction of three-dimensional structure
when the corresponding points in two dimensions are not known. The reconstruc-
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tion procedure must begin by matching points in the several views. [t can be shown
[Shapira 1974] that general wire-frame objects of straight wires (of which the edges
of polyhedra are only a special case) may be reconstructed from a finite number of
porspective projections, but that for general wire-frame objects, the number of
projections needed may be guite large. In fact, given any set of projections
[viewpoinis and viewing planes), an object may be constructed that iz only ambi-
guously specified by those projections, Further work on reconstruction from pro-
jections is reported in [Shapira and Freeman 1978, Wesley and Markowvsky 1981],
If point correspendences are known, it is possible 1o compule a unique
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three-dimensional location of four noncoplanar points from just three (ortho-
graphic) projections [Ullman 1979]. If the propections résull from noncoplanar
viewpoints, the recovery of three-dimensional structure is straightforward and is
oullined below. I the projections are from coplanar viewpoints, the computations
become more complex but siill vield a unigue result up 1o reflection. This second
case is an important one;, it applies if the camera 15 stationary and the ohject re-
volves about a single axis, for instance. Since the reconstruction is unique, the
method never gets a wrong structure from accurate two-dimensional evidence
aboul a rigid body. The probability that three views of four nonrigidly connected
points can be interpretated as a rigid body is very low. Thus, the method is unlikely
o report siruciure that is not there.

The method may be heuristically extended (o multiple objects. Given the ca-
pability of describing the three-dimensional structure of four poinis, one can seg-
ment karge collections of points by treating them in groups of four, deriving their
structure and hence their motion. Groups of points that are not rigid have a very
low probability of being interpreted as rigid, and the rest will presumably cluster
into sets that share motions associated with rigid objects in the imaged scene. Thus
the method to be described may be adaptable for image segmentation.

The calculation may be applied o coplanar points, If a unigque result is
derived, it is correct; otherwise, the fact that the points are coplanar is revealed.
Generally, accuracy of two-dimensional positional information can be sacrificed to
some degree if more points or more views are supplied. Perspective projections are
maore difficult to analyze. Such views can easily be treated approximately by the
technique of breaking them into four element groups and treating each group as if
it were orthographically projected in a direction depending on 115 position in the
scene, Thus perspective may be dealt with globally, although each group is locally
treated as an orthogonal projection. The assumption of orthographic projection im-
plies that the method cannod recover relative depth of objects. The method does
not lend itself well to **structure from receding motion™ in which the motion infor-
mation is largely encoded in the perspective effects which render objects larger or
smaller as they advance and recede. The method does not serve well to explain hu-
man performance on moving images of a few points on nonrigid objects (such as
those in Section 7.3.3).

Assume that three orthographic projections of four noncoplanar points are
given, and that the correspondence between the points in the projection is known,
Translational motion perpendicular 1o a projection plane is unrecoverable, and
translation in a plane parallel to the projection plane is explicitly reproduced in the
image by the projection process, The problem thus easily reduces (o the case that
one of the poinis is chosen as the onigin of coordinates, and stays fixed throughout
the process. This treatment follows that of [Ullman 1979].

Lzt the four points be 0, 4, 8, and C Three orthographic views, propections
on some planes [T, I15, and [1,, are the input o the process, A coordinate sysiem is
chosen with origin at 0, and a, b, and ¢ are vectors from 0 to A, B, and . Then
cach view has a two-dimensional coordinate system with the image of 0 at iis ori-
gin. Let p, and q; be the orthogonal unit basis vectors of the coordinate sysiems of
the I1,. Let the image coordinates of A, B, and Con I, be (x{a), pla)), (x (8],
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¥ib)), and (x(c), ylc)) for i = 1, 2, 3. The calculations produce veclors uy,
which are unit vectors along the lines of intersection of I1, with I1,.
The image coordinates are in fact

xla) =ap,  yla)=aq,
x(b) =bp  yib) = by, (7.38)
xlg) =ep ylg) = ey,

The unit vector u; is on both 1, and 11 ; hence for some r, 5, 4, and v,

B = b + 570 (7.38)
rJ + .':,!f = ]
Wy = Py + ¥4, (7.40)

i+ =1
Equations (7.39) and (7.40) yield
rlf.lpl + 'TI]'].I T !:l_l'p: e Hlquu' ':T-"l:l

Taking the scalar product of a, b, and ¢ with Eq. (7.41) vields three more egqua-
tions, which are linearly independent. These equations in r, 5, #;, and v, com-
bined with Eqgs, (7.39) and (7.40), yield two solutions differing only in sign. But
this means that {up lo a'sign) u, is determined in terms of the image coordinate
basis vectors (p,, g,) and (p,, q:I]- Twa u vectors determine one of the planes of
orthogonal projection. For instance, uy; and u,; lie in P5. Given the plane equation
for the I1,, the three-dimensional locations are compuied as the intersection of
lines perpendicular to the 11, and through the two-dimensional image points, Of
course, because of the ambiguity in sign, the expected mirror image ambiguity of
slructure exisis,

The extension to the case that w); = u;; = uy;, where the three viewpoinis
are coplanar, is not difficult, It is perhaps a little surprising that coplanar viewpaoints
still yield a unique interprefation.

An extension of the mathematics to perspective imaging is not difficult to for-
mulate, but the equations are nonlinear and musi be solved either conventionally,
say by the multidimensional Newton-Raphson technigue of Appendix 1, or
rle?:;h?p:s by cooperative algorithms of a more artificial intelligence Ravor [Lawion
1981).

In geometrically underconstrained situations, plausible interprelations can
sametimes be made by using other knowledge to give constrainis. For example,
one can minimize a second-difference approximation to the acceleration of poinis
in order to use the *‘constraint’” of smooth motion. Such a eriterion may find a sin-
gle “*best™ location for points. Another example is the use of position and velocity
commenality over time to establish rigid members in linkages (Section 7.3.3), a
first step to location determination.

To see how the equations might be sel up, consider the perspective geomeiry
of Section 7.2.1. In this simplified Cartesian system, Eqs. (7.1) and (7.2) are used
as before, Since z (x" ¥, 1) = (x, y, z), the location of any point is determined {up
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10 & scale factor, since the focal length is not explicit) from its image coordinates
and its depth coordinate, = For F 2 1 images and & 2 3 points there are FN — 1
unknowns (the ability 1o scale distance allows one point to be placed arbitrarily).

To apply the rigid body constraint, enough pairwise distances belween paints
must be specified to lock them into a rigid configuration. For three points, three
distances are necessary. Each additional point requires another three distances,
and so for each interframe imerval 3{N = 2) constraints are needed, for a total of
3(F = 1}(N = 2} constraints, Thus, whenever

IFN = GF=3IN+T 20 (7.42)

consistent equations from the constraints can be solved [Lawton 1981]). With two
views, five points are nesded; with three views, four points. This is not surprising,
given the preceding analysis for orthographic projections.

Consider the simple case of iwo points seen in two frames. If they are rigidly
connected, one constraint equation holds. It is equivalent to

(%) = :|;:|'{1|| — Iu} - {:'“ = !]-;:"fl_u - X33} (7.43)

are, respectively, the world and image coordinate vectors of point 7 in
Since x; = z;x"y, (recall (7.1) and (7.2)) the constraint becomes

iy (xyex) + 2fh (x) = 224420 0x')
= I‘ﬁ (x'yx'y) = Iﬁ {l'u'lru} + 12'“2'31[1‘}.‘!'}!} = i} (7.44)

A further constraint that objects only move in the “ground plane,"” or at a
constant y, has the effect of removing two unknowns through substitution in the
consiraint equation above. Since for arbitrary mand n,

{x;, x'
I'r:j:m: {.rli'.

-l'll'llﬂ ' Ifrﬁ.}llﬁ'ﬂ =t = :IIJ'I.:I {T.dil
T

I ™ ¢ {7.46)
Y ia

As a final example, a restriction to purely translational motion of the poimt
configurations yields the constraint

h:.. - :ﬂ,} - {I" = EH-:' = (7.47)

Expanding this as the product of unknown depths (z) and known image positions
(x") yields a veclor equation that may be writlen componentwise as three linear
equations in four unknowns. Recall that a focal length must be fixed, effectively
selting one unknown: saiting one z,, to | gives a system of three linear equations in
the other three 7.

7.3.3 Interpretation of Moving Light Displays— A Domain-Independent Approach
One of the domains that provides the purest aspects of motion vision is moving
light displays (MLDs). These are sequences of images which track only a few

discrete points per frame. A typical way to produce an ML is to attach small glass
bead reflectors 1o a persen’s major joints (shoulders, elbows, wrists, hips, knees,
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ankles), focus a strong light on him or her, and manipulate the contrast of a video-
tape recorder 50 as to produce on videotape a record of the movement of the
reflective points on the joints. A single frame from such a record is unrecognizable
by an inexperienced subject (Fig. 7.8).

However, a sequence of such frames quickly gives (typically in 0.4 second)
not only & compelling perception of motion of a three-dimensional body, but al-
lows recognition of the sequence as depicting a walking person, and a description
of the type of motion (walking backward, jumping, walking left), Complicated
scenes such as several independently moving bodies and couples dancing can be
recognized. Sophisticated judgments can be made, such as defermining the sex of a
subject from an MLD, or recognizing the gait of a friend [Johannson 1964],

MLDs thus present quile a challenge 1o computer vision. It could be that
MLDs of moving people are interpreted by specialized neural mechanisms ex-
pressly tailored 1o the purpose of dealing with any visual inpul whatever that sug-
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Fig. 7.8 Anr MLD for a man walking his dog.
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gesis moving people. MLDs certainly demonstrale that texture, continuous fields
of low, and especially that the interpretability of static versions of the scene areé not
necessary for human beings 1o do complex perceplion of cértain three-dimensional
abpecis.

This section is concerned with MLDs of moving human beings, and the in-
terpretation we desire consists of separating images of individuals, in deriving their
“eonnectivity” (i.e., the rigid links that connect the points), and possibly in
describing the three-dimensional motion in which the subjects are engaged.

MLDs produced with perspective projection have few of the pleazant proper-
tics of the rigid orthographic propection which were used in Section 7.2.1. In partic-
ular, both translating and rolating objects are inherently ambiguous in perspective
projections [Roache and Aggarwal 1979). The approximate method outlined in
Section 7.3.1, in which local groups of four points are considered rigid and ortho-
graphically projected, fails for MLDs of walking people. In many applications, di-
gitization error will limit severely the accuracy returned. Worse, in a typical 12-
point MLD of a moving person, there is never a rigid system of four noncoplanar
points. The small departures from rigidity occurring in 30 ms of normal walking are
enough to render the rigidity assumptions invalid [Rashid 1980].

An algorithm in [Badler 1975] extracts the trajectory of two moving points if
they move in parallel paths and are viewed by spherical projection. The projection
conditions are approximately mel in typical moving-person MLDs, bui the lack of
points moving in parallel paths is enough to render the algorithm inapplicable.

A good start in the interpretation of MLDs involves solving the point-
correspondence problem between frames. Knowing how points move from frame
o framde gives al least a start on perceiving the continuity of the objecis in the
scene. Solving this problem from frame 10 frame may be atlacked in any number of
ways; the relaxation approach of Section 7.2.3 is an example.

Another is to predict the location of a point in the Iwo-dimensional image
from its wvelocily in the preceding frame. Velocity is computed from the
differences in position of the point in the preceding two frames. Predicting where a
point will b¢ in frame 3 implies that one knew which point it was in frames 1 and 2.,
Ome way of getting the process started is to associate points in frames 1 and 2 that
are nearest neighbors. Evidence suggesis that human beings in fact are not infalli-
ble trackers of poinis in MLDs [Rashid 1980]. However, they do not let local in-
consistencics in point interpretation (say, if the ankle momentarily **turns into™
the knee) detract from their overall perception of a moving person. This is a good
example of how inconsistent interpretations arise in human vision,

A program can be given similar resilience by having it suspend judgment on
contradictory clues and use succeeding frames to resolve the problem [Rashid
1980; O"Rourke 1930]. Having established local point correspondences, the next
problem is o group the poinis inte coherent three-dimensional structures and
separate individual bodies moving in the scene. When constrainis on the scene are
available that make analytic techniques applicable (Section 7.3.1), explicit group-
ing of points prior to analysis may be unnecessary. In fact, with complex MLDs
such as Ullman studied (e.g. two transparent but spotly coaxial cylinders rotating
in opposite directions about an axis in the viewing plane), most naive grouping
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strategies based on iwo-dimensional motion in the image will fail, Ullman's
method chooses four-tuples of poinis from such a scene; on the average seven-
cighths of such groups involve points from both cylinders, but with accurale data
the algorithm can identify such nonrigid four-tuples. The remaining one-cighth of
the groups have consistent interpretations as rigid rotating groups, and the groups
fall into two classes, one for each cylinder.

One straightforward heuristic approach (o MLD interpretation enjoys
moderate success and does not use domain-dependent models [Rashid 1980]). It
has the charascleristic that it deals exclusively with two-dimensional motions in
order 1o extract information aboul three dimensions. The approach is more heuris-
tic than Lawton's and certainly mere than Ullman's {(Section 7.3.1). It is prey to
many of the same pitfalls that threatén any image-based (as opposed to world-
based) approach to computer vision. With sparse MLDs of nonrigid objects, clus-
tering algorithms may be used 1o group points into related structures. Rashid's
method computes the minimum spanning tree of points in a four-dimensional
space of two-dimensional position and two-dimensional velocity, That is, each
point in the MLD is represented at any time { by a four-vector

Lelf), pld, wied, wir])

where w and v are the velocily in image x and p coordinates. Points may be
clustered in this position-velocily space on Lthe basis of a four-dimensional
Euclidean metric, modified by information about distances derived from preceding
framwes. Perspective distortion can affect the usefulness of two-dimensional dis-
lances computed in previous (rames, and data scaling is useful to establish a rea-
sonable relation between uniis in the four-dimensional space. Rashid’s technique
i5 Lo scale the data in each dimension (o have unit variance and zero mean, and 1o
compute cumulative distances between points in a frame by a function such as

DLy =dld f)+ Bl 7} % 0.95 (7.48)

where 0,04, j) is the cumulative distance between points i and j in frame n, and
d i, j)istheir Euclidean distance.

This clustering method can successfully group points on the two cylinders in
the rotating-cylinder sequence mentioned above after seven frames. Figure 7.9
gives the results of clustering the data for the MLD of Fig. 7.8. Clustering is stable
after some 25 frames (about one-half of a step).

7.3.4 Human Molion Understanding— A Model-Directed Approach

Human motion understanding may be done with 2 much different approach than
the heuristic clustering applied to MLDs in Section 7.3.3. A very detailed model of
the domain can help restrict search, make inferences, disambiguate clues, and so
forth., A program for understanding images of human motion successfully wses
such an approach [0"Rourke 1980; O'Rourke and Badler 1980].

The body model accounts for such factors as relative location of body parts,
joint angle rangss, joint angle acceleration limits, collision checking, and gravity. A
motion simubation program drives a “bubble man™ representation of a person
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{Fig. 7.10a) [Badler and Smaoliar 1979]. This representation is used to produce a
shaded graphic rendition which serves as inpul 1o the motion understanding pro-
gram (Fig. 7.10b). Knowledge of the imaging process also provides constraints on
the configuration of the fgure represenied. For instance, perspective, the
figure/ground distinction, the location of features, and occlusion all have implica-
tions for the interpretation of the scene as a configuration of the model.

The system is another example of a cooperative, constraint-satisfying system
{Chapter 12}, this time one that involves a high-level domain-dependent model.

(s}

Fig. 7.1 Urderstanditg human molson through ithe incorporation of muny
consirainis. (o) Bubble Man [rom simulation progrems, (B Input 15 motion ender-
slander; a bowing man. g, dl [nitial and fnel steges in understanding the motion
al il biwing naan
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The constraints imposed by the model restrict the application of low-level opera-
tors, and their resulis reduce uncertainty in parts of the model configuration.
Through the relations between model parts, improved estimates for part locations
are evolved and propagate throughout the model, Figure 7.10¢c and d show how the
image of the bowing man is understood more accurately as time passes and more
constraints are propagated through the model. Tt should be noted that only the
hand, foot, and head features are explicitly searched for in the image. The boxes
represent possible locations for the obvious body parts. Note how the occlusion has
been understood.

7.3.5 Segmented Images

Moving Polygons and Line Drawings

Ag one step along the way 1o molion understanding, the analysis of ideal po-
Iygonal images was popular for a time [Aggarwal and Duda 1975; Martin and Ag-
garwal 1978; Potter 1975). The assumptions are usually that opaque polygons
move in parallel planes and may obscure one another (this is often called a 2.5-
dimensional situation). The viewpoint is somewhere “above’ the collection of
moving shapes, The viewer (program) is presented with a sequence of frames ei-
ther of line drawings or gray level images of the scene (Fig. 7.11). Polygon motion
is assumed small between frames. The goal is usually 1o segment the scenes into
polygons, and to extract such information as their direction and speed of motion.
The solutions io these problems usually reflect assumptions aboul the connectivity
of the polygons, or restrictions on their motion, and often revolve about the allow-
able topological and geometrical transformations that can take place in such
SCETEs,
For instance, in a frame with iwo polygons such as that shown in Fig. 7.12,
certain scene vertices belong 1o primitive polyhedra (they are ““true' vertices),
whereas others are *“false" artifacts of occlusion. The lines impinging at true ver-
tices will not change their angle of mesting through time, but false vertices may
change angles if the polygons rotate as they move. False vertices are usually ob-
tuse,

Complex connectivity changes can arise when nonconvex polygons slide past
one anather. Sorting out a coherent interpretation of a sequence of frames, espe-
cially in the presence of noisy vertex positions, is a challenging exercise.

A system was designed in [Badler 1975] which used sequences of line draw-
ings produced by a spherical projection of a three-dimensional world to reconstruct

>

Fig. 7.11 Twao frames (rom a motion image of three moving polygons
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