
Linda G. Shapiro = George C. Stockman
P

Perfect Corp.
Ex. 1021

COMPUTER VISION

Linda G. Shapiro

Department of Computer Science and Engineering
Department of Electrical Engineering

University of Washington
Seattle, Washington
shapiro @cs.washington.edu

George C. Stockman

Department of Computer Science and Engineering
Michigan State University
East Lansing, Michigan
stockman@cse.msu.edu

Prentice
Hall

oo

PRENTICE HALL, Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Shapiro, Linda G.
Computer Vision / Linda G. Shapiro, George C. Stockman.

p. cm.
Includes bibliographical references and index.
1. Computer Vision. I. Stockman, George C., 1943-— II. Title.

ISBN 0-13-030796-3

JTA1634.S48 2001

006.3’7—dc21 00-066556

Vice president and editorial director, ECS: Marcia J. Horton

Publisher: Tom Robbins

Associate editor: Alice Dworkin

Editorial assistant: Jessica Power

Vice president and director of production and manufacturing, ESM: David W. Riccardi

Production editor: Chanda Wakefield

Director of creative services: Paul Belfanti

Creative director: Carole Anson

Executive managing editor: Vince O’Brien
Managing editor: David A. George

Art director: Jayne Conte

Cover designer: Bruce Kenselaar

Art editor: Adam Velthaus

Manufacturing manager: Trudy Pisciotti

Manufacturing buyer: Dawn Murrin

Marketing manager: Holly Stark

Cover credit: Cover photo taken on safari in Kenya by Asya Ollis,

who discovered that the world is only black-and-white when we make it so.

Prentice © 2001 by Prentice-Hall, Inc.

See Upper Saddle River, New Jersey

All rights reserved. No part of this book may be reproduced, in any form
or by any means without permission in writing from the publisher.

Printed in the United States of America

[ORS nem)

ISBN 0-13-030796-3

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

1 INTRODUCTION 1

1.1 Machines that See? 2

1.2 Application Problems 3

1.2.1 A Preview of the Digital Image, 3

1.2.2 Image Database Query, 3

1.2.3 Inspecting Crossbars for Holes, 4

1.2.4 Examining the Inside of aHuman Head, 6

1.2.5 Processing Scanned Text Pages, 8

1.2.6 Accounting for Snow Cover Using a Satellite Image, 8

1.2.7 Understanding a Scene of Parts, 9

Ie) Operations on Images 10
1.3.1 Changing Pixels in Small Neighborhoods, 10
1.3.2. Enhancing an Entire Image, 11
1.3.3 Combining Multiple Images, 12
1.3.4 Computing Features from an Image, 13
1.3.5 Extracting Non-iconic Representations, 14

1.4 The Good, the Bad, andthe Ugly 14

15 Use of Computers and Software 15

1.6 Related Areas 15

vi

Lil

1.8

ee)

The Rest of the Book 16

References 17

Additional Exercises 18

IMAGING AND IMAGE REPRESENTATION

ail

Dad

ZS

2.4

2

2.6

phe |

2.8

Sensing Light 21

Imaging Devices 22

2.2.1 CCD Cameras, 22

2.2.2 Image Formation, 24

2.2.3 Video Cameras, 26

2.2.4 The Human Eye, 26

Problems in Digital Images* 27
2.3.1 Geometric Distortion, 27
2.3.2 Scattering, 27
2.3.3 Blooming, 28

2.3.4 CCD Variations, 28

2.3.5 Clipping or Wrap-Around, 28

2.3.6 Chromatic Distortion, 29
2.3.7 Quantization Effects, 29

Picture Functions and Digital Images 29
2.4.1 Types of Images, 29
2.4.2 Image Quantization and Spatial Measurement, 31

Digital Image Formats* 35
2.5.1 Image File Header, 36

2.5.2 Image Data, 36

2.5.3 Data Compression, 36
2.5.4 Commonly Used Formats, 36
2.5.5 Run-Coded Binary Images, 37

2.5.6 PGM: Portable Gray Map, 37

2.5.7. GIF Image File Format, 38

2.5.8 TIFF Image File Format, 38

2.5.9 JPEG Format for Still Photos, 38
2.5.10 PostScript, 39

2.5.11 MPEG Format for Video, 39
2.5.12. Comparison of Formats, 40

Richness and Problems of Real Imagery 41

3D Structure from 2D Images 42

Five Frames of Reference 42

2.8.1 Pixel Coordinate Frame I, 43

2.8.2 Object Coordinate Frame O, 44

Contents

21

Contents vii

2.8.3 Camera Coordinate Frame C, 44

2.8.4 Real Image Coordinate Frame F, 44
2.8.5 World Coordinate Frame W, 44

29: Other Types of Sensors* 45
2.9.1 Microdensitometer*, 45
2.9.2 Color and Multispectral Images*, 45
2.9.3 X-ray*, 46
2.9.4 Magnetic Resonance Imaging (MRI)*, 47
2.9.5 Range Scanners and Range Images*, 47

2:10 References 49

3 BINARY IMAGE ANALYSIS 51

34 Pixels and Neighborhoods 51

es Applying Masks to Images 53

3.3 Counting the Objects in anImage 54

3.4 Connected Components Labeling 56

3. Binary Image Morphology 63
3.5.1 Structuring Elements, 63
3.5.2 Basic Operations, 65
3.5.3 Some Applications of Binary Morphology, 68
3.5.4 Conditional Dilation, 71

3.6 Region Properties 73

ae Region Adjacency Graphs 81

3.8 Thresholding Gray-Scale Images 83
3.8.1 The Use of Histograms for Threshold Selection, 83
3.8.2 Automatic Thresholding: The Otsu Method*, 85

3.9 References 89

4 PATTERN RECOGNITION CONCEPTS 92

4.1 Pattern Recognition Problems 92

4.2 Common Model for Classification 94

4.2.1 Classes, 94

4.2.2 Sensor/Transducer, 94

4.2.3 Feature Extractor, 94

4.2.4 Classifier, 95
4.2.5 Building the Classification System, 95

4.2.6 Evaluation of System Error, 96

4.2.7 False Alarms and False Dismissals, 96

Contentsviii

4.3 Precision Versus Recall 97

4.4 Features Used for Representation 98

4.5 Feature Vector Representation 100

4.6 Implementing the Classifier 101
4.6.1 Classification Using the Nearest Class Mean, 101

4.6.2 Classification Using the Nearest Neighbors, 103

4.7 Structural Techniques 104

4.8 The Confusion Matrix 106

4.9 Decision Trees 107

4.10 Bayesian Decision-Making 114
4.10.1 Parametric Models for Distributions, 116

4.11 Decisions Using Multidimensional Data 117

4.12 Machines that Learn 119

4.13 Artificial Neural Nets* 119
4.13.1 The Perceptron Model, 120

4.13.2 The Multilayer Feedforward Network, 123

4.14 References 126

5 FILTERING AND ENHANCING IMAGES 128

eel What Needs Fixing? 129

5.1.1 An Image Needs Improvement, 129

5.1.2 Low-Level Features Must Be Detected, 129

3.2 Gray-Level Mapping 130
5.2.1 Histogram Equalization, 132

533 Removal of Small Image Regions 134
5.3.1 Removal of Salt-and-Pepper Noise, 134
5.3.2 Removal of Small Components, 135

5.4 Image Smoothing 135

5:9 Median Filtering 137

5.5.1 | Computing an Output Image from an Input Image, 139

a0) Detecting Edges Using Differencing Masks 141
5.6.1 Differencing 1DSignals, 14]
5.6.2 Difference Operators for 2DImages, 144

Py Gaussian Filtering and LOG Edge Detection 149

5.7.1 Detecting Edges with the LOG Filter, 151

Contents

me 0

Cn \D

DLO

Al

DAZ

o.13

5.7.2 On Human Edge Detection, 153

5.7.3 Marr-Hildreth Theory, 155

The Canny Edge Detector 157

Masks as Matched Filiers* 158

5.9.1 The Vector Space of All Signals of n Samples, 158
5.9.2 Using an Orthogonal Basis, 160

5.9.3 Cauchy-Schwartz Inequality, 162

5.9.4 The Vector Space of m x n Images, 162

5.9.5. A Roberts Basis for 2 x 2 Neighborhoods, 162

5.9.6 The Frei-Chen Basis for 3 x 3 Neighborhoods, 163

Convolution and Cross Correlation* 167
5.10.1 Defining Operations via Masks, 167

5.10.2 The Convolution Operation, 169

5.10.3 Possible Parallel Implementations, 172

Analysis of Spatial Frequency using Sinusoids* 172
5.11.1 A Fourier Basis, 174

5.11.2 2D Picture Functions, 175

5.11.3 Discrete Fourier Transform, 179
5.11.4 Bandpass Filtering, 181
5.11.5 Discussion of the Fourier Transform, 181

5.11.6 The Convolution Theorem*, 182

Summary and Discussion 184

References 185

6 COLOR AND SHADING 187

6.1

6.2

6.3

6.4

6.5

6.6

Some Physics of Color 188
6.1.1 Sensing Illuminated Objects, 189

6.1.2 Additional Factors, 190

6.1.3 Sensitivity of Receptors, 190

The RGB Basis for Color 191

Other Color Bases 193

6.3.1 The CMY Subtractive Color System, 193

6.3.2 HSI: Hue-Saturation-Intensity, 194

6.3.3 YIQ and YUVfor TV Signals, 197
6.3.4 Using Color for Classification, 198

Color Histograms 199

Color Segmentation 201

Shading 203
6.6.1 Radiation from One Light Source, 203

Contents

6.6.2 Diffuse Reflection, 204

6.6.3 Specular Reflection, 205
6.6.4 Darkening with Distance, 206

6.6.5 Complications, 207
6.6.6 Phong Model of Shading*, 208
6.6.7 Human Perception Using Shading, 208

6.7 Related Topics* 209
6.7.1 Applications, 209
6.7.2 Human Color Perception, 209

6.7.3 Multispectral Images, 210

6.7.4 Thematic Images, 210

6.8 References 210

TEXTURE 212

fel Texture, Texels, and Statistics 213

2 Texel-Based Texture Descriptions 214

U3, Quantitative Texture Measures 215
7.3.1 Edge Density and Direction, 215

7.3.2 Local Binary Partition, 217
7.3.3 Co-occurrence Matrices and Features, 217

7.3.4 Laws Texture Energy Measures, 220

7.3.5 Autocorrelation and Power Spectrum, 221

7.4 Texture Segmentation 223

aS References 224

CONTENT-BASED IMAGE RETRIEVAL 226

8.1 Image Database Examples 226

8.2 Image Database Queries 228

8.3 Query-by-Example 229

8.4 Image Distance Measures 230
8.4.1 Color Similarity Measures, 231
8.4.2 Texture Similarity Measures, 233
8.4.3 Shape Similarity Measures, 235

8.4.4 Object Presence and Relational Similarity Measures, 240

8.5 Database Organization 244
8.5.1 Standard Indexes, 244
8.5.2 Spatial Indexing, 247

Contents xi

8.5.3 Indexing for Content-Based Image Retrieval with Multiple
Distance Measures, 248

8.6 References 248

9 MOTION FROM 2D IMAGE SEQUENCES 251

9.1 Motion Phenomena and Applications 251

9:2 Image Subtraction 253

9:3 Computing Motion Vectors 254

9.3.1 The Decathlete Game, 255
9.3.2 Using Point Correspondences, 256
9.3.3 MPEG Compression of Video, 261

9.3.4 Computing Image Flow*, 262

9.3.5 The Image Flow Equation*, 263

9.3.6 Solving for Image Flow by Propagating Constraints*, 264

9.4 Computing the Paths of Moving Points 265
9.4.1 Integrated Problem-Specific Tracking, 271

9:5 Detecting Significant Changes in Video 272
9.5.1 Segmenting Video Sequences, 273
9.5.2 Ignoring Certain Camera Effects, 274
9.5.3 Storing Video Subsequences, 277

9.6 References 277

10 IMAGE SEGMENTATION 279

10.1 Identifying Regions 280
10.1.1 Clustering Methods, 281
10.1.2 Region Growing, 289

10.2 Representing Regions 291
10.2.1 Overlays, 292

10.2.2 Labeled Images, 292

10.2.3 Boundary Coding, 292

10.2.4 Quadtrees, 294

10.2.5 Property Tables, 294

10.3 Identifying Contours 295
10.3.1 Tracking Existing Region Boundaries, 295
10.3.2 The Canny Edge Detector and Linker, 297

10.3.3 Aggregating Consistent Neighboring Edgels into Curves, 301

10.3.4 Hough Transform for Lines and Circular Arcs, 303

10.4 Fitting Models to Segments 312

xii

11

12

Contents

10.5 Identifying Higher-level Structure 317
10.5.1 Ribbons, 317
10.5.2 Detecting Corners, 320

10.6 Segmentation Using Motion Coherence 321
10.6.1 Boundaries in Space-Time, 321
10.6.2 Aggregrating Motion Trajectories, 321

10.7 References 324

MATCHING IN 2D 326

Lil Registration of 2D Data 326

Pie Representation of Points 328

kes: Affine Mapping Functions 329

11.4 A Best 2D Affine Transformation* 339

LTS 2D Object Recognition via Affine Mapping 341

11.6 2D Object Recognition via Relational Matching 350

1 Nonlinear Warping 364

11.8 Summary 368

11.9 References 368

PERCEIVING 3D FROM 2D IMAGES 371

| 23) Intrinsic Images 371

1222 Labeling of Line Drawings from Blocks World 377

123 3D Cues Available in 2D Images 383

12.4 Other Phenomena 388
12.4.1 Shape from X, 388
12.4.2 Vanishing Points, 392
12.4.3 Depth from Focus, 393
12.4.4 Motion Phenomena, 393
12.4.5 Boundaries and Virtual Lines, 393
12.4.6 Alignments are Non-accidental, 394

5 The Perspective Imaging Model 395

12.6 Depth Perception from Stereo 397
12.6.1 Establishing Correspondences, 400

127 The Thin Lens Equation* 403

Contents

13

xiii

12.8 Concluding Discussion 406

12.9 References 407

3D SENSING AND OBJECT POSE COMPUTATION 410

13.1 General Stereo Configuration 411

132 3D Affine Transformations 413

13.2.1 Coordinate Frames, 413
13.2.2 Translation, 415
13.2.3 Scaling, 415
13.2.4 Rotation, 415

13.2.5 Arbitrary Rotation, 418
13.2.6 Alignment via Transformation Calculus, 419

13,3 Camera Model 422
13.3.1 Perspective Transformation Matrix, 423

13.3.2 Orthographic and Weak Perspective Projections, 426

13.3.3 Computing 3D Points Using Multiple Cameras, 428

13.4 Best Affine Calibration Matrix 431
13.4.1 Calibration Jig, 431
13.4.2 Defining the Least-Squares Problem, 431
13.4.3 Discussion of the Affine Method, 436

13.5 Using Structured Light 437

13.6 A Simple Pose Estimation Procedure 439

1 Pe An Improved Camera Calibration Method* 444

13.7.1 Intrinsic Camera Parameters, 445
13.7.2 Extrinsic Camera Parameters, 445

13.7.3 Calibration Example, 449

13.8 Pose Estimation* 453
13.8.1 Pose from 2D-3D Point Correspondences, 455
13.8.2 Constrained Linear Optimization, 456

13.8.3 Computing the Transformation Tr = {R, T}, 458

13.8.4 Verification and Optimization of Pose, 460

13:9 3D Object Reconstruction 460
13.9.1 Data Acquisition, 461
13.9.2 Registration of Views, 463

13.9.3 Surface Reconstruction, 464

13.9.4 Space-Carving, 464

13.10 Computing Shape from Shading 468

13.10.1 Photometric Stereo, 471
13.10.2 Integrating Spatial Constraints, 472

xiv

14

15

Contents

je Structure from Motion 472

13.12 References 475

3D MODELS AND MATCHING 479

14.1 Survey of Common Representation Methods 480

14.1.1 3D Mesh Models, 480
14.1.2 Surface-Edge-Vertex Models, 480

14.1.3 Generalized-Cylinder Models, 483

14.1.4 Octrees, 484
14.1.5 Superquadrics, 486

14.2 True 3D Models versus View-Class Models 488

14.3 Physics-Based and Deformable Models 489
14.3.1 Snakes: Active Contour Models, 489

14.3.2. Balloon Models for 3D, 493

14.3.3 Modeling Motion of the Human Heart, 494

14.4 3D Object Recognition Paradigms 495
14.4.1 Matching Geometric Models via Alignment, 496
14.4.2. Matching Relational Models, 504
14.4.3. Matching Functional Models, 513
14.4.4 Recognition by Appearance, 516

14.5 References 523

VIRTUAL REALITY 527

LSul Features of Virtual Reality Systems 528

Ls Applications of VR 529

[53 Augmented Reality (AR) 530

15.4 Teleoperation 533

(55 Virtual Reality Devices 535

15.6 Summary of Sensing Devices for VR 539

137 Rendering Simple 3D Models 540

15.8 Composing Real and Synthetic Imagery 542

15,9 HCI and Psychological Issues 546

15.10 References 546

Contents XV

16 CASE STUDIES 548

16.1 Veggie Vision: A System for Checking Out Vegetables 548
16.1.1 Application Domain and Requirements, 549

16.1.2 System Design, 550

16.1.3 Identification Procedure, 551
16.1.4 More Details on the Process, 551
16.1.5 Performance, 554

16.2 Identifying Humans via the Iris of an Eye 554
16.2.1 Requirements for Identification Systems, 555

16.2.2. System Design, 557
16.2.3 Performance, 560

16.3 References 561

1)

Image Segmentation

The term image segmentation refers to the partition of an image into a set of regions that
cover it. The goal in many tasks is for the regions to represent meaningful areas of the image,
such as the crops, urban areas, and forests of a satellite image. In other analysis tasks, the
regions might be sets of border pixels grouped into such structures as line segments and
circular arc segments in images of 3D industrial objects. Regions may also be defined as
groups of pixels having both a border and a particular shape such as a circle, ellipse, or
polygon. When the interesting regions do not cover the whole image, we can still talk about
segmentation, into foreground regions of interest and background regions to be ignored.

Segmentation has two objectives. The first objective is to decompose the image into
parts for further analysis. In simple cases, the environment might be well enough controlled
so that the segmentation process reliably extracts only the parts that need to be analyzed
further. For example, in the chapter on color, an algorithm was presented for segmenting
a human face from a color video image. The segmentation is reliable, provided that the
person’s clothing or room background does not have the same color components as a human
face. In complex cases, such as extracting a complete road network from a gray-scale aerial
image, the segmentation problem can be very difficult and might require application of a

great deal of domain knowledge.
The second objective of segmentation is to perform a change of representation. The

pixels of the image must be organized into higher-level units that are either more meaningful
or more efficient for further analysis (or both). Acritical issue is whether or not segmentation
can be performed for many different domains using general bottom-up methods that do
not use any special domain knowledge. This chapter presents segmentation methods that
have potential use in many different domains. Both region-based and curve-based units are

discussed in the following sections. The prospects of having a single segmentation system

279

280 Image Segmentation Chap. 10

Figure 10.1 (left) Football image and (right) segmentation into regions. Each region is a

set of connected pixels that are similar in color. See colorplate.

Figure 10.2 (left) Blocks image and (right) extracted set of straight line segments. The

line segments were extracted by the Object Recognition Toolkit (ORT). (Courtesy of John

Illingworth and Ata Etamadi.)

work well for all problems appear to be dim. Experience has shown that an implementor of
machine vision applications must be able to choose from a toolset of methods and perhaps
tailor a solution using knowledge of the application.

This chapter discusses several different kinds of segmentation algorithms including
the classical region growers, clustering algorithms, and line and circular arc detectors.
Figure 10.1 illustrates the segmentation of a colored image of a football game into regions
of near-constant color. Figure 10.2 shows the line segments extracted from an image of toy
blocks. In both cases, note that the results are far from perfect by human standards. However,
these segmentations might provide useful input for higher-level automated processing, for
example, identifying players by number or recognizing a part to be assembled.

10.1 IDENTIFYING REGIONS

* Regions of an image segmentation should be uniform and homogeneous with respect

to some characteristic, such as gray level, color, or texture.

* Region interiors should be simple and without many small holes.

* Adjacent regions of a segmentation should have significantly different values with
respect to the characteristic on which they are uniform.

Sec. 10.1 Identifying Regions 281

* Boundaries of each segment should be smooth, not ragged, and should be spatially

accurate.

Achieving all these desired properties is difficult because strictly uniform and homo-
geneous regions are typically full of small holes and have ragged boundaries. Insisting that
adjacent regions have large differences in values can cause regions to merge and boundaries
to be lost. In addition, the regions that humans see as homogeneous may not be homoge-

neous in terms of the low-level features available to the segmentation system, so higher-level
knowledge may have to be used. The goal of this chapter is to develop algorithms that will
apply to a variety of images and serve a variety of higher-level analyses.

10.1.1 Clustering Methods

Clustering in pattern recognition is the process of partitioning a set of pattern vectors into
subsets called clusters. For example, if the pattern vectors are pairs of real numbers as
illustrated by the point plot of Figure 10.3, clustering consists of finding subsets of points
that are “close” to each other in Euclidean two-space.

Figure 10.3 Set of points in a Euclidean

measurement space that can be separated

into three clusters of points. Each cluster

consists of points that are in some sense

close to one another. Clusters are designated

by the fill patterns inside the circles.

The general term clustering refers to a number of different methods. We will look at
several different types of clustering algorithms that have been found useful in image seg-

mentation. These include classical clustering algorithms, simple histogram-based methods,
Ohlander’s recursive histogram-based technique, and Shi’s graph-partitioning technique.

Classical Clustering Algorithms The genera! problem in clustering is to par-
tition a set of vectors into groups having similar values. In image analysis, the vectors re-
present pixels or sometimes small neighborhoods around pixels. The components of these

vectors can include:

1. intensity values,

2. RGB values and color properties derived from them,

3. calculated properties, and

4. texture measurements.

Any feature that can be associated with a pixel can be used to group pixels. Once
pixels have been grouped into clusters based on these measurement-space values, it is easy
to find connected regions using connected components labeling as in Chapter 3.

282 Image Segmentation Chap. 10

In traditional clustering, there are K clusters C), C2,..., Cx with means ™m,,™2,...,

mx. A least squares error measure can be defined as

K

D= >) >> le mel.
k=l xj; EC,

which measures how close the data are to their assigned clusters. A least-squares clus-
tering procedure could consider all possible partitions into K clusters and select the one

that minimizes D. Since this is computationally infeasible, the popular methods are ap-

proximations. One important issue is whether or not K is known in advance. Many algo-
rithms expect K as a parameter from the user. Others attempt to find the best K accord-

ing to some criterion, such as keeping the variance of each cluster less than a specified

value.

Iterative K-Means Clustering The K-means algorithm is a simple, iterative

hill-climbing method. It can be expressed as:

Form K-means clusters from a set of n-dimensional vectors.

1. Set ic (iteration count) to 1.

2. Choose randomly a set of Kmeans m,(1), m2(1),..., mx (1).

3. For each vector x; compute D(x;, m,(ic)) for each k = 1,..., K and assign

x; to the cluster C; with the nearest mean.

4. Increment ic by | and update the means to get a new set m,(ic), m2(ic),...,

mx (ic).

5. Repeat steps 3 and 4 until C;, (ic) = Cy(ic + 1) for all k.

“4
Algorithm 10.1 K-Means Clustering.

This algorithm is guaranteed to terminate, but it may not find the global optimum
in the least squares sense. Step 2 may be modified to partition the set of vectors into K

random clusters and then compute their means. Step 5 may be modified to stop after the

percentage of vectors that change clusters in a given iteration is small. Figure 10.4 illustrates

the application of the K-means clustering algorithm in RGB space to the original football
image of Figure 10.1.

Isodata Clustering —/sodata clustering is another iterative algorithm that uses a

split-and-merge technique. Again assume that there are K clusters Cy; €>, .2., Cre with
means m),m2,..., mx, and let XZ;be the covariance matrix of cluster k (as defined next).
If the x;’s are vectors of the form

Xj = (v1, v2,..., Up]

Sec. 10.1 Identifying Regions 283

Figure 10.4 (left) Football image and (right) K = 6 clusters resulting from a K-means

clustering procedure shown as distinct gray tones. The six clusters correspond to the six
main colors in the original image: dark green, medium green, dark blue, white, silver,

and black. See colorplate.

then each mean m1, is a vector

my = [mig, Mx, ..-, nk]

and &, is defined by

O11 O12 O1n

012 022 oe cOOn

m=]. ‘ ‘ ‘ (10.1)

Olin O2n +++ Onn

where oj; = o? is the variance of the ith component v; of the vectors and oj; = pjj0;0;

is the covariance between the ith and jth components of the vectors. (p;; is the correlation

coefficient between the ith and jth components, o; is the standard deviation of the ith

component, and a; is the standard deviation of the jth component.)

Figure 10.5 illustrates the application of the isodata clustering algorithm (given in
Algorithm 10.2) in RGB space to the original football image of Figure 10.1. This cluster
image was the input to aconnected components procedure which produced the segmentation

Figure 10.5 (left) Football image and (right) K=5 clusters resulting from an isodata

clustering procedure shown as distinct gray tones. The five clusters correspond to five

color groups: green, dark blue, white, silver, and black. See colorplate.

284 Image Segmentation Chap. 10

shown in Figure 10.1. The threshold t, for the isodata clustering was set to a size of 10

percent of the side of the RGB color-space cube.

EE

Exercise 10.1: Isodata vs. K-means clustering.

The isodata algorithm gave better results than the K-means algorithm on the football images
in that it correctly grouped the dark green areas at the top of the image with those near the

bottom. Why do you think the isodata algorithm was able to perform better than the K-means

algorithm?

Simple Histogram-Based Methods Iterative partition rearrangement schemes
have to go through the image data set many times. Because they require only one pass
through the data, histogram methods probably involve the least computation time of the

measurement-space clustering techniques.
Histogram mode seeking is a measurement-space clustering process in which it is

assumed that homogeneous objects in the image manifest themselves as the clusters in mea-

surement space, that is, on the histogram. Image segmentation is accomplished by mapping

the clusters back to the image domain where the maximal connected components of the
cluster labels constitute the image segments. For gray-tone images, the measurement-space

clustering can be accomplished by determining the valleys in the histogram and declaring
the clusters to be the interval of values between valleys. A pixel whose value is in the ith
interval is labeled with index i and the segment to which it belongs is one of the connected

components of all pixels whose label is 7. The automatic thresholding technique discussed
in Chapter 3 is an example of histogram mode seeking with a bimodal histogram.

Form isodata clusters from aset of n-dimensional vectors.

1. assign x; to the cluster / that minimizes

Dy = [x; —mJ’ Dy[x —mi).

2. Merge clusters i and j if

a ry ety

where T, is a variance threshold.

3. Split cluster k if the maximum eigenvalue of ¥, is larger than t,.

4. Stop when

|mj(t) —mi(t + 1)| <e

for every cluster i or when the maximum number of iterations has been reached.

Algorithm 10.2 Isodata Clustering.

Sec. 10.1 Identifying Regions 285

25

20

15

10

5 ——

0 oc Vy fF DO OP RP FP BP BP DY DN
rf © SOS S9 SC 2 Bake SRY

— | | | | ee =) o
© 8 Beate. | are Figure 10.6 Histogram of the blocks

eo SSS 8Ss 8S image of Figure 10.2.

AAA AAMT NRE IS BDI LAS TET SINT NINETEEN. LOT LEED BLL LN SEDELEL ALLER ELOY SLEEP BEALE ENDED EIEN TLE BELLE LENE BEE LASERS SEIT BITTE TOY

Exercise 10.2: Histogram mode seeking.

Write a program that finds the modes of a multimodal histogram by first breaking it into

two parts, as does the Otsu method in Chapter 3, and then recursively trying to break each

part into two more parts, if possible. Test it on gray-tone and color images.

In general, a gray-tone image will have a multimodal histogram, so that any automatic
thresholding technique will have to look for significant peaks in the image and the valleys that
separate them. This task is easier said than done. Figure 10.6 shows the histogram of the gray-
tone blocks image. A naive valley-seeking algorithm might judge it to be bimodal and place
the single threshold somewhere between 39 and 79. Trial-and-error threshold selection,
however, produced three thresholds yielding the four thresholded images of Figure 10.7,
which show some meaningful regions of the image. This motivates the need for knowledge-
directed thresholding techniques where the thresholds chosen depend on both the histogram
and the quality/usefulness of the resulting regions.

Ohlander’s Recursive Histogram-Based Technique Ohlander, Price, and
Reddy (1978) refine the histogram-based clustering idea in a recursive way. The idea is to
perform histogram mode seeking first on the whole image and then on each of the regions
obtained from the resultant clusters, until regions are obtained that can be decomposed no
further. They begin by defining a mask selecting all pixels in the image. Given any mask, a
histogram of the masked portion of the image is computed. Measurement-space clustering is
applied to this histogram, producing a set of clusters. Pixels in the image are then identified
with the cluster to which they belong. If there is only one measurement-space cluster, then
the mask is terminated. If there is more than one cluster, then the connected components

286 Image Segmentation Chap. 10

Threshold range 0 to 30

a

Figure 10.7 Four images resulting from

three thresholds hand-chosen from thea
Threshold range 101 to 179 Threshold range 180 to 239 _ histogram of the blocks image.

operator is applied to each cluster, producing a set of connected regions for each cluster

label. Each connected component is then used to generate a new mask which is placed

on a mask stack. The masks on the stack represent regions that are candidates for further

segmentation. During successive iterations, the next mask in the stack selects pixels in the

histogram computation process. Clustering is repeated for each new mask until the stack
is empty. Figure 10.8 illustrates this process, which we call recursive histogram-directed

spatial clustering.
For ordinary color images, Ohta, Kanade, and Sakai (1980) suggested that histograms

not be computed individually on the red, green, and blue (RGB) color variables, but on a set

of variables closer to what the Karhunen-Loeve (principal components) transform would
suggest: (R + G + B)/3, (R — B)/2, and (2G — R — B)/4.

Shi’s Graph-Partitioning Technique* The Ohlander and Ohta algorithms work
well on reasonably simple color scenes with man-made objects and single-color regions,
but do not extend well to complex images of natural scenes, where they give lots of tiny
regions in textured areas. Shi and Malik (1997) developed a method that can use color,
texture, or any combination of these and other attributes. They formulated the segmentation
problem as a graph-partitioning problem and developed a new graph-partitioning method
that reduced to solving an eigenvector and eigenvalue problem as follows.

Let G = (V, E) bea graph whose nodes are points in measurement space and whose
edges each have a weight w(i, j) representing the similarity between nodes i and ge The

goal in segmentation is to find a partition of the vertices into disjoint sets V;, V2, ..., Vin
so that the similarity within the sets is high and across different sets is low.

Sec. 10.1 Identifying Regions 287

Current
mask Compute histogram of

masked image Histogram

One cluster

terminate current mask

and pop next one

Cluster

Sky
Trees

Two

clusters

More than one

cluster

Three

components

Three resultant masks

Original mask covers
the whole image

Figure 10.8 Recursive histogram-directed spatial-clustering scheme. The original image

has four regions: grass, sky, and two trees. The current mask (shown at upper left)

identifies the region containing the sky and the trees. Clustering its histogram leads to two

clusters in color space, one for the sky and one for the trees. The sky cluster yields one

connected component, while the tree cluster yields two. Each of the three connected

components become masks that are pushed onto the mask stack for possible further

segmentation.

A graph G = (V, E) can be partitioned into two disjoint graphs with node sets A
and B by removing any edges that connect nodes in A with nodes in B. The degree of
dissimilarity between the two sets A and B can be computed as the sum of the weights of
the edges that have been removed; this total weight is called a cut.

cut(A, B) = 3 w(u, v) (10.2)
ue€A,vEeB

One way of formulating the segmentation problem is to look for the minimum cut in
the graph, and to do so recursively until the regions are uniform enough. The minimum cut
criterion, however, favors cutting small sets of isolated nodes, which is not useful in finding
large uniform color or texture regions. Shi proposed the normalized cut (Ncut) defined in
terms of cut(A, B) and the association of A and the full vertex set V defined by:

asso(A, V)= ae w(u, t) (10.3)
ucA,teV

288 Image Segmentation Chap. 10

The definition of normalized cut is then

cut(A, B) cut(A, B)
(10.4)

asso(A, V) asso(B, V)
Neut(A, B)=

With this definition, the cut that partitions out small isolated point sets will not have

small Neut values, and the partitions that do produce small Ncut values are more likely
to be useful in image segmentation. Furthermore, the related measure for total normalized

association given by

asso(A, A) —asso(B, B)
N A. B) = 11O).5)asso Ge) asso(A, V) a asso(B, V) ()

measures how tightly the nodes within a given set are connected to one another. It is related

to the Neut by the relationship

Nceut(A, B) = 2 — Nasso(A, B) (10.6)

so that either of them can be used, as convenient, by a partitioning procedure.
Given the definitions for Ncut and Nasso, we needa procedure that segments an image

by partitioning the pixel set. Shi’s segmentation procedure is given in Algorithm 10.3.
Shi ran this algorithm to segment images based on brightness, color, or texture infor-

mation. The edge weights w(i, j) were defined by

WC.)=HeTG

cino=nvlay «| aera UME IKGYEIX CIS: 2 (10.11)
0 otherwise

where

¢ X(i) is the spatial location of node i.

¢ F(i) is the feature vector based on intensity, color, or texture information and is

defined by

— F(i) = 1(i), the intensity value, for segmenting intensity images.

— F(i) = [v,v-s- sin(h), v-s -cos(h)](i), where h, s, and v are the HSV values,

for color segmentation.

~ F(i)=[|/ * fil,..., | * faxl]J@, where the f; are difference of difference of

Gaussian (DOOG) filters at various scales and orientations, for texture seg-
mentation.

Note that the weight w(i, 7) is set to 0 for any pair of nodes i and j that are more than a
prespecified number r of pixels apart.

. Algorithm 10.3 leads to very good segmentations of images via color and texture.
Figure 10.9 illustrates the performance of the algorithm on a sample image of a natural
scene. While the segmentation is very good, the complexity of the algorithm makes it

unsuitable for use in a real-time system.

Sec. 10.1 Identifying Regions 289

—_————_—__,
Perform a graph-theoretic clustering on a graph whose nodes are pixels and

whose edges represent the similarities between pairs of pixels.

1. Set up a weighted graph G = (V, E) whose nodeset V is the set of pixels of

the image and whose edgeset E is a set of weighted edges with w(i, j), the

weight on the edge between node i and j, computed as the similarity between

the measurement-space vector of i and the measurement-space vector of j. Let
N be the size of nodeset V. Define the vector d with d(i) given by

d(i) =) wii, j) (10.7)
J

so that d(i) represents the total connection from node i to all other nodes. Let
D be an N x N diagonal matrix with d on its diagonal. Let W be an N x N

symmetrical matrix with W(i, 7) = w(i, /).

2. Let x be a vector whose components are defined by

1 ifnodei isin A
Qi fe otherwise Mes)

and let y be the continuous approximation to xdefined by

er dj
Mee ches Xe) en rar (ol aaa). (10.9)

ae <0 d;

Solve the system of equations

(D—W)y =ADy (10.10)

for the eigenvectors y and eigenvalues i.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph
to find the splitting point such that Ncut is minimized.!

4. Decide if the current partition should be subdivided further by checking the

stability of the cut and making sure that Ncut is below a pre-specified threshold

value.

5. Recursively repartition the segmented parts if necessary.

Algorithm 10.3 Shi’s Clustering Procedure.

10.1.2 Region Growing

Instead of partitioning the image, a region grower begins at one position in the image (often
the top left corner) and attempts to grow each region until the pixels being compared are too
dissimilar to the region to add them. Usually a statistical test is performed to decide if this

1Shi showed that the second smallest eigenvector of the generalized eigensystem is the real-valued solution

to the normalized cut problem.

290 Image Segmentation Chap. 10

(d) (e) (f)

Figure 10.9 Original gray-tone image (a) and regions produced by the Shi segmentation

method (b)-(f). In result image (b), the selected region is the dark background region, and

it is shown in black. In all other results, the selected region is shown in its original gray

tones, with the remainder of the image shown in black. (Courtesy of Jianbo Shi.)

is the case. Haralick and Shapiro (1985) proposed the following region-growing technique
called the Haralick region-growing procedure, which assumes that a region is a set of
connected pixels with the same population mean and variance.

Let R be a region of N pixels neighboring a pixel with gray tone intensity y. Define
the region mean X and scatter S? by

ch |
= x SE I[r, c] (10.12)

[rc]leR

and

S? = De Gincl— x). (10.13)

[r,c]JER

Under the assumption that all the pixels in R and the test pixel y are independent and
identically distributed normals, the statistic

Nia N Ree 2
= so - %/5°| (10.14)~~ LW+td

has a Ty_, distribution. If T is small enough, y is added to region R and the mean and
scatter are updated using y. The new mean and scatter are given by

Xnew <—(NXoa + y)/(N +1) (10.15)

and

Sar Se Soa as (y =e nen) SeNC Giew Sak a) (10.16)

If T is too high the value y is not likely to have arisen from the population of pixels
in R. If y is different from all of its neighboring regions then it begins its own region. A

slightly stricter linking criterion can require that not only must y be close enough to the

Sec. 10.2 Representing Regions 291

Figure 10.10 (left) The blocks image and (right) a segmentation resulting from

application of the Haralick region-growing procedure. (Blocks image courtesy of John

Illingworth and Ata Etamadi. Segmentation performed by the GIPSY image processing

system.)

mean of the neighboring region, but that a neighboring pixel in that region must have a
close enough value to y.

To give a precise meaning to the notion of too high a difference, we can use an @level
statistical significance test. The fraction a represents the probability that a T statistic with
N — 1 degrees of freedom will exceed the value ty_;(q). If the observed T is larger than
ty—1(q@), then we declare the difference to be significant. If the pixel and the segment really
come from the same population, the probability that the test provides an incorrect answer

is @.

The significance level w is a user-provided parameter. The value of ty_|(@) is higher
for small degrees of freedom and lower for larger degrees of freedom. Thus, region scatters
considered to be equal, the larger a region is, the closer a pixel’s value has to be to the
region’s mean in order to merge into the region. This behavior tends to prevent an already
large region from attracting to it many other additional pixels and tends to prevent the drift
of the region mean as the region gets larger. Figure 10.10 illustrates the operation of the

Haralick region-growing procedure.

LETRAS 118DIE GELLER ESOT LEI RIB LBYAEE LEE LI LOLLAL LEN SDE AE ANSEL ELLIE EA EPO, LDL ELAN LAL ALEDEL SILI LES ELEN VELLA: ELE,

Exercise 10.3: Region Growing.

Implement the Haralick region-growing operator as a program and use it to segment gray-

tone images.

10.2 REPRESENTING REGIONS

Each algorithm that produces a set of image regions has to have a way to store them for
future use. There are several possibilities including overlays on the original images, labeled
images, boundary encodings, quadtree data structures, and property tables. Labeled images
are the most commonly used representation. We describe each representation next.

292 Image Segmentation Chap. 10

(a) Region-border overlay (b) Wire-frame-model overlay

Figure 10.11 Examples of overlays. (a) overlay of selected region borders onto a

football image. (b) overlay of wire-frame 3D object models onto an industrial parts image

((b) courtesy of Mauro Costa).

10.2.1 Overlays

An overlay is a method of showing the regions computed from an image by overlaying some
color or colors on top of the original image. Many image processing systems provide this
operation as part of their image-output procedures. Usually, the original image is a gray-tone
image and the overlay color is something that stands out well on the gray tones, such as red
or white. To show a region segmentation, one could convert the pixels of the region borders
to white and display the transformed gray-tone image. Sometimes more than one pixel in
width is used to make the region borders stand out. Figure 10.11(a@) shows the borders of
selected dark regions, including dark blue referees’ jackets and players’ numbers, overlayed
on a gray-tone football image. Another use for overlays is to highlight certain features of an
image. Figure 10.11(5) reprints an industrial part image from Chapter | in which projections
of the recognized object models are overlayed on the original gray-tone image.

10.2.2 Labeled Images

Labeled images are good intermediate representations for regions that can also be used in
further processing. The idea is to assign each detected region a unique identifier (usually an
integer) and create an image where all the pixels of a region will have its unique identifier as
their pixel value. Most connected components operators (see Chapter 3) produce this kind
of output. A labeled image can be used as a kind of mask to identify pixels of a region in

some operation that computes region properties, such as area or length of major axis of best-
fitting ellipse. It can also be displayed in gray-tone or pseudo-color. If the integer labels are
small integers that would all look black in gray tone, the labeled image can be stretched or
histogram-equalized to get a better distribution of gray tones. The segmentations of football
images earlier in this chapter are labeled images shown in gray tone.

10.2.3 Boundary Coding

Regions can also be represented by their boundaries in a data structure instead of an im-
age. The simplest form is just a linear list of the border pixels of each region. (See the
border procedure later in this chapter, which extracts the region borders from a labeled

Sec. 10.2 Representing Regions 293

Figure 10.12 Two boundary encodings:

chain-code and polygonal approximation.

The chain-code boundary encoding uses an

8-symbol code to represent 8 possible angles

of line segments that approximate the curve

on a square grid. The polygonal

approximation uses line segments fit to the

original curve; the end points of the lineEncoding scheme
100076543532 segments have real-valued coordinates and

are not constrainted to the original grid
Chain code representation Polygonal approximation points.

image.) A variation of the list of points is the Freeman chain code, which encodes the
information from the list of points at any desired quantization and uses less space than
the original point list. Conceptually, a boundary to be encoded is overlaid on a square
grid whose side length determines the resolution of the encoding. Starting at the begin-
ning of the curve, the grid intersection points that come closest to it are used to define
small line segments that join each grid point to one of its neighbors. The directions
of these line segments are then encoded as small integers from zero to the number of
neighbors used in the encoding. Figure 10.12 illustrates this encoding with an eight-
neighbor chain code. The line segments are encoded as 0 for a 0° segment, 1 for a
45° segment, up to 7 for a 315° segment. In the figure, a hexagon symbol marks the
beginning of the closed curve, and the rest of the grid intersection points are shown
with diamonds. The coordinates of the beginning point plus the chain code are enough
to reproduce the curve at the resolution of the selected grid. The chain code not only
saves space, but can also be used in subsequent operations on the curve itself, such as
shape-based object recognition. When a region has not only an external boundary, but
also one or more hole boundaries, it can be represented by the chain codes for each of

them.
When the boundary does not have to be exact, the boundary pixels can be approximated

by straight line segments, forming a polygonal approximation to the boundary, as shown at
the bottom right of Figure 10.12. This representation can save space and simplify algorithms

that process the boundary.

294 Image Segmentation Chap. 10

10.2.4 Quadtrees

The quadtree is another space-saving region representation that encodes the whole region,

not just its border. In general, each region of interest would be represented by a quadtree
structure. Each node of a quadtree represents a square region in the image and can have one

of three labels: full, empty, or mixed. If the node is labeled full, then every pixel of the square
region it represents is a pixel of the region of interest. If the node is labeled empty, then

there is no intersection between the square region it represents and the region of interest.
If the node is labeled mixed, then some of the pixels of the square region are pixels of the

region of interest and some are not. Only the mixed nodes in a quadtree have children. The

full nodes and empty nodes are leaf nodes. Figure 10.13 illustrates a quadtree representation
of an image region. The region looks blocky, because the resolution of the image is only
8 x 8, which leads to a four-level quadtree. Many more levels would be required to produce a

reasonably smoothly curved boundary. Quadtrees have been used to represent map regions

in geographic information systems.

@ @

M M M M

EE Moh eE baer Mele r ba Mebee ar
|e oar | |

BEER BERR BREE FERE

@ ®
Image region Quadtree representation

Figure 10.13 A quadtree representation of an image region. The four children of each

node correspond to the upper left, upper right, lower left, and lower right quadrants, as

illustrated by the numbers in circles for the first level of the tree. M= mixed; E= empty;
and F = full.

10.2.5 Property Tables

Sometimes we want to represent a region by its extracted properties rather than by its pixels.
In this case, the representation iscalled a property table. It is a table in the relational database
sense that has a row for each region in the image and a column for each property of interest.

Properties can represent the size, shape, intensity, color, or texture of the region. The features
described in Chapters 3, 6, and 7 are all possibilities. For example, in a content-based image

retrieval system, regions might be described by area, ratio of minor-to-major axis of the
best-fitting ellipse, two main colors, and one or more texture measures. Property tables can
be augmented to include or to point to the chain-code encoding or quadtree representation
of the region.

Sec. 10.3 Identifying Contours 295

Exercise 10.4: Computing area and perimeter.

Consider an image region represented by (a) a labeled image and (b) a chain code repre-
sentation.

1. Give algorithms for computing the area and the perimeter of the region.

2. Give the running times of your algorithms.

10.3 IDENTIFYING CONTOURS

While some image analysis applications work directly with regions, others need the borders
of these regions or various other structures, such as line and circular arc segments. This
section discusses the extraction of these structures from images.

SELLA AAS ESB LAIST EL ETL T BILLET CBS IEE AT ENON SSITE TELE OTIS TLE LEAL BEA VEEL SECODE ELT GREE AW 2LE IE IEEE REL BN Te OGRTE ELE,

Exercise 10.5: Testing for pixels in a region.

Consider an image region represented by (a) a labeled image and (b) a polygonal approxi-
mation to the boundary.

1. In each case, give an algorithm for testing if an arbitrary pixel [r, c] is in that region.

2. Give the running times of your algorithms in terms of the appropriate parameters, that
is, number of pixels in the region or number of segments in the polygonal approxi-
mation.

10.3.1 Tracking Existing Region Boundaries

Once a set of regions has been determined by a procedure such as segmentation or connected
components, the boundary of each region may be extracted. Boundary extraction can be
done simply for small-sized images. Scan through the image and make a list of the first
border pixel for each connected component. Then for each region, begin at its first border
pixel and follow the border of the connected component around in a clockwise direction
until the tracking returns to the first border pixel. For large-sized images that do not reside in
memory, this simple border tracking algorithm results in excessive I/O to the mass storage

device on which the image resides.
We will describe an algorithm called border which can extract the boundaries for all re-

gions in one left-right, top-bottom scan through the image. Border inputs a labeled image and
outputs, for each region, a clockwise ordered list of the coordinates of its border pixels. The

algorithm is flexible in that it can be easily modified to select the borders of specified regions.
The input to border is a labeled image whose pixel values denote region labels. It

is assumed that there is one background label that designates those pixels in part of a
possibly disconnected background region whose borders do not have to be found. Rather
than tracing all around the border of a single region and then moving on to the next region,
the border algorithm moves in a left-right, top-bottom scan down the image collecting
chains of border pixels that form connected sections of the borders of regions. At any given
time during execution of the algorithm, there is a set of current regions whose borders have

296 Image Segmentation Chap. 10

Find the borders of every region of a labeled image S.

S[R, C] is the input labeled image.
NLINES is the number of rows in the image.

NPIXELS is the number of pixels per row.

NEWCHAIN is a flag that is true when a pixel starts a new chain

and false when a new pixel is added to an existant chain.

procedure border(S);

{
for R:= 1 to NLINES

for C:= | to NPIXELS

{

LABEL:= S[R, C];
if new_region(LABEL) then add(CURRENT,LABEL);
NEIGHB:= neighbors(R,C,LABEL);
T:= pixeltype(R,C,NEIGHB),;
if T== ‘border

then for each pixel N in NEIGHB

{

CHAINSET:= chainlist(LABEL),;

NEWCHAIN:>= true;

for each chain X in CHAINSET while NEWCHAIN
if N==rear(X)

then {add(X,[R, C]); NEWCHAIN:= false}
if NEWCHAIN

then make_new_chain(CHAINSET,[R,C], LABEL);

}

for each region REG in CURRENT
if complete(REG)
then {connect_chains(REG); output(REG); free(REG)}

Algorithm 10.4 Finding the Borders of Labeled Regions.

Sec. 10.3 Identifying Contours 297

been partially scanned, but not yet output, a set of past regions that have been completely
scanned and their borders output, and a set of future regions that have not yet been reached

by the scan.

The data structures contain the chains of border pixels of the current regions. Since

there may be a huge number of region labels in the image, but only at most 2 x number-of -
columns may be active at once, a hash table can be used as the device to allow rapid access

to the chains of a region given the label of the region. (2 x number_of columns is a safe

upper bound; the actual number of regions will be smaller.) When a region is completed
and output, it is removed from the hash table. When a new region is encountered during the

scan, it is added to the hash table. The hash table entry for a region points to a linked list

of chains that have been formed so far for that region. Each chain is a linked list of pixel

positions that can be grown from the beginning or the end.

The tracking algorithm examines three rows of the labeled image at a time: The
current row being processed; the row above it; and the row below it. Two dummy rows of

background pixels are appended to the image, one on top and one on the bottom, so that all
rows can be treated alike. The algorithm for an NLINES by NPIXELS labeled image S is

as follows.

In this procedure, S is the name of the labeled image; thus S[R, C] is the value

(LABEL) of the current pixel being scanned. If this is a new label, it is added to the set

CURRENT of current region labels. NEIGHB is the list of neighbors of pixel [R, C] which

have label LABEL. The function pixeltype looks at the values of [R, C] and its neighbors to

decide if [R, C] is a nonbackground border pixel. If so, the procedure searches for a chain

of the region with label LABEL that has a neighbor of [R, C] at its rear, and, if it finds

one, appends [R, C] to the end of the chain by the procedure add whose first argument is

a chain and whose second argument is [R, C]. If no neighbor of [R, C] is at the rear of a

chain of this region, then a new chain is created containing [R, C] as its only element by the

procedure make_new-_chain whose first argument is the set of chains in which a new chain

is being added whose sole element is the location [R, C], which is its second argument. Its

third argument is the label LABEL to be associated with the chain.

After each row R is scanned, the chains of those current regions whose borders are
now complete are merged into a single border chain which is output. The hash table entrees
and list elements associated with those regions are then freed. Figure 10.14 shows a labeled

image and its output from the border procedure.

SR LA TI EE AEDEELSE ARBI IIE LGR LELTE ARLE ORO EID LEE LDLLADLEELA DPGELLLLDELEVA IDET TT

Exercise 10.6: Limitations of the border tracking algorithm.

The border tracking algorithm makes certain assumptions about the regions that it is tracking.
Under what conditions could it fail to properly identify the border of a region?

10.3.2 The Canny Edge Detector and Linker

The Canny edge detector and linker extracts boundary segments of an intensity image. It was
briefly introduced in Chapter 5 along with other edge detectors. The Canny operator is often
used and recent work comparing edge operators justifies its popularity. Examples of its use

298 Image Segmentation Chap. 10

SS),Syeeeyeee ee

(a) A labeled image with two regions

Region Length List

1 8 (3, 2)(3, 3)(3, 4)(4, 4)(5, 4)(65, 3), 2)(4, 2)
2 10 (2, 5)(2, 6)(3, 6)(4, 6)(5, 6)(6, 6)(6, 5)(S, 5)

(4, 5)(3, 5)

(b) The output of the border procedure Figure 10.14 Action of the border
for the labeled image procedure on a labeled image.

Figure 10.15 (top left) Image of headlight of a black car; (top center) results of Canny
operator with o = 1; (top right) results of Canny operator with o = 4; (bottom left) image

of car wheel; (bottom center) results of Canny operator with o = 1; and (bottom right)

results of Roberts operator. Note in the top row how specular reflection at the top left

distracts the edge detector from the boundary of the chrome headlight rim. In the bottom

row, note how the shadow of the car connects to the tire which connects to the fender:

Neither the tire nor the spokes are detected well.

were provided in Chapter 5: Figure 10.15 shows two examples of images of car parts taken
from a larger image shown in Chapter 2. Both of these show well-known problems with
all edge detection and boundary following algorithms: The contour segments from actual

object parts erroneously merge with contour segments from illumination or reflectance
boundaries. Such contours are difficult to analyze in a bottom-up manner by a general

object recognition system. However, top-down matching of such representations to models
of specific objects can be done successfully, as we shall see in subsequent chapters. Thus,

Sec. 10.3 Identifying Contours 299

the quality of these edge representations of images depends upon their use in the overall
machine vision system.

The Canny edge detection algorithm defined in Algorithm 10.5 produces thin frag-
ments of image contours and is controlled by the single smoothing parameter o. The image
is first smoothed with a Gaussian filter of spread o and then gradient magnitude and direction

are computed at each pixel of the smoothed image. Gradient direction is used to thin edges

by suppressing any pixel response that is not higher than the two neighboring pixels on
either side of it along the direction of the gradient. This is called nonmaximum suppression,

a good operation to use with any edge operator when thin boundaries are wanted. The two

8-neighbors of a pixel [x, y] that are to be compared are found by rounding off the com-

puted gradient direction to yield one neighbor on each side of the center pixel. Once the

gradient magnitudes are thinned, high magnitude contours are tracked. In the final aggre-
gation phase, continuous contour segments are sequentially followed. Contour following is

initiated only on edge pixels where the gradient magnitude meets a high threshold; however,
once started, a contour may be followed through pixels whose gradient magnitude meet a

lower threshold, usually about half of the higher starting threshold.
Image regions can sometimes be detected when boundary segments close on them-

selves. Examples of this are shown in Figures 10.16 and 10.17. Such segments can be

Figure 10.16 Identifying regions corresponding to symbols on surfaces is often easy

because they are created with good contrast. These results were obtained by applying only

the Canny operator: (left set) character carefully written with ink on paper; (right set)

weathered signage on a brick wall. (Left set of images courtesy of John Weng.)

Figure 10.17 Image of Mao’s Tomb and results of applying the Canny operator with o = | and

o = 2. Several objects are detected very well, but so are some shadows.

300 Image Segmentation Chap. 10

r inka Soe
Compute thin connected edge segments in the input image.

I[x, y] : input intensity image; o : spread used in Gaussian smoothing;

E[x, y] : output binary image;
IS[x, y] : smoothed intensity image;
Mag{[x, y] : gradient magnitude; Dir[x, y] : gradient direction,
Tiow is low intensity threshold; Thigh is high intensity threshold;

procedure Canny(I[], o);

{
IS[] = image I[] smoothed by convolution with Gaussian G,(x, y);
use Roberts operator to compute Mag [x, y] and Dir[x, y] from IS[];

Suppress_Nonmaxima(Mag[], Dir[], Tiow, Thigh);

Edge_Detect(Mag[], Tiows Thigh, E[]);

}

procedure Suppress_Nonmaxima(Mag[], Dir[]);

{

define +Del[4] = (1,0), (1,1), (0,1) (—1,1);
define —Del[4] = (—1,0), (—1-,1), (O,—1) G,—1);

for x := 0 to MaxX-1;
for y := 0 to MaxY-1;

{

direction := (Dir[x, y] + 7/8) modulo 7/4;
if (Mag[x, y] < Mag[(x, y)+Del[direction]]) then Mag[x, y] := 0;
if (Mag[x, y] < Magl[(x, y)+—Del[direction]]) then Mag{[x, y] := 0;

} procedure Edge Detect(Mag[], Tiow, Thighs E[]);
{

Oe x SN i) IMO = Ale

for y := 0 to MaxY - 1;

{

if (Mag[x, y] > Thigh) then Follow_Edge(x, y, Mag[], Tiows Thighs E[]);

}

procedure Follow Edge(x, YsMag[], Thows Thighs E[]);
{

E [x, yls= 1;

while Mag[u, v] > Tjow for some 8-neighbor [u, v] of [x, y]

E[u, v] := 1;

[x, y] := [u, v];

?

}

a

Algorithm 10.5 Canny Edge Detector.

Sec. 10.3 Identifying Contours 301

further analyzed by segmenting the set of boundary pixels into straight or circular sides,
etc. For example, the boundary of a rectangular building might result in four straight line

segments. Straight line segments can be identified by the Hough transform or by direct
fitting of a parameteric line model.

10.3.3 Aggregating Consistent Neighboring
Edgels into Curves

The border-tracking algorithm in Section 10.3.1 required as input a labeled image denoting
a set of regions. It tracked along the border of each region as it scanned the image, row-

by-row. Because of the assumption that each border bounded a closed region, there was
never any point at which a border could be split into two or more segments. When the input
is instead a labeled edge image with a value of | for edge pixels and 0 for non-edge pixels,

the problem of tracking edge segments is more complex. Here it is not necessary for edge
pixels to bound closed regions and the segments consist of connected edge pixels which

go from end point, corner, or junction to endpoint, corner, or junction with no intermediate

junctions or corners. Figure 10.18 illustrates such a labeled edge image. Pixel [3, 3] of
the image is a junction pixel where three different edge (line) segments meet. Pixel [5, 3]

is a corner pixel and may be considered a segment end point as well, if the application
requires ending segments at corners. An algorithm that tracks segments like these has to be

concerned with the following tasks:

1. starting a new segment,

. adding an interior pixel to a segment,

. ending a segment,

. finding a junction, and

nan &WwW bY

. finding a corner.

Figure 10.18 Labeled edge image

containing a junction of three line segments

at pixe! (3, 3] and a potential corner at

pixel (5, 3].

Exercise 10.7

Consider the contour following phase of the Canny edge-detection algorithm. When fol-
lowing an image contour by tracing pixels of high gradient magnitude, would it be a good
idea to select the next possible pixel only from the two neighbors that are perpendicular to
the gradient direction? Why or why not? Show specific cases to support your answer.

302 Image Segmentation Chap. 10

el
Exercise 10.8: Measuring across Canny edges.

Perform the following experiment. Obtain a program for the Canny edge detector or some
image tool that contains it. Obtain some flat objects with precise parallel edges, such as razor
blades, and some rounded objects, such as the shanks of drill bits. Image several of these

objects in several different orientations: Use high resolution scanning, if possible. Apply
the Canny edge detector and study the quality of edges obtained, including the repeatability
of the distance across parallel edges. Is there any difference between measuring the razor
blades, which have sharp edges and measuring the drill bits, which may have soft edges in

the image.

As in border tracking, efficient data structure manipulation is needed to manage the

information at each step of the procedure. The data structures used are very similar to those

used in the border algorithm. Instead of past, current, and future regions, there are past,

current, and future segments. Segments are lists of edge points that represent straight or
curved lines on the image. Current segments are kept in internal memory and accessed by a

hash table. Finished segments are written out to a disk file and their space in the hash table

freed. The main difference is the detection of junction points and the segments entering
them from above or the left and the segments leaving them from below or the right. We
will assume an extended neighborhood operator called pixeltype that determines if a pixel
is an isolated point, the starting point of a new segment, an interior pixel of an old segment,

an ending point of an old segment, a junction or a corner. If the pixel is an interior or end

point of an old segment, the segment ID of the old segment is also returned. If the pixel is a
junction or a corner point, then a list (INLIST) of segment IDs of incoming segments plus

a list (OUTLIST) of pixels representing outgoing segments are returned. A procedure for

tracking edges in a labeled image is given in Algorithm 10.6. Figure 10.19 gives the results
of its application on the labeled image of Figure 10.18.

Figure 10.19 Output of the edge_track

procedure on the image of Fig. 10.18,
SegmentID Length List assuming the point (5, 3) is judged to be a

1 (1, 1)(2, 2)(3, 3) corner point. If corner points are not used to3

2. 3 (1, 5)(2, 4)(3,3) terminate segments, then segement 3would
3 3 (3, 3)(4, 3)(5,3) have length 5 and list ((3, 3)(4, 3)(5, 3)
4 3 (5, 3)(5,4)(5,5) (5, 4)(5, 5)).

The details of keeping track of segment IDs entering and leaving segments at a junction
have been supressed. This part of the procedure can be very simple and assume every pixel
adjacent to a junction pixel is part of a different segment. In this case, if the segments are
more than one-pixel wide, the algorithm will detect a large number of small segments that
are really not new line segments at all. This can be avoided by applying a connected shrink

operator to the edge image. Another alternative would be to make the pixeltype operator
even smarter. It can look at a larger neighborhood and use heuristics to decide if this is just
a thick part of the current segment, or a new segment is starting. Often the application will

dictate what these heuristics should be.

Sec. 10.3 Identifying Contours 303

Find the line segments of binary edge image S.
S[R, C] is the input labeled image.
NLINES is the number of rows in the image.

NPIXELS is the number of pixels per row.

IDNEW is the ID of the newest segment.

INLIST is the list of incoming segment IDs returned by pixeltype.

OUTLIST is the list of outgoing segment IDs returned by pixeltype.

procedure edge_track(S);

{
IDNEW := 0;
for R := | to NLINES

for C := 1 to NPIXELS
if S[R,C] 4 background pixel

i
NAME := address(R, C); NEIGHB := neighbors(R, C);
T := pixeltype(R,C,NEIGHB,ID,INLIST,OUTLIST);
case

T = isolated point : next;

T = start point of new segment: {
IDNEW := IDNEW + 1;

make_new_segment(IDNEW,NAME); };
T = interior point of old segment : add(ID,NAME);
T =end point of old segment : {

add(ID,NAME);

output(ID); free(ID)} ;
T = junction or corner point:

for each ID in INLIST {

add(ID,NAME);

output(ID); free(ID);};
for each pixel in OUTLIST {

IDNEW := IDNEW + 1;

make_new_segment(IDNEW,NAME);} ;

Algorithm 10.6 Tracking Edges of a Binary Edge Image.

10.3.4 Hough Transform for Lines and Circular Arcs

The Hough transform is a method for detecting straight lines and curves in gray-tone (or
color) images. The method is given the family of curves being sought and produces the set
of curves from that family that appear on the image. In this section we describe the Hough

304 Image Segmentation Chap. 10

transform technique, and show how to apply it to finding straight line segments and circular

arcs in images.

RR ARE REET EIPR ELE ANIL BEBEOEIED EITEE EELGALENET NETD TOLLE ELLE PEL CELETT LETID ELIEEE ELLE LEED,

Exercise 10.9: Determining the type of a pixel.

Give the code for the operator pixeltype, using a3 x 3 neighborhood about a pixel to classify

it as one of the types: isolated, start or end, interior, junction, and corner.

The Hough Transform Technique The Hough transform algorithm requires an
accumulator array whose dimension corresponds to the number of unknown parameters in

the equation of the family of curves being sought. For example, finding line segments using
the equation y= mx + b requires finding two parameters for each segment: m and b. The
two dimensions of the accumulator array for this family would correspond to quantized

values for m and quantized values for b. The accumulator array accumlates evidence for

the existence of the line y = mx + b in bin A[M, B] where M and B are quantizations of

m and b, respectively.
Using an accumulator array A, the Hough procedure examines each pixel and its

neighborhood in the image. It determines if there is enough evidence of an edge at that

pixel, and if so calculates the parameters of the specified curve that passes through this

pixel. In the straight line example with equation y = mx + b, it would estimate the m and
the b of the line passing through the pixel being considered if the measure of edge strength

(such as gradient) at that pixel were high enough. Once the parameters at a given pixel

are estimated, they are quantized to corresponding values M and B and the accumulator
A[M, B] is incremented. Some schemes increment by one and some by the strength of the

gradient at the pixel being processed. After all pixels have been processed, the accumulator
array is searched for peaks. The peaks indicate the parameters of the most likely lines in
the image.

Although the accumulator array tells us the parameters of the infinite lines (or curves),
it does not tell us where the actual segments begin and end. In order to have this information,

we can add a parallel structure called PTLIST. PTLIST[M, B] contains a list of all the

pixel positions that contributed to the sum in accumulator A[M, B]. From these lists the
actual segments can be determined.

This description of the Hough method is general; it leaves out the details needed for
an implementation. We will now discuss algorithms for straight line and circle finding in
detail.

Finding Straight Line Segments The equation y = mx + b for straight lines
does not work for vertical lines. A better model is the equation d = xcos@ + ysin@ where d

is the perpendicular distance from the line to the origin and 6 is the angle the perpendicular
makes with the x-axis. We will use this form of the equation but convert to row (r) and col-

umn (c) coordinates. Since the column coordinate c corresponds to x and the row coordinate
r corresponds to —y, our equation becomes

d = ccos@ — rsin@ (10.17)

Sec. 10.3 Identifying Contours 305

(0, 0) 4

Line

Figure 10.20 The parameters d and 6 used
in the equation d = —rsinO + ccos@ of a

straight line.

where d is the perpendicular distance from the line to the origin of the image (assumed
to be at upper left), and @is the angle this perpendicular makes with the c (column) axis.

Figure 10.20 illustrates the parameters of the line segment. Suppose the point where the

perpendicular from the origin intersects the line is [50, 50] and that 6 = 315°. Then we
have

d = 50cos(315) — 50sin(315) = 50(.707) — 50(—.707) © 70

The accumulator A has subscripts that represent quantized values of d and 6.
O’Gorman and Clowes (1976) quantized the values of d by 3s and @by 10° increments in

their experiments on gray level images of puppet objects. An accumulator array quantized in
this fashion is illustrated in Fig. 10.21. The O’Gorman and Clowes algorithm for filling the

accumulator A and parallel list array PTLIST is given in procedure accumulate_lines below.

The algorithm is expressed in (row,column) space. The functions row_gradient and

column_gradient are neighborhood functions that estimate the row and column components

of the gradient, while the function gradient combines the two to get the magnitude. The
function atan2 is the standard scientific library function that returns the angle in the correct

quadrant given the row and column components of the gradient. We assume here that atan2

returns a value between 0° and 359°. Many implementations return the angle in radians

which would have to be converted to degrees. If the distance d comes out negative (for

Figure 10.21 The accumulator array for

finding straight line segments in images of
6 size 256 x 256.

306 Image Segmentation Chap. 10

example, for 9 = 135°), its absolute value gives the distance to the line. The actions of

the procedure are illustrated in Fig. 10.22. Notice that with a 3 x 3 gradient operator, the

lines are two pixels wide. Notice also that counts appear in other accumulators than the two

correct ones.
Procedure accumulate_lines is O’Gorman’s and Clowes’s version of the Hough

method. Once the accumulator and list arrays are filled, though, there is no standard method

for extracting the line segments. Their ad hoc procedure, find_lines, which illustrates some of

the problems that come up in this phase of the line segment extraction process, is expressed

as Algorithm 10.8:

Accumulate the straight line segments in gray-tone image S to accumulator A.

S[R, C] is the input gray-tone image.
NLINES is the number of rows in the image.

NPIXELS is the number of pixels per row.

A[DQ, THETAQ] is the accumulator array.

DQ is the quantized distance from a line to the origin.
THETAQ is the quantized angle of the normal to the line.

procedure accumulate_lines(S,A);

{

AG=i):
PTLIST := NIL;
for R := 1 to NLINES

for C := 1 to NPIXELS

{

DR := row_gradient(S,R,C);

DC := col_gradient(S,R,C);

GMAG := gradient(DR,DC);
if GMAG > gradient_threshold

{

THETA := atan2(DR,DC);
THETAQ := quantize_angle(THETA);
D := abs(C*cos(THETAQ) —R*sin(THETAQ));

DQ := quantize_distance(D);

A[DQ,THETAQ] := A[DQ,THETAQ] + GMAG;
Gentes orca := append(PTLIST(DQ,THETAQ),[R,C])

}

=
Algorithm 10.7 Hough Transform for Finding Straight Lines.

307

THETAQ

PTLIST

1, 3)(1, 4)(2, 3)(2, 4)

3, 1)(3, 2)(4, 1)(4, 2)(4, 3)

Row gradient

oe (
© (
& (
7

Carl NI a) ase Wo}

THETAQ

Accumulator A

Identifying ContoursSec. 10.3

Figure 10.22 The results of the operation of procedure accumulate on a simple

gray-level image using Prewitt masks. For this small example, the evidence for correct

detections is not much larger than that for incorrect ones, but in real images with long

segments, the difference will be much more pronounced.

308 Image Segmentation

Find the point lists corresponding to separate line segments.
A[DQ, THETAQ] is the accumulator array from accumulate_lines.

DQ is the quantized distance from a line to the origin.
THETAQ is the quantized angle of the normal to the line.

procedure find_lines;

{
V := pick_greatest_bin(A,DQ,THETAQ);
while V > value_threshold

{

list_of_points :=reorder(PTLIST[DQ,THETAQ)]);
for each point [R, C] in list_of_points

for each neighbor [R’,C’] of [R, C] not in list_-of_points

DPRIME := D[R’,C’)];

THETAPRIME := THETA[R’,C’J;
GRADPRIME := GRADIENT[R’,C’];
if GRADPRIME > gradient_threshold

and abs(THETAPRIME-THETAQ)< 10
then {

merge(PTLIST[DQ,THETAQ],PTLIST[DPRIME,
THETAPRIME));

set_to_zero[A,DPRIME,THETAPRIME];
}

}
final_list_of_points := PTLIST[DQ,THETAQ];

create_segments(final_list_of_points);

set_to_zero[A,DQ,THETAQ];
V := pick_greatest_bin[A,DQ,THETAQ];

}

}

Chap. 10

—_—__—_————}

Algorithm 10.8 O’Gorman and Clowes Method for Extracting Straight Lines.

The function pick_greatest_bin returns the value in the largest accumulator while

setting its last two parameters, DQ and THETAQ, to the quantized d and 6 values for
that bin. The reorder function orders the list of points in a bin by column coordinate for

6 < 45 or @> 135 and by row coordinate for 45 < @< 135. The arrays D and THETA are

expected to hold the quantized D and THETA values for a pixel that were computed during
the accumulation. Similarly the array GRADIENT is expected to contain the computed

gradient magnitude. These can be saved as intermediate images. The merge procedure

Sec. 10.3 Identifying Contours 309

merges the list of points from a neighbor of a pixel in with the list of points for that pixel,

keeping the spatial ordering. The set_to_zero procedure zeroes out an accumulator so that it
will not be reused. Finally, the procedure create_segments goes through the final ordered set

of points searching for gaps longer than one pixel. It creates and saves a set of line segments
terminating at gaps. For better accuracy, a least-squares procedure can be used to fit lists
of points to line segments. It is important to mention that the Hough procedure can gather

strong evidence from broken or virtual lines such as a row of stones or a road broken by
overhanging trees.

SALAS LEAL TET) TS BELITTLE EE PTT ENDL ITLL TEI OEELDIE IEEE DDE LIES SILI CASES IEEE ALISO LDA CIEE EL LEE ADR

Exercise 10.10

This exercise follows the work of Kasturi and others (1990): The problem is to apply the

Hough transform to identify lines of text. Apply existing programs or tools and write new
ones as needed to perform the following experiment. (a) Type or print a few lines of text in

various directions and binarize the image. Add some other objects, such as blobs or curves.

(b) Apply connected components processing and output the centroids of all objects whose

bounding boxes are appropriate for characters. (c) Input the set of all selected centroids to

a Hough line detection procedure and report on how well the text lines can be detected.

Finding Circles The Hough transform technique can be extended to circles and

other parametrized curves. The standard equation of a circle has three parameters. If a point

[R, C] lies on a circle then the gradient at [R, C] points to the center of that circle as shown

in Fig. 10.23. So if a point [R, C] is given, a radius d is selected, and the direction of the

vector from [R, C] to the center is computed, the coordinates of the center can be found.

The radius, d, the row-coordinate of the center, r,, and the column-coordinate of the center,

Co, are the three parameters used to vote for circles in the Hough algorithm. In row-column

coordinates, circles are represented by the equations

r=ro+dsin@ (10.18)

C = Cy,—dcos0 (10.19)

With these equations, the accumulate algorithm for circles becomes algorithm accumu-

late_circles on the next page.

Figure 10.23 Illustrates the direction of the

gradient at the boundary points of a circle.

The inward pointing gradients are the ones

that will accumulate evidence for the center

of the circle.

310 Image Segmentation Chap. 10

Accumulate the circles in gray-tone image S to accumulator A.

S[R, C] is the input gray-tone image.
NLINES is the number of rows in the image.

NPIXELS is the number of pixels per row.

A[R, C, RAD] is the accumulator array.

R is the row index of the circle center.

C is the column index of the circle center.

RAD is the radius of the circle.

procedure accumulate -circles(S,A);

{

Insp
PIES t= 0:
for R := | to NLINES

for C := 1 to NPIXELS

for each possible value RAD of radius

THETA := compute_theta(S,R,C,RAD);

RO := R —RAD*cos(THETA),

CO := C + RAD*sin(THETA);

A[R0,C0,RAD] := A[R0,CO,RAD]+1;

PTLIST[R0,CO,RAD] := append(PTLIST[R0,C0,RAD],[R,C])

}

Algorithm 10.9 Hough Transform for Finding Circles.

This procedure can easily be modified to take into account the gradient magnitude
as did the procedure for line segments. The results of applying it to a technical document

image are shown in Figure 10.24.

Extensions The Hough transform method can be extended to any curve with

analytic equation of the form f(x, a) = 0 where x denotes an image point and a is a vector
of parameters. The procedure is as follows:

1. Initialize accumulator array A[a] to zero.

2. For each edge pixel x determine each a such that f (x,a) = Oand set A[a] := A[a]+ 1.

3. Local maxima in A correspond to curves of f in the image.

. If there are m parameters ina, each having M discrete values, then the time complexity
is O(M™~?). The Hough transform method has been further generalized to arbitrary shapes

specified by a sequence of boundary points (Ballard, 1981). This is known as the generalized
Hough transform.

Sec. 10.3 Identifying Contours 311

Figure 10.24 Circles detected by the

Hough transform on a section of a technical

drawing, shown by overlaying an extra circle

of slightly larger radius on each detected

circle.

The Burns Line Finder A number of hybrid techniques exist that use some of
the principles of the Hough transform. The Burns line finder (Burns and others, 1986) was

developed to find straight lines in compiex images of outdoor scenes. The Burns method

can be summarized as follows:

1. Compute the gradient magnitude and direction at each pixel.

2. For points with high enough gradient magnitude, assign two labels representing two
different quantizations of the gradient direction. (For example, for eight bins, if the
first quantization is 0 to 44, 45 to 90, 91 to 134, etc., then the second can be —22 to
22, 23 to 67, 68 to 112, etc.) The result is two symbolic images.

3. Find the connected components of each symbolic image and compute line length for

each component.

¢ Each pixel is amember of two components, one from each symbolic image.

¢ Each pixel votes for its longer component.

¢ Each component receives a count of pixels that voted for it.

¢ The components (line segments) that receive the majority support are selected.

The Burns line finder takes advantage of two powerful algorithms: The Hough trans-
form and the connected components algorithm. It attempts to get rid of the quantization
problems that forced O’Gorman and Clowes to search neighboring bins by the use of two
separate quantizations. In practice, it suffers from a problem that will affect any line finder
that estimates angle based on a small neighborhood around a pixel. Digital lines are not
straight. Diagonal lines are really a sequence of horizontal and vertical steps. If the angle
detection technique uses too small a neighborhood, it will end up finding a lot of tiny hor-
izontal and vertical segments instead of a long diagonal line. Thus in practice, the Burns
line finder and any other angle-based line finder can break up lines that ahuman would like

to detect as a connected whole.

312 Image Segmentation Chap. 10

a
Exercise 10.11: Burns compared to Hough.

Implement both the Hough transform and the Burns operator for line finding and compare

the results on real-world images having a good supply of straight lines.

er a ES SS CS SO SI SIT LEAL,
Exercise 10.12: Line Detection.

Implement the following approach to detecting lines in a gray-tone image I.

for all image pixels I[R,C]

{
compute the gradient Gmag and Ggir
if Gmag > threshold
then output [Gmag,Gair] to set H

}
detect clusters in the set H;

The significant clusters will correspond to the significant line segments in I.

10.4 FITTING MODELS TO SEGMENTS

Mathematical models that fit data not only reveal important structure in the data, but also
can provide efficient representations for further analysis. A straight line model might be
used for the edge pixels of a building or a planar model might apply to surface data from the
face of a building. Convenient mathematical models exist for circles, cylinders, and many
other shapes.

Next, we present the method of least squares for determining the parameters of the
best mathematical model fitting observed data. This data might be obtained using one of
the region or boundary segmentation methods described previously; for example, we have

already mentioned that we could fit a straight line model to all the pixels [r, c] voting for a

particular line hypothesis A[THETAQ, DQ] in the Hough accumulator array. In order to

apply least squares, there must be some way of establishing which model or models should
be tried out of an infinite number of possibilities. Once a model is fit and its parameters

determined, it is possible to determine whether or not the model fits the data acceptably. A

good fit might mean that an object of some specified shape has been detected; or, it might
just provide a more compact representation of the data for further analysis.

Fitting a Straight Line We introduce the least-squares theory by way of a simple
example. One straight line model is a function with two parameters: y = f(x) = c)x + co.
Suppose we want to test whether or not a set of observed points {(x;, yj), j = 1,n} form
a line. To do this, we determine the best parameters c, and co of the linear function and

then examine how close the observed points are to the function. Different criteria can be

used to quantify how close the observations are to the model. Figure 10.25 shows the fitting
of a line to six data points. Surely, we could move the line slightly and we would have a

Sec. 10.4 Fitting Models to Segments 313

Circular fit is unbiased

re
Model is

2G

Figure 10.25 (left) Fit of model y = f(x) to six data points; and (right) competing

straight line and circular models: The signs of the residual errors show that the line fit is

biased and the circular fit is unbiased.

different line that still fits well. The least-squares criteria defines a best line according to

the Definition 74.

74 Definition. Least-Squares Error Criteria: The measure of how well a model

y = f(x) fits a set of n observations {(x;, yj), j = 1, n} is

LSE =) | (f (xj) = yj)"

el

The best model y = f(x) is the model with the parameters minimizing this criteria.

75 Definition. The root-mean-square error, or RMSE, is the average difference
of observations from the model:

1/2

RMSE = |) (f (xj) —yj)°)/n

j=l

Note that for the straight line fit, this difference is not the Euclidean distance of the
observed point from the line, but the distance measured parallel to the y-axis as shown

in Figure 10.25.

76 Definition. Max-Error Criteria: The measure of how well a model y = f(x)

fits a set of n observations {(x;, yj), j = 1,n} is

MAXE = max({|(f xj) —yp }j=1,n)

Note that this measure depends only on the worst fit point, whereas the RMS error

depends on the fit of all of the points.

314 Image Segmentation Chap. 10

TABLE 10.1 LEAST-SQUARES FIT OF DATA GENERATED USING y = 3x —7 PLUS

NOISE GIVES FITTED MODEL y = 2.971x — 6.962

Data Pts (xj, yj) (0.0, —6.8) (1.0,—4.1) (2.0,-1.1) (3.0,1.8) (4.0,5.1) (5.0, 7.9)
Residuals y — y;: —0.162 0.110 0.081 0.152 —0.176 —0.005

Closed Form Solutions for Parameters The least-squares criteria is popular

for two reasons; first, it is a logical choice when a Gaussian noise model holds, second,

derivation of a closed form solution for the parameters of the best model is easy. We

first derive the closed form solution for the parameters of the best-fitting straight line.

Development of other models follows the same pattern. The least-squares error for the

straight line model can be explicitly written as follows: Note that the observed data x;, y;

are regarded as constants in this formula.

LSE = &(c1,¢0) = > (e1xj +¢0— yj)? (10.20)

j=l

The error function € is a smooth non-negative function of the two parameters c, and co
and will have a global minimum at the point (c,;, co) where d€/dc; = 0 and d¢/dco = 0.

Writing out these derivatives from the formula in Equation 10.20 and using the fact that the

derivative of a sum is the sum of the derviatives yields the following derivation.

de/dc, =YS2cix; +0 —yj)xj =0 (10.21)
j=l

=21) 0x}]a4+2(5) x)] o-2> x19; (10.22)
j=l T= 7=1

de/dco =) 2(c1x; +o —yj) =0 (10.23)
j=l

=2(Sox Ja+2>5 m-2)-y; (10.24)
j=! j=l j=l

These equations are nicely represented in matrix form. The parameters of the best line are
found by solving the equations. The general case representing an arbitrary polynomial fit
results in a highly patterned set of equations called the normal equations.

n 2 n n

are pas | 0 eS yy

Exercise 10.13: Fitting a line to 3 points.

Using Equation 10.25, compute the parameters c, and Coof the best line through the points

Sec. 10.4 Fitting Models to Segments 315

LOAM ETE SE I DASEL ISEI EET LID IEE SPOIL TIES EARLS BLIGE BIE TYEES ROU ANAL DERE
Exercise 10.14: Normal equations.

(a) Derive the matrix form for the equations constraining the 4 parameters for fitting a cubic

polynomial c3x? + cox? +c)x + Coto observed data (xj, y;), j = 1,1. (b) From the pattern
of the matrix elements, predict the matrix form for fitting a polynomial of degree four.

Empirical Interpretation of the Error Empirical interpetation of the error and
individual errors is often straightforward in machine vision problems. For example, we might
accept the fit if all observed points are within a pixel or two of the model. In a controlled 2D

imaging environment, one could image many straight-sided objects and study the variation
of detected edge points off the ideal line. If individual points are far from the fitted line
(these are called outliers), they could indicate feature detection error, an actual defect in the
object, or that a different object or model exists. In these cases, it is appropriate to delete the
outliers from the set of observations and repeat the fit so that the model is not pulled off by
points which it should not model. All the original points can still be interpreted relative to
the updated model. If the model fitting is being used for curve segmentation, it is typically
the extreme points that are deleted, because they are actually part of a differently shaped
object or part.

Statistical Interpretation of the Error* Error can be interpreted relative to a

formal statistical hypothesis. The common assumption is that the observed value of y; is just

the model value f(x;) plus (Gaussian) noise from the normal distribution N (0, 0), where o
is known from the analysis of measurement error, which could be done empirically as above.

It is also assumed that the noise in any individual observation / is independent of the noise

in any other observation k. It follows that the variable S,, = eS (f(x) - yj)*)/o?) is

x? distributed, so its likelihood can be determined by formula or table lookup. The number

of degrees of freedom is n — 2 for the straight line fit since two parameters are estimated

from the n observations. If 95 percent of the x? distribution is below our observed sae
then perhaps we should reject the hypothesis that this model fits the data. Other confidence

levels can be used. The x test is not only useful for accepting/rejecting a given hypothesis,

but it is also useful for selecting the most likely model from a set of competing alternatives.

For example, a parabolic model may compete with the straight line model. Note that in this

case, the parabolic model y = c2x” + c)x + co has three parameters so the x” distribution

would have n — 3 degrees of freedom.
Intuitively, we should not be too comfortable in assuming that error in observation j

is independent of the error in observations j — | or j + 1. For example, an errant manu-
facturing process might distort an entire neighborhood of points from the ideal model. The
independence hypothesis can be tested using a run-of-signs test, which can detect systematic
bias in the error, which in turn indicates that a different shape model will fit better. If the
noise is truly random, then the signs of the error should be random and hence fluctuate
frequently. Figure 10.25 (right) shows a biased linear fit competing with an unbiased circular
fit. The signs of the errors indicate that the linear fit is biased. Consult the references at

the end of the chapter for more reading on statistical hypothesis-testing for evaluating fit

quality.

316 Image Segmentation Chap. 10

EE
Exercise 10.15: Fitting a planar equation to 3D points.

(a) Solve for the parameters a, b,c of the model z= f(x, y)=ax + by +c¢ of the least-

squares plane through the five surface points (20, 10, 130), (25, 20, 130) (3001520145).
(25, 10, 140), (30, 20, 140). (b) Repeat part (a) after adding a random variation to each of

the three coordinates of each of the five points. Flip a coin to obtain the variation: if the

coin shows heads, then add 1, if it shows tails then subtract 1.

RS Se EP SE RSE SIAR EPRAT SR EID SR DET! ICEL ELIE ST LLAL LILLE LEE OT EEO DEI SEIS ELE ELE LEI EL ILE LAS,

Exercise 10.16: Prewitt operator is optimal.

Show that the Prewitt gradient operator from Chapter 5 can be obtained by fitting the least-
squares plane through the 3 x 3 neighborhood of the intensity function. To compute the

gradient at /[x, y], fit the nine points (x + Ax, y + Ay, I[x + Ax, y + Ay]) where Ax
and Ay range through —1, 0, +1. Having the planar model z = ax + by + c that best fits

the intensity surface, show that using the two Prewitt masks actually compute a and b.

Problems in Fitting It is important to consider several kinds of problems in

fitting.
Outliers Since every observation affects the RMS error, a large number of outliers

may render the fit worthless: The initial fit may be so far off the ideal that it is impossible to

identify and delete the real outliers. Methods of robust statistics can be applied in such cases:

Consult the Boyer, Mirza, and Ganguly (1994) reference cited at the end of the chapter.

Error Definition The mathematical definition of error as a difference along the

y-axis is not a true geometric distance; thus the least squares fit does not necessarily yield a

curve or surface that best approximates the data in geometric space. The rightmost data point
at the right of Figure 10.25 illustrates this problem—that point is geometrically very close
to the circle, but the functional difference along the y-axis is rather large. This effect is even

more pronounced when complex surfaces are fit to 3D points. While geometric distance is

usually more meaningful than functional difference, it is not always easy to compute. In
the case of fitting a straight line, when the line gets near to vertical, it is better to use the

best axis computation given in Chapter 3 rather than the least squares method presented

here. The best axis computation is formulated based on minimizing the geometric distances
between line and points.

Nonlinear Optimization Sometimes, a closed form solution to the model param-
eters is not available. The error criteria can still be optimized, however, by using a tech-

nique that searches parameter space for the best parameters. Hill-climbing, gradient-based

search, or even exhaustive search can be used for optimization. See the works by Chen and

Medioni (1994) and Sullivan, Sandford, and Ponce (1994), which address this and the

previous issue.

High Dimensionality When the dimensionality of the data and/or the number of

model parameters is high, both empirical and statistical interpretation of a fit can be difficult.

Moreover, if a search technique is used to find parameters it may not even be known whether

or not these parameters are optimal or just result from a local minima of the error criteria.

Sec. 10.5 Identifying Higher-level Structure ; 317

Fit Constraints Sometimes, the model being fit must satisfy additional constraints.
For example, we may need to find the best line through observations that isalso perpendicular
to another line. Techniques for constrained optimization can be found in the references.

Segmenting Curves via Fitting | The model fitting method and theory presented
above assumes that both a model hypothesis and set of observations are given. Boundary

tracking can be done in order to obtain long strings of boundary points which can then be

segmented as follows. First, high curvature points or cusps can be detected in the boundary
sequence in order to segment it. Then, model hypotheses can be tested against the segments

between breakpoints. The result of this process is a set of curve segments and the mathe-
matical model and parameters which characterize the shape of each segment. An alternative

method is to use the model-fitting process in order to segment the original boundary curve.

In the first stage, each subsequence of k consecutive points is fit with each model. The

x? value of the fit is stored in a set with each acceptable fit. The second stage attempts to

extend acceptable fits by repetitively adding another endpoint to the subsequence. Fitted

segments are grown until addition of an endpoint decreases the x* value of the fit. The

result of this process is a set of possibly overlapping subsequences, each with a model and

the x” value of the model fit. This set is then passed to higher-level processes which can

construct domain objects from the available detected parts. This process is similar in spirit

to the region-grower described in Section 10.1.2, which has been successfully used to grow

line segments using the direction estimate at each edge pixel as the critical property instead

of the gray-tone property used in growing regions.

10.5 IDENTIFYING HIGHER-LEVEL STRUCTURE

Analysis of images often requires the combination of segments. For example, quadrilateral
regions and straight edge segments might be combined as evidence of a building or inter-
secting edge segments might accurately define the corner of a building, or a green region
inside a blue region might provide evidence of an island. The methods for combining seg-
ments are limitless. Below, we look at just two general cases of combining edge segments
to form more informative structures: These are the ribbon and the corner.

10.5.1 Ribbons

A very general type of image segment is the ribbon. Ribbons are commonly produced by
imaging elongated objects in 2D or in 3D; for example, by imaging a conduction path on
a printed circuit board, the door of a house, a pen on a table, or a road through fields.
In these examples, the sides of the ribbons are approximately parallel to each other, but
not necessarily straight. Although we limit ourselves to straight-sided ribbons in this text,
ribbons can have more general shape, such as that of a wine bottle or ornate lampost, where
the shape of the silhouette is some complex curve with reflective symmetry relative to
the axis of the ribbon. An electric cord, a rope, a meandering stream, or road each produce
a ribbon in an image, as will the shadow of a rope or lampost. Chapter 14 discusses 3D
object parts called generalized cylinders, which produce ribbons when viewed. At the left

318 © Image Segmentation Chap. 10

Figure 10.26 The Hough transform can

encode the location and orientation of an

edge and its gradient direction. The

transition from a dark region to a lighter one

gives the opposite gradient direction from

the transition from the lighter region to the

darker one, along the same image line.r

in Figure 10.16 is asymbol that is well represented by four ribbons, two of which are highly
curved. We leave extraction of general ribbons to future study and concentrate on those

with straight sides.

77 Definition. A ribbon is an elongated region that is approximately symmetrical

about its major axis. Often, but not always, the edges of a ribbon contrast symmetri-
cally with its background.

Figure 10.26 shows how the Hough Transform can be extended slightly to encode the

gradient direction across an edge in addition to its orientation and location. As was shown in
Chapter 5, and earlier in this chapter, gradient direction 6 at a pixel [r, c] that has significant

gradient magnitude can be computed in the interval [0, 2IT) using operators such as the
Sobel operator. The vector from the image origin to the pixel is [r, c]: We project this vector
onto the unit vector in the direction 6 to obtain a signed distance d.

d = [r, c] o [—sin6, cos0] = —r sind + ccos0 (10.26)

A positive value for d is the same as that obtained in the usual polar coordinate repre-

sentation for pixel [r, c]. However, a negative d results when the direction from the origin
to the edge is opposite to the gradient direction: This will result in two separate clusters
for every line on a checkerboard for example. Figure 10.26 illustrates this idea. Consider
the edge P P3 in the figure. Pixels along this edge should all have gradient direction ap-

proximately 30 degrees. The perpendicular direction from the origin to P> P3 is in the same
direction, so pixels along P2 P3 will transform to (approximately) [d;, 30°] in the Hough

parameter space. Pixels along line segment P; P2 however, have a gradient direction of 210
degrees, which is opposite to the direction of the perpendicular from the origin to P; Py.

Thus, pixels along segment P; P2 will transform to (approximately) [—d, 210°].

Sec. 10.5 Identifying Higher-level Structure 319

LA TE DESIR GS IND PLE BSEE IEE TINS COSI IP CET AEA DGRR ALIS PIT IE EOE
Exercise 10.17

Figure 10.27 shows a dark ring on a light background centered at the image origin. Sketch
the parameter space that would result when such an image is transformed using the Hough
Transform as shown in Figure 10.26.

J»
Figure 10.27 Dark ring centered at the

Light origin on light background. Dark region is

outside the smaller circle and inside the

larger one.

Detecting Straight Ribbons By using the Hough parameters along with the
point lists obtained by Algorithm accumulate_lines, more complex image structure can
be detected. Two edges whose directions differ by 180° provide evidence of a possi-
ble ribbon. If in addition, the point lists are located near each other, then there is ev-
idence of a larger linear feature that reverses gradient, such as the columns as in Fig-
ure,10,. 17.

Figure 10.28 shows an image of part of a white house containing a downspout. The
image was taken in strong sunlight and this resulted in hard shadows. By using a gradient
operator and then collecting pixels on edge segments using accumulate_lines, there isstrong
evidence of a bright ribbon on a dark background corresponding to the downspout (sides
are AB and ED). The shadow of the downspout S also creates evidence of a dark ribbon on

a bright background.

Figure 10.28 (left) Region of an image of a house showing a downspout and strong
shadows; (center) the highest 10 percent gradient magnitudes computed by the Prewitt

3 x 3 operator; and (right) sketch of ribbons and corners evident.

320 Image Segmentation. Chap. 10

se nS EE
Exercise 10.18

Write a computer program to study the use of the Hough Transform to detect ribbons.

(a) Use the Sobel operator to extract the gradient magnitude and direction at all pixels.

Then transform only pixels of high magnitude. (b) Detect any clusters in [d, @]-space. (c)
Detect pairs of clusters, ({d;, 91], [d2, 02]), where 6; and 62 are 7 apart. (d) Delete pairs that

are not approximately symmetrical across an axis between them.

10.5.2 Detecting Corners

Significant region corners can be detected by finding pairs of detected edge segments F
and E> in the following relationship.

1. Lines fit to edge point sets E,; and E> intersect at point [u, v] in the real image

coordinate space.

2. Point [u, v] is close to extreme points of both sets E; and E>.

3. The gradient directions of E, and E, are symmetric about their axis of symmetry.

This definition models only corners of type 'L': constraint (2) rules outs those of type 'T',
'X' and 'Y'. The computed intersection [u, v] will have subpixel accuracy. Figure 10.29
sketches the geometry of a corner structure. Edge segments can be identified intitially by

using the Hough transform or by boundary following and line fitting or by any other ap-

propriate algorithm. For each pair ({d;, 6;], [d2, 92]) satisfying the above criteria, add the
quad ([d;, 6], [d2, 62], [u, v], @) to a set of candidate corners. The angle @is formed at the
corner. This set of corner features can be used for building higher level descriptions, or can

be used directly in image matching or warping methods as shown in Chapter 11.

t if

, 1

2 [wr] Uf [u,v]= AyLay ;‘
eet 3o aera a
sa 0 E x eo

Ey Af ’ a 1A ee OH
eit ecg ne ae Sealata eet FYF B; > ;

/ ci . E
Darker Lighfer q ? Figure 10.29 Corners are detected as pairs

of detected edge segments appropriately

related.

SaSET

Several corners can easily be extracted from the blocks image in Figure 10.2; however,
most of them are due to viewpoint dependent occlusions of one object crease by another
and not by the joining of two actual 3D object creases. Four actual corners are evident
for the top of the arch. The corners of triangle ABC in Figure 10.28 are all artifacts of

the lighting and viewpoint. We conclude this discussion by making the point that although

representations using edge segments are often used in specific problem domains, they may
be highly ambiguous when used in general. Usually, problem-specific knowledge is needed
in order to interpret higher-level structure.

Sec. 10.6 Segmentation using Motion Coherence 321

EE ENCES ALO EEE IL TE LE LEAT SIL OOL ENS OLE IOSD: LE SOOT AANA aSSE SEE IGEN SATE DEAE REI OIE SSTBABEREAN L

Exercise 10.19

Describe how to change the ribbon detection algorithm so that (a) it only detects ribbons

that are nearly vertical, (b) it detects ribbons that are no wider than W.

10.6 SEGMENTATION USING MOTION COHERENCE

As we have seen, motion is important for determining scene content and action. Chapter 9

presented methods for detecting change in a scene and for tracking motion over many
frames.

10.6.1 Boundaries in Space-Time

The contours of moving objects can be identified by using both spatial and temporal con-
trast. Our previous examples have used only spatial contrast of some property such as
intensity or texture in a single image. Spatial and temporal gradients can be computed
and combined if we have two images I[x, y, t] and I[x, y, t + At] of the scene. We can
define a spatio-temporal gradient magnitude as the product of the spatial gradient mag-
nitude and the temporal gradient magnitude as in Equation 10.27. Once an image STG[]
is computed, it is amenable to all the contour extraction methods already discussed. The
contours that are extracted will be the boundaries of moving objects and not static ones,

however.

STG[x, y,t] = Mag{[x, y,t] (\/[x, y, t] — I[x, y,t + At])) (10.27)

10.6.2 Aggregrating Motion Trajectories

Assume that motion vectors are computed across two frames of an image sequence. This
can be done using special interest points or regions as described in Chapter 9. Region
segmentation can be performed on the motion vectors by clustering according to image
position, speed, and direction as shown in Figure 10.30. Clustering should be very tight for
a translating object, because points of the object should have the same velocity. Through
more complex analysis, objects that rotate and translate can also be detected.

’ x

—

’ \

—
\ '

‘ ++

Vir}
s

Y '

} “y
WW

' \ : Figure 10.30 Aggregation of vectors from
o nm y i the motion field via compatible location,
‘ ea # velocity and direction: translating objects

See (A,B) are easier to detect than rotating

objects (C).

322 Image Segmentation Chap. 10

a

Exercise 10.20

Given two lines parameterized by ([d1, 61], [d2, 92]), (a) derive a formula for their intersec-

tion point [x, y] and (b) derive a formula for their axis of symmetry has elke

| ASR at aio sa SERRE ECEDSTiST SE EG EALSTEAD OIE SR ISTEE SLEDNEEL LEELA

Exercise 10.21

Obtain two successive images of a scene with moving objects and compute a spatio-temporal
image from them using Equation 10.27. (Two frames from a Motion JPEG video would be

good. Or, one could digitize some dark cutouts on a flatbed scanner, moving them slightly

for the second image.)

Figure 10.31 shows processing from an application where the purpose of motion is

communication: The goal is to input to a machine via American Sign Language (ASL).
The figure shows only a sample of frames from a sequence representing about two seconds

of gesturing by the human signer. The results shown in Figure 10.31 were produced using

both color segmentation within a single frame and motion segmentation across pairs of
frames. A sketch of steps of an algorithm is given in Algorithm 10.10: For details of the

actual algorithm producing Figure 10.31, consult the reference by Yang and Ahuja (1999).
The first several steps of the algorithm can be generally applied to many different kinds of

Input a video sequence of a person signing in ASL.
Output motion trajectories of the two palms.

1. Segment each frame I; of the sequence into regions using color.

2. Match the regions of each pair of images (It It41) by color and neighborhood.

3. Compute the affine transformation matching each region of I; to the corre-
sponding region of I¢4).

4. Use the transformation matching regions to guide the computation of motion

vectors for individual pixels.

5. Segment the motion field derived above using motion coherence and image
location.

. Identify two hand regions and the face region using a skin color model.

. Merge adjacent skin colored regions that were fragmented previously.

. Find an ellipse approximating each hand and the face.
Conn - Create motion trajectories by tracking each ellipse center over the entire

sequence.

10. (Recognize the gesture using the trajectories of the two hands.)

Algorithm 10.10 Algorithm using color and motion to track ASL gestures
(Motivated by Yang and Ahuja (1999)).

Y-axis

Sec. 10.6 Segmentation using Motion Coherence

(a) Frame 14 (b) Frame 16 (c) Frame 19 (d) Frame 22

(I) Four video frames of a 55-frame sequence of ASL sign cheerleader.

(e) Frame 14 (f) Frame 16 (g) Frame 19 (h) Frame 22

(II) Motion segmentation of the image sequence cheerleader. (pixels of the same motion region are
displayed with the same gray level and different regions are displayed with different gray levels)

oo ee
é co ®> ee *

(i) Frame 14 (/) Frame 16 (k) Frame 19 (/) Frame 22

(III) Extracted head and palm regions from image sequence cheerleader.

323

Gestural Motion Trajectories Gestural Motion Trajectories Gestural Motion Trajectories Gestural Motion Trajectories

Sa 120 a a 120 ; a 120 Si SP
palml ~ palml - palml ~ palml
palm2 - 100 + palm2 100 }+ palm2 » + 100 palm2

siogy mel . wut?

= el - oy
Y-axis

zs
Y-axis

§8

Y-axis

o8SY378

n 1 1 n 0 el eee 1 0 Hee Sih eee sh eae i 41

20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

X-axis X-axis X-axis X-axis

(m) #14-#16 (n) #16-#19 (0) #19-#22 (p) #22425

(IV) Extracted gestural motion trajectories from segments of ASL sign cheerleader
(since all pixel trajectories are shown, they form a thick blob)

Figure 10.31 Extraction of motion trajectories from image sequence. (I) Sample frames from video

sequence; (II) frames segmented using motion; (III) head and palm regions extracted by color and
size; and (IV) motion trajectories for points on the palms. (Figures courtesy of Ming-Hsuan Yang and

Narendra Ahuja.)

324 Image Segmentation Chap. 10

sequences. Color segmentation is done for each image and the segments are matched across
frames. These matches are used to guide the computation of a dense motion field for each

pair of consecutive images, which is then segmented to derive motion trajectories at the
individual pixel level. This motion field is then segmented into regions of uniform motion.
Only at this point do we add domain knowledge to identify hands and face: A skin color
model, as seen in Chapter 6, identifies skin regions, the largest of which is taken to be the

face. The center of each hand region is then tracked over all frames: The two trajectories

can then be used to recognize the sign made. Yang and Ahuja (1999) reported recognition
rates of over 90 percent in experiments with many instances of a set of 40 American Sign

Language signs.

SER RAG SSSI RI eB ST ER TES INIT ETO ES DTTE TT IT ITED LLETE ESSE SEYLTE LOI

Exercise 10.22

Describe how Algorithm 10.10 can be modified to make it simpler and faster by specializing

all of its steps for the ASL application.

SELLS LE ADL ASSOEAE Eat ARI LEE BETES EEN TET DIED EI TEE IT BAIS SEE ELITES LIES IEE LE ELLE DELL)

Exercise 10.23

Suppose we have two motion trajectories P;, 7= 1, N and Qy,k = 1, M, where P; and

Q, are points in 2D in proper time sequence. Devise an algorithm for matching two such
trajectories, such that 1.0 is output when both trajectories are identical and 0.0 is output

when they are very different. Note the M and N may not be equal.

10.7 REFERENCES

Segmentation is one of the oldest, and still unsolved, areas of computer vision. The 1985

survey by Haralick and Shapiro gives a good overview of the early work, most of which used
gray-tone images. The first useful segmentation work with natural color images was done
by Ohlander, Price, and Reddy in 1978. Only in recent years has the area become fruitful
again. The work of Shi and Malik on normalized cuts—starting in 1997—<can be credited

with being the catalyst for newer work in which segmentations of arbitrary color images
from large image collections is being undertaken. In line-drawing analysis, Freeman first

proposed his chain code in the 1960s; his 1974 article discusses its use. While the Hough
Transform was published only as a patent, it was popularized and expanded by Duda and Hart
(1972), and its use is nicely illustrated for line segments in O’Gorman’s and Clowes’s 1976
paper and for circles in the Kimme, Ballard, and Sklansky 1975 work. The Burns line finder,

published ten years later is an improvement to the technique to make it more robust and

reliable. Samet’s 1990 book on spatial data structures is an excellent reference on quad trees.

Boyer and others (1994) show how to use robust statistics to fit models to data for

segmentation. Any anticipated model can be fit to all of the image: Robust fitting can
eliminate a huge number of outliers, resulting in a segment of the image where the particular
model fits well. An image can be said to be segmented when all anticipated models have
been fitted: The segments are comprised of the points that have been fitted.

Sec.

gs

10.7 References 325

. Ballard, D. H., 1981, Generalizing the Hough transform to detect arbitrary shapes.

Pattern Recog., v. 13(2):111-122.

. Boyer, K., K. Mirza, and G. Ganguly. 1994. The robust sequential estimator: a general
approach and its application to surface organization in range data, JEEE Trans. Pattern

Analysis and Machine Intelligence, v. 16(10) (Oct. 1994), 987-1001.

. Burns, J.R., A. R. Hanson, and E. M. Riseman. 1986. Extracting straight lines. JEEE

Trans. Pattern Analysis and Machine Intelligence, v. PAMI-8:425-455.

. Chen, Y., and G. Medioni. 1994. Surface description of complex object from multiple
range images. Proc. IEEE Conf. Comput. Vision and Pattern Recog., Seattle, WA

(June 1994), 513-518.

. Duda, R. O., and P. E. Hart. 1972. Use of the Hough transform to detect lines and

curves in pictures. Communications of the ACM, v. 15:11-15.

. Freeman, H. 1974. Computer processing of line-drawing images. Computing Surveys,

v. 6:57-97.

. Haralick, R. M., and L. G. Shapiro. 1985. Image segmentation techniques. Comput.
Vision, Graphics, and Image Proc., v. 29(1) (January 1985), 100-132.

. Kasturi, R., S. Bow, W. El-Masri, J. Shah, J. Gattiker, and U. Mokate. 1990. A

system for interpretation of line drawings. JEEE Trans. Pattern Analysis and Machine
Intelligence, v. PAMI-12:978—992.

. Kimme, C., D. Ballard, and J. Sklansky. 1975. Finding circles by an array of accu-

mulators. Communications of the ACM, v. 18:120-122.

. O’Gorman, F., and M. B. Clowes. 1976. Finding picture edges through collinearity
of feature points. JEEE Trans. Comput., v. C-25:449-454.

. Ohlander, R., K. Price, and D. R. Reddy. 1978. Picture segmentation using a recursive

region splitting method. Comput. Graphics and Image Proc., v. 8:313-333.

. Ohta, Y., T. Kanade, and T. Sakai. 1980. Color information for region segmentation.

Comput. Graphics and Image Proc., v. 13:222-241.

. Rao, K. 1988. Shape Description from Sparse and Imperfect Data. Ph.D. thesis, Univ.

of Southern California.

. Samet, H. 1990. Design and Analysis of Spatial Data Structures. Addison-Wesley,

Reading, MA.

. Shi, J., and J. Malik. 1997. Normalized cuts and image segmentation. JEEE Conf.

Comput. Vision and Pattern Recog., 731-737.

. Sullivan, S., L. Sandford, and J. Ponce. 1994. Using geometric distance for 3D object
modeling and recognition. JEEE Trans. Pattern Analysis and Machine Intelligence,

v. 16(12) (Dec. 1994), 1183-1196.

Yang, M.-H., and N. Ahuja. 1999. Recognizing hand gesture using motion trajectories.
Proc. IEEE Conf. Comput. Vision and Pattern Recog. 1999, Ft. Collins, CO (23-25

June 1999), 466-472.

	Ex. 1021 Shapiro - Front
	Ex. 1021 Shapiro - Ch10

