

Specification of the Bluetooth System

Wireless connections made easy

Core System Package [Controller volume]

Covered Core Package version: 2.0 + EDR Current Master TOC issued: 4 November 2004

Geotab Exhibit 1044 Geotab v. Fractus

😵 Bluetooth®

Revision History

The Revision History is shown in the "Appendix" on page 51[vol. 0].

Contributors

The persons who contributed to this specification are listed in the "Appendix" on page 51[vol. 0].

Web Site

This specification can also be found on the official Bluetooth web site: http://www.bluetooth.com

Disclaimer and Copyright Notice

The copyright in these specifications is owned by the Promoter Members of Bluetooth SIG, Inc. ("Bluetooth SIG"). Use of these specifications and any related intellectual property (collectively, the "Specification"), is governed by the Promoters Membership Agreement among the Promoter Members and Bluetooth SIG (the "Promoters Agreement"), certain membership agreements between Bluetooth SIG and its Adopter and Associate Members (the "Membership Agreements") and the Bluetooth Specification Early Adopters Agreements ("1.2 Early Adopters Agreements") among Early Adopter members of the unincorporated Bluetooth special interest group and the Promoter Members (the "Early Adopters Agreement"). Certain rights and obligations of the Promoter Members under the Early Adopters Agreements have been assigned to Bluetooth SIG by the Promoter Members.

Use of the Specification by anyone who is not a member of Bluetooth SIG or a party to an Early Adopters Agreement (each such person or party, a "Member"), is prohibited. The legal rights and obligations of each Member are governed by their applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement. No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Any use of the Specification not in compliance with the terms of the applicable Membership Agreement, Early Adopters Agreement or Promoters Agreement is prohibited and any such prohibited use may result in termination of the applicable Membership Agreement or Early Adopters Agreement and other liability permitted by the applicable agreement or by applicable law to Bluetooth SIG or any of its members for patent, copyright and/or trademark infringement.

😵 Bluetooth°

THE SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE.

Each Member hereby acknowledges that products equipped with the Bluetooth[®] technology ("Bluetooth[®] Products") may be subject to various regulatory controls under the laws and regulations of various governments worldwide. Such laws and regulatory controls may govern, among other things, the combination, operation, use, implementation and distribution of Bluetooth® Products. Examples of such laws and regulatory controls include, but are not limited to, airline regulatory controls, telecommunications regulations, technology transfer controls and health and safety regulations. Each Member is solely responsible for the compliance by their Bluetooth® Products with any such laws and regulations and for obtaining any and all required authorizations, permits, or licenses for their Bluetooth[®] Products related to such regulations within the applicable jurisdictions. Each Member acknowledges that nothing in the Specification provides any information or assistance in connection with securing such compliance, authorizations or licenses. NOTHING IN THE SPECIFICATION CREATES ANY WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING SUCH LAWS OR REGULATIONS.

ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS OR FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE SPECIFICATION IS EXPRESSLY DISCLAIMED. BY USE OF THE SPECIFICATION, EACH MEMBER EXPRESSLY WAIVES ANY CLAIM AGAINST BLUETOOTH SIG AND ITS PROMOTER MEMBERS RELATED TO USE OF THE SPECIFICATION.

Bluetooth SIG reserves the right to adopt any changes or alterations to the Specification as it deems necessary or appropriate.

Copyright © 1999, 2000, 2001, 2002, 2003, 2004

Agere Systems, Inc., Ericsson Technology Licensing, AB, IBM Corporation, Intel Corporation, Microsoft Corporation, Motorola, Inc., Nokia Corporation, Toshiba Corporation

*Third-party brands and names are the property of their respective owners.

Part A RADIO SPECIFICATION

Conte	ents			25		
1	Scope					
2	Frequency Bands and Channel Arrangement					
3	Transmitter Characteristics					
	3.1	Basic F	Rate	32		
		3.1.1	Modulation Characteristics	32		
		3.1.2	Spurious Emissions	33		
		3.1.3	Radio Frequency Tolerance			
	3.2		ced Data Rate			
		3.2.1	Modulation Characteristics			
		3.2.2	Spurious Emissions			
		3.2.3	Radio Frequency Tolerance			
		3.2.4	Relative Transmit Power	39		
4	Rece	iver Ch	aracteristics	41		
	4.1		Rate			
		4.1.1	Actual Sensitivity Level			
		4.1.2	Interference Performance			
		4.1.3	Out-of-Band Blocking			
		4.1.4	Intermodulation Characteristics			
		4.1.5	Maximum Usable Level			
		4.1.6	Receiver Signal Strength Indicator			
		4.1.7	Reference Signal Definition			
	4.2		ced Data Rate			
		4.2.1	Actual Sensitivity Level			
		4.2.2	BER Floor Performance			
		4.2.3	Interference Performance			
		4.2.4	Maximum Usable Level			
		4.2.5	Out-of-Band and Intermodulation Characteristics			
		4.2.6	Reference Signal Definition	45		
5						
	5.1		al Test Conditions			
		5.1.1	Nominal temperature			
		5.1.2	Nominal power source			
	5.2		ne Test Conditions			
		5.2.1	Extreme temperatures			
		5.2.2	Extreme power source voltages	48		

6	Appe	ndix B	.49
7	Appe	ndix C	. 51
	7.1	Enhanced Data Rate Modulation Accuracy	.51

Part B

BASEBAND SPECIFICATION

Conte	ents			. 57
1	Gene	eral Des	cription	.63
	1.1	Blueto	oth Clock	.64
	1.2	Blueto	oth Device Addressing	.66
		1.2.1	Reserved addresses	.66
	1.3	Access	s Codes	.67
2	Phys	ical Cha	annels	. 69
	2.1	· · · · ·	al Channel Definition	
	2.2	Basic F	Piconet Physical Channel	
		2.2.1	Master-slave definition	
		2.2.2	Hopping characteristics	.71
		2.2.3	Time slots	.71
		2.2.4	Piconet clocks	.72
		2.2.5	Transmit/receive timing	.72
	2.3	Adapte	ed Piconet Physical Channel	.75
		2.3.1	Hopping characteristics	
	2.4	Page S	Scan Physical Channel	
		2.4.1	Clock estimate for paging	.76
		2.4.2	Hopping characteristics	.76
		2.4.3	Paging procedure timing	.77
		2.4.4	Page response timing	.78
	2.5	Inquiry	Scan Physical Channel	. 80
		2.5.1	Clock for inquiry	.80
		2.5.2	Hopping characteristics	.80
		2.5.3	Inquiry procedure timing	.80
		2.5.4	Inquiry response timing	.80
	2.6	Hop Se	election	. 82
		2.6.1	General selection scheme	.82
		2.6.2	Selection kernel	.86
		2.6.3	Adapted hop selection kernel	.89
		2.6.4	Control word	. 90
3	Phys	ical Lin	ks	.95
	3.1	Link Su	upervision	.95

4	Logi	cal Transports	97
	4.1	General	97
	4.2	Logical Transport Address (LT_ADDR)	
	4.3	Synchronous Logical Transports	
	4.4	Asynchronous Logical Transport	
	4.5	Transmit/Receive Routines	
		4.5.1 TX Routine	99
		4.5.2 RX routine	
		4.5.3 Flow control	
	4.6	Active Slave Broadcast Transport	
	4.7	Parked Slave Broadcast Transport	
		4.7.1 Parked member address (PM_ADDR)	.105
		4.7.2 Access request address (AR_ADDR)	.105
5	Logio	cal Links	
	5.1	Link Control Logical Link (LC)	
	5.2	ACL Control Logical Link (ACL-C)	
	5.3	User Asynchronous/Isochronous Logical Link (ACL-U)	
		5.3.1 Pausing the ACL-U logical link	
	5.4	User Synchronous Data Logical Link (SCO-S)	
	5.5	User Extended Synchronous Data Logical Link (eSCO-S)	
	5.6	Logical Link Priorities	
6		ets	
	6.1	General Format	
		6.1.1 Basic Rate	
		6.1.2 Enhanced Data Rate	
	6.2	Bit Ordering	
	6.3	Access Code	
		6.3.1 Access code types	
		6.3.2 Preamble	
		6.3.3 Sync word	. 112
		6.3.4 Trailer	
	6.4	Packet Header	
		6.4.1 LT_ADDR	. 116
		6.4.2 TYPE	. 116
		6.4.3 FLOW	. 117
		6.4.4 ARQN	. 117
		6.4.5 SEQN	. 117
		6.4.6 HEC	. 117
	6.5	Packet Types	. 118
		6.5.1 Common packet types	. 119

*	Bluetooth®
---	------------

		6.5.2	SCO packets	123
		6.5.3	eSCO packets	124
		6.5.4	ACL packets	126
	6.6	Payloa	d Format	128
		6.6.1	Synchronous data field	128
		6.6.2	Asynchronous data field	130
	6.7	Packet	Summary	134
7	Bitstr	ream Pr	ocessing	137
	7.1	Error C	hecking	138
		7.1.1	HEC generation	138
		7.1.2	CRC generation	139
	7.2		/hitening	
	7.3		Correction	
	7.4		ode: Rate 1/3	
	7.5		ode: Rate 2/3	
	7.6		cheme	
		7.6.1	Unnumbered ARQ	
		7.6.2	Retransmit filtering	
		7.6.3	Flushing payloads	
		7.6.4	Multi-slave considerations	
		7.6.5	Broadcast packets	150
8	Link	Control	ler Operation	153
	8.1		ew of States	
	8.2		y State	
	8.3		ction Establishment Substates	
		8.3.1	Page scan substate	154
		8.3.2	Page substate	
		8.3.3	Page response substates	
	8.4		Discovery Substates	
		8.4.1	Inquiry scan substate	164
		8.4.2	Inquiry substate	
		8.4.3	Inquiry response substate	
	8.5		ction State	
	8.6		Mode	
		8.6.1	Polling in the active mode	
		8.6.2	SCO	169
		8.6.3	eSCO	171
		8.6.4	Broadcast scheme	173

		8.6.6	Scatternet	177
		8.6.7	Hop sequence switching	178
		8.6.8	Channel classification and channel map selection	181
		8.6.9	Power Management	182
	8.7	sniff M	ode	183
		8.7.1	Sniff Transition Mode	184
	8.8	Hold M	lode	185
	8.9	Park S	tate	185
		8.9.1	Beacon train	186
		8.9.2	Beacon access window	189
		8.9.3	Parked slave synchronization	190
		8.9.4	Parking	191
		8.9.5	Master-initiated unparking	192
		8.9.6	Slave-initiated unparking	192
		8.9.7	Broadcast scan window	193
		8.9.8	Polling in the park state	193
9	Audi	o		195
	9.1	LOG F	CM CODEC	195
	9.2	CVSD	CODEC	195
	9.3	Error H	landling	198
	9.4	Genera	al Audio Requirements	198
		9.4.1	Signal levels	198
		9.4.2	CVSD audio quality	198
10	List	of Figur	'es	199
11	List	of Table	S	203
App	endix A endix E	A: 3:	General Audio Recommendatio	ons 204 ers 207
			o for AFH Operation in Park, Hold and Sniff	

Part C

LINK MANAGER PROTOCOL

Conte	nts .			
1	Intro	oduction		
2	General Rules			
	2.1	Message Transport		
	2.2	Synchronization		
	2.3	Packet Format		

	Bluetoot	h
--	----------	---

	2.4	Transa	ctions	221
		2.4.1	LMP Response Timeout	222
	2.5	Error H	landling	. 222
		2.5.1	Transaction collision resolution	223
	2.6	Proced	ure Rules	. 223
	2.7		al Response Messages	
	2.8	LMP M	essage Constraints	224
3	Devid		Ires	-
	3.1		al Description	
	3.2		e Definitions	
	3.3		e Mask Definition	
	3.4		anager Interoperability policy	
4			ules	
	4.1		ction Control	
		4.1.1	Connection establishment	
		4.1.2	Detach	
		4.1.3	Power control	
		4.1.4	Adaptive frequency hopping	
		4.1.5	Channel classification	
		4.1.6	Link supervision	
		4.1.7	Channel quality driven data rate change (CQDDR)	243
		4.1.8	Quality of service (QoS)	244
		4.1.9	Paging scheme parameters	246
		4.1.10	Control of multi-slot packets	247
		4.1.11	Enhanced Data Rate	247
	4.2	Securit	у	249
		4.2.1	Authentication	249
		4.2.2	Pairing	251
		4.2.3	Change link key	. 254
		4.2.4	Change current link key type	. 255
		4.2.5	Encryption	257
		4.2.6	Request supported encryption key size	261
	4.3	Informa	ational Requests	. 262
		4.3.1	Timing accuracy	. 262
		4.3.2	Clock offset	. 263
		4.3.3	LMP version	. 263
		4.3.4	Supported features	264
		4.3.5	Name request	266
	4.4	Role S	witch	267

		4.4.1	Slot offset	
		4.4.2	Role switch	
	4.5	Modes	of Operation	
		4.5.1	Hold mode	
		4.5.2	Park state	272
		4.5.3	Sniff mode	278
	4.6	Logica	I Transports	
		4.6.1	SCO logical transport	
		4.6.2	eSCO logical transport	
	4.7	Test M	ode	
		4.7.1	Activation and deactivation of test mode	
		4.7.2	Control of test mode	
		4.7.3	Summary of test mode PDUs	291
5	Sum	mary		
	5.1	PDU S	Summary	
	5.2	Param	eter Definitions	
	5.3	Defaul	t Values	
6	List	of Figur	'es	313
7	List of Tables			

Part D

ERROR CODES

Conte	nts		321
1	Over\	view of Error Codes	323
	1.1	Usage Descriptions	323
	1.2	HCI Command Errors	323
	1.3	List of Error Codes	324
2	Error	Code Descriptions	327
	2.1	Unknown HCI Command (0X01)	327
	2.2	Unknown Connection Identifier (0X02)	327
	2.3	Hardware Failure (0X03)	327
	2.4	Page Timeout (0X04)	327
	2.5	Authentication Failure (0X05)	327
	2.6	PIN or key Missing (0X06)	327
	2.7	Memory Capacity Exceeded (0X07)	327
	2.8	Connection Timeout (0X08)	328
	2.9	Connection Limit Exceeded (0X09)	328
	2.10	Synchronous Connection Limit to a Device Exceeded (0X0A)	328
	2.11	ACL Connection Already Exists (0X0B)	328
	2.12	Command Disallowed (0X0C)	328

😵 Bluetooth°

2.13	Connection Rejected due to Limited Resources (0X0D)	328
2.14	Connection Rejected due to Security Reasons (0X0E)	328
2.15	Connection Rejected due to Unacceptable BD_ADDR (0X0F	-)329
2.16	Connection Accept Timeout Exceeded (0X10)	329
2.17	Unsupported Feature or Parameter Value (0X11)	329
2.18	Invalid HCI Command Parameters (0X12)	329
2.19	Remote User Terminated Connection (0X13)	329
2.20	Remote Device Terminated Connection due to Low Resource (0X14)330	es
2.21	Remote Device Terminated Connection due to Power Off (0) 330	X15).
2.22	Connection Terminated by Local Host (0X16)	330
2.23	Repeated Attempts (0X17)	330
2.24	Pairing not Allowed (0X18)	330
2.25	Unknown LMP PDU (0X19)	330
2.26	Unsupported Remote Feature / Unsupported LMP Feature (0X1A)330	
2.27	SCO Offset Rejected (0X1B)	330
2.28	SCO Interval Rejected (0X1C)	331
2.29	SCO Air Mode Rejected (0X1D)	331
2.30	Invalid LMP Parameters (0X1E)	331
2.31	Unspecified Error (0X1F)	331
2.32	Unsupported LMP Parameter Value (0X20)	331
2.33	Role Change Not Allowed (0X21)	331
2.34	LMP Response Timeout (0X22)	331
2.35	LMP Error Transaction Collision (0X23)	332
2.36	LMP PDU Not Allowed (0X24)	332
2.37	Encryption Mode Not Acceptable (0X25)	332
2.38	Link Key Can Not be Changed (0X26)	332
2.39	Requested Qos Not Supported (0X27)	332
2.40	Instant Passed (0X28)	332
2.41	Pairing with Unit Key Not Supported (0X29)	332
2.42	Different Transaction Collision (0x2a)	332
2.43	QoS Unacceptable Parameter (0X2C)	332
2.44	QoS Rejected (0X2D)	333
2.45	Channel Classification Not Supported (0X2E)	333
2.46	Insufficient Security (0X2F)	333
2.47	Parameter out of Mandatory Range (0X30)	333
2.48	Role Switch Pending (0X32)	333
2.49	Reserved Slot Violation (0X34)	333
2.50	Role Switch Failed (0X35)	333

Part E

HOS	T CON	TROLLER INTERFACE FUNCTIONAL SPECIFICATION		
Con	tents		337	
1	Introduction			
-	1.1	Lower Layers of the Bluetooth Software Stack		
2	Over	rview of Host Controller Transport Layer		
3	Overview of Commands and Events			
•	3.1	Generic Events		
	3.2	Device Setup		
	3.3	Controller Flow Control		
	3.4	Controller Information		
	3.5	Controller Configuration		
	3.6	Device Discovery		
	3.7	Connection Setup	353	
	3.8	Remote Information	355	
	3.9	Synchronous Connections	356	
	3.10	Connection State	357	
	3.11	Piconet Structure	358	
	3.12	Quality of Service	359	
	3.13	Physical Links	360	
	3.14	Host Flow Control	361	
	3.15	Link Information	362	
	3.16	Authentication and Encryption	363	
	3.17	Testing	365	
	3.18	Alphabetical List of Commands and Events		
4	HCI I	Flow Control	371	
	4.1	Host to Controller Data Flow Control	371	
	4.2	Controller to Host Data Flow Control	372	
	4.3	Disconnection Behavior	373	
	4.4	Command Flow Control	373	
	4.5	Command Error Handling	374	
5	HCI I	Data Formats	375	
	5.1	Introduction	375	
	5.2	Data and Parameter Formats	375	
	5.3	Connection Handles	376	
	5.4	Exchange of HCI-Specific Information	377	
		5.4.1 HCI Command Packet		
		5.4.2 HCI ACL Data Packets	379	
		5.4.3 HCI Synchronous Data Packets		
		5.4.4 HCI Event Packet		
6	HCI	Configuration Parameters		

6.1	Scan E	nable	
6.2	Inquiry	Scan Interval	
6.3	Inquiry	Scan Window	
6.4	Inquiry	Scan Type	
6.5	Inquiry	Mode	
6.6	•	īmeout	
6.7	Conne	ction Accept Timeout	
6.8	-	Scan Interval	
6.9	•	Scan Window	
6.10		Scan Period Mode (Deprecated)	
6.11	· · · ·	Scan Type	
6.12		Setting	
6.13	· · · · · · · · · · · · · · · · · · ·	pe	
6.14		ЭУ	
6.15		tication Enable	
6.16		tion Mode	
6.17		Contact Counter	
6.18		lode Activity	
6.19		blicy Settings	
6.20		Fimeout	
6.21		roadcast Retransmissions	
6.22		upervision Timeout	
6.23	-	onous Flow Control Enable	
6.24			
6.25		Of Device	
6.26		rted Commands	
		nds and Events	
7.1	Link Co	ontrol Commands	
	7.1.1	Inquiry Command	
	7.1.2	Inquiry Cancel Command	401
	7.1.3	Periodic Inquiry Mode Command	
	7.1.4	Exit Periodic Inquiry Mode Command	
	7.1.5	Create Connection Command	
	7.1.6	Disconnect Command	
	7.1.7	Create Connection Cancel Command	
	7.1.8		
		Accept Connection Request Command	
	7.1.9	Reject Connection Request Command	
	7.1.10	Link Key Request Reply Command	
	7.1.11	Link Key Request Negative Reply Command	
	7.1.12	PIN Code Request Reply Command	418
	7.1.13	PIN Code Request Negative Reply Command	

7

	7.1.14	Change Connection Packet Type Command	421
	7.1.15	Authentication Requested Command	424
	7.1.16	Set Connection Encryption Command	425
	7.1.17	Change Connection Link Key Command	426
	7.1.18	Master Link Key Command	427
	7.1.19	Remote Name Request Command	428
	7.1.20	Remote Name Request Cancel Command	430
		Read Remote Supported Features Command	
	7.1.22	Read Remote Extended Features Command	432
	7.1.23	Read Remote Version Information Command	433
	7.1.24	Read Clock Offset Command	434
	7.1.25	Read LMP Handle Command	435
	7.1.26	Setup Synchronous Connection Command	437
	7.1.27		
	7.1.28	Reject Synchronous Connection Request Command	.446
7.2	Link Po	blicy Commands	447
	7.2.1	Hold Mode Command	447
	7.2.2	Sniff Mode Command	449
	7.2.3	Exit Sniff Mode Command	452
	7.2.4	Park State Command	453
	7.2.5	Exit Park State Command	455
	7.2.6	QoS Setup Command	456
	7.2.7	Role Discovery Command	458
	7.2.8	Switch Role Command	459
	7.2.9	Read Link Policy Settings Command	460
	7.2.10	Write Link Policy Settings Command	461
	7.2.11	Read Default Link Policy Settings Command	463
	7.2.12	Write Default Link Policy Settings Command	464
	7.2.13	Flow Specification Command	465
7.3	Contro	Iler & Baseband Commands	467
	7.3.1	Set Event Mask Command	467
	7.3.2	Reset Command	469
	7.3.3	Set Event Filter Command	470
	7.3.4	Flush Command	475
	7.3.5	Read PIN Type Command	477
	7.3.6	Write PIN Type Command	478
	7.3.7	Create New Unit Key Command	479
	7.3.8	Read Stored Link Key Command	480

7.3.9	Write Stored Link Key Command
7.3.10	Delete Stored Link Key Command
7.3.11	Write Local Name Command
7.3.12	Read Local Name Command485
7.3.13	Read Connection Accept Timeout Command
7.3.14	Write Connection Accept Timeout Command
7.3.15	Read Page Timeout Command488
7.3.16	Write Page Timeout Command
7.3.17	Read Scan Enable Command490
7.3.18	Write Scan Enable Command491
7.3.19	Read Page Scan Activity Command
7.3.20	Write Page Scan Activity Command
7.3.21	Read Inquiry Scan Activity Command495
7.3.22	Write Inquiry Scan Activity Command496
7.3.23	Read Authentication Enable Command
7.3.24	Write Authentication Enable Command498
7.3.25	Read Encryption Mode Command
7.3.26	Write Encryption Mode Command500
7.3.27	Read Class of Device Command501
7.3.28	Write Class of Device Command502
7.3.29	Read Voice Setting Command503
7.3.30	Write Voice Setting Command504
7.3.31	Read Automatic Flush Timeout Command505
7.3.32	Write Automatic Flush Timeout Command506
7.3.33	Read Num Broadcast Retransmissions Command507
7.3.34	Write Num Broadcast Retransmissions Command 508
7.3.35	Read Hold Mode Activity Command509
7.3.36	Write Hold Mode Activity Command510
7.3.37	Read Transmit Power Level Command511
7.3.38	Read Synchronous Flow Control Enable Command513
7.3.39	Write Synchronous Flow Control Enable Command514
7.3.40	Set Controller To Host Flow Control Command515
7.3.41	Host Buffer Size Command516
7.3.42	Host Number Of Completed Packets Command518
7.3.43	Read Link Supervision Timeout Command520
7.3.44	Write Link Supervision Timeout Command
7.3.45	Read Number Of Supported IAC Command523
7.3.46	Read Current IAC LAP Command

	7.3.47	Write Current IAC LAP Command	.525
	7.3.48	Read Page Scan Period Mode Command (Deprecate 527	ed)
	7.3.49	Write Page Scan Period Mode Command (Deprecate 528	ed)
	7.3.50	Set AFH Host Channel Classification Command	.529
	7.3.51	Read Inquiry Scan Type Command	.530
	7.3.52	Write Inquiry Scan Type Command	.531
	7.3.53	Read Inquiry Mode Command	.532
	7.3.54	Write Inquiry Mode Command	.533
	7.3.55	Read Page Scan Type Command	.534
	7.3.56	Write Page Scan Type Command	.535
	7.3.57	Read AFH Channel Assessment Mode Command	.536
	7.3.58	Write AFH Channel Assessment Mode Command	.537
7.4	Informa	ational Parameters	.539
	7.4.1	Read Local Version Information Command	.539
	7.4.2	Read Local Supported Commands Command	.541
	7.4.3	Read Local Supported Features Command	.542
	7.4.4	Read Local Extended Features Command	.543
	7.4.5	Read Buffer Size Command	.545
	7.4.6	Read BD_ADDR Command	.547
7.5	Status	Parameters	.548
	7.5.1	Read Failed Contact Counter Command	.548
	7.5.2	Reset Failed Contact Counter Command	.550
	7.5.3	Read Link Quality Command	.551
	7.5.4	Read RSSI Command	.552
	7.5.5	Read AFH Channel Map Command	.554
	7.5.6	Read Clock Command	.556
7.6	Testing	Commands	.558
	7.6.1	Read Loopback Mode Command	.558
	7.6.2	Write Loopback Mode Command	.559
	7.6.3	Enable Device Under Test Mode Command	.562
7.7	Events		.563
	7.7.1	Inquiry Complete Event	.563
	7.7.2	Inquiry Result Event	.564
	7.7.3	Connection Complete Event	.566
	7.7.4	Connection Request Event	.567
	7.7.5	Disconnection Complete Event	.569
	7.7.6	Authentication Complete Event	.570

	7.7.7	Remote Name Request Complete Event	1	
	7.7.8	Encryption Change Event572	2	
	7.7.9	Change Connection Link Key Complete Event	3	
	7.7.10	Master Link Key Complete Event574	4	
	7.7.11	Read Remote Supported Features Complete Event575	5	
	7.7.12	Read Remote Version Information Complete Event 576	3	
	7.7.13	QoS Setup Complete Event	7	
	7.7.14	Command Complete Event	9	
	7.7.15	Command Status Event)	
	7.7.16	Hardware Error Event581	1	
	7.7.17	Flush Occurred Event581	1	
	7.7.18	Role Change Event582	2	
	7.7.19	Number Of Completed Packets Event	3	
	7.7.20	Mode Change Event584	4	
	7.7.21	Return Link Keys Event	3	
	7.7.22	PIN Code Request Event	7	
	7.7.23	Link Key Request Event588	3	
	7.7.24	Link Key Notification Event589	9	
	7.7.25	Loopback Command Event590)	
	7.7.26	Data Buffer Overflow Event590)	
	7.7.27	Max Slots Change Event591	1	
	7.7.28	Read Clock Offset Complete Event	2	
	7.7.29	Connection Packet Type Changed Event	3	
	7.7.30	QoS Violation Event	3	
	7.7.31	Page Scan Repetition Mode Change Event597	7	
	7.7.32	Flow Specification Complete Event598	3	
	7.7.33	Inquiry Result with RSSI Event600)	
	7.7.34	Read Remote Extended Features Complete Event 602	2	
	7.7.35	Synchronous Connection Complete Event	3	
	7.7.36	Synchronous Connection Changed event	5	
8	List of Figure	es607	7	
9	List of Tables	s609	9	
10 Appe				
ters				

Part F **MESSAGE SEQUENCE CHARTS**

≯	B	ue	eto	ot	h
---	---	----	-----	----	---

Cont	ents		.621
1	Intro	duction	.623
	1.1	Notation	.623
	1.2	Flow of Control	.624
	1.3	Example MSC	.624
2	Serv	ices Without Connection Request	.625
	2.1	Remote Name Request	.625
	2.2	One-time Inquiry	.626
	2.3	Periodic Inquiry	.628
3	ACL	Connection Establishment and Detachment	.631
	3.1	Connection Setup	.632
4	Optio	onal Activities After ACL Connection Establishment	.639
	4.1	Authentication Requested	.639
	4.2	Set Connection Encryption	.640
	4.3	Change Connection Link Key	
	4.4	Master Link Key	
	4.5	Read Remote Supported Features	
	4.6	Read Remote Extended Features	
	4.7	Read Clock Offset	
	4.8 4.9	Read Remote Version Information	
	4.9	QOS Setup Switch Role	
_			
5	Sync 5.1	chronous Connection Establishment and Detachment	
	-	Synchronous Connection Setup	
6		, Hold and Park	
	6.1	sniff Mode Hold Mode	
	6.2 6.3	Park State	
-			
7		er Management, Flow Control	
8		bback Mode	
	8.1	Local Loopback Mode	
	8.2	Remote Loopback Mode	
9	List	of Figures	.667

Part G SAMPLE DATA

Conte	nts		671
1	Encry	673	
		Generating Kc' from Kc,	

1	Encryption Sample Data				
	1.2	First Set of Sample Data	676		
	1.3	Second Set of Sample Data			
	1.4	Third Set of Samples			
	1.5	Fourth Set of Samples	700		
2	Frequ	uency Hopping Sample Data	709		
	2.1	First set			
	2.2	Second set	716		
	2.3	Third set	722		
3	Acce	ss Code Sample Data	729		
4	HEC	and Packet Header Sample Data	733		
5	CRC	Sample Data	735		
6	Com	plete Sample Packets	737		
	6.1	Example of DH1 Packet	737		
	6.2	Example of DM1 Packet	738		
7	White	ening Sequence Sample Data	739		
8	FEC S	Sample Data	743		
9	Encry	yption Key Sample Data	745		
	9.1	Four Tests of E1	745		
	9.2	Four Tests of E21	750		
	9.3	Three Tests of E22	752		
	9.4	Tests of E22 With Pin Augmenting	754		
	9.5	Four Tests of E3			

Part H

SECURITY SPECIFICATION

Conte	nts			771
1	Secu	rity Ove	rview	773
2	Rand	lom Nur	nber Generation	775
3	Key I	Manage	ment	777
	3.1	Key Ty	pes	777
	3.2 Key Generation and Initialization			779
		3.2.1	Generation of initialization key,	780
		3.2.2	Authentication	780
		3.2.3	Generation of a unit key	780
		3.2.4	Generation of a combination key	781
		3.2.5	Generating the encryption key	782
		3.2.6	Point-to-multipoint configuration	783

		3.2.7 Modifying the link keys	784
		3.2.8 Generating a master key	784
4	Enci	cryption	787
	4.1	Encryption Key Size Negotiation	788
	4.2	Encryption of Broadcast Messages	788
	4.3	Encryption Concept	789
	4.4	Encryption Algorithm	790
		4.4.1 The operation of the cipher	792
	4.5	LFSR Initialization	793
	4.6	Key Stream Sequence	796
5	Auth	hentication	797
	5.1	Repeated Attempts	799
6	The	Authentication And Key-Generating Functions	801
	6.1	The Authentication Function E1	801
	6.2	The Functions Ar and A'r	803
		6.2.1 The round computations	803
		6.2.2 The substitution boxes "e" and "I"	803
		6.2.3 Key scheduling	804
	6.3	E2-Key Generation Function for Authentication	805
	6.4	E3-Key Generation Function for Encryption	807
7	List	of Figures	809
8	List	of Tables	811

Core System Package [Controller volume] Part A

😵 Bluetooth[°]

CONTENTS

1	Scop	е		27
2	Frequ	lency B	ands and Channel Arrangement	29
3	Trans	smitter (Characteristics	31
	3.1	Basic F	Rate	32
		3.1.1	Modulation Characteristics	32
		3.1.2	Spurious Emissions	33
			3.1.2.1 In-band spurious emission	33
		3.1.3	Radio Frequency Tolerance	
	3.2	Enhand	ced Data Rate	
		3.2.1	Modulation Characteristics	
			3.2.1.1 Modulation Method Overview	
			3.2.1.2 Differential Phase Encoding3.2.1.3 Pulse Shaping	
			3.2.1.4 Modulation Accuracy	
		3.2.2	Spurious Emissions	
			3.2.2.1 In-band Spurious Emission	
		3.2.3	Radio Frequency Tolerance	38
		3.2.4	Relative Transmit Power	39
4	Rece	iver Cha	aracteristics	41
	4.1	Basic F	Rate	41
		4.1.1	Actual Sensitivity Level	41
		4.1.2	Interference Performance	41
		4.1.3	Out-of-Band Blocking	42
		4.1.4	Intermodulation Characteristics	42
		4.1.5	Maximum Usable Level	.43
		4.1.6	Receiver Signal Strength Indicator	.43
		4.1.7	Reference Signal Definition	.43
	4.2	Enhand	ced Data Rate	.43
		4.2.1	Actual Sensitivity Level	43
		4.2.2	BER Floor Performance	43
		4.2.3	Interference Performance	43
		4.2.4	Maximum Usable Level	44
		4.2.5	Out-of-Band and Intermodulation Characteristics	45
		4.2.6	Reference Signal Definition	.45
5	Appe	ndix A .		47
	5.1	Nomin	al Test Conditions	47
		5.1.1	Nominal temperature	.47

		5.1.2	Nomina	l power source47
			5.1.2.1	Mains voltage47
			5.1.2.2	Lead-acid battery power sources used in vehi-
				cles47
			5.1.2.3	Other power sources47
	5.2	Extren	ne Test Co	onditions48
		5.2.1	Extreme	e temperatures48
		5.2.2	Extreme	e power source voltages48
			5.2.2.1	Mains voltage48
			5.2.2.2	Lead-acid battery power source used on vehi-
				cles
			5.2.2.3	Power sources using other types of batteries 48
			5.2.2.4	Other power sources48
6	Арре	endix B.		
7	Appe	endix C .		
	7.1	Enhand	ced Data I	Rate Modulation Accuracy51

1 SCOPE

Bluetooth devices operate in the unlicensed 2.4 GHz ISM (Industrial Scientific Medical) band. A frequency hop transceiver is applied to combat interference and fading.

Two modulation modes are defined. A mandatory mode, called Basic Rate, uses a shaped, binary FM modulation to minimize transceiver complexity. An optional mode, called Enhanced Data Rate, uses PSK modulation and has two variants: π /4-DQPSK and 8DPSK. The symbol rate for all modulation schemes is 1 Ms/s. The gross air data rate is 1 Mbps for Basic Rate, 2 Mbps for Enhanced Data Rate using π /4-DQPSK and 3 Mbps for Enhanced Data Rate using 8DPSK.

For full duplex transmission, a Time Division Duplex (TDD) scheme is used in both modes. This specification defines the requirements for a Bluetooth radio for the Basic Rate and Enhanced Data Rate modes.

Requirements are defined for two reasons:

- · Provide compatibility between radios used in the system
- Define the quality of the system

The Bluetooth radio shall fulfil the stated requirements under the operating conditions specified in Appendix A and Appendix B. The radio parameters shall be measured according to the methods described in the RF Test Specification.

This specification is based on the established regulations for Europe, Japan and North America. The standard documents listed below are only for information, and are subject to change or revision at any time.

Europe:

Approval Standards: European Telecommunications Standards Institute, ETSI Documents: EN 300 328, ETS 300-826 Approval Authority: National Type Approval Authorities

Japan:

Approval Standards: Association of Radio Industries and Businesses, ARIB Documents: ARIB STD-T66 Approval Authority: Ministry of Post and Telecommunications, MPT.

😵 Bluetooth

North America:

Approval Standards: Federal Communications Commission, FCC, USA Documents: CFR47, Part 15, Sections 15.205, 15.209, 15.247 and 15.249

Approval Standards: Industry Canada, IC, Canada Documents: GL36

Approval Authority: FCC (USA), Industry Canada (Canada)

2 FREQUENCY BANDS AND CHANNEL ARRANGEMENT

The Bluetooth system operates in the 2.4 GHz ISM band. This frequency band is 2400 - 2483.5 MHz.

Regulatory Range	RF Channels
2.400-2.4835 GHz	f=2402+k MHz, k=0,,78

Table 2.1: Operating frequency bands

RF channels are spaced 1 MHz and are ordered in channel number k as shown in Table 2.1. In order to comply with out-of-band regulations in each country, a guard band is used at the lower and upper band edge.

Lower Guard Band	Upper Guard Band
2 MHz	3.5 MHz

Table 2.2: Guard Bands

3 TRANSMITTER CHARACTERISTICS

The requirements stated in this section are given as power levels at the antenna connector of the Bluetooth device. If the device does not have a connector, a reference antenna with 0 dBi gain is assumed.

Due to difficulty in measurement accuracy in radiated measurements, systems with an integral antenna should provide a temporary antenna connector during type approval.

If transmitting antennas of directional gain greater than 0 dBi are used, the applicable paragraphs in EN 300 328, EN 301 489-17and FCC part 15 shall be compensated for.

Power Class	Maximum Output Power (Pmax)	Nominal Output Power	Minimum Output Power ¹	Power Control
1	100 mW (20 dBm)	N/A	1 mW (0 dBm)	Pmin<+4 dBm to Pmax Optional: Pmin ² to Pmax
2	2.5 mW (4 dBm)	1 mW (0 dBm)	0.25 mW (-6 dBm)	Optional: Pmin ²⁾ to Pmax
3	1 mW (0 dBm)	N/A	N/A	Optional: Pmin ²⁾ to Pmax

The device is classified into three power classes.

Table 3.1: Power classes

1. Minimum output power at maximum power setting.

2. The lower power limit Pmin<-30dBm is suggested but is not mandatory, and may be chosen according to application needs.

Power class 1 device shall implement power control. The power control is used for limiting the transmitted power over +4 dBm. Power control capability under +4 dBm is optional and could be used for optimizing the power consumption and overall interference level. The power steps shall form a monotonic sequence, with a maximum step size of 8 dB and a minimum step size of 2 dB. A class 1 device with a maximum transmit power of +20 dBm shall be able to control its transmit power down to 4 dBm or less.

Devices with power control capability optimizes the output power in a physical link with LMP commands (see Link Manager Protocol). It is done by measuring RSSI and reporting back if the transmission power shall be increased or decreased if possible.

In a connection, the output power shall not exceed the maximum output power of power class 2 for transmitting packets if the receiving device does not support the necessary messaging for sending the power control messages, see

😵 Bluetooth®

Link Manager Protocol Section 4.1.3 on page 235. In this case, the transmitting device shall comply with the rules of a class 2 or class 3 device.

If a class 1 device is paging or inquiring very close to another device, the input power can be larger than the requirement in Section 4.1.5 on page 43. This can cause the receiving device to fail to respond. It may therefore be useful to page at Class 2 or 3 power in addition to paging at power class 1.

Devices shall not exceed the maximum allowed transmit power levels set by controlling regulatory bodies. The maximum allowed transmit power level may depend upon the modulation mode.

3.1 BASIC RATE

3.1.1 Modulation Characteristics

The Modulation is GFSK (Gaussian Frequency Shift Keying) with a bandwidthbit period product BT=0.5. The Modulation index shall be between 0.28 and 0.35. A binary one shall be represented by a positive frequency deviation, and a binary zero shall be represented by a negative frequency deviation. The symbol timing shall be less than ± 20 ppm.

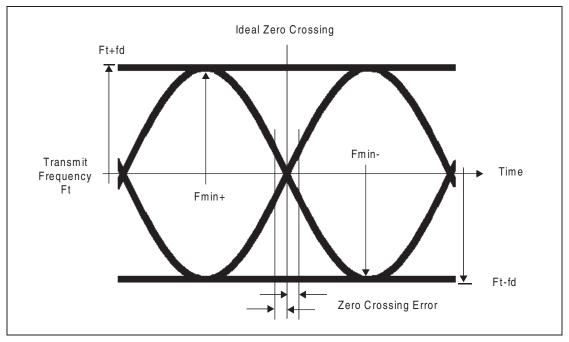


Figure 3.1: GFSK parameters definition.

For each transmission, the minimum frequency deviation, $Fmin = min\{|Fmin+|, Fmin-\}$, which corresponds to 1010 sequence shall be no smaller than ±80% of the frequency deviation (fd) with respect to the transmit frequency Ft, which corresponds to a 00001111 sequence.

😵 Bluetooth°

In addition, the minimum frequency deviation shall never be smaller than 115 kHz. The data transmitted has a symbol rate of 1 Ms/s.

The zero crossing error is the time difference between the ideal symbol period and the measured crossing time. This shall be less than \pm 1/8 of a symbol period.

3.1.2 Spurious Emissions

In-band spurious emissions shall be measured with a frequency hopping radio transmitting on one RF channel and receiving on a second RF channel; this means that the synthesizer may change RF channels between reception and transmission, but always returns to the same transmit RF channel. There will be no reference in this document to out of ISM band spurious emissions; the equipment manufacturer is responsible for compliance in the intended country of use.

3.1.2.1 In-band spurious emission

Within the ISM band the transmitter shall pass a spectrum mask, given in Table 3.2. The spectrum shall comply with the 20dB bandwidth definition in FCC part 15.247 and shall be measured accordingly. In addition to the FCC requirement an adjacent channel power on adjacent channels with a difference in RF channel number of two or greater is defined. This adjacent channel power is defined as the sum of the measured power in a 1 MHz RF channel. The transmitted power shall be measured in a 100 kHz bandwidth using maximum hold. The device shall transmit on RF channel number N. The transmitter shall transmit a pseudo random data pattern in the payload throughout the test.

Frequency offset	Transmit Power	
± 500 kHz	-20 dBc	
2MHz (M-N = 2)	-20 dBm	
3MHz or greater ($ M-N \ge 3$)	-40 dBm	

Table 3.2: Transmit Spectrum mask.

Exceptions are allowed in up to three bands of 1 MHz width centered on a frequency which is an integer multiple of 1 MHz. They shall comply with an absolute value of –20 dBm.

Note: If the output power is less than 0dBm then, wherever appropriate, the FCC's 20 dB relative requirement overrules the absolute adjacent channel power requirement stated in the above table.

Bluetooth

Radio Specification

3.1.3 Radio Frequency Tolerance

The transmitted initial center frequency shall be within ± 75 kHz from F_c. The initial frequency accuracy is defined as being the frequency accuracy before any packet information is transmitted. Note that the frequency drift requirement is not included in the ± 75 kHz.

The limits on the transmitter center frequency drift within a packet are specified in Table 3.3. The different packets are defined in the Baseband Specification.

Duration of Packet	Frequency Drift
Max length one slot packet	±25 kHz
Max length three slot packet	±40 kHz
Max length five slot packet	±40 kHz
Maximum drift rate ¹	400 Hz/µs

Table 3.3: Maximum allowable frequency drifts in a packet.

1. The maximum drift rate is allowed anywhere in a packet.

3.2 ENHANCED DATA RATE

A key characteristic of the Enhanced Data Rate mode is that the modulation scheme is changed within the packet. The access code and packet header, as defined in Table 6.1 in the Baseband Specification, are transmitted with the Basic Rate 1 Mbps GFSK modulation scheme, whereas the subsequent synchronization sequence, payload, and trailer sequence are transmitted using the Enhanced Data Rate PSK modulation scheme.

3.2.1 Modulation Characteristics

During access code and packet header transmission the Basic Rate GFSK modulation scheme shall be used. During the transmission of the synchronization sequence, payload, and trailer sequence a PSK type of modulation with a data rate of 2 Mbps or optionally 3 Mbps shall be used. The following subsections specify the PSK modulation for this transmission.

3.2.1.1 Modulation Method Overview

The PSK modulation format defined for the 2 Mbps transmission shall be $\pi/4$ rotated differential encoded quaternary phase shift keying ($\pi/4$ -DQPSK).

The PSK modulation format defined for the 3 Mbps transmission shall be differential encoded 8-ary phase shift keying (8DPSK).

page 35 of 814

🚯 Bluetooth°

The modulation shall employ square-root raised cosine pulse shaping to generate the equivalent lowpass information-bearing signal v(t). The output of the transmitter shall be a bandpass signal that can be represented as

$$S(t) = Re\left[v(t)e^{j2\pi F_{c}t}\right]$$
(EQ 1)

with F_c denoting the carrier frequency.

3.2.1.2 Differential Phase Encoding

For the M-ary modulation, the binary data stream {b_n}, n=1,2,3, ...N, shall be mapped onto a corresponding sequence {Sk}, k=1,2, ...N/log₂(M) of complex valued signal points. M=4 applies for 2 Mbps and M=8 applies for 3 Mbps. Gray coding shall be applied as shown in Table 3.4 and Table 3.5. In the event that the length of the binary data stream N is not an integer multiple of log₂(M), the last symbol of the sequence {S_k} shall be formed by appending data zeros to the appropriate length. The signal points S_k shall be defined by:

$$S_k = S_{k-1} e^{j\varphi_k}$$
 $k = 1, 2, ...N/\log_2(M)$ (EQ 2)

$$S_0 = e^{j\phi}$$
 with $\phi \in [0, 2\pi)$ (EQ 3)

The relationship between the binary input b_k and the phase ϕ_k shall be as defined in Table 3.4 for the 2 Mbps transmission and in Table 3.5 for the 3 Mbps transmission.

b _{2k-1}	b _{2k}	φ _k
0	0	π/4
0	1	3π/4
1	1	-3π/4
1	0	-π/4

Table 3.4: π /4-DQPSK mapping.

😵 Bluetooth°

b _{3k-2}	b _{3k-1}	b _{3k}	φ _k
0	0	0	0
0	0	1	π/4
0	1	1	π/2
0	1	0	3π/4
1	1	0	π
1	1	1	-3π/4
1	0	1	-π/2
1	0	0	-π/4

Table 3.5: 8DPSK mapping.

3.2.1.3 Pulse Shaping

The lowpass equivalent information-bearing signal v(t) shall be generated according to

$$v(t) = \sum_{k} S_{k} p(t - kT)$$
(EQ 4)

in which the symbol period T shall be $1\mu s$.

The frequency spectrum P(f), which corresponds to the square-root raised cosine pulse p(t) of the pulse shaping filter is:

$$|P(f)| = \begin{cases} 1 & 0 \le |f| \le \frac{1-\beta}{2T} \\ \sqrt{\frac{1}{2} \left(1 - \sin\left(\frac{\pi(2fT - 1)}{2\beta}\right)\right)} & \frac{1-\beta}{2T} \le |f| \le \frac{1+\beta}{2T} \\ 0 & \text{elsewhere} \end{cases}$$
(EQ 5)

The roll off factor β shall be 0.4.

3.2.1.4 Modulation Accuracy

The measurement of modulation accuracy utilizes differential error vector magnitude (DEVM) with tracking of the carrier frequency drift. The definition of DEVM and the derivation of the RMS and peak measures of DEVM are given in 51.

😵 Bluetooth[®]

The DEVM shall be measured over the synchronization sequence and payload portions of the packet, but not the trailer symbols. For each modulation method and each measurement carrier frequency, DEVM measurement is made over a total of 200 non-overlapping blocks, where each block contains 50 symbols.

The transmitted packets shall be the longest supported packet type for each modulation method, as defined in Table 6.9 and Table 6.10 in the Baseband part.

The DEVM is measured using a square-root raised cosine filter, with a roll-off of 0.4 and a 3 dB bandwidth of \pm 500 kHz.

3.2.1.4.1 RMS DEVM

The RMS DEVM for any of the measured blocks shall not exceed 0.20 for π /4-DQPSK and 0.13 for 8DPSK.

3.2.1.4.2 99% DEVM

The 99% DEVM (defined as the DEVM value for which 99% of measured symbols have a lower DEVM) shall not exceed 0.30 for π /4-DQPSK and 0.20 for 8DPSK.

3.2.1.4.3 Peak DEVM

The Peak DEVM shall not exceed 0.35 for π /4-DQPSK and 0.25 for 8DPSK.

3.2.2 Spurious Emissions

In-band spurious emissions shall be measured with a frequency hopping radio transmitting on one RF channel and receiving on a second RF channel; this means that the synthesizer may change RF channels between reception and transmission, but always returns to the same transmit RF channel. There will be no reference in this document to out of ISM band spurious emissions; the equipment manufacturer is responsible for compliance in the intended country of use.

3.2.2.1 In-band Spurious Emission

Within the ISM band the power spectral density of the transmitter shall comply with the following requirements when sending pseudo random data. All power measurements shall use a 100 kHz bandwidth with maximum hold. The power measurements between 1 MHz and 1.5 MHz from the carrier shall be at least 26 dB below the maximum power measurement up to 500 kHz from the carrier. The adjacent channel power for channels at least 2 MHz from the carrier is defined as the sum of the power measurements over a 1 MHz channel and shall not exceed -20 dBm for the second adjacent channels and -40 dBm for the third and subsequent adjacent channels. These requirements shall apply to

😵 Bluetooth°

the transmitted signal from the start of the guard time to the end of the power down ramp. The spectral mask is illustrated in Figure 3.2.

Exceptions are allowed in up to 3 bands of 1 MHz width centered on a frequency which is an integer multiple of 1 MHz. They shall comply with an absolute value of -20 dBm.

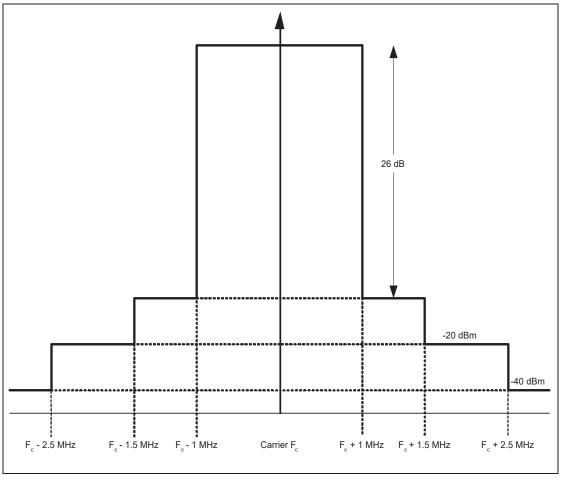


Figure 3.2: Transmitter spectrum mask

3.2.3 Radio Frequency Tolerance

The same carrier frequencies F_c as used for Basic Rate transmissions shall be used for the Enhanced Data Rate transmissions. The transmitted initial center frequency accuracy shall be within ± 75 kHz from F_c. The maximum excursion from F_c (frequency offset plus drift) shall not exceed ± 75 kHz.

The initial frequency accuracy is defined as being the frequency accuracy before any information is transmitted.

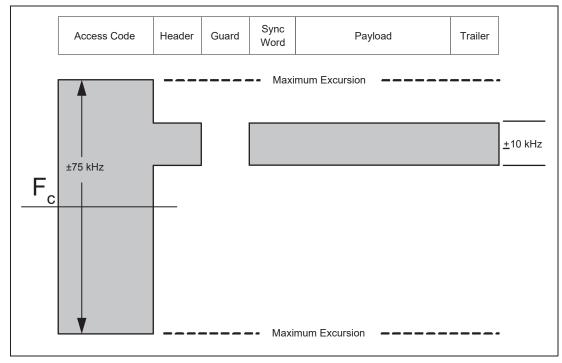


Figure 3.3: Carrier frequency mask

The requirements on accuracy and stability are illustrated by Figure 3.3 for the Enhanced Data Rate packet format defined in 55. The higher frequency accuracy requirement shall start at the first symbol of the header. The maximum drift over the header, synchronization sequence and payload shall be ± 10 kHz.

3.2.4 Relative Transmit Power

The requirement on the relative power of the GFSK and PSK portions of the Enhanced Data Rate packet is defined as follows. The average power level during the transmission of access code and header is denoted as P_{GFSK} and the average power level during the transmission of the synchronization sequence and the payload is denoted as P_{DFSK} . The following inequalities shall be satisfied independently for every Enhanced Data Rate packet transmitted:

 $(P_{GFSK} - 4 dB) < P_{DPSK} < (P_{GFSK} + 1 dB)$

4 RECEIVER CHARACTERISTICS

The receiver characteristics shall be measured using loopback as defined in Section 1, "Test Methodology," on page 231.

The reference sensitivity level referred to in this chapter is -70 dBm.

4.1 BASIC RATE

4.1.1 Actual Sensitivity Level

The actual sensitivity level is defined as the input level for which a raw bit error rate (BER) of 0.1% is met. The receiver sensitivity shall be below or equal to -70 dBm with any Bluetooth transmitter compliant to the transmitter specification specified in Section 3 on page 31.

4.1.2 Interference Performance

The interference performance on Co-channel and adjacent 1 MHz and 2 MHz shall be measured with the wanted signal 10 dB over the reference sensitivity level. For interference performance on all other RF channels the wanted signal shall be 3 dB over the reference sensitivity level. If the frequency of an interfering signal is outside of the band 2400-2483.5 MHz, the out-of-band blocking specification (see Section 4.1.3 on page 42) shall apply. The interfering signal shall be Bluetooth-modulated (see Section 4.1.7 on page 43). The BER shall be $\leq 0.1\%$ for all the signal-to-interference ratios listed in Table 4.1:

Frequency of Interference	Ratio
Co-Channel interference, C/I _{co-channel}	11 dB
Adjacent (1 MHz) interference, C/I _{1MHz}	0 dB
Adjacent (2 MHz) interference, C/I _{2MHz}	-30 dB
Adjacent (\geq 3 MHz) interference, C/I $_{\geq$ 3MHz}	-40 dB
Image frequency Interference ^{1 2} , C/I _{Image}	-9 dB
Adjacent (1 MHz) interference to in-band image frequency, $C/I_{Image\pm 1MHz}$	-20 dB

Table 4.1: Interference performance

1. In-band image frequency

- 2. If the image frequency \neq n*1 MHz, then the image reference frequency is defined as the closest n*1 MHz frequency.
 - If two adjacent channel specifications from Table 4.1 are applicable to the same channel, the more relaxed specification applies.

These specifications are only to be tested at nominal temperature conditions with a device receiving on one RF channel and transmitting on a second RF channel;

😵 Bluetooth®

this means that the synthesizer may change RF channels between reception and transmission, but always returns to the same receive RF channel.

RF channels where the requirements are not met are called spurious response RF channels. Five spurious response RF channels are allowed at RF channels with a distance of \geq 2 MHz from the wanted signal. On these spurious response RF channels a relaxed interference requirement C/I = -17 dB shall be met.

4.1.3 Out-of-Band Blocking

The out-of-band suppression (or rejection) shall be measured with the wanted signal 3 dB over the reference sensitivity level. The interfering signal shall be a continuous wave signal. The BER shall be $\leq 0.1\%$. The out-of-band blocking shall fulfil the following requirements:

Interfering Signal Frequency	Interfering Signal Power Level
30 MHz - 2000 MHz	-10 dBm
2000 - 2399 MHz	-27 dBm
2484 – 3000 MHz	-27 dBm
3000 MHz – 12.75 GHz	-10 dBm

Table 4.2: Out-of-band suppression (or rejection) requirements.

24 exceptions are permitted which are dependent upon the given RF channel and are centered at a frequency which is an integer multiple of 1 MHz. For at least 19 of these spurious response frequencies, a reduced interference level of at least -50dBm is allowed in order to achieve the required BER=0.1% performance, whereas for a maximum of 5 of the spurious frequencies the interference level may be assumed arbitrarily lower.

4.1.4 Intermodulation Characteristics

The reference sensitivity performance, BER = 0.1%, shall be met under the following conditions:

- The wanted signal shall be at frequency f₀ with a power level 6 dB over the reference sensitivity level.
- A static sine wave signal shall be at a frequency f_1 with a power level of -39 dBm.
- A Bluetooth modulated signal (see Section 4.1.7 on page 43) shall be at f₂ with a power level of -39 dBm.

Frequencies f0, f1 and f2 shall be chosen such that $f_0=2f_1-f_2$ and $|f_2-f_1|=n^*1$ MHz, where n can be 3, 4, or 5. The system shall fulfill at least one of the three alternatives (n=3, 4, or 5).

4.1.5 Maximum Usable Level

The maximum usable input level that the receiver operates at shall be greater than -20 dBm. The BER shall be less than or equal to 0.1% at –20 dBm input power.

4.1.6 Receiver Signal Strength Indicator

If a device supports Receive Signal Strength Indicator (RSSI) the accuracy shall be +/- 6 dBm.

4.1.7 Reference Signal Definition

A Bluetooth modulated interfering signal shall be defined as:

Modulation = GFSK Modulation index = 0.32±1% BT= 0.5±1% Bit Rate = 1 Mbps ±1 ppm Modulating Data for wanted signal = PRBS9 Modulating Data for interfering signal = PRBS 15 Frequency accuracy better than ±1 ppm.

4.2 ENHANCED DATA RATE

4.2.1 Actual Sensitivity Level

The actual sensitivity level shall be defined as the input level for which a raw bit error rate (BER) of 0.01% is met. The requirement for a Bluetooth π /4-DQPSK and 8DPSK Enhanced Data Rate receiver shall be an actual sensitivity level of –70 dBm or better. The receiver shall achieve the –70 dBm sensitivity level with any Bluetooth transmitter compliant to the Enhanced Data Rate transmitter specification as defined in Section 3.2.

4.2.2 BER Floor Performance

The receiver shall achieve a BER less than 0.001% at 10 dB above the reference sensitivity level.

4.2.3 Interference Performance

The interference performance for co-channel and adjacent 1 MHz and 2 MHz channels shall be measured with the wanted signal 10 dB above the reference sensitivity level. On all other frequencies the wanted signal shall be 3 dB above the reference sensitivity level. The requirements in this section shall only apply if the frequency of the interferer is inside of the band 2400-2483.5 MHz.

😵 Bluetooth®

The interfering signal for co-channel interference shall be similarly modulated as the desired signal. The interfering signal for other channels shall be equivalent to a nominal Bluetooth Basic Rate GFSK transmitter. The interfering signal shall carry random data.

A BER of 0.1% or better shall be achieved for the signal to interference ratios defined in Table 4.3.

Frequency of Interference	π/ 4-DQPSK Ratio	8DPSK Ratio
Co-Channel interference, C/I co-channel	13 dB	21 dB
Adjacent (1 MHz) interference ¹ , C/I _{1MHz}	0 dB	5 dB
Adjacent (2MHz) interference ¹ , C/I _{2MHz}	-30 dB	-25 dB
Adjacent (<u>></u> 3MHz) interference ¹	-40 dB	-33 dB
Image frequency interference ^{1,2,3} , C/I _{Image}	-7 dB	0 dB
Adjacent (1 MHz) interference to in-band image frequency ^{1,2,3} ,C/I _{Image ±1MHz}	-20 dB	-13 dB

Table 4.3: Interference Performance

- 1. If two adjacent channel specifications from Table 4.3 are applicable to the same channel, the more relaxed specification applies.
- 2. In-band image frequency.
- 3. If the image frequency is not equal to n*1 MHz, then the image reference frequency is defined as the closest n*1 MHz frequency.

These specifications are only to be tested at nominal temperature conditions with a receiver hopping on one frequency; this means that the synthesizer may change frequency between receive slot and transmit slot, but always returns to the same receive frequency.

Frequencies where the requirements are not met are called spurious response frequencies. Five spurious response frequencies are allowed at frequencies with a distance of \geq 2 MHz from the wanted signal. On these spurious response frequencies a relaxed interference requirement C/I = -15 dB for π /4-DQPSK and C/I = -10 dB for 8DPSK shall be met.

4.2.4 Maximum Usable Level

The maximum usable input level that the receiver operates at shall be greater than -20 dBm. The BER shall be less than or equal to 0.1% at -20 dBm input power.

4.2.5 Out-of-Band and Intermodulation Characteristics

Note: The Basic Rate out-of-band blocking and intermodulation requirements ensure adequate Enhanced Data Rate performance, and therefore there are no specific requirements for Enhanced Data Rate.

4.2.6 Reference Signal Definition

A 2 Mbps Bluetooth signal used as "wanted" or "interfering signal" is defined as:

Modulation = $\pi/4$ -DQPSK Symbol Rate = 1 Msym/s ± 1 ppm Frequency accuracy better than ±1 ppm Modulating Data for wanted signal = PRBS9 Modulating Data for interfering signal = PRBS15 RMS Differential Error Vector Magnitude < 5% Average power over the GFSK and DPSK portions of the packet shall be equal to within +/- 1 dB

A 3 Mbps Bluetooth signal used as "wanted" or "interfering signal" is defined as:

Modulation = 8DPSK Symbol Rate = 1 Msym/s ± 1 ppm Frequency accuracy better than ±1 ppm Modulating Data for wanted signal = PRBS9 Modulating Data for interfering signal = PRBS15 RMS Differential Error Vector Magnitude < 5% Average power over the GFSK and DPSK portions of the packet shall be equal to within +/- 1 dB

5 APPENDIX A

5.1 NOMINAL TEST CONDITIONS

5.1.1 Nominal temperature

The nominal temperature conditions for tests shall be +15 to +35 ^oC. When it is impractical to carry out the test under this condition a note to this effect, stating the ambient temperature, shall be recorded. The actual value during the test shall be recorded in the test report.

5.1.2 Nominal power source

5.1.2.1 Mains voltage

The nominal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. The nominal voltage shall be the declared voltage or any of the declared voltages for which the equipment was designed. The frequency of the test power source corresponding to the AC mains shall be within 2% of the nominal frequency.

5.1.2.2 Lead-acid battery power sources used in vehicles

When radio equipment is intended for operation from the alternator-fed leadacid battery power sources which are standard in vehicles, then the nominal test voltage shall be 1.1 times the nominal voltage of the battery (6V, 12V, etc.).

5.1.2.3 Other power sources

For operation from other power sources or types of battery (primary or secondary), the nominal test voltage shall be as declared by the equipment manufacturer. This shall be recorded in the test report.

😵 Bluetooth®

5.2 EXTREME TEST CONDITIONS

5.2.1 Extreme temperatures

The extreme temperature range shall be the largest temperature range given by the combination of:

- The minimum temperature range 0 °C to +35 °C
- The product operating temperature range declared by the manufacturer.

This extreme temperature range and the declared operating temperature range shall be recorded in the test report.

5.2.2 Extreme power source voltages

Tests at extreme power source voltages specified below are not required when the equipment under test is designed for operation as part of and powered by another system or piece of equipment. Where this is the case, the limit values of the host system or host equipment shall apply. The appropriate limit values shall be declared by the manufacturer and recorded in the test report.

5.2.2.1 Mains voltage

The extreme test voltage for equipment to be connected to an AC mains source shall be the nominal mains voltage $\pm 10\%$.

5.2.2.2 Lead-acid battery power source used on vehicles

When radio equipment is intended for operation from the alternator-fed lead-acid battery power sources which are standard in vehicles, then extreme test voltage shall be 1.3 and 0.9 times the nominal voltage of the battery (6V, 12V etc.)

5.2.2.3 Power sources using other types of batteries

The lower extreme test voltage for equipment with power sources using the following types of battery, shall be

- a) for Leclanché, alkaline, or lithium type battery: 0.85 times the nominal voltage of the battery
- b) for mercury or nickel-cadmium types of battery: 0.9 times the nominal voltage of the battery.

In both cases, the upper extreme test voltage shall be 1.15 times the nominal voltage of the battery.

5.2.2.4 Other power sources

For equipment using other power sources, or capable of being operated from a variety of power sources (primary or secondary), the extreme test voltages shall be those declared by the manufacturer. These shall be recorded in the test report.

6 APPENDIX B

The Basic Rate radio parameters shall be tested in the following conditions

Parameter	Temperature	Power source
Output Power	ETC	ETC
Power control	NTC	NTC
Modulation index	ETC	ETC
Initial Carrier Frequency accuracy	ETC	ETC
Carrier Frequency drift	ETC	ETC
Conducted in-band spurious emissions	ETC	ETC
Radiated in-band emissions	NTC	NTC
Sensitivity	ETC	ETC
Interference Performance	NTC	NTC
Intermodulation Characteristics	NTC	NTC
Out-of-band blocking	NTC	NTC
Maximum Usable Level	NTC	NTC
Receiver Signal Strength Indicator	NTC	NTC

ETC = Extreme Test Conditions

NTC = Nominal Test Conditions

The Enhanced Data Rate radio parameters shall be tested in the following conditions

Parameter	Temperature	Power source
Modulation accuracy	ETC	ETC
Carrier frequency stability	ETC	ETC
In-band spurious emissions	ETC	ETC
Relative transmit power	ETC	ETC
Sensitivity	ETC	ETC
BER floor sensitivity	NTC	NTC
Interference Performance	NTC	NTC
Maximum usable level	NTC	NTC

ETC = Extreme Test Conditions NTC = Nominal Test Conditions

7 APPENDIX C

7.1 ENHANCED DATA RATE MODULATION ACCURACY

The Enhanced Data Rate modulation accuracy is defined by the differential error vector, being the difference between the vectors representing consecutive symbols of the transmitted signal, after passing the signal through a specified measurement filter, sampling it at the symbol rate with an optimum sampling phase and compensating it for carrier frequency error and for the ideal carrier phase changes. The magnitude of the normalized differential error vector is called the Differential Error Vector Magnitude (DEVM). The objective of the DEVM is to estimate the modulation errors that would be perceived by a differential receiver.

In an ideal transmitter, the input bit sequence $\{b_j\}$ is mapped onto a complex valued symbol sequence $\{S_k\}$. Subsequently, this symbol sequence is transformed into a baseband signal S(t) by means of a pulse-shaping filter.

In an actual transmitter implementation, the bit sequence $\{b_j\}$ generates a baseband equivalent transmitted signal Y(t). This signal Y(t) contains, besides the desired component S(t), multiple distortion components. This is illustrated in Figure 7.1.

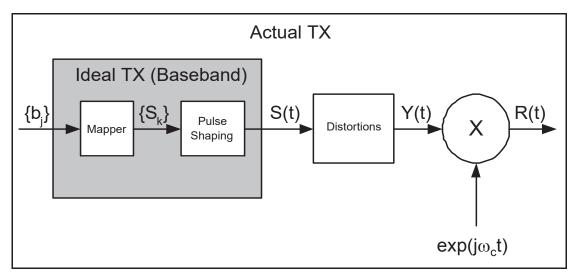


Figure 7.1: TX model.

Let Z(t) be the output of the measurement filter after first compensating the received signal for the initial center frequency error, ω_i , of the received packet, i.e. the output after down conversion and filtering the transmit signal R(t) (see Figure 7.2). The measurement filter is defined by a square-root raised cosine shaping filter with a roll-off factor equal to 0.4 and 3 dB bandwidth of ±500 kHz.

😵 Bluetooth°

Let {Z_k(ϵ)} be the sequence of samples obtained by sampling the signal Z(t) with a sampling period equal to the symbol period T and a sampling phase equal to ϵ such that Z_k(ϵ)=Z((k+ ϵ)T). Note that this sequence {Z_k(ϵ)} would coincide with the symbol sequence {S_k} if no distortion is present and the correct timing phase ϵ is chosen.

To reflect the behavior of a typical differential receiver, the sample sequence $\{Z_k(\epsilon)\}$ should be compensated for carrier frequency drift. Therefore, the sequence $\{Z_k(\epsilon)\}$ is multiplied by a factor W^{-k} in which W = $e^{j\omega T}$ accounts for the frequency offset ω . A constant value of ω is used for each DEVM block of N = 50 symbols, but ω may vary between DEVM blocks (note that the values of ω can be used to measure carrier frequency drift.

In addition, {Z_k(ϵ)} is compensated for the ideal phase changes between symbols by multiplying it with the complex conjugate of the symbol sequence {S_k}. However, it is not necessary to compensate {Z_k(ϵ)} for initial carrier phase or output power of the transmitter.

Let {Q_k(ε, ω)} denote the compensated sequence {Z_k(ε)}, where the ideal phase changes have been removed and ε and ω are chosen optimally to minimize the DEVM, (i.e. remove time and frequency uncertainty). For a transmitter with no distortions other than a constant frequency error, {Q_k(ε, ω)} is a complex constant that depends on the initial carrier phase and the output power of the transmitter.

The differential error sequence {E_k(ε, ω)} is defined as the difference between {Q_k(ε, ω)} and {Q_{k-1}(ε, ω)}. This reflects the modulation errors that would be perceived by a differential receiver. For a transmitter with no distortions other than a constant frequency error, {E_k(ε, ω)} is zero.

😵 Bluetooth[°]

The definitions of the DEVM measures are based upon this differential error sequence $\{E_k(\varepsilon,\omega)\}$. The generation of the error sequence is depicted in Figure 7.2.

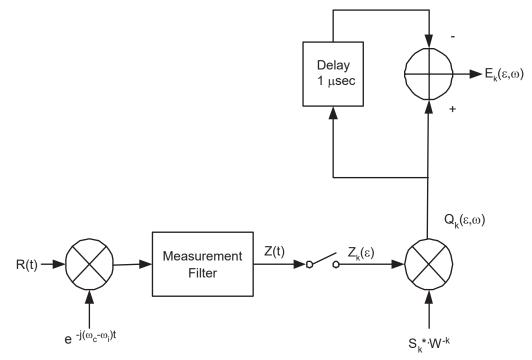


Figure 7.2: Error sequence generation.

RMS DEVM

The root mean squared DEVM (RMS DEVM) computed over N = 50 symbols is defined as:

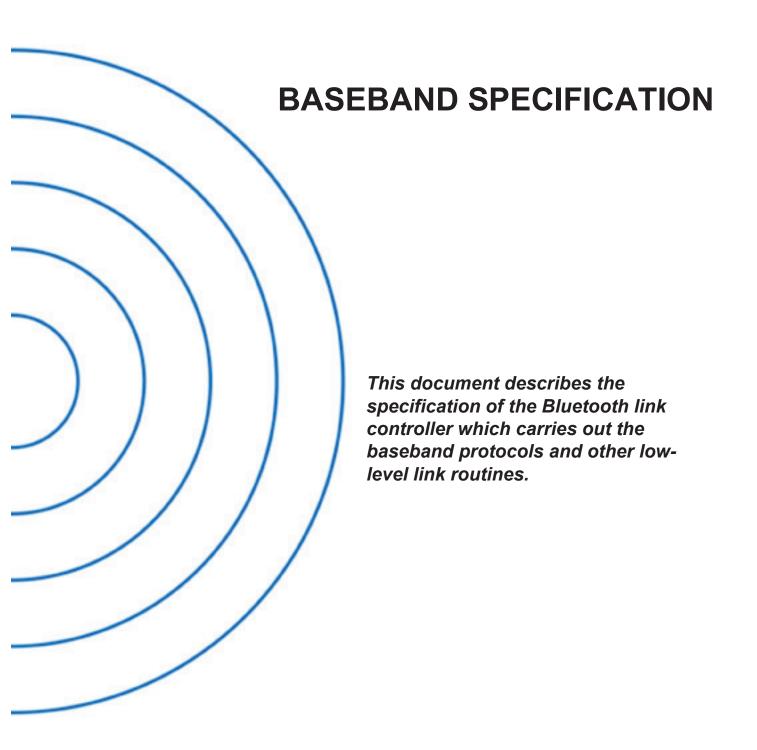
$$RMS DEVM = \min_{\varepsilon,\omega} \left\{ \sqrt{\sum_{k=1}^{N} \left| E_k(\varepsilon, \omega) \right|^2 / \sum_{k=1}^{N} \left| Q_k(\varepsilon, \omega) \right|^2} \right\}$$

As can be seen from the expression above, the RMS DEVM is the square-root of the normalized power of the error.

😵 Bluetooth[°]

Radio Specification

Peak DEVM


The DEVM at symbol k is defined as

$$DEVM(k) = \sqrt{\frac{\left|E_{k}(\varepsilon_{0}, \omega_{0})\right|^{2}}{\sum_{j=1}^{N} \left|Q_{j}(\varepsilon_{0}, \omega_{0})\right|^{2}/N}}$$
(EQ 6)

where ϵ_0 and ω_0 are the values for ϵ and ω used to calculate the RMS DEVM.

The peak DEVM is defined as:

$$Peak DEVM = \max_{k} \{ DEVM (k) \}$$
(EQ 7)

😵 Bluetooth[®]

CONTENTS

1	Gene	ral Desc	cription		.63
	1.1	Bluetoc	th Clock		.64
	1.2	Bluetoc	oth Device	Addressing	.66
		1.2.1	Reserve	d addresses	.66
	1.3	Access	Codes		.67
2	Physi	ical Cha	nnels		.69
	2.1	Physica	al Channe	l Definition	.70
	2.2	Basic F	Piconet Ph	iysical Channel	.70
		2.2.1	Master-s	lave definition	.70
		2.2.2	Hopping	characteristics	.71
		2.2.3	Time slo	ts	.71
		2.2.4	Piconet of	clocks	.72
		2.2.5	Transmit	/receive timing	.72
			2.2.5.1	Piconet physical channel timing	
			2.2.5.2	Piconet physical channel re-synchronization	
	2.3			Physical Channel	
	0.4	2.3.1	•••••	characteristics	
	2.4	•		ical Channel	
		2.4.1		timate for paging	
		2.4.2		characteristics	
		2.4.3		procedure timing	
	0.5	2.4.4	•	sponse timing	
	2.5			vsical Channel	
		2.5.1		inquiry	
		2.5.2		characteristics	
		2.5.3		rocedure timing	
	~ ~	2.5.4		esponse timing	
	2.6				
		2.6.1		selection scheme	
		2.6.2		kernel	
			2.6.2.1 2.6.2.2	First addition operation XOR operation	
			2.6.2.3	Permutation operation	
			2.6.2.4	Second addition operation	.88
			2.6.2.5	Register bank	
		2.6.3	Adapted	hop selection kernel	
			2.6.3.1	Channel re-mapping function	.89
		2.6.4	Control v	vord	.90

😵 Bluetooth[°]

			2.6.4.1	Page scan and inquiry scan hopping	01
			2.6.4.2	sequences Page hopping sequence	
			2.6.4.3	Slave page response hopping sequence	
			2.6.4.4	Master page response hopping sequence.	
			2.6.4.5	Inquiry hopping sequence	
			2.6.4.6	Inquiry response hopping sequence	
			2.6.4.7	Basic and adapted channel hopping	
				sequence	94
3	Phys	ical Lin	ks		95
	3.1	Link Si	upervisior	۱	95
4	Logic	cal Tran	sports		97
	4.1	Genera	al		97
	4.2	Logica	I Transpo	rt Address (LT_ADDR)	97
	4.3	Synchi	ronous Lo	gical Transports	98
	4.4	Asynch	hronous L	ogical Transport	98
	4.5	Transn	nit/Receiv	e Routines	99
		4.5.1	TX Rout	line	99
			4.5.1.1	ACL traffic	100
			4.5.1.2		
			4.5.1.3		
			4.5.1.4	eSCO Traffic	
		4 5 0	4.5.1.5	Default packet types	
		4.5.2		ine	
		4.5.3		ntrol	
			4.5.3.1	Destination control	
	4.0	A	4.5.3.2		
	4.6			badcast Transport	
	4.7			roadcast Transport	
		4.7.1		member address (PM_ADDR)	
		4.7.2	Access	request address (AR_ADDR)	105
5	Logic				
	5.1	Link Co	ontrol Log	gical Link (LC)	107
	5.2	ACL C	ontrol Log	gical Link (ACL-C)	107
	5.3	User A	synchron	ous/Isochronous Logical Link (ACL-U)	107
		5.3.1	Pausing	the ACL-U logical link	108
	5.4	User S	ynchrono	us Data Logical Link (SCO-S)	108
	5.5	User E	xtended S	Synchronous Data Logical Link (eSCO-S)	108
	5.6	Logica	I Link Pric	prities	108
6	Pack	ets			109
	6.1	Genera	al Format		109
		6.1.1	Basic R	ate	109

≯	Bluetooth
---	-----------

	6.1.2	Enhance	ed Data Rate	.109
6.2	Bit Ord	ering		. 110
6.3	Access	Code		. 111
	6.3.1	Access	code types	. 111
	6.3.2	Preamb	le	. 112
	6.3.3	Sync wo	ord	. 112
			Synchronization word definition	
		6.3.3.2	Pseudo-random noise sequence generation	115
	6.3.4	Trailer		. 115
6.4	Packet	Header.		. 116
	6.4.1	LT_ADD	PR	. 116
	6.4.2	TYPE		. 116
	6.4.3	FLOW		. 117
	6.4.4	ARQN		. 117
	6.4.5	SEQN		. 117
	6.4.6	HEC		. 117
6.5	Packet	Types		. 118
	6.5.1	Commo	n packet types	. 119
		6.5.1.1	ID packet	
		6.5.1.2	NULL packet	
		6.5.1.3	POLL packet	
		6.5.1.4 6.5.1.5	FHS packet	
	6 5 0		DM1 packet	
	6.5.2		ckets	
		6.5.2.1	HV1 packet	
		6.5.2.2 6.5.2.3	HV2 packet HV3 packet	
			DV packet	
	6.5.3		ackets	
	0.0.0		EV3 packet	
			EV4 packet	
			EV5 packet	
			2-EV3 packet	
			2-EV5 packet	
			3-EV3 packet	
		6.5.3.7	3-EV5 packet	.125
	6.5.4	ACL page	ckets	.126
		6.5.4.1	DM1 packet	
			DH1 packet	
		6.5.4.3	 It is a second seco	
		6.5.4.4	DH3 packet	
			DM5 packet	
		6.5.4.6	DH5 packet	. 127

😵 Bluetooth[°]

			6.5.4.7 AUX	1 packet	127
				1 packet	
				3 packet	
				5 packet	
				1 packet	
				3 packet	
	0.0			5 packet	
	6.6				
		6.6.1		data field	
		6.6.2		data field	
	6.7	Packet	Summary		134
7	Bitstr	eam Pr	cessing		137
	7.1	Error C	necking		138
		7.1.1	HEC generation	on	138
		7.1.2	CRC generation	on	139
	7.2	Data W	-		
	7.3		•		
	7.4	FEC Co	de: Rate 1/3		142
	7.5	FEC Co	de: Rate 2/3		143
	7.6	ARQ S	heme		144
		7.6.1	Unnumbered /	ARQ	144
		7.6.2	Retransmit filte	ering	147
		1.0.2		ization of SEQN at start of new	
				ection	148
			7.6.2.2 ACL	and SCO retransmit filtering	148
			7.6.2.3 eSC0	D retransmit filtering	149
				retransmit filtering	
				ets without CRC retransmit filtering	
		7.6.3	Flushing paylo	ads	150
		7.6.4	Multi-slave cor	nsiderations	150
		7.6.5	Broadcast pac	kets	150
8	Link	Control	er Operation .		153
	8.1				
	8.2				
	8.3			nent Substates	
		8.3.1		ostate	
		8.3.2	•		
			•		
		8.3.3	0	e substates	
				e response substate	
	8.4	Device		er response substate states	
	0.4		-		
		8.4.1	inquiry scan s	ubstate	164

*	Bluetooth®
---	------------

		8.4.2	Inquiry s	ubstate	.165
		8.4.3	Inquiry r	esponse substate	.166
	8.5	Connec	ction State		.167
	8.6	Active I	Mode		.168
		8.6.1	Polling in	n the active mode	.169
		8.6.2	SCO		.169
		8.6.3	eSCO		.171
		8.6.4	Broadca	st scheme	.173
		8.6.5	Role swi	tch	.175
		8.6.6	Scattern	et	.177
			8.6.6.1	Inter-piconet communications	.177
		8.6.7	Hop seq	uence switching	.178
		8.6.8	Channel	classification and channel map selection	.181
		8.6.9	Power M	lanagement	.182
			8.6.9.1	Packet handling	
			8.6.9.2 8.6.9.3	Slot occupancy Recommendations for low-power operation	
				Enhanced Data Rate	
	8.7	sniff Mo			
		8.7.1	Sniff Tra	nsition Mode	.184
	8.8	Hold Mode			.185
	8.9	Park St	ate		.185
		8.9.1	Beacon	train	.186
		8.9.2	Beacon	access window	.189
		8.9.3	Parked s	slave synchronization	.190
		8.9.4	Parking.		.191
		8.9.5	Master-i	nitiated unparking	.192
		8.9.6	Slave-ini	tiated unparking	.192
		8.9.7	Broadca	st scan window	.193
		8.9.8	Polling in	n the park state	.193
9	Audio	o			.195
	9.1	LOG P	CM CODI	EC	.195
	9.2	CVSD	CODEC		.195
	9.3		0		
	9.4	Genera	I Audio R	equirements	.198
		9.4.1	Signal le	vels	.198
		9.4.2	CVSD a	udio quality	.198
10	List c	of Figure	es		.199
11	List c	of Tables	s		.203

Baseba	and Specification	<table-of-contents> Bluetooth</table-of-contents>
12	Appendix	203

1 GENERAL DESCRIPTION

This part specifies the normal operation of a Bluetooth baseband.

The Bluetooth system provides a point-to-point connection or a point-to-multipoint connection, see (a) and (b) in Figure 1.1 on page 63. In a point-to-point connection the physical channel is shared between two Bluetooth devices. In a point-to-multipoint connection, the physical channel is shared among several Bluetooth devices. Two or more devices sharing the same physical channel form a *piconet*. One Bluetooth device acts as the master of the piconet, whereas the other device(s) act as slave(s). Up to seven slaves can be active in the piconet. Additionally, many more slaves can remain connected in a parked state. These parked slaves are not active on the channel, but remain synchronized to the master and can become active without using the connection establishment procedure. Both for active and parked slaves, the channel access is controlled by the master.

Piconets that have common devices are called a *scatternet*, see (c) in Figure 1.1 on page 63. Each piconet only has a single master, however, slaves can participate in different piconets on a time-division multiplex basis. In addition, a master in one piconet can be a slave in other piconets. Piconets shall not be frequency synchronized and each piconet has its own hopping sequence.

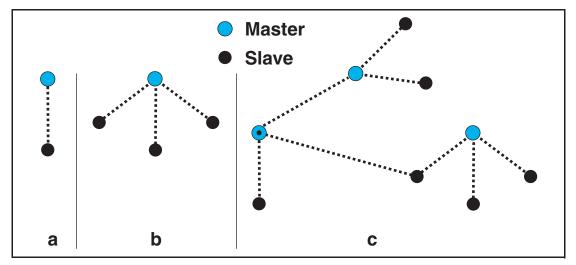


Figure 1.1: Piconets with a single slave operation (a), a multi-slave operation (b) and a scatternet operation (c).

Data is transmitted over the air in packets. Two modulation modes are defined: a mandatory mode called Basic Rate and an optional mode called Enhanced Data Rate. The symbol rate for all modulation schemes is 1 Ms/s. The gross air data rate is 1 Mbps for Basic Rate. Enhanced Data Rate has a primary modulation mode that provides a gross air data rate of 2 Mbps, and a secondary modulation mode that provides a gross air data rate of 3 Mbps.

The general Basic Rate packet format is shown in Figure 1.2. Each packet consists of 3 entities: the access code, the header, and the payload.

B	Slueto	oth®
----------	---------------	------

	ACCESS CODE	HEADER	PAYLOAD
--	----------------	--------	---------

Figure 1.2: Standard Basic Rate packet format.

The general Enhanced Data Rate packet format is shown in Standard Enhanced Data Rate packet format. Each packet consists of 6 entities: the access code, the header, the guard period, the synchronization sequence, the Enhanced Data Rate payload and the trailer. The access code and header use the same modulation scheme as for Basic Rate packets while the synchronization sequence, the Enhanced Data Rate payload and the trailer use the Enhanced Data Rate modulation scheme. The guard time allows for the transition between the modulation schemes.

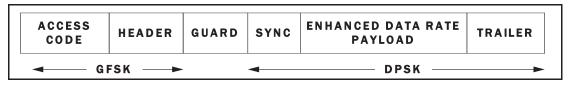


Figure 1.3: Standard Enhanced Data Rate packet format

1.1 BLUETOOTH CLOCK

Every Bluetooth device shall have a native clock that shall be derived from a free running system clock. For synchronization with other devices, offsets are used that, when added to the native clock, provide temporary Bluetooth clocks that are mutually synchronized. It should be noted that the Bluetooth clock has no relation to the time of day; it may therefore be initialized to any value. The clock has a cycle of about a day. If the clock is implemented with a counter, a 28-bit counter is required that shall wrap around at 2^{28} -1. The least significant bit (LSB) shall tick in units of 312.5 µs (i.e. half a time slot), giving a clock rate of 3.2 kHz.

The clock determines critical periods and triggers the events in the device. Four periods are important in the Bluetooth system: 312.5 μ s, 625 μ s, 1.25 ms, and 1.28 s; these periods correspond to the timer bits CLK₀, CLK₁, CLK₂, and CLK₁₂, respectively, see Figure 1.4 on page 65.

😵 Bluetooth[°]

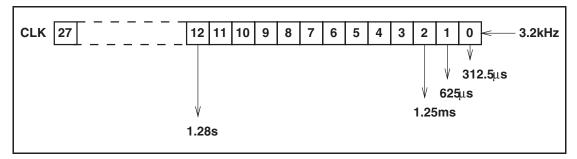


Figure 1.4: Bluetooth clock.

In the different modes and states a device can reside in, the clock has different appearances:

- CLKN native clock
- CLKE estimated clock
- CLK master clock

CLKN is the native clock and shall be the reference to all other clock appearances. In STANDBY and in Park, Hold and Sniff mode the native clock may be driven by a low power oscillator (LPO) with worst case accuracy (+/-250ppm). Otherwise, the native clock shall be driven by the reference crystal oscillator with worst case accuracy of +/-20ppm.

See Section 2.2.4 on page 72 for the definition of CLK and Section 2.4.1 on page 76 for the definition of CLKE.

The master shall never adjust its native clock during the existence of the piconet.

😵 Bluetooth®

1.2 BLUETOOTH DEVICE ADDRESSING

Each Bluetooth device shall be allocated a unique 48-bit Bluetooth device address (BD_ADDR). This address shall be obtained from the IEEE Registration Authority. The address is divided into the following three fields:

- LAP field: lower address part consisting of 24 bits
- UAP field: upper address part consisting of 8 bits
- NAP field: non-significant address part consisting of 16 bits

The LAP and UAP form the significant part of the BD_ADDR. The bit pattern in Figure 1.5 is an example BD_ADDR.

LSB						_					MSE	
	company_assigned						company_id					
	LAP					U	٩P		NA	١P		
0000	0001	0000	0000	0000	0000	0001	0010	0111	1011	0011	0101	

Figure 1.5: Format of BD_ADDR.

The BD_ADDR may take any values except the 64 reserved LAP values for general and dedicated inquiries (see Section 1.2.1 on page 66).

1.2.1 Reserved addresses

A block of 64 contiguous LAPs is reserved for inquiry operations; one LAP common to all devices is reserved for general inquiry, the remaining 63 LAPs are reserved for dedicated inquiry of specific classes of devices (see Assigned Numbers on the web site¹). The same LAP values are used regardless of the contents of UAP and NAP. Consequently, none of these LAPs can be part of a user BD_ADDR.

The reserved LAP addresses are 0x9E8B00-0x9E8B3F. The general inquiry LAP is 0x9E8B33. All addresses have the LSB at the rightmost position, hexadecimal notation. The default check initialization (DCI) is used as the UAP whenever one of the reserved LAP addresses is used. The DCI is defined to be 0x00 (hexadecimal).

^{1.} https://www.bluetooth.org/foundry/assignnumb/document/assigned_numbers

1.3 ACCESS CODES

In the Bluetooth system all transmissions over the physical channel begin with an access code. Three different access codes are defined, see also Section 6.3.1 on page 111:

- device access code (DAC)
- channel access code (CAC)
- inquiry access code (IAC)

All access codes are derived from the LAP of a device address or an inquiry address. The device access code is used during **page**, **page scan** and **page response** substates and shall be derived from the paged device's BD_ADDR. The channel access code is used in the **CONNECTION** state and forms the beginning of all packets exchanged on the piconet physical channel. The channel access code shall be derived from the LAP of the master's BD_ADDR. Finally, the inquiry access code shall be used in the **inquiry** substate. There is one general IAC (GIAC) for general inquiry operations and there are 63 dedicated IACs (DIACs) for dedicated inquiry operations.

The access code also indicates to the receiver the arrival of a packet. It is used for timing synchronization and offset compensation. The receiver correlates against the entire synchronization word in the access code, providing very robust signalling.

2 PHYSICAL CHANNELS

The lowest architectural layer in the Bluetooth system is the physical channel. A number of types of physical channels are defined. All Bluetooth physical channels are characterized by the combination of a pseudo-random frequency hopping sequence, the specific slot timing of the transmissions, the access code and packet header encoding. These aspects, together with the range of the transmitters, define the signature of the physical channel. For the basic and adapted piconet physical channels frequency hopping is used to change frequency periodically to reduce the effects of interference and to satisfy local regulatory requirements.

Two devices that wish to communicate use a shared physical channel for this communication. To achieve this, their transceivers must be tuned to the same RF frequency at the same time, and they must be within a nominal range of each other.

Given that the number of RF carriers is limited and that many Bluetooth devices may be operating independently within the same spatial and temporal area there is a strong likelihood of two independent Bluetooth devices having their transceivers tuned to the same RF carrier, resulting in a physical channel collision. To mitigate the unwanted effects of this collision each transmission on a physical channel starts with an access code that is used as a correlation code by devices tuned to the physical channel. This channel access code is a property of the physical channel. The access code is always present at the start of every transmitted packet.

Four Bluetooth physical channels are defined. Each is optimized and used for a different purpose. Two of these physical channels (the basic piconet channel and adapted piconet channel) are used for communication between connected devices and are associated with a specific piconet. The remaining physical channels are used for discovering (the inquiry scan channel) and connecting (the page scan channel) Bluetooth devices.

A Bluetooth device can only use one of these physical channels at any given time. In order to support multiple concurrent operations the device uses timedivision multiplexing between the channels. In this way a Bluetooth device can appear to operate simultaneously in several piconets, as well as being discoverable and connectable.

Whenever a Bluetooth device is synchronized to the timing, frequency and access code of a physical channel it is said to be 'connected' to this channel (whether or not it is actively involved in communications over the channel.) At a minimum, a device need only be capable of connection to one physical channel at a time, however, advanced devices may be capable of connecting simultaneously to more than one physical channel, but the specification does not assume that this is possible.

😵 Bluetooth

2.1 PHYSICAL CHANNEL DEFINITION

Physical channels are defined by a pseudo-random RF channel hopping sequence, the packet (slot) timing and an access code. The hopping sequence is determined by the UAP and LAP of a Bluetooth device address and the selected hopping sequence. The phase in the hopping sequence is determined by the Bluetooth clock. All physical channels are subdivided into time slots whose length is different depending on the physical channel. Within the physical channel, each reception or transmission event is associated with a time slot or time slots. For each reception or transmission event an RF channel is selected by the hop selection kernel (see Section 2.6 on page 82). The maximum hop rate is 1600 hops/s in the **CONNECTION** state and the maximum is 3200 hops/s in the **inquiry** and **page** substates.

The following physical channels are defined:

- basic piconet physical channel
- adapted piconet physical channel
- page scan physical channel
- inquiry scan physical channel

2.2 BASIC PICONET PHYSICAL CHANNEL

During the **CONNECTION** state the basic piconet physical channel is used by default. The adapted piconet physical channel may also be used. The adapted piconet physical channel is identical to the basic piconet physical channel except for the differences listed in Section 2.3 on page 75.

2.2.1 Master-slave definition

The basic piconet physical channel is defined by the master of the piconet. The master controls the traffic on the piconet physical channel by a polling scheme. (see Section 8.5 on page 167)

By definition, the device that initiates a connection by paging is the master. Once a piconet has been established, master-slave roles may be exchanged. This is described in Section 8.6.5 on page 175.

2.2.2 Hopping characteristics

The basic piconet physical channel is characterized by a pseudo-random hopping through all 79 RF channels. The frequency hopping in the piconet physical channel is determined by the Bluetooth clock and BD_ADDR of the master. When the piconet is established, the master clock is communicated to the slaves. Each slave shall add an offset to its native clock to synchronize with the master clock. Since the clocks are independent, the offsets must be updated regularly. All devices participating in the piconet are time-synchronized and hop-synchronized to the channel.

The basic piconet physical channel uses the basic channel hopping sequence and is described in Section 2.6 on page 82.

2.2.3 Time slots

The basic piconet physical channel is divided into time slots, each 625 μ s in length. The time slots are numbered according to the most significant 27 bits of the Bluetooth clock CLK₂₈₋₁ of the piconet master. The slot numbering ranges from 0 to 2²⁷-1 and is cyclic with a cycle length of 2²⁷. The time slot number is denoted as k.

A TDD scheme is used where master and slave alternatively transmit, see Figure 2.1 on page 71. The packet start shall be aligned with the slot start. Packets may extend over up to five time slots.

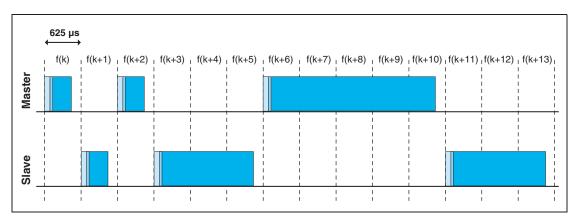


Figure 2.1: Multi-slot packets

The term *slot pairs* is used to indicate two adjacent time slots starting with a master-to-slave transmission slot.

🛞 Bluetooth

2.2.4 Piconet clocks

CLK is the master clock of the piconet. It shall be used for all timing and scheduling activities in the piconet. All devices shall use the CLK to schedule their transmission and reception. The CLK shall be derived from the native clock CLKN (see Section 1.1 on page 64) by adding an offset, see Figure 2.2 on page 72. The offset shall be zero for the master since CLK is identical to its own native clock CLKN. Each slave shall add an appropriate offset to its CLKN such that the CLK corresponds to the CLKN of the master. Although all CLKNs in the devices run at the same nominal rate, mutual drift causes inaccuracies in CLK. Therefore, the offsets in the slaves must be regularly updated such that CLK is approximately CLKN of the master.

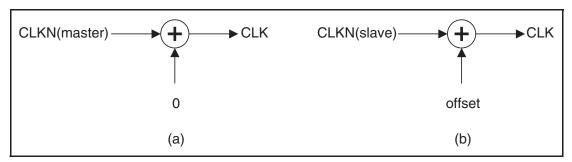


Figure 2.2: Derivation of CLK in master (a) and in slave (b).

2.2.5 Transmit/receive timing

The master transmission shall always start at even numbered time slots $(CLK_1=0)$ and the slave transmission shall always start at odd numbered time slots $(CLK_1=1)$. Due to packet types that cover more than a single slot, master transmission may continue in odd numbered slots and slave transmission may continue in even numbered slots, see Figure 2.1 on page 71.

All timing diagrams shown in this chapter are based on the signals as present at the antenna. The term "exact" when used to describe timing refers to an ideal transmission or reception and neglects timing jitter and clock frequency imperfections.

The average timing of packet transmission shall not drift faster than 20 ppm relative to the ideal slot timing of 625 μ s. The instantaneous timing shall not deviate more than 1 μ s from the average timing. Thus, the absolute packet transmission timing t_k of slot boundary k shall fulfill the equation:

$$t_k = \left(\sum_{i=1}^{\kappa} (1+d_i)T_N\right) + j_k + \text{offset}, \quad (\text{EQ 1})$$

where T_N is the nominal slot length (625 µs), j_k denotes jitter ($|j_k| \le 1$ µs) at the start of slot k, and, d_k , denotes the drift ($|d_k| \le 20$ ppm) within slot k. The jitter and drift may vary arbitrarily within the given limits for every slot, while *offset* is an arbitrary but fixed constant. For hold, park and sniff the drift and jitter parameters specified in Link Manager Protocol [Part C] Section 4.3.1 on page 262 apply.

2.2.5.1 Piconet physical channel timing

In the figures, only single-slot packets are shown as an example.

The master TX/RX timing is shown in Figure 2.3 on page 73. In Figure 2.3 and Figure 2.4 the channel hopping frequencies are indicated by f(k) where k is the time slot number. After transmission, a return packet is expected N × 625 µs after the start of the TX packet where N is an odd, integer larger than 0. N depends on the type of the transmitted packet.

To allow for some time slipping, an uncertainty window is defined around the exact receive timing. During normal operation, the window length shall be 20 μ s, which allows the RX packet to arrive up to 10 μ s too early or 10 μ s too late. It is recommended that slaves implement variable sized windows or time tracking to accommodate a master's absence of more than 250ms.

During the beginning of the RX cycle, the access correlator shall search for the correct channel access code over the uncertainty window. If an event trigger does not occur the receiver may go to sleep until the next RX event. If in the course of the search, it becomes apparent that the correlation output will never exceed the final threshold, the receiver may go to sleep earlier. If a trigger event occurs, the receiver shall remain open to receive the rest of the packet unless the packet is for another device, a non-recoverable header error is detected, or a non-recoverable payload error is detected.

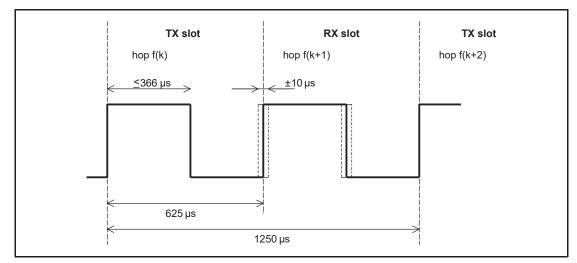


Figure 2.3: RX/TX cycle of master transceiver in normal mode for single-slot packets.

Each master transmission shall be derived from bit 2 of the Master's native Bluetooth clock, thus the current transmission will be scheduled $Mx1250\mu s$ after the start of the previous master TX burst where M depends on the transmitted and received packet type and is an even, integer larger than 0. The master TX timing shall be derived from the master's native Bluetooth clock, and thus it will not be affected by time drifts in the slave(s).

😵 Bluetooth°

Slaves maintain an estimate of the master's native clock by adding a timing offset to the slave's native clock (see Section 2.2.4 on page 72). This offset shall be updated each time a packet is received from the master. By comparing the exact RX timing of the received packet with the estimated RX timing, slaves shall correct the offset for any timing misalignments. Since only the channel access code is required to synchronize the slave, slave RX timing can be corrected with any packet sent in the master-to-slave transmission slot.

The slave's TX/RX timing is shown in Figure 2.4 on page 74. The slave's transmission shall be scheduled N \times 625µs after the start of the slave's RX packet where N is an odd, positive integer larger than 0. If the slave's RX timing drifts, so will its TX timing. During periods when a slave is in the active mode (see Section 8.6 on page 168) and is not able to receive any valid channel access codes from the master, the slave may increase its receive uncertainty window and/or use predicted timing drift to increase the probability of receiving the master's bursts when reception resumes.

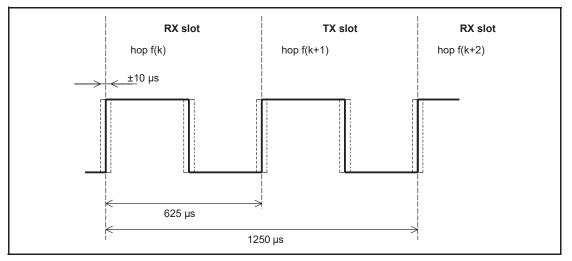


Figure 2.4: RX/TX cycle of slave transceiver in normal mode for single-slot packets.

2.2.5.2 Piconet physical channel re-synchronization

In the piconet physical channel, a slave may loose synchronization if it does not receive a packet from the master at least every 250ms (or less if the low power clock is used). This may occur in sniff, hold, park, in a scatternet or due to interference. When re-synchronizing to the piconet physical channel a slave device shall listen for the master before it may send information. In this case, the length of the search window in the slave device may be increased from 20 μ s to a larger value X μ s as illustrated in Figure 2.5 on page 75. Note that only RX hop frequencies are used. The hop frequency used in the master-to-slave (RX) slot shall also be used in the uncertainty window, even when it is extended into the preceding time interval normally used for the slave-to-master (TX) slot.

If the length of search window, X, exceeds 1250 μ s, consecutive windows shall avoid overlapping search windows. Consecutive windows should instead be centered at *f*(*k*), *f*(*k*+4),... *f*(*k*+4*i*) (where 'i' is an integer), which gives a maximum value X=2500 μ s, or even at *f*(*k*), *f*(*k*+6),...*f*(*k*+6*i*) which gives a maximum value X=3750 μ s. The RX hop frequencies used shall correspond to the master-to-slave transmission slots.

It is recommended that single slot packets are transmitted by the master during slave re-synchronization.

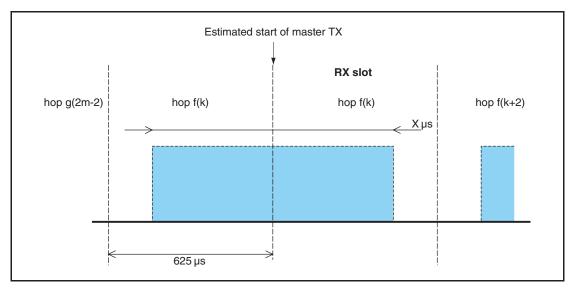


Figure 2.5: RX timing of slave returning from hold mode.

2.3 ADAPTED PICONET PHYSICAL CHANNEL

2.3.1 Hopping characteristics

The adapted piconet physical channel shall use at least N_{min} RF channels (where N_{min} is 20).

The adapted piconet physical channel uses the adapted channel hopping sequence described in Section 2.6 on page 82.

Adapted piconet physical channels can be used for connected devices that have adaptive frequency hopping (AFH) enabled. There are two distinctions between basic and adapted piconet physical channels. The first is that the same channel mechanism that makes the slave frequency the same as the preceding master transmission. The second aspect is that the adapted piconet physical channel may be based on less than the full 79 frequencies of the basic piconet physical channel.

Bluetooth

Baseband Specification

2.4 PAGE SCAN PHYSICAL CHANNEL

Although master and slave roles are not defined prior to a connection, the term *master* is used for the paging device (that becomes a master in the **CONNEC-TION** state) and *slave* is used for the page scanning device (that becomes a slave in the **CONNECTION** state).

2.4.1 Clock estimate for paging

A paging device uses an estimate of the native clock of the page scanning device, CLKE; i.e. an offset shall be added to the CLKN of the pager to approximate the CLKN of the recipient, see Figure 2.6 on page 76. CLKE shall be derived from the reference CLKN by adding an offset. By using the CLKN of the recipient, the pager might be able to speed up the connection establishment.

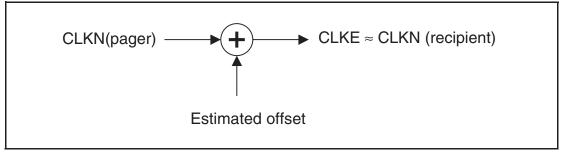


Figure 2.6: Derivation of CLKE.

2.4.2 Hopping characteristics

The page scan physical channel follows a slower hopping pattern than the basic piconet physical channel and is a short pseudo-random hopping sequence through the RF channels. The timing of the page scan channel shall be determined by the native Bluetooth clock of the scanning device. The frequency hopping sequence is determined by the Bluetooth address of the scanning device.

The page scan physical channel uses the page, master page response, slave page response, and page scan hopping sequences specified in Section 2.6 on page 82.

😵 Bluetooth[®]

2.4.3 Paging procedure timing

During the paging procedure, the master shall transmit paging messages (see Table 8.3 on page 159) corresponding to the slave to be connected. Since the paging message is a very short packet, the hop rate is 3200 hops/s. In a single TX slot interval, the paging device shall transmit on two different hop frequencies. In Figure 2.7 through Figure 2.11, f(k) is used for the frequencies of the page hopping sequence and f'(k) denotes the corresponding page response sequence frequencies. The first transmission starts where $CLK_0 = 0$ and the second transmission starts where $CLK_0 = 1$.

In a single RX slot interval, the paging device shall listen for the slave page response message on two different hop frequencies. Similar to transmission, the nominal reception starts where $CLK_0 = 0$ and the second reception nominally starts where $CLK_0 = 1$; see Figure 2.7 on page 77. During the TX slot, the paging device shall send the paging message at the TX hop frequencies f(k) and f(k+1). In the RX slot, it shall listen for a response on the corresponding RX hop frequencies f'(k) and f'(k+1). The listening periods shall be exactly timed 625 µs after the corresponding paging packets, and shall include a $\pm 10 \mu$ s uncertainty window.

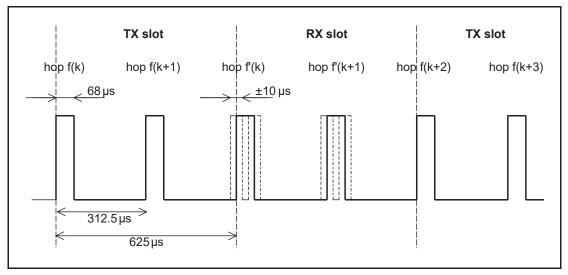
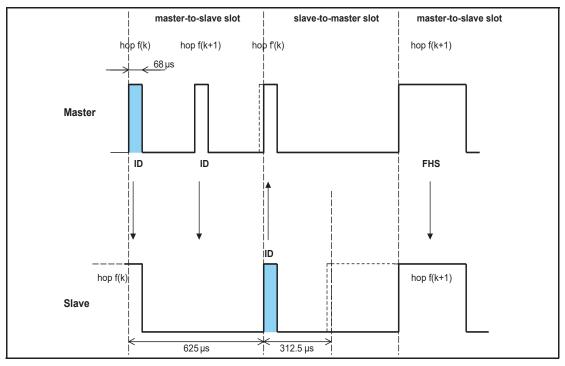



Figure 2.7: RX/TX cycle of transceiver in PAGE mode.

😵 Bluetooth°

2.4.4 Page response timing

At connection setup a master page response packet is transmitted from the master to the slave (see Table 8.3 on page 159). This packet establishes the timing and frequency synchronization. After the slave device has received the page message, it shall return a response message that consists of the slave page response packet and shall follow 625 us after the receipt of the page message. The master shall send the master page response packet in the TX slot following the RX slot in which it received the slave response, according to the RX/TX timing of the master. The time difference between the slave page response and master page response message will depend on the timing of the page message the slave received. In Figure 2.8 on page 78, the slave receives the paging message sent **first** in the master-to-slave slot. It then responds with a first slave page response packet in the first half of the slave-to-master slot. The timing of the master page response packet is based on the timing of the page message sent first in the preceding master-to-slave slot: there is an exact 1250 μ s delay between the first page message and the master page response packet. The packet is sent at the hop frequency f(k+1) which is the hop freguency following the hop frequency f(k) the page message was received in.

Figure 2.8: Timing of page response packets on successful page in first half slot

In Figure 2.9 on page 79, the slave receives the paging message sent **second** in the master-to-slave slot. It then responds with a slave page response packet in the second half of the slave-to-master slot exactly 625 μ s after the receipt of the page message. The timing of the master page response packet is still based on the timing of the page message sent **first** in the preceding master-to-slave slot: there is an exact 1250 μ s delay between the **first** page message and the master page response packet. The packet is sent at the hop frequency *f*(*k*+2) which is the hop frequency following the hop frequency *f*(*k*+1) the page message was received in.

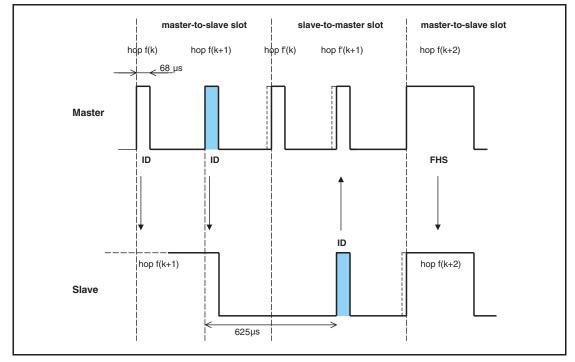


Figure 2.9: Timing of page response packets on successful page in second half slot

The slave shall adjust its RX/TX timing according to the reception of the master page response packet (and not according to the reception of the page message). That is, the second slave page response message that acknowledges the reception of the master page response packet shall be transmitted 625 μ s after the start of the master page response packet.

😵 Bluetooth°

2.5 INQUIRY SCAN PHYSICAL CHANNEL

Although master and slave roles are not defined prior to a connection, the term *master* is used for the inquiring device and *slave* is used for the inquiry scanning device.

2.5.1 Clock for inquiry

The clock used for inquiry and inquiry scan shall be the device's native clock.

2.5.2 Hopping characteristics

The inquiry scan channel follows a slower hopping pattern than the piconet physical channel and is a short pseudo-random hopping sequence through the RF channels. The timing of the inquiry scan channel is determined by the native Bluetooth clock of the scanning device while the frequency hopping sequence is determined by the general inquiry access code.

The inquiry scan physical channel uses the inquiry, inquiry response, and inquiry scan hopping sequences described in Section 2.6 on page 82.

2.5.3 Inquiry procedure timing

During the inquiry procedure, the master shall transmit inquiry messages with the general or dedicated inquiry access code. The timing for inquiry is the same as for paging (see Section 2.4.3 on page 77).

2.5.4 Inquiry response timing

An inquiry response packet is transmitted from the slave to the master after the slave has received an inquiry message (see Table 8.5 on page 167). This packet contains information necessary for the inquiring master to page the slave (see definition of the FHS packet in Section 6.5.1.4 on page 120) and follows 625μ s after the receipt of the inquiry message. In Figure 2.10 and Figure 2.11, f(k) is used for the frequencies of the inquiry hopping sequence and f'(k) denotes the corresponding inquiry response sequence frequency. The packet is received by the master at the hop frequency f'(k) when the inquiry message received by the slave was first in the master-to-slave slot.

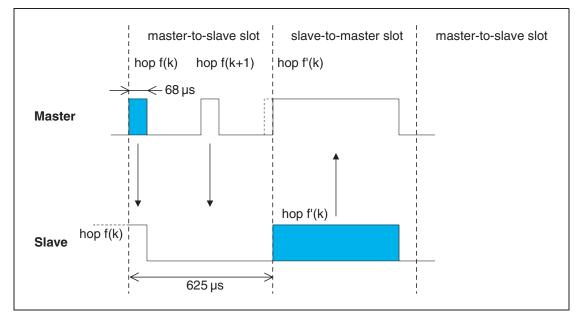


Figure 2.10: Timing of inquiry response packet on successful inquiry in first half slot

When the inquiry message received by the slave was the second in the master-to-slave slot the packet is received by the master at the hop frequency f'(k+1).

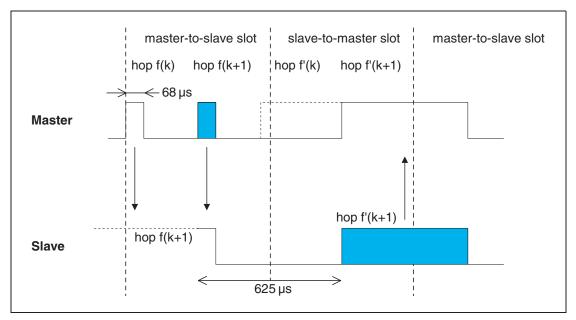


Figure 2.11: Timing of inquiry response packet on successful inquiry in second half slot

😵 Bluetooth®

2.6 HOP SELECTION

Bluetooth devices shall use the hopping kernel as defined in the following sections.

In total, six types of hopping sequence are defined – five for the basic hop system and one for an adapted set of hop locations used by adaptive frequency hopping (AFH). These sequences are:

- A **page hopping sequence** with 32 wake-up frequencies distributed equally over the 79 MHz, with a period length of 32;
- A page response hopping sequence covering 32 response frequencies that are in a one-to-one correspondence to the current page hopping sequence. The master and slave use different rules to obtain the same sequence;
- An **inquiry hopping sequence** with 32 wake-up frequencies distributed equally over the 79 MHz, with a period length of 32;
- An **inquiry response hopping sequence** covering 32 response frequencies that are in a one-to-one correspondence to the current inquiry hopping sequence.
- A **basic channel hopping sequence** which has a very long period length, which does not show repetitive patterns over a short time interval, and which distributes the hop frequencies equally over the 79 MHz during a short time interval.
- An **adapted channel hopping sequence** derived from the basic channel hopping sequence which uses the same channel mechanism and may use fewer than 79 frequencies. The adapted channel hopping sequence is only used in place of the basic channel hopping sequence. All other hopping sequences are not affected by hop sequence adaptation.

2.6.1 General selection scheme

The selection scheme consists of two parts:

- selecting a sequence;
- mapping this sequence onto the hop frequencies;

The general block diagram of the hop selection scheme is shown in Figure 2.12 on page 83. The mapping from the input to a particular RF channel index is performed in the selection box.

The inputs to the selection box are the selected clock, frozen clock, N, k_{offset} , address, sequence selection and AFH_channel_map. The source of the clock input depends on the hopping sequence selected. Additionally, each hopping sequence uses different bits of the clock (see Table 2.2 on page 91). N and k_{offset} are defined in Section 2.6.4 on page 90.

The sequence selection input can be set to the following values:

- page scan
- inquiry scan
- page
- inquiry
- master page response
- slave page response
- · inquiry response
- basic channel
- adapted channel

The address input consists of 28 bits including the entire LAP and the 4 LSBs of the UAP. This is designated as the UAP/LAP. When the basic or adapted channel hopping sequence is selected, the Bluetooth device address of the master (BD_ADDR) shall be used. When the page, master page response, slave page response, or page scan hopping sequences are selected the BD_ADDR given by the Host of the paged device shall be used (see HCI Create Connection Command [Part E] Section 7.1.5 on page 406). When the inquiry, inquiry response, or inquiry scan hopping sequences are selected, the UAP/LAP corresponding to the GIAC shall be used even if it concerns a DIAC. Whenever one of the reserved BD_ADDRs (see Section 1.2.1 on page 66) is used for generating a frequency hop sequence, the UAP shall be replaced by the default check initialization (DCI, see Section 7.1 on page 138). The hopping sequence is selected by the sequence selection input to the selection box.

When the adapted channel hopping sequence is selected, the *AFH_channel_map* is an additional input to the selection box. The *AFH_channel_map* indicates which channels shall be *used* and which shall be *unused*. These terms are defined in Section 2.6.3 on page 89.

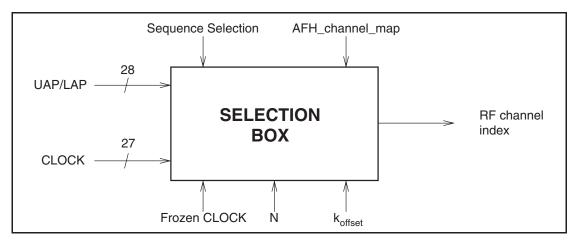


Figure 2.12: General block diagram of hop selection scheme.

😵 Bluetooth®

The output, *RF channel index*, constitutes a pseudo-random sequence. The RF channel index is mapped to RF channel frequencies using the equation in Table 2.1 on page 29 in the Radio Specification.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments). When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops. The principle is depicted in Figure 2.13 on page 84.

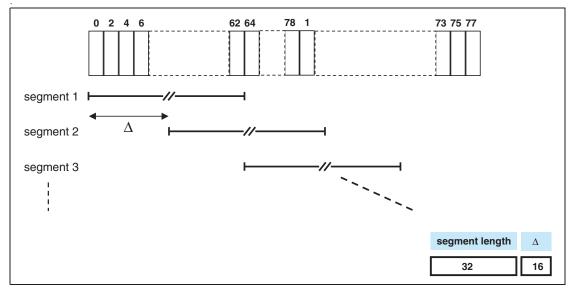


Figure 2.13: Hop selection scheme in CONNECTION state.

The RF frequency shall remain fixed for the duration of the packet. The RF frequency for the packet shall be derived from the Bluetooth clock value in the first slot of the packet. The RF frequency in the first slot after a multi-slot packet shall use the frequency as determined by the Bluetooth clock value for that slot. Figure 2.14 on page 85 illustrates the hop definition on single- and multislot packets.

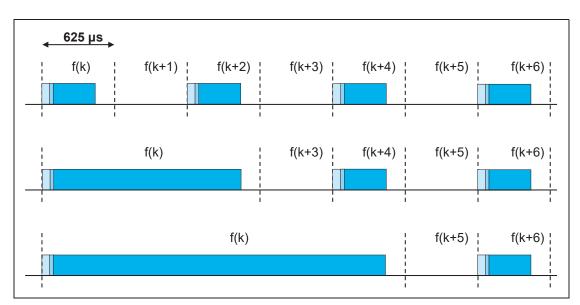


Figure 2.14: Single- and multi-slot packets.

When the adapted channel hopping sequence is used, the pseudo-random sequence contains only frequencies that are in the RF channel set defined by the *AFH_channel_map* input. The adapted sequence has similar statistical properties to the non-adapted hop sequence. In addition, the slave responds with its packet on the same RF channel that was used by the master to address that slave (or would have been in the case of a synchronous reserved slot without a validly received master-to-slave transmission). This is called the *same channel mechanism* of AFH. Thus, the RF channel used for the master to slave packet is also used for the immediately following slave to master packet. An example of the same channel mechanism is illustrated in Figure 2.15 on page 85. The same channel mechanism shall be used whenever the adapted channel hopping sequence is selected.

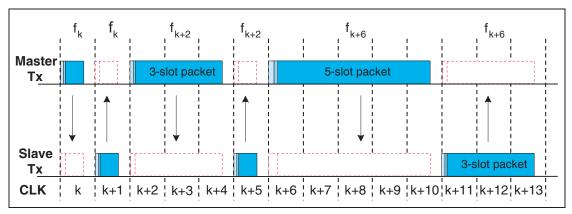


Figure 2.15: Example of the same channel mechanism.

😵 Bluetooth®

2.6.2 Selection kernel

The basic hop selection kernel shall be as shown in Figure 2.16 on page 86 and is used for the page, page response, inquiry, inquiry response and basic channel hopping selection kernels. In these substates the AFH_channel_map input is unused. The adapted channel hopping selection kernel is described in Section 2.6.3 on page 89. The X input determines the phase in the 32-hop segment, whereas Y1 and Y2 selects between master-to-slave and slave-to-master. The inputs A to D determine the ordering within the segment, the inputs E and F determine the mapping onto the hop frequencies. The kernel addresses a register containing the RF channel indices. This list is ordered so that first all even RF channel indices are listed and then all odd hop frequencies. In this way, a 32-hop segment spans about 64 MHz.

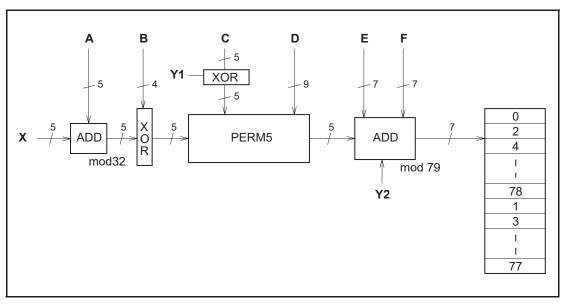


Figure 2.16: Block diagram of the basic hop selection kernel for the hop system.

The selection procedure consists of an addition, an XOR operation, a permutation operation, an addition, and finally a register selection. In the remainder of this chapter, the notation A_i is used for bit i of the BD_ADDR.

2.6.2.1 First addition operation

The first addition operation only adds a constant to the phase and applies a modulo 32 operation. For the page hopping sequence, the first addition is redundant since it only changes the phase within the segment. However, when different segments are concatenated (as in the basic channel hopping sequence), the first addition operation will have an impact on the resulting sequence.

2.6.2.2 XOR operation

Let Z' denote the output of the first addition. In the XOR operation, the four LSBs of Z' are modulo-2 added to the address bits A_{22-19} . The operation is illustrated in Figure 2.17 on page 87.

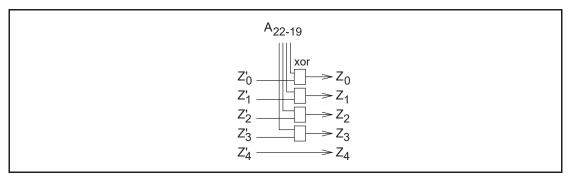


Figure 2.17: XOR operation for the hop system.

2.6.2.3 Permutation operation

The permutation operation involves the switching from 5 inputs to 5 outputs for the hop system, controlled by the control word. The permutation or switching box shall be as shown in Figure 2.18 on page 88. It consists of 7 stages of butterfly operations. The control of the butterflies by the control signals P is shown in Table 2.1. P₀₋₈ corresponds to D₀₋₈, and, P_{*i*+9} corresponds to C_{*i*} \oplus Y1 for *i* = 0...4 in Figure 2.16.

Control signal	Butterfly	Control signal	Butterfly
P ₀	$\{Z_0, Z_1\}$	P ₈	$\{Z_1, Z_4\}$
P ₁	{Z ₂ ,Z ₃ }	P ₉	{Z ₀ ,Z ₃ }
P ₂	{Z ₁ ,Z ₂ }	P ₁₀	{Z ₂ ,Z ₄ }
P ₃	$\{Z_3, Z_4\}$	P ₁₁	{Z ₁ ,Z ₃ }
P ₄	$\{Z_0, Z_4\}$	P ₁₂	{Z ₀ ,Z ₃ }
P ₅	{Z ₁ ,Z ₃ }	P ₁₃	{Z ₁ ,Z ₂ }
P ₆	$\{Z_0, Z_2\}$		
P ₇	$\{Z_3, Z_4\}$		

Table 2.1: Control of the butterflies for the hop system

The Z input is the output of the XOR operation as described in the previous section. The butterfly operation can be implemented with multiplexers as depicted in Figure 2.19 on page 88.

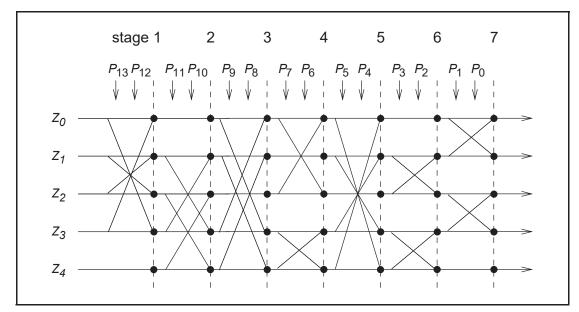


Figure 2.18: Permutation operation for the hop system.

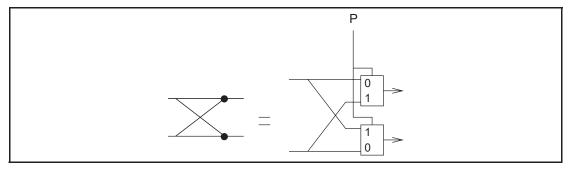


Figure 2.19: Butterfly implementation.

2.6.2.4 Second addition operation

The addition operation only adds a constant to the output of the permutation operation. The addition is applied modulo 79.

2.6.2.5 Register bank

The output of the adder addresses a bank of 79 registers. The registers are loaded with the synthesizer code words corresponding to the hop frequencies 0 to 78. Note that the upper half of the bank contains the even hop frequencies, whereas the lower half of the bank contains the odd hop frequencies.

2.6.3 Adapted hop selection kernel

The adapted hop selection kernel is based on the basic hop selection kernel defined in the preceding sections.

The inputs to the adapted hop selection kernel are the same as for the basic hop system kernel except that the input AFH_channel_map (defined in Link Manager Protocol [Part C] Section 5.2 on page 303) is used. The *AFH_channel_map* indicates which RF channels shall be *used* and which shall be *unused*. When hop sequence adaptation is enabled, the number of *used* RF channels may be reduced from 79 to some smaller value N. All devices shall be capable of operating on an adapted hop sequence (AHS) with $N_{min} \le N \le$ 79, with any combination of *used* RF channels within the *AFH_channel_map* that meets this constraint. N_{min} is defined in Section 2.3.1 on page 75.

Adaptation of the hopping sequence is achieved through two additions to the basic channel hopping sequence according to Figure 2.16 on page 86:

- *Unused* RF channels are re-mapped uniformly onto *used* RF channels. That is, if the hop selection kernel of the basic system generates an *unused* RF channel, an alternative RF channel out of the set of *used* RF channels is selected pseudo-randomly.
- The used RF channel generated for the master-to-slave packet is also used for the immediately following slave-to-master packet (see Section 2.6.1 on page 82).

2.6.3.1 Channel re-mapping function

When the adapted hop selection kernel is selected, the basic hop selection kernel according to Figure 2.16 on page 86 is initially used to determine an RF channel. If this RF channel is *unused* according to the *AFH_channel_map*, the *unused* RF channel is re-mapped by the re-mapping function to one of the *used* RF channels. If the RF channel determined by the basic hop selection kernel is already in the set of *used* RF channels, no adjustment is made. The hop sequence of the (non-adapted) basic hop equals the sequence of the adapted selection kernel on all locations where *used* RF channels are generated by the basic hop. This property facilitates non-AFH slaves remaining synchronized while other slaves in the piconet are using the adapted hopping sequence.

A block diagram of the re-mapping mechanism is shown in Figure 2.20 on page 90. The re-mapping function is a post-processing step to the selection kernel from Figure 2.16 on page 86, denoted as 'Hop selection of the basic hop'. The output f_k of the basic hop selection kernel is an RF channel number that ranges between 0 and 78. This RF channel will either be in the set of *used* RF channels or in the set of *unused* RF channels.

😵 Bluetooth

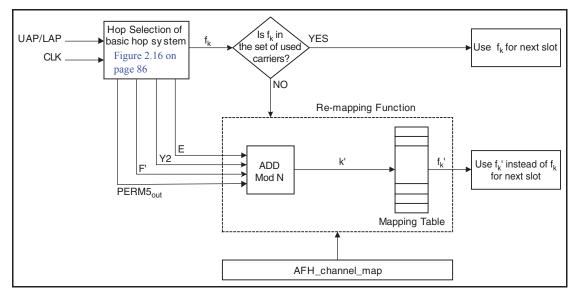


Figure 2.20: Block diagram of adaptive hop selection mechanism

When an unused RF channel is generated by the basic hop selection mechanism, it is re-mapped to the set of *used* RF channels as follows. A new index $k' \in \{0, 1, ..., N-1\}$ is calculated using some of the parameters from the basic hop selection kernel:

 $k' = (PERM5_{out} + E + F' + Y2) \mod N$

where *F*' is defined in Table 2.2 on page 91. The index *k*' is then used to select the re-mapped channel from a mapping table that contains all of the even *used* RF channels in ascending order followed by all the odd *used* RF channels in ascending order (i.e., the mapping table of Figure 2.16 on page 86 with all the *unused* RF channels removed).

2.6.4 Control word

In the following section X_{j-i} , i < j, will denote bits i, i+1,...,j of the bit vector X. By convention, X_0 is the least significant bit of the vector X.

The control word of the kernel is controlled by the overall control signals X, Y1, Y2, A to F, and F' as illustrated in Figure 2.16 on page 86 and Figure 2.20 on page 90. During paging and inquiry, the inputs A to E use the address values as given in the corresponding columns of Table 2.2 on page 91. In addition, the inputs X, Y1 and Y2 are used. The F and F' inputs are unused. The clock bits CLK_{6-2} (i.e., input X) specifies the phase within the length 32 sequence. CLK_1 (i.e., inputs Y1 and Y2) is used to select between TX and RX. The address inputs determine the sequence order within segments. The final mapping onto the hop frequencies is determined by the register contents.

During the **CONNECTION** state (see Section 8.5 on page 167), the inputs A, C and D shall be derived from the address bits being bit-wise XORed with the

😵 Bluetooth°

clock bits as shown in the "Connection state" column of Table 2.2 on page 91 (the two most significant bits, MSBs, are XORed together, the two second MSBs are XORed together, etc.).

	Page scan / Interlaced Page Scan / Inquiry scan / Interlaced Inquiry Scan	Page/Inquiry	Master/Slave page response and Inquiry response	Connection state
X	CLKN ₁₆₋₁₂ / (CLKN ₁₆₋₁₂ + 16) $mod32$ / Xir_{4-0} / Xir_{4-0} + 16) $mod32$	Xp ₄₋₀ /Xi ₄₋₀	$\frac{Xprm_{4-0}}{Xprs_{4-0}}$ Xir_{4-0}	CLK ₆₋₂
Y1	0	CLKE ₁ /CLKN ₁	CLKE ₁ /CLKN ₁ /1	CLK ₁
Y2	0	$32 \times \text{CLKE}_1 /$ $32 \times \text{CLKN}_1$	$32 \times \text{CLKE}_1 / \\ 32 \times \text{CLKN}_1 / \\ 32 \times 1$	$32 \times \text{CLK}_1$
А	A ₂₇₋₂₃	A ₂₇₋₂₃	A ₂₇₋₂₃	$A_{27-23} \oplus \text{CLK}_{25-21}$
В	A ₂₂₋₁₉	A ₂₂₋₁₉	A ₂₂₋₁₉	A ₂₂₋₁₉
С	A _{8, 6, 4, 2, 0}	A _{8, 6, 4, 2, 0}	A _{8, 6, 4, 2, 0}	$A_{8, 6, 4, 2, 0} \oplus \text{CLK}_{20-16}$
D	A ₁₈₋₁₀	A ₁₈₋₁₀	A ₁₈₋₁₀	$A_{18-10} \oplus \text{CLK}_{15-7}$
Е	A _{13, 11, 9, 7, 5, 3, 1}	A _{13, 11, 9, 7, 5, 3, 1}	A _{13, 11, 9, 7, 5, 3, 1}	A _{13, 11, 9, 7, 5, 3, 1}
F	0	0	0	$16 \times CLK_{27-7} \mod{79}$
F'	n/a	n/a	n/a	$16 \times \text{CLK}_{27-7} \mod \text{N}$

Table 2.2: Control for hop system.

The five X input bits vary depending on the current state of the device. In the **page scan** and **inquiry scan** substates, the native clock (CLKN) shall be used. In **CONNECTION** state the master clock (CLK) shall be used as input. The situation is somewhat more complicated for the other states.

2.6.4.1 Page scan and inquiry scan hopping sequences

When the sequence selection input is set to page scan, the Bluetooth device address of the scanning device shall be used as address input. When the sequence selection input is set to inquiry scan, the GIAC LAP and the four LSBs of the DCI (as A_{27-24}), shall be used as address input for the hopping sequence. For the transmitted access code and in the receiver correlator, the appropriate GIAC or DIAC shall be used. The application decides which inquiry access code to use depending on the purpose of the inquiry.

😵 Bluetooth

2.6.4.2 Page hopping sequence

When the sequence selection input is set to page, the paging device shall start using the **A**-train, i.e., $\{f(k-8), ..., f(k), ..., f(k+7)\}$, where f(k) is the source's estimate of the current receiver frequency in the paged device. The index k is a function of all the inputs in Figure 2.16. There are 32 possible paging frequencies within each 1.28 second interval. Half of these frequencies belong to the **A**-train, the rest (i.e., $\{f(k+8), ..., f(k+15), f(k-16), ..., f(k-9)\}$) belong to the **B**-train. In order to achieve the -8 offset of the **A**-train, a constant of 24 shall be added to the clock bits (which is equivalent to -8 due to the modulo 32 operation). The **B**-train is obtained by setting the offset to 8. A cyclic shift of the order within the trains is also necessary in order to avoid a possible repetitive mismatch between the paging and scanning devices. Thus,

$$Xp = [CLKE_{16-12} + k_{offset} + (CLKE_{4-2,0} - CLKE_{16-12}) \mod 16] \mod 32, \quad (EQ 2)$$

where

$$k_{offset} = \begin{cases} 24 & \text{A-train,} \\ 8 & \text{B-train.} \end{cases}$$
(EQ 3)

Alternatively, each switch between the **A**- and **B**-trains may be accomplished by adding 16 to the current value of k_{offset} (originally initialized with 24).

2.6.4.3 Slave page response hopping sequence

When the sequence selection input is set to *slave page response*, in order to eliminate the possibility of losing the link due to discrepancies of the native clock CLKN and the master's clock estimate CLKE, the four bits $CLKN_{16-12}$ shall be frozen at their current value. The value shall be frozen at the content it has in the slot where the recipient's access code is detected. The native clock shall *not* be stopped; it is merely the values of the bits used for creating the X-input that are kept fixed for a while. A frozen value is denoted by an asterisk (*) in the discussion below.

For each response slot the paged device shall use an X-input value one larger (modulo 32) than in the preceding response slot. However, the first response shall be made with the X-input kept at the same value as it was when the access code was recognized. Let N be a counter starting at zero. Then, the X-input in the (N+1)-th response slot (the first response slot being the one immediately following the page slot now responding to) of the **slave response** substate is:

$$Xprs = [CLKN*_{16-12} + N] \mod 32,$$
 (EQ 4)

😵 Bluetooth

The counter *N* shall be set to zero in the slot where the slave acknowledges the page (see Figure 8.3 on page 160 and Figure 8.4 on page 160). Then, the value of *N* shall be increased by one each time $CLKN_1$ is set to zero, which corresponds to the start of a master TX slot. The X-input shall be constructed this way until the first **FHS** packet is received *and* the immediately following response packet has been transmitted. After this the slave shall enter the **CONNECTION** state using the parameters received in the **FHS** packet.

2.6.4.4 Master page response hopping sequence

When the sequence selection input is set to *master page response*, the master shall freeze its estimated slave clock to the value that triggered a response from the paged device. It is equivalent to using the values of the clock estimate when receiving the slave response (since only $CLKE_1$ will differ from the corresponding page transmission). Thus, the values are frozen when the slave **ID** packet is received. In addition to the clock bits used, the current value of k_{offset} shall also be frozen. The master shall adjust its X-input in the same way the paged device does, i.e., by incrementing this value by one for each time $CLKE_1$ is set to zero. The first increment shall be done before sending the **FHS** packet to the paged device. Let *N* be a counter starting at one. The rule for forming the X-input is:

$$Xprm = [CLKE*_{16-12} + k_{offset}* + (CLKE*_{4-2,0} - CLKE*_{16-12}) \mod 16 + N] \mod 32,$$
(EQ 5)

The value of N shall be increased each time $CLKE_1$ is set to zero, which corresponds to the start of a master TX slot.

2.6.4.5 Inquiry hopping sequence

When the sequence selection input is set to *inquiry*, the X-input is similar to that used in the *page hopping sequence*. Since no particular device is addressed, the native clock CLKN of the inquirer shall be used. Moreover, which of the two train offsets to start with is of no real concern in this state. Consequently,

$$Xi = [\text{CLKN}_{16-12} + k_{offset} + (\text{CLKN}_{4-2,0} - \text{CLKN}_{16-12}) \mod 16] \mod 32, \quad (\text{EQ } 6)$$

where k_{offset} is defined by (EQ 3) on page 92. The initial choice of the offset is arbitrary.

The GIAC LAP and the four LSBs of the DCI (as A_{27-24}) shall be used as address input for the hopping sequence generator.

😵 Bluetooth

2.6.4.6 Inquiry response hopping sequence

The *inquiry response* hopping sequence is similar to the *slave page response* hopping sequence with respect to the X-input. The clock input shall not be frozen, thus the following equation apply:

$$Xir = [CLKN_{16-12} + N] \mod 32,$$
 (EQ 7)

Furthermore, the counter N is increased not on $CLKN_1$ basis, but rather after each **FHS** packet has been transmitted in response to the inquiry. There is no restriction on the initial value of N as it is independent of the corresponding value in the inquiring unit.

The GIAC LAP and the four LSBs of the DCI (as A_{27-24}) shall be used as address input for the hopping sequence generator. The other input bits to the generator shall be the same as for page response.

2.6.4.7 Basic and adapted channel hopping sequence

In the *basic* and *adapted channel hopping sequences*, the clock bits to use in the basic or adapted hopping sequence generation shall always be derived from the master clock, CLK. The address bits shall be derived from the Bluetooth device address of the master.

3 PHYSICAL LINKS

A physical link represents a baseband connection between devices. A physical link is always associated with exactly one physical channel. Physical links have common properties that apply to all logical transports on the physical link.

The common properties of physical links are:

- Power control (see Link Manager Protocol Section 4.1.3 on page 235)
- Link supervision (see Section 3.1 on page 95 and Link Manager Protocol Section 4.1.6 on page 242)
- Encryption (see Security [Part H] Section 4 on page 787 and Link Manager Protocol [Part C] Section 4.2.5 on page 257)
- Channel quality-driven data rate change (see Link Manager Protocol Section 4.1.7 on page 243)
- Multi-slot packet control (see Link Manager Protocol Section 4.1.10 on page 247)

3.1 LINK SUPERVISION

A connection can break down due to various reasons such as a device moving out of range, encountering severe interference or a power failure condition. Since this may happen without any prior warning, it is important to monitor the link on both the master and the slave side to avoid possible collisions when the logical transport address (see Section 4.2 on page 97) or parked member address (see Section 4.7.1 on page 105) is reassigned to another slave.

To be able to detect link loss, both the master and the slave shall use a link supervision timer, T _{supervision}. Upon reception of a valid packet header with one of the slave's addresses (see Section 4.2 on page 97) on the physical link, the timer shall be reset. If at any time in **CONNECTION** state, the timer reaches the *supervisionTO* value, the connection shall be considered disconnected. The same link supervision timer shall be used for SCO, eSCO, and ACL logical transports.

The timeout period, *supervisionTO*, is negotiated by the Link Manager. Its value shall be chosen so that the supervision timeout will be longer than hold and sniff periods. Link supervision of a parked slave shall be done by unparking and re-parking the slave.

4 LOGICAL TRANSPORTS

4.1 GENERAL

Between master and slave(s), different types of logical transports may be established. Five logical transports have been defined:

- Synchronous Connection-Oriented (SCO) logical transport
- Extended Synchronous Connection-Oriented (eSCO) logical transport
- · Asynchronous Connection-Oriented (ACL) logical transport
- Active Slave Broadcast (ASB) logical transport
- Parked Slave Broadcast (PSB) logical transport

The synchronous logical transports are point-to-point logical transports between a master and a single slave in the piconet. The synchronous logical transports typically support time-bounded information like voice or general synchronous data. The master maintains the synchronous logical transports by using reserved slots at regular intervals. In addition to the reserved slots the eSCO logical transport may have a retransmission window after the reserved slots.

The ACL logical transport is also a point-to-point logical transport between the master and a slave. In the slots not reserved for synchronous logical transport(s), the master can establish an ACL logical transport on a per-slot basis to any slave, including the slave(s) already engaged in a synchronous logical transport.

The ASB logical transport is used by a master to communicate with active slaves. The PSB logical transport is used by a master to communicate with parked slaves.

4.2 LOGICAL TRANSPORT ADDRESS (LT_ADDR)

Each slave active in a piconet is assigned a primary 3-bit logical transport address (LT_ADDR). The all-zero LT_ADDR is reserved for broadcast messages. The master does not have an LT_ADDR. A master's timing relative to the slaves distinguishes it from the slaves. A secondary LT_ADDR is assigned to the slave for each eSCO logical transport in use in the piconet. Only eSCO traffic (i.e. NULL, POLL, and one of the EV packet types as negotiated at eSCO logical transport setup) may be sent on these LT_ADDRs. ACL traffic (including LMP) shall always be sent on the primary LT_ADDR. A slave shall only accept packets with matching primary or secondary LT_ADDR and broadcast packets. The LT_ADDR is carried in the packet header (see Section 6.4 on page 116). The LT_ADDR shall only be valid for as long as a slave is in the active mode. As soon as it is disconnected or parked, the slave shall lose all of its LT_ADDRs.

😵 Bluetooth®

The primary LT_ADDR shall be assigned by the master to the slave when the slave is activated. This is either at connection establishment, at role switch, or when the slave is unparked. At connection establishment and at role switch, the primary LT_ADDR is carried in the **FHS** payload. When unparking, the primary LT_ADDR is carried in the unpark message.

4.3 SYNCHRONOUS LOGICAL TRANSPORTS

The first type of synchronous logical transport, the SCO logical transport is a symmetric, point-to-point link between the master and a specific slave. The SCO logical transport reserves slots and can therefore be considered as a circuit-switched connection between the master and the slave. The master may support up to three SCO links to the same slave or to different slaves. A slave may support up to three SCO links from the same master, or two SCO links if the links originate from different masters. SCO packets are never retransmitted.

The second type of synchronous logical transport, the eSCO logical transport, is a point-to-point logical transport between the master and a specific slave. eSCO logical transports may be symmetric or asymmetric. Similar to SCO, eSCO reserves slots and can therefore be considered a circuit-switched connection between the master and the slave. In addition to the reserved slots, eSCO supports a retransmission window immediately following the reserved slots. Together, the reserved slots and the retransmission window form the complete eSCO window.

4.4 ASYNCHRONOUS LOGICAL TRANSPORT

In the slots not reserved for synchronous logical transports, the master may exchange packets with any slave on a per-slot basis. The ACL logical transport provides a packet-switched connection between the master and all active slaves participating in the piconet. Both asynchronous and isochronous services are supported. Between a master and a slave only a single ACL logical transport shall exist. For most ACL packets, packet retransmission is applied to assure data integrity.

ACL packets not addressed to a specific slave are considered as broadcast packets and should be read by every slave. If there is no data to be sent on the ACL logical transport and no polling is required, no transmission is required.

4.5 TRANSMIT/RECEIVE ROUTINES

This section describes the way to use the packets as defined in Section 6 on page 109 in order to support the traffic on the ACL, SCO and eSCO logical transports. Both single-slave and multi-slave configurations are considered. In addition, the use of buffers for the TX and RX routines are described.

The TX and RX routines described in sections 4.5.1 and 4.5.2 are informative only.

4.5.1 TX Routine

The TX routine is carried out separately for each asynchronous and synchronous link. Figure 4.1 on page 99 shows the asynchronous and synchronous buffers as used in the TX routine. In this figure, only a single TX asynchronous buffer and a single TX synchronous buffer are shown. In the master, there is a separate TX asynchronous buffer for each slave. In addition there may be one or more TX synchronous buffers for each slave. In addition there may be one or more TX synchronous buffers for each synchronous slave (different SCO or eSCO logical transports may either reuse the same TX synchronous buffer, or each have their own TX synchronous buffer). Each TX buffer consists of two FIFO registers: one **current** register which can be accessed and read by the Link Controller in order to compose the packets, and one **next** register that can be accessed by the Baseband Resource Manager to load new information. The positions of the switches S1 and S2 determine which register is current and which register is next; the switches are controlled by the Link Controller. The switches at the input and the output of the FIFO registers can never be connected to the same register simultaneously.

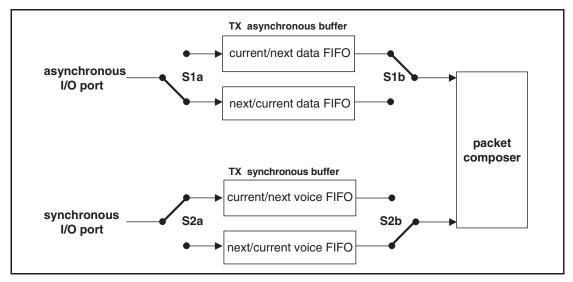


Figure 4.1: Functional diagram of TX buffering.

Of the packets common on the ACL and SCO logical transports (**NULL**, **POLL and DM1**) only the **DM1** packet carries a payload that is exchanged between the Link Controller and the Link Manager; this common packet makes use of the asynchronous buffer. All ACL packets make use of the asynchronous

😵 Bluetooth[®]

buffer. All SCO and eSCO packets make use of the synchronous buffer except for the **DV** packet where the synchronous data part is handled by the synchronous buffer and the data part is handled by the asynchronous buffer. In the next sections, the operation for ACL traffic, SCO traffic, eSCO traffic, and combined data-voice traffic on the SCO logical transport are described.

4.5.1.1 ACL traffic

In the case of asynchronous data only the TX ACL buffer in Figure 4.1 on page 99 has to be considered. In this case, only packet types **DM** or **DH** are used, and these can have different lengths. The length is indicated in the payload header. The selection of **DM** or **DH** packets should depend on the quality of the link. See [Part C] Section 4.1.7 on page 243.

The default packet type in pure data traffic is **NULL** (see Section 6.5.1.2 on page 120). This means that, if there is no data to be sent (the data traffic is asynchronous, and therefore pauses occur in which no data is available) or no slaves need to be polled, **NULL** packets are sent instead – in order to send link control information to the other device (e.g. ACK/STOP information for received data). When no link control information is available (either no need to acknowledge and/or no need to stop the RX flow) no packet is sent at all.

The TX routine works as follows. The Baseband Resource Manager loads new data information in the register to which the switch S1a points. Next, it gives a command to the Link Controller, which forces the switch S1 to change (both S1a and S1b switch synchronously). When the payload needs to be sent, the packet composer reads the current register and, depending on the packet type, builds a payload which is appended to the channel access code and the header and is subsequently transmitted. In the response packet (which arrives in the following RX slot if it concerned a master transmission, or may be postponed until some later RX slot if it concerned a slave transmission), the result of the transmission is reported back. In case of an ACK, the switch S1 changes position; if a NAK (explicit or implicit) is received instead, the switch S1 will not change position. In that case, the same payload is retransmitted at the next TX occasion.

As long as the Baseband Resource Manager keeps loading the registers with new information, the Link Controller will automatically transmit the payload; in addition, retransmissions are performed automatically in case of errors. The Link Controller will send **NULL** or nothing when no new data is loaded. If no new data has been loaded in the **next** register, during the last transmission, the packet composer will be pointing to an empty register after the last transmission has been acknowledged and the **next** register becomes the **current** register. If new data is loaded in the **next** register, a **flush** command is required to switch the S1 switch to the proper register. As long as the Baseband Resource Manager keeps loading the data and type registers before each TX slot, the data is automatically processed by the Link Controller since the S1 switch is controlled by the ACK information received in response. However, if the traffic from the Baseband Resource Manager is interrupted once and a default packet is sent instead, a **flush** command is necessary to continue the flow in the Link Controller.

😵 Bluetooth°

The **flush** command can also be used in case of time-bounded (isochronous) data. In case of a bad link, many retransmissions are necessary. In certain applications, the data is time-bounded: if a payload is retransmitted all the time because of link errors, it may become outdated, and the system might decide to continue with more recent data instead and skip the payload that does not come through. This is accomplished by the **flush** command as well. With the **flush**, the switch S1 is forced to change and the Link Controller is forced to consider the next data payload and overrules the ACK control. Any ACL type of packet can be used to send data or link control information to any other ACL slave.

4.5.1.2 SCO traffic

On the SCO logical transport only **HV** and **DV** packet types are used, See Section 6.5.2 on page 123. The synchronous port may continuously load the **next** register in the synchronous buffer. The S2 switches are changed according to the T_{sco} interval. This T_{sco} interval is negotiated between the master and the slave at the time the SCO logical transport is established.

For each new SCO slot, the packet composer reads the **current** register after which the S2 switch is changed. If the SCO slot has to be used to send control information with high priority concerning a control packet between the master and the SCO slave, or a control packet between the master and any other slave, the packet composer will discard the SCO information and use the control information instead. This control information shall be sent in a DM1 packet. Data or link control information may also be exchanged between the master and the SCO slave by using the **DV** or **DM1** packets.

4.5.1.3 Mixed data/voice traffic

In Section 6.5.2 on page 123, a **DV** packet has been defined that can support both data and voice simultaneously on a single SCO logical transport. When the TYPE is **DV**, the Link Controller reads the data register to fill the data field and the voice register to fill the voice field. Thereafter, the switch S2 is changed. However, the position of S1 depends on the result of the transmission as on the ACL logical transport: only if an ACK has been received will the S1 switch change its position. In each **DV** packet, the voice information is new, but the data information might be retransmitted if the previous transmission failed. If there is no data to be sent, the SCO logical transport will automatically change from **DV** packet type to the current **HV** packet type used before the mixed data/voice transmission. Note that a **flush** command is necessary when the data stream has been interrupted and new data has arrived.

Combined data-voice transmission can also be accomplished by using a separate ACL logical transport in addition to the SCO logical transport(s) if channel capacity permits this.

😵 Bluetooth

4.5.1.4 eSCO Traffic

On the eSCO logical transport only **EV**, **POLL** and **NULL** packet types are used, see Section 6.5.3 on page 124. The synchronous port may continuously load the next register in the synchronous buffer. The S2 switches are changed according to the T_{eSCO} interval. This T_{eSCO} interval is negotiated between the master and the slave at the time the eSCO logical transport is established.

For each new eSCO slot, the packet composer reads the current register after which the S2 switch is changed. If the eSCO slot has to be used to send control information with high priority concerning a control packet between the master and the eSCO slave, or an ACL packet between the master and any other slave, the packet composer will discard the eSCO information and use the control information instead. Control information to the eSCO slave is sent in a DM1 packet on the primary LT_ADDR.

4.5.1.5 Default packet types

On the ACL links, the default type is always **NULL** both for the master and the slave. This means that if no user information needs to be sent, either a **NULL** packet is sent if there is **ACK** or **STOP** information, or no packet is sent at all. The **NULL** packet can be used by the master to allocate the next slave-to-master slot to a certain slave (namely the one addressed). However, the slave is not forced to respond to the **NULL** packet from the master. If the master requires a response, it sends a **POLL** packet.

The SCO and eSCO packet types are negotiated at the LM level when the SCO or eSCO logical transport is established. The agreed packet type is also the default packet type for the reserved SCO or eSCO slots.

4.5.2 RX routine

The RX routine is carried out separately for the ACL logical transport and the synchronous logical transports. However, in contrast to the master TX asynchronous buffer, a single RX buffer is shared among all slaves. For the synchronous buffer, how the different synchronous logical transports are distinguished depends on whether extra synchronous buffers are required or not. Figure 4.2 on page 103 shows the asynchronous and synchronous buffers as used in the RX routine. The RX asynchronous buffer consists of two FIFO registers: one register that can be accessed and loaded by the Link Controller with the payload of the latest RX packet, and one register that can be accessed by the Baseband Resource Manager to read the previous payload. The RX synchronous buffer also consists of two FIFO registers: one register which is filled with newly arrived voice information, and one register which can be read by the voice processing unit.

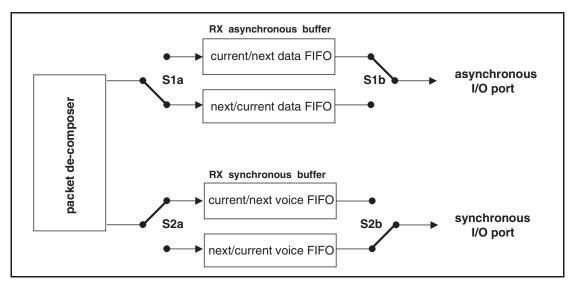


Figure 4.2: Functional diagram of RX buffering

Since the TYPE indication in the header (see Section 6.4.2 on page 116) of the received packet indicates whether the payload contains data and/or voice, the packet de-composer can automatically direct the traffic to the proper buffers. The switch S1 changes every time the Baseband Resource Manager reads the old register. If the next payload arrives before the RX register is emptied, a STOP indication is included in the packet header of the next TX packet that is returned. The STOP indication is removed again as soon as the RX register is emptied. The SEQN field is checked before a new ACL payload is stored into the asynchronous register (flush indication in LLID and broadcast messages influence the interpretation of the SEQN field see Section 7.6 on page 144).

The S2 switch is changed every T_{SCO} or T_{eSCO} for SCO and eSCO respectively. If, due to errors in the header, no new synchronous payload arrives, the switch still changes. The synchronous data processing unit then processes the synchronous data to account for the missing parts.

4.5.3 Flow control

Since the RX ACL buffer can be full while a new payload arrives, flow control is required. The header field FLOW in the return TX packet may use STOP or GO in order to control the transmission of new data.

4.5.3.1 Destination control

As long as data can not be received, a STOP indication shall be transmitted which is automatically inserted by the Link Controller into the header of the return packet. STOP shall be returned as long as the RX ACL buffer is not emptied by the Baseband Resource Manager. When new data can be accepted again, the GO indication shall be returned. GO shall be the default value. All packet types not including data can still be received. Voice communication for example is not affected by the flow control. Although a device can not receive new information, it may still continue to transmit information: the flow control shall be separate for each direction.

4.5.3.2 Source control

On the reception of a STOP signal, the Link Controller shall automatically switch to the default packet type. The ACL packet transmitted just before the reception of the STOP indication shall be kept until a GO signal is received. It may be retransmitted as soon as a GO indication is received. Only default packets shall be sent as long as the STOP indication is received. When no packet is received, GO shall be assumed implicitly. Note that the default packets contain link control information (in the header) for the receive direction (which may still be open) and may contain synchronous data (**HV** or **EV** packets). When a GO indication is received, the Link Controller may resume transmitting the data that is present in the TX ACL buffers.

In a multi-slave configuration, only the transmission to the slave that issued the STOP signal shall be stalled. This means that the master shall only stop transmission from the TX ACL buffer corresponding to the slave that momentarily cannot accept data.

4.6 ACTIVE SLAVE BROADCAST TRANSPORT

The active slave broadcast logical transport is used to transport L2CAP user traffic to all devices in the piconet that are currently connected to the piconet physical channel that is used by the ASB. There is no acknowledgement protocol and the traffic is uni-directional from the piconet master to the slaves. The ASB logical transport may only be used for L2CAP group traffic and shall never be used for L2CAP connection-oriented channels, L2CAP control signalling or LMP control signalling.

The ASB logical transport is unreliable. To improve reliability somewhat each packet is transmitted a number of times. An identical sequence number is used to assist with filtering retransmissions at the slave device.

The ASB logical transport is identified by the reserved, all-zero, LT_ADDR. Packets on the ASB logical transport may be sent by the master at any time.

4.7 PARKED SLAVE BROADCAST TRANSPORT

The parked slave broadcast logical transport is used for communication from the master to the slaves that are parked. The PSB logical transport is more complex than the other logical transports as it consists of a number of phases, each having a different purpose. These phases are the control information phase (used to carry the LMP logical link), the user information phase (used to carry the L2CAP logical link), and the access phase (carrying baseband signalling).

The PSB logical transport is identified by the reserved, all-zero, LT_ADDR.

4.7.1 Parked member address (PM_ADDR)

A slave in the **PARK** state can be identified by its BD_ADDR or by a dedicated parked member address (PM_ADDR). This latter address is an 8-bit member address that separates the parked slaves. The PM_ADDR shall only be valid as long as the slave is parked. When the slave is activated it shall be assigned an LT_ADDR but shall lose the PM_ADDR. The PM_ADDR is assigned to the slave by the master during the parking procedure (see [Part C] Section 4.5.2 on page 272).

The all-zero PM_ADDR shall be reserved for parked slaves that only use their BD_ADDR to be unparked.

4.7.2 Access request address (AR_ADDR)

The access request address (AR_ADDR) is used by the parked slave to determine the slave-to-master half slot in the access window where it is allowed to send access request messages, see also Section 8.9.6 on page 192. The AR_ADDR shall be assigned to the slave when it enters the **PARK** state and shall only be valid as long as the slave is parked. The AR_ADDR is not necessarily unique; i.e. different parked slaves may have the same AR_ADDR.

5 LOGICAL LINKS

Five logical links are defined:

- Link Control (LC)
- ACL Control (ACL-C)
- User Asynchronous/Isochronous (ACL-U)
- User Synchronous (SCO-S)
- User Extended Synchronous (eSCO-S)

The control logical links LC and ACL-C are used at the link control level and link manager level, respectively. The ACL-U logical link is used to carry either asynchronous or isochronous user information. The SCO-S, and eSCO-S logical links are used to carry synchronous user information. The LC logical link is carried in the packet header, all other logical links are carried in the packet payload. The ACL-C and ACL-U logical links are indicated in the logical link ID, LLID, field in the payload header. The SCO-S and eSCO-S logical links are carried by the synchronous logical transports only; the ACL-U link is normally carried by the ACL logical transport; however, they may also be carried by the data in the DV packet on the SCO logical transport. The ACL-C link may be carried either by the SCO or the ACL logical transport.

5.1 LINK CONTROL LOGICAL LINK (LC)

The LC control logical link shall be mapped onto the packet header. This logical link carries low level link control information like ARQ, flow control, and payload characterization. The LC logical link is carried in every packet except in the **ID** packet which does not have packet header.

5.2 ACL CONTROL LOGICAL LINK (ACL-C)

The ACL-C logical link shall carry control information exchanged between the link managers of the master and the slave(s). The ACL-C logical link shall use DM1 packets. The ACL-C logical link is indicated by the LLID code 11 in the payload header.

5.3 USER ASYNCHRONOUS/ISOCHRONOUS LOGICAL LINK (ACL-U)

The ACL-U logical link shall carry L2CAP asynchronous and isochronous user data. These messages may be transmitted in one or more baseband packets. For fragmented messages, the start packet shall use an LLID code of 10 in the payload header. Remaining continuation packets shall use LLID code 01. If there is no fragmentation, all packets shall use the LLID start code 10.

😵 Bluetooth°

5.3.1 Pausing the ACL-U logical link

When paused by LM, the Link Controller transmits the current packet with ACL-U information, if any, until an ACK is received or, optionally, until an explicit NACK is received. While the ACL-U logical link is paused, the Link Controller shall not transmit any packets with ACL-U logical link information.

If the ACL-U was paused after an ACK, the next sequence number shall be used on the next packet. If the ACL-U was paused after a NAK, the same sequence number shall be used on the next packet and the un-acknowledged packet shall be transmitted once the ACL-U logical link is un-paused.

When the ACL-U logical link is un-paused by LM, the Link Controller may resume transmitting packets with ACL-U information.

5.4 USER SYNCHRONOUS DATA LOGICAL LINK (SCO-S)

The SCO-S logical link carries transparent synchronous user data. This logical link is carried over the synchronous logical transport SCO.

5.5 USER EXTENDED SYNCHRONOUS DATA LOGICAL LINK (eSCO-S)

The eSCO-S logical link also carries transparent synchronous user data. This logical link is carried over the extended synchronous logical transport eSCO.

5.6 LOGICAL LINK PRIORITIES

The ACL-C logical link shall have a higher priority than the ACL-U logical link when scheduling traffic on the shared ACL logical transport, except in the case when retransmissions of unacknowledged ACL packets shall be given priority over traffic on the ACL-C logical link. The ACL-C logical link should also have priority over traffic on the SCO-S and eSCO-S logical links but opportunities for interleaving the logical links should be taken.

6 PACKETS

Bluetooth devices shall use the packets as defined in the following sections.

6.1 GENERAL FORMAT

6.1.1 Basic Rate

The general packet format of Basic Rate packets is shown in Figure 6.1 on page 109. Each packet consists of 3 entities: the access code, the header, and the payload. In the figure, the number of bits per entity is indicated.

LSB 68/72	54	<u>0 - 2745</u> MSB	
ACCESS CODE	HEADER	PAYLOAD	

Figure 6.1: General Basic Rate packet format.

The access code is 72 or 68 bits and the header is 54 bits. The payload ranges from zero to a maximum of 2745 bits. Different packet types have been defined. Packet may consist of:

- the shortened access code only (see ID packet on page 116)
- the access code and the packet header
- the access code, the packet header and the payload.

6.1.2 Enhanced Data Rate

The general format of Enhanced Data Rate packets is shown in General enhanced data rate packet format. The access code and packet header are identical in format and modulation to Basic Rate packets. Enhanced Data Rate packets have a guard time and synchronization sequence following the packet header. Following the payload are two trailer symbols. The guard time, synchronization sequence and trailer are defined in section 6.6.

SB	1				MSB
ACCESS CODE	HEADER	GUARD	SYNC	ENHANCED DATA RATE PAYLOAD	TRAILER
⊢ GF	sk — ►			DPSK	

Figure 6.2: General enhanced data rate packet format

😵 Bluetooth[®]

Baseband Specification

6.2 BIT ORDERING

The bit ordering when defining packets and messages in the *Baseband Specification*, follows the *Little Endian* format. The following rules apply:

- The *least significant bit* (LSB) corresponds to b_0 ;
- The LSB is the first bit sent over the air;
- In illustrations, the LSB is shown on the left side;

Furthermore, data fields generated internally at baseband level, such as the packet header fields and payload header length, shall be transmitted with the LSB first. For instance, a 3-bit parameter X=3 is sent as:

 $b_0 b_1 b_2 = 110$

over the air where 1 is sent first and 0 is sent last.

4 November 2004

6.3 ACCESS CODE

Every packet starts with an access code. If a packet header follows, the access code is 72 bits long, otherwise the access code is 68 bits long and is known as a shortened access code. The shortened access code does not contain a trailer. This access code is used for synchronization, DC offset compensation and identification. The access code identifies all packets exchanged on a physical channel: all packets sent in the same physical channel are preceded by the same access code. In the receiver of the device, a sliding correlator correlates against the access code and triggers when a threshold is exceeded. This trigger signal is used to determine the receive timing.

The shortened access code is used in paging, inquiry, and park. In this case, the access code itself is used as a signalling message and neither a header nor a payload is present.

The access code consists of a preamble, a sync word, and possibly a trailer, see Figure 6.3 on page 111. For details see Section 6.3.1 on page 111.

LSB 4	64	4_ <u>MSB</u>
PREAMBLE	SYNC WORD	TRAILER
		L'

Figure 6.3: Access code format

6.3.1 Access code types

The different access code types use different Lower Address Parts (LAPs) to construct the sync word. The LAP field of the BD_ADDR is explained in Section 1.2 on page 66. A summary of the different access code types is in Table 6.1 on page 111.

Code type	LAP	Code length	Comments	
CAC	Master	72		
DAC	Paged device	68/72 ¹	See also Section 1.3	
GIAC	Reserved	68/72*	on page 67	
DIAC	Dedicated	68/72*		

Table 6.1: Summary of access code types.

1. length 72 is only used in combination with FHS packets

The CAC consists of a **preamble**, **sync word**, and **trailer** and its total length is 72 bits. When used as self-contained messages without a header, the DAC and IAC do not include the trailer bits and are of length 68 bits.

6.3.2 Preamble

The preamble is a fixed zero-one pattern of 4 symbols used to facilitate DC compensation. The sequence is either 1010 or 0101, depending on whether the LSB of the following sync word is 1 or 0, respectively. The preamble is shown in Figure 6.4 on page 112.

LSB MSB LSB	LSB MSB LSB
1010 1	0101 0
preamble sync word	preamble sync word

Figure 6.4: Preamble

6.3.3 Sync word

The sync word is a 64-bit code word derived from a 24 bit address (LAP); for the CAC the master's LAP is used; for the GIAC and the DIAC, reserved, dedicated LAPs are used; for the DAC, the slave LAP is used. The construction guarantees large Hamming distance between sync words based on different LAPs. In addition, the good auto correlation properties of the sync word improve timing acquisition.

6.3.3.1 Synchronization word definition

The sync words are based on a (64,30) expurgated block code with an overlay (bit-wise XOR) of a 64 bit full length pseudo-random noise (PN) sequence. The expurgated code guarantees large Hamming distance ($d_{min} = 14$) between sync words based on different addresses. The PN sequence improves the auto correlation properties of the access code. The following steps describe how the sync word shall be generated:

- 1. Generate information sequence;
- 2. XOR this with the "information covering" part of the PN overlay sequence;
- 3. Generate the codeword;
- 4. XOR the codeword with all 64 bits of the PN overlay sequence;

The information sequence is generated by appending 6 bits to the 24 bit LAP (step 1). The appended bits are 001101 if the MSB of the LAP equals 0. If the MSB of the LAP is 1 the appended bits are 110010. The LAP MSB together with the appended bits constitute a length-seven Barker sequence. The purpose of including a Barker sequence is to further improve the auto correlation properties. In step 2 the information is pre-scrambled by XORing it with the bits $p_{34}...p_{63}$ of the PN sequence (defined in section 6.3.3.2 on page 115). After generating the codeword (step 3), the complete PN sequence is XORed to the

<table-of-contents> Bluetooth°

codeword (step 4). This step de-scrambles the information part of the codeword. At the same time the parity bits of the codeword are scrambled. Consequently, the original LAP and Barker sequence are ensured a role as a part of the access code sync word, and the cyclic properties of the underlying code is removed. The principle is depicted in Figure 6.5 on page 113

In the following discussion, binary sequences will be denoted by their corresponding D-transform (in which D^i represents a delay of *i* time units). Let $p'(D) = p'_0 + p'_1D + ... + p'_{62}D^{62}$ be the 63 bit PN sequence, where p'_0 is the first bit (LSB) leaving the PRNG (see Figure 6.6 on page 115), and, p'_{62} is the last bit (MSB). To obtain 64 bits, an extra zero is appended at the *end* of this sequence (thus, p'(D) is unchanged). For notational convenience, the reciprocal of this extended polynomial, $p(D) = D^{63}p'(1/D)$, will be used in the following discussion. This is the sequence p'(D) in reverse order. We denote the 24 bit lower address part (LAP) of the Bluetooth device address by $a(D) = a_0 + a_1D + ... + a_{23}D^{23}$ (a_0 is the LSB of the Bluetooth device address).

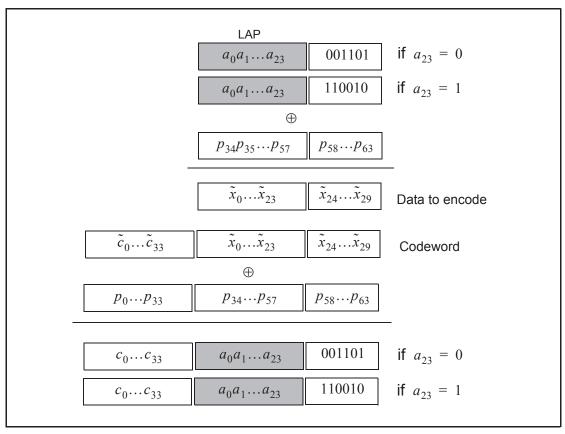


Figure 6.5: Construction of the sync word.

The (64,30) block code generator polynomial is denoted g(D) = (1+D)g'(D), where g'(D) is the generator polynomial 157464165547 (octal notation) of a primitive binary (63,30) BCH code. Thus, in octal notation g(D) is

Bluetooth

Baseband Specification

g(D) = 260534236651, (EQ 8)

the left-most bit corresponds to the high-order (g_{34}) coefficient. The DC-free four bit sequences 0101 and 1010 can be written

$$\begin{cases} F_0(D) = D + D^3, \\ F_1(D) = 1 + D^2, \end{cases}$$
 (EQ 9)

respectively. Furthermore,

$$\begin{cases} B_0(D) = D^2 + D^3 + D^5, \\ B_1(D) = 1 + D + D^4, \end{cases}$$
 (EQ 10)

which are used to create the length seven Barker sequences. Then, the access code shall be generated by the following procedure:

1. Format the 30 information bits to encode:

$$x(D) = a(D) + D^{24}B_{a_{22}}(D).$$

2. Add the information covering part of the PN overlay sequence:

$$\tilde{x}(D) = x(D) + p_{34} + p_{35}D + \dots + p_{63}D^{29}.$$

3. Generate parity bits of the (64,30) expurgated block code:¹

$$\tilde{c}(D) = D^{34}\tilde{x}(D) \mod g(D).$$

4. Create the codeword:

$$\tilde{s}(D) = D^{34} \tilde{x}(D) + \tilde{c}(D).$$

5. Add the PN sequence:

$$s(D) = \tilde{s}(D) + p(D).$$

6. Append the (DC-free) preamble and trailer:

$$y(D) = F_{c_0}(D) + D^4 s(D) + D^{68} F_{a_{23}}(D).$$

^{1.} $x(D) \mod y(D)$ denotes the remainder when x(D) is divided by y(D).

6.3.3.2 Pseudo-random noise sequence generation

To generate the PN sequence the primitive polynomial

 $h(D) = 1 + D + D^3 + D^4 + D^6$ shall be used. The LFSR and its starting state are shown in Figure 6.6 on page 115. The PN sequence generated (including the extra terminating zero) becomes (hexadecimal notation) 83848D96BBCC54FC. The LFSR output starts with the left-most bit of this PN sequence. This corresponds to p'(D) of the previous section. Thus, using the reciprocal p(D) as overlay gives the 64 bit sequence:

$$p = 3F2A33DD69B121C1$$
, (EQ 11)

where the left-most bit is $p_0 = 0$ (there are two initial zeros in the binary representation of the hexadecimal digit 3), and $p_{63} = 1$ is the right-most bit.

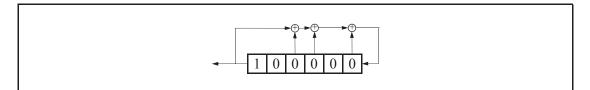


Figure 6.6: LFSR and the starting state to generate p'(D).

6.3.4 Trailer

The trailer is appended to the sync word as soon as the packet header follows the access code. This is typically the case with the CAC, but the trailer is also used in the DAC and IAC when these codes are used in FHS packets exchanged during page response and inquiry response.

The trailer is a fixed zero-one pattern of four symbols. The trailer together with the three MSBs of the syncword form a 7-bit pattern of alternating ones and zeroes which may be used for extended DC compensation. The trailer sequence is either 1010 or 0101 depending on whether the MSB of the sync word is 0 or 1, respectively. The choice of trailer is illustrated in Figure 6.7 on page 115.

Figure 6.7: Trailer in CAC when MSB of sync word is 0 (a), and when MSB of sync word is 1 (b).

Bluetooth

Baseband Specification

6.4 PACKET HEADER

The header contains link control (LC) information and consists of 6 fields:

- LT_ADDR: 3- bit logical transport address
- TYPE: 4-bit type code
- FLOW: 1-bit flow control
- ARQN: 1-bit acknowledge indication
- SEQN: 1-bit sequence number
- HEC: 8-bit header error check

The total header, including the HEC, consists of 18 bits, see Figure 6.8 on page 116, and is encoded with a rate 1/3 FEC (not shown but described in Section 7.4 on page 142) resulting in a 54-bit header. The LT_ADDR and TYPE fields shall be sent LSB first.

LS	SB 3	4	1	1	1	8 MS	BB
	LT_ADDR	TYPE	FLOW	ARQN	SEQN	HEC	

Figure 6.8: Header format.

6.4.1 LT_ADDR

The 3-bit LT_ADDR field contains the logical transport address for the packet (see Section 4.2 on page 97). This field indicates the destination slave for a packet in a master-to-slave transmission slot and indicates the source slave for a slave-to-master transmission slot.

6.4.2 TYPE

Sixteen different types of packets can be distinguished. The 4-bit TYPE code specifies which packet type is used. The interpretation of the TYPE code depends on the logical transport address in the packet. First, it shall be determined whether the packet is sent on an SCO logical transport, an eSCO logical transport, or an ACL logical transport. Second, it shall be determined whether Enhanced Data Rate has been enabled for the logical transport (ACL or eSCO) indicated by LT_ADDR. It can then be determined which type of SCO packet, eSCO packet, or ACL packet has been received. The TYPE code determines how many slots the current packet will occupy (see the slot occupancy column in Table 6.2 on page 119). This allows the non-addressed receivers to refrain from listening to the channel for the duration of the remaining slots. In Section 6.5 on page 118, each packet type is described in more detail.

6.4.3 FLOW

The FLOW bit is used for flow control of packets over the ACL logical transport. When the RX buffer for the ACL logical transport in the recipient is full, a STOP indication (FLOW=0) shall be returned to stop the other device from transmitting data temporarily. The STOP signal only affects ACL packets. Packets including only link control information (ID, POLL, and NULL packets), SCO packets or eSCO packets can still be received. When the RX buffer can accept data, a GO indication (FLOW=1) shall be returned. When no packet is received, or the received header is in error, a GO shall be assumed implicitly. In this case, the slave can receive a new packet with CRC although its RX buffer is still not emptied. The slave shall then return a NAK in response to this packet even if the packet passed the CRC check.

The FLOW bit is not used on the eSCO logical transport or the ACL-C logical link and shall be set to one on transmission and ignored upon receipt.

6.4.4 ARQN

The 1-bit acknowledgment indication ARQN is used to inform the source of a successful transfer of payload data with CRC, and can be positive acknowledge ACK or negative acknowledge NAK. See Section 7.6 on page 144 for initialization and usage of this bit.

6.4.5 SEQN

The SEQN bit provides a sequential numbering scheme to order the data packet stream. See section 7.6.2 on page 147 for initialization and usage of the SEQN bit. For broadcast packets, a modified sequencing method is used, see Section 7.6.5 on page 150.

6.4.6 HEC

Each header has a header-error-check to check the header integrity. The HEC is an 8-bit word (generation of the HEC is specified in Section 7.1.1 on page 138). Before generating the HEC, the HEC generator is initialized with an 8-bit value. For FHS packets sent in **master response** substate, the slave upper address part (UAP) shall be used. For FHS packets sent in **inquiry response**, the default check initialization (DCI, see Section 1.2.1 on page 66) shall be used. In all other cases, the UAP of the master device shall be used.

After the initialization, a HEC shall be calculated for the 10 header bits. Before checking the HEC, the receiver shall initialize the HEC check circuitry with the proper 8-bit UAP (or DCI). If the HEC does not check, the entire packet shall be discarded. More information can be found in Section 7.1 on page 138.

😵 Bluetooth°

6.5 PACKET TYPES

The packets used on the piconet are related to the logical transports they are used in. Three logical transports with distinct packet types are defined (see Section 4 on page 97): the SCO logical transport, the eSCO logical transport, and the ACL logical transport. For each of these logical transports, 15 different packet types can be defined.

To indicate the different packets on a logical transport, the 4-bit TYPE code is used. The packet types are divided into four segments. The first segment is reserved for control packets. All control packets occupy a single time slot. The second segment is reserved for packets occupying a single time slot. The third segment is reserved for packets occupying three time slots. The fourth segment is reserved for packets occupying five time slots. The slot occupancy is reflected in the segmentation and can directly be derived from the type code. Table 6.2 on page 119 summarizes the packets defined for the SCO, eSCO, and ACL logical transport types.

All packet types with a payload shall use GFSK modulation unless specified otherwise in the following sections.

ACL logical transports Enhanced Data Rate packet types are explicitly selected via LMP using the *packet_type_table* (ptt) parameter. eSCO Enhanced Data Rate packet types are selected when the eSCO logical transport is established.

Seg- ment	TYPE code b ₃ b ₂ b ₁ b ₀	Slot occu- pancy	SCO logical trans- port (1 Mbps)	eSCO logical trans- port (1 Mbps)	eSCO logical trans- port (2-3 Mbps)	ACL logical trans- port (1 Mbps) ptt=0	ACL logical trans- port (2-3 Mbps) ptt=1
	0000	1	NULL	NULL	NULL	NULL	NULL
	0001	1	POLL	POLL	POLL	POLL	POLL
1	0010	1	FHS	reserved	reserved	FHS	FHS
	0011	1	DM1	reserved	reserved	DM1	DM1
	0100	1	undefined	undefined	undefined	DH1	2-DH1
	0101	1	HV1	undefined	undefined	undefined	undefined
	0110	1	HV2	undefined	2-EV3	undefined	undefined
2	0111	1	HV3	EV3	3-EV3	undefined	undefined
	1000	1	DV	undefined	undefined	undefined	3-DH1
	1001	1	undefined	undefined	undefined	AUX1	AUX1
	1010	3	undefined	undefined	undefined	DM3	2-DH3
	1011	3	undefined	undefined	undefined	DH3	3-DH3
3	1100	3	undefined	EV4	2-EV5	undefined	undefined
	1101	3	undefined	EV5	3-EV5	undefined	undefined
	1110	5	undefined	undefined	undefined	DM5	2-DH5
4	1111	5	undefined	undefined	undefined	DH5	3-DH5

Table 6.2: Packets defined for synchronous and asynchronous logical transport types.

6.5.1 Common packet types

There are five common kinds of packets. In addition to the types listed in segment 1 of the previous table, the ID packet is also a common packet type but is not listed in segment 1 because it does not have a packet header.

6.5.1.1 ID packet

The identity or ID packet consists of the device access code (DAC) or inquiry access code (IAC). It has a fixed length of 68 bits. It is a very robust packet since the receiver uses a bit correlator to match the received packet to the known bit sequence of the ID packet.

6.5.1.2 NULL packet

The NULL packet has no payload and consists of the channel access code and packet header only. Its total (fixed) length is 126 bits. The NULL packet may be used to return link information to the source regarding the success of the previous transmission (ARQN), or the status of the RX buffer (FLOW). The NULL packet may not have to be acknowledged.

6.5.1.3 POLL packet

The POLL packet is very similar to the NULL packet. It does not have a payload. In contrast to the NULL packet, it requires a confirmation from the recipient. It is not a part of the ARQ scheme. The POLL packet does not affect the ARQN and SEQN fields. Upon reception of a POLL packet the slave shall respond with a packet even when the slave does not have any information to send unless the slave has scatternet commitments in that timeslot. This return packet is an implicit acknowledgement of the POLL packet. This packet can be used by the master in a piconet to poll the slaves. Slaves shall not transmit the POLL packet.

6.5.1.4 FHS packet

The FHS packet is a special control packet containing, among other things, the Bluetooth device address and the clock of the sender. The payload contains 144 information bits plus a 16-bit CRC code. The payload is coded with a rate 2/3 FEC with a gross payload length of 240 bits.

Figure 6.9 on page 120 illustrates the format and contents of the FHS payload. The payload consists of eleven fields. The FHS packet is used in page master response, inquiry response and in role switch.

The FHS packet contains real-time clock information. This clock information shall be updated before each retransmission. The retransmission of the FHS payload is different than retransmissions of ordinary data payloads where the same payload is used for each retransmission. The FHS packet is used for frequency hop synchronization before the piconet channel has been established, or when an existing piconet changes to a new piconet.

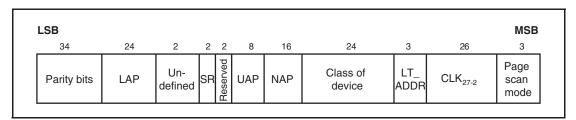


Figure 6.9: Format of the FHS payload.

Each field is described in more detail below:

	This 0.4 hit field contains the next, hits that forms the first year of the same			
Parity bits	This 34-bit field contains the parity bits that form the first part of the sync word of the access code of the device that sends the FHS packet. These bits are derived from the LAP as described in Section 1.2 on page 66.			
LAP	This 24-bit field shall contain the lower address part of the device that sends the FHS packet.			
Undefined	This 2-bit field is reserved for future use and shall be set to zero.			
SR	This 2-bit field is the scan repetition field and indicates the interval between two consecutive page scan windows, see also Table 6.4 and Table 8.1 on page 155			
Reserved	This 2-bit field shall be set to 10.			
UAP	This 8-bit field shall contain the upper address part of the device that sends the FHS packet.			
NAP	This 16-bit field shall contain the non-significant address part of the device that sends the FHS packet (see also Section 1.2 on page 66 for LAP, UAP, and NAP).			
Class of device	This 24-bit field shall contain the class of device of the device that sends the FHS packet. The field is defined in Bluetooth Assigned Numbers (https://www.bluetooth.org/foundry/assignnumb/document/assigned_numbers).			
LT_ADDR	This 3-bit field shall contain the logical transport address the recipient shall use if the FHS packet is used at connection setup or role switch. A slave responding to a master or a device responding to an inquiry request message shall include an all-zero LT_ADDR field if it sends the FHS packet.			
CLK ₂₇₋₂	This 26-bit field shall contain the value of the native clock of the device that sends the FHS packet, sampled at the beginning of the transmission of the access code of this FHS packet. This clock value has a resolution of 1.25ms (two-slot interval). For each new transmission, this field is updated so that it accurately reflects the real-time clock value.			
Page scan mode	This 3-bit field shall indicate which scan mode is used by default by the sender of the FHS packet. The interpretation of the page scan mode is illustrated in Table 6.5.			

Table 6.3: Description of the FHS payload

😵 Bluetooth°

The device sending the FHS shall set the SR bits according to Table 6.4.

SR bit format b ₁ b ₀	SR mode
00	R0
01	R1
10	R2
11	reserved

Table 6.4: Contents of SR field

The device sending the FHS shall set the page scan mode bits according to Table 6.5.

Bit format b ₂ b ₁ b ₀	Page scan mode
000	Mandatory scan mode
001	Reserved for future use
010	Reserved for future use
011	Reserved for future use
100	Reserved for future use
101	Reserved for future use
110	Reserved for future use
111	Reserved for future use

Table 6.5: Contents of page scan mode field

The LAP, UAP, and NAP together form the 48-bit Bluetooth Device Address of the device that sends the FHS packet. Using the parity bits and the LAP, the recipient can directly construct the channel access code of the sender of the FHS packet.

When initializing the HEC and CRC for the FHS packet of inquiry response, the UAP shall be the DCI.

6.5.1.5 DM1 packet

DM1 is part of segment 1 in order to support control messages in any logical transport that allows the DM1 packet (see Table 6.2 on page 119). However, it may also carry regular user data. Since the DM1 packet can be regarded as an ACL packet, it will be discussed in Section 6.5.4 on page 126.

6.5.2 SCO packets

HV and DV packets are used on the synchronous SCO logical transport. The HV packets do not include a CRC and shall not be retransmitted. DV packets include a CRC on the data section, but not on the synchronous data section. The data section of DV packets shall be retransmitted. SCO packets may be routed to the synchronous I/O port. Four packets are allowed on the SCO logical transport: HV1, HV2, HV3 and DV. These packets are typically used for 64kb/s speech transmission but may be used for transparent synchronous data.

6.5.2.1 HV1 packet

The **HV1** packet has 10 information bytes. The bytes are protected with a rate 1/3 FEC. No CRC is present. The payload length is fixed at 240 bits. There is no payload header present.

6.5.2.2 HV2 packet

The **HV2** packet has 20 information bytes. The bytes are protected with a rate 2/3 FEC. No CRC is present. The payload length is fixed at 240 bits. There is no payload header present.

6.5.2.3 HV3 packet

The **HV3** packet has 30 information bytes. The bytes are not protected by FEC. No CRC is present. The payload length is fixed at 240 bits. There is no payload header present.

6.5.2.4 DV packet

The **DV** packet is a combined data - voice packet. The DV packet shall only be used in place of an HV1 packet. The payload is divided into a voice field of 80 bits and a data field containing up to 150 bits, see Figure 6.10. The voice field is not protected by FEC. The data field has between 1 and 10 information bytes (including the 1-byte payload header) and includes a 16-bit CRC. The data field is encoded with a rate 2/3 FEC. Since the **DV** packet has to be sent at regular intervals due to its synchronous contents, it is listed under the SCO packet types. The voice and data fields shall be treated separately. The voice field shall be handled in the same way as normal SCO data and shall never be retransmitted; that is, the voice field is always new. The data field is checked for errors and shall be retransmitted if necessary. When the asynchronous data field in the DV packet has not be acknowledged before the SCO logical transport is terminated, the asynchronous data field shall be retransmitted in a DM1 packet.

LSB 72	54	80	45 - 150 MSB
ACCESS	HEADER	VOICE	DATA
CODE		FIELD	FIELD

Figure 6.10: DV packet format

Bluetooth

Baseband Specification

6.5.3 eSCO packets

EV packets are used on the synchronous eSCO logical transport. The packets include a CRC and retransmission may be applied if no acknowledgement of proper reception is received within the retransmission window. eSCO packets may be routed to the synchronous I/O port. Three eSCO packet types (EV3, EV4, EV5) are defined for Basic Rate operation and four additional eSCO packet types (2-EV3, 3-EV3, 2-EV5, 3-EV5) for Enhanced Data Rate operation. The eSCO packets may be used for 64kb/s speech transmission as well as transparent data at 64kb/s and other rates.

6.5.3.1 EV3 packet

The **EV3** packet has between 1 and 30 information bytes plus a 16-bit CRC code. The bytes are not protected by FEC. The EV3 packet may cover up to a single time slot. There is no payload header present. The payload length is set during the LMP eSCO setup and remains fixed until the link is removed or renegotiated.

6.5.3.2 EV4 packet

The **EV4** packet has between 1 and 120 information bytes plus a 16-bit CRC code. The EV4 packet may cover to up three time slots. The information plus CRC bits are coded with a rate 2/3 FEC. There is no payload header present. The payload length is set during the LMP eSCO setup and remains fixed until the link is removed or re-negotiated.

6.5.3.3 EV5 packet

The **EV5** packet has between 1 and 180 information bytes plus a 16-bit CRC code. The bytes are not protected by FEC. The EV5 packet may cover up to three time slots. There is no payload header present. The payload length is set during the LMP eSCO setup and remains fixed until the link is removed or renegotiated.

6.5.3.4 2-EV3 packet

The **2-EV3** packet is similar to the EV3 packet except that the payload is modulated using $\pi/4$ -DQPSK. It has between 1 and 60 information bytes plus a 16-bit CRC code. The bytes are not protected by FEC. The 2-EV3 packet covers a single time slot. There is no payload header present. The payload length is set during the LMP eSCO setup and remains fixed until the link is removed or renegotiated.

6.5.3.5 2-EV5 packet

The **2-EV5** packet is similar to the EV5 packet except that the payload is modulated using $\pi/4$ -DQPSK. It has between 1 and 360 information bytes plus a 16-bit CRC code. The bytes are not protected by FEC. The 2-EV5 packet may cover up to three time slots. There is no payload header present. The payload length is set during the LMP eSCO setup and remains fixed until the link is removed or re-negotiated.

6.5.3.6 3-EV3 packet

The **3-EV3** packet is similar to the EV3 packet except that the payload is modulated using 8DPSK. It has between 1 and 90 information bytes plus a 16-bit CRC code. The bytes are not protected by FEC. The 3-EV3 packet covers a single time slot. There is no payload header present. The payload length is set during the LMP eSCO setup and remains fixed until the link is removed or renegotiated.

6.5.3.7 3-EV5 packet

The **3-EV5** packet is similar to the EV5 packet except that the payload is modulated using 8DPSK. It has between 1 and 540 information bytes plus a 16-bit CRC code. The bytes are not protected by FEC. The 3-EV5 packet may cover up to three time slots. There is no payload header present. The payload length is set during the LMP eSCO setup and remains fixed until the link is removed or re-negotiated.

😵 Bluetooth°

6.5.4 ACL packets

ACL packets are used on the asynchronous logical transport. The information carried may be user data or control data.

Seven packet types are defined for Basic Rate operation: DM1, DH1, DM3, DH3, DM5, DH5 and AUX1. Six additional packets are defined for Enhanced Data Rate operation: 2-DH1, 3-DH1, 2-DH3, 3-DH3, 2-DH5 and 3-DH5.

6.5.4.1 DM1 packet

The DM1 packet carries data information only. The payload has between 1 and 18 information bytes (including the 1-byte payload header) plus a 16-bit CRC code. The DM1 packet occupies a single time slot. The information plus CRC bits are coded with a rate 2/3 FEC. The payload header in the DM1 packet is 1 byte long, see Figure 6.12 on page 130. The length indicator in the payload header specifies the number of user bytes (excluding payload header and the CRC code).

6.5.4.2 DH1 packet

This packet is similar to the DM1 packet, except that the information in the payload is not FEC encoded. As a result, the DH1 packet has between 1 and 28 information bytes (including the 1-byte payload header) plus a 16-bit CRC code. The DH1 packet occupies a single time slot.

6.5.4.3 DM3 packet

The DM3 packet may occupy up to three time slots. The payload has between 2 and 123 information bytes (including the 2-byte payload header) plus a 16-bit CRC code. The information plus CRC bits are coded with a rate 2/3 FEC. The payload header in the DM3 packet is 2 bytes long, see Figure 6.13 on page 131. The length indicator in the payload header specifies the number of user bytes (excluding payload header and the CRC code).

6.5.4.4 DH3 packet

This packet is similar to the DM3 packet, except that the information in the payload is not FEC encoded. As a result, the DH3 packet has between 2 and 185 information bytes (including the 2-byte payload header) plus a 16-bit CRC code. The DH3 packet may occupy up to three time slots.

6.5.4.5 DM5 packet

The DM5 packet may occupy up to five time slots. The payload has between 2 and 226 information bytes (including the 2-byte payload header) plus a 16-bit

😵 Bluetooth°

CRC code. The payload header in the DM5 packet is 2 bytes long. The information plus CRC bits are coded with a rate 2/3 FEC. The length indicator in the payload header specifies the number of user bytes (excluding payload header and the CRC code).

<u>6.5.4.6 DH5 packet</u>

This packet is similar to the DM5 packet, except that the information in the payload is not FEC encoded. As a result, the DH5 packet has between 2 and 341 information bytes (including the2-byte payload header) plus a 16-bit CRC code. The DH5 packet may occupy up to five time slots.

6.5.4.7 AUX1 packet

This packet resembles a DH1 packet but has no CRC code. The AUX1 packet has between 1 and 30 information bytes (including the 1-byte payload header). The AUX1 packet occupies a single time slot. The AUX1 packet shall not be used for the ACL-U or ACL-C logical links. An AUX1 packet may be discarded.

6.5.4.8 2-DH1 packet

This packet is similar to the DH1 packet except that the payload is modulated using π /4-DQPSK. The 2-DH1 packet has between 2 and 56 information bytes (including the 2-byte payload header) plus a 16-bit CRC code. The 2-DH1 packet occupies a single time slot.

6.5.4.9 2-DH3 packet

This packet is similar to the DH3 packet except that the payload is modulated using π /4-DQPSK. The 2-DH3 packet has between 2 and 369 information bytes (including the 2-byte payload header) plus a 16-bit CRC code. The 2-DH3 packet may occupy up to three time slots.

6.5.4.10 2-DH5 packet

This packet is similar to the DH5 packet except that the payload is modulated using $\pi/4$ -DQPSK. The 2-DH5 packet has between 2 and 681 information bytes (including the 2-byte payload header) plus a 16-bit CRC code. The 2-DH5 packet may occupy up to five time slots.

<u>6.5.4.11 3-DH1 packet</u>

This packet is similar to the DH1 packet except that the payload is modulated using 8DPSK. The 3-DH1 packet has between 2 and 85 information bytes

8 Bluetooth°

(including the 2-byte payload header) plus a 16-bit CRC code. The 3-DH1 packet occupies a single time slot.

6.5.4.12 3-DH3 packet

This packet is similar to the DH3 packet except that the payload is modulated using 8DPSK. The 3-DH3 packet has between 2 and 554 information bytes (including the 2-byte payload header) plus a 16-bit CRC code. The 3-DH3 packet may occupy up to three time slots.

6.5.4.13 3-DH5 packet

This packet is similar to the DH5 packet except that the payload is modulated using 8DPSK. The 3-DH5 packet has between 2 and 1023 information bytes (including the 2-byte payload header) plus a 16-bit CRC code. The 3-DH5 packet may occupy up to five time slots.

6.6 PAYLOAD FORMAT

In the payload, two fields are distinguished: the synchronous data field and the asynchronous data field. The ACL packets only have the asynchronous data field and the SCO and eSCOpackets only have the synchronous data field – with the exception of the DV packets which have both.

6.6.1 Synchronous data field

In SCO, which is only supported in Basic Rate mode, the synchronous data field has a fixed length and consists only of the synchronous data body portion. No payload header is present.

In Basic Rate eSCO, the synchronous data field consists of two segments: a synchronous data body and a CRC code. No payload header is present.

In Enhanced Data Rate eSCO, the synchronous data field consists of five segments: a guard time, a synchronization sequence, a synchronous data body, a CRC code and a trailer. No payload header is present.

1. Enhanced Data Rate Guard Time

For Enhanced Data Rate packets the guard time is defined as the period starting at the end of the last GFSK symbol of the header and ending at the start of the reference symbol of the synchronization sequence. The length of the guard time shall be between $4.75 \ \mu$ sec and $5.25 \ \mu$ sec.

😵 Bluetooth[®]

2. Enhanced Data Rate Synchronization Sequence

For Enhanced Data Rate packets the symbol timing at the start of the synchronization sequence shall be within $\pm \frac{1}{4}$ µsec of the symbol timing of the last GFSK symbol of the packet header. The length of the synchronization sequence is 11 µsec (11 DPSK symbols) and consists of a reference symbol (with arbitrary phase) followed by ten DPSK symbols.

The phase changes between the DPSK symbols (shown in Synchronization sequence) shall be

```
\{\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6, \varphi_7, \varphi_8, \varphi_9, \varphi_{10}\} = \{3\pi/4, -3\pi/4, 3\pi/4, -3\pi/4, 3\pi/4, -3\pi/4, 3\pi/4, 3\pi/4, 3\pi/4, 3\pi/4\} (EQ 12)
```

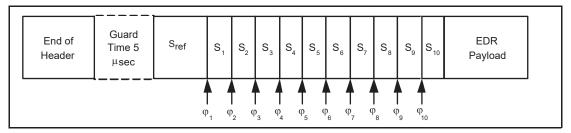


Figure 6.11: Synchronization sequence

Sref is the reference symbol. ϕ_1 is the phase change between the reference symbol and the first DPSK symbol S₁. ϕ_k is the phase change between the

k-1th symbol S_{k-1} and the kth symbol S_k

Note: the synchronization sequence may be generated using the modulator by pre-pending the data with bits that generate the synchronization sequence.

For 8DPSK, the bit sequence used to generate the synchronization sequence is 0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,1,0.

3. Synchronous data body

For HV and DV packets, the synchronous data body length is fixed. For EV packets, the synchronous data body length is negotiated during the LMP eSCO setup. Once negotiated, the synchronous data body length remains constant unless re-negotiated. The synchronous data body length may be different for each direction of the eSCO logical transport.

4. CRC code

The 16-bit CRC in the payload is generated as specified in Section 7.1 on page 138. The 8-bit UAP of the master is used to initialize the CRC generator.

Only the Synchronous data body segment is used to generate the CRC code.

Bluetooth

Baseband Specification

5. Enhanced Data Rate Trailer

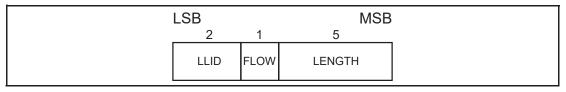
For Enhanced Data Rate packets, two trailer symbols shall be added to the end of the payload. The trailer bits shall be all zero, i.e. {00, 00} for the $\pi/4$ -DQPSK and {000, 000} for the 8DPSK.

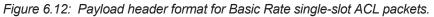
6.6.2 Asynchronous data field

Basic rate ACL packets have an asynchronous data field consisting of two or three segments: a payload header, a payload body, and possibly a CRC code (the AUX1 packet does not carry a CRC code).

Enhanced Data Rate ACL packets have an asynchronous data field consisting of six segments: a guard time, a synchronization sequence, a payload header, a payload body, a CRC and a trailer.

1. Enhanced Data Rate Guard time


This is the same as defined for the Synchronous data field in section 6.6.1.


2. Enhanced Data Rate Synchronization sequence

This is the same as defined for the Synchronous data field in section 6.6.1.

3. Payload header

The payload header is one or two bytes long. Basic rate packets in segments one and two have a 1-byte payload header; Basic Rate packets in segments three and four and all Enhanced Data Rate packets have a 2-byte payload header. The payload header specifies the logical link (2-bit LLID indication), controls the flow on the logical channels (1-bit FLOW indication), and has a payload length indicator (5 bits and 10 bits for 1-byte and 2-byte payload headers, respectively). In the case of a 2-byte payload header, the length indicator is extended by five bits into the next byte. The remaining three bits of the second byte are reserved for future use and shall be set to zero. The formats of the 1-byte and 2-byte payload headers are shown in Figure 6.12 on page 130 and Figure 6.13 on page 131.

>	Blue	etoc	oth®
-------------	------	------	------

LSB			MSB
2	1	10	3
LLID	FLOW	LENGTH	RESERVED

Figure 6.13: Payload header format for multi-slot ACL packets and all EDR ACL packets.

The LLID field shall be transmitted first, the length field last. In Table 6.6 on page 132, more details about the contents of the LLID field are listed.

😵 Bluetooth

LLID code Ե ₁ Ե ₀	Logical Link	Information
00	NA	undefined
01	ACL-U	Continuation fragment of an L2CAP message
10	ACL-U	Start of an L2CAP message or no fragmentation
11	ACL-C	LMP message

Table 6.6: Logical link LLID field contents

An L2CAP message may be fragmented into several packets. Code 10 shall be used for an ACL-U packet carrying the first fragment of such a message; code 01 shall be used for continuing fragments. If there is no fragmentation, code 10 shall be used for every packet. Code 11 shall be used for LMP messages. Code 00 is reserved for future use.

The flow indicator in the payload is used to control the flow at the L2CAP level. It is used to control the flow per logical link. FLOW=1 means flow-on (GO) and FLOW=0 means flow-off (STOP). After a new connection has been established the flow indicator shall be set to GO. When a device receives a payload header with the flow bit set to STOP, it shall stop the transmission of ACL packets before an additional amount of payload data is sent. This amount is defined as the flow control lag, expressed as a number of bytes. The shorter the flow control lag, the less buffering the other device must dedicate to this function. The flow control lag shall not exceed 1792 bytes (7×256 bytes). In order to allow devices to optimize the selection of packet length and buffer space, the flow control lag of a given implementation shall be provided in the LMP_features_res message.

If a packet containing the payload flow bit of STOP is received, with a valid packet header but bad payload, the payload flow control bit shall be ignored. The baseband ACK contained in the packet header will be received and a further ACL packet may be transmitted. Each occurrence of this situation allows a further ACL packet to be sent in spite of the flow control request being sent via the payload header flow control bit. It is recommended that devices that use the payload header flow bit should ensure that no further ACL packets are sent until the payload flow bit has been correctly received. This can be accomplished by simultaneously turning on the flow bit in the packet header and keeping it on until an ACK is received back (ARQN=1). This will typically be only one round trip time. Since they lack a payload CRC, AUX1 packets should not be used with a payload flow bit of STOP.

😵 Bluetooth°

The Baseband Resource Manager is responsible for setting and processing the flow bit in the payload header. Real-time flow control shall be carried out at the packet level by the link controller via the flow bit in the packet header (see Section 6.4.3 on page 117). With the payload flow bit, traffic from the remote end can be controlled. It is allowed to generate and send an ACL packet with payload length zero irrespective of flow status. L2CAP start-fragment and continue-fragment indications (LLID=10 and LLID=01) also retain their meaning when the payload length is equal to zero (i.e. an empty start-fragment shall not be sent in the middle of an on-going ACL-U packet transmission). It is always safe to send an ACL packet with length=0 and LLID=01. The payload flow bit has its own meaning for each logical link (ACL-U or ACL-C), Table 6.7 on page 133. On the ACL-C logical link, no flow control is applied and the payload FLOW bit shall always be set to one.

LLID code b ₁ b ₀	Usage and semantics of the ACL payload header FLOW bit
00	Not defined, reserved for future use.
01 or 10	Flow control of the ACL-U channel (L2CAP messages)
11	Always set FLOW=1 on transmission and ignore the bit on reception

Table 6.7: Use of payload header flow bit on the logical links.

The length indicator shall be set to the number of bytes (i.e. 8-bit words) in the payload excluding the payload header and the CRC code; i.e. the payload body only. With reference to Figure 6.12 and Figure 6.13, the MSB of the length field in a 1-byte header is the last (right-most) bit in the payload header; the MSB of the length field in a 2-byte header is the fourth bit (from left) of the second byte in the payload header.

4. Payload body

The payload body includes the user information and determines the effective user throughput. The length of the payload body is indicated in the length field of the payload header.

5. CRC code generation

The 16-bit cyclic redundancy check code in the payload is generated as specified in Section 7.1 on page 138. Before determining the CRC code, an 8-bit value is used to initialize the CRC generator. For the CRC code in the FHS packets sent in **master response** substate, the UAP of the slave is used. For the FHS packet sent in **inquiry response** substate, the DCI (see Section 1.2.1 on page 66) is used. For all other packets, the UAP of the master is used.

Only the Payload header and Payload body segments are used to generate the CRC code.

6. Enhanced Data Rate Trailer

This is the same as defined for the Synchronous data field in section 6.6.1.

8 Bluetooth[®]

6.7 PACKET SUMMARY

A summary of the packets and their characteristics is shown in Table 6.8, Table 6.9 and Table 6.10. The payload represents the packet payload excluding FEC, CRC, and payload header.

Туре	Payload (bytes)	FEC	CRC	Symmetric Max. Rate	Asymmetric Max. Rate
ID	na	na	na	na	na
NULL	na	na	na	na	na
POLL	na	na	na	na	na
FHS	18	2/3	yes	na	na

Table 6.8: Link control packets

	Payload	User			Symmetric	Asymmetric Max. Rate (kb/s)	
Туре	Header (bytes)	Payload (bytes)	FEC	CRC	Max. Rate (kb/s)	Forward	Reverse
DM1	1	0-17	2/3	yes	108.8	108.8	108.8
DH1	1	0-27	no	yes	172.8	172.8	172.8
DM3	2	0-121	2/3	yes	258.1	387.2	54.4
DH3	2	0-183	no	yes	390.4	585.6	86.4
DM5	2	0-224	2/3	yes	286.7	477.8	36.3
DH5	2	0-339	no	yes	433.9	723.2	57.6
AUX1	1	0-29	no	no	185.6	185.6	185.6
2-DH1	2	0-54	no	yes	345.6	345.6	345.6
2-DH3	2	0-367	no	yes	782.9	1174.4	172.8
2-DH5	2	0-679	no	yes	869.7	1448.5	115.2
3-DH1	2	0-83	no	yes	531.2	531.2	531.2
3-DH3	2	0-552	no	yes	1177.6	1766.4	235.6
3-DH5	2	0-1021	no	yes	1306.9	2178.1	177.1

Table 6.9: ACL packets

page 135 of 814

Туре	Payload Header (bytes)	User Payload (bytes)	FEC	CRC	Symmetric Max. Rate (kb/s)
HV1	na	10	1/3	no	64.0
HV2	na	20	2/3	no	64.0
HV3	na	30	no	no	64.0
DV ¹	1 D	10+(0-9) D	2/3 D	yes D	64.0+57.6 D
EV3	na	1-30	No	Yes	96
EV4	na	1-120	2/3	Yes	192
EV5	na	1-180	No	Yes	288
2-EV3	na	1-60	No	Yes	192
2-EV5	na	1-360	No	Yes	576
3-EV3	na	1-90	No	Yes	288
3-EV5	na	1-540	No	Yes	864

Table 6.10: Synchronous packets

1. Items followed by 'D' relate to data field only.

7 BITSTREAM PROCESSING

Bluetooth devices shall use the bitstream processing schemes as defined in the following sections.

Before the payload is sent over the air interface, several bit manipulations are performed in the transmitter to increase reliability and security. An HEC is added to the packet header, the header bits are scrambled with a whitening word, and FEC coding is applied. In the receiver, the inverse processes are carried out. Figure 7.1 on page 137 shows the processes carried out for the packet header both at the transmit and the receive side. All header bit processes are mandatory.

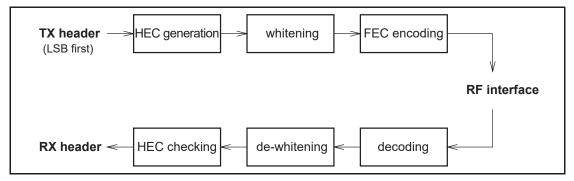


Figure 7.1: Header bit processes.

Figure 7.2 on page 137 shows the processes that may be carried out on the payload. In addition to the processes defined for the packet header, encryption can be applied on the payload. Only whitening and de-whitening, as explained in Section 7.2 on page 141, are mandatory for every payload; all other processes are optional and depend on the packet type (see Section 6.6 on page 128) and whether encryption is enabled. In Figure 7.2 on page 137, optional processes are indicated by dashed blocks.

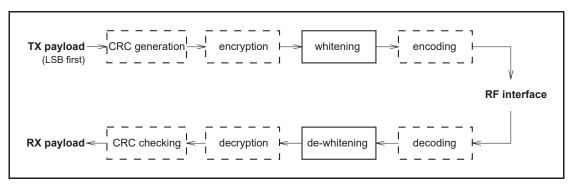


Figure 7.2: Payload bit processes.

😵 Bluetooth°

7.1 ERROR CHECKING

The packet can be checked for errors or wrong delivery using the channel access code, the HEC in the header, and the CRC in the payload. At packet reception, the access code is checked first. Since the 64-bit sync word in the channel access code is derived from the 24-bit master LAP, this checks if the LAP is correct, and prevents the receiver from accepting a packet of another piconet (provided the LAP field of the master's BD_ADDR is different).

The HEC and CRC computations are normally initialized with the UAP of the master. Even though the access code may be the same for two piconets the different UAP values will typically cause the HEC and CRC to fail. However, there is an exception where no common UAP is available in the transmitter and receiver. This is the case when the HEC and CRC are generated for the FHS packet in **inquiry response** substate. In this case the DCI value shall be used.

The generation and check of the HEC and CRC are summarized in Figure 7.5 on page 139 and Figure 7.8 on page 140. Before calculating the HEC or CRC, the shift registers in the HEC/CRC generators shall be initialized with the 8-bit UAP (or DCI) value. Then the header and payload information shall be shifted into the HEC and CRC generators, respectively (with the LSB first).

7.1.1 HEC generation

The HEC generating LFSR is depicted in Figure 7.3 on page 138. The generator polynomial is

 $g(D) = (D+1)(D^7 + D^4 + D^3 + D^2 + 1) = D^8 + D^7 + D^5 + D^2 + D + 1$. Initially this circuit shall be pre-loaded with the 8-bit UAP such that the LSB of the UAP (denoted UAP₀) goes to the left-most shift register element, and, UAP₇ goes to the right-most element. The initial state of the HEC LFSR is depicted in Figure 7.4 on page 139. Then the data shall be shifted in with the switch S set in position 1. When the last data bit has been clocked into the LFSR, the switch S shall be set in position 2, and, the HEC can be read out from the register. The LFSR bits shall be read out from right to left (i.e., the bit in position 7 is the first to be transmitted, followed by the bit in position 6, etc.).

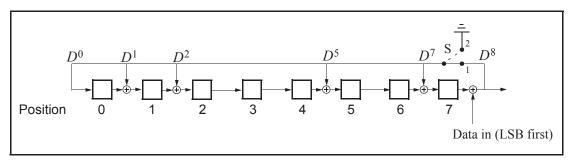


Figure 7.3: The LFSR circuit generating the HEC.

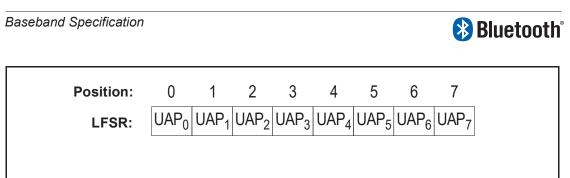


Figure 7.4: Initial state of the HEC generating circuit.

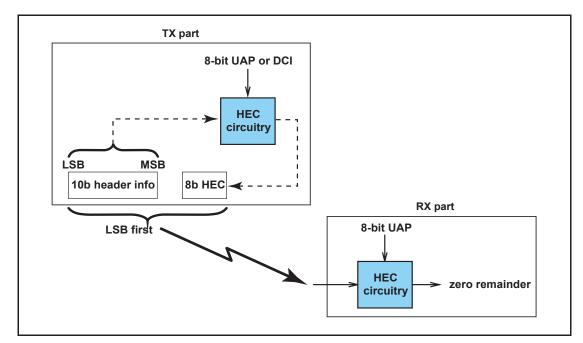


Figure 7.5: HEC generation and checking.

7.1.2 CRC generation

The 16 bit LFSR for the CRC is constructed similarly to the HEC using the CRC-CCITT generator polynomial $g(D) = D^{16} + D^{12} + D^5 + 1$ (i.e. 210041 in octal representation) (see Figure 7.6 on page 140). For this case, the 8 leftmost bits shall be initially loaded with the 8-bit UAP (UAP₀ to the left and UAP₇ to the right) while the 8 right-most bits shall be reset to zero. The initial state of the 16 bit LFSR is specified in Figure 7.7 on page 140. The switch S shall be set in position 1 while the data is shifted in. After the last bit has entered the LFSR, the switch shall be set in position 2, and, the register's contents shall be transmitted, from right to left (i.e., starting with position 15, then position 14, etc.).

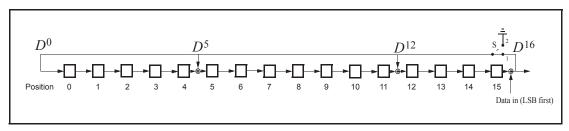


Figure 7.6: The LFSR circuit generating the CRC.

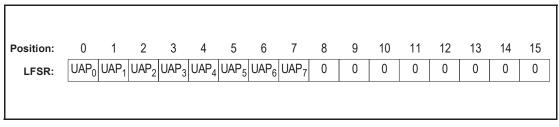


Figure 7.7: Initial state of the CRC generating circuit.

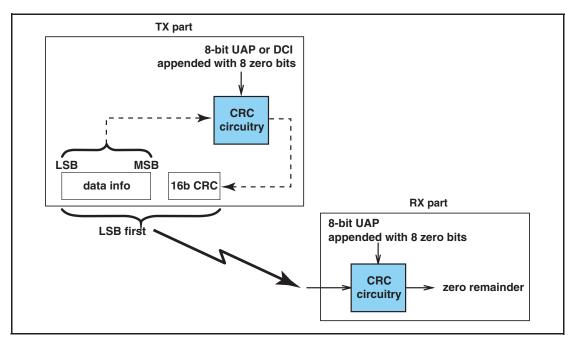


Figure 7.8: CRC generation and checking.

7.2 DATA WHITENING

Before transmission, both the header and the payload shall be scrambled with a data whitening word in order to randomize the data from highly redundant patterns and to minimize DC bias in the packet. The scrambling shall be performed prior to the FEC encoding.

At the receiver, the received data shall be descrambled using the same whitening word generated in the recipient. The descrambling shall be performed after FEC decoding.

The whitening word is generated with the polynomial $g(D) = D^7 + D^4 + 1$ (i.e., 221 in octal representation) and shall be subsequently XORed with the header and the payload. The whitening word is generated with the linear feedback shift register shown in Figure 7.9 on page 141. Before each transmission, the shift register shall be initialized with a portion of the master Bluetooth clock, CLK_{6-1} , extended with an MSB of value one. This initialization shall be carried out with CLK_1 written to position 0, CLK_2 written to position 1, etc. An exception is the FHS packet sent during page response or inquiry, where initialization of the whitening register shall be carried out differently. Instead of the master clock, the X-input used in the **inquiry** or **page response** (depending on current state) routine shall be used, see Table 2.2. The 5-bit value shall be extended with two MSBs of value 1. During register initialization, the LSB of X (i.e., X₀) shall be written to position 0, X₁ shall be written to position 1, etc.

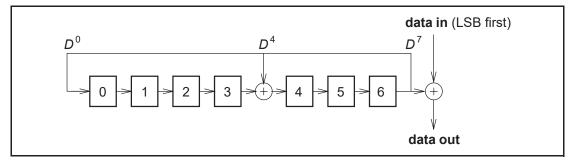


Figure 7.9: Data whitening LFSR.

After initialization, the packet header and the payload (including the CRC) are whitened. The payload whitening shall continue from the state the whitening LFSR had at the end of HEC. There shall be no re-initialization of the shift register between packet header and payload. The first bit of the "data in" sequence shall be the LSB of the packet header.

For Enhanced Data Rate packets, whitening shall not be applied to the guard, synchronization and trailer portions of the Enhanced Data Rate packets. During the periods where whitening is not applied the LFSR shall be paused.

😵 Bluetooth®

7.3 ERROR CORRECTION

There are three error correction schemes defined for Bluetooth:

- 1/3 rate FEC
- 2/3 rate FEC
- ARQ scheme for the data

The purpose of the FEC scheme on the data payload is to reduce the number of retransmissions. However, in a reasonable error-free environment, FEC gives unnecessary overhead that reduces the throughput. Therefore, the packet definitions given in Section 6 on page 109 have been kept flexible to use FEC in the payload or not, resulting in the **DM** and **DH** packets for the ACL logical transport, **HV** packets for the SCO logical transport, and **EV** packets for the eSCO logical transport. The packet header is always protected by a 1/3 rate FEC since it contains valuable link information and is designed to withstand more bit errors.

Correction measures to mask errors in the voice decoder are not included in this section. This matter is discussed in Section 9.3 on page 198.

7.4 FEC CODE: RATE 1/3

A simple 3-times repetition FEC code is used for the header. The repetition code is implemented by repeating each bit three times, see the illustration in Figure 7.10 on page 142. The 3-times repetition code is used for the entire header, as well as for the synchronous data field in the **HV1** packet.

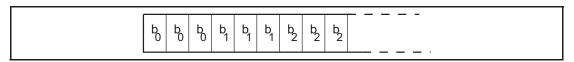


Figure 7.10: Bit-repetition encoding scheme.

7.5 FEC CODE: RATE 2/3

The other FEC scheme is a (15,10) shortened Hamming code. The generator polynomial is $g(D) = (D+1)(D^4 + D + 1)$. This corresponds to 65 in octal notation. The LFSR generating this code is depicted in Figure 7.11 on page 143. Initially all register elements are set to zero. The 10 information bits are sequentially fed into the LFSR with the switches S1 and S2 set in position 1. Then, after the final input bit, the switches S1 and S2 are set in position 2, and the five parity bits are shifted out. The parity bits are appended to the information bits. Subsequently, each block of 10 information bits is encoded into a 15 bit codeword. This code can correct all single errors and detect all double errors in each codeword. This 2/3 rate FEC is used in the DM packets, in the data field of the DV packet, in the FHS packet, in the HV2 packet, and in the EV4 packet. Since the encoder operates with information segments of length 10, tail bits with value zero shall be appended after the CRC bits to bring the total number of bits equal to a multiple of 10. The number of tail bits to append shall be the least possible that achieves this (i.e., in the interval 0...9). These tail bits are not included in the payload length indicator for ACL packets or in the payload length field of the eSCO setup LMP command.

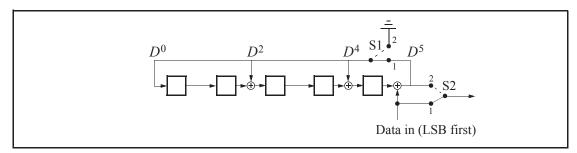


Figure 7.11: LFSR generating the (15,10) shortened Hamming code.

🛞 Bluetooth°

7.6 ARQ SCHEME

With an automatic repeat request scheme, **DM**, **DH** the data field of **DV** packets, and **EV** packets shall be transmitted until acknowledgement of a successful reception is returned by the destination (or timeout is exceeded). The acknowledgement information shall be included in the header of the return packet. The ARQ scheme is only used on the payload in the packet and only on packets that have a CRC. The packet header and the synchronous data payload of HV and DV packets are not protected by the ARQ scheme.

7.6.1 Unnumbered ARQ

Bluetooth uses a fast, unnumbered acknowledgment scheme. An ACK (ARQN=1) or a NAK (ARQN=0) is returned in response to the receipt of previously received packet. The slave shall respond in the slave-to-master slot directly following the master-to-slave slot unless the slave has scatternet commitments in that timeslot; the master shall respond at the next event addressing the same slave (the master may have addressed other slaves between the last received packet from the considered slave and the master response to this packet). For a packet reception to be successful, at least the HEC must pass. In addition, the CRC must pass if present.

In the first POLL packet at the start of a new connection (as a result of a page, page scan, role switch or unpark) the master shall initialize the ARQN bit to NAK. The response packet sent by the slave shall also have the ARQN bit set to NAK. The subsequent packets shall use the following rules. The initial value of the master's eSCO ARQN at link set-up shall be NAK.

The ARQ bit shall only be affected by data packets containing CRC and empty slots. As shown in Figure 7.12 on page 145, upon successful reception of a CRC packet, the ARQN bit shall be set to ACK. If, in any receive slot in the slave, or, in a receive slot in the master following transmission of a packet, one of these events applies:

- 1. no access code is detected,
- 2. the HEC fails,
- 3. the CRC fails,

then the ARQN bit shall be set to NAK. In eSCO the ARQN bit may be set to ACK even when the CRC on an EV packet has failed thus enabling delivery of erroneous packets.

Packets that have correct HEC but that are addressed to other slaves, or packets other than DH, DM, DV or EV packets, shall not affect the ARQN bit, except as noted in Section 7.6.2.2 on page 148. In these cases the ARQN bit shall be left as it was prior to reception of the packet. For ACL packets, if a CRC packet with a correct header has the same SEQN as the previously received CRC packet, the ARQN bit shall be set to ACK and the payload shall be ignored without checking the CRC. For eSCO packets, the SEQN shall not be used

😵 Bluetooth[°]

when determining the ARQN. If an eSCO packet has been received successfully within the eSCO window subsequent receptions within the eSCO window shall be ignored. At the end of the eSCO window, the master's ARQN shall be retained for the first master-to-slave transmission in the next eSCO window.

The ARQ bit in the FHS packet is not meaningful. Contents of the ARQN bit in the FHS packet shall not be checked.

Broadcast packets shall be checked on errors using the CRC, but no ARQ scheme shall be applied. Broadcast packets shall never be acknowledged.

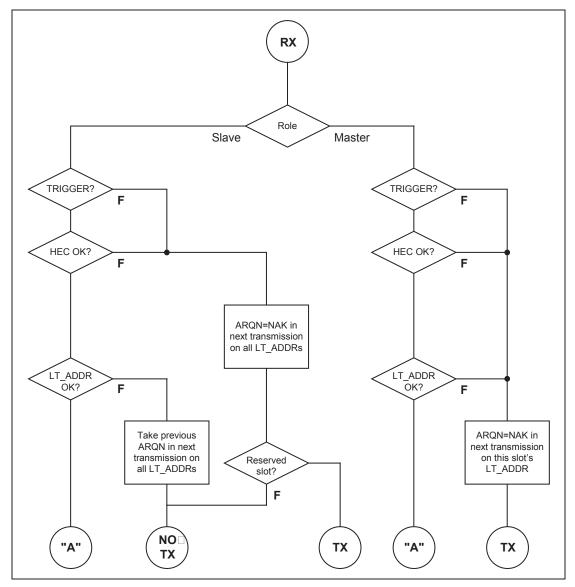


Figure 7.12: Stage 1 of the receive protocol for determining the ARQN bit.

😵 Bluetooth[°]

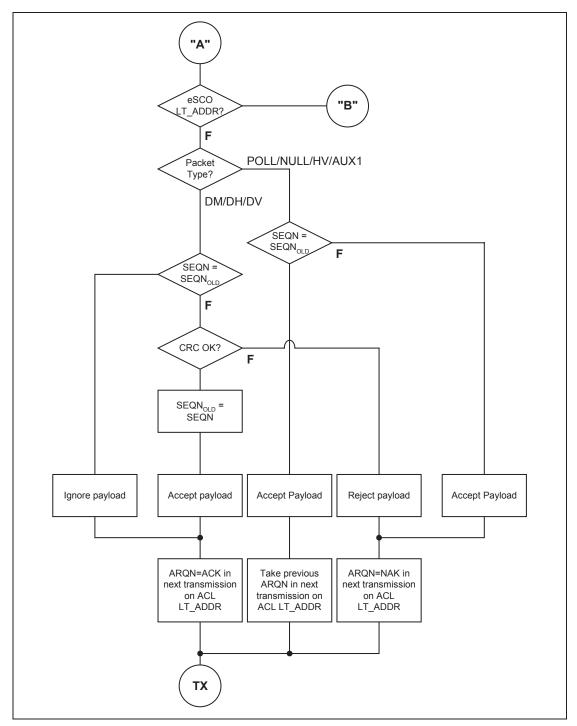


Figure 7.13: Stage 2 (ACL) of the receive protocol for determining the ARQN bit.

😵 Bluetooth

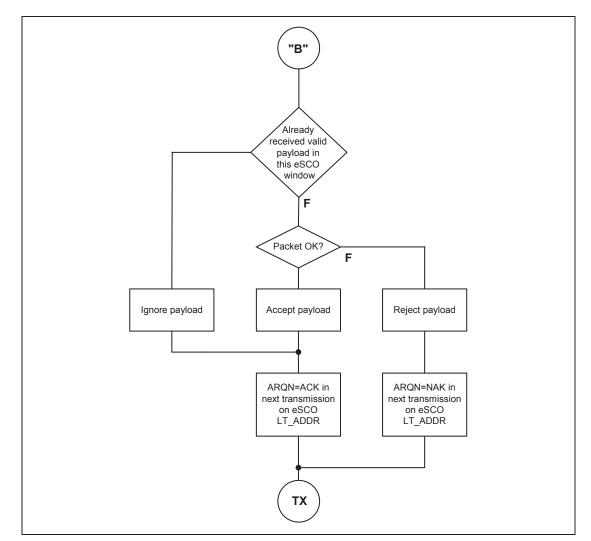


Figure 7.14: Stage 2 (eSCO) of the receive protocol for determining the ARQN bit.

7.6.2 Retransmit filtering

The data payload shall be transmitted until a positive acknowledgment is received or a timeout is exceeded. A retransmission shall be carried out either because the packet transmission itself failed, or because the acknowledgment transmitted in the return packet failed (note that the latter has a lower failure probability since the header is more heavily coded). In the latter case, the destination keeps receiving the same payload over and over again. In order to filter out the retransmissions in the destination, the SEQN bit is present in the header. Normally, this bit is alternated for every new CRC data payload transmission. In case of a retransmission, this bit shall not be changed so the destination can compare the SEQN bit with the previous SEQN value. If different, a new data payload has arrived; otherwise it is the same data payload and may be ignored. Only new data payloads shall be transferred to the Baseband Resource Manager. Note that CRC data payloads can be carried only by **DM**, **DH**, **DV** or **EV** packets.

😵 Bluetooth

7.6.2.1 Initialization of SEQN at start of new connection

The SEQN bit of the first CRC data packet at the start of a connection (as a result of page, page scan, role switch or unpark) on both the master and the slave sides shall be set to 1. The subsequent packets shall use the rules in the following sections.

7.6.2.2 ACL and SCO retransmit filtering

The SEQN bit shall only be affected by the CRC data packets as shown in Figure 7.15. It shall be inverted every time a new CRC data packet is sent. The CRC data packet shall be retransmitted with the same SEQN number until an ACK is received or the packet is flushed. When an ACK is received, a new payload may be sent and on that transmission the SEQN bit shall be inverted. If a device decides to flush (see Section 7.6.3 on page 150), and it has not received an acknowledgement for the current packet, it shall replace the current packet with an ACL-U continuation packet with the same sequence number as the current packet and length zero. If it replaces the current packet in this way it shall not move on to transmit the next packet until it has received an ack.

If the slave receives a packet other than DH, DM, DV or EV with the SEQN bit inverted from that in the last header succesfully received on the same LT_ADDR, it shall set the ARQN bit to NAK until a DH, DM, DV or EV packet is successfully received.

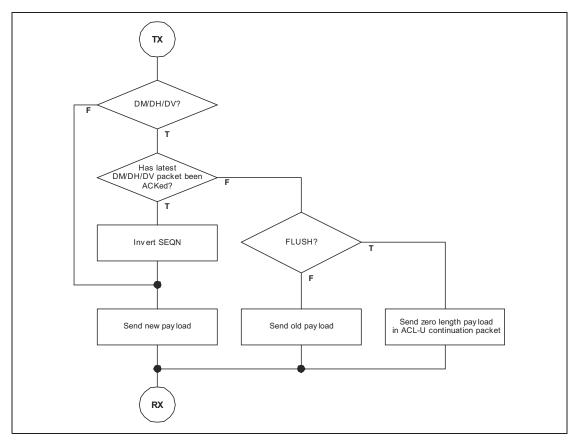


Figure 7.15: Transmit filtering for packets with CRC.

7.6.2.3 eSCO retransmit filtering

In eSCO, the SEQN bit shall be toggled every eSCO window. The value shall be constant for the duration of the eSCO window. The initial value of SEQN shall be zero.

For a given eSCO window the SEQN value shall be constant.

7.6.2.4 FHS retransmit filtering

The SEQN bit in the FHS packet is not meaningful. This bit may be set to any value. Contents of the SEQN bit in the FHS packet shall not be checked.

7.6.2.5 Packets without CRC retransmit filtering

During transmission of packets without a CRC the SEQN bit shall remain the same as it was in the previous packet.

😵 Bluetooth°

7.6.3 Flushing payloads

In ACL, the ARQ scheme can cause variable delay in the traffic flow since retransmissions are inserted to assure error-free data transfer. For certain communication links, only a limited amount of delay is allowed: retransmissions are allowed up to a certain limit at which the current payload shall be ignored. This data transfer is indicated as **isochronous traffic**. This means that the retransmit process must be overruled in order to continue with the next data payload. Aborting the retransmit scheme is accomplished by *flushing* the old data and forcing the link controller to take the next data instead.

Flushing results in loss of remaining portions of an L2CAP message. Therefore, the packet following the flush shall have a start packet indication of LLID = 10 in the payload header for the next L2CAP message. This informs the destination of the flush. (see Section 6.6 on page 128). Flushing will not necessarily result in a change in the SEQN bit value, see the previous section.

The Flush Timeout defines a maximum period after which all segments of the ACL-U packet are flushed from the Controller buffer. The Flush Timeout shall start when the First segment of the ACL-U packet is stored in the Controller buffer. After the Flush timeout has expired the Link Controller may continue transmissions according to the procedure described in Section 7.6.2.2 on page 148, however the Baseband Resource Manager shall not continue the transmission of the ACL-U packet to the Link Controller. If the Baseband Resource Manager has further segments of the packet queued for transmission to the Link Controller it shall delete the remaining segments of the ACL-U packet from the queue. In case the complete ACL-U packet was not stored in the Controller buffer yet, any Continuation segments, received for the ACL logical transport, shall be flushed, until a First segment is received. When the complete ACL-U packet has been flushed, the Link Manager shall continue transmission of the next ACL-U packet for the ACL logical transport. The default Flush Timeout shall be infinite, i.e. re-transmissions are carried out until physical link loss occurs. This is also referred to as a 'reliable channel'. All devices shall support the default Flush Timeout.

In eSCO, packets shall be automatically flushed at the end of the eSCO window.

7.6.4 Multi-slave considerations

In a piconet with multiple logical transports, the master shall carry out the ARQ protocol independently on each logical transport.

7.6.5 Broadcast packets

Broadcast packets are packets transmitted by the master to all the slaves simultaneously. (see paragraph 8.6.4) If multiple hop sequences are being used each transmission may only be received by some of the slaves. In this case the master shall repeat the transmission on each hop sequence. A broad-

😵 Bluetooth°

cast packet shall be indicated by the all-zero LT_ADDR (note; the FHS packet is the only packet which may have an all-zero LT_ADDR but is not a broadcast packet). Broadcast packets shall not be acknowledged (at least not at the LC level).

Since broadcast messages are not acknowledged, each broadcast packet is transmitted at least a fixed number of times. A broadcast packet should be transmitted N_{BC} times before the next broadcast packet of the same broadcast message is transmitted, see Figure 7.16 on page 152. Optionally, a broadcast packet may be transmitted N_{BC} + 1 times. Note: N_{BC} =1 means that each broadcast packet should be sent only once, but optionally may be sent twice. However, time-critical broadcast information may abort the ongoing broadcast train. For instance, unpark messages sent at beacon instances may do this, see Section 8.9.5 on page 192.

If multiple hop sequences are being used then the master may transmit on the different hop sequences in any order, providing that transmission of a new broadcast packet shall not be started until all transmissions of any previous broadcast packet have completed on all hop sequences. The transmission of a single broadcast packet may be interleaved among the hop sequences to minimize the total time to broadcast a packet. The master has the option of transmitting only N_{BC} times on channels common to all hop sequences.

Broadcast packets with a CRC shall have their own sequence number. The SEQN of the first broadcast packet with a CRC shall be set to SEQN = 1 by the master and shall be inverted for each new broadcast packet with CRC thereafter. Broadcast packets without a CRC have no influence on the sequence number. The slave shall accept the SEQN of the first broadcast packet it receives in a connection and shall check for change in SEQN for subsequent broadcast packets. Since there is no acknowledgement of broadcast messages and there is no end packet indication, it is important to receive the start packets correctly. To ensure this, repetitions of the broadcast packets that are L2CAP start packets and LMP packets shall not be filtered out. These packets shall be indicated by LLID=1X in the payload header as explained in section 6.6 on page 128. Only repetitions of the L2CAP continuation packets shall be filtered out.

😵 Bluetooth[°]

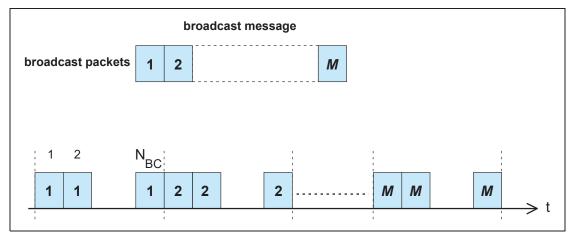


Figure 7.16: Broadcast repetition scheme

8 LINK CONTROLLER OPERATION

This section describes how a piconet is established and how devices can be added to and released from the piconet. Several states of operation of the devices are defined to support these functions. In addition, the operation of several piconets with one or more common members, the scatternet, is discussed.

8.1 OVERVIEW OF STATES

Figure 8.1 on page 153 shows a state diagram illustrating the different states used in the link controller. There are three major states: **STANDBY**, **CONNEC-TION**, and **PARK**; in addition, there are seven substates, **page**, **page scan**, **inquiry**, **inquiry scan**, **master response**, **slave response**, and **inquiry response**. The substates are interim states that are used to establish connections and enable device discovery. To move from one state or substate to another, either commands from the link manager are used, or internal signals in the link controller are used (such as the trigger signal from the correlator and the timeout signals).

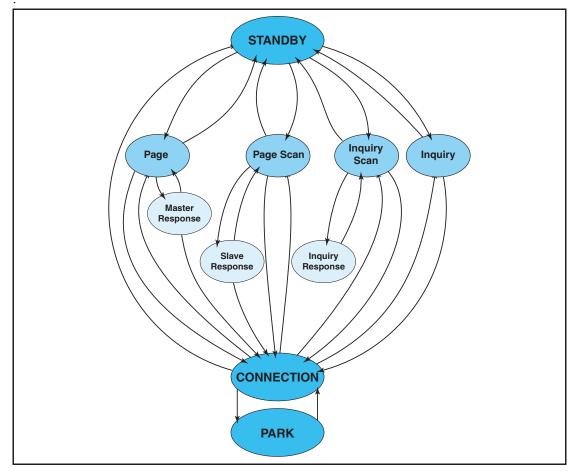


Figure 8.1: State diagram of link controller.

😵 Bluetooth

8.2 STANDBY STATE

The **STANDBY** state is the default state in the device. In this state, the device may be in a low-power mode. Only the native clock is running at the accuracy of the LPO (or better).

The controller may leave the **STANDBY** state to scan for page or inquiry messages, or to page or inquiry itself.

8.3 CONNECTION ESTABLISHMENT SUBSTATES

In order to establish new connections the paging procedure is used. Only the Bluetooth device address is required to set up a connection. Knowledge about the clock, obtained from the inquiry procedure (see Section 8.4 on page 163) or from a previous connection with this device, and the page scanning mode of the other device will accelerate the setup procedure. A device that establishes a connection carries out a page procedure and will automatically become the master of the connection.

8.3.1 Page scan substate

In the **page scan** substate, a device may be configured to use either the standard or interlaced scanning procedure. During a standard scan, a device listens for the duration of the scan window $T_{w_page_scan}$ (11.25ms default, see HCI [Part E] Section 7.3.20 on page 494), while the interlaced scan is performed as two back to back scans of $T_{w_page_scan}$. If the scan interval is not at least twice the scan window, then interlaced scan shall not be used. During each scan window, the device shall listen at a single hop frequency, its correlator matched to its device access code (DAC). The scan window shall be long enough to completely scan 16 page frequencies.

When a device enters the **page scan** substate, it shall select the scan frequency according to the page hopping sequence determined by the device's Bluetooth device address, see Section 2.6.4.1 on page 91. The phase in the sequence shall be determined by $CLKN_{16-12}$ of the device's native clock; that is, every 1.28s a different frequency is selected.

In the case of a standard scan, if the correlator exceeds the trigger threshold during the **page scan**, the device shall enter the **slave response** substate described in Section 8.3.3.1 on page 160. The scanning device may also use interlaced scan. In this case, if the correlator does not exceed the trigger threshold during the first scan it shall scan a second time using the phase in the sequence determined by [CLKN₁₆₋₁₂ + 16] mod 32. If on this second scan the correlator exceeds the trigger threshold the device shall enter the **slave response** substate using [CLKN₁₆₋₁₂ + 16] mod 32 as the frozen CLKN* in the calculation for Xprs⁽⁷⁹⁾, see Section 2.6.4.3 on page 92 for details. If the correlator does not exceed the trigger threshold during a scan in normal mode or

4 November 2004

😵 Bluetooth°

during the second scan in interlaced scan mode it shall return to either the **STANDBY** or **CONNECTION** state.

The page scan substate can be entered from the STANDBY state or the CON-NECTION state. In the STANDBY state, no connection has been established and the device can use all the capacity to carry out the **page scan**. Before entering the page scan substate from the **CONNECTION** state, the device should reserve as much capacity as possible for scanning. If desired, the device may place ACL connections in Hold, Park or Sniff, see Section 8.8 on page 185 and Section 8.9 on page 185. Synchronous connections should not be interrupted by the page scan, although eSCO retransmissions should be paused during the scan. The page scan may be interrupted by the reserved synchronous slots which should have higher priority than the page scan. SCO packets should be used requiring the least amount of capacity (HV3 packets). The scan window shall be increased to minimize the setup delay. If one SCO logical transport is present using HV3 packets and T_{SCO}=6 slots or one eSCO logical transport is present using EV3 packets and T_{ESCO}=6 slots, a total scan window Tw page scan of at least 36 slots (22.5ms) is recommended; if two SCO links are present using HV3 packets and T_{SCO} =6 slots or two eSCO links are present using EV3 packets and T_{ESCO}=6 slots, a total scan window of at least 54 slots (33.75ms) is recommended.

The scan interval $T_{page \ scan}$ is defined as the interval between the beginnings of two consecutive page scans. A distinction is made between the case where the scan interval is equal to the scan window $T_{w \ page \ scan}$ (continuous scan), the scan interval is maximal 1.28s, or the scan interval is maximal 2.56s. These three cases shall determine the behavior of the paging device; that is, whether the paging device shall use R0, R1 or R2, see also Section 8.3.2 on page 156. Table 8.1 illustrates the relationship between $T_{page \ scan}$ and modes R0, R1 and R2. Although scanning in the R0 mode is continuous, the scanning may be interrupted for example by reserved synchronous slots. The scan interval information is included in the SR field in the FHS packet.

SR mode	T _{page scan}
R0	\leq 1.28s and = T _{w page scan}
R1	≤ 1.28s
R2	\leq 2.56s
Reserved	-

Table 8.1: Relationship between scan interval, and paging modes R0, R1 and R2.

😵 Bluetooth°

8.3.2 Page substate

The **page** substate is used by the master (source) to activate and connect to a slave (destination) in the **page scan** substate. The master tries to coincide with the slave's scan activity by repeatedly transmitting the paging message consisting of the slave's device access code (DAC) in different hop channels. Since the Bluetooth clocks of the master and the slave are not synchronized, the master does not know exactly when the slave wakes up and on which hop frequency. Therefore, it transmits a train of identical page scan messages at different hop frequencies and listens in between the transmit intervals until it receives a response from the slave.

The page procedure in the master consists of a number of steps. First, the Host communicates the BD_ADDR of the slave to the Controller. This BD_ADDR shall be used by the master to determine the page hopping sequence, see Section 2.6.4.2 on page 92. The slave's BD_ADDR shall be used to determine the page hopping sequence, see Section 2.6.4.2 on page 92. For the phase in the sequence, the master shall use an estimate of the slave's clock. For example, this estimate can be derived from timing information that was exchanged during the last encounter with this particular device (which could have acted as a master at that time), or from an inquiry procedure. With this estimate CLKE of the slave's Bluetooth clock, the master can predict on which hop channel the slave starts page scanning.

The estimate of the Bluetooth clock in the slave can be completely wrong. Although the master and the slave use the same hopping sequence, they use different phases in the sequence and might never select the same frequency. To compensate for the clock drifts, the master shall send its page message during a short time interval on a number of wake-up frequencies. It shall transmit also on hop frequencies just before and after the current, predicted hop freguency. During each TX slot, the master shall sequentially transmit on two different hop frequencies. In the following RX slot, the receiver shall listen sequentially to two corresponding RX hops for ID packet. The RX hops shall be selected according to the page response hopping sequence. The page response hopping sequence is strictly related to the page hopping sequence: for each page hop there is a corresponding page response hop. The RX/TX timing in the **page** substate is described in Section 2.2.5 on page 72, see also Figure 2.7 on page 77. In the next TX slot, it shall transmit on two hop frequencies different from the former ones. Note: The hop rate is increased to 3200 hops/s.

With the increased hopping rate as described above, the transmitter can cover 16 different hop frequencies in 16 slots or 10 ms. The page hopping sequence is divided over two paging trains **A** and **B** of 16 frequencies. Train **A** includes the 16 hop frequencies surrounding the current, predicted hop frequency f(k), where k is determined by the clock estimate CLKE₁₆₋₁₂. The first train consists of hops

f(k-8), f(k-7),...,f(k),...,f(k+7)

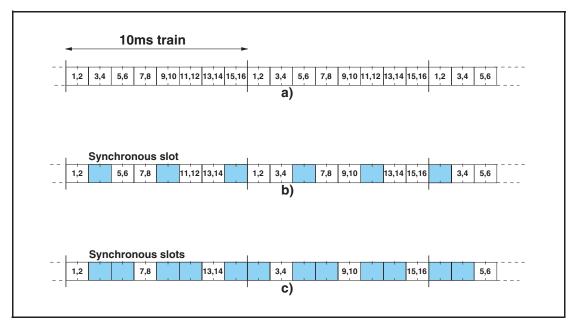
<table-of-contents> Bluetooth°

When the difference between the Bluetooth clocks of the master and the slave is between -8x1.28 s and +7x1.28 s, one of the frequencies used by the master will be the hop frequency the slave will listen to. Since the master does not know when the slave will enter the **page scan** substate, the master has to repeat this train **A** N_{page} times or until a response is obtained, whichever is shorter. If the slave scan interval corresponds to R1, the repetition number is at least 128; if the slave scan interval corresponds to R2 or if the master has not previously read the slave's SR mode, the repetition number is at least 256. If the master has not previously read the slave's SR mode it shall use Npage >= 256. Note that CLKE₁₆₋₁₂ changes every 1.28 s; therefore, every 1.28 s, the trains will include different frequencies of the page hopping set.

When the difference between the Bluetooth clocks of the master and the slave is less than -8x1.28 s or larger than +7x1.28 s, the remaining 16 hops are used to form the new 10 ms train **B**. The second train consists of hops

f(k-16), f(k-15),...,f(k-9),f(k+8)...,f(k+15)

Train **B** shall be repeated for N_{page} times. If no response is obtained, train **A** shall be tried again N_{page} times. Alternate use of train A and train B shall be continued until a response is received or the timeout *pageTO* is exceeded. If a response is returned by the slave, the master device enters the **master response** substate.


The page substate may be entered from the **STANDBY** state or the **CONNEC-TION** state. In the **STANDBY** state, no connection has been established and the device can use all the capacity to carry out the page. Before entering the **page** substate from the **CONNECTION** state, the device should free as much capacity as possible for scanning. To ensure this, it is recommended that the ACL connections are put on hold or park. However, the synchronous connections shall not be disturbed by the page. This means that the page will be interrupted by the reserved SCO and eSCO slots which have higher priority than the page. In order to obtain as much capacity for paging, it is recommended to use the SCO packets which use the least amount of capacity (**HV3** packets). If SCO or eSCO links are present, the repetition number N_{page} of a single train shall be increased, see Table 8.2. Here it has been assumed that the **HV3** packet are used with an interval T_{SCO}=6 slots or **EV3** packets are used with an interval T_{ESCO}=6 slots, which would correspond to a 64 kb/s synchronous link.

😵 Bluetooth°

SR mode	no synchronous link	one synchronous link (HV3)	two synchronous links (HV3)
R0	N _{page} ≥1	N _{page} ≥2	N _{page} ≥3
R1	N _{page} ≥128	N _{page} ≥256	N _{page} ≥384
R2	N _{page} ≥256	N _{page} ≥512	N _{page} ≥768

Table 8.2: Relationship between train repetition, and paging modes R0, R1 and R2 when synchronous links are present.

The construction of the page train shall be independent of the presence of synchronous links; that is, synchronous packets are sent on the reserved slots but shall not affect the hop frequencies used in the unreserved slots, see Figure 8.2 on page 158.

Figure 8.2: Conventional page (a), page while one synchronous link present (b), page while two synchronous links present (c).

8.3.3 Page response substates

When a page message is successfully received by the slave, there is a coarse FH synchronization between the master and the slave. Both the master and the slave enter a response substate to exchange vital information to continue the connection setup. It is important for the piconet connection that both devices shall use the same channel access code, use the same channel hopping sequence, and their clocks are synchronized. These parameters shall be derived from the master device. The device that initializes the connection (starts paging) is defined as the master device (which is thus only valid during the time the piconet exists). The channel access code and channel hopping sequence shall be derived from the Bluetooth device address (BD_ADDR) of the master. The timing shall be determined by the master clock. An offset shall be added to the slave's native clock to temporarily synchronize the slave clock to the master to the slave. The messaging between the master and the slave at startup is specified in this section.

The initial messaging between master and slave is shown in Table 8.3 on page 159 and in Figure 8.3 on page 160 and Figure 8.4 on page 160. In those two figures frequencies f (k), f(k+1), etc. are the frequencies of the page hopping sequence determined by the slave's BD_ADDR. The frequencies f'(k), f'(k+1), etc. are the corresponding page_response frequencies (slave-to-master). The frequencies g(m) belong to the basic channel hopping sequence.

Step	Message	Packet Type	Direction	Hopping Sequence	Access Code and Clock
1	Page	ID	Master to slave	Page	Slave
2	First slave page response	ID	Slave to master	Page response	Slave
3	Master page response	FHS	Master to slave	Page	Slave
4	Second slave page response	ID	Slave to master	Page response	Slave
5	1st packet master	POLL	Master to slave	Channel	Master
6	1st packet slave	Any type	Slave to master	Channel	Master

Table 8.3: Initial messaging during start-up.

In step 1 (see Table 8.3 on page 159), the master device is in **page** substate and the slave device in the **page scan** substate. Assume in this step that the page message sent by the master reaches the slave. On receiving the page message, the slave enters the **slave response** in step 2. The master waits for a reply from the slave and when this arrives in step 2, it will enter the **master response** in step 3. Note that during the initial message exchange, all parame-

😵 Bluetooth[®]

ters are derived from the slave's device address, and that only the page hopping and page response hopping sequences are used (are also derived from the slave's device address). Note that when the master and slave enter the response states, their clock input to the page and page response hop selection is frozen as is described in Section 2.6.4.3 on page 92.

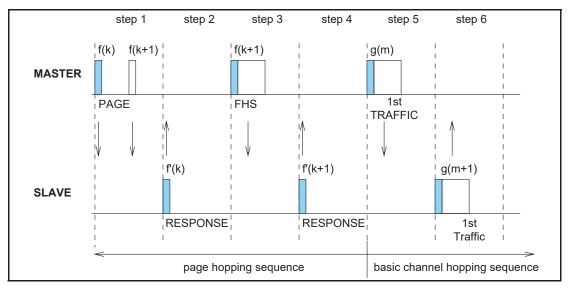


Figure 8.3: Messaging at initial connection when slave responds to first page message.

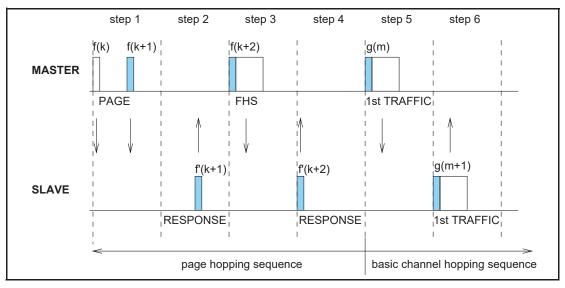


Figure 8.4: Messaging at initial connection when slave responds to second page message.

8.3.3.1 Slave response substate

After having received the page message in step 1, the slave device shall transmit a slave page response message (the slave's device access code) in step 2. This response message shall be the slave's device access code. The slave shall transmit this response 625 μ s after the beginning of the received page message and at the response hop frequency that corresponds to the hop fre-

😵 Bluetooth[°]

quency in which the page message was received. The slave transmission is therefore time aligned to the master transmission. During initial messaging, the slave shall still use the page response hopping sequence to return information to the master. The clock input CLKN₁₆₋₁₂ shall be frozen at the value it had at the time the page message was received.

After having sent the response message, the slave's receiver shall be activated 312.5 μ s after the start of the response message and shall await the arrival of an **FHS** packet. Note that an **FHS** packet can arrive 312.5 μ s after the arrival of the page message as shown in Figure 8.4 on page 160, and not after 625 μ s as is usually the case in the piconet physical channel RX/TX timing. More details about the timing can be found in Section 2.4.4 on page 78.

If the setup fails before the **CONNECTION** state has been reached, the following procedure shall be carried out. The slave shall listen as long as no **FHS** packet is received until *pagerespTO* is exceeded. Every 1.25 ms, however, it shall select the next master-to-slave hop frequency according to the page hop sequence. If nothing is received after *pagerespTO*, the slave shall return back to the **page scan** substate for one scan period. Length of the scan period depends on the synchronous reserved slots present. If no page message is received during this additional scan period, the slave shall resume scanning at its regular scan interval and return to the state it was in prior to the first page scan state.

If an **FHS** packet is received by the slave in the **slave response** substate, the slave shall return a slave page response message in step 4 to acknowledge reception of the **FHS** packet. This response shall use the page response hopping sequence. The transmission of the slave page response packet is based on the reception of the **FHS** packet. Then the slave shall change to the master's channel access code and clock as received from the **FHS** packet. Only the 26 MSBs of the master clock are transferred: the timing shall be such that CLK_1 and CLK_0 are both zero at the time the **FHS** packet was received as the master transmits in even slots only. The offset between the master's clock and the slave's clock shall be determined from the master's clock in the **FHS** packet and reported to the slave's Baseband Resource Manager.

Finally, the slave enters the **CONNECTION** state in step 5. From then on, the slave shall use the master's clock and the master's BD_ADDR to determine the basic channel hopping sequence and the channel access code. The slave shall use the LT_ADDR in the **FHS** payload as the primary LT_ADDR in the **CON-NECTION** state. The connection mode shall start with a POLL packet transmitted by the master. The slave may respond with any type of packet. If the POLL packet is not received by the slave, or the response packet is not received by the master, within *newconnectionTO* number of slots after FHS packet acknowledgement, the master and the slave shall return to **page** and **page scan** substates, respectively. See Section 8.5 on page 167

😵 Bluetooth

8.3.3.2 Master response substate

When the master has received a slave page response message in step 2, it shall enter the **master response** routine. It shall freeze the current clock input to the page hop selection scheme. The master shall then transmit an FHS packet in step 3 containing the master's real-time Bluetooth clock, the master's BD ADDR, the BCH parity bits, and the class of device. The FHS packet contains all information to construct the channel access code without requiring a mathematical derivation from the master's Bluetooth device address. The LT ADDR field in the packet header of FHS packets in the master response substate shall be set to all-zeros. The FHS packet shall be transmitted at the beginning of the master-to-slave slot following the slot in which the slave responded. The FHS packet shall carry the all-zero LT ADDR. The TX timing of the **FHS** is not based on the reception of the response packet from the slave. The **FHS** packet may therefore be sent 312.5 µs after the reception of the response packet like shown in Figure 8.4 on page 160 and not 625 µs after the received packet as is usual in the piconet physical channel RX/TX timing, see also Section 2.4.4 on page 78.

After the master has sent its **FHS** packet, it shall wait for a second slave page response message in step 4 acknowledging the reception of the **FHS** packet. This response shall be the slave's device access code. If no response is received, the master shall retransmit the **FHS** packet with an updated clock and still using the slave's parameters. It shall retransmit the FHS packet with the clock updated each time until a second slave page response message is received, or the timeout of *pagerespTO* is exceeded. In the latter case, the master shall return to the **page** substate and send an error message to the Baseband Resource Manager. During the retransmissions of the **FHS** packet, the master shall use the page hopping sequence.

If the slave's response is received, the master shall change to using the master parameters, so it shall use the channel access code and the master clock. The lower clock bits CLK₀ and CLK₁ shall be reset to zero at the start of the FHS packet transmission and are not included in the FHS packet. Finally, the master enters the CONNECTION state in step 5. The master BD ADDR shall be used to change to a new hopping sequence, the basic channel hopping sequence. The basic channel hopping sequence uses all 79 hop channels in a pseudorandom fashion, see also Section 2.6.4.7 on page 94. The master shall now send its first traffic packet in a hop determined with the new (master) parameters. This first packet shall be a POLL packet. See Section 8.5 on page 167. This packet shall be sent within newconnectionTO number of slots after reception of the FHS packet acknowledgement. The slave may respond with any type of packet. If the POLL packet is not received by the slave or the POLL packet response is not received by the master within newconnectionTO number of slots, the master and the slave shall return to page and page scan substates, respectively.

8.4 DEVICE DISCOVERY SUBSTATES

In order to discover other devices a device shall enter **inquiry** substate. In this substate, it shall repeatedly transmit the inquiry message (ID packet, see Section 6.5.1.1 on page 119) at different hop frequencies. The **inquiry** hop sequence is derived from the LAP of the GIAC. Thus, even when DIACs are used, the applied hopping sequence is generated from the GIAC LAP. A device that allows itself to be discovered, shall regularly enter the **inquiry scan** substate to respond to inquiry messages. The following sections describe the message exchange and contention resolution during inquiry response. The inquiry message.

During the **inquiry** substate, the discovering device collects the Bluetooth device addresses and clocks of all devices that respond to the inquiry message. It can then, if desired, make a connection to any one of them by means of the previously described page procedure.

The inquiry message broadcast by the source does not contain any information about the source. However, it may indicate which class of devices should respond. There is one general inquiry access code (GIAC) to inquire for any device, and a number of dedicated inquiry access codes (DIAC) that only inquire for a certain type of device. The inquiry access codes are derived from reserved Bluetooth device addresses and are further described in Section 6.3.1 on page 111.

😵 Bluetooth°

8.4.1 Inquiry scan substate

The **inquiry scan** substate is very similar to the **page scan** substate. However, instead of scanning for the device's device access code, the receiver shall scan for the inquiry access code long enough to completely scan for 16 inquiry frequencies. Two types of scans are defined: standard and interlaced. In the case of a standard scan the length of this scan period is denoted $T_{w_inquiry_scan}$ (11.25ms default, see HCI [Part E] Section 7.3.22 on page 496). The standard scan is performed at a single hop frequency as defined by Xir₄₋₀ (see Section 2.6.4.6 on page 94). The interlaced scan is performed as two back to back scans of $T_{w_inquiry_scan}$ where the first scan is on the normal hop frequency and the second scan is defined by [Xir₄₋₀ + 16] mod 32. If the scan interval is not at least twice the scan window then interlaced scan shall not be used. The inquiry procedure uses 32 dedicated inquiry hop frequencies according to the inquiry hopping sequence. These frequencies are determined by the general inquiry address. The phase is determined by the native clock of the device carrying out the **inquiry scan**; the phase changes every 1.28s.

Instead of, or in addition to, the general inquiry access code, the device may scan for one or more dedicated inquiry access codes. However, the scanning shall follow the inquiry scan hopping sequence determined by the general inquiry address. If an inquiry message is received during an inquiry wake-up period, the device shall enter the **inquiry response** substate.

The inquiry scan substate can be entered from the STANDBY state or the **CONNECTION** state. In the **STANDBY** state, no connection has been established and the device can use all the capacity to carry out the **inquiry scan**. Before entering the **inguiry scan** substate from the **CONNECTION** state, the device should reserve as much capacity as possible for scanning. If desired, the device may place ACL logical transports in Sniff, Hold, or Park. Synchronous logical transports are preferably not interrupted by the **inguiry scan**, although eSCO retransmissions should be paused during the scan. In this case, the **inquiry scan** may be interrupted by the reserved synchronous slots. SCO packets should be used requiring the least amount of capacity (HV3 packets). The scan window, Tw inquiry scan, shall be increased to increase the probability to respond to an inquiry message. If one SCO logical transport is present using HV3 packets and T_{SCO}=6 slots or one eSCO logical transport is present using EV3 packets and T_{ESCO}=6 slots, a total scan window of at least 36 slots (22.5ms) is recommended; if two SCO links are present using HV3 packets and T_{SCO}=6 slots or two eSCO links are present using EV3 packets and T_{ESCO}=6 slots, a total scan window of at least 54 slots (33.75ms) is recommended.

The scan interval $T_{inquiry scan}$ is defined as the interval between two consecutive inquiry scans. The **inquiry scan** interval shall be less than or equal to 2.56 s.

8.4.2 Inquiry substate

The **inquiry** substate is used to discover new devices. This substate is very similar to the **page** substate; the TX/RX timing shall be the same as in paging, see Section 2.4.4 on page 78 and Figure 2.7 on page 77. The TX and RX frequencies shall follow the inquiry hopping sequence and the inquiry response hopping sequence, and are determined by the general inquiry access code and the native clock of the discovering device. In between inquiry transmissions, the receiver shall scan for inquiry response messages. When a response is received, the entire packet (an FHS packet) is read, after which the device shall continue with inquiry transmissions. The device in an inquiry substate shall not acknowledge the inquiry response messages. If enabled by the Host (see HCI [Part E] Section 7.3.54 on page 533), the RSSI value of the inquiry response message shall be measured. It shall keep probing at different hop channels and in between listening for response packets. As in the page substate, two 10 ms trains A and B are defined, splitting the 32 frequencies of the inquiry hopping sequence into two 16-hop parts. A single train shall be repeated for at least N_{inquiry}=256 times before a new train is used. In order to collect all responses in an error-free environment, at least three train switches must have taken place. As a result, the **inquiry** substate may have to last for 10.24 s unless the inquirer collects enough responses and aborts the inquiry substate earlier. If desired, the inquirer may also prolong the inquiry substate to increase the probability of receiving all responses in an error-prone environment. If an inquiry procedure is automatically initiated periodically (say a 10 s period every minute), then the interval between two inquiry instances shall be determined randomly. This is done to avoid two devices synchronizing their inquiry procedures.

The **inquiry** substate is continued until stopped by the Baseband Resource Manager (when it decides that it has sufficient number of responses), when a timeout has been reached (*inquiryTO*), or by a command from the host to cancel the inquiry procedure.

The **inquiry** substate can be entered from the **STANDBY** state or the **CON-NECTION** state. In the **STANDBY** state, no connection has been established and the device can use all the capacity to carry out the inquiry. Before entering the **inquiry** substate from the **CONNECTION** state, the device should free as much capacity as possible for scanning. To ensure this, it is recommended that the ACL logical transports are placed in Sniff, Hold, or Park. However, the reserved slots of synchronous logical transports shall not be disturbed by the inquiry. This means that the inquiry will be interrupted by the reserved SCO and eSCO slots which have higher priority than the inquiry. In order to obtain as much capacity as possible for inquiry, it is recommended to use the SCO packets which use the least amount of capacity (**HV3** packets). If SCO or eSCO links are present, the repetition number N_{inquiry} shall be increased, see Table **8.4** on page 166.

Here it has been assumed that HV3 packets are used with an interval T_{SCO} =6

😵 Bluetooth

slots or **EV3** packets are used with an interval of T_{ESCO} =6 slots, which would correspond to a 64 kb/s synchronous link.

	No synchronous	One synchronous link	Two synchronous links
	links	(HV3)	(HV3)
N _{inquiry}	≥ 256	≥ 512	≥ 768

 Table 8.4: Increase of train repetition when synchronous links are present.

8.4.3 Inquiry response substate

The slave response substate for inquiries differs completely from the slave response substate applied for pages. When the inquiry message is received in the **inquiry scan** substate, the recipient shall return an inquiry response (FHS) packet containing the recipient's device address (BD_ADDR) and other parameters.

The following protocol in the slave's **inquiry response** shall be used. On the first inquiry message received in this substate the slave shall enter the inquiry response substate and shall return an **FHS** response packet to the master 625us after the inquiry message was received. A contention problem may arise when several devices are in close proximity to the inquiring device and all respond to an inquiry message at the same time. However, because every device has a free running clock it is highly unlikely that they all use the same phase of the inquiry hopping sequence. In order to avoid repeated collisions between devices that wake up in the same inquiry hop channel simultaneously, a device shall back-off for a random period of time. Thus, if the device receives an inquiry message and returns an FHS packet, it shall generate a random number, RAND, between 0 and MAX RAND. For scanning intervals \geq 1.28s MAX RAND shall be 1023, however, for scanning intervals < 1.28s MAX RAND may be as small as 127. A profile that uses a special DIAC may choose to use a smaller MAX RAND than 1023 even when the scanning interval is \geq 1.28s. The slave shall return to the **CONNEC**-**TION** or **STANDBY** state for the duration of at least RAND time slots. Before returning to the **CONNECTION** and **STANDBY** state, the device may go through the page scan substate. After at least RAND slots, the device shall add an offset of 1 to the phase in the inquiry hop sequence (the phase has a 1.28 s resolution) and return to the inquiry scan substate again. If the slave is triggered again, it shall repeat the procedure using a new RAND. The offset to the clock accumulates each time an **FHS** packet is returned. During a probing window, a slave may respond multiple times, but on different frequencies and at different times. Reserved synchronous slots should have priority over response packets; that is, if a response packet overlaps with a reserved synchronous slot, it shall not be sent but the next inquiry message is awaited.

The messaging during the inquiry routines is summarized in Table 8.5 on page 167. In step 1, the master transmits an inquiry message using the inquiry access code and its own clock. The slave responds with the **FHS** packet containing the slave's Bluetooth device address, native clock and other slave information. This **FHS** packet is returned at times that tend to be random. The **FHS**

packet is not acknowledged in the inquiry routine, but it is retransmitted at other times and frequencies as long as the master is probing with inquiry messages.

Step	Message	Packet Type	Direction	Hopping Sequence	Access Code and Clock
1	Inquiry	ID	master to slave	inquiry	inquiry
2	Inquiry response	FHS	slave to master	inquiry response	inquiry

Table 8.5: Messaging during inquiry routines.

8.5 CONNECTION STATE

In the **CONNECTION** state, the connection has been established and packets can be sent back and forth. In both devices, the channel (master) access code, the master's Bluetooth clock, and the AFH_channel_map are used. **CONNEC-TION** state uses the *basic* or *adapted channel hopping sequence*.

The **CONNECTION** state starts with a POLL packet sent by the master to verify the switch to the master's timing and channel frequency hopping. The slave may respond with any type of packet. If the slave does not receive the POLL packet or the master does not receive the response packet for *newconnectionTO* number of slots, both devices shall return to **page/page scan** substates.

The first information packets in the **CONNECTION** state contain control messages that characterize the link and give more details regarding the devices. These messages are exchanged between the link managers of the devices. For example, they may define the SCO logical transport and the sniff parameters. Then the transfer of user information can start by alternately transmitting and receiving packets.

The **CONNECTION** state is left through a **detach** or **reset** command. The **detach** command is used if the link has been disconnected in the normal way; all configuration data in the link controller shall remain valid. The **reset** command is a soft reset of the link controller. The functionality of the soft reset is described in [Part E] Section 7.3.2 on page 469.

In the **CONNECTION** state, if a device is not going to be nominally present on the channel at all times it may describe its unavailability by using sniff mode or hold mode (see Figure 8.5 on page 168).

😵 Bluetooth°

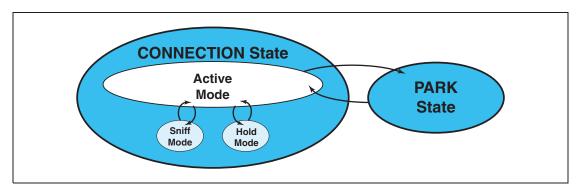


Figure 8.5: Connection state.

8.6 ACTIVE MODE

In the active mode, both master and slave actively participate on the channel. Up to seven slaves may be in the active mode at any given time. The master schedules the transmission based on traffic demands to and from the different slaves. In addition, it supports regular transmissions to keep slaves synchronized to the channel. Slaves in the active mode listen in the master-to-slave slots for packets. These devices are known as active slaves. If an active slave is not addressed, it may sleep until the next new master transmission. Slaves can derive the number of slots the master has reserved for transmission from TYPE field in the packet header; during this time, the non-addressed slaves do not have to listen on the master-to-slave slots. When a device is participating in multiple piconets it should listen in the master-to-slave slot for the current piconet. It is recommended that a device not be away from each piconet in which it is participating for more than T_{poll} slots. A periodic master transmission is required to keep the slaves synchronized to the channel. Since the slaves only need the channel access code to synchronize, any packet type can be used for this purpose.

Only the slave that is addressed by one of its LT_ADDRs (primary or secondary) may return a packet in the next slave-to-master slot. If no valid packet header is received, the slave may only respond in its reserved SCO or eSCO slave-to-master slot. In the case of a broadcast message, no slave shall return a packet (an exception is the access window for access requests in the **PARK** state, see Section 8.9 on page 185).

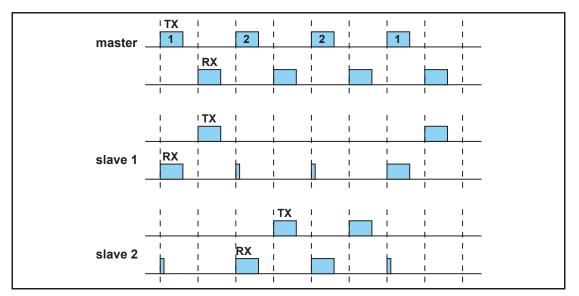


Figure 8.6: RX/TX timing in multi-slave configuration

For ACL logical transports the mode selection may be left to real time packet type selections. The packet type table (ptt) in section 6.5 allows the selection of Basic Rate or Enhanced Data Rate for each of the packet type codes, however; the DM1 packet is available in all packet type tables. ACL traffic over this given physical or logical link shall utilize the packet types in the given column of Packets defined for synchronous and asynchronous logical transport types.

8.6.1 Polling in the active mode

The master always has full control over the piconet. Due to the TDD scheme, slaves can only communicate with the master and not other slaves. In order to avoid collisions on the ACL logical transport, a slave is only allowed to transmit in the slave-to-master slot when addressed by the LT_ADDR in the packet header in the preceding master-to-slave slot. If the LT_ADDR in the preceding slot does not match, or a valid packet header was not received, the slave shall not transmit.

The master normally attempts to poll a slave's ACL logical transport no less often than once every T_{poll} slots. T_{poll} is set by the Link Manager (see [Part C] Section 4.1.8 on page 244).

The slave's ACL logical transport may be polled with any packet type except for FHS and ID. For example, polling during SCO may use HV packets, since the slave may respond to an HV packet with a DM1 packet (see Section 8.6.2 on page 169).

8.6.2 SCO

The SCO logical transport shall be established by the master sending an SCO setup message via the LM protocol. This message contains timing parameters

😵 Bluetooth®

including the SCO interval T_{SCO} and the offset D_{SCO} to specify the reserved slots.

In order to prevent clock wrap-around problems, an initialization flag in the LMP setup message indicates whether initialization procedure 1 or 2 is being used. The slave shall apply the initialization method as indicated by the initialization flag. The master shall use initialization 1 when the MSB of the current master clock (CLK_{27}) is 0; it shall use initialization 2 when the MSB of the current master clock (CLK_{27}) is 1. The master-to-slave SCO slots reserved by the master and the slave shall be initialized on the slots for which the clock satisfies the applicable equation:

$$CLK_{27-1} \mod T_{SCO} = D_{SCO}$$
 for initialization 1
(\overline{CLK}_{27} , CLK_{26-1}) mod $T_{SCO} = D_{SCO}$ for initialization 2

The slave-to-master SCO slots shall directly follow the reserved master-toslave SCO slots. After initialization, the clock value CLK(k+1) for the next master-to-slave SCO slot shall be derived by adding the fixed interval T_{SCO} to the clock value of the current master-to-slave SCO slot:

 $CLK(k+1) = CLK(k) + T_{SCO}$

The master will send SCO packets to the slave at regular intervals (the SCO interval T_{SCO} counted in slots) in the reserved master-to-slave slots. An HV1 packet can carry 1.25ms of speech at a 64 kb/s rate. An HV1 packet shall therefore be sent every two time slots (T_{SCO} =2). An HV2 packet can carry 2.5ms of speech at a 64 kb/s rate. An HV2 packet shall therefore be sent every four time slots (T_{SCO} =4). An HV3 packet can carries 3.75ms of speech at a 64 kb/s rate. An HV3 packet shall therefore be sent every six time slots (T_{SCO} =6).

The slave is allowed to transmit in the slot reserved for its SCO logical transport unless the (valid) LT_ADDR in the preceding slot indicates a different slave. If no valid LT_ADDR can be derived in the preceding slot, the slave may still transmit in the reserved SCO slot.

Since the DM1 packet is recognized on the SCO logical transport, it may be sent during the SCO reserved slots if a valid packet header with the primary LT_ADDR is received in the preceding slot. DM1 packets sent during SCO reserved slots shall only be used to send ACL-C data.

The slave shall not transmit anything other than an HV packet in a reserved SCO slot unless it decodes its own slave address in the packet header of the packet in the preceding master-to-slave transmission slot.

8.6.3 eSCO

The eSCO logical transport is established by the master sending an eSCO setup message via the LM protocol. This message contains timing parameters including the eSCO interval T_{ESCO} and the offset D_{ESCO} to specify the reserved slots.

To enter eSCO, the master or slave shall send an eSCO setup command via the LM protocol. This message shall contain the eSCO interval T_{ESCO} and an offset D_{ESCO} . In order to prevent clock wrap-around problems, an initialization flag in the LMP setup message indicates whether initialization procedure 1 or 2 shall be used. The initiating device shall use initialization 1 when the MSB of the current master clock (CLK₂₇) is 0; it shall use initialization 2 when the MSB of the current master clock (CLK₂₇) is 1. The responding device shall apply the initialization method as indicated by the initialization flag. The master-to-slave eSCO slots reserved by the master and the slave shall be initialized on the slots for which the clock satisfies the applicable equation:

$CLK_{27-1} \mod T_{ESCO} = D_{ESCO}$	for initialization 1
$(\overline{\text{CLK}}_{27}, \text{CLK}_{26-1}) \mod T_{\text{ESCO}} = D_{\text{ESCO}}$	for initialization 2

The slave-to-master eSCO slots shall directly follow the reserved master-toslave eSCO slots. After initialization, the clock value CLK(k+1) for the next master-to-slave eSCO slot shall be found by adding the fixed interval T_{ESCO} to the clock value of the current master-to-slave eSCO slot:

 $CLK(k+1) = CLK(k) + T_{ESCO}$

When an eSCO logical transport is established, the master shall assign an additional LT_ADDR to the slave. This provides the eSCO logical transport with an ARQ scheme that is separate from that of the ACL logical transport. All traffic on a particular eSCO logical transport, and only that eSCO traffic, is carried on the eSCO LT_ADDR. The eSCO ARQ scheme uses the ARQN bit in the packet header, and operates similarly to the ARQ scheme on ACL links.

There are two different polling rules in eSCO. In the eSCO reserved slots, the polling rule is the same as to the SCO reserved slots. The master may send a packet in the master slot. The slave may transmit on the eSCO LT_ADDR in the following slot either if it received a packet on the eSCO LT_ADDR in the previous slot, or if it did not receive a valid packet header in the previous slot. When the master-to-slave packet type is a three-slot packet, the slave's transmit slot is the fourth slot of the eSCO reserved slots. A master shall transmit in an eSCO retransmission window on a given eSCO LT_ADDR only if it addressed that eSCO LT_ADDR in the immediately preceding eSCO reserved slots only if the slave did not received a valid packet header with a different LT_ADDR in the eSCO reserved slots. Inside retransmission windows, the

😵 Bluetooth°

same polling rule as for ACL traffic is used: the slave shall transmit on the eSCO channel only if it received a valid packet header and correct LT ADDR on the eSCO channel in the previous master-to-slave transmission slot. The master may transmit on any non-eSCO LT ADDR in any master-to-slave transmission slot inside the eSCO retransmission window. The master shall only transmit on an eSCO LT ADDR in the retransmission window if there are enough slots left for both the master and slave packets to complete in the retransmission window. The master may refrain from transmitting in any slot during the eSCO retransmission window. When there is no data to transmit from master to slave, either due to the traffic being unidirectional or due to the master-to-slave packet having been ACK'ed, the master shall use the POLL packet. When the master-to-slave packet has been ACK'ed, and the slave-tomaster packet has been correctly received, the master shall not address the slave on the eSCO LT ADDR until the next eSCO reserved slot, with the exception that the master may transmit a NULL packet with ARQN=ACK on the eSCO LT ADDR. When there is no data to transmit from slave to master, either due to the traffic being unidirectional or due to the slave-to-master packet having been ACK'ed, the slave shall use NULL packets. eSCO traffic should be given priority over ACL traffic in the retransmission window.

Figure 8.7 on page 172 shows the eSCO window when single slot packets are used.

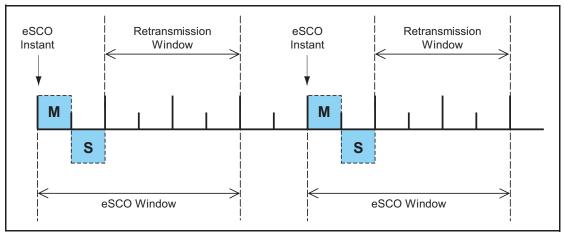


Figure 8.7: eSCO Window Details for Single-Slot Packets

When multi-slot packets are used in either direction of the eSCO logical transport, the first transmission continues into the following slots. The retransmission window in this case starts the slot after the end of the slave-to-master packet, i.e. two, four or six slots immediately following the eSCO instant are reserved and should not be used for other traffic. Figure 8.8 on page 173 shows the eSCO window when multi-slot packets are used in one direction and single-slot packets are used in the other direction.

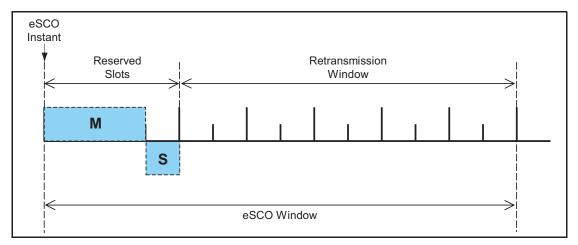


Figure 8.8: eSCO Window Details for Asymmetric Traffic

eSCO windows may overlap on the master, but shall not overlap on an individual slave.

In the reserved slots both master and slave shall only listen and transmit at their allocated slots at the first transmission time of each eSCO window. Intermittent lapses due to, for instance, time-critical signaling during connection establishment are allowed. Both master and slave may refrain from sending data and may use instead POLL and NULL packets respectively. When the master transmits a POLL packet instead of an EV4 or EV5 packet the slave shall transmit starting in the same slot as if the master transmitted an EV4 or EV5 packet. If the slave does not receive anything in the reserved master-to-slave transmission slot it shall transmit in the same slot as if the master had transmitted the negotiated packet type. For example, if the master had negotiated an EV5 packet the slave would transmit three slots later. [If the master does not receive a slave transmission in response to an eSCO packet it causes an implicit NAK of the packet in question. The listening requirements for the slave during the retransmission window are the same as for an active ACL logical transport.

8.6.4 Broadcast scheme

The master of the piconet can broadcast messages to all slaves on the ASB-U, PSB-C, and PSB-U logical transports. A broadcast packet shall have an LT_ADDR set to all zero. Each new broadcast message (which may be carried by a number of packets) shall start with the start of L2CAP message indication (LLID=10).

The Broadcast LT_ADDR shall use a ptt=0.

A broadcast packet shall never be acknowledged. In an error-prone environment, the master may carry out a number of retransmissions to increase the probability for error-free delivery, see also Section 7.6.5 on page 150.

😵 Bluetooth[°]

In order to support the **PARK** state (as described in Section 8.9 on page 185), a master transmission shall take place at fixed intervals. This master transmission will act as a beacon to which slaves can synchronize. If no traffic takes place at the beacon event, broadcast packets shall be sent. More information is given in Section 8.9 on page 185.

8.6.5 Role switch

There are several occasions when a role switch is used.

- a role switch is necessary when joining an existing piconet by paging, since by definition, the paging device is initially master of a "small" piconet only involving the pager (master) and the paged (slave) device.
- a role switch is necessary in order for a slave in an existing piconet to set up a new piconet with itself as master and the original piconet master as slave. If the original piconet had more than one slave, then this implies a double role for the original piconet master; it becomes a slave in the new piconet while still maintaining the original piconet as master.

Prior to the role switch, encryption if present, shall be stopped in the old piconet. A role switch shall not be performed if the physical link is in Sniff or Hold mode, in the **PARK** state, or has any synchronous logical transports.

For the master and slave involved in the role switch, the switch results in a reversal of their TX and RX timing: a TDD switch. Additionally, since the piconet parameters are derived from the Bluetooth device address and clock of the master, a role switch inherently involves a redefinition of the piconet as well: a piconet switch. The new piconet's parameters shall be derived from the former slave's device address and clock.

Assume device A is to become master; device B was the former master. Then there are two alternatives: either the slave initiates the role switch or the master initiates the role switch. These alternatives are described in Link Manager Protocol, [Part C] Section 4.4.2 on page 268. The baseband procedure is the same regardless of which alternative is used.

In step 1, the slave A and master B shall perform a TDD switch using the former hopping scheme (still using the Bluetooth device address and clock of device B), so there is no piconet switch yet. The slot offset information sent by slave A shall not be used yet but shall be used in step 3. Device A now becomes the master, device B the slave. The LT_ADDR formerly used by device A in its slave role, shall now be used by slave B.

At the moment of the TDD switch, both devices A and B shall start a timer with a time out of *newconnectionTO*. The timer shall be stopped in slave B as soon as it receives an FHS packet from master A on the TDD-switched channel. The timer shall be stopped in master A as soon as it receives an ID packet from slave B. If the *newconnectionTO* expires, the master and slave shall return to the old piconet timing and AFH state, taking their old roles of master and slave. The FHS packet shall be sent by master A using the "old" piconet parameters. The LT_ADDR in the FHS packet header shall be the former LT_ADDR used by device A. The LT_ADDR carried in the FHS payload shall be the new LT_ADDR intended for device B when operating on the new piconet. After the FHS acknowledgment, which is the ID packet and shall be sent by the slave on the old hopping sequence, both master A and slave B shall use the new channel parameters of the new piconet as indicated by the FHS with the sequence selection set to *basic channel hopping sequence*. If the new master has physi-

😵 Bluetooth°

cal links that are *AFH enabled*, following the piconet switch the new master is responsible for controlling the AFH operational mode of its new slave.

Since the old and new masters' clocks are synchronized, the clock information sent in the FHS payload shall indicate the new master's clock at the beginning of the FHS packet transmission. Furthermore, the 1.25 ms resolution of the clock information given in the FHS packet is not sufficient for aligning the slot boundaries of the two piconets. The slot-offset information in the LMP message previously sent by device A shall be used to provide more accurate timing information. The slot offset indicates the delay between the start of the master-to-slave slots of the old and new piconet channels. This timing information ranges from 0 to 1249 μ s with a resolution of 1 μ s. It shall be used together with the clock information in the FHS packet to accurately position the correlation window when switching to the new master's timing after acknowledgment of the FHS packet.

After reception of the FHS packet acknowledgment, the new master A shall switch to its own timing with the sequence selection set to the basic channel hopping sequence and shall send a POLL packet to verify the switch. Both the master and the slave shall start a new timer with a time out of newconnectionTO on FHS packet acknowledgment. The start of this timer shall be aligned with the beginning of the first master TX slot boundary of the new piconet, following the FHS packet acknowledgment. The slave shall stop the timer when the POLL packet is received; the master shall stop the timer when the POLL packet is acknowledged. The slave shall respond with any type of packet to acknowledge the POLL. Any pending AFH Instant shall be cancelled once the POLL packet has been received by the slave. If no response is received, the master shall re-send the POLL packet until *newconnectionTO* is reached. If this timer expires, both the slave and the master shall return to the old piconet timing with the old master and slave roles. Expiry of the timer shall also restore the state associated with AFH (including any pending AFH Instant), Channel Quality Driven Data Rate (CQDDR, Link Manager Protocol [Part C] Section 4.1.7 on page 243) and power control (Link Manager Protocol [Part C] Section 4.1.3 on page 235). The procedure may then start again beginning at step 1. Aligning the timer with TX boundaries of the new piconet ensures that no device returns to the old piconet timing in the middle of a master RX slot.

After the role switch the ACL logical transport is reinitialized as if it were a new connection. For example, the SEQN of the first data packet containing a CRC on the new piconet channel shall be set according to the rules in section 7.6.2 on page 147.

A parked slave must be unparked before it can participate in a role switch.

8.6.6 Scatternet

Multiple piconets may cover the same area. Since each piconet has a different master, the piconets hop independently, each with their own hopping sequence and phase as determined by the respective master. In addition, the packets carried on the channels are preceded by different channel access codes as determined by the master device addresses. As more piconets are added, the probability of collisions increases; a graceful degradation of performance results as is common in frequency-hopping spread spectrum systems.

If multiple piconets cover the same area, a device can participate in two or more overlaying piconets by applying time multiplexing. To participate on the proper channel, it shall use the associated master device address and proper clock offset to obtain the correct phase. A device can act as a slave in several piconets, but only as a master in a single piconet: since two piconets with the same master are synchronized and use the same hopping sequence, they are one and the same piconet. A group of piconets in which connections exist between different piconets is called a *scatternet*.

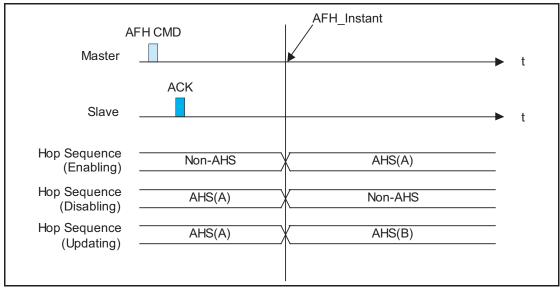
A master or slave can become a slave in another piconet by being paged by the master of this other piconet. On the other hand, a device participating in one piconet can page the master or slave of another piconet. Since the paging device always starts out as master, a master-slave role switch is required if a slave role is desired. This is described in the Section 8.6.5 on page 175.

8.6.6.1 Inter-piconet communications

Time multiplexing must be used to switch between piconets. Devices may achieve the time multiplexing necessary to implement scatternet by using sniff mode or by remaining in an active ACL connection. For an ACL connection in piconets where the device is a slave in the CONNECTION state, it may choose not to listen in every master slot. In this case it should be recognized that the quality of service on this link may degrade abruptly if the slave is not present enough to match up with the master polling that slave. Similarly, in piconets where the device is master it may choose not to transmit in every master slot. In this case it is important to honor $\mathsf{T}_{\mathsf{poll}}$ as much as possible. Devices in sniff mode may have sufficient time to visit another piconet in between sniff slots. When the device is a slave using sniff mode and there are not sufficient idle slots, the device may choose to not listen to all master transmission slots in the sniff attempts period or during the subsequent sniff timeout period. A master is not required to transmit during sniff slots and therefore has flexibility for scatternet. If SCO or eSCO links are established, other piconets shall only be visited in the non-reserved slots in between reserved slots. This is only possible if there is a single SCO logical transport using HV3 packets or eSCO links where at least four slots remain in between the reserved slots. Since the multiple piconets are not synchronized, guard time must be left to account for misalignment. This means that only 2 slots can effectively be used to visit another piconet in between the HV3 packets.

😵 Bluetooth®

Since the clocks of two masters of different piconets are not synchronized, a slave device participating in two piconets shall maintain two offsets that, added to its own native clock, create the two master clocks. Since the two master clocks drift independently, the slave must regularly update the offsets in order to keep synchronization to both masters.


8.6.7 Hop sequence switching

Hop sequence adaptation is controlled by the master and can be set to either *enabled* or *disabled*. Once enabled, hop sequence adaptation shall apply to all logical transports on a physical link. Once enabled, the master may periodically update the set of *used* and *unused* channels as well as disable hop sequence adaptation on a physical link. When a master has multiple physical links the state of each link is independent of all other physical links.

When hop sequence adaptation is enabled, the *sequence selection* hop selection kernel input is set to *adapted channel hopping sequence* and the *AFH_channel_map* input is set to the appropriate set of *used* and *unused* channels. Additionally, the *same channel* mechanism shall be used. When hop sequence adaptation is enabled with all channels *used* this is known as AHS(79).

When hop sequence adaptation is disabled, the *sequence selection* input of the hop selection kernel is set to *basic channel hopping sequence* (the *AFH_channel_map* input is unused in this case) and the *same channel* mechanism shall not be used.

The hop sequence adaptation state shall be changed when the master sends the LMP_set_AFH PDU and a baseband acknowledgement is received. When the baseband acknowledgement is received prior to the hop sequence switch instant, *AFH_Instant*, (See Link Manager Protocol [Part C] Section 4.1.4 on page 237) the hop sequence proceeds as shown in Figure 8.9 on page 178.

4 November 2004

Figure 8.9: Successful hop sequence switching

<table-of-contents> Bluetooth°

When the baseband acknowledgement is not received prior to the *AFH_Instant* the master shall use a recovery hop sequence for the slave(s) that did not respond with an acknowledgement (this may be because the slave did not hear the master's transmission or the master did not hear the slave's transmission). When hop sequence adaptation is being enabled or disabled the recovery sequence shall be the *AFH_channel_map* specified in the LMP_set_AFH PDU. When the *AFH_channel_map* is being updated the master shall choose a recovery sequence that includes all of the RF channels marked as *used* in either the old or new *AFH_channel_map*, e.g. AHS(79). Once the baseband acknowledgement is received the master shall use the *AFH_channel_map* in the LMP_set_AFH PDU starting with the next transmission to the slave. See Figure 8.10 on page 179.

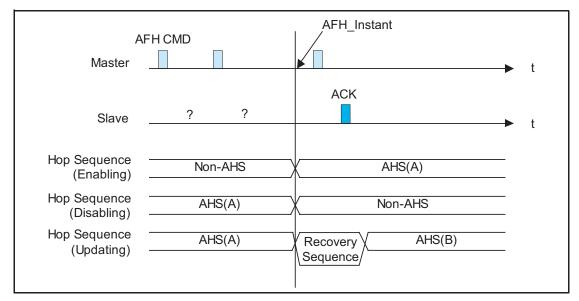


Figure 8.10: Recovery hop sequences

When the *AFH_Instant* occurs during a multi-slot packet transmitted by the master, the slave shall use the same hopping sequence parameters as the master used at the start of the multi-slot packet. An example of this is shown in Figure 8.11 on page 180. In this figure the *basic channel hopping sequence* is designated f. The first *adapted channel hopping sequence* is designated f'.

😵 Bluetooth[°]

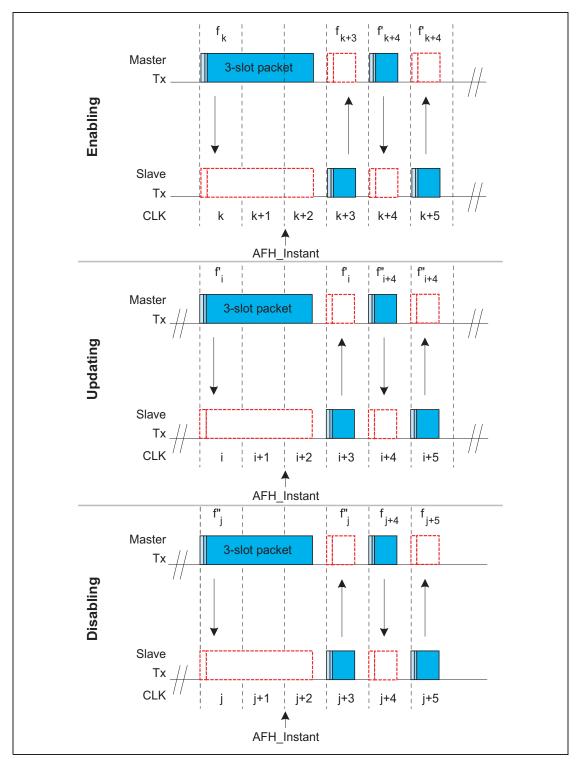


Figure 8.11: AFH_Instant changes during multi-slot packets transmitted by the master.

8.6.8 Channel classification and channel map selection

RF channels are classified as being *unknown, bad or good*. These classifications are determined individually by the master and slaves based on local information (e.g. active or passive channel assessment methods or from the Host via HCI). Information received from other devices via LMP (e.g. an *AFH_channel_map* from a master or a channel classification report from a slave) shall not be included in a device's channel classification.

The three possible channel classifications shall be as defined in Table 8.6 on page 181.

Classification	Definition		
unknown	A channel shall be classified as <i>unknown</i> if the channel assessment mea- surements are insufficient to reliably classify the channel, and the channel is not marked as <i>bad</i> in the most recent HCI <i>Set_AFH_Channel_Classification</i> .		
bad	A channel may be classified as <i>bad</i> if an ACL or synchronous throughput failure measure associated with it has exceeded a threshold (defined by the particular channel assessment algorithm employed).		
	A channel may also be classified as <i>bad</i> if an interference-level measure associated with it, determining the interference level that the link poses upon other systems in the vicinity, has exceeded a threshold (defined by the particular channel assessment algorithm employed).		
	A channel shall be classified as <i>bad</i> when it is marked as <i>bad</i> in the most recent HCI <i>Set_AFH_Channel_Classification</i> command.		
good	A channel shall be classified as <i>good</i> if it is not either <i>unknown</i> or <i>bad</i> .		

Table 8.6: Channel classification descriptions

A master with AFH enabled physical links shall determine an *AFH_channel_map* based on any combination of the following information:

- Channel classification from local measurements (e.g. active or passive channel assessment in the Controller), if supported and enabled. The Host may enable or disable local measurements using the HCI *Write_AFH_Channel_Classification_Mode* command, defined in the HCI Functional Specification [Part E] Section 7.3.58 on page 537 if HCI is present.
- Channel classification information from the Host using the HCI Set_AFH_channel_classification command, defined in the HCI Functional Specification [Part E] Section 7.3.58 on page 537 if HCI is present. Channels classified as bad in the most recent AFH_Host_Channel_Classification shall be marked as unused in the AFH_channel_map.
- Channel classification reports received from slaves in *LMP_channel_classification* PDUs, defined in the LMP Specification [Part C] Section 4.1.5 on page 240.

😵 Bluetooth°

The algorithm used by the master to combine these information sources and generate the *AFH_channel_map* is not defined in the specification and will be implementation specific. At no time shall the number of channels used be less than N_{min} , defined in Section 2.3.1 on page 75.

If a master that determines that all channels should be *used* it may keep AFH operation enabled using an *AFH_channel_map* of 79 *used* channels, i.e. AHS(79).

8.6.9 Power Management

Features are provided to allow low-power operation. These features are both at the microscopic level when handling the packets, and at the macroscopic level when using certain operation modes.

8.6.9.1 Packet handling

In order to minimize power consumption, packet handling is minimized both at TX and RX sides. At the TX side, power is minimized by only sending useful data. This means that if only link control information needs to be exchanged, **NULL** packets may be used. No transmission is required if there is no link control information to be sent, or if the transmission would only involve a NAK (NAK is implicit on no reply). If there is data to be sent, the payload length shall be adapted in order to send only the valid data bytes. At the RX side, packet processing takes place in different steps. If no valid access code is found in the search window, the transceiver may return to sleep. If an access code is found, the receiver device shall start to process the packet header. If the HEC fails, the device may return to sleep after the packet header. A valid header indicates if a payload will follow and how many slots are involved.

8.6.9.2 Slot occupancy

As was described in Section 6.5 on page 118, the packet type indicates how many slots a packet may occupy. A slave not addressed in the packet header may go to sleep for the remaining slots the packet occupies. This can be read from the TYPE code.

8.6.9.3 Recommendations for low-power operation

The most common and flexible methods for reducing power consumption are the use of sniff and park. Hold can also be used by repeated negotiation of hold periods.

8.6.9.4 Enhanced Data Rate

Enhanced Data Rate provides power saving because of the ability to send a given amount of data in either fewer packets or with the same (or similar) number of packets but with shorter payloads.

8.7 SNIFF MODE

In sniff mode, the duty cycle of the slave's activity in the piconet may be reduced. If a slave is in active mode on an ACL logical transport, it shall listen in every ACL slot to the master traffic, unless that link is being treated as a scatternet link or is absent due to hold mode. With sniff mode, the time slots when a slave is listening are reduced, so the master shall only transmit to a slave in specified time slots. The sniff anchor points are spaced regularly with an interval of T_{sniff} .

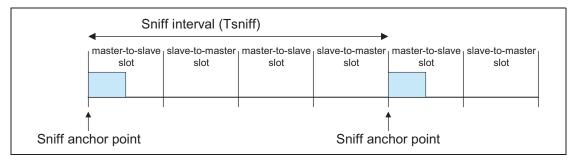


Figure 8.12: Sniff anchor points

The slave listens in master-to-slave transmission slots starting at the sniff anchor point. It shall use the following rules to determine whether to continue listening:

- If fewer than N_{sniff attempt} master-to-slave transmission slots have elapsed since the sniff anchor point then the slave shall continue listening.
- If the slave has received a packet with a matching LT_ADDR that contains ACL data (DM, DH, DV, or AUX1 packets) in the preceding N_{sniff timeout} master-to-slave transmission slots then it shall continue listening.
- If the slave has transmitted a packet containing ACL data (DM, DH, DV, or AUX1 packets) in the preceding N_{sniff timeout} slave-to-master transmission slots then it shall continue listening.
- If the slave has received any packet with a matching LT_ADDR in the preceding N_{sniff timeout} master-to-slave transmission slots then it may continue listening.
- A device may override the rules above and stop listening prior to N_{sniff timeout} or the remaining N_{sniff attempt} slots if it has activity in another piconet.

It is possible that activity from one sniff timeout may extend to the next sniff anchor point. Any activity from a previous sniff timeout shall not affect activity

😵 Bluetooth®

after the next sniff anchor point. So in the above rules, only the slots since the last sniff anchor point are considered.

Note that $N_{sniff attempt} = 1$ and $N_{sniff timeout} = 0$ cause the slave to listen only at the slot beginning at the sniff anchor point, irrespective of packets received from the master.

N_{sniff attempt} =0 shall not be used.

Sniff mode only applies to asynchronous logical transports and their associated LT_ADDR. sniff mode shall not apply to synchronous logical transports, therefore, both masters and slaves shall still respect the reserved slots and retransmission windows of synchronous links.

To enter sniff mode, the master or slave shall issue a sniff command via the LM protocol. This message includes the sniff interval T_{sniff} and an offset D_{sniff} . In addition, an initialization flag indicates whether initialization procedure 1 or 2 shall be used. The device shall use initialization 1 when the MSB of the current master clock (CLK₂₇) is 0; it shall use initialization 2 when the MSB of the current master clock (CLK₂₇) is 1. The slave shall apply the initialization method as indicated by the initialization flag irrespective of its clock bit value CLK₂₇. The sniff anchor point determined by the master and the slave shall be initialized on the slots for which the clock satisfies the applicable equation:

$CLK_{27-1} \mod T_{sniff} = D_{sniff}$	for initialization 1
$(\overline{\text{CLK}}_{27}, \text{CLK}_{26-1}) \mod T_{\text{sniff}} = D_{\text{sniff}}$	for initialization 2

this implies that D_{sniff} must be even

After initialization, the clock value CLK(k+1) for the next sniff anchor point shall be derived by adding the fixed interval T_{sniff} to the clock value of the current sniff anchor point:

 $CLK(k+1) = CLK(k) + T_{sniff}$

8.7.1 Sniff Transition Mode

Sniff transition mode is a special mode which is used during the transition between sniff and active mode. It is required because during this transition it is unclear which mode (Sniff or Active) the slave is in and it is necessary to ensure that the slave is polled correctly regardless of which mode it is in.

In sniff transition mode the master shall maintain the active mode poll interval in case the slave is in active mode. In addition the master shall poll the slave at least once in the sniff attempt transmit slots starting at each sniff instant: note that this transmission counts for the active mode polling as well. The master must use its high power accurate clock when in Sniff Transition Mode.

😵 Bluetooth°

The precise circumstances under which the master enters Sniff Transition Mode are defined in [Part C] Section 4.5.3.1 on page 279.

8.8 HOLD MODE

During the **CONNECTION** state, the ACL logical transport to a slave can be put in a **hold** mode. In **hold** mode the slave temporarily shall not support ACL packets on the channel. Any synchronous packet during reserved synchronous slots (from SCO and eSCO links) shall be supported. With the **hold** mode, capacity can be made free to do other things like scanning, paging, inquiring, or attending another piconet. The device in **hold** mode can also enter a lowpower sleep mode. During **hold** mode, the slave device keeps its logical transport address(es) (LT_ADDR).

Prior to entering hold mode, master and slave agree on the time duration the slave remains in hold mode. A timer shall be initialized with the *holdTO* value. When the timer is expired, the slave shall wake up, synchronize to the traffic on the channel and will wait for further master transmissions.

8.9 PARK STATE

When a slave does not need to participate on the piconet channel, but still needs to remain synchronized to the channel, it can enter **PARK** state. **PARK** state is a state with very little activity in the slave. In the **PARK** state, the slave shall give up its logical transport address LT_ADDR. Instead, it shall receive two new addresses to be used in the **PARK** state

- PM_ADDR: 8-bit Parked Member Address
- AR_ADDR: 8-bit Access Request Address

The PM_ADDR distinguishes a parked slave from the other parked slaves. This address may be used in the master-initiated unpark procedure. In addition to the PM_ADDR, a parked slave may also be unparked by its 48-bit BD_ADDR. The all-zero PM_ADDR is a reserved address: if a parked device has the all-zero PM_ADDR it can only be unparked by the BD_ADDR. In that case, the PM_ADDR has no meaning. The AR_ADDR shall be used by the slave in the slave-initiated unpark procedure. All messages sent to the parked slaves are carried by broadcast packets.

The parked slave wakes up at regular intervals to listen to the channel in order to re-synchronize and to check for broadcast messages. To support the synchronization and channel access of the parked slaves, the master supports a beacon train described in the next section. The beacon structure is communicated to the slave when it is parked. When the beacon structure changes, the parked slaves are updated through broadcast messages.

The master shall maintain separate non-overlapping park beacon structures for each hop sequence. The beacon structures shall not overlap either their beacon slots or access windows.

😵 Bluetooth°

In addition for using it for low power consumption, park is used to connect more than seven slaves to a single master. At any one time, only seven slaves can be in the **CONNECTION** state. However, by swapping active and parked slaves out respectively in the piconet, the number of slaves can be much larger (255 if the PM_ADDR is used, and an arbitrarily large number if the BD_ADDR is used).

8.9.1 Beacon train

To support parked slaves, the master establishes a beacon train when one or more slaves are parked. The beacon train consists of one beacon slot or a train of equidistant beacon slots which is transmitted periodically with a constant time interval. The beacon train is illustrated in Figure 8.13 on page 188. A train of N_B ($N_B \ge 1$) beacon slots is defined with an interval of T_B slots. The beacon slots in the train are separated by Δ_B . The start of the first beacon slot is referred to as the **beacon instant** and serves as the beacon timing reference. The beacon parameters N_B and T_B are chosen such that there are sufficient beacon slots for a parked slave to synchronize to during a certain time window in an error-prone environment.

When parked, the slave shall receive the beacon parameters through an LMP command. In addition, the timing of the beacon instant is indicated through the offset D_B . As with the SCO logical transport (see Section 8.6.2 on page 169), two initialization procedures 1 or 2 are used. The master shall use initialization 1 when the MSB of the current master clock (CLK₂₇) is 0; it shall use initialization 2 when the MSB of the current master clock (CLK₂₇) is 1. The chosen initialization procedure shall also be carried by an initialization flag in the LMP command. The slave shall apply the initialization method as indicated by the initialization flag irrespective of its clock bit CLK₂₇. The master-to-slave slot positioned at the beacon instant shall be initialized on the slots for which the clock satisfies the applicable equation:

$CLK_{27-1} \mod T_B = D_B$	for initialization 1
$(\overline{\text{CLK}}_{27}, \text{CLK}_{26-1}) \mod T_{\text{B}} = D_{\text{B}}$	for initialization 2

this implies that DB will be even

After initialization, the clock value CLK(k+1) for the next beacon instant shall be derived by adding the fixed interval T_B to the clock value of the current beacon instant:

 $CLK(k+1) = CLK(k) + T_B$

The beacon train serves four purposes:

- 1. transmission of master-to-slave packets which the parked slaves can use for re-synchronization
- 2. carrying messages to the parked slaves to change the beacon parameters

- 3. carrying general broadcast messages to the parked slaves
- 4. unparking of one or more parked slaves

😵 Bluetooth°

Since a slave can synchronize to any packet which is preceded by the proper channel access code, the packets carried on the beacon slots do not have to contain specific broadcast packets for parked slaves to be able to synchronize; any packet may be used. The only requirement placed on the beacon slots is that there is a master-to-slave transmission present on the hopping sequence associated with the park structure. If there is no information to be sent, NULL packets may be transmitted by the master. If there is indeed broadcast information to be sent to the parked slaves, the first packet of the broadcast message shall be repeated in every beacon slot of the beacon train. However, synchronous traffic in the synchronous reserved slots may interrupt the beacon transmission if it is on the same hopping sequence as the parked slaves. The master shall configure its park beacon structure so that reserved slots of synchronous logical transports do not cause slaves to miss synchronization on a beacon slot. For example, a master that has active slaves using AHS, and parked slaves using Non-AHS shall ensure that the Park beacons cannot be interrupted by AHS synchronous reserved slots.

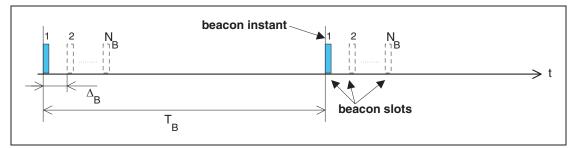


Figure 8.13: General beacon train format

The master can place parked slaves in any of the AFH operating modes, but shall ensure that all parked slaves use the same hop sequence. Masters should use AHS(79) or AHS when all the slaves in the Piconet are AFH capable.

A master that switches a slave between AFH enabled, AFH disabled or AHS(79) operation shall ensure that the AFH_Instant occurs before transmission of the beacon train using this hop sequence.

The master communicates with parked slaves using broadcast messages. Since these messages can be time - critical, an ongoing repetition train of broadcast message may be prematurely aborted by broadcast information destined to parked slaves in beacon slots and in access windows (see Section 8.9.2 on page 189).

8.9.2 Beacon access window

In addition to the beacon slots, an access window is defined where the parked slaves can send requests to be unparked. To increase reliability, the access window may be repeated M_{access} times ($M_{access} \ge 1$), see Figure 8.14 on page 189. The access window starts a fixed delay D_{access} after the beacon instant. The width of the access window is T_{access} .

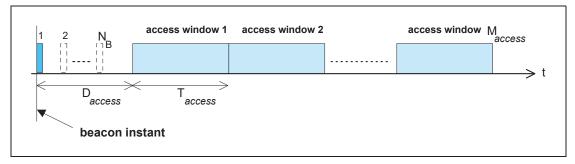


Figure 8.14: Definition of access window

The access window supports a polling slave access technique. The format of the polling technique is shown in Figure 8.15 on page 189. The same TDD structure is used as on the piconet channel, i.e. master-to-slave transmission is alternated with slave-to-master transmission. The slave-to-master slot is divided into two half slots of 312.5 μ s each. The half slot a parked slave is allowed to respond in corresponds to its access request address (AR_ADDR), see also section 8.9.6 on page 192. For counting the half slots to determine the access request slot, the start of the access window is used, see Figure 8.15 on page 189. The slave shall only send an access request in the proper slave-to-master half slot if a broadcast packet has been received in the preceding master-to-slave slot. In this way, the master polls the parked slaves.

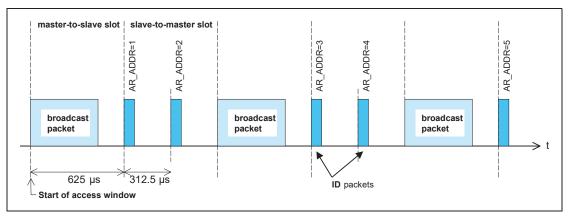


Figure 8.15: Access procedure applying the polling technique.

The slots of the access window may also be used for traffic on the piconet if required. For example, if a synchronous connection has to be supported, the slots reserved for the synchronous link may carry synchronous information

Bluetooth

instead of being used for access requests, i.e. if the master-to-slave slot in the access window contains a packet different from a broadcast packet, the following slave-to-master slot shall not be used for slave access requests. If the master transmits a broadcast packet in the access window then it shall use the hop sequence associated with the park structure. Slots in the access window not affected by piconet traffic may still be used according to the defined access structure, (an example is shown in Figure 8.16 on page 190) the access procedure shall be continued as if no interruption had taken place.

When the slave is parked, the master shall indicate what type of access scheme will be used. For the polling scheme, the number of slave-to-master access slots $N_{acc\ slot}$ is indicated.

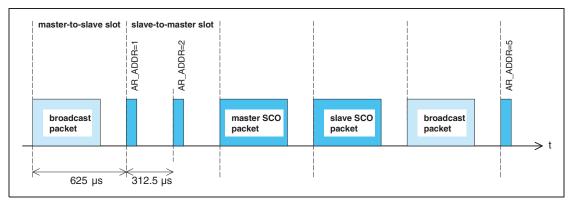


Figure 8.16: Disturbance of access window by SCO traffic

By default, the access window is always present. However, its activation depends on the master sending broadcast messages to the slave at the appropriate slots in the access window. A flag in a broadcast LMP message within the beacon slots may indicate that the access window(s) belonging to this instant will not be activated. This prevents unnecessary scanning of parked slaves that want to request access.

8.9.3 Parked slave synchronization

Parked slaves wake up periodically to re-synchronize to the channel. Any packet exchanged on the channel can be used for synchronization. Since master transmission is mandatory on the beacon slots, parked slaves will use the beacon train to re-synchronize. A parked slave may wake-up at the beacon instant to read the packet sent on the first beacon slot. If this fails, it may retry on the next beacon slot in the beacon train; in total, there are N_B opportunities per beacon instant to re-synchronize. During the search, the slave may increase its search window, see also Section 2.2.5.2 on page 74. The separation between the beacon slots in the beacon train Δ_B shall be chosen such that consecutive search windows will not overlap.

The parked slave may not wake up at every beacon instant. Instead, a sleep interval may be applied which is longer than the beacon interval T_B , see Figure 8.17 on page 191. The slave sleep window shall be a multiple N_B sleep of T_B .

<table-of-contents> Bluetooth°

The precise beacon instant the slave may wake up on shall be indicated by the master with D_{B_sleep} which indicates the offset (in multiples of T_B) with respect to the beacon instant (0< D_{B_sleep} < N_{B_sleep} -1). To initialize the wake-up period, the applicable equation shall be used:

$$CLK_{27-1} \mod (N_{B_sleep} \bullet T_{B}) = D_{B} + D_{B_sleep} \bullet T_{B}$$
 for initialization 1
$$(\overline{CLK}_{27}, CLK_{26-1}) \mod (N_{B_sleep} \bullet T_{B}) = D_{B} + D_{B_sleep} \bullet T_{B}$$
 for initialization 2

where initialization 1 shall be chosen by the master if the MSB in the current master clock is 0 and initialization 2 shall be chosen by the master if the MSB in the current master clock is 1.

When the master needs to send broadcast messages to the parked slaves, it may use the beacon slots for these broadcast messages. However, if $N_B < N_{BC}$, the slots following the last beacon slot in the beacon train shall be used for the remaining N_{BC} - N_B broadcast packets. If $N_B > N_{BC}$, the broadcast message shall be repeated on all N_B beacon slots.

A parked slave shall read the broadcast messages sent in the beacon slot(s) it wakes up in. If the parked slave wakes up, the minimum wake-up activity shall be to read the channel access code for re-synchronization and the packet header to check for broadcast messages.

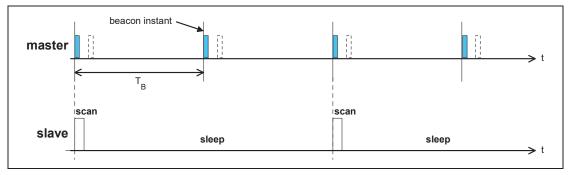


Figure 8.17: Extended sleep interval of parked slaves.

8.9.4 Parking

A master can park an active slave through the exchange of LMP commands. Before being put into park, the slave shall be assigned a PM_ADDR and an AR_ADDR. Every parked slave shall have a unique PM_ADDR or a PM_ADDR of 0. The AR_ADDR is not necessarily unique. The beacon parameters shall be given by the master when the slave is parked. The slave shall then give up its LT_ADDR and shall enter **PARK** state. A master can park only a single slave at a time. The park message is carried with a normal data packet and addresses the slave through its LT_ADDR.

😵 Bluetooth°

8.9.5 Master-initiated unparking

The master can unpark a parked slave by sending a dedicated LMP unpark command including the parked slave's address. This message shall be sent in a broadcast packet on the beacon slots. The master shall use either the slave's PM_ADDR, or its BD_ADDR. The message also includes the logical transport address LT_ADDR the slave shall use after it has re-entered the piconet. The unpark message may include a number of slave addresses so that multiple slaves may be unparked simultaneously. For each slave, a different LT_ADDR shall be assigned.

After having received the unpark message, the parked slave matching the PM_ADDR or BD_ADDR shall leave the **PARK** state and enter the **CONNEC-TION** state. It shall keep listening to the master until it is addressed by the master through its LT_ADDR. The first packet sent by the master shall be a POLL packet. The return packet in response to the POLL packet confirms that the slave has been unparked. If no response packets from the slave is received for *newconnectionTO* number of slots after the end of beacon repetition period, the master shall unpark the slave again. The master shall use the same LT_ADDR on each unpark attempt until it has received a link supervision time-out for that slave or the unpark has completed successfully. If the slave does not receive the POLL packet for *newconnectionTO* number of slots after the end of beacon repetition period, it shall return to park, with the same beacon parameters. After confirming that the slave is in the **CONNECTION** state, the master decides in which mode the slave will continue.

When a device is unparked, the SEQN bit for the link shall be reset to 1 on both the master and the slave (see Section 7.6.2.1 on page 148).

8.9.6 Slave-initiated unparking

A slave can request access to the channel through the access window defined in section 8.9.2 on page 189. As shown in Figure 8.15 on page 189, the access window includes several slave-to-master half slots where the slave may send an access request message. The specific half slot the slave is allowed to respond in, corresponds to its access request address (AR ADDR) which it received when it was parked. The order of the half slots (in Figure 8.15 the AR ADDR numbers linearly increase from 1 to 5) is not fixed: an LMP command sent in the beacon slots may reconfigure the access window. When a slave desires access to the channel, it shall send an access request message in the proper slave-to-master half slot. The access request message of the slave is the ID packet containing the device access code (DAC) of the master (which is the channel access code without the trailer). The parked slave shall only transmit an access request message in the half slot, when in the preceding master-to-slave slot a broadcast packet has been received. This broadcast message may contain any kind of broadcast information not necessarily related to the parked slave(s). If no broadcast information is available, a broadcast NULL or broadcast POLL packet shall be sent.

<table-of-contents> Bluetooth°

After having sent an access request, the parked slave shall listen for an unpark message from the master. As long as no unpark message is received, the slave shall repeat the access requests in the subsequent access windows. After the last access window (there are M_{access} windows in total, see Section 8.9.2 on page 189), the parked slave shall listen for an additional N_{poll} time slots for an unpark message. If no unpark message is received within N_{poll} slots after the end of the last access window, the slave may return to sleep and retry an access attempt after the next beacon instant.

After having received the unpark message, the parked slave matching the PM_ADDR or BD_ADDR shall leave the **PARK** state and enter the **CONNEC-TION** state. It shall keep listening to the master until it is addressed by the master through its LT_ADDR. The first packet sent by the master shall be a POLL packet. The return packet in response to the POLL packet confirms that the slave has been unparked. After confirming that the slave is in the **CONNECTION** state, the master decides in which mode the slave will continue. If no response packet from the slave is received for *newconnectionTO* number of slots after N_{poll} slots after the end of the last access window, the master shall send the unpark message to the slave again. If the slave does not receive the POLL packet for *newconnectionTO* number of slots after the end of the last access window, it shall return to park, with the same beacon parameters.

When a device is unparked, the SEQN bit for the link shall be reset to 1 on both the master and the slave (see Section 7.6.2.1 on page 148).

8.9.7 Broadcast scan window

In the beacon train, the master can support broadcast messages to the parked slaves. However, it may extend its broadcast capacity by indicating to the parked slaves that more broadcast information is following after the beacon train. This is achieved by an LMP command ordering the parked slaves (as well as the active slaves) to listen to the channel for broadcast messages during a limited time window. This time window starts at the beacon instant and continues for the period indicated in the LMP command sent in the beacon train.

8.9.8 Polling in the park state

In the **PARK** state, parked slaves may send access requests in the access window provided a broadcast packet is received in the preceding master-to-slave slot. Slaves in the **CONNECTION** state shall not send in the slave-to-master slots following the broadcast packet, since they are only allowed to send if addressed specifically.

9 AUDIO

On the air-interface, either a 64 kb/s log PCM (Pulse Code Modulation) format (A-law or μ -law) may be used, or a 64 kb/s CVSD (Continuous Variable Slope Delta Modulation) may be used. The latter format applies an adaptive delta modulation algorithm with syllabic companding.

The voice coding on the line interface is designed to have a quality equal to or better than the quality of 64 kb/s log PCM.

Table 9.1 on page 195 summarizes the voice coding schemes supported on the air interface. The appropriate voice coding scheme is selected after negotiations between the Link Managers.

Voice Codecs		
linear	CVSD	
8-bit logarithmic	A-law	
o-bit logaritrinic	μ-law	

Table 9.1: Voice coding schemes supported on the air interface.

9.1 LOG PCM CODEC

Since the synchronous logical transports on the air-interface can support a 64 kb/s information stream, a 64 kb/s log PCM traffic can be used for transmission. Either A-law or μ -law compression may be applied. In the event that the line interface uses A-law and the air interface uses μ -law or vice versa, a conversion from A-law to μ -law shall be performed. The compression method shall follow ITU-T recommendations G. 711.

9.2 CVSD CODEC

A more robust format for voice over the air interface is delta modulation. This modulation scheme follows the waveform where the output bits indicate whether the prediction value is smaller or larger then the input waveform. To reduce slope overload effects, syllabic companding is applied: the step size is adapted according to the average signal slope. The input to the CVSD encoder shall be 64 ksamples/s linear PCM (typically 16 bits, but actual value is implementation specific). Block diagrams of the CVSD encoder and CVSD decoder are shown in Figure 9.1 on page 196, Figure 9.2 on page 196 and Figure 9.3 on page 196. The system shall be clocked at 64 kHz.

😵 Bluetooth®

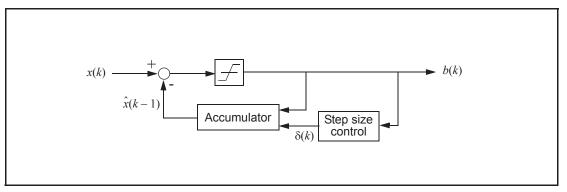


Figure 9.1: Block diagram of CVSD encoder with syllabic companding.

Figure 9.2: Block diagram of CVSD decoder with syllabic companding.

Figure 9.3: Accumulator procedure.

Let ggn(x) = 1 for $x \ge 0$, otherwise ggn(x) = -1. On air these numbers shall be represented by the sign bit; i.e. negative numbers are mapped on "1" and positive numbers are mapped on "0".

Denote the CVSD encoder output bit b(k), the encoder input x(k), the accumulator contents y(k), and the step size $\delta(k)$. Furthermore, let *h* be the decay factor for the accumulator, let β denote the decay factor for the step size, and, let α be the syllabic companding parameter. The latter parameter monitors the slope by considering the *K* most recent output bits

Let

$$\hat{x}(k) = hy(k). \tag{EQ 13}$$

Then, the CVSD encoder internal state shall be updated according to the following set of equations:

😵 Bluetooth°

$$b(k) = \operatorname{sgn}\{x(k) - \hat{x}(k-1)\},$$
 (EQ 14)

$$\alpha = \begin{cases} 1, & \text{if } J \text{ bits in the last } K \text{ output bits are equal,} \\ 0, & \text{otherwise,} \end{cases}$$
(EQ 15)

$$\delta(k) = \begin{cases} \min\{\delta(k-1) + \delta_{min}, \delta_{max}\}, & \alpha = 1, \\ \max\{\beta\delta(k-1), \delta_{min}\}, & \alpha = 0, \end{cases}$$
(EQ 16)

$$y(k) = \begin{cases} \min{\{\hat{y}(k), y_{max}\}}, & \hat{y}(k) \ge 0. \\ \max{\{\hat{y}(k), y_{min}\}}, & \hat{y}(k) < 0. \end{cases}$$
(EQ 17)

where

$$\hat{y}(k) = \hat{x}(k-1) + b(k)\delta(k).$$
 (EQ 18)

In these equations, δ_{min} and δ_{max} are the minimum and maximum step sizes, and, y_{min} and y_{max} are the accumulator's negative and positive saturation values, respectively. Over air, the bits shall be sent in the same order they are generated by the CVSD encoder.

For a 64 kb/s CVSD, the parameters as shown in Table 9.2 shall be used. The numbers are based on a 16 bit signed number output from the accumulator. These values result in a time constant of 0.5 ms for the accumulator decay, and a time constant of 16 ms for the step size decay

Parameter	Value
h	$1 - \frac{1}{32}$
β	$1 - \frac{1}{1024}$
J	4
К	4
δ_{min}	10
δ _{max}	1280
У _{тіп}	-2^{15} or $-2^{15}+1$
У _{тах}	2 ¹⁵ – 1

Table 9.2: CVSD parameter values. The values are based on a 16 bit signed number output from the accumulator.

😵 Bluetooth°

9.3 ERROR HANDLING

In the DV, HV3, EV3, EV5, 2-EV3, 3-EV3, 2-EV5 and 3-EV5 packets, the voice is not protected by FEC. The quality of the voice in an error-prone environment then depends on the robustness of the voice coding scheme and, in the case of eSCO, the retransmission scheme. CVSD, in particular, is rather insensitive to random bit errors, which are experienced as white background noise. However, when a packet is rejected because either the channel access code, the HEC test was unsuccessful, or the CRC has failed, measures have to be taken to "fill" in the lost speech segment.

The voice payload in the **HV2** and **EV4** packets are protected by a 2/3 rate FEC. For errors that are detected but cannot be corrected, the receiver should try to minimize the audible effects. For instance, from the 15-bit FEC segment with uncorrected errors, the 10-bit information part as found before the FEC decoder should be used. The **HV1** packet is protected by a 3 bit repetition FEC. For this code, the decoding scheme will always assume zero or one-bit errors. Thus, there exist no detectable but uncorrectable error events for **HV1** packets.

9.4 GENERAL AUDIO REQUIREMENTS

9.4.1 Signal levels

For A-law and μ -law log-PCM encoded signals the requirements on signal levels shall follow the ITU-T recommendation G.711.

Full swing at the 16 bit linear PCM interface to the CVSD encoder is defined to be 3 dBm0.

9.4.2 CVSD audio quality

For Bluetooth audio quality the requirements are put on the transmitter side. The 64 ksamples/s linear PCM input signal should have negligible spectral power density above 4 kHz. The power spectral density in the 4-32 kHz band of the decoded signal at the 64 ksample/s linear PCM output, should be more than 20 dB below the maximum in the 0-4 kHz range.

10 LIST OF FIGURES

Figure 1.1:	Piconets with a single slave operation (a), a multi-slave opera (b) and a scatternet operation (c).	
Figure 1.2:	Standard Basic Rate packet format.	
Figure 1.3:	Standard Enhanced Data Rate packet format	
Figure 1.4:	Bluetooth clock.	
Figure 1.5:	Format of BD_ADDR.	64
Figure 2.1:	Multi-slot packets	
Figure 2.2:	Derivation of CLK in master (a) and in slave (b).	70
Figure 2.3:	RX/TX cycle of master transceiver in normal mode for single- packets.	slot
Figure 2.4:	RX/TX cycle of slave transceiver in normal mode for single-sl packets.	
Figure 2.5:	RX timing of slave returning from hold mode.	73
Figure 2.6:	Derivation of CLKE.	74
Figure 2.7:	RX/TX cycle of transceiver in PAGE mode.	75
Figure 2.8:	Timing of page response packets on successful page in first h slot	
Figure 2.9:	Timing of page response packets on successful page in seco half slot	
Figure 2.10:	Timing of inquiry response packet on successful inquiry in first half slot	
Figure 2.11:	Timing of inquiry response packet on successful inquiry in second half slot	79
Figure 2.12:	General block diagram of hop selection scheme	81
Figure 2.13:	Hop selection scheme in CONNECTION state.	82
Figure 2.14:	Single- and multi-slot packets.	83
Figure 2.15:	Example of the same channel mechanism.	83
Figure 2.16:	Block diagram of the basic hop selection kernel for the hop system.	84
Figure 2.17:	XOR operation for the hop system.	
-	Permutation operation for the hop system.	
	Butterfly implementation.	
•	Block diagram of adaptive hop selection mechanism	
Figure 4.1:	Functional diagram of TX buffering.	
Figure 4.2:	Functional diagram of RX buffering	101
Figure 6.1:	General Basic Rate packet format.	107
Figure 6.2:	General enhanced data rate packet format	
Figure 6.3:	Access code format	
Figure 6.4:	Preamble	110
Figure 6.5:	Construction of the sync word.	. 111
Figure 6.6:	LFSR and the starting state to generate	.113

😵 Bluetooth[°]

Figure 6.7:	Trailer in CAC when MSB of sync word is 0 (a), and when MSB of sync word is 1 (b)
Figure 6.8:	Header format
•	Format of the FHS payload
-	DV packet format
•	Synchronization sequence
-	
Figure 0.12.	Payload header format for Basic Rate single-slot ACL packets
Figure 6.13:	Payload header format for multi-slot ACL packets and all EDR
-	ACL packets
Figure 7.1:	Header bit processes
Figure 7.2:	Payload bit processes
Figure 7.3:	The LFSR circuit generating the HEC
Figure 7.4:	Initial state of the HEC generating circuit
Figure 7.5:	HEC generation and checking
Figure 7.6:	The LFSR circuit generating the CRC
Figure 7.7:	Initial state of the CRC generating circuit
Figure 7.8:	CRC generation and checking
Figure 7.9:	Data whitening LFSR
Figure 7.10:	Bit-repetition encoding scheme
Figure 7.11:	LFSR generating the (15,10) shortened Hamming code 141
Figure 7.12:	Stage 1 of the receive protocol for determining the ARQN bit
Figure 7.13:	Stage 2 (ACL) of the receive protocol for determining the ARQN
0	bit
Figure 7.14:	Stage 2 (eSCO) of the receive protocol for determining the ARQN bit
Figure 7.15:	Transmit filtering for packets with CRC
-	Broadcast repetition scheme
Figure 8.1:	State diagram of link controller
Figure 8.2:	Conventional page (a), page while one synchronous link present
0	(b), page while two synchronous links present (c)
Figure 8.3:	Messaging at initial connection when slave responds to first page message
Figure 8.4:	Messaging at initial connection when slave responds to second
rigure 0.4.	page message
Figure 8.5:	Connection state
Figure 8.6:	RX/TX timing in multi-slave configuration
Figure 8.7:	eSCO Window Details for Single-Slot Packets
Figure 8.8:	eSCO Window Details for Asymmetric Traffic
Figure 8.9:	Successful hop sequence switching
Figure 8.10:	Recovery hop sequences
•	AFH_Instant changes during multi-slot packets transmitted by
0	the master

page 201 of 814

😵 Bluetooth[®]

Figure 8.12:	Sniff anchor points
Figure 8.13:	General beacon train format
Figure 8.14:	Definition of access window
Figure 8.15:	Access procedure applying the polling technique
Figure 8.16:	Disturbance of access window by SCO traffic
Figure 8.17:	Extended sleep interval of parked slaves
Figure 9.1:	Block diagram of CVSD encoder with syllabic companding194
Figure 9.2:	Block diagram of CVSD decoder with syllabic companding194
Figure 9.3:	Accumulator procedure
Figure 12.1:	SLR measurement set-up
Figure 12.2:	RLR measurement set-up
Figure 12.3:	Plot of recommended frequency mask for Bluetooth. The GSM
	send frequency mask is given for comparison (dotted line)204
Figure 12.4:	Timing constraint on AFH_Instant with slaves in park, hold and
	sniff

😵 Bluetooth[°]

😵 Bluetooth[®]

11 LIST OF TABLES

Table 2.1:	Control of the butterflies for the hop system	85
Table 2.2:	Control for hop system.	89
Table 6.1:	Summary of access code types.	.109
Table 6.2:	Packets defined for synchronous and asynchronous logical	
	transport types.	
Table 6.3:	Description of the FHS payload	. 119
Table 6.4:	Contents of SR field	.120
Table 6.5:	Contents of page scan mode field	.120
Table 6.6:	Logical link LLID field contents	.130
Table 6.7:	Use of payload header flow bit on the logical links	.131
Table 6.8:	Link control packets	.132
Table 6.9:	ACL packets	.132
Table 6.10:	Synchronous packets	.133
Table 8.1:	Relationship between scan interval, and paging modes R0, F and R2.	
Table 8.2:	Relationship between train repetition, and paging modes R0, and R2 when synchronous links are present.	R1
Table 8.3:	Initial messaging during start-up.	
Table 8.4:	Increase of train repetition when synchronous links	
	are present	.164
Table 8.5:	Messaging during inquiry routines.	.165
Table 8.6:	Channel classification descriptions	.179
Table 9.1:	Voice coding schemes supported on the air interface	.193
Table 9.2:	CVSD parameter values. The values are based on a 16 bit	
	signed number output from the accumulator	.195
Table 12.1:	Recommended Frequency Mask for Bluetooth	.204

😵 Bluetooth

APPENDIX A: GENERAL AUDIO RECOMMENDATIONS

MAXIMUM SOUND PRESSURE

It is the sole responsibility of each manufacturer to design their audio products in a safe way with regards to injury to the human ear. The Bluetooth Specification doesn't specify maximum sound pressure from an audio device.

OTHER TELEPHONY NETWORK REQUIREMENTS

It is the sole responsibility of each manufacturer to design the Bluetooth audio product so that it meets the regulatory requirements of all telephony networks that it may be connected to.

AUDIO LEVELS FOR BLUETOOTH

Audio levels shall be calculated as Send Loudness Rating, SLR, and Receive Loudness Rating, RLR. The calculation methods are specified in ITU-T Recommendation P.79.

The physical test set-up for Handsets and Headsets is described in ITU-T Recommendation P.51 and P.57

The physical test set-up for speakerphones and "Vehicle handsfree systems" is specified in ITU-T Recommendation P.34.

A general equation for computation of loudness rating (LR) for telephone sets is given by ITU-T recommendations P.79 and is given by

$$LR = -\frac{10}{m} \log_{10} \left(\sum_{i=N_{1}}^{N_{2}} 10^{m(s_{i}-w_{i})/10} \right),$$
(EQ 19)

where

m is a constant (~ 0.2).

 w_i = weighting coefficient (different for the various LRs).

 S_i = the sensitivity at frequency F_i , of the electro-acoustic path

N₁,N₂, consecutive filter bank numbers (Art. Index: 200-4000 Hz)

(EQ 19) on page 204 is used for calculating the (SLR) according to Figure 12.1 on page 205, and (RLR) according to Figure 12.2 on page 205. When calculating LRs one must only include those parts of the frequency band where an actual signal transmission can occur in order to ensure that the additive property of LRs is retained. Therefore ITU-T P.79 uses only the frequency band 200-4000 Hz in LR computations.

MICROPHONE PATH

SLR measurement model

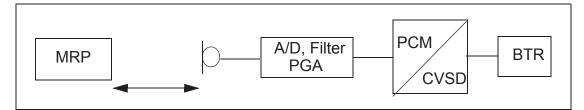


Figure 12.1: SLR measurement set-up.

LOUDSPEAKER PATH

RLR measurement model

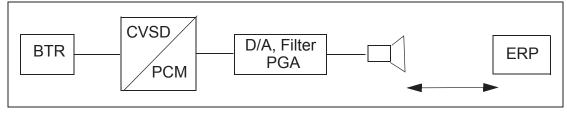


Figure 12.2: RLR measurement set-up.

BLUETOOTH VOICE INTERFACE

The specification for the Bluetooth voice interface should follow in the first place the *ITU-T Recommendations P.79*, which specifies the loudness ratings for telephone sets. These recommendations give general guidelines and specific algorithms used for calculating the loudness ratings of the audio signal with respect to Ear Reference Point (ERP).

For Bluetooth voice interface to the different cellular system terminals, loudness and frequency recommendations based on the cellular standards should be used. For example, GSM 03.50 gives recommendation for both the loudness ratings and frequency mask for a GSM terminal interconnection with Bluetooth.

1- The output of the CVSD decoder are 16-bit linear PCM digital samples, at a sampling frequency of 8 ksample/second. Bluetooth also supports 8-bit log PCM samples of A-law and μ -law type. The sound pressure at the ear reference point for a given 16-bit CVSD sample, should follow the sound pressure level given in the cellular standard specification.

2- A maximum sound pressure which can be represented by a 16-bit linear PCM sample at the output of the CVSD decoder should be specified according to the loudness rating, in ITU P.79 and at PGA value of 0 dB. Programmable Gain Amplifiers (PGAs) are used to control the audio level at the terminals by the user. For conversion between various PCM representations: A-law, μ -law and linear PCM, ITU-T G.711, G.712, G.714 give guidelines and PCM value relationships. Zero-code suppression based on ITU-T G.711 is also recommended to avoid network mismatches.

FREQUENCY MASK

For interfacing a Bluetooth terminal to a digital cellular mobile terminal, a compliance of the CVSD decoder signal to the frequency mask given in the cellular standard, is recommended to guarantee correct function of the speech coders. A recommendation for a frequency mask is given in the Table 12.1 below. The Figure 12.3 below shows a plot of the frequency mask for Bluetooth (solid line). The GSM frequency mask (dotted line) is shown in Figure 12.3 for comparison.

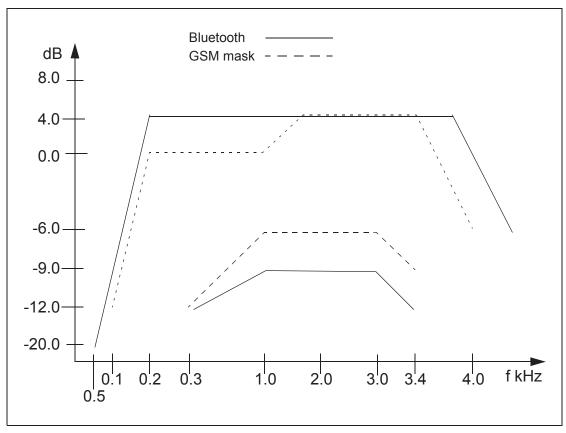


Figure 12.3: Plot of recommended frequency mask for Bluetooth. The GSM send frequency mask is given for comparison (dotted line)

Frequency (Hz)	Upper Limit (dB)	Lower Limit (dB)
50	-20	-
300	4	-12
1000	4	-9
2000	4	-9
3000	4	9
3400	4	-12
4000	0	-

Table 12.1: Recommended Frequency Mask for Bluetooth

APPENDIX B: TIMERS

This appendix contains a list of Baseband timers related to inactivity timeout defined in this specification. Definitions and default values of the timers are listed below

All timer values are given in slots.

LIST OF TIMERS

inquiryTO

The *inquiryTO* defines the number of slots the **inquiry** substate will last. The timer value may be changed by the host. HCI provides a a command to change the timer value.

pageTO

The *pageTO* defines the number of slots the **page** substate can last before a response is received. The timer value may be changed by the host. HCI provides a a command to change the timer value.

pagerespTO

In the slave, it defines the number of slots the slave awaits the master's response, FHS packet, after sending the page acknowledgment ID packet. In the master, *pagerespTO* defines the number of slots the master should wait for the FHS packet acknowledgment before returning to **page** substate. Both master and slave units should use the same value for this timeout, to ensure common page/scan intervals after reaching *pagerespTO*.

The *pagerespTO*value is 8 slots.

newconnectionTO

Every time a new connection is started through paging, scanning, role switch or unparking, the master sends a POLL packet as the first packet in the new connection. Transmission and acknowledgment of this POLL packet is used to confirm the new connection. If the POLL packet is not received by the slave or the response packet is not received by the master for *newconnectionTO* number of slots, both the master and the slave will return to the previous substate.

newconnectionTO value is 32 slots.

supervisionTO

The *supervisionTO* is used by both the master and slave to monitor link loss. If a device does not receive any packets that pass the HEC check and have the proper LT_ADDR for a period of *supervisionTO*, it will reset the link. The supervision timer keeps running in hold mode, sniff mode and park state.

The *supervisionTO* value may be changed by the host. HCI provides a a command to change the timer value. At the baseband level a default value that is equivalent to 20 seconds will be used.

APPENDIX C: RECOMMENDATIONS FOR AFH OPERATION IN PARK, HOLD AND SNIFF

The three possible AFH operation modes for an AFH capable slave in park, hold and sniff are the same three AFH operation modes used during **CONNEC-TION** state:

- *Enabled* (using the same AHS as slaves in the **CONNECTION** state)
- Enabled (using AHS(79))
- Disabled

The master may place an AFH capable slave in any of the three AFH operating modes.

Operation at the Master

A master that has one or more slaves in park, hold or sniff and decides to update them simultaneously shall schedule an *AFH_Instant* for a time that allows it to update all these slaves (as well as its active slaves) with the new adaptation.

A master that has multiple slaves with non-overlapping "wake" times (e.g. slaves in sniff mode with different timing parameters) may keep them *enabled* on the same adaptation provided that its scheduling of the *AFH_Instant* allows enough time to update them all.

This timing is summarized in the figure below. In this example the master decides that a hop sequence adaptation is required. However it cannot schedule an *AFH_Instant* until it has informed its active slave, its slave in hold, its slave in sniff, and had time to un-park its parked slaves.

🚯 Bluetooth°

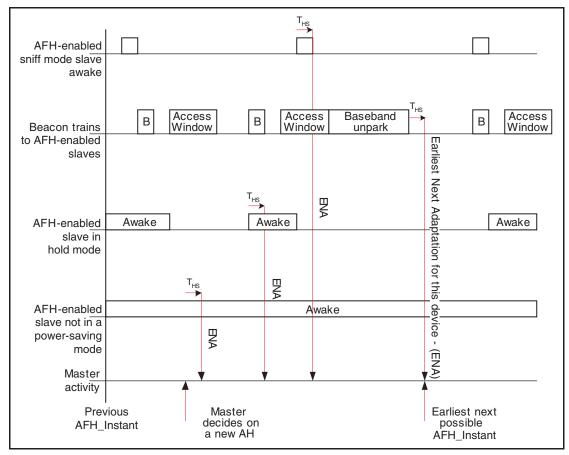


Figure 12.4: Timing constraint on AFH_Instant with slaves in park, hold and sniff

Operation in park

A slave that is in the Park state cannot send or receive any AFH LMP messages. Once the slave has left the Park state the master may subsequently update the slave's adaptation.

AFH Operation in Sniff

Once a slave has been placed in sniff mode, the master may periodically change its AHS without taking the slave out of sniff mode.

AFH Operation in Hold

A slave that is in hold mode cannot send or receive any LMP messages. Once the slave has left hold mode the master may subsequently update the slave's adaptation.

This specification describes the Link Manager Protocol (LMP) which is used for link set-up and control. The signals are interpreted and filtered out by the Link Manager on the receiving side and are not propagated to higher layers. Link Manager Protocol

Link Manager Protocol

😵 Bluetooth[°]

CONTENTS

1	Intro	duction	21			
2	Gene	ral Rule	s	5		
	2.1	Messag	ge Transp	port	219	
	2.2	Synchro	onization		219	
	2.3	Packet	Format		220	
	2.4	Transad	ctions		221	
		2.4.1	LMP Re	sponse Timeout	222	
	2.5	Error H	andling		222	
		2.5.1	Transact	tion collision resolution	223	
	2.6	Proced	ure Rules	5	223	
	2.7	Genera	I Respon	se Messages	224	
	2.8	LMP M	essage C	Constraints	224	
3	Devic	e Featu	res		225	
	3.1	Genera	I Descrip	tion	225	
	3.2	Feature	e Definitio	ns	225	
	3.3	Feature	e Mask Do	efinition	230	
	3.4	Link Ma	anager In	teroperability policy	232	
4	Proce	edure R	ules		233	
	4.1	Connec	ction Con	trol	233	
		4.1.1	Connect	ion establishment	233	
		4.1.2	Detach		234	
		4.1.3	Power c	ontrol	235	
		4.1.4		requency hopping		
				Master enables AFH		
			4.1.4.2	Master disables AFH		
			4.1.4.3	Master updates AFH	239	
			4.1.4.4	AFH operation in park, hold and sniff modes	s 239	
		4.1.5		classification		
			4.1.5.1	Channel classification reporting enabling ar disabling		
		4.1.6	Link sup	ervision		
		4.1.7		quality driven data rate change (CQDDR)		
		4.1.8		of service (QoS)		
		4.1.0		Master notifies slave of the quality of		
			4.1.8.2	service Device requests new quality of service		
		110				
		4.1.9	• •	scheme parameters Page mode		
				Page scan mode		

Link	Manager	Protocol
------	---------	----------

😵 Bluetooth[°]

	4.1.10	Control of multi-slot packets			
	4.1.11	Enhance	247		
4.2	Security				
	4.2.1	Authentication			
		4.2.1.1	Claimant has link key	249	
		4.2.1.2	Claimant has no link key	250	
		4.2.1.3	Repeated attempts	250	
	4.2.2	Pairing.	251		
		4.2.2.1			
		4.2.2.2			
		4.2.2.3	Responder rejects pairing		
		4.2.2.4 4.2.2.5	Creation of the link key Repeated attempts		
	4.2.3		link key		
	_	_			
	4.2.4	-	current link key type		
		4.2.4.1	Change to a temporary link key Make the semi-permanent link key the cur		
		7.2.7.2	link key		
	4.2.5	Encrypti	on		
			Encryption mode		
		4.2.5.2	Encryption key size		
		4.2.5.3	51		
		4.2.5.4	Stop encryption		
		4.2.5.5	Change encryption mode, key or random ber		
	4.0.0	Deguad			
4.3	-	4.2.6 Request supported encryption key size Informational Requests			
4.3					
	4.3.1	-	accuracy fset		
	4.3.2				
	4.3.3		rsion		
	4.3.4	Support	264		
	4.3.5		equest		
4.4	Role S	witch		267	
	4.4.1	Slot offs	et	267	
	4.4.2	Role sw	itch	268	
4.5	Modes	tion	270		
	4.5.1	Hold mode			
		4.5.1.1			
			Slave forces hold mode		
			Master or slave requests hold mode		
	4.5.2		te		
		4.5.2.1	Master requests slave to enter park state.	274	

Link Ma	nager F	Protocol		🛞 Blueto	oth®	
			4.5.2.3 4.5.2.4	Slave requests to enter park state Master sets up broadcast scan window Master modifies beacon parameters Unparking slaves	.276 .277	
		4.5.3	Sniff mode			
			4.5.3.1 4.5.3.2	0		
	16	Logical	Tranana	mode		
	4.6	4.6.1		rts ical transport		
		4.0.1	4.6.1.1			
				Slave initiates an SCO link		
				Master requests change of SCO parameters		
			4.6.1.4	1 0 1		
			4.6.1.5			
		4.6.2		gical transport		
			4.6.2.1	Master initiates an eSCO link Slave initiates an eSCO link		
			4.6.2.3	Master or slave requests change of eSCO	.200	
				parameters		
				Remove an eSCO link	.286	
			4.6.2.5	Rules for the LMP negotiation and renegotiation	287	
			4.6.2.6	Negotiation state definitions		
	4.7	Test Mo		с 		
		4.7.1	Activatio	n and deactivation of test mode	.289	
		4.7.2	Control o	of test mode	.290	
		4.7.3	Summar	y of test mode PDUs	.291	
5	Summary				.295	
	5.1	-	ummary			
	5.2	Parameter Definitions				
	5.3	Default	Values		. 311	
6	List of Figures					
7	List of Tables					

Link Manager Protocol

1 INTRODUCTION

The Link Manager Protocol (LMP) is used to control and negotiate all aspects of the operation of the Bluetooth connection between two devices. This includes the set-up and control of logical transports and logical links, and for control of physical links.

The Link Manager Protocol is used to communicate between the Link Managers (LM) on the two devices which are connected by the ACL logical transport. All LMP messages shall apply solely to the physical link and associated logical links and logical transports between the sending and receiving devices.

The protocol is made up of a series of messages which shall be transferred over the ACL-C logical link on the default ACL logical transport between two devices. LMP messages shall be interpreted and acted-upon by the LM and shall not be directly propagated to higher protocol layers.

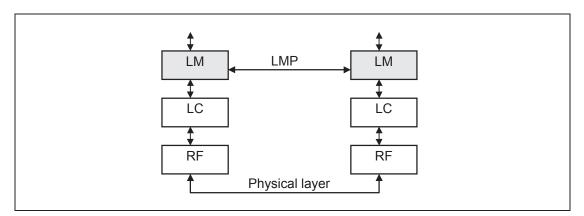


Figure 1.1: Link Manager Protocol signalling layer.

2 GENERAL RULES

2.1 MESSAGE TRANSPORT

LMP messages shall be exchanged over the ACL-C logical link that is carried on the default ACL logical transport (Baseband Specification, Section 4.4, on page 98). The ACL-C logical link is distinguished from the ACL-U (which carries L2CAP and user data) by the Logical Link Identifier (LLID) field carried in the payload header of variable-length packets (Baseband Specification, Section 6.6.2, on page 130).

The ACL-C has a higher priority than other traffic - see Baseband Specification, Section 5.6, on page 108.

The error detection and correction capabilities of the baseband ACL logical transport are generally sufficient for the requirements of the LMP. Therefore LMP messages do not contain any additional error detection information beyond what can be realized by means of sanity checks performed on the contents of LMP messages. Any such checks and protections to overcome undetected errors in LMP messages is an implementation matter.

2.2 SYNCHRONIZATION

This section is informative and explains why many of the LMP message sequences are defined as they are.

LMP messages are carried on the ACL-C logical link, which does not guarantee a time to deliver or acknowledge packets. LMP procedures take account of this when synchronizing state changes in the two devices. For example, criteria are defined that specify when a logical transport address (LT_ADDR) may be re-used after it becomes available due to a device leaving the piconet or entering the park state. Other LMP procedures, such as hold or role switch include the Bluetooth clock as a parameter in order to define a fixed synchronization point. The transitions into and out of sniff mode are protected with a transition mode.

The LC normally attempts to communicate with each slave no less often than every T_{poll} slots (see Section 4.1.8 on page 244) based on the T_{poll} for that slave.

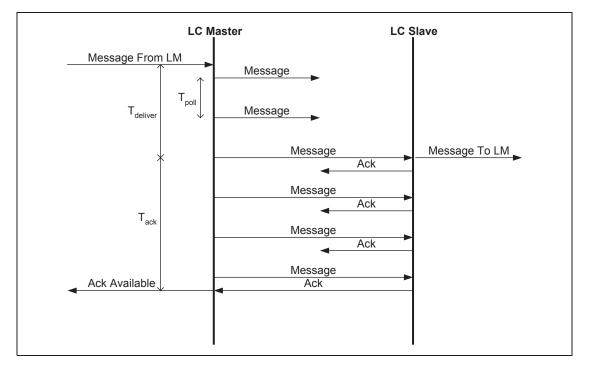


Figure 2.1: Transmission of a message from master to slave¹.

Figure 2.1 on page 220 illustrates the fundamental problem. It shows the transmission of a packet from the master to the slave in conditions of heavy interference for illustrative purposes. It is obvious that neither side can determine the value of either $T_{deliver}$ or T_{ack} . It is therefore not possible to use simple messages to identify uniquely the instant at which a state change occurs in the other device.

2.3 PACKET FORMAT

Each PDU is assigned either a 7 or a 15 bit opcode used to uniquely identify different types of PDUs, see Table 5.1 on page 295. The first 7 bits of the opcode and a transaction ID are located in the first byte of the payload body. If the initial 7 bits of the opcode have one of the special escape values 124-127 then an additional byte of opcode is located in the second byte of the payload and the combination uniquely identifies the PDU.

The FLOW bit in the packet header is always 1 and is ignored on reception.

If the PDU contains one or more parameters these are placed in the payload starting immediately after the opcode, i.e. at byte 2 if the PDU has a 7 bit opcode or byte 3 if the PDU has a 15 bit opcode. The number of bytes used

Note the diagram shows the limiting case where the master transmits the message at intervals of T_{poll}. In the case of heavy interference improved performance is gained by transmitting more often.

depends on the length of the parameters. All parameters have a little-endian format, i.e. the least significant byte is transferred first.

LMP messages shall be transmitted using DM1 packets, however if an HV1 SCO link is in use and the length of the payload is less than 9 bytes then DV packets may be used.

LSE	3			MSB
T I D	OpCode		Payload	
LMP	PDU with 7 b	oit opCode		
LSE	3			MSB
T I D	Escape OpCode	Extended OpCode	Payload	
LMP	LMP PDU with 15 bit opCode			

Figure 2.2: Payload body when LMP PDUs are sent.

2.4 TRANSACTIONS

The LMP operates in terms of transactions. A transaction is a connected set of message exchanges which achieve a particular purpose. All PDUs which form part of the same transaction shall have the same value for the transaction ID which is stored as part of the first byte of the opCode (see Section 2.3 on page 220).

The transaction ID is in the least significant bit. It shall be 0 if the PDU forms part of a transaction that was initiated by the master and 1 if the transaction was initiated by the slave.

Each sequence described in Section 4 on page 233 shall be defined as a transaction. For pairing, see Section 4.2.2 on page 251, and encryption, see Section 4.2.5 on page 257, all sequences belonging to each section shall be counted as one transaction and shall use the same transaction ID. For connection establishment, see Section 4.1.1 on page 233, LMP_host_connection_req and the response with LMP_accepted or LMP_not_accepted shall form one transaction and have the transaction ID of 0. LMP_setup_complete is a stand-alone PDU, which forms a transaction by itself.

For error handling, see Section 2.5 on page 222, the PDU to be rejected and LMP_not_accepted or LMP_not_accepted_ext shall form a single transaction.

2.4.1 LMP Response Timeout

The time between receiving a baseband packet carrying an LMP PDU and sending a baseband packet carrying a valid response PDU, according to the procedure rules in Section 4 on page 233, shall be less than the LMP Response Timeout. The value of this timeout is 30 seconds. Note that the LMP Response Timeout is applied not only to sequences described in Section 4 on page 233, but also to the series of the sequences defined as the transactions in Section 4 on page 233. It shall also be applied to the series of LMP transactions that take place during a period when traffic on the ACL-U logical link is disabled for the duration of the series of LMP transactions, for example during the enabling of encryption.

The LMP Response Timeout shall restart each time an LMP PDU which requires a reply is queued for transmission by the baseband.

2.5 ERROR HANDLING

If the LM receives a PDU with unrecognized opcode, it shall respond with LMP_not_accepted or LMP_not_accepted_ext with the error code *unknown LMP PDU*. The opcode parameter that is echoed back is the unrecognized opcode.

If the LM receives a PDU with invalid parameters, it shall respond with LMP_not_accepted or LMP_not_accepted_ext with the error code *invalid LMP parameters*.

If the maximum response time, see Section 2.4 on page 221, is exceeded or if a link loss is detected (see Baseband Specification, Section 3.1, on page 95), the party that waits for the response shall conclude that the procedure has terminated unsuccessfully.

Erroneous LMP messages can be caused by errors on the channel or systematic errors at the transmit side. To detect the latter case, the LM should monitor the number of erroneous messages and disconnect if it exceeds a threshold, which is implementation-dependent.

When the LM receives a PDU that is not allowed, and the PDU normally expects a PDU reply, for example LMP_host_connection_req or LMP_unit_key, the LM shall return PDU LMP_not_accepted or LMP_not_accepted_ext with the error code *PDU not allowed*. If the PDU normally doesn't expect a reply, for example LMP_sres or LMP_temp_key, the PDU will be ignored.

The reception of an optional PDU which is not supported shall be handled in one of two ways: if the LM simply does not know the opcode (e.g. it was added at a later version of the specification) it shall respond with LMP_not_accepted or LMP_not_accepted_ext with the error code *unknown LMP PDU*. If the LM recognizes the PDU as optional but unsupported then it shall reply with LMP_not_accepted or LMP_not_accepted_ext with the error code *unsupported LMP feature* if the PDU would normally generate a reply otherwise no reply is generated.

2.5.1 Transaction collision resolution

Since LMP PDUs are not interpreted in real time, collision situations can occur where both LMs initiate the same procedure and both cannot be completed. In this situation, the master shall reject the slave-initiated procedure by sending LMP_not_accepted or LMP_not_accepted_ext with the error code *LMP error transaction collision*. The master-initiated procedure shall then be completed.

Collision situations can also occur where both LMs initiate different procedures and both cannot be completed. In this situation, the master shall reject the slave-initiated procedure by sending LMP_not_accepted or LMP_not_accepted_ext with the error code *LMP error different transaction collision*. The master- initiated procedure shall then be completed.

2.6 PROCEDURE RULES

Each procedure is described and depicted with a sequence diagram. The following symbols are used in the sequence diagrams:

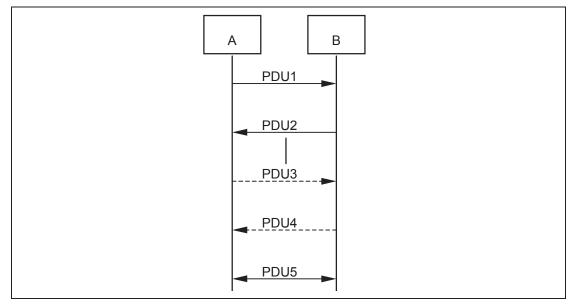


Figure 2.3: Symbols used in sequence diagrams.

PDU1 is a PDU sent from A to B. PDU2 is a PDU sent from B to A. PDU3 is a PDU that is optionally sent from A to B. PDU4 is a PDU that is optionally sent from B to A. PDU5 is a PDU sent from either A or B. A vertical line indicates that more PDUs can optionally be sent.

🛞 Bluetooth

2.7 GENERAL RESPONSE MESSAGES

The PDUs LMP_accepted, LMP_accepted_ext, LMP_not_accepted and LMP_not_accepted_ext are used as response messages to other PDUs in a number of different procedures. LMP_accepted or LMP_accepted_ext includes the opcode of the message which is accepted. LMP_not_accepted or LMP_not_accepted_ext includes the opcode of the message which is not accepted and the error code why it is not accepted.

LMP_accepted_ext and LMP_not_accepted_ext shall be used when the opcode is 15 bits in length. LMP_accepted and LMP_not_accepted shall be used when the opcode is 7 bits in length.

M/O	PDU	Contents
М	LMP_accepted	op code
Μ	LMP_not_accepted	op code error code
0	LMP_accepted_ext	escape op code extended op code
0	LMP_not_accepted_ext	escape op code extended op code error code

Table 2.1: General response messages.

2.8 LMP MESSAGE CONSTRAINTS

This section is informative.

- No LMP message shall exceed the maximum payload length of a single DM1 packet i.e. 17 bytes in length (Baseband Specification, Section 6.5.4.1, on page 126).
- All LM messages are of fixed length apart from those sent using broadcast in park state.
- The LMP version number shall not be used to indicate the presence or absence of functionality.

3 DEVICE FEATURES

3.1 GENERAL DESCRIPTION

Each PDU is either Mandatory or Optional as defined by the M/O field in the tables of Section 4 on page 233. An M in this field shall indicate that support for the feature is mandatory. An O in this field shall indicate that support for the PDU is optional and it shall be followed by the number(s) of the feature(s) involved in brackets.

All features added after the 1.1 specification have associated LMP feature bits. Support of these features may be made "mandatory" by the qualification process but the LM still considers them to be optional since it must interoperate with older devices which do not support them.

The LM does not need to be able to transmit a PDU which is optional. Support of optional PDUs is indicated by a device's features mask. The features mask can be read (see Section 4.3.4 on page 264). An LM shall not send or be sent any PDU which is incompatible with the features signalled in its or its peer's features mask, as detailed in Section 3.2.

Feature	Definition
Extended features	This feature indicates whether the device is able to support the extended features mask using the LMP sequences defined in Section 4.3.4 on page 264.
Timing accuracy	This feature indicates whether the LM supports requests for timing accuracy using the sequence defined in Section 4.3.1 on page 262.
Enhanced inquiry scan	This feature indicates whether the device is capable of supporting the enhanced inquiry scan mechanism as defined in Baseband Specification, Section 8.4.1, on page 164. The presence of this fea- ture has only local meaning and does not imply support for any addi- tional LMP PDUs or sequences.
Interlaced inquiry scan	This feature indicates whether the device is capable of supporting the interlaced inquiry scan mechanism as defined in Baseband Spec- ification, Section 8.4.1, on page 164. The presence of this feature has only local meaning and does not imply support for any additional LMP PDUs or sequences.
Interlaced page scan	This feature indicates whether the device is capable of supporting the interlaced page scan mechanism as defined in Baseband Specifi- cation, Section 8.3.1, on page 154. The presence of this feature has only local meaning and does not imply support for any additional LMP PDUs or sequences.

3.2 FEATURE DEFINITIONS

Table 3.1: Feature definitions.

Г

😵 Bluetooth[°]

Feature	Definition
RSSI with inquiry results	This feature indicates whether the device is capable of reporting the RSSI with inquiry results as defined in Baseband Specification, Section 8.4.2, on page 165. The presence of this feature has only local meaning and does not imply support for any additional LMP PDUs or sequences.
Paging parameter negotiation	This feature indicates whether the LM is capable of supporting the signaling of changes in the paging scheme as defined in Section 4.1.9 on page 246.
3 slot packets	This feature indicates whether the device supports the transmission and reception of both DM3 and DH3 packets for the transport of traf- fic on the ACL-U logical link.
5 slot packets	This feature indicates whether the device supports the transmission and reception of both DM5 and DH5 packets for the transport of traf- fic on the ACL-U logical link.
Flow control lag	This is defined as the total amount of ACL-U data that can be sent following the receipt of a valid payload header with the payload header flow bit set to 0 and is in units of 256 bytes. See further in Baseband Specification, Section 6.6.2, on page 130.
AFH capable slave	This feature indicates whether the device is able to support the Adap- tive Frequency Hopping mechanism as a slave as defined in Base- band Specification, Section 2.3, on page 75 using the LMP sequences defined in Section 4.1.4 on page 237.
AFH classification slave	This feature indicates whether the device is able to support the AFH classification mechanism as a slave as defined in Baseband Specification, Section 8.6.8, on page 181 using the LMP sequences defined Section 4.1.5 on page 240.
AFH capable master	This indicates whether the device is able to support the Adaptive Fre- quency Hopping mechanism as a master as defined in Baseband Specification, Section 2.3, on page 75 using the LMP sequences defined in Section 4.1.4 on page 237.
AFH classification master	This feature indicate whether the device is able to support the AFH classification mechanism as a master as defined in Baseband Specification, Section 8.6.8, on page 181 using the LMP sequences defined Section 4.1.5 on page 240.
Power control	This feature indicates whether the device is capable of adjusting its transmission power. This feature indicates the ability to receive the LMP_incr_power and LMP_decr_power PDUs and transmit the LMP_max_power and LMP_min_power PDUs, using the sequences defined in Section 4.1.3 on page 235. These sequences may be used even if the remote device does not support the power control feature, as long as it supports the Power control requests feature.

Table 3.1: Feature definitions.

Feature	Definition
Power control requests	This feature indicates whether the device is capable of determining if the transmit power level of the other device should be adjusted and will send the LMP_incr_power and LMP_decr_power PDUs to request the adjustments. It indicates the ability to receive the LMP_max_power and LMP_min_power PDUs, using the sequences in Section 4.1.3 on page 235. These sequences may be used even if the remote device does not support the RSSI feature, as long as it supports the power control feature.
Channel Quality Driven Data Rate	This feature indicates whether the LM is capable of recommending a packet type (or types) depending on the channel quality using the LMP sequences defined in section Section 4.1.7 on page 243.
Broadcast encryp- tion	This feature indicates whether the device is capable of supporting broadcast encryption as defined in [Part H] Section 4.2 on page 788 and also the sequences defined in Section 4.2.6 on page 261 and Section 4.2.4 on page 255. Note: Devices compliant to versions of this specification 1.1 and ear- lier may support broadcast encryption even though this feature bit is not set.
Encryption	This feature indicates whether the device supports the encryption of packet contents using the sequence defined in Section 4.2.5 on page 257.
Slot offset	This feature indicates whether the LM supports the transfer of the slot offset using the sequence defined in Section 4.4.1 on page 267.
Role switch	This feature indicates whether the device supports the change of master and slave roles as defined by baseband Section 8.6.5 on page 175 using the sequence defined in Section 4.4.2 on page 268.
Hold mode	This feature indicates whether the device is able to support Hold mode as defined in baseband Section 8.8 on page 185 using the LMP sequences defined in Section 4.5.1 on page 270.
Sniff mode	This feature indicates whether the device is able to support sniff mode as defined in baseband Section 8.7 on page 183 using the LMP sequences defined in Section 4.5.3 on page 278.
Park state	This feature indicates whether the device is able to support Park state as defined in baseband Section 8.9 on page 185 using the LMP sequences defined in Section 4.5.2 on page 272.
SCO link	This feature shall indicate whether the device is able to support the SCO logical transport as defined in Baseband Specification, Section 4.3, on page 98, the HV1 packet defined in Baseband Specification, Section 6.5.2.1, on page 123 and receiving the DV packet defined in Baseband Specification, Section 6.5.2.4, on page 123 using the LMP sequence in Section 4.6.1 on page 281.
HV2 packets	This feature indicates whether the device is capable of supporting the HV2 packet type as defined in baseband Section 6.5.2.2 on page 123 on the SCO logical transport.

Table 3.1: Feature definitions.

😵 Bluetooth[°]

Feature	Definition
HV3 packets	This feature indicates whether the device is capable of supporting the HV3 packet type as defined in baseband Section 6.5.2.3 on page 123 on the SCO logical transport.
μ-law log synchro- nous data	This feature indicates whether the device is capable of supporting μ -Law Log format data as defined in Baseband Specification, Section 9.1, on page 195 on the SCO and eSCO logical transports.
A-law log synchro- nous data	This feature indicates whether the device is capable of supporting A- Law Log format data as defined in Baseband Specification, Section 9.1, on page 195 on the SCO and eSCO logical transports.
CVSD synchro- nous data	This feature indicates whether the device is capable of supporting CVSD format data as defined in Baseband Specification, Section 9.2, on page 195 on the SCO and eSCO logical transports.
Transparent synchronous data	This feature indicates whether the device is capable of supporting transparent synchronous data as defined in Baseband Specification, Section 6.4.3, on page 117 on the SCO and eSCO logical transports.
Extended SCO link	This feature indicates whether the device is able to support the eSCO logical transport as defined Baseband Specification, Section 5.5, on page 108 and the EV3 packet defined in Baseband Specification, Section 6.5.3.1, on page 124 using the LMP sequences defined in Section 4.6.2 on page 284.
EV4 packets	This feature indicates whether the device is capable of supporting the EV4 packet type defined in Baseband Specification, Section 6.5.3.2, on page 124 on the eSCO logical transport.
EV5 packets	This feature indicates whether the device is capable of supporting the EV5 packet type defined in Baseband Specification, Section 6.5.3.3, on page 124 on the eSCO logical transport.
Enhanced Data Rate ACL 2 Mbps mode	This feature indicates whether the device supports the transmission and reception of 2-DH1 packets for the transport of traffic on the ACL-U logical link.
Enhanced Data Rate ACL 3 Mbps mode	This feature indicates whether the device supports the transmission and reception of 3-DH1 packets for the transport of traffic on the ACL-U logical link. This feature bit shall only be set if the "Enhanced Data Rate ACL 2
	Mbps mode" feature bit is set.
3-slot Enhanced Data Rate ACL	This feature indicates whether the device supports the transmission and reception of three-slot Enhanced Data Rate packets on the ACL- U logical link.
packets	This feature bit shall only be set if the "Enhanced Data Rate ACL 2 Mbps mode" feature bit is set.
5-slot Enhanced Data Rate ACL packets	This feature indicates whether the device supports the transmission and reception of 5-slot Enhanced Data Rate packets for the transport of traffic on the ACL-U logical link. This feature bit shall only be set if the "Enhanced Data Rate ACL 2 Mbps mode" feature bit is set.

Table 3.1: Feature definitions.

Feature	Definition
Enhanced Data Rate eSCO 2 Mbps mode	This feature indicates whether the device supports the transmission and reception of 2-EV3 packets for the transport of traffic on the eSCO logical transport.
Enhanced Data Rate eSCO 3 Mbps mode	This feature indicates whether the device supports the transmission and reception of 3-EV3 packets for the transport of traffic on the eSCO logical transport. This feature bit shall only be set if the "Enhanced Data Rate eSCO 2 Mbps mode" feature bit is set.
3-slot Enhanced Data Rate eSCO packets	This feature indicates whether the device supports the transmission and reception of 3-slot Enhanced Data Rate packets for the transport of traffic on the eSCO logical transport. This feature bit shall only be set if the "Enhanced Data Rate eSCO 2 Mbps mode" feature bit is set.

Table 3.1: Feature definitions.

😵 Bluetooth[®]

Link Manager Protocol

3.3 FEATURE MASK DEFINITION

The features are represented as a bit mask when they are transferred in LMP messages. For each feature a single bit is specified which shall be set to 1 if the feature is supported and set to 0 otherwise. The single exception is the flow control lag which is coded as a 3 bit field with the least significant bit in byte 2 bit 4 and the most significant bit in byte 2 bit 6. All unknown or unassigned feature bits shall be set to 0.

No.	Supported feature	Byte	Bit
0	3 slot packets	0	0
1	5 slot packets	0	1
2	Encryption	0	2
3	Slot offset	0	3
4	Timing accuracy	0	4
5	Role switch	0	5
6	Hold mode	0	6
7	Sniff mode	0	7
8	Park state	1	0
9	Power control requests	1	1
10	Channel quality driven data rate (CQDDR)	1	2
11	SCO link	1	3
12	HV2 packets	1	4
13	HV3 packets	1	5
14	μ-law log synchronous data	1	6
15	A-law log synchronous data	1	7
16	CVSD synchronous data	2	0
17	Paging parameter negotiation	2	1
18	Power control	2	2
19	Transparent synchronous data	2	3
20	Flow control lag (least significant bit)	2	4
21	Flow control lag (middle bit)	2	5
22	Flow control lag (most significant bit)	2	6
23	Broadcast encryption	2	7
24	Reserved	3	0
25	Enhanced Data Rate ACL 2 Mbps mode	3	1

Table 3.2: Feature mask definition

page 231 of 814

⊁ Bl	ueto	oth°
------	------	------

No.	Supported feature	Byte	Bit
26	Enhanced Data Rate ACL 3Mbps mode	3	2
27	Enhanced inquiry scan	3	3
28	Interlaced inquiry scan	3	4
29	Interlaced page scan	3	5
30	RSSI with inquiry results	3	6
31	Extended SCO link (EV3 packets)	3	7
32	EV4 packets	4	0
33	EV5 packets	4	1
34	Reserved	4	2
35	AFH capable slave	4	3
36	AFH classification slave	4	4
37	Reserved	4	5
38	Reserved	4	6
39	3-slot Enhanced Data Rate ACL packets	4	7
40	5-slot Enhanced Data Rate ACL packets	5	6
41	reserved	5	1
42	reserved	5	2
43	AFH capable master	5	3
44	AFH classification master	5	4
45	Enhanced Data Rate eSCO 2 Mbps mode	5	5
46	Enhanced Data Rate eSCO 3 Mbps mode	5	6
47	3-slot Enhanced Data Rate eSCO packets	5	7
48	Reserved	6	0
63	Extended features	7	7

Table 3.2: Feature mask definition

😵 Bluetooth

3.4 LINK MANAGER INTEROPERABILITY POLICY

Link managers of any version will interoperate using the lowest common subset of functionality by reading the LMP features mask (defined in Table 3.2 on page 230).

An optional LMP PDU shall only be sent to a device if the corresponding feature bit is set in its feature mask. The exception to this are certain PDUs (see Section 4.1.1 on page 233) which can be sent before the features mask is requested. Note: a later version device with a restricted feature set is indistinguishable from an earlier version device with the same features.

4 PROCEDURE RULES

4.1 CONNECTION CONTROL

4.1.1 Connection establishment

After the paging procedure, LMP procedures with for clock offset request, LMP version, supported features, name request and detach may then be initiated.

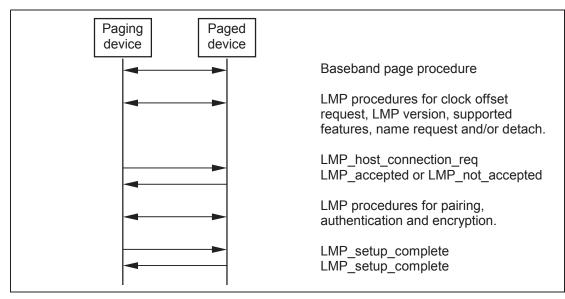


Figure 4.1: Connection establishment.

When the paging device wishes to create a connection involving layers above LM, it sends an LMP_host_connection_req PDU. When the other side receives this message, the host is informed about the incoming connection. The remote device can accept or reject the connection request by sending an LMP_accepted PDU or an LMP_not_accepted PDU. Alternatively, if the slave needs a role switch, see Section 4.4.2 on page 268, it sends an LMP_slot_offset PDU and LMP_switch_req PDU after it has received an LMP_host_connection_req PDU. If the role switch fails the LM shall continue with the creation of the connection unless this cannot be supported due to limited resources in which case the connection shall be terminated with an LMP_detach PDU with error code *other end terminated connection: low resources*. When the role switch has been successfully completed, the old slave will reply with an LMP_accepted PDU or an LMP_not_accepted PDU to the LMP_host_connection_req PDU (with the transaction ID set to 0).

If the paging device receives an LMP_not_accepted PDU in response to LMP_host_connection_req it shall immediately disconnect the link using the mechanism described in Section 4.1.2 on page 234.

😵 Bluetooth°

If the LMP_host_connection_req PDU is accepted, LMP security procedures (pairing, authentication and encryption) may be invoked. When a device is not going to initiate any more security procedures during connection establishment it sends an LMP_setup_complete PDU. When both devices have sent LMP_setup_complete PDUs the traffic can be transferred on the ACL-U logical transport.

M/O	PDU	Contents
М	LMP_host_connection_req	-
Μ	LMP_setup_complete	-

Table 4.1: PDUs used for connection establishment.

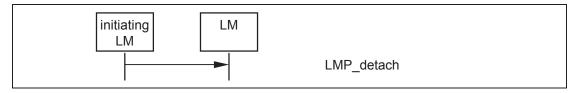
4.1.2 Detach

The connection between two Bluetooth devices may be detached anytime by the master or the slave. An error code parameter is included in the message to inform the other party of why the connection is detached.

M/O	PDU	Contents
Μ	LMP_detach	error code

Table 4.2: PDU used for detach.

The initiating LM shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). The initiating LM then queues the LMP_detach for transmission and it shall start a timer for 6^*T_{poll} slots where T_{poll} is the poll interval for the connection. If the initiating LM receives the baseband acknowledgement before the timer expires it starts a timer for 3^*T_{poll} slots. When this timer expires, and if the initiating LM is the master, the LT_ADDR(s) may be re-used immediately. If the initial timer expires then the initiating LM drops the link and starts a timer for $T_{linksupervisiontimeout}$ slots after which the LT_ADDR(s) may be re-used if the initiating LM is the master.


When the receiving LM receives the LMP_detach, it shall start a timer for 6^{T}_{poll} slots if it is the master and 3^{T}_{poll} if it is the slave. On timer expiration, the link shall be detached and, if the receiving LM is the master, the LT_ADDR(s) may be re-used immediately. If the receiver never receives the LMP_detach then a link supervision timeout will occur, the link will be detached, and the LT_ADDR may be re-used immediately.

If at any time during this or any other LMP sequence the Link supervision timeout expires then the link shall be terminated immediately and the LT_ADDR(S) may be re-used immediately.

If the connection is in hold mode, the initiating LM shall wait for hold mode to end before initiating the procedure defined above. If the connection is in sniff mode or park state, the initiating LM shall perform the procedure to exit sniff

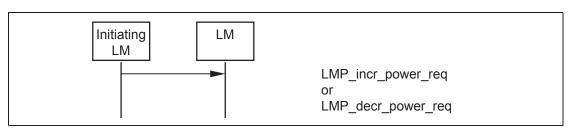
<table-of-contents> Bluetooth°

mode or park state before initiating the procedure defined above. If the procedure to exit sniff mode or park state does not complete within the LMP response timeout (30 seconds) the procedure defined above shall be initiated anyway.

Sequence 1: Connection closed by sending LMP_detach.

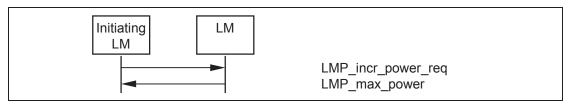
4.1.3 Power control

If the received signal characteristics differs too much from the preferred value of a Bluetooth device, it may request an increase or a decrease of the other device's TX power. The power adjustment requests may be made at anytime following a successful baseband paging procedure.

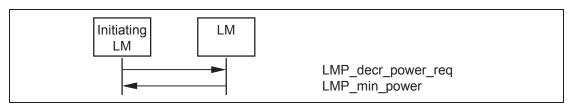

If a device does not support power control requests this is indicated in the supported features list and thus no power control requests shall be sent after the supported features response has been processed. Prior to this time, a power control adjustment might be sent and if the recipient does not support power control it is allowed to send LMP_max_power in response to LMP_incr_power_req and LMP_min_power in response to LMP_decr_power_req. Another possibility is to send LMP_not_accepted with the error code *unsupported LMP feature*.

Upon receipt of an LMP_incr_power_req PDU or LMP_decr_power_req PDU the output power shall be increased or decreased one step. See Radio Specification Section 3, on page 31 for the definition of the step size. The TX power is a property of the physical link, and affects all logical transports carried over the physical link. Power control requests carried over the default ACL-C logical link shall only affect the physical link associated with the default ACL-C logical link: they shall not affect the power level used on the physical links to other slaves.

M/O	PDU	Contents
O(9)	LMP_incr_power_req	for future use (1 Byte)
O(9)	LMP_decr_power_req	for future use (1 Byte)
O(18)	LMP_max_power	-
O(18)	LMP_min_power	-


Table 4.3: PDUs used for power control.

😵 Bluetooth°



Sequence 2: A device requests a change of the other device's TX power.

If the receiver of LMP_incr_power_req is at maximum power LMP_max_power shall be returned. The device shall only request an increase again after having requested a decrease at least once. If the receiver of LMP_decr_power_req is at minimum power then LMP_min_power shall be returned and the device shall only request a decrease after having requested an increase at least once.

Sequence 3: The TX power cannot be increased.

Sequence 4: The TX power cannot be decreased.

One byte is reserved in LMP_incr/decr_power_req for future use. The parameter value shall be 0x00 and ignored upon receipt.

4.1.4 Adaptive frequency hopping

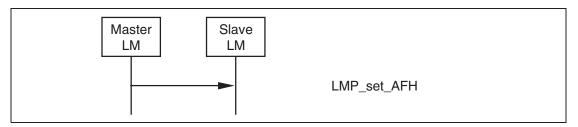
AFH is used to improve the performance of physical links in the presence of interference as well as reducing the interference caused by physical links on other devices in the ISM band. AFH shall only be used during the connection state.

M/O	PDU	Contents
O(35) Rx O(43) Tx	LMP_set_AFH	AFH_Instant, AFH_Mode, AFH_Channel_Map

Table 4.4: PDUs used for AFH

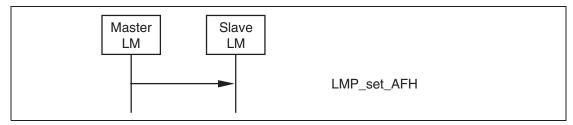
The LMP_set_AFH PDU contains three parameters: AFH_Instant, AFH_Mode, and AFH_Channel_Map. The parameter, AFH_Instant, specifies the instant at which the hopset switch will become effective. This is specified as a Bluetooth Clock value of the master's clock, that is available to both devices. The AFH instant is chosen by the master and shall be an even value at least $6^{*}T_{poll}$ or 96 slots (whichever is greater) in the future, where T_{poll} is at least the longest poll interval for all AFH enabled physical links. The AFH_instant shall be within 12 hours of the current clock value. The parameter AFH_Mode, specifies whether AFH shall be enabled or disabled. The parameter AFH_Channel_Map, specifies the set of channels that shall be used if AFH is enabled.

When the LMP_set_AFH PDU is received the AFH instant shall be compared with the current Bluetooth clock value. If it is in the past then the AFH_instant has passed and the slave shall immediately configure the hop selection kernel (see Baseband Specification, Section 2.6.3, on page 89) with the new AFH_mode and AFH_channel_map specified in the LMP_set_AFH PDU. If it is in the future then a timer shall be started to expire at the AFH instant. When this timer expires it shall configure the hop selection kernel with the new AFH_mode and AFH_channel_map.


The master shall not send a new LMP_set_AFH PDU to a slave until it has received the baseband acknowledgement for any previous LMP_set_AFH addressed to that slave and the instant has passed.

Role switch while AFH is enabled shall follow the procedures define by Baseband Specification, Section 8.6.5, on page 175.

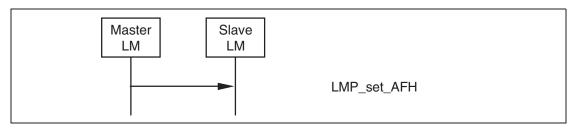
4.1.4.1 Master enables AFH


Prior to enabling AFH the master LM shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). The master shall then enable AFH on a physical link by sending the LMP_set_AFH PDU with AFH_mode set to AFH_enabled, the AFH_channel_map parameter containing the set of used and unused channels, and an AFH_instant. The LM shall not calculate the AFH instant until after traffic on the ACL-U logical link has been stopped. The master considers the physical link to be AFH_enabled once the baseband acknowledgement has been received and the AFH_instant has passed. Once the baseband acknowledgement has been received the master shall restart transmission on the ACL-U logical link.

Sequence 5: Master Enables AFH.

4.1.4.2 Master disables AFH

Prior to disabling AFH the master LM shall pause traffic on the ACL-U logical link (Baseband Specification, Section 5.3.1, on page 108). The master shall then disable AFH operation on a physical link by sending the LMP_set_AFH PDU with AFH_mode set to AFH_disabled and an AFH_instant. The AFH_channel_map parameter is not valid when AFH_mode is AFH_disabled. The LM shall not calculate the AFH instant until after traffic on the ACL-U logical link has been stopped. The master considers the physical link to have entered AFH_disabled operation once the baseband acknowledgement has been received and the AFH_instant has passed. Once the baseband acknowledgement has been received the master shall restart transmission on the ACL-U logical link.



Sequence 6: Master disables AFH.

4.1.4.3 Master updates AFH

A master shall update the AFH parameters on a physical link by sending the LMP_set_AFH PDU with AFH_mode set to AFH_enabled, an AFH_instant and a new AFH_channel_map. The master shall consider the slave to have the updated AFH parameters once the baseband acknowledgement has been received and the AFH_instant has passed.

Sequence 7: Master Updates AFH.

4.1.4.4 AFH operation in park, hold and sniff modes

A slave in Park, Hold or Sniff shall retain the AFH_mode and AFH_channel_map prior to entering those modes. A master may change the AFH_mode while a slave is in sniff.

A master that receives a request from an AFH_enabled slave to enter Park, Hold or Sniff and decides to operate the slave using a different hop sequence shall respond with an LMP_set_AFH PDU specifying the new hop sequence.

The master continues with the LMP signalling, for Park, Hold or Sniff initiation, once the baseband acknowledgement for the LMP_set_AFH PDU has been received. Optionally, the master may delay the continuation of this LMP signal-ling until after the instant. An AFH_capable_slave device shall support both of these cases.

A master that receives a request from an AFH_enabled slave to enter Park, Hold or Sniff and decides not to change the slave's hop sequence shall respond exactly as it would do without AFH. In this case, AFH operation has no effect on the LMP signalling.

😵 Bluetooth°

4.1.5 Channel classification

A master may request channel classification information from a slave that is AFH_enabled.

A slave that supports the AFH_classification_slave feature shall perform channel classification and reporting according to its AFH_reporting_mode. The master shall control the AFH_reporting_mode using the LMP channel classification reg PDU. The slave shall report its channel clas-

LMP_channel_classification_req PDU. The slave shall report its channel classification using the LMP_channel_classification PDU.

The slave shall report pairs of channels as *good*, *bad* or *unknown*. See Table 5.2 on page 303 for the detailed format of the AFH_Channel_Classification parameter. When one channel in the nth channel pair is good and the other channel is unknown the nth channel pair shall be reported as good. When one channel in the nth channel pair is bad and the other is unknown the nth channel pair shall be reported as good. When one channel in the nth channel pair is good and the other is unknown the nth channel pair is bad and the other is unknown the nth channel pair shall be reported as bad. It is implementation dependent what to report when one channel in a channel pair is good and the other is bad.

M/O	PDU	Contents
O(36) Rx O(44) Tx	LMP_channel_classification_req	AFH_Reporting_Mode, AFH_Min_Interval, AFH_Max_Interval
O(36) Tx O(44)Rx	LMP_channel_classification	AFH_Channel_Classification

Table 4.5: PDUs used for Channel Classification Reporting.

The LMP_channel_classification_req PDU contains three parameters: AFH_Reporting_Mode, AFH_Min_Interval, and AFH_Max_Interval. In the AFH_reporting_disabled state, the slave shall not generate any channel classification reports. The parameter AFH_min_interval, defines the minimum amount of time from the last LMP_channel_classification command that was sent before the next LMP_channel_classification PDU may be sent. The parameter AFH_max_interval, defines the maximum amount of time between the change in the radio environment being detected by a slave and its generation of an LMP_channel_classification PDU. The AFH_max_interval shall be equal to or larger than AFH_min_interval.

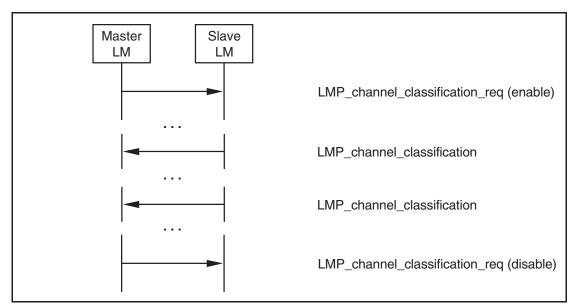
The AFH_reporting_mode parameter shall determine if the slave is in the AFH_reporting_enabled or AFH_reporting_disabled state. The default state, prior to receipt of any LMP_channel_classification_req PDUs, shall be AFH_reporting_disabled.

AFH_reporting_mode is implicitly set to the AFH_reporting_disabled state when any of the following occur:

- Establishment of a connection at the baseband level
- Master-slave role switch

- Entry to park state operation
- Entry to hold mode operation

AFH_reporting_mode is implicitly restored to its former value when any of the following occur:


- Exit from park state operation
- Exit from hold mode
- Failure of Master-slave role switch

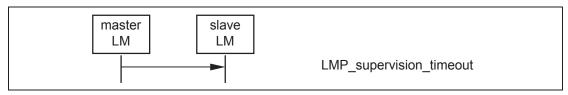
4.1.5.1 Channel classification reporting enabling and disabling

A master enables slave channel classification reporting by sending the LMP_channel_classification_req PDU with the AFH_reporting_mode parameter set to AFH_reporting_enabled.

When a slave has had classification reporting enabled by the master it shall send the LMP_channel_classification PDU according to the information in the latest LMP_channel_classification_req PDU. The LMP_channel_classification PDU shall not be sent if there has been no change in the slave's channel classification.

A master disables slave channel classification reporting by sending the LMP_channel_classification_req PDU with the AFH_reporting_mode parameter set to AFH_reporting_disabled.

Sequence 8: Channel classification reporting.


8 Bluetooth

4.1.6 Link supervision

Each physical link has a timer that is used for link supervision. This timer is used to detect physical link loss caused by devices moving out of range, or being blocked by interference, a device's power-down, or other similar failure cases. Link supervision is specified in Baseband Specification, Section 3.1, on page 95.

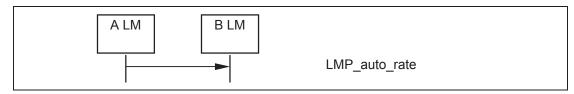
M/O	PDU	Contents
Μ	LMP_supervision_timeout	supervision timeout

Table 4.6: PDU used to set the supervision timeout.

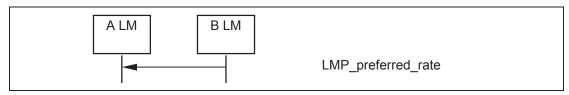
4 November 2004

Sequence 9: Setting the link supervision timeout.

4.1.7 Channel quality driven data rate change (CQDDR)


The data throughput for a given packet type depends on the quality of the RF channel. Quality measurements in the receiver of one device can be used to dynamically control the packet type transmitted from the remote device for optimization of the data throughput. Device A sends the LMP_auto_rate PDU once to notify device B to enable this feature. Once enabled, device B may change the packet type(s) that A transmits by sending the LMP_preferred_rate PDU. This PDU has a parameter which determines the preferred coding (with or without 2/3FEC) and optionally the preferred size in slots of the packets. Device A is not required to change to the packet type specified by this parameter. Device A shall not send a packet that is larger than max slots (see Section 4.1.10 on page 247) even if the preferred size is greater than this value.

The data rate parameter includes the preferred rate for Basic Rate and Enhanced Data Rate modes. When operating in Basic Rate mode, the device shall use bits 0-2 to determine the preferred data rate. When operating in Enhanced Data Rate mode, the device shall use bits 3-6 to determine the preferred data rate. For devices that support Enhanced Data Rate, the preferred rates for both Basic Rate and Enhanced Data Rate modes shall be valid at all times.


These PDUs may be sent at any time after connection setup is completed.

M/O	PDU	Contents
O(10)	LMP_auto_rate	-
O(10)	LMP_preferred_rate	data rate

Table 4.7: PDUs used for quality driven change of the data rate.

Sequence 10: A notifies B to enable CQDDR

Sequence 11: B sends A a preferred packet type

😵 Bluetooth

4.1.8 Quality of service (QoS)

The LM provides QoS capabilities. A poll interval, T_{poll} , that is defined as the maximum time between transmissions from the master to a particular slave on the ACL logical transport, is used to support bandwidth allocation and latency control - see Baseband Specification, Section 8.6.1, on page 169 for details. The poll interval is guaranteed in the active and sniff modes except when there are collisions with page, page scan, inquiry and inquiry scan, during time critical LMP sequences in the current piconet and any other piconets in which the Bluetooth device is a member, and during critical baseband sequences (such as the page response, initial connection state until the first POLL, and master slave switch). These PDUs maybe sent at anytime after connection setup is completed.

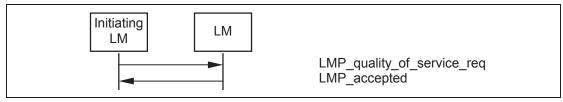
Master and slave negotiate the number of repetitions for broadcast packets (N_{BC}) , see Baseband Specification, Section 7.6.5, on page 150.

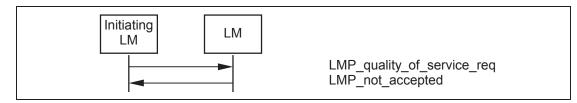
M/O	PDU	Contents
М	LMP_quality_of_service	poll interval N _{BC}
М	LMP_quality_of_service_req	poll interval N _{BC}

 Table 4.8:
 PDUs used for quality of service.

4.1.8.1 Master notifies slave of the quality of service

The master notifies the slave of the new poll interval and N_{BC} by sending the LMP_quality_of_service PDU. The slave cannot reject the notification.


Sequence 12: Master notifies slave of quality of service.


4.1.8.2 Device requests new quality of service

Either the master or the slave may request a new poll interval and N_{BC} by sending an LMP_quality_of_service_req PDU to the slave. The parameter N_{BC} is meaningful only when it is sent by a master to a slave. For transmission of LMP_quality_of_service_req PDUs from a slave, this parameter shall be ignored by the master. The request can be accepted or rejected. This allows the master and slave to dynamically negotiate the quality of service as needed.

The selected poll interval by the slave shall be less than or equal to the specified Access Latency for the outgoing traffic of the ACL link (see L2CAP "Quality of Service (QoS) Option" on page 60[vol. 4]).

Sequence 13: Device accepts new quality of service

Sequence 14: Device rejects new quality of service.

Bluetooth

Link Manager Protocol

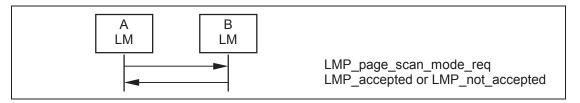
4.1.9 Paging scheme parameters

LMP provides a means to negotiate the paging scheme parameters that are used the next time a device is paged.

M/O	PDU	Contents
O(17)	LMP_page_mode_req	paging scheme paging scheme settings
O(17)	LMP_page_scan_mode_req	paging scheme paging scheme settings

Table 4.9: PDUs used to request paging scheme.

4.1.9.1 Page mode

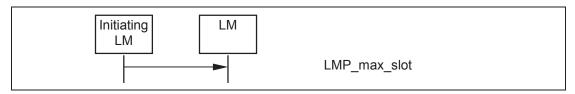

This procedure is initiated from device A and negotiates the paging scheme used when device A pages device B. Device A proposes a paging scheme including the parameters for this scheme and device B can accept or reject. On rejection the old setting will not be changed. A request to switch to a reserved paging scheme shall be rejected.

Sequence 15: Negotiation for page mode.

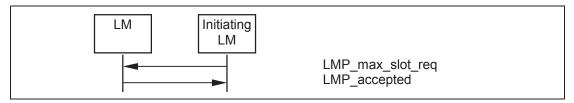
4.1.9.2 Page scan mode

This procedure is initiated from device A and negotiates the paging scheme and paging scheme settings used when device B pages device A. Device A proposes a paging scheme and paging scheme settings and device B may accept or reject. On reject the old setting is not changed. A request specifying the mandatory scheme shall be accepted. A request specifying a non-mandatory scheme shall be rejected. This procedure should be used when device A changes its paging scheme settings. A slave should also send this message to the master after connection establishment, to inform the master of the slave's current paging scheme and paging scheme settings.

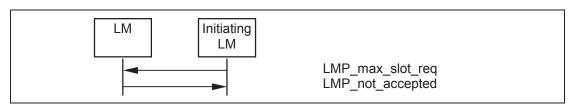
Sequence 16: Negotiation for page scan mode



4.1.10 Control of multi-slot packets


The number of consecutive slots used by a device on an ACL-U logical link can be limited. It does not affect traffic on the eSCO links where the packet sizes are defined as part of link setup. A device allows the remote device to use a maximum number of slots by sending the PDU LMP_max_slot providing max slots as parameter. Each device can request to use a maximal number of slots by sending the PDU LMP_max_slot_req providing max slots as parameter. After a new connection, as a result of page, page scan, role switch or unpark, the default value is 1 slot. These PDUs can be sent at anytime after connection setup is completed.

M/O	PDU	Contents
М	LMP_max_slot	max slots
М	LMP_max_slot_req	max slots


Table 4.10: PDUs used to control the use of multi-slot packets.

Sequence 17: Device allows Remote Device to use a maximum number of slots.

Sequence 18: Device requests a maximum number of slots. Remote Device accepts.

Sequence 19: Device requests a maximum number of slots. Remote Device rejects.

4.1.11 Enhanced Data Rate

A device may change the packet type table, ptt, to select which if any of the optional modulation schemes are to be used on an ACL logical transport.

😵 Bluetooth°

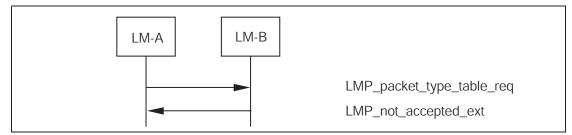
Either the master or the slave may request a new packet type table and therefore the modulation scheme to be used on this ACL link. After a new baseband connection, as a result of page or page scan, the default value for ptt shall be 0.

The change of the modulation mode for an ACL logical transport shall not affect the packet types used for an associated SCO logical transport on the same LT_ADDR.

Note: Enhanced Data Rate eSCO links are negotiated using the LMP eSCO link_req as described in section 4.6.2.

Before changing the packet type table, the initiator shall finalize the transmission of the current ACL packet with ACL-U information and shall stop ACL-U transmissions. It shall then send the LMP_packet_type_table_req PDU.

If the receiver rejects the change, then it shall respond with an LMP_not_accepted_ext PDU.


If the receiver accepts the change, then it shall finalize the transmission of the current ACL packet with ACL-U information and shall stop ACL-U transmissions, it shall change to the new packet type table and shall respond with an LMP_accepted_ext PDU. When it receives the baseband level acknowledgement for the LMP_accepted_ext PDU it shall restart ACL-U transmissions.

When the initiator receives an LMP_not_accepted_ext PDU the initiator shall restart ACL-U transmissions.

When the initiator receives an LMP_accepted_ext PDU it shall change the packet type table and restart ACL-U transmissions.

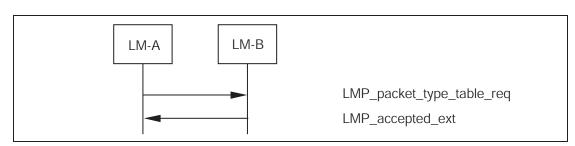

M/O	PDU	Contents
O(25)	LMP_packet_type_table_req	packet type table

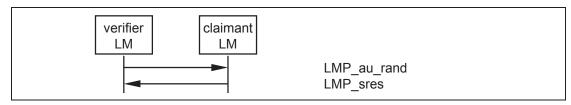
 Table 4.11: PDUs used for Enhanced Data Rate

Sequence 20: Packet type table change is rejected.

Sequence 21: Packet type table change is accepted.

4.2 SECURITY

4.2.1 Authentication


The authentication procedure is based on a challenge-response scheme as described in [Part H] Section 3.2.2 on page 780. The verifier sends an LMP_au_rand PDU that contains a random number (the challenge) to the claimant. The claimant calculates a response, that is a function of this challenge, the claimant's BD_ADDR and a secret key. The response is sent back to the verifier, that checks if the response was correct or not. The response shall be calculated as described in [Part H] Section 6.1 on page 801. A successful calculation of the authentication response requires that two devices share a secret key. This key is created as described in Section 4.2.2 on page 251. Both the master and the slave can be verifiers.

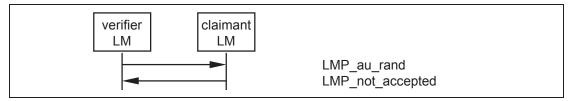
M/O	PDU	Contents
М	LMP_au_rand	random number
М	LMP_sres	authentication response

Table 4.12: PDUs used for authentication.

4.2.1.1 Claimant has link key

If the claimant has a link key associated with the verifier, it shall calculate the response and sends it to the verifier with LMP_sres. The verifier checks the response. If the response is not correct, the verifier can end the connection by sending an LMP_detach PDU with the error code *authentication failure*, see Section 4.1.2 on page 234.

Sequence 22: Authentication. Claimant has link key.


😵 Bluetooth®

Upon reception of an LMP_au_rand, an LM shall reply with LMP_sres before initiating its own authentication.

Note: there can be concurrent requests caused by the master and slave simultaneously initiating an authentication. The procedures in Section 2.5.1 on page 223 assures that devices will not have different Authenticated Ciphering Offset (ACO, see [Part H] Section 6.1 on page 801) when they calculate the encryption key.

4.2.1.2 Claimant has no link key

If the claimant does not have a link key associated with the verifier it shall send an LMP_not_accepted PDU with the error code *key missing* after receiving an LMP_au_rand PDU.

Sequence 23: Authentication fails. Claimant has no link key.

4.2.1.3 Repeated attempts

The scheme described in [Part H] Section 5.1 on page 799 shall be applied when an authentication fails. This will prevent an intruder from trying a large number of keys in a relatively short time.

4.2.2 Pairing

When two devices do not have a common link key an initialization key (K_{init}) shall be created based on a PIN, and a random number and a BD_ADDR. K_{init} shall be created as specified in [Part H] Section 6.3 on page 805. When both devices have calculated K_{init} the link key shall be created, and a mutual authentication is performed. The pairing procedure starts with a device sending an LMP_in_rand PDU; this device is referred to as the "initiating LM" or "initiator" in Section 4.2.2.1 on page 251 - Section 4.2.2.5 on page 253. The other device is referred to as the "responding LM" or "responder". The PDUs used in the pairing procedure are:

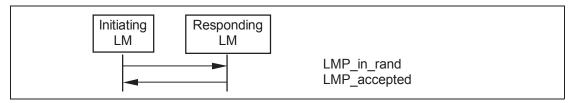
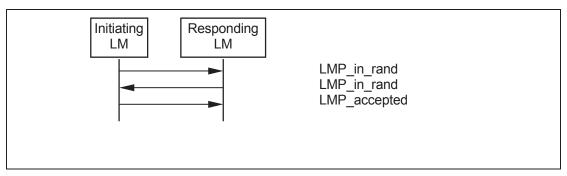

M/O	PDU	Contents
М	LMP_in_rand	random number
Μ	LMP_au_rand	random number
М	LMP_sres	authentication response
М	LMP_comb_key	random number
М	LMP_unit_key	key

Table 4.13: PDUs used for pairing

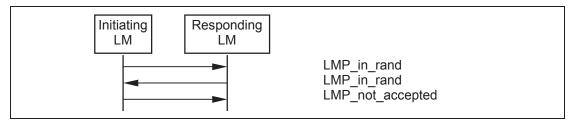
All sequences described in Section 4 on page 233, including the mutual authentication after the link key has been created, shall form a single transaction. The transaction ID from the first LMP_in_rand shall be used for all subsequent sequences.

4.2.2.1 Responder accepts pairing

When the initiator sends an LMP_in_rand PDU and the responder shall reply with an LMP_accepted PDU. Both devices shall then calculate K_{init} based on the BD_ADDR of the responder and the procedure continues with creation of the link key; see Section 4.2.2.4 on page 253.

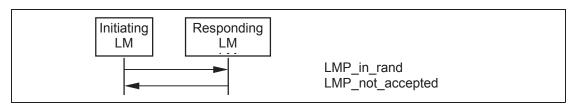


Sequence 24: Pairing accepted. Responder has a variable PIN. Initiator has a variable or fixed PIN.


4.2.2.2 Responder has a fixed PIN

If the responder has a fixed PIN it shall generate a new random number and send it back in an LMP_in_rand PDU. If the initiator has a variable PIN it shall accept the LMP_in_rand PDU and shall respond with an LMP_accepted PDU. Both sides shall then calculate K_{init} based on the last IN_RAND and the BD_ADDR of the initiator. The procedure continues with creation of the link key; see Section 4.2.2.4 on page 253.

Sequence 25: Responder has a fixed PIN and initiator has a variable PIN.


If the responder has a fixed PIN and the initiator also has a fixed PIN, the second LMP_in_rand shall be rejected by the initiator sending an LMP not accepted PDU with the error code *pairing not allowed*.

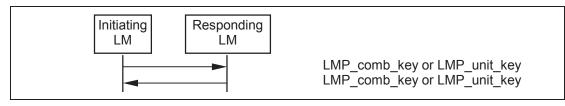
Sequence 26: Both devices have a fixed PIN.

4.2.2.3 Responder rejects pairing

If the responder rejects pairing it shall send an LMP_not_accepted PDU with the error code *pairing not allowed* after receiving an LMP_in_rand PDU.

Sequence 27: Responder rejects pairing.

4.2.2.4 Creation of the link key


When K_{init} is calculated in both devices the link key shall be created. This link key will be used in the authentication between the two devices for all subsequent connections until it is changed; see Section 4.2.3 on page 254 and Section 4.2.4 on page 255. The link key created in the pairing procedure will either be a combination key or one of the device's unit keys. The following rules shall apply to the selection of the link key:

- if one device sends an LMP_unit_key PDU and the other device sends LMP_comb_key, the unit key will be the link key.
- if both devices send an LMP_unit_key PDU, the master's unit key will be the link key.
- if both devices send an LMP_comb_key PDU, the link key shall be calculated as described in [Part H] Section 3.2 on page 779.

The content of the LMP_unit_key PDU is the unit key bitwise XORed with K_{init} . The content of the LMP_comb_key PDU is LK_RAND bitwise XORed with K_{init} . Any device configured to use a combination key shall store the link key.

The use of unit keys is deprecated since it is implicitly insecure.

When the link key, combination or unit key, has been created mutual authentication shall be performed to confirm that the same link key has been created in both devices. The first authentication in the mutual authentication is performed with the initiator as the verifier. When finalized an authentication in the reverse direction is performed.

Sequence 28: Creation of the link key.

4.2.2.5 Repeated attempts

When the authentication after creation of the link key fails because of an incorrect authentication response, the same scheme as in Section 4.2.1.3 on page 250 shall be used. This prevents an intruder from trying a large number of different PINs in a relatively short time.

4.2.3 Change link key

If the link key is derived from combination keys and the current link is the semipermanent link key, the link key can be changed. If the link key is a unit key, the devices shall go through the pairing procedure in order to change the link key. The contents of the LMP_comb_key PDU is protected by a bitwise XOR with the current link key.

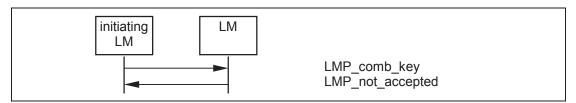

M/O	PDU	Contents
Μ	LMP_comb_key	random number

Table 4.14: PDUs used for change of link key.

All sequences described in Section 4.2.3, including the mutual authentication after the link key has been changed, shall form a single transaction. The transaction ID from the first LMP_comb_key PDU shall be used for all subsequent sequences.

Sequence 29: Successful change of the link key.

Sequence 30: Change of the link key not possible since the other device uses a unit key.

If the change of link key is successful the new link key shall be stored and the old link key shall be discarded. The new link key shall be used as link key for all the following connections between the two devices until the link key is changed again. The new link key also becomes the current link key. It will remain the current link key until the link key is changed again, or until a temporary link key is created, see Section 4.2.4 on page 255.

When the new link key has been created mutual authentication shall be performed to confirm that the same link key has been created in both devices. The first authentication in the mutual authentication is performed with the device that initiated change link key as verifier. When finalized an authentication in the reverse direction is performed.

4.2.4 Change current link key type

The current link key can be a semi-permanent link key or a temporary link key. It may be changed temporarily, but the change shall only be valid for the current connection, see [Part H] Section 3.1 on page 777. Changing to a temporary link key is necessary if the piconet is to support encrypted broadcast. The current link key may not be changed before the connection establishment procedure has completed. This feature is only supported if broadcast encryption is supported as indicated by the LMP features mask.

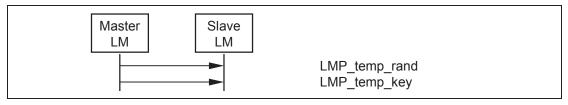

M/O	PDU	Contents
O(23)	LMP_temp_rand	random number
O(23)	LMP_temp_key	key
O(23)	LMP_use_semi_permanent_key	-

Table 4.15: PDUs used to change the current link key.

4.2.4.1 Change to a temporary link key

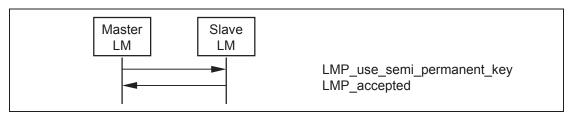
The master starts by creating the master key K_{master} as specified in Security Specification (EQ 4), on page 784. Then the master shall generate a random number, RAND, and shall send it to the slave in an LMP_temp_rand PDU. Both sides then calculate an overlay denoted OVL as OVL= E_{22} (current link key, RAND, 16). The master shall then send K_{master} protected by a modulo-2 addition with OVL to the slave in an LMP_temp_key PDU. The slave calculates K_{master} , based on OVL, that becomes the current link key. It shall be the current link key until the devices fall back to the semi-permanent link key, see section 4.2.4.2 on page 256.

Note: the terminology in this section is the same as used in [Part H] Section 3.2.8 on page 784.

Sequence 31: Change to a temporary link key.

All sequences described in Section 4.2.4.1 on page 255, including the mutual authentication after K_{master} has been created, shall form a single transaction. The transaction ID shall be set to 0.

When the devices have changed to the temporary key, a mutual authentication shall be made to confirm that the same link key has been created in both devices. The first authentication in the mutual authentication shall be per-


😵 Bluetooth°

formed with the master as verifier. When finalized an authentication in the reverse direction is performed.

Should the mutual authentication fail at either side, the LM of the verifier should start the detach procedure. This will allow the procedure to succeed even though one of the devices may be erroneous.

4.2.4.2 Make the semi-permanent link key the current link key

After the current link key has been changed to K_{master} , this change can be undone and the semi-permanent link key becomes the current link key again. If encryption is used on the link, the procedure to go back to the semi-permanent link key shall be immediately followed by the master stopping encryption using the procedure described in Section 4.2.5.4 on page 260. Encryption may be restarted by the master according to the procedures in section 4.2.5.1 on page 257 subsection 3. This is to assure that encryption with encryption parameters known by other devices in the piconet is not used when the semi-permanent link key is the current link key.

Sequence 32: Link key changed to the semi-permanent link key.

4.2.5 Encryption

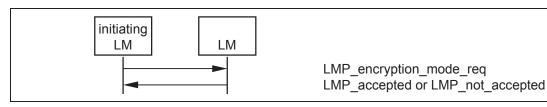
If at least one authentication has been performed encryption may be used. In order for the master to use the same encryption parameters for all slaves in the piconet it shall issue a temporary key, K_{master} . The master shall make this key the current link key for all slaves in the piconet before encryption is started, see Section 4.2.4 on page 255. This is required if broadcast packets are to be encrypted.

M/O	PDU	Contents
0	LMP_encryption_mode_req	encryption mode
0	LMP_encryption_key_size_req	key size
0	LMP_start_encryption_req	random number
0	LMP_stop_encryption_req	-

Table 4.16: PDUs used for handling encryption.

All sequences described in Section 4.2.5 shall form a single transaction. The transaction ID from the LMP_encryption_mode_req PDU shall be used for all subsequent sequences.

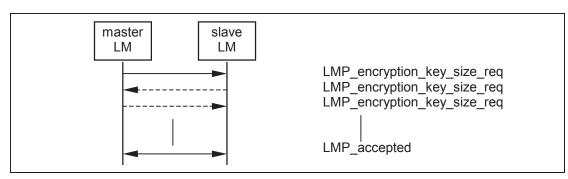
4.2.5.1 Encryption mode


The master and the slave must agree upon whether to use encryption (encryption mode=1 in Imp_encryption_mode_req) or not (encryption mode=0). If the semi-permanent key is used (Key_Flag=0x00) encryption shall only apply to point-to-point packets. If the master link key is used (Key_Flag=0x01) encryption shall apply to both point-to-point packets and broadcast packets. If master and slave agree on the encryption mode, the master continues to give more detailed information about the encryption.

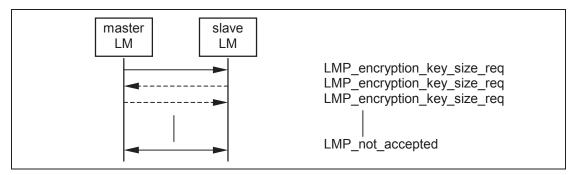
Devices should never send LMP_encryption_mode_req with an encryption mode value of 2 however for backwards compatibility if the LMP_encryption_mode_req is received with an encryption mode value of 2 then it should be treated the same as an encryption mode value of 1.

The initiating LM shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). The initiating device shall then send the LMP_encryption_mode_req PDU. If the responding device accepts the change in encryption mode then it shall complete the transmission of the current packet on the ACL logical transport and shall then suspend transmission on the ACL-U logical link. The responding device shall then send the LMP_accepted PDU.

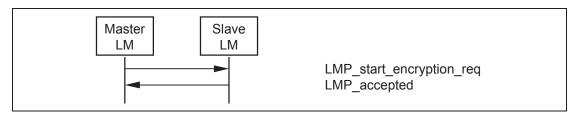
ACL-U logical link traffic shall only be resumed after the attempt to encrypt or decrypt the logical transport is completed i.e. at the end of Sequence 33, 34 or 35.


Sequence 33: Negotiation for encryption mode.

After a device has sent an LMP_encryption_mode_req PDU it shall not send an LMP_au_rand PDU before encryption is started. After a device has received an LMP_encryption_mode_req PDU and sent an LMP_accepted PDU it shall not send an LMP_au_rand PDU before encryption is started. If an LMP_au_rand PDU is sent violating these rules, the claimant shall respond with an LMP_not_accepted PDU with the error code *PDU not allowed*. This assures that devices will not have different ACOs when they calculate the encryption key. If the encryption mode is not accepted or the encryption key size negotiation results in disagreement the devices may send an LMP_au_rand PDU again.


4.2.5.2 Encryption key size

Note: this section uses the same terms as in [Part H] Section 4.1 on page 788. The master sends an LMP_encryption_key_size_req PDU including the suggested key size L_{suq} , m, that is initially equal to $L_{max, m}$. If $L_{min, s} \leq L_{suq, m}$ and the slave supports L_{sug, m} it shall respond with an LMP_accepted PDU and L_{sug, m} shall be used as the key size. If both conditions are not fulfilled the slave sends back an LMP_encryption_key_size_req PDU including the slave's suggested key size L_{sug. s}. This value shall be the slave's largest supported key size that is less than L_{sug. m}. Then the master performs the corresponding test on the slave's suggestion. This procedure is repeated until a key size agreement is reached or it becomes clear that no such agreement can be reached. If an agreement is reached a device sends an LMP accepted PDU and the key size in the last LMP_encryption_key_size_req PDU shall be used. After this, encryption is started; see Section 4.2.5.3 on page 259. If an agreement is not reached a device sends an LMP_not_accepted PDU with the error code unsupported parameter value and the devices shall not communicate using encryption.


Sequence 34: Encryption key size negotiation successful.

Sequence 35: Encryption key size negotiation failed.

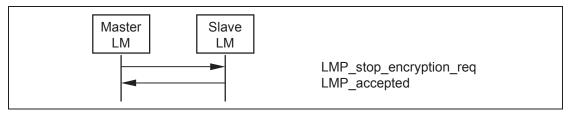
4.2.5.3 Start encryption

To start encryption, the master issues the random number EN_RAND and calculates the encryption key. See [Part H] Section 3.2.5 on page 782. The random number shall be the same for all slaves in the piconet when broadcast encryption is used. The master then sends an LMP_start_encryption_req PDU, that includes EN_RAND. The slave shall calculate the encryption key when this message is received and shall acknowledge with an LMP_accepted PDU.

Sequence 36: Start of encryption.

Starting encryption shall be performed in three steps:

- 1. Master is configured to transmit unencrypted packets and to receive encrypted packets.
- 2. Slave is configured to transmit and receive encrypted packets.
- 3. Master is configured to transmit and receive encrypted packets.


😵 Bluetooth°

Between step 1 and step 2, master-to-slave transmission is possible. This is when an LMP_start_encryption_req PDU is transmitted. Step 2 is triggered when the slave receives this message. Between step 2 and step 3, slave-to-master

transmission is possible. This is when an LMP_accepted PDU is transmitted. Step 3 is triggered when the master receives this message.

4.2.5.4 Stop encryption

To stop encryption a device shall send an LMP_encryption_mode_req PDU with the parameter encryption mode equal to 0 (no encryption). The other device responds with an LMP_accepted PDU or an LMP_not_accepted PDU (the procedure is described in Sequence 33 in section 4.2.5.1 on page 257). If accepted, encryption shall be stopped by the master sending an LMP_stop_encryption_req PDU and the slave shall respond with an LMP_accepted PDU according to Sequence 37.

Sequence 37: Stop of encryption.

Stopping encryption shall be performed in three steps, similar to the procedure for starting encryption.

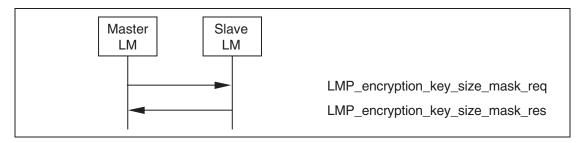
- 1. Master is configured to transmit encrypted packets and to receive unencrypted packets.
- 2. Slave is configured to transmit and receive unencrypted packets.
- 3. Master is configured to transmit and receive unencrypted packets.

Between step 1 and step 2 master to slave transmission is possible. This is when an LMP_stop_encryption_req PDU is transmitted. Step 2 is triggered when the slave receives this message. Between step 2 and step 3 slave to master transmission is possible. This is when an LMP_accepted PDU is transmitted. Step 3 is triggered when the master receives this message.

4.2.5.5 Change encryption mode, key or random number

If the encryption key or encryption random number need to be changed or if the current link key needs to be changed according to the procedures in Section 4.2.4 on page 255, encryption shall be stopped and re-started after completion, using the procedures in Section 4.2.5 on page 257, subsections 3-4 for the new parameters to take effect.

4.2.6 Request supported encryption key size


When broadcast encryption is supported via the LMP features mask, it is possible for the master to request a slave's supported encryption key sizes.

M/O	PDU	Contents
O(23)	LMP_encryption_key_size_mask_req	
O(23)	LMP_encryption_key_size_mask_res	key size mask

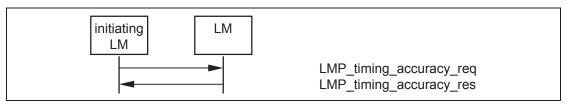
Table 4.17: PDUs used for encryption key size request

The master shall send an LMP_key_size_req PDU to the slave to obtain the slaves supported encryption key sizes.

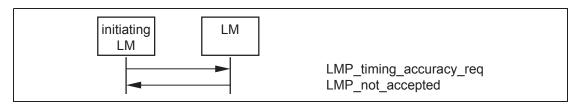
The slave shall return a bit mask indicating all broadcast encryption key sizes supported. The least significant bit shall indicate support for a key size of 1, the next most significant bit shall indicate support for a key size of 2 and so on up to a key size of 16. In all cases a bit set to 1 shall indicate support for a key size; a bit set to 0 shall indicate that the key size is not supported.

Sequence 38: Request for supported encryption key sizes.

😵 Bluetooth°


4.3 INFORMATIONAL REQUESTS

4.3.1 Timing accuracy

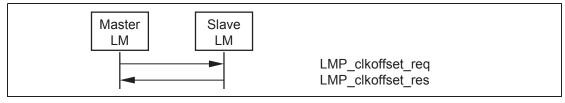

LMP supports requests for the timing accuracy. This information can be used to minimize the scan window during piconet physical channel re-synchronization (see Baseband Specification, Section 2.2.5.2, on page 74). The timing accuracy parameters returned are the long term drift measured in ppm and the long term jitter measured in μ s of the worst case clock used. These parameters are fixed for a certain device and shall be identical when requested several times. Otherwise, the requesting device shall assume worst case values (drift=250ppm and jitter=10µs).

M/O	PDU	Contents
O(4)	LMP_timing_accuracy_req	-
O(4)	LMP_timing_accuracy_res	drift
		jitter

Table 4.18: PDUs used for requesting timing accuracy information.

Sequence 39: The requested device supports timing accuracy information.

Sequence 40: The requested device does not support timing accuracy information.


4.3.2 Clock offset

The clock offset can be used to speed up the paging time the next time the same device is paged. The master can request the clock offset at anytime following a successful baseband paging procedure (i.e., before, during or after connection setup). The clock offset shall be defined by the following equation:

(CLKN_{16-2 slave} - CLKN_{16-2 master}) mod 2**15.

M/O	PDU	Contents
М	LMP_clkoffset_req	-
М	LMP_clkoffset_res	clock offset

Table 4.19: PDUs used for clock offset request.

Sequence 41: Clock offset requested.

4.3.3 LMP version

LMP supports requests for the version of the LM protocol. The LMP_version_req and LMP_version_res PDUs contain three parameters: VersNr, Compld and SubVersNr. VersNr specifies the version of the Bluetooth LMP specification that the device supports. Compld is used to track possible problems with the lower Bluetooth layers. All companies that create a unique implementation of the LM shall have their own Compld. The same company is also responsible for the administration and maintenance of the SubVersNr. It is recommended that each company has a unique SubVersNr for each RF/BB/LM implementation. For a given VersNr and Compld, the values of the SubVersNr shall increase each time a new implementation is released. For both Compld and SubVersNr the value 0xFFFF means that no valid number applies. There is no ability to negotiate the version of the LMP. The sequence below is only used to exchange the parameters. LMP version can be requested at anytime following a successful baseband paging procedure.

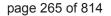
Bluetooth

Link Manager Protocol

M/O	PDU	Contents
М	LMP_version_req	VersNr Compld SubVersNr
М	LMP_version_res	VersNr Compld SubVersNr

Table 4.20: PDUs used for LMP version request.

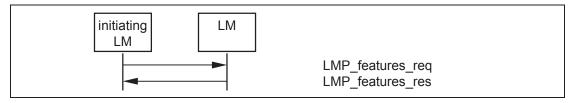
Sequence 42: Request for LMP version.

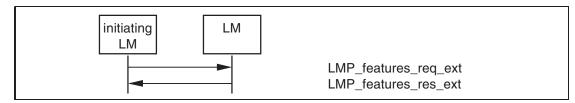

4.3.4 Supported features

The supported features may be requested at anytime following a successful baseband paging procedure by sending the LMP_features_req PDU. Upon reception of an LMP_features_req PDU, the receiving device shall return an LMP_features_res PDU.

The number of features bits required will in the future exceed the size of a single page of features. An extended features mask is therefore provided to allow support for more than 64 features. Support for the extended features mask is indicated by the presence of the appropriate bit in the LMP features mask. The LMP_features_req_ext and LMP_features_res_ext PDUs operate in precisely the same way as the LMP_features_req and LMP_features_res PDUs except that they allow the various pages of the extended features mask to be requested. The LMP_features_req_ext may be sent at any time following the exchange of the LMP_features_req and LMP_features_rsp PDUs.

The LMP_features_req_ext PDU contains a feature page index that specifies which page is requested and the contents of that page for the requesting device. Pages are numbered from 0-255 with page 0 corresponding to the normal features mask. Each page consists of 64 bits. If a device does not support any page number it shall return a mask with every bit set to 0. It also contains the maximum features page number containing any non-zero bit for this device. The recipient of an LMP_features_req_ext PDU shall respond with an LMP_features_res_ext PDU containing the same page number and the appropriate features page along with its own maximum features page number.


If the extended features request is not supported then all bits in all extended features pages for that device shall be assumed to be zero.



M/O	PDU	Contents
М	LMP_features_req	features
М	LMP_features_res	features
O(63)	LMP_features_req_ext	features page max supported page extended features
O(63)	LMP_features_res_ext	features page max supported page extended features

Table 4.21: PDUs used for features request.

Sequence 43: Request for supported features.

Sequence 44: Request for extended features.

🚯 Bluetooth°

Link Manager Protocol

4.3.5 Name request

LMP supports name request to another device. The name is a user-friendly name associated with the device and consists of a maximum of 248 bytes coded according to the UTF-8 standard. The name is fragmented over one or more DM1 packets. When an LMP_name_req PDU is sent, a name offset indicates which fragment is expected. The corresponding LMP_name_res PDU carries the same name offset, the name length indicating the total number of bytes in the name of the device and the name fragment, where:

- name fragment(N) = name(N + name offset), if (N + name offset) < name length
- name fragment(N) = 0,otherwise.

Here $0 \le N \le 13$. In the first sent LMP_name_req PDU, name offset=0. Sequence 45 is then repeated until the initiator has collected all fragments of the name. The name request may be made at any time following a successful baseband paging procedure.

M/O	PDU	Contents
М	LMP_name_req	name offset
М	LMP_name_res	name offset name length name fragment

Table 4.22: PDUs used for name request.

Sequence 45: Device's name requested and it responses.

4.4 ROLE SWITCH

4.4.1 Slot offset

With LMP_slot_offset the information about the difference between the slot boundaries in different piconets is transmitted. The LMP_slot_offset PDU may be sent anytime after the baseband paging procedure has completed. This PDU carries the parameters slot offset and BD_ADDR. The slot offset shall be the time in microseconds between the start of a master transmission in the current piconet to the start of the next following master transmission in the piconet where the BD_ADDR device (normally the slave) is master at the time that the request is interpreted by the BD_ADDR device.

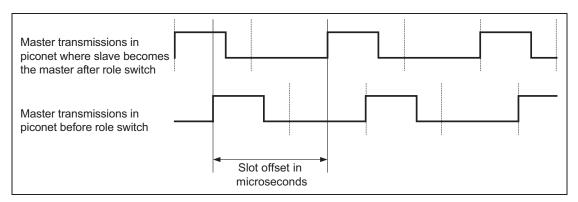


Figure 4.2: Slot offset for role switch.

See Section 4.4 on page 267 for the use of LMP_slot_offset in the context of the role switch. In the case of role switch the BD_ADDR is that of the slave device.

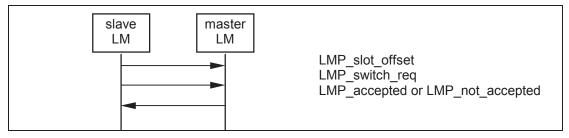
M/O	PDU	Contents
O(3)	LMP_slot_offset	slot offset
		BD_ADDR

Table 4.23: PDU used for slot offset information.

Sequence 46: Slot offset information is sent.

4.4.2 Role switch

Since the paging device always becomes the master of the piconet, a switch of the master slave role is sometimes needed, see Baseband Specification, Section 8.6.5, on page 175. The LMP_switch_req PDU may be sent anytime after the baseband paging procedure has completed.

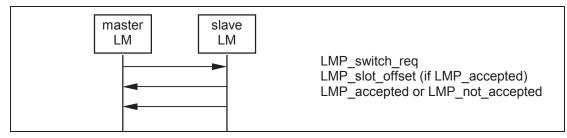

Support for LMP_slot_offset is mandatory if LMP_switch_req is supported.

The LMP_slot_offset shall be sent only if the ACL logical transport is in active mode. The LMP_switch_req shall be sent only if the ACL logical transport is in active mode, when encryption is disabled, and all synchronous logical transports on the same physical link are disabled. Additionally, LMP_slot_offset or LMP_switch_req shall not be initiated or accepted while a synchronous logical transport is being negotiated by LM.

M/O	PDU	Contents
O(5)	LMP_switch_req	switch instant
O(5)	LMP_slot_offset	slot offset BD_ADDR

Table 4.24: PDUs used for role switch.

The initiating LM shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). It shall then send an LMP_slot_offset PDU immediately followed by an LMP_switch_req PDU. If the master accepts the role switch it shall pause traffic on the ACL-U logical link (seeBaseband Specification, Section 5.3.1, on page 108) and respond with an LMP_accepted PDU. When the role switch has been completed at the baseband level (successfully or not) both devices re-enable transmission on the ACL-U logical link. If the master rejects the role switch it responds with an LMP_not_accepted PDU and the slave re-enables transmission on the ACL-U logical link. The transaction ID for all PDUs in the sequence shall be set to 1.



Sequence 47: Role switch (slave initiated).

If the master initiates the role switch it shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108) and send an LMP_switch_req PDU. If the slave accepts the role switch it shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108) and responds with an LMP_slot_offset PDU immediately followed by an

<table-of-contents> Bluetooth°

LMP_accepted PDU. When the role switch has been completed at the baseband (successfully or not) both devices re-enable transmission on the ACL-U logical link. If the slave rejects the role switch it responds with an LMP_not_accepted PDU and the master re-enables transmission on the ACL-U logical link. The transaction ID for all PDUs in the sequence shall be set to 0.

Sequence 48: Role switch (master initiated).

The LMP_switch_req PDU contains a parameter, switch instant, which specifies the instant at which the TDD switch is performed. This is specified as a Bluetooth clock value of the master's clock, that is available to both devices. This instant is chosen by the sender of the message and shall be at least 2^{T} _{poll} or 32 (whichever is greater) slots in the future. The switch instant shall be within 12 hours of the current clock value to avoid clock wrap.

The sender of the LMP_switch_req PDU selects the switch instant and queues the LMP_switch_req PDU to LC for transmission and starts a timer to expire at the switch instant. When the timer expires it initiates the mode switch. In the case of a master initiated switch if the LMP_slot_offset PDU has not been received by the switch instant the role switch is carried out without an estimate of the slave's slot offset. If an LMP_not_accepted PDU is received before the timer expires then the timer is stopped and the role switch shall not be initiated.

When the LMP_switch_req is received the switch instant is compared with the current master clock value. If it is in the past then the instant has been passed and an LMP_not_accepted PDU with the error code *instant passed* shall be returned. If it is in the future then an LMP_accepted PDU shall be returned assuming the role switch is allowed and a timer is started to expire at the switch instant. When this timer expires the role switch shall be initiated.

After a successful role switch the supervision timeout and poll interval (T_{poll}) shall be set to their default values. The authentication state and the ACO shall remain unchanged. Adaptive Frequency Hopping shall follow the procedures described in Baseband Specification, Section 8.6.5, on page 175. The default value for max_slots shall be used.

😵 Bluetooth®

4.5 MODES OF OPERATION

4.5.1 Hold mode

The ACL logical transport of a connection between two Bluetooth devices can be placed in hold mode for a specified hold time. See Baseband Specification, Section 8.8, on page 185 for details.

M/O	PDU	Contents
O(6)	LMP_hold	hold time, hold instant
O(6)	LMP_hold_req	hold time, hold instant

Table 4.25: PDUs used for hold mode.

The LMP_hold and LMP_hold_req PDUs both contain a parameter, hold instant, that specifies the instant at which the hold becomes effective. This is specified as a Bluetooth clock value of the master's clock, that is available to both devices. The hold instant is chosen by the sender of the message and should be at least 6^{T}_{poll} slots in the future. The hold instant shall be within 12 hours of the current clock value to avoid clock wrap.

4.5.1.1 Master forces hold mode

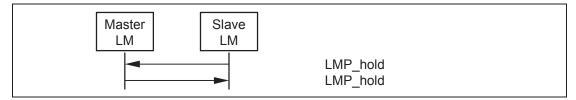
The master may force hold mode if there has previously been a request for hold mode that has been accepted. The hold time included in the PDU when the master forces hold mode shall not be longer than any hold time the slave has previously accepted when there was a request for hold mode.

The master LM shall first pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). It shall select the hold instant and queue the LMP_hold PDU to its LC for transmission. It shall then start a timer to wait until the hold instant occurs. When this timer expires then the connection shall enter hold mode. If the baseband acknowledgement for the LMP_hold PDU is not received then the master may enter hold mode, but it shall not use its low accuracy clock during the hold.

When the slave LM receives an LMP_hold PDU it compares the hold instant with the current master clock value. If it is in the future then it starts a timer to expire at this instant and enters hold mode when it expires.

When the master LM exits from Hold mode it re-enables transmission on the ACL-U logical link.

Sequence 49: Master forces slave into hold mode.


4.5.1.2 Slave forces hold mode

The slave may force hold mode if there has previously been a request for hold mode that has been accepted. The hold time included in the PDU when the slave forces hold mode shall not be longer than any hold time the master has previously accepted when there was a request for hold mode.

The slave LM shall first complete the transmission of the current packet on the ACL logical transport and then shall suspend transmission on the ACL-U logical link. It shall select the hold instant and queue the LMP_hold PDU to its LC for transmission. It shall then wait for an LMP_hold PDU from the master acting according to the procedure described in Section 4.5.1.1.

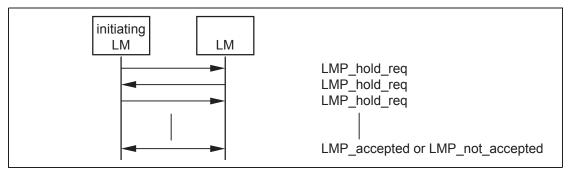
When the master LM receives an LMP_hold PDU it shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). It shall then inspect the hold instant. If this is less than $6^{*}T_{poll}$ slots in the future it shall modify the instant so that it is at least $6^{*}T_{poll}$ slots in the future. It shall then send an LMP_hold PDU using the mechanism described in Section 4.5.1.1.

When the master and slave LMs exit from Hold mode they shall re-enable transmission on the ACL-U logical link.

Sequence 50: Slave forces master into hold mode.

4.5.1.3 Master or slave requests hold mode

The master or the slave can request to enter hold mode. Upon receipt of the request, the same request with modified parameters can be returned or the negotiation can be terminated. If an agreement is seen an LMP_accepted PDU terminates the negotiation and the ACL link is placed in hold mode. If no agreement is seen, an LMP_not_accepted PDU with the error code *unsupported parameter value* terminates the negotiation and hold mode is not entered.


The initiating LM shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). On receiving an LMP_hold_req PDU the receiving LM shall complete the transmission of the current packet on the ACL logical transport and then shall suspend transmission on the ACL-U logical link.

The LM sending the LMP_hold_req PDU selects the hold instant, that shall be at least 9^{T}_{poll} slots in the future. If this is a response to a previous LMP_hold_req PDU and the contained hold instant is at least 9^{T}_{poll} slots in the

😵 Bluetooth°

future then this shall be used. The LMP_hold_req PDU shall then be queued to its LC for transmission and a timer shall be started to expire at this instant and the connection enters hold mode when it expires unless an LMP_not_accepted or LMP_hold_req PDU is received by its LM before that point. If the LM receiving LMP_hold_req PDU agrees to enter hold mode it shall return an LMP_accepted PDU and shall start a timer to expire at the hold instant. When this timer expires it enters hold mode.

When each LM exits from Hold mode it shall re-enable transmission on the ACL-U logical link.

Sequence 51: Negotiation for hold mode.

4.5.2 Park state

If a slave does not need to participate in the channel, but should still remain synchronized to the master, it may be placed in park state. See Baseband Specification, Section 8.9, on page 185 for details.

Note: to keep a parked slave connected the master shall periodically unpark and repark the slave if the supervision timeout is not set to zero (see Baseband Specification, Section 3.1, on page 95).

All PDUs sent from the master to parked slaves are carried on the PSB-C logical link (LMP link of parked slave broadcast logical transport). These PDUs, LMP_set_broadcast_scan_window, LMP_modify_beacon,

LMP_unpark_BD_addr_req and LMP_unpark_PM_addr_req, are the only PDUs that shall be sent to a slave in park state and the only PDUs that shall be broadcast. To increase reliability for broadcast, the packets are as short as possible. Therefore the format for these LMP PDUs are somewhat different. The parameters are not always byte-aligned and the length of the PDUs is variable.

The messages for controlling park state include parameters, defined in Baseband Specification, Section 8.9, on page 185. When a slave is placed in park state it is assigned a unique PM_ADDR, that can be used by the master to unpark that slave. The all-zero PM_ADDR has a special meaning; it is not a valid PM_ADDR. If a device is assigned this PM_ADDR, it shall be identified with its BD_ADDR when it is unparked by the master.

M/O	PDU	Contents
O(8)	LMP_park_req	timing control flags D_B T_B N_B Δ_B PM_ADDR AR_ADDR N_{Bsleep} D_{Bsleep} D_{access} T_{access} $N_{acc-slots}$ N_{poll} M_{access} access scheme
O(8)	LMP_set_broadcast_scan_window	timing control flags D _B (optional) broadcast scan window
O(8)	LMP_modify_beacon	timing control flags D_B (optional) T_B N_B Δ_B D_{access} T_{access} $N_{acc-slots}$ N_{poll} M_{access} access scheme

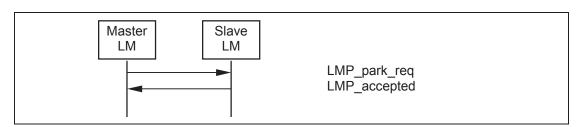
Table 4.26: PDUs used for park state.

😵 Bluetooth®

M/O	PDU	Contents
O(8)	LMP_unpark_PM_ADDR_req	timing control flags D _B (optional) LT_ADDR 1 st unpark LT_ADDR 2 nd unpark PM_ADDR 1 st unpark PM_ADDR 2 nd unpark LT_ADDR 3 rd unpark LT_ADDR 3 rd unpark PM_ADDR 3 rd unpark PM_ADDR 3 rd unpark LT_ADDR 4 th unpark LT_ADDR 5 th unpark LT_ADDR 6 th unpark PM_ADDR 5 th unpark PM_ADDR 5 th unpark PM_ADDR 7 th unpark
O(8)	LMP_unpark_BD_ADDR_req	timing control flags D _B (optional) LT_ADDR LT_ADDR (optional) BD_ADDR BD_ADDR (optional)

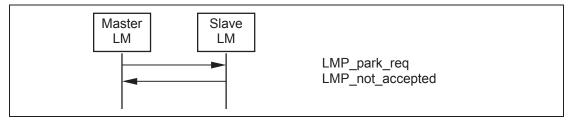
Table 4.26: PDUs used for park state.

4.5.2.1 Master requests slave to enter park state


The master can request park state. The master LM shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108) and then send an LMP_park_req PDU. If the slave agrees to enter park state it shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108). and then respond with an LMP_accepted PDU.

When the slave queues an LMP_accepted PDU it shall start a timer for 6*Tpoll slots. If the baseband acknowledgement is received before this timer expires it shall enter park state immediately otherwise it shall enter park state when the timer expires.

When the master receives an LMP_accepted PDU it shall start a timer for 6*Tpoll slots. When this timer expires the slave is in park state and the LT_ADDR may be re-used.

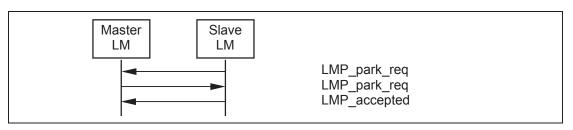

If the master never receives an LMP_accepted PDU then a link supervision timeout will occur.

Sequence 52: Slave accepts to enter park state.

If the slave rejects the attempt to enter park state it shall respond with an LMP_not_accepted PDU and the master shall re-enable transmission on the ACL-U logical link.

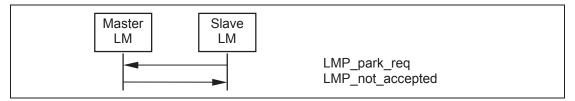
Sequence 53: Slave rejects to enter into park state

4.5.2.2 Slave requests to enter park state

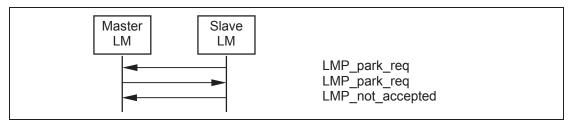

The slave can request park state. The slave LM shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108) and then send an LMP_park_req PDU. When sent by the slave, the parameters PM_ADDR and AR_ADDR are not valid and the other parameters represent suggested values. If the master accepts the slave's request to enter park state it shall pause traffic on the ACL-U logical link (see Baseband Specification, Section 5.3.1, on page 108) and then send an LMP_park_req PDU, where the parameter values may be different from the values in the PDU sent from the slave. If the slave can accept these parameter it shall respond with an LMP_accepted PDU.

When the slave queues an LMP_accepted PDU for transmission it shall start a timer for 6*Tpoll slots. If the baseband acknowledgement is received before this timer expires it shall enter park state immediately otherwise it shall enter park state when the timer expires.

When the master receives an LMP_accepted PDU it shall start a timer for 6*Tpoll slots. When this timer expires the slave is in park state and the LT_ADDR may be re-used.

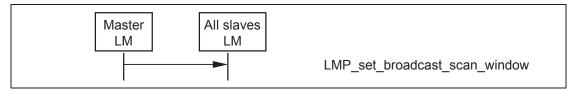

If the master never receives the LMP_accepted PDU then a link supervision timeout will occur.

*	Blu	eto	oth®
---	-----	-----	------


Sequence 54: Slave requests to enter park state and accepts master's beacon parameters.

If the master does not agree that the slave enters park state it shall send an LMP_not_accepted PDU. The slave shall then re-enable transmission on the ACL-U logical link.

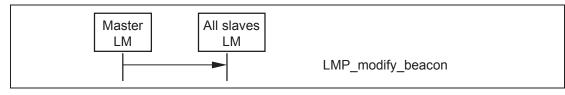
Sequence 55: Master rejects slave's request to enter park state


If the slave does not accept the parameters in the LMP_park_req PDU sent from the master it shall respond with an LMP_not_accepted PDU and both devices shall re-enable transmission on the ACL-U logical link.

Sequence 56: Slave requests to enter park state, but rejects master's beacon parameters.

4.5.2.3 Master sets up broadcast scan window

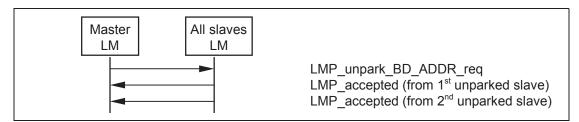
If more broadcast capacity is needed than the beacon train, the master may indicate to the slaves that more broadcast information will follow the beacon train by sending an LMP_set_broadcast_scan_window PDU. This message shall be sent in a broadcast packet at the beacon slot(s). The scan window shall start in the beacon instant and shall only be valid for the current beacon.



Sequence 57: Master notifies all slaves of increase in broadcast capacity.

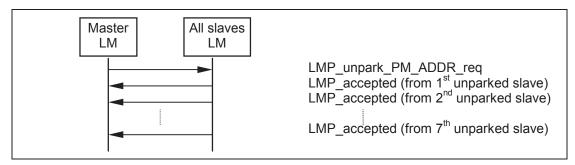
4.5.2.4 Master modifies beacon parameters

When the beacon parameters change the master notifies the parked slaves of this by sending an LMP_modify_beacon PDU. This PDU shall be sent in a broadcast packet.


Sequence 58: Master modifies beacon parameters.

4.5.2.5 Unparking slaves

The master can unpark one or many slaves by sending a broadcast LMP message including the PM_ADDR or the BD_ADDR of the device(s) to be unparked. Broadcast LMP messages are carried on the PSB-C logical link. See Baseband Specification, Section 8.9.5, on page 192 for further details. This message also includes the LT_ADDR that the master assigns to the slave(s). After sending this message, the master shall check the success of the unpark by polling each unparked slave by sending POLL packets, so that the slave is granted access to the channel. The unparked slave shall then send a response with an LMP_accepted PDU. If this message is not received from the slave within a certain time after the master sent the unpark message, the unpark failed and the master shall consider the slave as still being in park state.


One PDU is used where the parked device is identified with the PM_ADDR, and another PDU is used where it is identified with the BD_ADDR. Both messages have variable length depending on the number of slaves the master unparks. For each slave the master wishes to unpark an LT_ADDR followed by the PM_ADDR or BD_ADDR of the device that is assigned this LT_ADDR is included in the payload. If the slaves are identified with the PM_ADDR a maximum of 7 slaves can be unparked with the same message. If they are identified with the BD_ADDR a maximum of 2 slaves can be unparked with the same message.

After a successful unparking, both devices re-enable transmission on the ACL-U logical link.

Sequence 59: Master unparks slaves addressed with their BD_ADDR.

Sequence 60: Master unparks slaves addressed with their PM_ADDR.

4.5.3 Sniff mode

To enter sniff mode, master and slave negotiate a sniff interval T_{sniff} and a sniff offset, D_{sniff} , that specifies the timing of the sniff slots. The offset determines the time of the first sniff slot; after that the sniff slots follow periodically with the sniff interval T_{sniff} . To avoid clock wrap-around during the initialization, one of two options is chosen for the calculation of the first sniff slot. A timing control flag in the message from the master indicates this.Only bit1 of the timing control flag is valid.

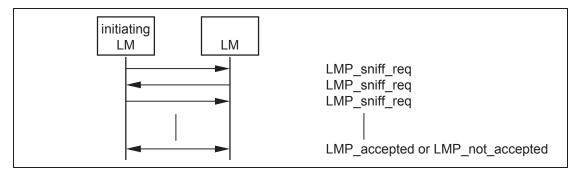
When the ACL logical transport is in sniff mode the master shall only start a transmission in the sniff slots. Two parameters control the listening activity in the slave: the sniff attempt and the sniff timeout. The sniff attempt parameter determines for how many slots the slave shall listen when the slave is not treating this as a scatternet link, beginning at the sniff slot, even if it does not receive a packet with its own LT_ADDR. The sniff timeout parameter determines for how many additional slots the slave shall listen when the slave is not treating this as a scatternet link if it continues to receive only packets with its own LT_ADDR. It is not possible to modify the sniff parameters while the device is in sniff mode.

M/O	PDU	Contents
O(7)	LMP_sniff_req	timing control flags D _{sniff} T _{sniff} sniff attempt sniff timeout
O(7)	LMP_unsniff_req	-

Table 4.27: PDUs used for sniff mode.

4.5.3.1 Master or slave requests sniff mode

Either the master or the slave may request entry to sniff mode.


The process is initiated by sending an LMP_sniff_req PDU containing a set of parameters. The receiving LM shall then decide whether to reject the attempt by sending an LMP_not_accepted PDU, to suggest different parameters by replying with an LMP_sniff_req PDU or to accept the request.

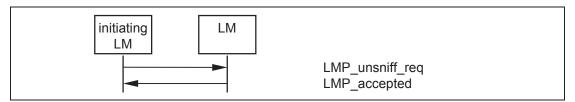
Before the first time that the master sends LMP_sniff_req it shall enter sniff transition mode. If the master receives or sends an LMP_not_accepted PDU it shall exit from sniff transition mode. If the master receives an LMP_sniff_req PDU it shall enter sniff transition mode.

If the master decides to accept the request it shall send an LMP_accepted PDU. When the master receives the baseband acknowledgement for this PDU it shall exit sniff transition mode and enter sniff mode.

If the master receives an LMP_accepted PDU the master shall exit from sniff transition mode and enter sniff mode.

If the slave receives an LMP_sniff_req PDU it must decide whether to accept the request. If the slave does not wish to enter sniff mode then it replies with an LMP_not_accepted PDU. If it is happy to enter sniff mode but requires a different set of parameters it shall respond with an LMP_sniff_req PDU containing the new parameters. If the slave decides that the parameters are acceptable then it shall send an LMP_accepted PDU and enter sniff mode. If the slave receives an LMP_not_accepted PDU it shall terminate the attempt to enter sniff mode.

Sequence 61: Negotiation for sniff mode.


😵 Bluetooth®

4.5.3.2 Moving a slave from sniff mode to active mode

Sniff mode may be exited by either the master or the slave sending an LMP_unsniff_req PDU. The requested device must reply with an LMP_accepted PDU.

If the master requests an exit from sniff mode it shall enter sniff transition mode and then send an LMP_unsniff_req PDU. When the slave receives the LMP_unsniff_req it shall exit from sniff mode and reply with an LMP_accepted PDU. When the master receives the LMP_accepted PDU it shall exit from sniff transition mode and enter active mode.

If the slave requests an exit from sniff mode it shall send an LMP_unsniff_req PDU. When the master receives the LMP_unsniff_req PDU it shall enter sniff transition mode and then send an LMP_accepted PDU. When the slave receives the LMP_accepted PDU it shall exit from sniff mode and enter active mode. When the master receives the baseband acknowledgement for the LMP_accepted PDU it shall leave sniff transition mode and enter active mode.

Sequence 62: Slave moved from sniff mode to active mode.

4.6 LOGICAL TRANSPORTS

When a connection is first established between two devices the connection consists of the default ACL logical links: ACL-C (for LMP messages) and ACL-U (for L2CAP data.) One or more synchronous logical transports (SCO or eSCO) may then be added. A new logical transport shall not be created if it would cause all slots to be allocated to reserved slots on secondary LT_ADDRs.

4.6.1 SCO logical transport

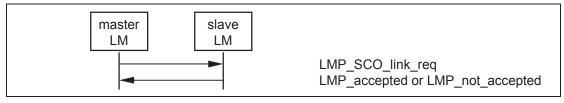
The SCO logical transport reserves slots separated by the SCO interval, T_{sco} . The first slot reserved for the SCO logical transport is defined by T_{sco} and the SCO offset, D_{sco} . See Baseband Specification, Section 8.6.2, on page 169 for details. A device shall initiate a request for HV2 or HV3 packet type only if the other device supports it (bits 12, 13) in its features mask. A device shall initiate CVSD, μ -law or A-law coding or uncoded (transparent) data only if the other device supports the corresponding feature. To avoid problems with a wraparound of the clock during initialization of the SCO logical transport, the timing control flags parameter is used to indicate how the first SCO slot shall be calculated. Only bit1 of the timing control flags parameter is valid. The SCO link is distinguished from all other SCO links by an SCO handle. The SCO handle zero shall not be used.

M/O	PDU	Contents
O(11)	LMP_SCO_link_req	SCO handle timing control flags D _{sco} T _{sco} SCO packet air mode
O(11)	LMP_remove_SCO_link_req	SCO handle error

Table 4.28: PDUs used for managing the SCO links.

4.6.1.1 Master initiates an SCO link

When establishing an SCO link the master sends a request, a LMP_SCO_link_req PDU, with parameters that specify the timing, packet type and coding that will be used on the SCO link. Each of the SCO packet types supports three different voice coding formats on the air-interface: µ-law log PCM, A-law log PCM and CVSD. The air coding by log PCM or CVSD may be deactivated to achieve a transparent synchronous data link at 64 kbits/s.

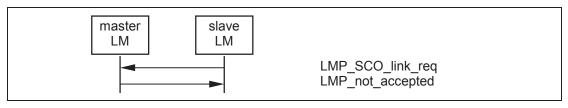

The slots used for the SCO links are determined by three parameters controlled by the master: T_{sco} , D_{sco} and a flag indicating how the first SCO slot is calculated. After the first slot, the SCO slots follow periodically at an interval of T_{sco} .

😵 Bluetooth®

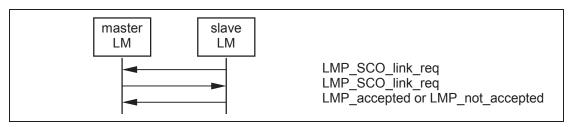
If the slave does not accept the SCO link, but is willing to consider another possible set of SCO parameters, it can indicate what it does not accept in the error code field of LMP_not_accepted PDU. The master may then issue a new request with modified parameters.

The SCO handle in the message shall be different from existing SCO link(s).

If the SCO packet type is HV1 the LMP_accepted shall be sent using the DM1 packet.



Sequence 63: Master requests an SCO link.


4.6.1.2 Slave initiates an SCO link

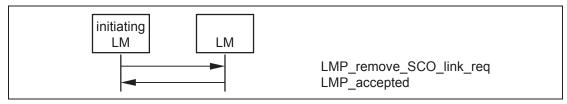
The slave may initiate the establishment of an SCO link. The slave sends an LMP_SCO_link_req PDU, but the parameters timing control flags and D_{sco} are invalid as well as the SCO handle, that shall be zero. If the master is not capable of establishing an SCO link, it replies with an LMP_not_accepted PDU. Otherwise it sends back an LMP_SCO_link_req PDU. This message includes the assigned SCO handle, D_{sco} and the timing control flags. The master should try to use the same parameters as in the slave request; if the master cannot meet that request, it is allowed to use other values. The slave shall then reply with LMP_accepted or LMP_not_accepted PDU.

If the SCO packet type is HV1 the LMP_accepted shall be sent using the DM1 packet.

Sequence 64: Master rejects slave's request for an SCO link.

Sequence 65: Master accepts slave's request for an SCO link.

4.6.1.3 Master requests change of SCO parameters


The master sends an LMP_SCO_link_req PDU, where the SCO handle is the handle of the SCO link the master wishes to change parameters for. If the slave accepts the new parameters, it replies with an LMP_accepted PDU and the SCO link will change to the new parameters. If the slave does not accept the new parameters, it shall reply with an LMP_not_accepted PDU and the SCO link is left unchanged. When the slave replies with an LMP_not_accepted PDU it shall indicate in the error code parameter what it does not accept. The master may then try to change the SCO link again with modified parameters. The sequence is the same as in Section 4.6.1.1 on page 281.

4.6.1.4 Slave requests change of SCO parameters

The slave sends an LMP_SCO_link_req PDU, where the SCO handle is the handle of the SCO link to be changed. The parameters timing control flags and D_{sco} are not valid in this PDU. If the master does not accept the new parameters it shall reply with an LMP_not_accepted PDU and the SCO link is left unchanged. If the master accepts the new parameters it shall reply with an LMP_SCO_link_req PDU containing the same parameters as in the slave request. When receiving this message the slave replies with an LMP_not_accepted PDU if it does not accept the new parameters. The SCO link is then left unchanged. If the slave accepts the new parameters it replies with an LMP_not_accepted PDU and the SCO link will change to the new parameters. The sequence is the same as in Section 4.6.1.2 on page 282.

4.6.1.5 Remove an SCO link

Master or slave can remove the SCO link by sending a request including the SCO handle of the SCO link to be removed and an error code indicating why the SCO link is removed. The receiving side shall respond with an LMP_accepted PDU.

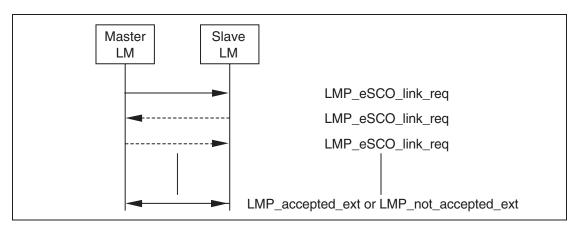
Sequence 66: SCO link removed.

😵 Bluetooth°

4.6.2 eSCO logical transport

After an ACL link has been established, one or more extended SCO (eSCO) links can be set up to the remote device. The eSCO links are similar to SCO links using timing control flags, an interval T_{eSCO} and an offset D_{eSCO} . Only bit1 of the timing control flags parameter is valid. As opposed to SCO links, eSCO links have a configurable data rate that may be asymmetric, and can be set up to provide limited retransmissions of lost or damaged packets inside a retransmission window of size W_{eSCO} . The D_{eSCO} shall be based on CLK.

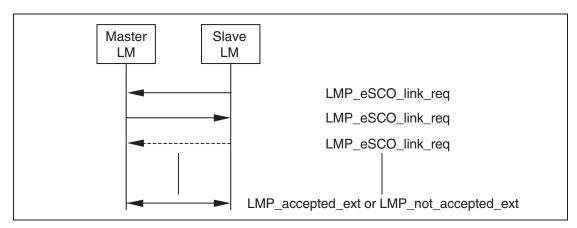
M/O	PDU	Contents
O(31)	LMP_eSCO_link_req	eSCO handle eSCO LT_ADDR timing control flags D _{eSCO} T _{eSCO} W _{eSCO} eSCO packet type M->S eSCO packet type S->M packet length M->S packet length S->M air mode negotiation state
O(31)	LMP_remove_eSCO_link_req	eSCO handle error


Table 4.29: PDUs used for managing the eSCO links

The parameters D_{eSCO} , T_{eSCO} , W_{eSCO} , eSCO packet type M->S, eSCO packet type S->M, packet length M->S, packet length S->M are henceforth referred to as the negotiable parameters.

4.6.2.1 Master initiates an eSCO link

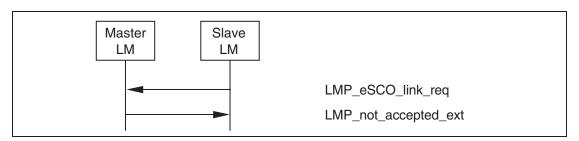
When establishing an eSCO link the master sends an LMP_eSCO_link_req PDU specifying all parameters. The slave may accept this with an LMP_accepted_ext PDU, reject it with an LMP_not_accepted_ext PDU, or respond with its own LMP_eSCO_link_req specifying alternatives for some or all parameters. The slave shall not negotiate the eSCO handle or eSCO LT_ADDR parameters. The negotiation of parameters continues until the master or slave either accepts the latest parameters with an LMP_accepted_ext PDU, or terminates the negotiation with an LMP_not_accepted_ext PDU. The negotiation shall use the procedures defined in Section 4.6.2.5 on page 287.



Sequence 67: Master requests an eSCO link.

4.6.2.2 Slave initiates an eSCO link

When attempting to establish an eSCO link the slave shall send an LMP_eSCO_link_req PDU specifying all parameters, with the exception of eSCO LT_ADDR and eSCO handle, which are invalid. The latter shall be set to zero. The master may respond to this with an LMP_eSCO_link_req PDU, filling in these missing parameters, and potentially changing the other requested parameters. The slave can accept this with an LMP_accepted_ext PDU, or respond with a further LMP_eSCO_link_req PDU specifying alternatives for some or all of the parameters. The negotiation of parameters with an LMP_accepted_ext PDU, or terminates the negotiation with an LMP_accepted_ext PDU, or terminates the negotiation with an LMP_accepted_ext PDU.



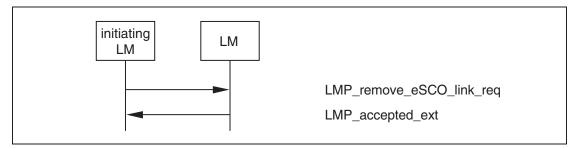
Sequence 68: Slave requests an eSCO link.

Note that the slave should use the initialization flag appropriate to the master's Bluetooth clock. See Baseband section 8.6.3.

The master may reject the request immediately with an LMP_not_accepted_ext PDU. The negotiation shall use the procedures defined in Section 4.6.2.5 on page 287.

Sequence 69: Master rejects slave's request for an eSCO link.

4.6.2.3 Master or slave requests change of eSCO parameters


The master or slave may request a renegotiation of the eSCO parameters. The master or slave shall send an LMP_eSCO_link_req PDU with the eSCO handle of the eSCO link the device wishes to renegotiate. The remote device may accept the changed parameters immediately with LMP_accepted_ext PDU, or the negotiation may be continued with further LMP_eSCO_link_req PDUs until the master or slave accepts the latest parameters with an LMP_accepted_ext PDU or terminates the negotiation with an LMP_not_accepted_ext PDU. In the case of termination with an LMP_not_accepted_ext PDU, the eSCO link continues on the previously negotiated parameters.

The sequence is the same as in Section 4.6.2.2 on page 285.

During re-negotiation, the eSCO LT_ADDR and eSCO handle shall not be renegotiated and shall be set to the originally negotiated values. The negotiation shall use the procedures defined in Section 4.6.2.5 on page 287.

4.6.2.4 Remove an eSCO link

Either the master or slave may remove the eSCO link by sending a request including the eSCO handle of the eSCO link to be removed and a error code indicating why the eSCO link is removed. The receiving side shall respond with an LMP_accepted_ext PDU.

4.6.2.5 Rules for the LMP negotiation and renegotiation

Rule 1: the negotiation_state shall be set to 0 by the initiating LM. After the initial LMP_eSCO_link_req is sent the negotiation_state shall not be set to 0.

Rule 2: if the bandwidth (defined as 1600 times the packet length in bytes divided by T_{eSCO} in slots) for either RX or TX or the air_mode cannot be accepted the device shall send LMP_not_accepted_ext with the appropriate error code.

Rule 3: Bandwidth and air_mode are not negotiable and shall not be changed for the duration of the negotiation. Once one side has rejected the negotiation (with LMP_not_accepted_ext) a new negotiation may be started with different bandwidth and air_mode parameters.

Rule 4: if the parameters will cause a latency violation ($T_{eSCO} + W_{eSCO} +$ reserved synchronous slots > allowed local latency) the device should propose new parameters that shall not cause a reserved slot violation or latency violation for the device that is sending the parameters. In this case the negotiation_state shall be set to 3. Otherwise the device shall send LMP_not_accepted_ext.

Rule 5: once a device has received an LMP_eSCO_link_req with the negotiation_state set to 3 (latency violation), the device shall not propose any combination of packet type, T_{eSCO} , and W_{eSCO} that will give an equal or larger latency than the combination that caused the latency violation for the other device.

Rule 6: if the parameters cause both a reserved slot violation and a latency violation the device shall set the negotiation_state to 3 (latency violation).

Rule 7: if the parameters will cause a reserved slot violation the device should propose new parameters that shall not cause a reserved slot violation. In this case the negotiation_state shall be set to 2. Otherwise the device shall send LMP_not_accepted_ext.

Rule 8: If the requested parameters are not supported the device should propose a setting that is supported, and set the negotiation_state to 4. If it is not possible to find such a parameter set, the device shall send LMP_not_accepted_ext.

Rule 9: when proposing new parameters for reasons other than a latency violation, reserved slot violation, or configuration not supported, the negotiation_state shall be set to 1.

😵 Bluetooth

4.6.2.6 Negotiation state definitions

Reserved Slot Violation: a reserved slot violation is when the receiving LM cannot setup the requested eSCO logical transport because the eSCO reserved slots would overlap with other regularly scheduled slots (e.g. other synchronous reserved slots, sniff instants, or park beacons).

Latency Violation: a latency violation is when the receiving LM cannot setup the requested eSCO logical transport because the latency ($W_{eSCO}+T_{eSCO}$ + reserved synchronous slots) is greater than the maximum allowed latency.

Configuration not supported: The combination of parameters requested is not inside the supported range for the device.

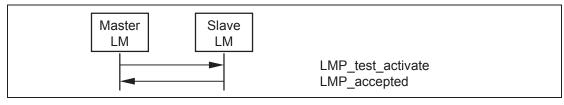
4.7 TEST MODE

LMP has PDUs to support different test modes used for certification and compliance testing of the Bluetooth radio and baseband. See "Test Methodology" on page 231[vol. 4] for a detailed description of these test modes.

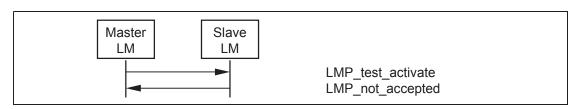
4.7.1 Activation and deactivation of test mode

The activation may be carried out locally (via a HW or SW interface), or using the air interface.

• For activation over the air interface, entering the test mode shall be locally enabled for security and type approval reasons. The implementation of this local enabling is not subject to standardization.


The tester sends an LMP command that shall force the DUT to enter test mode. The DUT shall terminate all normal operation before entering the test mode.

The DUT shall return an LMP_Accepted on reception of an activation command. LMP_Not_Accepted shall be returned if the DUT is not locally enabled.


• If the activation is performed locally using a HW or SW interface, the DUT shall terminate all normal operation before entering the test mode.

Until a connection to the tester exists, the device shall perform page scan and inquiry scan. Extended scan activity is recommended.

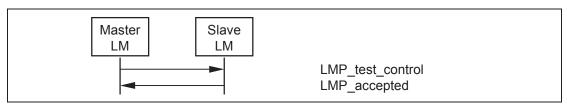
The test mode is activated by sending an LMP_test_activate PDU to the device under test (DUT). The DUT is always the slave. The Im shall be able to receive this message anytime. If entering test mode is locally enabled in the DUT it shall respond with an LMP_accepted PDU and test mode is entered. Otherwise the DUT responds with an LMP_not_accepted PDU and the DUT remains in normal operation. The error code in the LMP_not_accepted PDU shall be PDU not allowed.

Sequence 71: Activation of test mode successful.

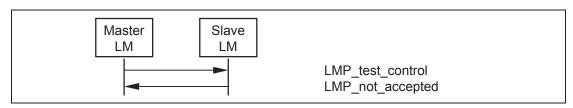
Sequence 72: Activation of test mode fails. Slave is not allowed to enter test mode.

😵 Bluetooth

The test mode can be deactivated in two ways. Sending an LMP_test_control PDU with the test scenario set to "exit test mode" exits the test mode and the slave returns to normal operation still connected to the master. Sending an LMP_detach PDU to the DUT ends the test mode and the connection.


4.7.2 Control of test mode

Control and configuration is performed using special LMP commands (see Section 4.7.3 on page 291). These commands shall be rejected if the Bluetooth device is not in test mode. In this case, an LMP_not_accepted shall be returned. The DUT shall return an LMP_accepted on reception of a control command when in test mode.


A Bluetooth device in test mode shall ignore all LMP commands not related to control of the test mode. LMP commands dealing with power control and the request for LMP features (LMP_features_req), and adaptive frequency hopping (LMP_set_AFH, LMP_channel_classification_req and LMP_channel_classification) are allowed in test mode; the normal procedures are also used to test the adaptive power control.

The DUT shall leave the test mode when an LMP_Detach command is received or an LMP_test_control command is received with test scenario set to 'exit test mode'.

When the DUT has entered test mode, the PDU LMP_test_control PDU can be sent to the DUT to start a specific test. This PDU is acknowledged with an LMP_accepted PDU. If a device that is not in test mode receives an LMP_test_control PDU it responds with an LMP_not_accepted PDU, where the error code shall be *PDU not allowed*.

Sequence 73: Control of test mode successful.

Sequence 74: Control of test mode rejected since slave is not in test mode.

4.7.3 Summary of test mode PDUs

Table 4.30 lists all LMP messages used for test mode. To ensure that the contents of LMP_test_control PDU are suitably whitened (important when sent in transmitter mode), all parameters listed in Table 4.31 on page 291 are XORed with 0x55 before being sent.

LMP PDU	PDU number	Possible Direction	Contents	Position in Payload
LMP_test_activate	56	$m \rightarrow s$		
LMP_test_control	57	$m \rightarrow s$	test scenario hopping mode TX frequency RX frequency power control mode poll period packet type length of test data	2 3 4 5 6 7 8 9-10
LMP_detach	7	$m \rightarrow s$		
LMP_accepted	3	m ← s		
LMP_not_accepted	4	m ← s		

Table 4.30: LMP messages used for Test Mode

Name	Length (bytes)	Туре	Unit	Detailed
Test scenario	1	u_int8		 0 Pause Test Mode 1 Transmitter test – 0 pattern 2 Transmitter test – 1 pattern 3 Transmitter test – 1010 pattern 4 Pseudorandom bit sequence 5 Closed Loop Back – ACL packets 6 Closed Loop Back – Synchronous packets 7 ACL Packets without whitening 8 Synchronous Packets without whitening 9 Transmitter test – 1111 0000 pattern 10–254 reserved 255 Exit Test Mode The value is XORed with 0x55.

 Table 4.31: Parameters used in LMP_Test_Control PDU

😵 Bluetooth[°]

Name	Length (bytes)	Туре	Unit	Detailed
Hopping mode	1	u_int8		0 RX/TX on single frequency 1 Normal hopping 2 Reserved 3 Reserved 4 Reserved 5–255 reserved The value is XORed with 0x55.
TX frequency (for DUT)	1	u_int8		f = [2402 + k] MHz The value is XORed with 0x55.
RX frequency (for DUT)	1	u_int8		f = [2402 + k] MHz The value is XORed with 0x55.
Power control mode	1	u_int8		0 fixed TX output power 1 adaptive power control The value is XORed with 0x55.
Poll period	1	u_int8	1.25 ms	The value is XORed with 0x55.
Packet type	1	u_int8		Bits 3-0 numbering as in packet header, see Baseband Specification Bits 7-4 0: ACL/SCO 1: eSCO 2: Enhanced Data Rate ACL 3: Enhanced Data Rate eSCO 4-15: reserved Other values are reserved The value is XORed with 0x55.
length of test sequence (=length of user data in Baseband Specifica- tion)	2	u_int16	1 byte	unsigned binary number The value is XORed with 0x5555.

Table 4.31: Parameters used in LMP_Test_Control PDU

😵 Bluetooth°

The control PDU is used for both transmitter and loop back tests. The following restrictions apply for the parameter settings:

Parameter	Restrictions Transmitter Test	Restrictions Loopback Test
TX frequency	$0 \le k \le 93$	$0 \leq k \leq 78$
RX frequency	same as TX frequency	$0 \le k \le 78$
Poll period		not applicable (set to 0)
Length of test sequence	depends on packet type: [see table 6.9 and 6.10 in the Baseband specifica- tion]	For ACL and SCO packets: not applicable (set to 0) For eSCO packets: [see table 6.10 in the Base- band specification]

 Table 4.32: Restrictions for Parameters used in LMP_Test_Control PDU

5 SUMMARY

5.1 PDU SUMMARY

LMP PDU	Length (bytes)	op code	Packet type	Possible direction	Contents	Position in payload
Escape 1	variable	124	DM1	m ↔ s	extended op code	2
	Vallable	12-1	Divit		variable	3-?
Escape 2	variable	125	DM1	m ↔ s	extended op code	2
	, and bio	.20	Dimi		variable	3-?
Escape 3	variable	126	DM1	m ↔ s	extended op code	2
	, and bio		5		variable	3-?
Escape 4	variable	127	DM1	m ↔ s	extended op code	2
	Vallabio	127			variable	3-?
LMP_accepted	2	3	DM1/ DV	$m\leftrightarrows$	op code	2
LMP_accepted_ext	4	127/	DM1	m ↔ s	escape op code	3
	t	01		111 (7 3	extended op code	4
LMP_au_rand	17	11	DM1	$m\leftrightarrows$	random number	2-17
LMP_auto_rate	1	35	DM1/ DV	m ↔ s	-	
					AFH_reporting_mode	3
LMP_channel _classification_req	7	127/ 16	DM1	m → s	AFH_min_interval	4-5
					AFH_max_interval	6-7
LMP_channel _classification	12	127/ 17	DM1	m ← s	AFH_channel_ classification	3 – 12
LMP_clkoffset_req	1	5	DM1/ DV	$m \rightarrow s$	-	
LMP_clkoffset_res	3	6	DM1/ DV	m ← s	clock offset	2–3
LMP_comb_key	17	9	DM1	$m\leftrightarrows$	random number	2-17
LMP_decr_power_req	2	32	DM1/ DV	m ↔ s	for future use	2
LMP_detach	2	7	DM1/ DV	m ↔ s	error code	2

🚯 Bluetooth[°]

LMP PDU	Length (bytes)	op code	Packet type	Possible direction	Contents	Position in payload
LMP_encryption_key _size_mask_req	1	58	DM1	m → s		
LMP_encryption_key _size_mask_res	3	59	DM1	m ← s	key size mask	2-3
LMP_encryption_key_size _req	2	16	DM1/ DV	m ↔ s	key size	2
LMP_encryption_mode_ req	2	15	DM1/ DV	m ↔ s	encryption mode	2
					eSCO handle	3
					eSCO LT_ADDR	4
					timing control flags	5
					D _{eSCO}	6
			DM1		T _{eSCO}	7
	16	127/ 12			W _{eSCO}	8
LMP_eSCO_link_req				m↔s	eSCO packet type M->S	9
					eSCO packet type S->M	10
					packet length M->S	11-12
					packet length S->M	13-14
					air mode	15
					negotiation state	16
LMP_features_req	9	39	DM1/ DV	m ↔ s	features	2-9
		107/			features page	3
LMP_features_req_ext	12	127/ 03	DM1	$m\leftrightarrows$	max supported page	4
					extended features	5-12
LMP_features_res	9	40	DM1/ DV	m ↔ s	features	2-9
		407			features page	3
LMP_features_res_ext	12	127/ 04	DM1	$m\leftrightarrows$	max supported page	4
					extended features	5-12
LMP_host_connection_req	1	51	DM1/ DV	$m\leftrightarrows$	-	

😵 Bluetooth°

LMP PDU	Length (bytes)	op code	Packet type	Possible direction	Contents	Position in payload
LMP hold	7	20	DM1/	m ↔ s	hold time	2-3
	1	20	DV	111 - 7 - 3	hold instant	4-7
LMP_hold_req	7	21	DM1/	m ↔ s	hold time	2-3
			DV		hold instant	4-7
LMP_incr_power_req	2	31	DM1/ DV	m ↔ s	for future use	2
LMP_in_rand	17	8	DM1	$m\leftrightarrows$	random number	2-17
LMP_max_power	1	33	DM1/ DV	m ↔ s	-	
LMP_max_slot	2	45	DM1/ DV	m ↔ s	max slots	2
LMP_max_slot_req	2	46	DM1/ DV	m ↔ s	max slots	2
LMP_min_power	1	34	DM1/ DV	m ↔ s	-	
					timing control flags	2
					D _B	3-4
					Т _В	5-6
					N _B	7
	11				Δ_{B}	8
LMP_modify_beacon	or	28	DM1	$m \rightarrow s$	D _{access}	9
	13				T _{access}	10
					N _{acc-slots}	11
					N _{poll}	12
					M _{access}	13:0-3
					access scheme	13:4-7
LMP_name_req	2	1	DM1/ DV	m ↔ s	name offset	2
					name offset	2
LMP_name_res	17	2	DM1	$m\leftrightarrows$	name length	3
					name fragment	4-17

🚯 Bluetooth[°]

LMP PDU	Length (bytes)	op code	Packet type	Possible direction	Contents	Position in payload
LMP_not_accepted	3	4	DM1/	m ↔ s	op code	2
	5	4	DV	↔ 5	error code	3
					escape op code	3
LMP_not_accepted_ext	5	127/ 02	DM1	$m\leftrightarrows$	extended op code	4
					error code	5
LMP_packet_type_table_ req	3	127/ 11	DM1	m ↔ s	packet type table	3
LMP_page_mode_req	3	53	DM1/	m ↔ s	paging scheme	2
	Ŭ	00	DV	111 (7 3	paging scheme settings	3
LMP_page_scan_mode	3	54	DM1/	m ↔ s	paging scheme	2
_req	0	54	DV	111 (7 3	paging scheme settings	3
					timing control flags	2
					D _B	3-4
					Τ _B	5-6
					N _B	7
					Δ_{B}	8
					PM_ADDR	9
					AR_ADDR	10
LMP_park_req	17	25	DM1	m ↔ s	N _{Bsleep}	11
					D _{Bsleep}	12
					D _{access}	13
					T _{access}	14
					N _{acc-slots}	15
					N _{poll}	16
					M _{access}	17:0-3
					access scheme	17:4-7
LMP_preferred_rate	2	36	DM1/ DV	m ↔ s	data rate	2
I MP quality of convice	1	41	DM1/	m	poll interval	2-3
LMP_quality_of_service	4	41	DV	$m \rightarrow s$	N _{BC}	4

😵 Bluetooth[®]

LMP PDU	Length (bytes)	op code	Packet type	Possible direction	Contents	Position in payload
LMP_quality_of_service_r	Λ	42	DM1/	m	poll interval	2-3
eq	4	42	DV	m ↔ s	N _{BC}	4
LMP_remove_eSCO_link	4	127/	DM4		eSCO handle	3
_req [] see Note4 on page 302	4	13	DM1	m⇔s	error code	4
LMP_remove_SCO_link_	3	44	DM1/	m ↔ s	SCO handle	2
req	5		DV	111 🕁 3	error code	3
					SCO handle	2
					timing control flags	3
LMP SCO link req	7	43	DM1/	m ↔ s	D _{sco}	4
	1	-5	DV	111 - 7 3	T _{sco}	5
					SCO packet	6
					air mode	7
					AFH_instant	2-5
LMP_set_AFH	16	60	DM1	m → s	AFH_mode	6
					AFH_channel_map	7-16
					timing control flags	2
LMP_set_broadcast_ scan_window	4 or 6	27	DM1	$m \rightarrow s$	D _B	3-4
					broadcast scan window	5-6
LMP_setup_complete	1	49	DM1	$m\leftrightarrows$	-	
LMP_slot_offset	9	52	DM1/	m ↔ s	slot offset	2-3
	5	52	DV	111 1 7 3	BD_ADDR	4-9
					timing control flags	2
					D _{sniff}	3-4
LMP_sniff_req	10	23	DM1	$m\leftrightarrows$	T _{sniff}	5-6
					sniff attempt	7-8
					sniff timeout	9-10
LMP_sres	5	12	DM1/ DV	m ↔ s	authentication response	2-5
LMP_start_encryption_req	17	17	DM1	$m \rightarrow s$	random number	2-17
LMP_stop_encryption_req	1	18	DM1/ DV	$m \rightarrow s$	-	

Table 5.1: Coding of the different LM PDUs.

😵 Bluetooth[°]

LMP PDU	Length (bytes)	op code	Packet type	Possible direction	Contents	Position in payload
LMP_supervision_timeout	3	55	DM1/ DV	m →s	supervision timeout	2-3
LMP_switch_req	5	19	DM1/ DV	m ↔ s	switch instant	2-5
LMP_temp_rand	17	13	DM1	$m \rightarrow s$	random number	2-17
LMP_temp_key	17	14	DM1	$m \rightarrow s$	key	2-17
LMP_test_activate	1	56	DM1/ DV	$m \rightarrow s$	-	
					test scenario	2
					hopping mode	3
					TX frequency	4
LMP test control	10	57	DM1		RX frequency	5
					power control mode	6
					poll period	7
					packet type	8
					length of test data	9-10
LMP_timing_accuracy_req	1	47	DM1/ DV	m ↔ s	-	
LMP_timing_accuracy_res	3	48	DM1/	m ↔ s	drift	2
	Ŭ	-0	DV		jitter	3
LMP_unit_key	17	10	DM1	$m \leftrightarrow s$	key	2-17
					timing control flags	2
					D _B	3-4
LMP_unpark_BD_ADDR	variable	29	DM1	$m \rightarrow s$	LT_ADDR 1 st unpark	5:0-2
_req		29		/ 0	LT_ADDR 2 nd unpark	5:4-6
					BD_ADDR 1 st unpark	6-11
					BD_ADDR 2 nd unpark	12-17

Bluetooth°

LMP PDU	Length (bytes)	op code	Packet type	Possible direction	Contents	Position in payload
					timing control flags	2
					D _B	3-4
					LT_ADDR 1 st unpark	5:0-3
					LT_ADDR 2 nd unpark	5:4-7
					PM_ADDR 1 st unpark	6
					PM_ADDR 2 nd unpark	7
					LT_ADDR 3 rd unpark	8:0-3
LMP unpark PM ADDR					LT_ADDR 4 th unpark	8:4-7
req	variable	30	DM1	$m \rightarrow s$	PM_ADDR 3 rd unpark	9
					PM_ADDR 4 th unpark	10
					LT_ADDR 5 th unpark	11:0-3
					LT_ADDR 6 th unpark	11:4-7
					PM_ADDR 6 th unpark	12
					PM_ADDR 6 th unpark	13
					LT_ADDR 7 th unpark	14:0-3
					PM_ADDR 7 th unpark	15
LMP_unsniff_req	1	24	DM1/ DV	m ↔ s	-	
LMP_use_semi_ permanent_key	1	50	DM1/ DV	$m \rightarrow s$	-	
					VersNr	2
LMP_version_req	6	37	DM1/ DV	m ↔ s	CompId	3-4
					SubVersNr	5-6
					VersNr	2
LMP_version_res	6	38	DM1/ DV	$m\leftrightarrows$	Compld	3-4
					SubVersNr	5-6

Table 5.1: Coding of the different LM PDUs.

Note1: For LMP_set_broadcast_scan_window, LMP_modify_beacon, LMP_unpark_BD_ADDR_req and LMP_unpark_PM_ADDR_req the parameter *D*_B is optional. This parameter is only present if bit0 of *timing control flags* is 1.

🛞 Bluetooth[®]

If the parameter is not included, the position in payload for all parameters following D_B are decreased by 2.

Note2: For LMP_unpark_BD_ADDR the LT_ADDR and the BD_ADDR of the 2^{nd} unparked slave are optional. If only one slave is unparked *LT_ADDR* 2^{nd} *unpark* shall be zero and *BD_ADDR* 2^{nd} *unpark* is left out.

Note3: For LMP_unpark_PM_ADDR the LT_ADDR and the PM_ADDR of the $2^{nd} - 7^{th}$ unparked slaves are optional. If N slaves are unparked, the fields up to and including the Nth unparked slave are present. If N is odd, the *LT_ADDR* $(N+1)^{th}$ unpark shall be zero. The length of the message is x + 3N/2 if N is even and x + 3(N+1)/2 -1 if N is odd, where x = 2 or 4 depending on if the D_B is incluDed Or Not (See Note1).

Note4: Parameters coincide with their namesakes in LMP_<remove>_SCO_link_req apart from the following:

- eSCO_LT_ADDR the eSCO connection will be active on an additional LT_ADDR that needs to be defined. The master is allowed to re-assign an active eSCO link to a different LT_ADDR.
- D_{eSCO}, T_{eSCO} as per LMP_SCO_link_req but with a greater flexibility in values (e.g. no longer fixed with respect to HV1, HV2, and HV3 packet choice).
- 3. W_{eSCO} the eSCO retransmission window size (in slots)
- 4. packet type and packet length may be prescribed differently in Master-to-Slave or Slave-to-Master directions for asynchronous eSCO links
- 5. packet length (in bytes) eSCO packet types no longer have fixed length
- 6. negotiation state this is used to better enable the negotiation of the negotiable parameters: D_{eSCO}, T_{eSCO}, W_{eSCO}, eSCO packet type M->S, eSCO packet type S->M, packet length M->S, packet length S->M. When responding to an eSCO link request with a new suggestion for these parameters, this flag may be set to 1 to indicate that the last received negotiable parameters are possible, but the new parameters specified in the response eSCO link request would be preferable, to 2 to indicate that the last received negotiable parameters are not possible as they cause a reserved slot violation or to 3 to indicate that the last received negotiable parameters would cause a latency violation. The flag shall be set to zero in the initiating LMP_eSCO_link_req.

🚯 Bluetooth°

5.2 PARAMETER DEFINITIONS

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
access scheme	1	u_int4		0: polling technique 1-15: Reserved	
AFH_channel _classification	10	multiple bytes	-	This parameter contains 40 2-bit fields. The n^{th} (numbering from 0) such field defines the clas- sification of channels $2n$ and $2n+1$, other than the 39^{th} field which just con- tains the classification of channel 78. Each field interpreted as an integer whose values indicate: 0 = unknown 1 = good 2 = reserved 3 = bad	
AFH_channel _map	10	multiple bytes	-	If AFH_mode is $AFH_enabled$, this param- eter contains 79 1-bit fields, otherwise the con- tents are reserved. The n^{th} (numbering from 0) such field (in the range 0 to 78) contains the value for channel n . Bit 79 is reserved (set to 0 when transmitted and ignored when received) The 1-bit field is inter- preted as follows: 0: channel n is unused 1: channel n is used	
AFH_instant	4	u_int32	slots	Bits 27:1 of the Bluetooth master clock value at the time of switching hop sequences. Must be even.	
AFH_max_int erval	2	u_int16	slots	Range is 0x0640 to 0xBB80 slots (1 to 30s)	
AFH_min_int erval	2	u_int16	slots	Range is 0x0640 to 0xBB80 slots (1 to 30s)	

😵 Bluetooth[°]

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
AFH_mode	1	u_int8	-	0: AFH_disabled 1: AFH_enabled 2-255: Reserved	
AFH_reporting _mode	1	u_int8	-	0: AFH_reporting_disabled 1: AFH_reporting_enabled 2-255: reserved	
air mode	1	u_int8		0: μ-law log 1: A-law log 2: CVSD 3: transparent data 4-255: Reserved	See Table 5.3 on page 310
AR_ADDR	1	u_int8			
authentication response	4	multiple bytes			
BD_ADDR	6	multiple bytes		BD_ADDR of the sending device	
broadcast scan window	2	u_int16	slots		
clock offset	2	u_int16	1.25ms	(CLKN ₁₆₋₂ slave - CLKN ₁₆₋₂ master) mod 2 ¹⁵ MSbit of second byte not used.	
Compld	2	u_int16		see Bluetooth Assigned Numbers (https://www.bluetooth.org/ foundry/assignnumb/docu- ment/assigned_numbers)	
D _{access}	1	u_int8	slots		

😵 Bluetooth[®]

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
data rate	1	u_int8		When in Basic Rate mode: bit0 = 0: use FEC bit0 = 1: do not use FEC bit1-2=0: No packet-size preference available bit1-2=1: use 1-slot packets bit1-2=2: use 3-slot packets bit1-2=3: use 5-slot packets bit3-4=0: use DM1 packets bit3-4=0: use DM1 packets bit3-4=1: use 2 Mbps packets bit3-4=2: use 3 Mbps packets bit3-4=3: reserved bit5-6=0: No packet-size preference available bit5-6=1: use 1-slot pack- ets bit5-6=3: use 5-slot pack- ets bit5-6=3: use 5-slot pack- ets	
D _B	2	u_int16	slots		
Δ_{B}	1	u_int8	slots		
D _{Bsleep}	1	u_int8			
D _{eSCO}	1	u_int8	slots	Valid range is 0 - 254 slots	See Table 5.3 on page 310
drift	1	u_int8	ppm		
D _{sco}	1	u_int8	slots	Only even values are valid ¹	0 to T _{sco} -2
D _{sniff}	2	u_int16	slots	Only even values are valid ¹	0 to (T _{sniff} - 2)

😵 Bluetooth[°]

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
encryption mode	1	u_int8		0: no encryption1: encryption2: encryption3 -255: Reserved	
error code	1	u_int8		See Part D on page 319	
escape op code	1	u_int8		Identifies which escape op code is being acknowl- edged: range 124-127	
eSCO handle	1	u_int8			
eSCO LT_ADDR	1	u_int8		Logical transport address for the eSCO logical trans- port. The range is extended to 8 bits com- pared with the normal LT_ADDR field: range 0-7.	0 - 7
eSCO packet type	1	u_int8		0x00: NULL/POLL 0x07: EV3 0x0C: EV4 0x0D: EV5 0x26: 2-EV3 0x2C: 2-EV5 0x37: 3-EV3 0x3D: 3-EV5 Other values are reserved	If the value is 0x00 the POLL packet shall be used by the master, the NULL packet shall be used by the slave. See Table 5.3 on page 310
extended features	8	multiple bytes		One page of extended fea- tures	
extended op code	1	u_int8		Which extended op code is being acknowledged	
features	8	multiple bytes		See Table 3.2 on page 230	
features page	1	u_int8		Identifies which page of extended features is being requested. 0 means standard features 1-255 other feature pages	
hold instant	4	u_int32	slots	Bits 27:1 of the master Bluetooth clock value	

😵 Bluetooth[®]

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
	pj.				range
hold time	2	u_int16	slots	Only even values are valid ¹	0x0014 to 0x8000; shall not exceed (supervisionTO * 0.999)
jitter	1	u_int8	μS		
key	16	multiple bytes			
key size	1	u_int8	byte		
key size mask	2	u_int16		Bit mask of supported broadcast encryption key sizes: least significant bit is support for length 1, and so on. The bit shall be one if the key size is supported.	
LT_ADDR	1	u_int4			
M _{access}	1	u_int4		number of access win- dows	
max slots	1	u_int8	slots		
max supported page	1	u_int8		Highest page of extended features which contains a non-zero bit for the originat- ing device. Range 0-255	
N _{acc-slots}	1	u_int8	slots		
name fragment	14	multiple bytes		UTF-8 characters.	
name length	1	u_int8	bytes		
name offset	1	u_int8	bytes		
N _B	1	u_int8			
N _{BC}	1	u_int8			
N _{Bsleep}	1	u_int8			

😵 Bluetooth[°]

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
negotiation state	1	u_int8		 0: Initiate negotiation 1: the latest received set of negotiable parameters were possible but these parameters are preferred. 2: the latest received set of negotiable parameters would cause a reserved slot violation. 3: the latest received set of negotiable parameters would cause a latency vio- lation. 4: the latest received set of of negotiable parameters are not supported. Other values are reserved 	
N _{poll}	1	u_int8			
op code	1	u_int8			
packet length	2	uint16	bytes	Length of the eSCO payload 0 for POLL/NULL 1-30 for EV3 1-120 for EV4 1-180 for EV5 1-60 for 2-EV3 1-360 for 2-EV5 1-90 for 3-EV3 1-540 for 3-EV5 Other values are invalid	See Table 5.3 on page 310
packet type table	1	u_int8		0: 1Mbps only 1: 2/3 Mbps 2-255: reserved	0-1
paging scheme	1	u_int8		0: mandatory scheme 1-255: Reserved	
paging scheme settings	1	u_int8		For mandatory scheme: 0: R0 1: R1 2: R2 3-255: Reserved	
PM_ADDR	1	u_int8			

Table 5.2: Parameters in LM PDUs.

😵 Bluetooth[®]

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
poll interval	2	u_int16	slots	Only even values are valid ¹	0x0006 to 0x1000
random number	16	multiple bytes			
reserved(n)	n	u_int8		Reserved for future use – must be 0 when transmit- ted, ignore value when received	
SCO handle	1	u_int8			
SCO packet	1	u_int8		0: HV1 1: HV2 2: HV3 3-255: Reserved	
slot offset	2	u_int16	μs	$0 \leq slot offset < 1250$	
sniff attempt	2	u_int16	received slots	Number of receive slots	1 to T _{sniff} /2
sniff timeout	2	u_int16	received slots	Number of receive slots	0 to 0x0028
SubVersNr	2	u_int16		Defined by each company	
supervision timeout	2	u_int16	slots	0 means an infinite time- out	0 and 0x0190 to 0xFFFF
switch instant	4	u_int32	slots	Bits 27:1 of the master Bluetooth clock value	
T _{access}	1	u_int8	slots		
Τ _Β	2	u_int16	slots		
T _{eSCO}	1	u_int8	slots	Valid range is 4 – 254 slots	See Table 5.3 on page 310
timing control flags	1	u_int8		bit0 = 0: no timing change bit0 = 1: timing change bit1 = 0: use initialization 1 bit1 = 1: use initialization 2 bit2 = 0: access window bit2 = 1: no access window bit3-7: Reserved	
T _{sco}	1	u_int8	slots	Only even values are valid ¹	2 to 6

😵 Bluetooth°

Name	Length (bytes)	Туре	Unit	Detailed	Mandatory range
T _{sniff}	2	u_int16	slots	Only even values are valid ¹	0x0006 to 0x0540; shall not exceed (supervisionTO * 0.999)
VersNr	1	u_int8		See Bluetooth Assigned Numbers, (http://www.blue- tooth.org/assigned-num- bers.htm)	
W _{eSCO}	1	u_int8	slots	Number of slots in the retransmission window Valid range is 0 – 254 slots	See Table 5.3 on page 310

Table 5.2: Parameters in LM PDUs.

1. If a device receives an LMP PDU with an odd value in this parameter field the PDU should be rejected with an error code of *invalid LMP parameters*.

	Single Slot Packets	3-Slot Packets
D _{eSCO}	0 to T_{eSCO}- 2 (even)	0 to T_{eSCO}- 2 (even)
T _{eSCO}	EV3: 6 2-EV3: 6-12 (even) 3-EV3: 6-18 (even)	EV4: 16 EV5: 16 2-EV5: 16 3-EV5: 16
W _{eSCO}	0, 2, and 4	0 and 6
packet length M->S	10* T_{eSCO /2}	10* T_{eSCO /2}
packet length S->M	10* T_{eSCO /2}	10* T_{eSCO /2}
air mode	At least one of A-law, mu-law, CVSD, transparent	transparent

Table 5.3: Mandatory parameter ranges for eSCO packet types

5.3 DEFAULT VALUES

Devices shall use these values before anything else has been negotiated:

Parameter	Value
AFH_mode	AFH_disabled
AFH_reporting_mode	AFH_reporting_disabled
drift	250
jitter	10
max slots	1
poll interval	40

Table 5.4: Default values.

😵 Bluetooth[®]

6 LIST OF FIGURES

Figure 1.1: Li	ink Manager Protocol signalling layer.	213
Figure 2.1: T	ransmission of a message from master to slave	216
Figure 2.2: P	ayload body when LMP PDUs are sent	217
Figure 2.3: S	ymbols used in sequence diagrams	219
Figure 4.1: C	onnection establishment.	229
Sequence 1:	Connection closed by sending LMP_detach	231
Sequence 2:	A device requests a change of the other device's	
	TX power.	
Sequence 3:	The TX power cannot be increased.	232
Sequence 4:	The TX power cannot be decreased.	232
Sequence 5:	Master Enables AFH.	234
Sequence 6:	Master disables AFH.	234
Sequence 7:	Master Updates AFH	235
Sequence 8:	Channel classification reporting.	237
Sequence 9:	Setting the link supervision timeout.	238
Sequence 10:	A notifies B to enable CQDDR	239
Sequence 11:	B sends A a preferred packet type	239
Sequence 12:	Master notifies slave of quality of service.	240
Sequence 13:	Device accepts new quality of service	241
Sequence 14:	Device rejects new quality of service.	241
Sequence 15:	Negotiation for page mode.	242
Sequence 16:	Negotiation for page scan mode	242
Sequence 17:	Device allows Remote Device to use a maximum numbe	r of
	slots.	
Sequence 18:	Device requests a maximum number of slots. Remote De	
_	accepts.	
Sequence 19:	Device requests a maximum number of slots. Remote De	
0	rejects.	
Sequence 20:	Packet type table change is rejected.	
Sequence 21:	Packet type table change is accepted.	
Sequence 22:	Authentication. Claimant has link key.	
Sequence 23:	Authentication fails. Claimant has no link key.	
Sequence 24:	Pairing accepted. Responder has a variable PIN. Initiator	
	variable or fixed PIN.	247
Sequence 25:	Responder has a fixed PIN and initiator has a variable PIN.	248
Sequence 26:	Both devices have a fixed PIN.	248
Sequence 27:	Responder rejects pairing.	248
Sequence 28:	Creation of the link key.	
Sequence 29:	Successful change of the link key.	
Sequence 30:	Change of the link key not possible since the other device	

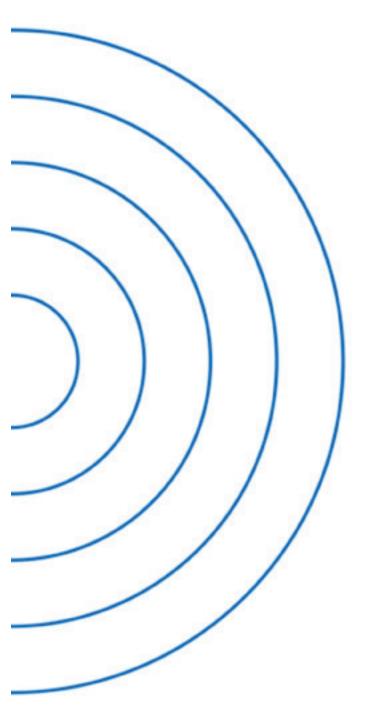
😵 Bluetooth[°]

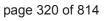
	a unit key.	250
Sequence 31:	Change to a temporary link key.	
Sequence 32:	Link key changed to the semi-permanent link key	
Sequence 33:	Negotiation for encryption mode.	254
Sequence 34:	Encryption key size negotiation successful.	255
Sequence 35:	Encryption key size negotiation failed.	
Sequence 36:	Start of encryption.	255
Sequence 37:	Stop of encryption.	256
Sequence 38:	Request for supported encryption key sizes.	257
Sequence 39:	The requested device supports timing accuracy information.	258
Sequence 40:	The requested device does not support timing accuracy in mation.	
Sequence 41:	Clock offset requested.	259
Sequence 42:	Request for LMP version.	260
Sequence 43:	Request for supported features.	261
Sequence 44:	Request for extended features.	261
Sequence 45:	Device's name requested and it responses	262
Figure 4.2: SI	ot offset for role switch.	263
Sequence 46:	Slot offset information is sent.	263
Sequence 47:	Role switch (slave initiated).	264
Sequence 48:	Role switch (master initiated).	265
Sequence 49:	Master forces slave into hold mode	266
Sequence 50:	Slave forces master into hold mode	267
Sequence 51:	Negotiation for hold mode.	268
Sequence 52:	Slave accepts to enter park state	271
Sequence 53:	Slave rejects to enter into park state	271
Sequence 54:	Slave requests to enter park state and accepts master's be parameters.	
Sequence 55:	Master rejects slave's request to enter park state	272
Sequence 56:	Slave requests to enter park state, but rejects master's be parameters.	
Sequence 57:	Master notifies all slaves of increase in broadcast capacit 272	y
Sequence 58:	Master modifies beacon parameters	273
Sequence 59:	Master unparks slaves addressed with their BD_ADDR.	273
Sequence 60:	Master unparks slaves addressed with their PM_ADDR	274
Sequence 61:	Negotiation for sniff mode.	275
Sequence 62:	Slave moved from sniff mode to active mode	276
Sequence 63:	Master requests an SCO link.	278
Sequence 64:	Master rejects slave's request for an SCO link	278
Sequence 65:	Master accepts slave's request for an SCO link	
Sequence 66:	SCO link removed.	279

😵 Bluetooth[®]

Sequence 67:	Master requests an eSCO link.	281
Sequence 68:	Slave requests an eSCO link.	281
Sequence 69:	Master rejects slave's request for an eSCO link	
Sequence 70:	eSCO link removed	
Sequence 71:	Activation of test mode successful.	
Sequence 72:	Activation of test mode fails. Slave is not allowed to e	enter test
	mode.	
Sequence 73:	Control of test mode successful.	
Sequence 74:	Control of test mode rejected since slave is not in	
	test mode.	286

😵 Bluetooth[®]


7 LIST OF TABLES


Table 0.4.		000
Table 2.1:	General response messages.	
Table 3.1:	Feature definitions.	
Table 3.2:	Feature mask definition	
Table 4.1:	PDUs used for connection establishment.	
Table 4.2:	PDU used for detach.	
Table 4.3:	PDUs used for power control.	
Table 4.4:	PDUs used for AFH	
Table 4.5:	PDUs used for Channel Classification Reporting	
Table 4.6:	PDU used to set the supervision timeout	
Table 4.7:	PDUs used for quality driven change of the data rate	
Table 4.8:	PDUs used for quality of service	
Table 4.9:	PDUs used to request paging scheme	
Table 4.10:	PDUs used to control the use of multi-slot packets	
Table 4.11:	PDUs used for Enhanced Data Rate	244
Table 4.12:	PDUs used for authentication.	.245
Table 4.13:	PDUs used for pairing	247
Table 4.14:	PDUs used for change of link key.	.250
Table 4.15:	PDUs used to change the current link key.	.251
Table 4.16:	PDUs used for handling encryption	.253
Table 4.17:	PDUs used for encryption key size request	.257
Table 4.18:	PDUs used for requesting timing accuracy information	.258
Table 4.19:	PDUs used for clock offset request	259
Table 4.20:	PDUs used for LMP version request	.260
Table 4.21:	PDUs used for features request	261
Table 4.22:	PDUs used for name request	.262
Table 4.23:	PDU used for slot offset information.	263
Table 4.24:	PDUs used for role switch	.264
Table 4.25:	PDUs used for hold mode	.266
Table 4.26:	PDUs used for park state	
Table 4.27:	PDUs used for sniff mode.	274
Table 4.28:	PDUs used for managing the SCO links	.277
Table 4.29:	PDUs used for managing the eSCO links	
Table 4.30:	LMP messages used for Test Mode	
Table 4.31:	Parameters used in LMP_Test_Control PDU	
Table 4.32:	Restrictions for Parameters used in LMP Test Control PDU	
Table 5.1:	Coding of the different LM PDUs.	
Table 5.2:	Parameters in LM PDUs.	
Table 5.3:	Mandatory parameter ranges for eSCO packet types	
Table 5.4:	Default values.	

Core System Package [Controller volume] Part D

ERROR CODES

😵 Bluetooth[°]

CONTENTS

1	Over	view of Error Codes	323
	1.1	Usage Descriptions	323
	1.2	HCI Command Errors	323
	1.3	List of Error Codes	324
2	Error	Code Descriptions	327
	2.1	Unknown HCI Command (0X01)	327
	2.2	Unknown Connection Identifier (0X02)	327
	2.3	Hardware Failure (0X03)	327
	2.4	Page Timeout (0X04)	327
	2.5	Authentication Failure (0X05)	327
	2.6	PIN or key Missing (0X06)	327
	2.7	Memory Capacity Exceeded (0X07)	327
	2.8	Connection Timeout (0X08)	328
	2.9	Connection Limit Exceeded (0X09)	328
	2.10	Synchronous Connection Limit to a Device Exceeded (0X0/	
	2.11	ACL Connection Already Exists (0X0B)	328
	2.12	Command Disallowed (0X0C)	328
	2.13	Connection Rejected due to Limited Resources (0X0D)	328
	2.14	Connection Rejected due to Security Reasons (0X0E)	328
	2.15	Connection Rejected due to Unacceptable BD_ADDR (0X0	F)329
	2.16	Connection Accept Timeout Exceeded (0X10)	329
	2.17	Unsupported Feature or Parameter Value (0X11)	329
	2.18	Invalid HCI Command Parameters (0X12)	329
	2.19	Remote User Terminated Connection (0X13)	329
	2.20	Remote Device Terminated Connection due to Low Resour (0X14)	
	2.21	Remote Device Terminated Connection due to Power Off (0X15)	330
	2.22	Connection Terminated by Local Host (0X16)	
	2.23	Repeated Attempts (0X17)	
	2.24	Pairing not Allowed (0X18)	
	2.25	Unknown LMP PDU (0X19)	
	2.26	Unsupported Remote Feature / Unsupported LMP Feature (0X1A)	
	2.27	SCO Offset Rejected (0X1B)	330
	2.28	SCO Interval Rejected (0X1C)	
	2.29	SCO Air Mode Rejected (0X1D)	
	2.30	Invalid LMP Parameters (0X1E)	
	2.31	Unspecified Error (0X1F)	
	2.32	Unsupported LMP Parameter Value (0X20)	

8 Bluetooth[®]

2.33	Role Change Not Allowed (0X21)	
2.34	LMP Response Timeout (0X22)	
2.35	LMP Error Transaction Collision (0X23)	
2.36	LMP PDU Not Allowed (0X24)	
2.37	Encryption Mode Not Acceptable (0X25)	
2.38	Link Key Can Not be Changed (0X26)	
2.39	Requested Qos Not Supported (0X27)	
2.40	Instant Passed (0X28)	
2.41	Pairing with Unit Key Not Supported (0X29)	
2.42	Different Transaction Collision (0x2a)	
2.43	QoS Unacceptable Parameter (0X2C)	
2.44	QoS Rejected (0X2D)	
2.45	Channel Classification Not Supported (0X2E).	
2.46	Insufficient Security (0X2F)	
2.47	Parameter out of Mandatory Range (0X30)	
2.48	Role Switch Pending (0X32)	
2.49	Reserved Slot Violation (0X34)	
2.50	Role Switch Failed (0X35)	

1 OVERVIEW OF ERROR CODES

This document lists the various possible error codes. When a command fails, or an LMP message needs to indicate a failure, error codes are used to indicate the reason for the error. Error codes have a size of one octet.

1.1 USAGE DESCRIPTIONS

The purpose of this section is to give descriptions of how the error codes should be used. It is beyond the scope of this document to give detailed descriptions of all situations where error codes can be used, especially as this may be implementation dependent.

1.2 HCI COMMAND ERRORS

If an HCI Command that should generate an HCI_Command_Complete event generates an error then this error shall be reported in the HCI_Command_Complete event.

If an HCI Command that sent an HCI_Command_Status with the error code 'Success' to the host before processing may find an error during execution then the error may be reported in the normal completion command for the original command or in an HCI_Command_Status event.

Some HCI Commands may generate errors that need to be reported to be host, but there is insufficient information to determine how the command would normally be processed. In this case, two events can be used to indicate this to the host, the HCI_Command_Complete event and HCI_Command_Status events. Which of the two events is used is implementation-dependent.

😵 Bluetooth

1.3 LIST OF ERROR CODES

The error code of 0x00 means Success. The possible range of failure error codes is 0x01-0xFF. Section 2 provides an error code usage description for each failure error code.

Values marked as "Reserved for Future Use", can be used in future versions of the specification. A host shall consider any error code that it does not explicitly understand equivalent to the "Unspecified Error (0x1F)."

Error Code	Name	
0x00	Success	
0x01	Unknown HCI Command	
0x02	Unknown Connection Identifier	
0x03	Hardware Failure	
0x04	Page Timeout	
0x05	Authentication Failure	
0x06	PIN or Key Missing	
0x07	Memory Capacity Exceeded	
0x08	Connection Timeout	
0x09	Connection Limit Exceeded	
0x0A	Synchronous Connection Limit To A Device Exceeded	
0x0B	ACL Connection Already Exists	
0x0C	Command Disallowed	
0x0D	Connection Rejected due to Limited Resources	
0x0E	Connection Rejected Due To Security Reasons	
0x0F	Connection Rejected due to Unacceptable BD_ADDR	
0x10	Connection Accept Timeout Exceeded	
0x11	Unsupported Feature or Parameter Value	
0x12	Invalid HCI Command Parameters	
0x13	Remote User Terminated Connection	
0x14	Remote Device Terminated Connection due to Low Resources	
0x15	Remote Device Terminated Connection due to Power Off	
0x16	Connection Terminated By Local Host	
0x17	Repeated Attempts	
0x18	Pairing Not Allowed	

Table 1.1: List of Possible Error Codes

😵 Bluetooth[®]

Error Code	Name		
0x19	Unknown LMP PDU		
0x1A	Unsupported Remote Feature / Unsupported LMP Feature		
0x1B	SCO Offset Rejected		
0x1C	SCO Interval Rejected		
0x1D	SCO Air Mode Rejected		
0x1E	Invalid LMP Parameters		
0x1F	Unspecified Error		
0x20	Unsupported LMP Parameter Value		
0x21	Role Change Not Allowed		
0x22	LMP Response Timeout		
0x23	LMP Error Transaction Collision		
0x24	LMP PDU Not Allowed		
0x25	Encryption Mode Not Acceptable		
0x26	Link Key Can Not be Changed		
0x27	Requested QoS Not Supported		
0x28	Instant Passed		
0x29	Pairing With Unit Key Not Supported		
0x2A	Different Transaction Collision		
0x2B	Reserved		
0x2C	QoS Unacceptable Parameter		
0x2D	QoS Rejected		
0x2E	Channel Classification Not Supported		
0x2F	Insufficient Security		
0x30	Parameter Out Of Mandatory Range		
0x31	Reserved		
0x32	Role Switch Pending		
0x33	Reserved		
0x34	Reserved Slot Violation		
0x35	Role Switch Failed		

Table 1.1: List of Possible Error Codes

page 326 of 814

2 ERROR CODE DESCRIPTIONS

2.1 UNKNOWN HCI COMMAND (0X01)

The Unknown HCI Command error code indicates that the controller does not understand the HCI Command Packet OpCode that the host sent. The OpCode given might not correspond to any of the OpCodes specified in this document, or any vendor-specific OpCodes, or the command may not have been implemented.

2.2 UNKNOWN CONNECTION IDENTIFIER (0X02)

The Unknown Connection Identifier error code indicates that a command was sent from the host that should identify a connection, but that connection does not exist.

2.3 HARDWARE FAILURE (0X03)

The Hardware Failure error code indicates to the host that something in the controller has failed in a manner that cannot be described with any other error code. The meaning implied with this error code is implementation dependent.

2.4 PAGE TIMEOUT (0X04)

The Page Timeout error code indicates that a page timed out because of the Page Timeout configuration parameter. This error code may occur only with the HCI_Remote_Name_Request and HCI_Create_Connection commands.

2.5 AUTHENTICATION FAILURE (0X05)

The Authentication Failure error code indicates that pairing or authentication failed due to incorrect results in the pairing or authentication procedure. This could be due to an incorrect PIN or Link Key.

2.6 PIN OR KEY MISSING (0X06)

The PIN or Key Missing error code is used when pairing failed because of a missing PIN, or authentication failed because of a missing Key.

2.7 MEMORY CAPACITY EXCEEDED (0X07)

The Memory Capacity Exceeded error code indicates to the host that the controller has run out of memory to store new parameters.

2.8 CONNECTION TIMEOUT (0X08)

The Connection Timeout error code indicates that the link supervision timeout has expired for a given connection.

2.9 CONNECTION LIMIT EXCEEDED (0X09)

The Connection Limit Exceeded error code indicates that an attempt to create another connection failed because the controller is already at its limit of the number of connections it can support. The number of connections a device can support is implementation dependent.

2.10 SYNCHRONOUS CONNECTION LIMIT TO A DEVICE EXCEEDED (0X0A)

The Synchronous Connection Limit to a Device Exceeded error code indicates that the controller has reached the limit to the number of synchronous connections that can be achieved to a device. The number of synchronous connections a device can support is implementation dependent.

2.11 ACL CONNECTION ALREADY EXISTS (0X0B)

The ACL Connection Already Exists error code indicates that an attempt to create a new ACL Connection to a device when there is already a connection to this device.

2.12 COMMAND DISALLOWED (0X0C)

The Command Disallowed error code indicates that the command requested cannot be executed because the controller is in a state where it cannot process this command at this time. This error shall not be used for command OpCodes where the error code Unknown HCI Command is valid.

2.13 CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D)

The Connection Rejected Due To Limited Resources error code indicates that an incoming connection was rejected due to limited resources.

2.14 CONNECTION REJECTED DUE TO SECURITY REASONS (0X0E)

The Connection Rejected Due To Security Reasons error code indicates that a connection was rejected due to security requirements not being fulfilled, like authentication or pairing.

Bluetooth°

2.15 CONNECTION REJECTED DUE TO UNACCEPTABLE BD_ADDR (0X0F)

The Connection Rejected due to Unacceptable BD_ADDR error code indicates that a connection was rejected because this device does not accept the BD_ADDR. This may be because the device will only accept connections from specific BD_ADDRs.

2.16 CONNECTION ACCEPT TIMEOUT EXCEEDED (0X10)

The Connection Accept Timeout Exceeded error code indicates that the Connection Accept Timeout has been exceeded for this connection attempt.

2.17 UNSUPPORTED FEATURE OR PARAMETER VALUE (0X11)

The Unsupported Feature Or Parameter Value error code indicates that a feature or parameter value in the HCI Command is not supported. This error code shall not be used in an LMP PDU.

2.18 INVALID HCI COMMAND PARAMETERS (0X12)

The Invalid HCI Command Parameters error code indicates that at least one of the HCI command parameters is invalid.

This shall be used when:

- the parameter total length is invalid.
- a command parameter is an invalid type.
- a connection identifier does not match the corresponding event.
- a parameter value must be even.
- a parameter is outside of the specified range.
- two or more parameter values have inconsistent values.

Note: An invalid type can be, for example, when an SCO connection handle is used where an ACL connection handle is required.

2.19 REMOTE USER TERMINATED CONNECTION (0X13)

The Remote User Terminated Connection error code indicates that the user on the remote device terminated the connection.

😵 Bluetooth

2.20 REMOTE DEVICE TERMINATED CONNECTION DUE TO LOW RESOURCES (0X14)

The Remote Device Terminated Connection due to Low Resources error code indicates that the remote device terminated the connection because of low resources.

2.21 REMOTE DEVICE TERMINATED CONNECTION DUE TO POWER OFF (0X15)

The Remote Device Terminated Connection due to Power Off error code indicates that the remote device terminated the connection because the device is about to power off.

2.22 CONNECTION TERMINATED BY LOCAL HOST (0X16)

The Connection Terminated By Local Host error code indicates that the local device terminated the connection.

2.23 REPEATED ATTEMPTS (0X17)

The Repeated Attempts error code indicates that the controller is disallowing an authentication or pairing procedure because too little time has elapsed since the last authentication or pairing attempt failed.

2.24 PAIRING NOT ALLOWED (0X18)

The Pairing Not Allowed error code indicates that the device does not allow pairing. For example, when a device only allows pairing during a certain time window after some user input allows pairing.

2.25 UNKNOWN LMP PDU (0X19)

The Unknown LMP PDU error code indicates that the controller has received an unknown LMP opcode.

2.26 Unsupported Remote Feature / Unsupported LMP Feature (0X1A)

The Unsupported Remote Feature error code indicates that the remote device does not support the feature associated with the issued command or LMP PDU.

2.27 SCO OFFSET REJECTED (0X1B)

The SCO Offset Rejected error code indicates that the offset requested in the LMP_SCO_link_req message has been rejected.

2.28 SCO INTERVAL REJECTED (0X1C)

The SCO Interval Rejected error code indicates that the interval requested in the LMP_SCO_link_req message has been rejected.

2.29 SCO AIR MODE REJECTED (0X1D)

The SCO Air Mode Rejected error code indicates that the air mode requested in the LMP_SCO_link_req message has been rejected.

2.30 INVALID LMP PARAMETERS (0X1E)

The Invalid LMP Parameters error code indicates that some LMP message parameters were invalid. This shall be used when:

- the PDU length is invalid.
- a parameter value must be even.
- a parameter is outside of the specified range.
- two or more parameters have inconsistent values.

2.31 UNSPECIFIED ERROR (0X1F)

The Unspecified Error error code indicates that no other error code specified is appropriate to use.

2.32 UNSUPPORTED LMP PARAMETER VALUE (0X20)

The Unsupported LMP Parameter Value error code indicates that an LMP message contains at least one parameter value that is not supported by the controller at this time. This is normally used after a long negotiation procedure, for example during an LMP_hold_req, LMP_sniff_req and LMP_encryption_key_size_req message exchanges.

2.33 ROLE CHANGE NOT ALLOWED (0X21)

The Role Change Not Allowed error code indicates that a controller will not allow a role change at this time.

2.34 LMP RESPONSE TIMEOUT (0X22)

The LMP Response Timeout error code indicates that an LMP transaction failed to respond within the LMP response timeout.

😵 Bluetooth°

2.35 LMP ERROR TRANSACTION COLLISION (0X23)

The LMP Error Transaction Collision error code indicates that an LMP transaction has collided with the same transaction that is already in progress.

2.36 LMP PDU NOT ALLOWED (0X24)

The LMP PDU Not Allowed error code indicates that a controller sent an LMP message with an opcode that was not allowed.

2.37 ENCRYPTION MODE NOT ACCEPTABLE (0X25)

The Encryption Mode Not Acceptable error code indicates that the requested encryption mode is not acceptable at this time.

2.38 LINK KEY CAN NOT BE CHANGED (0X26)

The Link Key Can Not be Changed error code indicates that a link key can not be changed because a fixed unit key is being used.

2.39 REQUESTED QoS NOT SUPPORTED (0X27)

The Requested QoS Not Supported error code indicates that the requested Quality of Service is not supported.

2.40 INSTANT PASSED (0X28)

The Instant Passed error code indicates that an LMP PDU that includes an instant can not be performed because the instant when this would have occurred has passed.

2.41 PAIRING WITH UNIT KEY NOT SUPPORTED (0X29)

The Pairing With Unit Key Not Supported error code indicates that it was not possible to pair as a unit key was requested and it is not supported.

2.42 DIFFERENT TRANSACTION COLLISION (0X2A)

The Different Transaction Collision error code indicates that an LMP transaction was started that collides with an ongoing transaction.

2.43 QoS UNACCEPTABLE PARAMETER (0X2C)

The QoS Unacceptable Parameter error code indicates that the specified quality of service parameters could not be accepted at this time, but other parameters may be acceptable.

2.44 QoS REJECTED (0X2D)

The QoS Rejected error code indicates that the specified quality of service parameters can not be accepted and QoS negotiation should be terminated.

2.45 CHANNEL CLASSIFICATION NOT SUPPORTED (0X2E)

The Channel Classification Not Supported error code indicates that the controller can not perform channel classification because it is not supported.

2.46 INSUFFICIENT SECURITY (0X2F)

The Insufficient Security error code indicates that the HCI command or LMP message sent is only possible on an encrypted link.

2.47 PARAMETER OUT OF MANDATORY RANGE (0X30)

The Parameter Out Of Mandatory Range error code indicates that a parameter value requested is outside the mandatory range of parameters for the given HCI command or LMP message.

2.48 ROLE SWITCH PENDING (0X32)

The Role Switch Pending error code indicates that a Role Switch is pending. This can be used when an HCI command or LMP message can not be accepted because of a pending role switch. This can also be used to notify a peer device about a pending role switch.

2.49 RESERVED SLOT VIOLATION (0X34)

The Reserved Slot Violation error code indicates that the current Synchronous negotiation was terminated with the negotiation state set to Reserved Slot Violation.

2.50 ROLE SWITCH FAILED (0X35)

The Role Switch Failed error code indicates that a role switch was attempted but it failed and the original piconet structure is restored. The switch may have failed because the TDD switch or piconet switch failed.

HOST CONTROLLER INTERFACE FUNCTIONAL SPECIFICATION

This document describes the functional specification for the Host Controller Interface (HCI). The HCI provides a command interface to the baseband controller and link manager, and access to configuration parameters. This interface provides a uniform method of accessing the Bluetooth baseband capabilities.

😵 Bluetooth°

CONTENTS

1	Intro	duction	343		
	1.1	Lower Layers of the Bluetooth Software Stack	343		
2	Over	view of Host Controller Transport Layer			
3	Over	Overview of Commands and Events			
	3.1	Generic Events	348		
	3.2	Device Setup	348		
	3.3	Controller Flow Control	349		
	3.4	Controller Information	349		
	3.5	Controller Configuration	350		
	3.6	Device Discovery	351		
	3.7	Connection Setup	353		
	3.8	Remote Information	355		
	3.9	Synchronous Connections	356		
	3.10	Connection State	357		
	3.11	Piconet Structure	358		
	3.12	Quality of Service	359		
	3.13	Physical Links			
	3.14	Host Flow Control			
	3.15	Link Information	362		
	3.16	Authentication and Encryption	363		
	3.17	Testing			
	3.18	Alphabetical List of Commands and Events	366		
4	HCI F	Flow Control	371		
	4.1	Host to Controller Data Flow Control	371		
	4.2	Controller to Host Data Flow Control	372		
	4.3	Disconnection Behavior	373		
	4.4	Command Flow Control			
	4.5	Command Error Handling	374		
5	HCI	Data Formats	375		
	5.1	Introduction	375		
	5.2	Data and Parameter Formats	375		
	5.3	Connection Handles	376		
	5.4	Exchange of HCI-Specific Information	377		
		5.4.1 HCI Command Packet	377		
		5.4.2 HCI ACL Data Packets	379		
		5.4.3 HCI Synchronous Data Packets			
		5.4.4 HCI Event Packet			
6	HCI (Configuration Parameters			

😵 Bluetooth[°]

6.1	Scan E	Enable	.383
6.2	Inquiry	Scan Interval	.383
6.3	Inquiry	Scan Window	.384
6.4	Inquiry	Scan Type	.384
6.5	Inquiry	Mode	. 384
6.6	Page T	īmeout	.385
6.7		ction Accept Timeout	
6.8		Scan Interval	
6.9	-	Scan Window	
6.10	-	Scan Period Mode (Deprecated)	
6.11	•	Scan Type	
6.12		Setting	
6.13		pe	
6.14 6.15		ey Itication Enable	
6.16		tion Mode	
6.17		Contact Counter	
6.18		lode Activity	
6.19		blicy Settings	
6.20		Fimeout	
6.21	Num B	roadcast Retransmissions	.392
6.22	Link Su	upervision Timeout	.393
6.23		ronous Flow Control Enable	
6.24	Local N	Name	.394
6.25	Class (Of Device	. 394
6.26	Suppor	rted Commands	. 395
HCI C	Commai	nds and Events	. 399
7.1	Link Co	ontrol Commands	. 399
	7.1.1	Inquiry Command	.399
	7.1.2	Inquiry Cancel Command	.401
	7.1.3	Periodic Inquiry Mode Command	.402
	7.1.4	Exit Periodic Inquiry Mode Command	.405
	7.1.5	Create Connection Command	.406
	7.1.6	Disconnect Command	.409
	7.1.7	Create Connection Cancel Command	
	7.1.8	Accept Connection Request Command	
	7.1.9	Reject Connection Request Command	
	7.1.10	Link Key Request Reply Command	
	7.1.10	Link Key Request Negative Reply Command	
	7.1.12		
		PIN Code Request Reply Command	
	7.1.13	PIN Code Request Negative Reply Command	.420

7

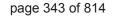
😵 Bluetooth[®]

	7.1.14	Change Connection Packet Type Command	.421
	7.1.15	Authentication Requested Command	.424
	7.1.16	Set Connection Encryption Command	.425
	7.1.17	Change Connection Link Key Command	.426
	7.1.18	Master Link Key Command	.427
	7.1.19	Remote Name Request Command	.428
	7.1.20	Remote Name Request Cancel Command	.430
	7.1.21	Read Remote Supported Features Command	.431
	7.1.22	Read Remote Extended Features Command	.432
	7.1.23	Read Remote Version Information Command	.433
	7.1.24	Read Clock Offset Command	.434
	7.1.25	Read LMP Handle Command	.435
	7.1.26	Setup Synchronous Connection Command	.437
	7.1.27	Accept Synchronous Connection Request Command	442
	7.1.28	Reject Synchronous Connection Request Command	.446
7.2	Link Po	blicy Commands	.447
	7.2.1	Hold Mode Command	.447
	7.2.2	Sniff Mode Command	.449
	7.2.3	Exit Sniff Mode Command	.452
	7.2.4	Park State Command	.453
	7.2.5	Exit Park State Command	.455
	7.2.6	QoS Setup Command	.456
	7.2.7	Role Discovery Command	.458
	7.2.8	Switch Role Command	.459
	7.2.9	Read Link Policy Settings Command	.460
	7.2.10	Write Link Policy Settings Command	.461
	7.2.11	Read Default Link Policy Settings Command	.463
	7.2.12	Write Default Link Policy Settings Command	.464
	7.2.13	and the second	
7.3	Contro	Iler & Baseband Commands	.467
	7.3.1	Set Event Mask Command	.467
	7.3.2	Reset Command	
	7.3.3	Set Event Filter Command	.470
	7.3.4	Flush Command	.475
	7.3.5	Read PIN Type Command	
	7.3.6	Write PIN Type Command	
	7.3.7	Create New Unit Key Command	.479
	7.3.8	Read Stored Link Key Command	.480

😵 Bluetooth[°]

7.3.9	Write Stored Link Key Command
7.3.10	Delete Stored Link Key Command
7.3.11	Write Local Name Command
7.3.12	Read Local Name Command
7.3.13	Read Connection Accept Timeout Command
7.3.14	Write Connection Accept Timeout Command
7.3.15	Read Page Timeout Command
7.3.16	Write Page Timeout Command
7.3.17	Read Scan Enable Command
7.3.18	Write Scan Enable Command
7.3.19	Read Page Scan Activity Command
7.3.20	Write Page Scan Activity Command
7.3.21	Read Inquiry Scan Activity Command
7.3.22	Write Inquiry Scan Activity Command
7.3.23	Read Authentication Enable Command
7.3.24	Write Authentication Enable Command
7.3.25	Read Encryption Mode Command
7.3.26	Write Encryption Mode Command
7.3.27	Read Class of Device Command501
7.3.28	Write Class of Device Command502
7.3.29	Read Voice Setting Command
7.3.30	Write Voice Setting Command504
7.3.31	Read Automatic Flush Timeout Command505
7.3.32	Write Automatic Flush Timeout Command506
7.3.33	Read Num Broadcast Retransmissions Command507
7.3.34	Write Num Broadcast Retransmissions Command508
7.3.35	Read Hold Mode Activity Command
7.3.36	Write Hold Mode Activity Command510
7.3.37	Read Transmit Power Level Command
7.3.38	Read Synchronous Flow Control Enable Command513
7.3.39	Write Synchronous Flow Control Enable Command514
7.3.40	Set Controller To Host Flow Control Command
7.3.41	Host Buffer Size Command516
7.3.42	Host Number Of Completed Packets Command518
7.3.43	Read Link Supervision Timeout Command520
7.3.44	Write Link Supervision Timeout Command521
7.3.45	Read Number Of Supported IAC Command523
7.3.46	Read Current IAC LAP Command

😵 Bluetooth[®]


	7.3.47	Write Current IAC LAP Command	525
	7.3.48	Read Page Scan Period Mode Command (Deprecated)	527
	7.3.49	Write Page Scan Period Mode Command	
		(Deprecated)	528
	7.3.50	Set AFH Host Channel Classification Command	529
	7.3.51	Read Inquiry Scan Type Command	530
	7.3.52	Write Inquiry Scan Type Command	531
	7.3.53	Read Inquiry Mode Command	532
	7.3.54	Write Inquiry Mode Command	533
	7.3.55	Read Page Scan Type Command	534
	7.3.56	Write Page Scan Type Command	535
	7.3.57	Read AFH Channel Assessment Mode Command .	536
	7.3.58	Write AFH Channel Assessment Mode Command .	537
7.4	Informa	ational Parameters	539
	7.4.1	Read Local Version Information Command	539
	7.4.2	Read Local Supported Commands Command	541
	7.4.3	Read Local Supported Features Command	542
	7.4.4	Read Local Extended Features Command	543
	7.4.5	Read Buffer Size Command	545
	7.4.6	Read BD_ADDR Command	547
7.5	Status	Parameters	548
	7.5.1	Read Failed Contact Counter Command	548
	7.5.2	Reset Failed Contact Counter Command	550
	7.5.3	Read Link Quality Command	551
	7.5.4	Read RSSI Command	552
	7.5.5	Read AFH Channel Map Command	554
	7.5.6	Read Clock Command	556
7.6	Testing	Commands	558
	7.6.1	Read Loopback Mode Command	558
	7.6.2	Write Loopback Mode Command	559
	7.6.3	Enable Device Under Test Mode Command	562
7.7	Events		563
	7.7.1	Inquiry Complete Event	563
	7.7.2	Inquiry Result Event	564
	7.7.3	Connection Complete Event	566
	7.7.4	Connection Request Event	567
	7.7.5	Disconnection Complete Event	569
	7.7.6	Authentication Complete Event	570

😵 Bluetooth[°]

7.7.7	Remote Name Request Complete Event
7.7.8	Encryption Change Event572
7.7.9	Change Connection Link Key Complete Event
7.7.10	Master Link Key Complete Event574
7.7.11	Read Remote Supported Features Complete Event575
7.7.12	Read Remote Version Information Complete Event 576
7.7.13	QoS Setup Complete Event
7.7.14	Command Complete Event
7.7.15	Command Status Event580
7.7.16	Hardware Error Event581
7.7.17	Flush Occurred Event581
7.7.18	Role Change Event582
7.7.19	Number Of Completed Packets Event583
7.7.20	Mode Change Event584
7.7.21	Return Link Keys Event586
7.7.22	PIN Code Request Event587
7.7.23	Link Key Request Event588
7.7.24	Link Key Notification Event589
7.7.25	Loopback Command Event590
7.7.26	Data Buffer Overflow Event590
7.7.27	Max Slots Change Event591
7.7.28	Read Clock Offset Complete Event592
7.7.29	Connection Packet Type Changed Event593
7.7.30	QoS Violation Event
7.7.31	Page Scan Repetition Mode Change Event597
7.7.32	Flow Specification Complete Event598
7.7.33	Inquiry Result with RSSI Event600
7.7.34	Read Remote Extended Features Complete Event 602
7.7.35	Synchronous Connection Complete Event603
7.7.36	Synchronous Connection Changed event605
List of Figure	es607
List of Table	s609
Appendix	

8 9

10

1 INTRODUCTION

This document describes the functional specifications for the Host Controller Interface (HCI). The HCI provides a uniform interface method of accessing the Bluetooth controller capabilities. The next two sections provide a brief overview of the lower layers of the Bluetooth software stack and of the Bluetooth hardware. Section 2, provides an overview of the Lower HCI Device Driver Interface on the host device. Section 4, describes the flow control used between the Host and the Controller. Section 7, describes each of the HCI Commands in details, identifies parameters for each of the commands, and lists events associated with each command.

1.1 LOWER LAYERS OF THE BLUETOOTH SOFTWARE STACK

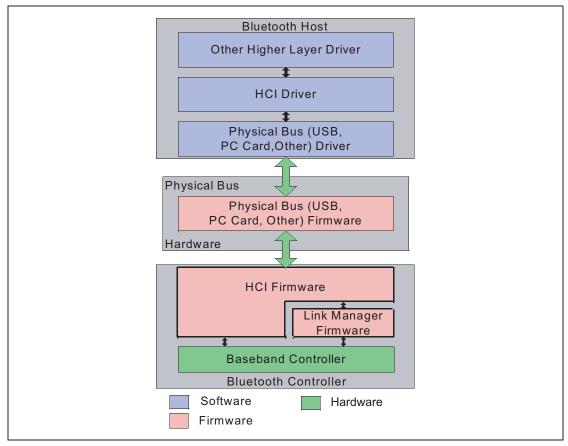


Figure 1.1: Overview of the Lower Software Layers

Figure 1.1, provides an overview of the lower software layers. The HCI firmware implements the HCI Commands for the Bluetooth hardware by accessing baseband commands link manager commands, hardware status registers, control registers, and event registers.

Several layers may exist between the HCI driver on the host system and the HCI firmware in the Bluetooth hardware. These intermediate layers, the Host

😵 Bluetooth®

Controller Transport Layer, provide the ability to transfer data without intimate knowledge of the data.

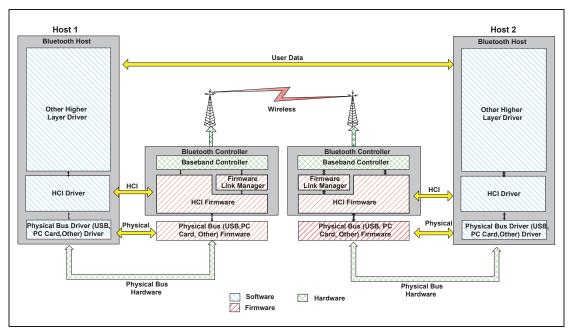


Figure 1.2: End to End Overview of Lower Software Layers to Transfer Data

Figure 1.2, illustrates the path of a data transfer from one device to another. The HCI driver on the Host exchanges data and commands with the HCI firmware on the Bluetooth hardware. The Host Control Transport Layer (i.e. physical bus) driver provides both HCI layers with the ability to exchange information with each other.

The Host will receive asynchronous notifications of HCI events independent of which Host Controller Transport Layer is used. HCI events are used for notifying the Host when something occurs. When the Host discovers that an event has occurred it will then parse the received event packet to determine which event occurred.

Bluetooth®

2 OVERVIEW OF HOST CONTROLLER TRANSPORT LAYER

The host driver stack has a transport layer between the Host Controller driver and the Host.

The main goal of this transport layer is transparency. The Host Controller driver (which interfaces to the Controller) should be independent of the underlying transport technology. Nor should the transport require any visibility into the data that the Host Controller driver passes to the Controller. This allows the interface (HCI) or the Controller to be upgraded without affecting the transport layer.

The specified Host Controller Transport Layers are described in a separate volume. (See specification volume 4)

3 OVERVIEW OF COMMANDS AND EVENTS

The commands and events are sent between the Host and the Controller. These are grouped into logical groups by function.

Generic Events	The generic events can occur due to multiple com- mands, or events that can occur at any time.
Device Setup	The device setup commands are used to place the Con- troller into a known state.
Controller Flow Control	The controller flow control commands and events are used to control data flow from the Host to the controller.
Controller Information	The controller information commands allow the Host to discover local information about the device.
Controller Configuration	The controller configuration commands and events allow the global configuration parameters to be configured.
Device Discovery	The device discovery commands and events allow a device to discover other devices in the surrounding area.
Connection Setup	The connection setup commands and events allow a device to make a connection to another device.
Remote Information	The remote information commands and events allow information about a remote device's configuration to be discovered.
Synchronous Connections	The synchronous connection commands and events allow synchronous connections to be created
Connection State	The connection state commands and events allow the configuration of a link, especially for low power operation.
Piconet Structure	The piconet structure commands and events allow the discovery and reconfiguration of piconet.
Quality of Service	The quality of service commands and events allow qual- ity of service parameters to be specified.
Physical Links	The physical link commands and events allow the con- figuration of a physical link.
Host Flow Control	The Host flow control commands and events allow flow control to be used towards the Host.
Link Information	The link information commands and events allow infor- mation about a link to be read.
Authentication and Encryption	The authentication and encryption commands and events allow authentication of a remote device and then encryption of the link.
Testing	The testing commands and events allow a device to be placed into test mode.

Table 3.1: Overview of commands and events

The version information in this section denotes the version number of the specification that this command or event was first specified

😵 Bluetooth

3.1 GENERIC EVENTS

The generic events occur due to multiple commands, or events that can occur at any time.

Name	Vers.	Summary description
Command Complete Event	1.1	The Command Complete event is used by the Con- troller to pass the return status of a command and the other event parameters for each HCI Command.
Command Status Event	1.1	The Command Status event is used to indicate that the command described by the Command_Opcode parameter has been received and the Controller is currently performing the task for this command.
Hardware Error Event	1.1	The Hardware Error event is used to indicate some type of hardware failure for the Controller.

Table 3.2: Generic events

3.2 DEVICE SETUP

The device setup group of commands are used to place the Controller into a known state.

Name	Vers.	Summary description
Reset Command	1.1	The Reset command will reset the Controller, Link Manager, and the Bluetooth radio.

4 November 2004

Device setup

3.3 CONTROLLER FLOW CONTROL

The controller flow control group of commands and events are used to control data flow from the Host to the Controller.

Name	Vers.	Summary description
Read Buffer Size Com- mand	1.1	The Read_Buffer_Size command returns the size of the HCI buffers. These buffers are used by the Controller to buffer data that is to be transmitted.
Number Of Completed 1.1 Packets Event		The Number Of Completed Packets event is used by the Controller to indicate to the Host how many HCI Data Packets have been completed for each Connec- tion Handle since the previous Number Of Completed Packets event was sent.

Table 3.3: Controller flow control

3.4 CONTROLLER INFORMATION

The controller information group of commands allows the Host to discover local information about the device.

Name	Vers.	Summary description
Read Local Version Infor- mation Command	1.1	The Read Local Version Information command will read the version information for the local Bluetooth device.
Read Local Supported Commands Command	1.2	The Read Local Supported Commands command requests a list of the supported HCI commands for the local device.
Read Local Supported Features Command	1.1	The Read Local Supported Features command requests a list of the supported features for the local device.
Read Local Extended Fea- tures Command	1.2	The Read Local Extended Features command requests a list of the supported extended features for the local device
Read BD_ADDR Com- mand	1.1	The Read BD_ADDR command will read the value for the BD_ADDR parameter.

Table 3.4: Controller information

3.5 CONTROLLER CONFIGURATION

The controller configuration group of commands and events allows the global configuration parameters to be configured.

Name	Vers.	Summary description
Read Local Name Com- mand	1.1	The Read Local Name command provides the ability to read the stored user-friendly name for the Blue-tooth device.
Write Local Name Com- mand	1.1	The Write Local Name command provides the ability to modify the user-friendly name for the Bluetooth device.
Read Class of Device Command	1.1	The Read Class of Device command will read the value for the Class of Device configuration parameter, which is used to indicate its capabilities to other devices.
Write Class of Device Command	1.1	The Write Class of Device command will write the value for the Class_of_Device configuration parameter, which is used to indicate its capabilities to other devices.
Read Number Of Supported IAC Command	1.1	The Read Number of Supported IAC command will read the value for the number of Inquiry Access Codes (IAC) that the local Bluetooth device can simultaneously listen for during an Inquiry Scan.
Read Current IAC LAP Command	1.1	The Read Current IAC LAP command will read the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans.
Write Current IAC LAP Command	1.1	The Write Current IAC LAP command will write the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans.
Read Scan Enable Com- mand	1.1	The Read Scan Enable command will read the value for the Scan Enable configuration parameter, which controls whether or not the Bluetooth device will peri- odically scan for page attempts and/or inquiry requests from other Bluetooth devices.
Write Scan Enable Com- mand	1.1	The Write Scan Enable command will write the value for the Scan Enable configuration parameter, which controls whether or not the Bluetooth device will peri- odically scan for page attempts and/or inquiry requests from other Bluetooth devices.

Table 3.5: Controller configuration

😵 Bluetooth°

3.6 DEVICE DISCOVERY

The device discovery group of commands and events allow a device to discovery other devices in the surrounding area.

Name	Vers.	Summary description
Inquiry Command	1.1	The Inquiry command will cause the Bluetooth device to enter Inquiry Mode. Inquiry Mode is used to discov- ery other nearby Bluetooth devices.
Inquiry Result Event	1.1	The Inquiry Result event indicates that a Bluetooth device or multiple Bluetooth devices have responded so far during the current Inquiry process.
Inquiry Result with RSSI Event	1.2	The Inquiry Result with RSSI event indicates that a Bluetooth device or multiple Bluetooth devices have responded so far during the current Inquiry process.
Inquiry Cancel Command	1.1	The Inquiry Cancel command will cause the Blue- tooth device to stop the current Inquiry if the Blue- tooth device is in Inquiry Mode.
Inquiry Complete Event	1.1	The Inquiry Complete event indicates that the Inquiry is finished.
Periodic Inquiry Mode Command	1.1	The Periodic Inquiry Mode command is used to con- figure the Bluetooth device to perform an automatic Inquiry based on a specified period range.
Exit Periodic Inquiry Mode Command	1.1	The Exit Periodic Inquiry Mode command is used to end the Periodic Inquiry mode when the local device is in Periodic Inquiry Mode.
Read Inquiry Scan Activity Command	1.1	The Read Inquiry Scan Activity command will read the value for Inquiry Scan Interval and Inquiry Scan Window configuration parameters. Inquiry Scan Inter- val defines the amount of time between consecutive inquiry scans. Inquiry Scan Window defines the amount of time for the duration of the inquiry scan.
Write Inquiry Scan Activity Command	1.1	The Write Inquiry Scan Activity command will write the value for Inquiry Scan Interval and Inquiry Scan Window configuration parameters. Inquiry Scan Inter- val defines the amount of time between consecutive inquiry scans. Inquiry Scan Window defines the amount of time for the duration of the inquiry scan.
Read Inquiry Scan Type Command	1.2	The Read Inquiry Scan Type command is used to read the Inquiry Scan Type configuration parameter of the local Bluetooth device. The Inquiry Scan Type configuration parameter can set the inquiry scan to either normal or interlaced scan.

Table 3.6: Device discovery

😵 Bluetooth[°]

Name	Vers.	Summary description
Write Inquiry Scan Type Command	1.2	The Write Inquiry Scan Type command is used to write the Inquiry Scan Type configuration parameter of the local Bluetooth device. The Inquiry Scan Type configuration parameter can set the inquiry scan to either normal or interlaced scan.
Read Inquiry Mode Com- mand	1.2	The Read Inquiry Mode command is used to read the Inquiry Mode configuration parameter of the local Bluetooth device.
Write Inquiry Mode Com- mand	1.2	The Write Inquiry Mode command is used to write the Inquiry Mode configuration parameter of the local Bluetooth device.

Table 3.6: Device discovery

😵 Bluetooth[°]

3.7 CONNECTION SETUP

The connection setup group of commands and events are used to allow a device to make a connection to another device.

Name	Vers.	Summary description
Create Connection Com- mand	1.1	The Create Connection command will cause the link manager to create an ACL connection to the Blue- tooth device with the BD_ADDR specified by the command parameters.
Connection Request Event	1.1	The Connection Request event is used to indicate that a new incoming connection is trying to be estab- lished.
Accept Connection Request Command	1.1	The Accept Connection Request command is used to accept a new incoming connection request.
Reject Connection Request Command	1.1	The Reject Connection Request command is used to decline a new incoming connection request.
Create Connection Cancel Command	1.2	The Create Connection Cancel Command is used to cancel an ongoing Create Connection.
Connection Complete Event	1.1	The Connection Complete event indicates to both of the Hosts forming the connection that a new connec- tion has been established.
Disconnect Command	1.1	The Disconnect command is used to terminate an existing connection.
Disconnection Complete Event	1.1	The Disconnection Complete event occurs when a connection has been terminated.
Read Page Timeout Com- mand	1.1	The Read Page Timeout command will read the value for the Page Reply Timeout configuration parameter, which determines the time the Bluetooth controller will wait for the remote device to respond to a connection request before the local device returns a connection failure.
Write Page Timeout Com- mand	1.1	The Write Page Timeout command will write the value for the Page Reply Timeout configuration parameter, which allows the Bluetooth hardware to define the amount of time a connection request will wait for the remote device to respond before the local device returns a connection failure.
Read Page Scan Activity Command	1.1	The Read Page Scan Activity command will read the values for the Page Scan Interval and Page Scan Window configuration parameters. Page Scan Interval defines the amount of time between consecutive page scans. Page Scan Window defines the duration of the page scan.

😵 Bluetooth[°]

Name	Vers.	Summary description
Write Page Scan Activity Command	1.1	The Write Page Scan Activity command will write the value for Page Scan Interval and Page Scan Window configuration parameters. Page Scan Interval defines the amount of time between consecutive page scans. Page Scan Window defines the duration of the page scan.
Page Scan Repetition Mode Change Event	1.1	The Page Scan Repetition Mode Change event indi- cates that the connected remote Bluetooth device with the specified Connection_Handle has success- fully changed the Page_Scan_Repetition_Mode (SR)."
Read Page Scan Type Command	1.2	The Read Page Scan Type command is used to read the page scan type of the local Bluetooth device. The Page Scan Type configuration parameter can set the page scan to either normal or interlaced scan.
Write Page Scan Type Command	1.2	The Write Page Scan Type command is used to write the page scan type of the local Bluetooth device. The Page Scan Type configuration parameter can set the page scan to either normal or interlaced scan.
Read Connection Accept Timeout Command	1.1	The Read Connection Accept Timeout command will read the value for the Connection Accept Timeout configuration parameter, which allows the Bluetooth hardware to automatically deny a connection request after a specified period has occurred, and to refuse a new connection.
Write Connection Accept Timeout Command	1.1	The Write Connection Accept Timeout command will write the value for the Connection Accept Timeout configuration parameter, which allows the Bluetooth hardware to automatically deny a connection request after a specified period has occurred, and to refuse a new connection.

Table 3.7: Connection setup

3.8 **REMOTE INFORMATION**

The remote information group of commands and events allows information about a remote devices configuration to be discovered.

Name	Vers.	Summary description
Remote Name Request Command	1.1	The Remote Name Request command is used to obtain the user-friendly name of another Bluetooth device.
Remote Name Request Cancel Command	1.2	The Remote Name Request Cancel Command is used to cancel an ongoing Remote Name Request.
Remote Name Request Complete Event	1.1	The Remote Name Request Complete event is used to indicate a remote name request has been completed.
Read Remote Supported Features Command	1.1	The Read Remote Supported Features command requests a list of the supported features of a remote device.
Read Remote Supported Features Complete Event	1.1	The Read Remote Supported Features Complete event is used to indicate the completion of the pro- cess of the Link Manager obtaining the supported features of the remote Bluetooth device specified by the Connection Handle event parameter.
Read Remote Extended Features Command	1.2	The Read Remote Extended Features command requests a list of the supported extended features of a remote device
Read Remote Extended Features Complete Event	1.2	The Read Remote Extended Features Complete Event is used to indicate the completion of the pro- cess of the Link Manager obtaining the supported Extended features of the remote Bluetooth device specified by the connection handle event parameter.
Read Remote Version Information Command	1.1	The Read Remote Version Information command will read the values for the version information for the remote Bluetooth device.
Read Remote Version Information Complete Event	1.1	The Read Remote Version Information Complete event is used to indicate the completion of the pro- cess of the Link Manager obtaining the version infor- mation of the remote Bluetooth device specified by the Connection Handle event parameter.

Table 3.8: Remote information

3.9 SYNCHRONOUS CONNECTIONS

The synchronous connections group of commands and events allows synchronous connections to be created.

Name	Vers.	Summary description
Setup Synchronous Con- nection Command	1.2	The Setup Synchronous Connection command adds a new or modifies an existing synchronous logical transport (SCO or eSCO) on a physical link depend- ing on the Connection Handle parameter specified.
Synchronous Connection Complete Event	1.2	The Synchronous Connection Complete event indi- cates to both the Hosts that a new Synchronous con- nection has been established.
Synchronous Connection Changed event	1.2	The Synchronous Connection Changed event indi- cates to the Host that an existing Synchronous con- nection has been reconfigured.
Accept Synchronous Con- nection Request Command	1.2	The Accept_Synchronous_Connection_Request command is used to accept an incoming request for a synchronous connection and to inform the local Link Manager about the acceptable parameter values for the synchronous connection.
Reject Synchronous Con- nection Request Command	1.2	The Reject_Synchronous_Connection_Request is used to decline an incoming request for a synchronous link.
Read Voice Setting Com- mand	1.1	The Read Voice Setting command will read the val- ues for the Voice Setting configuration parameter, which controls all the various settings for the voice connections.
Write Voice Setting Com- mand	1.1	The Write Voice Setting command will write the val- ues for the Voice Setting configuration parameter, which controls all the various settings for the voice connections.

 Table 3.9:
 Synchronous connections

Bluetooth°

3.10 CONNECTION STATE

The connection state group of commands and events allows the configuration of a link, especially for low power operation.

Name	Vers.	Summary description
Mode Change Event	1.1	The Mode Change event is used to indicate that the current mode has changed.
Max Slots Change Event	1.1	The Max Slots Change event it used to indicate a change in the max slots by the LM.
Hold Mode Command	1.1	The Hold Mode command is used to initiate Hold Mode.
Sniff Mode Command	1.1	The Sniff Mode command is used to alter the behav- ior of the LM and have the LM place the local or remote device into the sniff mode.
Exit Sniff Mode Command	1.1	The Exit Sniff Mode command is used to end the sniff mode for a connection handle which is currently in sniff mode.
Park State Command	1.1	The Park State command is used to alter the behav- ior of the LM and have the LM place the local or remote device into the park state.
Exit Park State Command	1.1	The Exit Park State command is used to switch the Bluetooth device from park state back to active mode.
Read Link Policy Settings Command	1.1	The Read Link Policy Settings command will read the Link Policy configuration parameter for the specified Connection Handle. The Link Policy settings allow the Host to specify which Link Modes the LM can use for the specified Connection Handle.
Write Link Policy Settings Command	1.1	The Write Link Policy Settings command will write the Link Policy configuration parameter for the specified Connection Handle. The Link Policy settings allow the Host to specify which Link Modes the LM can use for the specified Connection Handle.
Read Default Link Policy Settings Command	1.2	The Read Default Link Policy Settings command will read the Default Link Policy configuration parameter for all new connections.
Write Default Link Policy Settings Command	1.2	The Write Default Link Policy Settings command will write the Default Link Policy configuration parameter for all new connections.

Table 3.10: Connection state

😵 Bluetooth[°]

3.11 PICONET STRUCTURE

The piconet structure group of commands and events allows the discovery and reconfiguration a piconet.

Name	Vers.	Summary description
Role Discovery Command	1.1	The Role Discovery command is used for a Bluetooth device to determine which role the device is perform- ing for a particular Connection Handle.
Switch Role Command	1.1	The Switch Role command is used to switch master and slave roles of the devices on either side of a con- nection.
Role Change Event	1.1	The Role Change event is used to indicate that the current Bluetooth role related to the particular connection has been changed.

Table 3.11: Piconet structure

3.12 QUALITY OF SERVICE

The quality of service group of commands and events allows the configuration of links to allow for quality of service parameters to be specified.

Name	Vers.	Summary description
Flow Specification Com- mand	1.2	The Flow Specification command is used to specify the flow parameters for the traffic carried over the ACL connection identified by the Connection Handle.
Flow Specification Com- plete Event	1.2	The Flow Specification Complete event is used to inform the Host about the Quality of Service for the ACL connection the Controller is able to support.
QoS Setup Command	1.1	The QoS Setup command is used to specify Quality of Service parameters for a connection handle.
QoS Setup Complete Event	1.1	The QoS Setup Complete event is used to indicate that QoS is setup.
QoS Violation Event	1.1	The QoS Violation event is used to indicate the Link Manager is unable to provide the current QoS requirement for the Connection Handle.
Flush Command	1.1	The Flush command is used to discard all data that is currently pending for transmission in the Controller for the specified connection handle.
Flush Occurred Event	1.1	The Flush Occurred event is used to indicate that, for the specified Connection Handle, the data to be transmitted has been discarded.
Read Automatic Flush Tim- eout Command	1.1	The Read Automatic Flush Timeout will read the value for the Flush Timeout configuration parameter for the specified connection handle. The Flush Time-out parameter is only used for ACL connections.
Write Automatic Flush Tim- eout Command	1.1	The Write Automatic Flush Timeout will write the value for the Flush Timeout configuration parameter for the specified connection handle. The Flush Time-out parameter is only used for ACL connections.
Read Failed Contact Counter Command	1.1	The Read Failed Contact Counter will read the value for the Failed Contact Counter configuration parame- ter for a particular connection to another device.
Reset Failed Contact Counter Command	1.1	The Reset Failed Contact Counter will reset the value for the Failed Contact Counter configuration parameter for a particular connection to another device.
Read Num Broadcast Retransmissions Com- mand	1.1	The Read Num Broadcast Retransmissions com- mand will read the parameter value for the Number of Broadcast Retransmissions for the device.
Write Num Broadcast Retransmissions Com- mand	1.1	The Write Num Broadcast Retransmissions com- mand will write the parameter value for the Number of Broadcast Retransmissions for the device.

Table 3.12: Quality of service

😵 Bluetooth[°]

3.13 PHYSICAL LINKS

The physical links commands and events allows configuration of the physical link.

Name	Vers.	Summary description
Read Link Supervision Timeout Command	1.1	The Read Link Supervision Timeout command will read the value for the Link Supervision Timeout con- figuration parameter for the device. This parameter is used by the device to determine link loss.
Write Link Supervision Tim- eout Command	1.1	The Write Link Supervision Timeout command will write the value for the Link Supervision Timeout con- figuration parameter for the device. This parameter is used by the device to determine link loss.
Read AFH Channel Assessment Mode Com- mand	1.2	The Read AFH Channel Assessment Mode com- mand will read the value for the AFH Channel Classi- fication Mode parameter. This value is used to enable or disable the Controller's channel assessment scheme.
Write AFH Channel Assessment Mode Com- mand	1.2	The Write AFH Channel Assessment Mode com- mand will write the value for the Channel Classifica- tion Mode configuration parameter. This value is used to enable or disable the Controller's channel assess- ment scheme.
Set AFH Host Channel Classification Command	1.2	The Set AFH Host Channel Classification command allows the Host to specify a channel classification based on its "local information".
Change Connection Packet Type Command	1.1	The Change Connection Packet Type command is used to change which packet types can be used for a connection that is currently established.
Connection Packet Type Changed Event	1.1	The Connection Packet Type Changed event is used to indicate the completion of the process of the Link Manager changing the packet type mask used for the specified Connection Handle.

Table 3.13: Physical links

3.14 HOST FLOW CONTROL

The Host flow control group of commands and events allows flow control to be used towards the Host.

Name	Vers.	Summary description
Host Buffer Size Command	1.1	The Host Buffer Size command is used by the Host to notify the Controller about its buffer sizes for ACL and synchronous data. The Controller will segment the data to be transmitted from the Controller to the Host, so that data contained in HCI Data Packets will not exceed these sizes.
Set Event Mask Command	1.1	The Set Event Mask command is used to control which events are generated by the HCI for the Host.
Set Event Filter Command	1.1	The Set Event Filter command is used by the Host to specify different event filters. The Host may issue this command multiple times to request various condi- tions for the same type of event filter and for different types of event filters.
Set Controller To Host Flow Control Command	1.1	The Set Controller To Host Flow Control command is used by the Host to turn flow control on or off in the direction from the Controller to the Host.
Host Number Of Com- pleted Packets Command	1.1	The Host Number Of Completed Packets command is used by the Host to indicate to the Controller when the Host is ready to receive more HCI packets for any connection handle.
Data Buffer Overflow Event	1.1	The Data Buffer Overflow event is used to indicate that the Controller's data buffers have overflowed, because the Host has sent more packets than allowed.
Read Synchronous Flow Control Enable Command	1.1	The Read Synchronous Flow Control Enable com- mand provides the ability to read the Synchronous Flow Control Enable setting. By using this setting, the Host can decide if the Controller will send Number Of Completed Packets events for Synchronous Connec- tion Handles.
Write Synchronous Flow Control Enable Command	1.1	The Write Synchronous Flow Control Enable com- mand provides the ability to write the Synchronous Flow Control Enable setting. By using this setting, the Host can decide if the Controller will send Number Of Completed Packets events for Synchronous Connec- tion Handles.

Table 3.14: Controller flow control.

😵 Bluetooth[°]

3.15 LINK INFORMATION

The link information group of commands and events allows information about a link to be read.

Name	Vers.	Summary description
Read LMP Handle Com- mand	1.2	The Read LMP Handle command will read the cur- rent LMP Handle associated with the Connection Handle.
Read Transmit Power Level Command	1.1	The Read Transmit Power Level command will read the values for the Transmit Power Level parameter for the specified Connection Handle.
Read Link Quality Com- mand	1.1	The Read Link Quality command will read the value for the Link Quality for the specified Connection Handle.
Read RSSI Command	1.1	The Read RSSI command will read the value for the Received Signal Strength Indication (RSSI) for a connection handle to another Bluetooth device.
Read Clock Offset Com- mand	1.1	The Read Clock Offset command allows the Host to read the clock offset of remote devices.
Read Clock Offset Com- plete Event	1.1	The Read Clock Offset Complete event is used to indicate the completion of the process of the LM obtaining the Clock offset information.
Read Clock Command	1.2	The Read Clock command will read an estimate of a piconet or the local Bluetooth Clock.
Read AFH Channel Map Command	1.2	The Read AFH Channel Map command will read the current state of the channel map for a connection.

Table 3.15: Link information

4 November 2004

3.16 AUTHENTICATION AND ENCRYPTION

The authentication and encryption group of commands and events allows authentication of a remote device and then encryption of the link to one or more remote devices.

Name	Vers.	Summary description
Read Authentication Enable Command	1.1	The Read Authentication Enable command will read the value for the Authentication Enable parameter, which controls whether the Bluetooth device will require authentication for each connection with other Bluetooth devices.
Write Authentication Enable Command	1,1	The Write Authentication Enable command will write the value for the Authentication Enable parameter, which controls whether the Bluetooth device will require authentication for each connection with other Bluetooth devices.
Read Encryption Mode Command	1.1	The Read Encryption Mode command will read the value for the Encryption Mode parameter, which con- trols whether the Bluetooth device will require encryp- tion for each connection with other Bluetooth devices.
Write Encryption Mode Command	1.1	The Write Encryption Mode command will write the value for the Encryption Mode parameter, which controls whether the Bluetooth device will require encryption for each connection with other Bluetooth devices.
Link Key Request Event	1.1	The Link Key Request event is used to indicate that a Link Key is required for the connection with the device specified in BD_ADDR.
Link Key Request Reply Command	1.1	The Link Key Request Reply command is used to reply to a Link Key Request event from the Controller, and specifies the Link Key stored on the Host to be used as the link key for the connection with the other Bluetooth device specified by BD_ADDR.
Link Key Request Negative Reply Command	1.1	The Link Key Request Negative Reply command is used to reply to a Link Key Request event from the Controller if the Host does not have a stored Link Key for the connection with the other Bluetooth Device specified by BD_ADDR.
PIN Code Request Event	1.1	The PIN Code Request event is used to indicate that a PIN code is required to create a new link key for a connection.
PIN Code Request Reply Command	1.1	The PIN Code Request Reply command is used to reply to a PIN Code Request event from the Control- ler and specifies the PIN code to use for a connec- tion.

Table 3.16: Authentication and encryption

😵 Bluetooth[°]

Name	Vers.	Summary description
PIN Code Request Nega- tive Reply Command	1.1	The PIN Code Request Negative Reply command is used to reply to a PIN Code Request event from the Controller when the Host cannot specify a PIN code to use for a connection.
Link Key Notification Event	1.1	The Link Key Notification event is used to indicate to the Host that a new Link Key has been created for the connection with the device specified in BD_ADDR.
Authentication Requested Command	1.1	The Authentication Requested command is used to establish authentication between the two devices associated with the specified Connection Handle.
Authentication Complete Event	1.1	The Authentication Complete event occurs when authentication has been completed for the specified connection.
Set Connection Encryption Command	1.1	The Set Connection Encryption command is used to enable and disable the link level encryption.
Encryption Change Event	1.1	The Encryption Change event is used to indicate that the change in the encryption has been completed for the Connection Handle specified by the Connection Handle event parameter.
Change Connection Link Key Command	1.1	The Change Connection Link Key command is used to force both devices of a connection associated to the connection handle, to generate a new link key.
Change Connection Link Key Complete Event	1.1	The Change Connection Link Key Complete event is used to indicate that the change in the Link Key for the Connection Handle specified by the Connection Handle event parameter had been completed.
Master Link Key Command	1.1	The Master Link Key command is used to force both devices of a connection associated to the connection handle to use the temporary link key of the Master device or the regular link keys.
Master Link Key Complete Event	1.1	The Master Link Key Complete event is used to indi- cate that the change in the temporary Link Key or in the semi-permanent link keys on the Bluetooth mas- ter side has been completed.
Read PIN Type Command	1.1	The Read PIN Type command is used for the Host to read the value that is specified to indicate whether the Host supports variable PIN or only fixed PINs.
Write PIN Type Command	1.1	The Write PIN Type command is used for the Host to specify whether the Host supports variable PIN or only fixed PINs.
Read Stored Link Key Command	1.1	The Read Stored Link Key command provides the ability to read one or more link keys stored in the Controller.

Table 3.16: Authentication and encryption

Name	Vers.	Summary description
Return Link Keys Event	1.1	The Return Link Keys event is used to return stored link keys after a Read Stored Link Key command is used.
Write Stored Link Key Command	1.1	The Write Stored Link Key command provides the ability to write one or more link keys to be stored in the Controller.
Delete Stored Link Key Command	1.1	The Delete Stored Link Key command provides the ability to remove one or more of the link keys stored in the Controller.
Create New Unit Key Com- mand	1.1	The Create New Unit Key command is used to create a new unit key.

Table 3.16: Authentication and encryption

3.17 TESTING

The testing group of commands and events allows a device to be placed into a special testing mode to allow for testing to be performed.

Name	Vers.	Summary description
Read Loopback Mode Command	1.1	The Read Loopback Mode will read the value for the setting of the Controllers Loopback Mode. The setting of the Loopback Mode will determine the path of information.
Write Loopback Mode Command	1.1	The Write Loopback Mode will write the value for the setting of the Controllers Loopback Mode. The setting of the Loopback Mode will determine the path of information.
Loopback Command Event	1.1	The Loopback Command event is used to loop back all commands that the Host sends to the Controller with some exceptions.
Enable Device Under Test Mode Command	1.1	The Enable Device Under Test Mode command will allow the local Bluetooth module to enter test mode via LMP test commands. The Host issues this com- mand when it wants the local device to be the DUT for the Testing scenarios as described in the Blue- tooth Test Mode document.

Table 3.17: Testing

🚯 Bluetooth[°]

3.18 ALPHABETICAL LIST OF COMMANDS AND EVENTS

Commands/Events	Group
Accept Connection Request Command	Connection Setup
Authentication Complete Event	Authentication and Encryption
Authentication Requested Command	Authentication and Encryption
Change Connection Link Key Command	Authentication and Encryption
Change Connection Link Key Complete Event	Authentication and Encryption
Change Connection Packet Type Command	Physical Links
Command Complete Event	Generic Events
Command Status Event	Generic Events
Connection Complete Event	Connection Setup
Connection Packet Type Changed Event	Physical Links
Connection Request Event	Connection Setup
Create Connection Cancel Command	Connection Setup
Create Connection Command	Connection Setup
Create New Unit Key Command	Authentication and Encryption
Data Buffer Overflow Event	Host Flow Control
Delete Stored Link Key Command	Authentication and Encryption
Disconnect Command	Connection Setup
Disconnection Complete Event	Connection Setup
Enable Device Under Test Mode Command	Testing
Encryption Change Event	Authentication and Encryption
Exit Park State Command	Connection State
Exit Periodic Inquiry Mode Command	Device Discovery
Exit Sniff Mode Command	Connection State
Flow Specification Command	Quality of Service
Flow Specification Complete Event	Quality of Service
Flush Command	Quality of Service
Flush Occurred Event	Quality of Service
Hardware Error Eventt	Generic Events
Hold Mode Command	Connection State
Host Buffer Size Command	Host Flow Control

🚯 Bluetooth°

Commands/Events	Group
Host Number Of Completed Packets Command	Host Flow Control
Inquiry Cancel Command	Device Discovery
Inquiry Command	Device Discovery
Inquiry Complete Event	Device Discovery
Inquiry Result Event	Device Discovery
Inquiry Result with RSSI Event	Device Discovery
Link Key Notification Event	Authentication and Encryption
Link Key Request Event	Authentication and Encryption
Link Key Request Negative Reply Command	Authentication and Encryption
Link Key Request Reply Command	Authentication and Encryption
Loopback Command Event	Testing
Master Link Key Command	Authentication and Encryption
Master Link Key Complete Event	Authentication and Encryption
Max Slots Change Event	Connection State
Mode Change Event	Connection State
Number Of Completed Packets Event	Controller Flow Control
Page Scan Repetition Mode Change Event	Connection Setup
Park State Command	Connection State
Periodic Inquiry Mode Command	Device Discovery
PIN Code Request Event	Authentication and Encryption
PIN Code Request Negative Reply Command	Authentication and Encryption
PIN Code Request Reply Command	Authentication and Encryption
QoS Setup Command	Quality of Service
QoS Setup Complete Event	Quality of Service
QoS Violation Event	Quality of Service
Read AFH Channel Assessment Mode Command	Physical Links
Read AFH Channel Map Command	Link Information
Read Authentication Enable Command	Authentication and Encryption
Read Automatic Flush Timeout Command	Quality of Service
Read BD_ADDR Command	Controller Information
Read Buffer Size Command	Controller Flow Control
Read Class of Device Command	Controller Information

😵 Bluetooth[°]

Commands/Events	Group
Read Clock Command	Link Information
Read Clock Offset Command	Link Information
Read Clock Offset Complete Event	Link Information
Read Connection Accept Timeout Command	Connection Setup
Read Current IAC LAP Command	Controller Information
Read Default Link Policy Settings Command	Connection State
Read Encryption Mode Command	Authentication and Encryption
Read Failed Contact Counter Command	Quality of Service
Read Hold Mode Activity Command	Connection State
Read Inquiry Mode Command	Device Discovery
Read Inquiry Scan Activity Command	Device Discovery
Read Inquiry Scan Type Command	Device Discovery
Read Link Policy Settings Command	Connection State
Read Link Quality Command	Link Information
Read Link Supervision Timeout Command	Physical Links
Read LMP Handle Command	Link Information
Read Local Extended Features Command	Controller Information
Read Local Name Command	Controller Configuration
Read Local Supported Commands Command	Controller Information
Read Local Supported Features Command	Controller Information
Read Local Version Information Command	Controller Information
Read Loopback Mode Command	Testing
Read Num Broadcast Retransmissions Command	Quality of Service
Read Number Of Supported IAC Command	Controller Information
Read Page Scan Activity Command	Connection Setup
Read Page Scan Type Command	Connection Setup
Read Page Timeout Command	Connection Setup
Read PIN Type Command	Authentication and Encryption
Read Remote Extended Features Command	Remote Information
Read Remote Extended Features Complete Event	Remote Information
Read Remote Supported Features Command	Remote Information
Read Remote Supported Features Complete Event	Remote Information

🚯 Bluetooth°

Commands/Events	Group
Read Remote Version Information Command	Remote Information
Read Remote Version Information Complete Event	Remote Information
Read RSSI Command	Link Information
Read Scan Enable Command	Controller Information
Read Stored Link Key Command	Authentication and Encryption
Read Synchronous Flow Control Enable Command	Host Flow Control
Read Transmit Power Level Command	Link Information
Read Voice Setting Command	Synchronous Connections
Reject Connection Request Command	Connection Setup
Remote Name Request Cancel Command	Remote Information
Remote Name Request Command	Remote Information
Remote Name Request Complete Event	Remote Information
Reset Command	Device Setup
Reset Failed Contact Counter Command	Quality of Service
Return Link Keys Event	Authentication and Encryption
Role Change Event	Piconet Structure
Role Discovery Command	Piconet Structure
Set AFH Host Channel Classification Command	Physical Links
Set Connection Encryption Command	Authentication and Encryption
Set Controller To Host Flow Control Command	Host Flow Control
Set Event Filter Command	Host Flow Control
Set Event Mask Command	Host Flow Control
Setup Synchronous Connection Command	Synchronous Connections
Sniff Mode Command	Connection State
Switch Role Command	Piconet Structure
Synchronous Connection Changed event	Synchronous Connections
Synchronous Connection Complete Event	Synchronous Connections
Write AFH Channel Assessment Mode Command	Physical Links
Write Authentication Enable Command	Authentication and Encryption
Write Automatic Flush Timeout Command	Quality of Service
Write Class of Device Command	Controller Information
Write Connection Accept Timeout Command	Connection Setup

😵 Bluetooth[°]

Commands/Events	Group
Write Current IAC LAP Command	Controller Information
Write Default Link Policy Settings Command	Connection State
Write Encryption Mode Command	Authentication and Encryption
Write Hold Mode Activity Command	Connection State
Write Inquiry Mode Command	Device Discovery
Write Inquiry Scan Activity Command	Device Discovery
Write Inquiry Scan Type Command	Device Discovery
Write Link Policy Settings Command	Connection State
Write Link Supervision Timeout Command	Physical Links
Write Local Name Command	Controller Information
Write Loopback Mode Command	Testing
Write Num Broadcast Retransmissions Command	Quality of Service
Write Page Scan Activity Command	Connection Setup
Write Page Scan Type Command	Connection Setup
Write Page Timeout Command	Connection Setup
Write PIN Type Command	Authentication and Encryption
Write Scan Enable Command	Controller Information
Write Stored Link Key Command	Authentication and Encryption
Write Synchronous Flow Control Enable Command	Host Flow Control
Write Voice Setting Command	Synchronous Connections

4 HCI FLOW CONTROL

Flow control shall be used in the direction from the Host to the Controller to avoid overflowing the Controller data buffers with ACL data destined for a remote device (using a connection handle) that is not responding. The Host manages the data buffers of the Controller.

4.1 HOST TO CONTROLLER DATA FLOW CONTROL

On initialization, the Host shall issue the Read Buffer Size command. Two of the return parameters of this command determine the maximum size of HCI ACL and synchronous Data Packets (excluding header) sent from the Host to the Controller. There are also two additional return parameters that specify the total number of HCI ACL and synchronous Data Packets that the Controller may have waiting for transmission in its buffers.

When there is at least one connection to another device, or when in local loopback mode, the Controller shall use the Number Of Completed Packets event to control the flow of data from the Host. This event contains a list of connection handles and a corresponding number of HCI Data Packets that have been completed (transmitted, flushed, or looped back to the Host) since the previous time the event was returned (or since the connection was established, if the event has not been returned before for a particular connection handle).

Based on the information returned in this event, and the return parameters of the Read Buffer Size command that specify the total number of HCI ACL and synchronous Data Packets that can be stored in the Controller, the Host decides for which Connection Handles the following HCI Data Packets should be sent.

Every time it has sent an HCI Data Packet, the Host shall assume that the free buffer space for the corresponding link type (ACL, SCO or eSCO) in the Controller has decreased by one HCI Data Packet.

Each Number Of Completed Packets event received by the Host provides information about how many HCI Data Packets have been completed (transmitted or flushed) for each Connection Handle since the previous Number Of Completed Packets event was sent to the Host. It can then calculate the actual current buffer usage.

When the Controller has completed one or more HCI Data Packet(s) it shall send a Number Of Completed Packets event to the Host, until it finally reports that all the pending HCI Data Packets have been completed. The frequency at which this event is sent is manufacturer specific.

Note: The Number Of Completed Packets events will not report on synchronous connection handles if Synchronous Flow Control is disabled. (See Read/

😵 Bluetooth°

Write Synchronous Flow Control Enable, Section 7.3.38 on page 513 and Section 7.3.39 on page 514)

For each individual Connection Handle, the data must be sent to the Controller in HCI Data Packets in the order in which it was created in the Host. The Controller shall also transmit data on the air that is received from the Host for a given Connection Handle in the same order as it is received from the Host.

Data that is received on the air from another device shall, for the corresponding Connection Handle, be sent in HCI Data Packets to the Host in the same order as it is received. This means the scheduling shall be decided separately for each Connection Handle basis. For each individual Connection Handle, the order of the data shall not be changed from the order in which the data has been created.

4.2 CONTROLLER TO HOST DATA FLOW CONTROL

In some implementations, flow control may also be necessary in the direction from the Controller to the Host. The Set Host Controller To Host Flow Control command can be used to turn flow control on or off in that direction.

On initialization, the Host uses the Host Buffer Size command to notify the Controller about the maximum size of HCI ACL and synchronous Data Packets sent from the Controller to the Host. The command also contains two additional command parameters to notify the Controller about the total number of ACL and synchronous Data Packets that can be stored in the data buffers of the Host.

The Host uses the Host Number Of Completed Packets command in exactly the same way as the Controller uses the Number Of Completed Packets event as was previously described in this section.

The Host Number Of Completed Packets command is a special command for which no command flow control is used, and which can be sent anytime there is a connection or when in local loopback mode. The command also has no event after the command has completed. This makes it possible for the flow control to work in exactly the same way in both directions, and the flow of normal commands will not be disturbed.

4.3 DISCONNECTION BEHAVIOR

When the Host receives a Disconnection Complete event, the Host shall assume that all unacknowledged HCI Data Packets that have been sent to the Controller for the returned Connection Handle have been flushed, and that the corresponding data buffers have been freed. The Controller does not have to notify the Host about this in a Number Of Completed Packets event.

If flow control is also enabled in the direction from the Controller to the Host, the Controller may, after it has sent a Disconnection Complete event, assume that the Host will flush its data buffers for the sent Connection Handle when it receives the Disconnection Complete event. The Host does not have to notify the Controller about this in a Host Number Of Completed Packets command.

4.4 COMMAND FLOW CONTROL

On initial power-on, and after a reset, the Host shall send a maximum of one outstanding HCI Command Packet until a Command Complete or Command Status event has been received.

The Command Complete and Command Status events contain a parameter called Num HCI Command Packets, which indicates the number of HCI Command Packets the Host is currently allowed to send to the Controller. The Controller may buffer one or more HCI command packets, but the Controller must start performing the commands in the order in which they are received. The Controller can start performing a command before it completes previous commands. Therefore, the commands do not always complete in the order they are started.

To indicate to the Host that the Controller is ready to receive HCI command packets, the Controller may generate a Command Complete event with the Command Opcode 0x0000, and the Num HCI Command Packets event parameter is set to 1 or more. Command Opcode 0x0000 is a NOP (No OPeration), and can be used to change the number of outstanding HCI command packets that the Host can send. The Controller may generate a Command Complete event with the Num HCI Command Packets event parameter set to zero to inform Host it must stop sending commands.

For most commands, a Command Complete event shall be sent to the Host when the Controller completes the command. Some commands are executed in the background and do not return a Command Complete event when they have been completed. Instead, the Controller shall send a Command Status event back to the Host when it has begun to execute the command. When the actions associated with the command have finished, an event that is associated with the command shall be sent by the Controller to the Host.

If the command does not begin to execute (for example, if there was a parameter error or the command is currently not allowed), the Command Status event shall be returned with the appropriate error code in the Status parameter, and the event associated with the sent command shall not be returned.

😵 Bluetooth

4.5 COMMAND ERROR HANDLING

If an error occurs for a command for which a Command Complete event is returned, the Return Parameters field may not contain all the return parameters specified for the command. The Status parameter, which explains the error reason and which is the first return parameter, shall always be returned. If there is a Connection Handle parameter or a BD_ADDR parameter right after the Status parameter, this parameter shall also be returned so that the Host can identify to which instance of a command the Command Complete event belongs. In this case, the Connection Handle or BD_ADDR parameter shall have exactly the same value as that in the corresponding command parameter. It is implementation specific whether more parameters will be returned in case of an error.

The above also applies to commands that have associated command specific completion events with a status parameter in their completion event, with two exceptions. The exceptions are the Connection Complete and the Synchronous Connection Complete events. On failure, for these two events only, the second parameter, Connection_Handle, is not valid and the third parameter, BD_ADDR, is valid for identification purposes. The validity of other parameters is likewise implementation specific for failed commands in this group.

Note: The BD_ADDR return parameter of the command Read BD_ADDR is not used to identify to which instance of the Read BD ADDR command the Command Complete event belongs. It is optional for the Controller to return this parameter in case of an error.

5 HCI DATA FORMATS

5.1 INTRODUCTION

The HCI provides a uniform command method of accessing the Bluetooth capabilities. The HCI Link commands provide the Host with the ability to control the link layer connections to other Bluetooth devices. These commands typically involve the Link Manager (LM) to exchange LMP commands with remote Bluetooth devices. For details see "Link Manager Protocol" on page 211 [Part C].

The HCI Policy commands are used to affect the behavior of the local and remote LM. These Policy commands provide the Host with methods of influencing how the LM manages the piconet. The Controller & Baseband, Informational, and Status commands provide the Host access to various registers in the Controller.

HCI commands may take different amounts of time to be completed. Therefore, the results of commands will be reported back to the Host in the form of an event. For example, for most HCI commands the Controller will generate the Command Complete event when a command is completed. This event contains the return parameters for the completed HCI command. For enabling the Host to detect errors on the HCI-Transport Layer, there needs to be a timeout between the transmission of the Host's command and the reception of the Controller's response (e.g. a Command Complete or Command Status event). Since the maximum response timeout is strongly dependent on the HCI-Transport Layer used, it is recommended to use a default value of one second for this timer. This amount of time is also dependent on the number of commands unprocessed in the command queue.

5.2 DATA AND PARAMETER FORMATS

- All values are in Binary and Hexadecimal Little Endian formats unless otherwise noted
- In addition, all parameters which can have negative values must use 2's complement when specifying values
- Arrayed parameters are specified using the following notation: ParameterA[i]. If more than one set of arrayed parameters are specified (e.g. ParameterA[i], ParameterB[i]), then the order of the parameters are as follows: ParameterA[0], ParameterB[0], ParameterA[1], ParameterB[1], ParameterA[2], ParameterB[2], ... ParameterA[n], ParameterB[n]
- Unless noted otherwise, all parameter values are sent and received in Little Endian format (i.e. for multi-octet parameters the rightmost (Least Signification Octet) is transmitted first)
- All command and event parameters that are not-arrayed and all elements in an arrayed parameter have fixed sizes (an integer number of octets). The parameters and the size of each not arrayed parameter (or of each element in an arrayed parameter) contained in a command or an event is specified

😵 Bluetooth°

for each command or event. The number of elements in an arrayed parameter is not fixed.

- Where bit strings are specified, the low order bit is the right hand bit, e.g. 0 is the low order bit in '10'.
- Values or parameters marked as Reserved for Future Use, shall be set to 0 unless explicitly stated otherwise on transmission, and shall be ignored on reception. Parameter values or opcodes that an implementation does not know how to interpret shall be ignored, and the operation that is being attempted shall be completed with the correct signaling. The host or controller shall not stop functioning because of receiving a reserved value.

5.3 CONNECTION HANDLES

Connection Handles are used to identify logical channels between the Host and Controller. Connection Handles are assigned by the Controller when a new logical link is created, using the Connection Complete or Synchronous Connection Complete events. Broadcast Connection Handles are handled differently, and are described below.

The first time the Host sends an HCI Data Packet with Broadcast_Flag set to 01b (active slave broadcast) or 10b (parked slave broadcast) after a power-on or a reset, the value of the Connection Handle parameter must be a value which is not currently assigned by the Host Controller. The Host must use different connection handles for active broadcast and piconet broadcast.

The Controller must then continue to use the same connection handles for each type of broadcast until a reset is made. Note: The Host Controller must not send a Connection Complete event containing a new Connection_Handle that it knows is used for broadcast.

Note: In some situations, it may happen that the Host Controller sends a Connection Complete event before having interpreted a Broadcast packet received from the Host, and that the Connection_Handles of both Connection Complete event and HCI Data packet are the same. This conflict has to be avoided as follows:

If a Connection Complete event is received containing one of the connection handles used for broadcast, the Host has to wait before sending any packets for the new connection until it receives a Number Of Completed Packets event indicating that there are no pending broadcast packets belonging to the connection handle. In addition, the Host must change the Connection_Handle used for the corresponding type of broadcast to a Connection_Handle which is currently not assigned by the Host Controller.

This Connection_Handle must then be used for all the following broadcasts of that type until a reset is performed or the same conflict situation happens again. However, this will occur very rarely.

The Host Controller must, in the above conflict case, be able to distinguish between the Broadcast message sent by the Host and the new connection made (this could be even a new synchronous link) even though the connection handles are the same.

For an HCI Data Packet sent from the Host Controller to the Host where the Broadcast_Flag is 01 or 10, the Connection_Handle parameter should contain the connection handle for the ACL connection to the master that sent the broadcast.

Note: Connection handles used for Broadcast do not identify an ACL point-topoint connection, so they must not be used in any command having a Connection_Handle parameter and they will not be returned in any event having a Connection_Handle parameter except the Number Of Completed Packets event.

5.4 EXCHANGE OF HCI-SPECIFIC INFORMATION

The Host Controller Transport Layer provides transparent exchange of HCI specific information. These transporting mechanisms provide the ability for the Host to send HCI commands, ACL data and synchronous data to the Controller. These transport mechanisms also provide the ability for the Host to receive HCI events, ACL data and synchronous data from the Controller. Since the Host Controller Transport Layer provides transparent exchange of HCI-specific information, the HCI specification specifies the format of the commands, events, and data exchange between the Host and the Controller. The next sections specify the HCI packet formats.

5.4.1 HCI Command Packet

The HCI Command Packet is used to send commands to the Controller from the Host. The format of the HCI Command Packet is shown in Figure 5.1, and the definition of each field is explained below.

The Controller must be able to accept HCI Command Packets with up to 255 bytes of data excluding the HCI Command Packet header.

Each command is assigned a 2 byte Opcode used to uniquely identify different types of commands. The Opcode parameter is divided into two fields, called the OpCode Group Field (OGF) and OpCode Command Field (OCF). The OGF occupies the upper 6 bits of the Opcode, while the OCF occupies the remaining 10 bits. The OGF of 0x3F is reserved for vendor-specific debug commands. The OGF of 0x3E is reserved for Bluetooth Logo Testing. The organization of the Opcodes allows additional information to be inferred without fully decoding the entire Opcode.

Note: the OGF composed of all 'ones' has been reserved for vendor-specific debug commands. These commands are vendor-specific and are used during manufacturing, for a possible method for updating firmware, and for debugging.

Note: the OGF composed of all 'zeros' and an OCF or all 'zeros' is the NOP command. This command Opcode may be used in Command Flow Control. (See Section 4.4 on page 373)

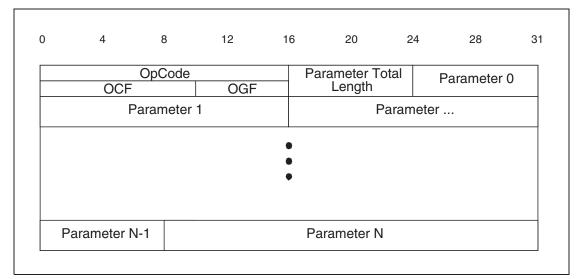


Figure 5.1: HCI Command Packet

Op_Code:

Size: 2 Octets

Value	Parameter Description
0xXXXX	OGFRange (6 bits): 0x00-0x3F (0x3E reserved for Bluetooth logo testing and 0x3F reserved for vendor-specific debug commands)
	OCF Range (10 bits): 0x0000-0x03FF

Parameter_Total_Length:

Size: 1 Octet

Value	Parameter Description
0xXX	Lengths of all of the parameters contained in this packet measured in octets. (N.B.: total length of parameters, <u>not</u> number of parameters)

Parameter 0 - N:

Size: Parameter Total Length

Value	Parameter Description
0xXX	Each command has a specific number of parameters associated with it. These parameters and the size of each of the parameters are defined for each command. Each parameter is an integer number of octets in size.

5.4.2 HCI ACL Data Packets

HCI ACL Data Packets are used to exchange data between the Host and Controller. The format of the HCI ACL Data Packet is shown in Figure 5.2. The definition for each of the fields in the data packets is explained below.

0	4	8	12	16	20	24	28	31
	Connecti	on Handle	PB Flag	BC Flag	C	Data Total Leng	th	
				Data				

Figure 5.2: HCI ACL Data Packet

Connection_Handle:

Size: 12 Bits

Value	Parameter Description
0xXXX	Connection Handle to be used for transmitting a data packet or segment. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Flags:

Size: 2 Bits

The Flag Bits consist of the Packet_Boundary_Flag and Broadcast_Flag. The Packet_Boundary_Flag is located in bit 4 and bit 5, and the Broadcast_Flag is located in bit 6 and 7 in the second octet of the HCI ACL Data packet.

Packet_Boundary_Flag:

Size: 2 Bits

Value	Parameter Description
00	Reserved for future use
01	Continuing fragment packet of Higher Layer Message
10	First packet of Higher Layer Message (i.e. start of an L2CAP packet)
11	Reserved for future use

😵 Bluetooth

Size: 2 Bits

Broadcast_Flag (in packet from Host to Controller):

Value	Parameter Description
00	No broadcast. Only point-to-point.
01	Active Slave Broadcast: packet is sent to all active slaves (i.e. packet is usually not sent during park beacon slots), and it may be received by slaves in sniff mode or park state.
10	Parked Slave Broadcast: packet is sent to all slaves and all slaves in park state (i.e. packet is sent during park beacon slots if there are parked slaves), and it may be received by slaves in sniff mode.
11	Reserved for future use.

Broadcast_Flag (in packet from Controller to Host):

Size: 2 Bits

Value	Parameter Description
00	Point-to-point
01	Packet received as a slave not in park state (either Active Slave Broadcast or Parked Slave Broadcast)
10	Packet received as a slave in park state (Parked Slave Broadcast)
11	Reserved for future use.

Note: active slave broadcast packets may be sent in park beacon slots.

Note: slaves in sniff mode may or may not receive a broadcast packet depending on whether they happen to be listening at sniff slots, when the packet is sent.

Data_Total_Length:

Size: 2 Octets

Value	Parameter Description
0xXXXX	Length of data measured in octets.

5.4.3 HCI Synchronous Data Packets

HCI synchronous (SCO and eSCO) Data Packets are used to exchange synchronous data between the Host and Controller. The format of the synchronous Data Packet is shown in Figure 5.3. The definition for each of the fields in the data packets is explained below.

0	4	8	12	16	20	24	28	31
	Connecti	on Handle	Res	served	Data Total Length	ו		
				Data				

Figure 5.3: HCI Synchronous Data Packet

Connection_Handle:

Size: 12 Bits

Value	Parameter Description
0xXXX	Connection handle to be used to for transmitting a synchronous data packet or segment.
	Range: 0x0000-0x0EFF (0x0F00- 0x0FFF Reserved for future use)

The Reserved Bits consist of four bits which are located from bit 4 to bit 7 in the second octet of the HCI Synchronous Data packet.

Reserved:

Size: 4 Bits

Value	Parameter Description
XXXX	Reserved for future use.

Data_Total_Length:

Size: 1 Octet

Value	Parameter Description
0xXX	Length of synchronous data measured in octets

5.4.4 HCI Event Packet

The HCI Event Packet is used by the Controller to notify the Host when events occur. The Host must be able to accept HCI Event Packets with up to 255 octets of data excluding the HCI Event Packet header. The format of the HCI Event Packet is shown in Figure 5.4, and the definition of each field is explained below.

0	4	8	12	10	6 20	2	4 28	3 3
	Event Code	F	Parameter Tota Length	al	Even	it Para	ameter 0	
	Event	Parame	eter 1		Event Paramete	er 2	Event Para	meter 3
				•				
				•				
				•				
	Event Parameter N-1			Even	t Para	ameter N		

Figure 5.4: HCI Event Packet

Event_Code:

Size: 1 Octet

Value	Parameter Description
0xXX	Each event is assigned a 1-Octet event code used to uniquely identify different types of events.
	Range: 0x00-0xFF (The event code 0xFF is reserved for the event code used for vendor-specific debug events. In addition, the event code 0xFE is also reserved for Bluetooth Logo Testing)

Parameter_Total_Length:

Size: 1 Octet

Value	Parameter Description
0xXX	Length of all of the parameters contained in this packet, measured in octets

Event_Parameter 0 - N:

Size: Parameter Total Length

Value	Parameter Description
0xXX	Each event has a specific number of parameters associated with it. These parameters and the size of each of the parameters are defined for each event. Each parameter is an integer number of octets in size.

6 HCI CONFIGURATION PARAMETERS

6.1 SCAN ENABLE

The Scan_Enable parameter controls whether or not the Bluetooth device will periodically scan for page attempts and/or inquiry requests from other Bluetooth devices. If Page_Scan is enabled, then the device will enter page scan mode based on the value of the Page_Scan_Interval and Page_Scan_Window parameters. If Inquiry_Scan is enabled, then the device will enter Inquiry Scan mode based on the value of the Inquiry_Scan_Interval and Inquiry_Scan_Window parameters.

Value	Parameter Description
0x00	No Scans enabled.
0x01	Inquiry Scan enabled. Page Scan always disabled.
0x02	Inquiry Scan disabled. Page Scan enabled.
0x03	Inquiry Scan enabled. Page Scan enabled.
0x04-0xFF	Reserved

6.2 INQUIRY SCAN INTERVAL

The Inquiry_Scan_Interval configuration parameter defines the amount of time between consecutive inquiry scans. This is defined as the time interval from when the Controller started its last inquiry scan until it begins the next inquiry scan.

Value	Parameter Description
$N = 0 \times X \times X$	Size: 2 Octets
	Range: 0x0012 to 0x1000; only even values are valid
	Default: 0x1000
	Mandatory Range: 0x0012 to 0x1000
	Time = N * 0.625 msec
	Time Range: 11.25 to 2560 msec
	Time Default: 2.56 sec

6.3 INQUIRY SCAN WINDOW

The Inquiry_Scan_Window configuration parameter defines the amount of time for the duration of the inquiry scan. The Inquiry_Scan_Window can only be less than or equal to the Inquiry_Scan_Interval.

Value	Parameter Description
$N = 0 \times X \times X$	Size: 2 Octets
	Range: 0x0011 to 0x1000
	Default: 0x0012
	Mandatory Range: 0x0011 to Inquiry Scan Interval
	Time = N * 0.625 msec
	Time Range: 10.625 msec to 2560 msec
	Time Default: 11.25 msec

6.4 INQUIRY SCAN TYPE

The Inquiry_Scan_Type configuration parameter indicates whether inquiry scanning will be done using non-interlaced scan or interlaced scan. Currently, one mandatory inquiry scan type and one optional inquiry scan type are defined. For details, see the Baseband Specification, "Inquiry scan substate" on page 164 [Part B].

Value	Parameter Description
0x00	Mandatory: Standard Scan (default)
0x01	Optional: Interlaced Scan
0x02-0xFF	Reserved

6.5 INQUIRY MODE

The Inquiry_Mode configuration parameter indicates whether inquiry returns Inquiry Result events in the standard format or with RSSI.

Value	Parameter Description
0x00	Standard Inquiry Result event format
0x01	Inquiry Result format with RSSI
0x02-0xFF	Reserved

6.6 PAGE TIMEOUT

The Page_Timeout configuration parameter defines the maximum time the local Link Manager will wait for a baseband page response from the remote device at a locally initiated connection attempt. If this time expires and the remote device has not responded to the page at baseband level, the connection attempt will be considered to have failed.

Value	Parameter Description
$N = 0 \times X \times X$	Size: 2 Octets
	Range: 0x0001 to 0xFFFF
	Default: 0x2000
	Mandatory Range: 0x0016 to 0xFFFF
	Time = N * 0.625 msec
	Time Range: 0.625 msec to 40.9 sec
	Time Default: 5.12 sec

6.7 CONNECTION ACCEPT TIMEOUT

The Connection_Accept_Timeout configuration parameter allows the Bluetooth hardware to automatically deny a connection request after a specified time period has occurred and the new connection is not accepted. The parameter defines the time duration from when the Controller sends a Connection Request event until the Controller will automatically reject an incoming connection.

Value	Parameter Description
$N = 0 \times X \times X$	Size: 2 Octets
	Range: 0x0001 to 0xB540
	Default: 0x1F40
	Mandatory Range: 0x00A0 to 0xB540
	Time = N * 0.625 msec
	Time Range: 0.625 msec to 29 sec
	Time Default: 5 sec

6.8 PAGE SCAN INTERVAL

The Page_Scan_Interval configuration parameter defines the amount of time between consecutive page scans. This time interval is defined from when the Controller started its last page scan until it begins the next page scan.

Value	Parameter Description
$N = 0 \times X \times X$	Size: 2 Octets
	Range: 0x0012 to 0x1000; only even values are valid
	Default: 0x0800
	Mandatory Range: 0x0012 to 0x1000
	Time = N * 0.625 msec
	Time Range: 11.25 msec to 2560 msec
	Time Default: 1.28 sec

6.9 PAGE SCAN WINDOW

The Page_Scan_Window configuration parameter defines the amount of time for the duration of the page scan. The Page_Scan_Window can only be less than or equal to the Page_Scan_Interval.

Value	Parameter Description
$N = 0 \times X \times X$	Size: 2 Octets
	Range: 0x0011 to 0x1000
	Default: 0x0012
	Mandatory Range: 0x0011 to Page Scan Interval
	Time = N * 0.625 msec
	Time Range: 10.625 msec to Page Scan Interval
	Time Default: 11.25 msec

6.10 PAGE SCAN PERIOD MODE (DEPRECATED)

Every time an inquiry response message is sent, the Bluetooth device will start a timer (T_mandatory_pscan), the value of which is dependent on the Page_Scan_Period_Mode. As long as this timer has not expired, the Bluetooth device will use the mandatory page scan mode for all following page scans. Note: the timer T_mandatory_pscan will be reset at each new inquiry response. For details see the "Baseband Specification" on page 55 [Part B]. (Keyword: SP-Mode, FHS-Packet, T_mandatory_pscan, Inquiry-Response).

Value	Parameter Description
0x00	P0
0x01	P1
0x02	P2
0x03-0xFF	Reserved.

6.11 PAGE SCAN TYPE

The Page_Scan_Type parameter indicates whether inquiry scanning will be done using non-interlaced scan or interlaced scan. For details, see the Baseband Specification, "Page scan substate" on page 154 [Part B].

Value	Parameter Description
0x00	Mandatory: Standard Scan (default)
0x01	Optional: Interlaced Scan
0x02-0xFF	Reserved

6.12 VOICE SETTING

The Voice_Setting parameter controls all the various settings for voice connections. The input settings apply to all voice connections, and **cannot** be set for individual voice connections. The Voice_Setting parameter controls the configuration for voice connections: Input Coding, Air coding format, input data format, Input sample size, and linear PCM parameter. The air coding format bits in the Voice_Setting command parameter specify which air coding format the local device requests. The air coding format bits do not specify which air coding format(s) the local device accepts when a remote device requests an air coding format. This is determined by the hardware capabilities of the local device.

Value	Parameter Description
00XXXXXXXX	Input Coding: Linear
01XXXXXXXX	Input Coding: μ-law Input Coding
10XXXXXXXX	Input Coding: A-law Input Coding
11XXXXXXXX	Reserved for Future Use
XX00XXXXXX	Input Data Format: 1's complement
XX01XXXXXX	Input Data Format: 2's complement
XX10XXXXXX	Input Data Format: Sign-Magnitude
XX11XXXXXX	Input Data Format: Unsigned
XXXX0XXXXX	Input Sample Size: 8-bit (only for linear PCM)
XXXX1XXXXX	Input Sample Size: 16-bit (only for linear PCM)
XXXXXnnnXX	Linear_PCM_Bit_Pos: # bit positions that MSB of sample is away from starting at MSB (only for Linear PCM).
XXXXXXXX00	Air Coding Format: CVSD
XXXXXXXX01	Air Coding Format: μ-law
XXXXXXXX10	Air Coding Format: A-law
XXXXXXXX11	Air Coding Format: Transparent Data

6.13 PIN TYPE

The PIN Type configuration parameter determines whether the Link Manager assumes that the Host supports variable PIN codes or a fixed PIN code. The host controller uses the PIN-type information during pairing.

Value	Parameter Description
0x00	Variable PIN.
0x01	Fixed PIN.

6.14 LINK KEY

The Controller can store a limited number of link keys for other Bluetooth devices. Link keys are shared between two Bluetooth devices, and are used for all security transactions between the two devices. A Host device may have additional storage capabilities, which can be used to save additional link keys to be reloaded to the Bluetooth Controller when needed. A Link Key is associated with a BD_ADDR.

Value	Parameter Description
0xXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX	Link Key for an associated BD_ADDR.

6.15 AUTHENTICATION ENABLE

The Authentication_Enable parameter controls if the local device requires to authenticate the remote device at connection setup (between the Create_Connection command or acceptance of an incoming ACL connection and the corresponding Connection Complete event). At connection setup, only the device(s) with the Authentication_Enable parameter enabled will try to authenticate the other device.

Note: Changing this parameter does not affect existing connections.	

Value	Parameter Description
0x00	Authentication not required.
0x01	Authentication required for all connections.
0x02-0xFF	Reserved

6.16 ENCRYPTION MODE

The Encryption_Mode parameter controls if the local device requires encryption to the remote device at connection setup (between the Create_Connection command or acceptance of an incoming ACL connection and the corresponding Connection Complete event). At connection setup, only devices with the Authentication_Enabled configuration parameter set to required and the Encryption_Mode configuration parameter set to required will try to encrypt the physical link to the other device.

Note: Changing this parameter does not affect existing connections.

A temporary link key is used when both broadcast and point-to-point traffic are encrypted.

The Host must not specify the Encryption_Mode parameter with more encryption capability than its local device currently supports, although the parameter is used to request the encryption capability to the remote device. Note that the Host must not request the command with the Encryption_Mode parameter set to 0x01, when the local device does not support encryption.

Note: for encryption to be used, both devices must support and enable encryption.

Value	Parameter Description
0x00	Encryption not required.
0x01	Encryption required for all connections.
0x02-0xFF	Reserved.

Note: in the Connection Complete event the Encryption_Mode parameter will show whether encryption was successfully turned on. The remote device may not support encryption or may have set Encryption_Mode to 0x01 when the local device has not, so the encryption mode returned in the Connection Complete event may not equal the encryption mode set in the HCI Write Encryption Mode Command.

6.17 FAILED CONTACT COUNTER

The Failed_Contact_Counter records the number of consecutive incidents in which either the slave or master didn't respond after the flush timeout had expired, and the L2CAP packet that was currently being transmitted was automatically 'flushed'. When this occurs, the Failed_Contact_Counter is incremented by 1. The Failed_Contact_

Counter for a connection is reset to zero on the following conditions:

- 1. When a new connection is established
- 2. When the Failed_Contact_Counter is > zero and an L2CAP packet is acknowledged for that connection
- 3. When the Reset_Failed_Contact_Counter command has been issued

Value	Parameter Description
0xXXXX	Number of consecutive failed contacts for a connection corresponding to the connection handle.

6.18 HOLD MODE ACTIVITY

The Hold_Mode_Activity value is used to determine what activities should be suspended when the device is in hold mode. After the hold period has expired, the device will return to the previous mode of operation. Multiple hold mode activities may be specified for the Hold_Mode_Activity parameter by performing a bitwise OR operation of the different activity types. If no activities are suspended, then all of the current Periodic Inquiry, Inquiry Scan, and Page Scan settings remain valid during the Hold Mode. If the Hold_Mode_Activity parameter is set to Suspend Page Scan, Suspend Inquiry Scan, and Suspend Periodic Inquiries, then the device can enter a low-power state during the Hold Mode period, and all activities are suspended. Suspending multiple activities can be specified for the Hold_Mode_Activity parameter by performing a bitwise OR operation of the different activity types. The Hold Mode Activity is only valid if all connections are in Hold Mode.

Value	Parameter Description
0x00	Maintain current Power State.
0x01	Suspend Page Scan.
0x02	Suspend Inquiry Scan.
0x04	Suspend Periodic Inquiries.
0x08-0xFF	Reserved for Future Use.

6.19 LINK POLICY SETTINGS

The Link_Policy_Settings parameter determines the behavior of the local Link Manager when it receives a request from a remote device or it determines itself to change the master-slave role or to enter park state, hold, or sniff mode. The local Link Manager will automatically accept or reject such a request from the remote device, and may even autonomously request itself, depending on the value of the Link_Policy_Settings parameter for the corresponding Connection_Handle. When the value of the Link_Policy_Settings parameter is changed for a certain Connection_Handle, the new value will only be used for requests from a remote device or from the local Link Manager itself made after this command has been completed. By enabling each mode individually, the Host can choose any combination needed to support various modes of operation. Multiple LM policies may be specified for the Link_Policy_Settings parameter by performing a bitwise OR operation of the different activity types.

Note: The local device may be forced into hold mode (regardless of whether the local device is master or slave) by the remote device regardless of the value of the Link_Policy_Settings parameter. The forcing of hold mode can however only be done once the connection has already been placed into hold mode through an LMP request (the Link_Policy_Settings determine if requests from a remote device should be accepted or rejected). The forcing of hold mode can after that be done as long as the connection lasts regardless of the setting for hold mode in the Link_Policy_Settings parameter.

Note that the previous description implies that if the implementation in the remote device is a "polite" implementation that does not force another device into hold mode via LMP PDUs, then the Link_Policy_Settings will never be overruled.

Value	Parameter Description
0x0000	Disable All LM Modes Default
0x0001	Enable Role switch.
0x0002	Enable Hold Mode.
0x0004	Enable Sniff Mode.
0x0008	Enable Park State.
0x0010	Reserved for Future Use.
-	
0x8000	

6.20 FLUSH TIMEOUT

The Flush_Timeout configuration parameter is used for ACL connections only. The Flush Timeout is defined in the Baseband specification Section 7.6.3, "Flushing payloads," on page 150. This parameter allows ACL packets to be automatically flushed without the Host device issuing a Flush command. This provides support for isochronous data, such as audio. When the L2CAP packet that is currently being transmitted is automatically 'flushed', the Failed Contact Counter is incremented by one.

Value	Parameter Description
0	Timeout = ∞ ; No Automatic Flush
N = 0xXXXX	Size: 2 Octets Range: 0x0001 to 0x07FF Mandatory Range: 0x0002 to 0x07FF Time = N * 0.625 msec Time Range: 0.625 msec to 1279.375 msec

6.21 NUM BROADCAST RETRANSMISSIONS

Broadcast packets are not acknowledged and are unreliable. The Number of Broadcast Retransmissions parameter, N, is used to increase the reliability of a broadcast message by retransmitting the broadcast message multiple times. This sets the value N_{BC} in the baseband to one greater than the Num Broadcast Retransmissions value. (See Baseband Specification, Section 7.6.5, on page 150) This parameter should be adjusted as the link quality measurement changes.

Value	Parameter Description
$N = 0 \times X X$	$N_{BC} = N + 1$
	Range 0x00-0xFE

6.22 LINK SUPERVISION TIMEOUT

The Link_Supervision_Timeout parameter is used by the master or slave Bluetooth device to monitor link loss. If, for any reason, no Baseband packets are received from that Connection Handle for a duration longer than the Link_Supervision_Timeout, the connection is disconnected. The same timeout value is used for both synchronous and ACL connections for the device specified by the Connection Handle.

Note: Setting the Link_Supervision_Timeout to No Link_Supervision_Timeout (0x0000) will disable the Link_Supervision_Timeout check for the specified Connection Handle. This makes it unnecessary for the master of the piconet to unpark and then park each Bluetooth Device every ~40 seconds. By using the No Link_Supervision_Timeout setting, the scalability of the Park state is not limited.

Value	Parameter Description
0x0000	No Link_Supervision_Timeout.
N = 0xXXXX	Size: 2 Octets Range: 0x0001 to 0xFFFF Default: 0x7D00 Mandatory Range: 0x0190 to 0xFFFF Time = N * 0.625 msec Time Range: 0.625 msec to 40.9 sec Time Default: 20 sec

6.23 SYNCHRONOUS FLOW CONTROL ENABLE

The Synchronous Flow Control Enable configuration parameter allows the Host to decide if the Controller will send Number Of Completed Packets events for synchronous Connection Handles. This setting allows the Host to enable and disable synchronous flow control.

Value	Parameter Description
0x00	Synchronous Flow Control is disabled. No Number of Completed Packets events will be sent from the Controller for synchronous Connection Handles.
0x01	Synchronous Flow Control is enabled. Number of Completed Packets events will be sent from the Controller for synchronous Connection Handles.

😵 Bluetooth

6.24 LOCAL NAME

The user-friendly Local Name provides the user the ability to distinguish one Bluetooth device from another. The Local Name configuration parameter is a UTF-8 encoded string with up to 248 octets in length. The Local Name configuration parameter will be null terminated (0x00) if the UTF-8 encoded string is less than 248 octets.

Note: the Local Name configuration parameter is a string parameter. Endianess does therefore not apply to the Local Name configuration parameter. The first octet of the name is received first.

Value	Parameter Description
	A UTF-8 encoded User Friendly Descriptive Name for the device.
	If the name contained in the parameter is shorter than 248 octets, the end of the name is indicated by a NULL octet (0x00), and the following octets (to fill up 248 octets, which is the length of the parameter) do not have valid values.

6.25 CLASS OF DEVICE

The Class_of_Device parameter is used to indicate the capabilities of the local device to other devices.

Value	Parameter Description
0xXXXXXX	Class of Device for the device.

6.26 SUPPORTED COMMANDS

The Supported Commands configuration parameter lists which HCI commands the local controller supports. It is implied that if a command is listed as supported, the feature underlying that command is also supported.

The Supported Commands is a 64 octet bit field. If a bit is set to 1, then this command is supported.

Octet	Bit	Command Supported
	0	Inquiry
	1	Inquiry Cancel
	2	Periodic Inquiry Mode
0	3	Exit Periodic Inquiry Mode
Ū	4	Create Connection
	5	Disconnect
	6	Add SCO Connection
	7	Cancel Create Connection
	0	Accept Connection Request
	1	Reject Connection Request
	2	Link Key Request Reply
1	3	Link Key Request Negative Reply
	4	PIN Code Request Reply
	5	PIN Code Request Negative Reply
	6	Change Connection Packet Type
	7	Authentication Request
	0	Set Connection Encryption
	1	Change Connection Link Key
	2	Master Link Key
2	3	Remote Name Request
2	4	Cancel Remote Name Request
	5	Read Remote Supported Features
	6	Read Remote Extended Features
	7	Read Remote Version Information
	0	Read Clock Offset
	1	Read LMP Handle
	2	Reserved
3	3	Reserved
3	4	Reserved
	5	Reserved
	6	Reserved
	7	Reserved

😵 Bluetooth[°]

Octet	Bit	Command Supported
	0	Reserved
	1	Hold Mode
	2	Sniff Mode
4	3	Exit Sniff Mode
4	4	Park State
	5	Exit Park State
	6	QoS Setup
	7	Role Discovery
	0	Switch Role
	1	Read Link Policy Settings
	2	Write Link Policy Settings
-	3	Read Default Link Policy Settings
5	4	Write Default Link Policy Settings
	5	Flow Specification
	6	Set Event Mark
	7	Reset
	0	Set Event Filter
	1	Flush
	2	Read PIN Type
•	3	Write PIN Type
6	4	Create New Unit Key
	5	Read Stored Link Key
	6	Write Stored Link Key
	7	Delete Stored Link Key
	0	Write Local Name
	1	Read Local Name
	2	Read Connection Accept Timeout
_	3	Write Connection Accept Timeout
7	4	Read Page Timeout
	5	Write Page Timeout
	6	Read Scan Enable
	7	Write Scan Enable
	0	Read Page Scan Activity
	1	Write Page Scan Activity
8	2	Read Inquiry Scan Activity
	3	Write Inquiry Scan Activity
	4	Read Authentication Enable
	5	Write Authentication Enable
	6	Read Encryption Mode
	7	Write Encryption Mode

Octet	Bit	Command Supported		
	0	Read Class Of Device		
	1	Write Class Of Device		
	2	Read Voice Setting		
9	3	Write Voice Setting		
, J	4	Read Automatic Flush Timeout		
	5	Write Automatic Flush Timeout		
	6	Read Num Broadcast Retransmissions		
	7	Write Num Broadcast Retransmissions		
	0	Read Hold Mode Activity		
	1	Write Hold Mode Activity		
	2	Read Transmit Power Level		
10	3	Read Synchronous Flow Control Enable		
10	4	Write Synchronous Flow Control Enable		
	5	Set Host Controller To Host Flow Control		
	6	Host Buffer Size		
	7	Host Number Of Completed Packets		
	0	Read Link Supervision Timeout		
	1	Write Link Supervision Timeout		
	2	Read Number of Supported IAC		
11	3	Read Current IAC LAP		
	4	Write Current IAC LAP		
	5	Reserved		
	6	Reserved		
	7	Read Page Scan Mode		
	0	Write Page Scan Mode		
	1	Set AFH Channel Classification		
	2	reserved		
12	3	reserved		
12	4	Read Inquiry Scan Type		
	5	Write Inquiry Scan Type		
	6	Read Inquiry Mode		
	7	Write Inquiry Mode		
	0	Read Page Scan Type		
	1	Write Page Scan Type		
	2	Read AFH Channel Assessment Mode		
13	3	Write AFH Channel Assessment Mode		
10	4	Reserved		
	5	Reserved		
	6	Reserved		
	7	Reserved		

😵 Bluetooth[°]

Octet	Bit	Command Supported		
	0	Reserved		
	1	Reserved		
	2	Reserved		
14	3	Read Local Version Information		
14	4	Reserved		
	5	Read Local Supported Features		
	6	Read Local Extended Features		
	7	Read Buffer Size		
	0	Read Country Code		
	1	Read BD ADDR		
	2	Read Failed Contact Count		
15	3	Reset Failed Contact Count		
15	4	Get Link Quality		
	5	Read RSSI		
	6	Read AFH Channel Map		
	7	Read BD Clock		
	0	Read Loopback Mode		
	1	Write Loopback Mode		
	2	Enable Device Under Test Mode		
16	3	Setup Synchronous Connection		
10	4	Accept Synchronous Connection		
	5	Reject Synchronous Connection[
	6	Reserved		
	7	Reserved		

7 HCI COMMANDS AND EVENTS

7.1 LINK CONTROL COMMANDS

The Link Control commands allow the Controller to control connections to other Bluetooth devices. When the Link Control commands are used, the Link Manager (LM) controls how the Bluetooth piconets and scatternets are established and maintained. These commands instruct the LM to create and modify link layer connections with Bluetooth remote devices, perform Inquiries of other Bluetooth devices in range, and other LMP commands. For the Link Control commands, the OGF is defined as 0x01.

7.1.1 Inquiry Command

Command	OCF	Command Parameters	Return Parameters
HCI_Inquiry	0x0001	LAP, Inquiry_Length,	
		Num_Responses	

Description:

This command will cause the Bluetooth device to enter Inquiry Mode. Inquiry Mode is used to discover other nearby Bluetooth devices. The LAP input parameter contains the LAP from which the inquiry access code shall be derived when the inquiry procedure is made. The Inquiry_Length parameter specifies the total duration of the Inquiry Mode and, when this time expires, Inquiry will be halted. The Num_Responses parameter specifies the number of responses that can be received before the Inquiry is halted. A Command Status event is sent from the Controller to the Host when the Inquiry command has been started by the Bluetooth device. When the Inquiry process is completed, the Controller will send an Inquiry Complete event to the Host indicating that the Inquiry has finished. The event parameters of Inquiry Complete event will have a summary of the result from the Inquiry process, which reports the number of nearby Bluetooth devices that responded. When a Bluetooth device responds to the Inquiry message, an Inquiry Result event will occur to notify the Host of the discovery.

A device which responds during an inquiry or inquiry period should always be reported to the Host in an Inquiry Result event if the device has not been reported earlier during the current inquiry or inquiry period and the device has not been filtered out using the command Set_Event_Filter. If the device has been reported earlier during the current inquiry or inquiry period, it may or may not be reported depending on the implementation (depending on if earlier results have been saved in the Controller and in that case how many responses that have been saved). It is recommended that the Controller tries to report a particular device only once during an inquiry or inquiry period.

Command Parameters:

Value	Parameter Description
0x9E8B00– 0X9E8B3F	This is the LAP from which the inquiry access code should be derived when the inquiry procedure is made; see "Bluetooth Assigned Numbers" (https://www.bluetooth.org/foundry/assignnumb/document/ assigned_numbers).

Inquiry_Length:

I AP

Value	Parameter Description	
$N = 0 \times X X$	Maximum amount of time specified before the Inquiry is halted.	
	Size: 1 octet	
	Range: 0x01 – 0x30	
	Time = N * 1.28 sec	
	Range: 1.28 – 61.44 Sec	

Num_Responses:

Size: 1 Octet

Value	Parameter Description
0x00	Unlimited number of responses.
0xXX	Maximum number of responses from the Inquiry before the Inquiry is halted. Range: 0x01 – 0xFF

Return Parameters:

None.

Event(s) generated (unless masked away):

A Command Status event is sent from the Controller to the Host when the Controller has started the Inquiry process. An Inquiry Result event will be created for each Bluetooth device which responds to the Inquiry message. In addition, multiple Bluetooth devices which respond to the Inquire message may be combined into the same event. An Inquiry Complete event is generated when the Inquiry process has completed.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Inquiry Complete event will indicate that this command has been completed. No Inquiry Complete event will be generated for the canceled Inquiry process.

Size: 3 Octets

Size: 1 Octet

7.1.2 Inquiry Cancel Command

Command	OCF	Command Parameters	Return Parameters
HCI_Inquiry_Cancel	0x0002		Status

Description:

This command will cause the Bluetooth device to stop the current Inquiry if the Bluetooth device is in Inquiry Mode. This command allows the Host to interrupt the Bluetooth device and request the Bluetooth device to perform a different task. The command should only be issued after the Inquiry command has been issued, a Command Status event has been received for the Inquiry command, and before the Inquiry Complete event occurs.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Inquiry_Cancel command succeeded.
0x01-0xFF	Inquiry_Cancel command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Inquiry Cancel command has completed, a Command Complete event will be generated. No Inquiry Complete event will be generated for the canceled Inquiry process.

😵 Bluetooth

7.1.3 Periodic Inquiry Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Periodic_	0x0003	Max_Period_Length,	Status
Inquiry_Mode		Min_Period_Length,	
		LAP,	
		Inquiry_Length,	
		Num_Responses	

Description:

The Periodic Inquiry Mode command is used to configure the Bluetooth device to enter the Periodic Inquiry Mode that performs an automatic Inquiry. Max Period Length and Min Period Length define the time range between two consecutive inquiries, from the beginning of an inquiry until the start of the next inquiry. The Controller will use this range to determine a new random time between two consecutive inquiries for each Inquiry. The LAP input parameter contains the LAP from which the inquiry access code shall be derived when the inquiry procedure is made. The Inquiry Length parameter specifies the total duration of the InquiryMode and, when time expires, Inquiry will be halted. The Num Responses parameter specifies the number of responses that can be received before the Inquiry is halted. This command is completed when the Inquiry process has been started by the Bluetooth device, and a Command Complete event is sent from the Controller to the Host. When each of the periodic Inquiry processes are completed, the Controller will send an Inquiry Complete event to the Host indicating that the latest periodic Inquiry process has finished. When a Bluetooth device responds to the Inquiry message an Inquiry Result event will occur to notify the Host of the discovery. Note: Max Period Length > Min Period Length > Inquiry Length

A device which responds during an inquiry or inquiry period should always be reported to the Host in an Inquiry Result event if the device has not been reported earlier during the current inquiry or inquiry period and the device has not been filtered out using the command Set_Event_Filter. If the device has been reported earlier during the current inquiry or inquiry period, it may or may not be reported depending on the implementation (depending on if earlier results have been saved in the Controller and in that case how many responses that have been saved). It is recommended that the Controller tries to report a particular device only once during an inquiry or inquiry period.

Command Parameters:

Max_Period_Length:

Value	Parameter Description
$N = 0 \times X \times X$	Maximum amount of time specified between consecutive inquiries.
	Size: 2 octets
	Range: 0x03 – 0xFFFF
	Time = N * 1.28 sec
	Range: 3.84 – 83884.8 Sec
	0.0 – 23.3 hours

Min_Period_Length:

Size: 2 Octets

Value	Parameter Description
$N = 0 \times X \times X$	Minimum amount of time specified between consecutive inquiries.
	Size: 2 octets
	Range: 0x02 – 0xFFFE
	Time = N * 1.28 sec
	Range: 2.56 – 83883.52 Sec
	0.0 – 23.3 hours

LAP:

Size: 3 Octets

Value	Parameter Description
0x9E8B00– 0X9E8B3F	This is the LAP from which the inquiry access code should be derived when the inquiry procedure is made, see "Bluetooth Assigned Numbers" (https://www.bluetooth.org/foundry/assignnumb/document/ assigned_numbers).

Inquiry_Length:

Size: 1 Octet

Value	Parameter Description
$N = 0 \times X \times$	Maximum amount of time specified before the Inquiry is halted.
	Size: 1 octet
	Range: 0x01 – 0x30
	Time = N * 1.28 sec
	Range: 1.28 – 61.44 Sec

Num_Responses:

Size: 1 Octet

Value	Parameter Description
0x00	Unlimited number of responses.
0xXX	Maximum number of responses from the Inquiry before the Inquiry is halted. Range: 0x01 – 0xFF

Size: 2 Octets

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Periodic Inquiry Mode command succeeded.
0x01-0xFF	Periodic Inquiry Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

The Periodic Inquiry Mode begins when the Controller sends the Command Complete event for this command to the Host. An Inquiry Result event will be created for each Bluetooth device which responds to the Inquiry message. In addition, multiple Bluetooth devices which response to the Inquiry message may be combined into the same event. An Inquiry Complete event is generated when each of the periodic Inquiry processes has completed. No Inquiry Complete event will be generated for the canceled Inquiry process.

😵 Bluetooth

7.1.4 Exit Periodic Inquiry Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Exit_Periodic_Inquiry_Mode	0x0004		Status

Description:

The Exit Periodic Inquiry Mode command is used to end the Periodic Inquiry mode when the local device is in Periodic Inquiry Mode. If the local device is currently in an Inquiry process, the Inquiry process will be stopped directly and the Controller will no longer perform periodic inquiries until the Periodic Inquiry Mode command is reissued.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Exit Periodic Inquiry Mode command succeeded.	
0x01-0xFF	Exit Periodic Inquiry Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Event(s) generated (unless masked away):

A Command Complete event for this command will occur when the local device is no longer in Periodic Inquiry Mode. No Inquiry Complete event will be generated for the canceled Inquiry process.

😵 Bluetooth

7.1.5 Create Connection Command

Command	OCF	Command Parameters	Return Parameters
HCI_Create_Connection	0x0005	BD_ADDR,	
		Packet_Type,	
		Page_Scan_Repetition_Mode,	
		Reserved,	
		Clock_Offset,	
		Allow_Role_Switch	

Description:

This command will cause the Link Manager to create a connection to the Bluetooth device with the BD ADDR specified by the command parameters. This command causes the local Bluetooth device to begin the Page process to create a link level connection. The Link Manager will determine how the new ACL connection is established. This ACL connection is determined by the current state of the device, its piconet, and the state of the device to be connected. The Packet Type command parameter specifies which packet types the Link Manager shall use for the ACL connection. When sending HCI ACL Data Packets the Link Manager shall only use the packet type(s) specified by the Packet Type command parameter or the always-allowed DM1 packet type. Multiple packet types may be specified for the Packet Type parameter by performing a bit-wise OR operation of the different packet types. The Link Manager may choose which packet type to be used from the list of acceptable packet types. The Page Scan_Repetition_Mode parameter specifies the page scan repetition mode supported by the remote device with the BD ADDR. This is the information that was acquired during the inquiry process. The Clock Offset parameter is the difference between its own clock and the clock of the remote device with BD ADDR. Only bits 2 through 16 of the difference are used, and they are mapped to this parameter as bits 0 through 14 respectively. A Clock Offset Valid Flag, located in bit 15 of the Clock Offset parameter, is used to indicate if the Clock Offset is valid or not. A Connection handle for this connection is returned in the Connection Complete event (see below). The Allow Role Switch parameter specifies if the local device accepts or rejects the request of a master-slave role switch when the remote device requests it at the connection setup (in the Role parameter of the Accept Connection Request command) (before the local Controller returns a Connection Complete event). For a definition of the different packet types see the "Baseband Specification" on page 55 [Part B].

Note: The Host should enable as many packet types as possible for the Link Manager to perform efficiently. However, the Host must not enable packet types that the local device does not support.

Command Parameters:

BD_ADDR:	Size: 6 Octets
Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR of the Device to be connected.

Packet_Type:

Size: 2 Octets

Value	Parameter Description
0x0001	Reserved for future use.
0x0002	2-DH1 may not be used.
0x0004	3-DH1 may not be used.
0x0008 ¹	DM1 may be used.
0x0010	DH1 may be used.
0x0020	Reserved for future use.
0x0040	Reserved for future use.
0x0080	Reserved for future use.
0x0100	2-DH3 may not be used.
0x0200	3-DH3 may not be used.
0x0400	DM3 may be used.
0x0800	DH3 may be used.
0x1000	2-DH5 may not be used.
0x2000	3-DH5 may not be used.

0x8000 DH5 may be used. 1. This bit will be interpreted as set to 1 by Bluetooth V1.2 or later controllers.

DM5 may be used.

Page_Scan_Repetition_Mode:

0x4000

Size: 1 Octet

Value	Parameter Description
0x00	R0
0x01	R1
0x02	R2
0x03 – 0xFF	Reserved.

Reserved:

😵 Bluetooth

Size: 1 Octet

Value	Parameter Description	
0x00	Reserved, must be set to 0x00.	
	See "Page Scan Mode" on page 612.	

Clock_Offset:

Size: 2 Octets

Bit format	Parameter Description
Bit 14-0	Bit 16-2 of CLKslave-CLKmaster.
Bit 15	Clock_Offset_Valid_Flag Invalid Clock Offset = 0 Valid Clock Offset = 1

Allow_Role_Switch:

Size: 1 Octet

Value	Parameter Description
0x00	The local device will be a master, and will not accept a role switch requested by the remote device at the connection setup.
0x01	The local device may be a master, or may become a slave after accepting a role switch requested by the remote device at the connection setup.
0x02-0xFF	Reserved for future use.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Create Connection command, the Controller sends the Command Status event to the Host. In addition, when the LM determines the connection is established, the Controller, on both Bluetooth devices that form the connection, will send a Connection Complete event to each Host. The Connection Complete event contains the Connection Handle if this command is successful.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

7.1.6 Disconnect Command

Command	OCF	Command Parameters	Return Parameters
HCI_Disconnect	0x0006	Connection_Handle,	
		Reason	

Description:

The Disconnection command is used to terminate an existing connection. The Connection_Handle command parameter indicates which connection is to be disconnected. The Reason command parameter indicates the reason for ending the connection. The remote Bluetooth device will receive the Reason command parameter in the Disconnection Complete event. All synchronous connections on a physical link should be disconnected before the ACL connection on the same physical connection is disconnected.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Connection Handle for the connection being disconnected.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Reason:

Size: 1 Octet

Value	Parameter Description
0x05, 0x13- 0x15, 0x1A, 0x29	Authentication Failure error code (0x05), Other End Terminated Connec- tion error codes (0x13-0x15), Unsupported Remote Feature error code (0x1A) and Pairing with Unit Key Not Supported error code (0x29), see "Error Codes" on page 319 [Part D] for list of Error Codes.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Disconnect command, it sends the Command Status event to the Host. The Disconnection Complete event will occur at each Host when the termination of the connection has completed, and indicates that this command has been completed.

Note: No Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Disconnection Complete event will indicate that this command has been completed.

😵 Bluetooth[®]

Host Controller Interface Functional Specification

7.1.7 Create Connection Cancel Command

Command	OCF	Command Parameters	Return Parameters
HCI_Create_Connection _Cancel	0x0008	BD_ADDR	Status, BD_ADDR

Description:

This command is used to request cancellation of the ongoing connection creation process, which was started by a Create_Connection command of the local device.

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description	
0xXXXXXXXXXXXXXX	BD_ADDR of the Create Connection command request that was issued before and is subject of this cancellation request	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Create Connection Cancel command succeeded
0x01-0xff	Create Connection Cancel command failed. See "Error Codes" on page 319 [Part D] for list of error codes

BD_ADDR:

Size: 6 Octet

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the Create Connection command that was issued before and is the subject of this cancellation request.

Event(s) generated (unless masked away):

When the Create Connection Cancel command has completed, a Command Complete event shall be generated.

If the connection is already established by the baseband, but the Controller has not yet sent the Connection Complete event, then the local device shall detach the link and return a Command Complete event with the status "Success".

If the connection is already established, and the Connection Complete event has been sent, then the Controller shall return a Command Complete event with the error code *ACL Connection already exists* (0x0B).

If the Create Connection Cancel command is sent to the Controller without a preceding Create Connection command to the same device, the Controller shall return a Command Complete event with the error code *Unknown Connection Identifier* (0x02).

The Connection Complete event for the corresponding Create Connection Command shall always be sent. The Connection Complete event shall be sent after the Command Complete event for the Create Connection Cancel command. If the cancellation was successful, the Connection Complete event will be generated with the error code *Unknown Connection Identifier* (0x02).

😵 Bluetooth

7.1.8 Accept Connection Request Command

Command	OCF	Command Parameters	Return Parameters
HCI_Accept_Connection Request	0x0009	BD_ADDR, Role	

Description:

The Accept_Connection_Request command is used to accept a new incoming connection request. The Accept_Connection_Request command shall only be issued after a Connection Request event has occurred. The Connection Request event will return the BD_ADDR of the device which is requesting the connection. This command will cause the Link Manager to create a connection to the Bluetooth device, with the BD_ADDR specified by the command parameters. The Link Manager will determine how the new connection will be established. This will be determined by the current state of the device, its piconet, and the state of the device to be connected. The Role command parameter allows the Host to specify if the Link Manager shall request a role switch and become the Master for this connection. This is a preference and not a requirement. If the Role Switch fails then the connection will still be accepted, and the Role Discovery Command will reflect the current role.

Note: The Link Manager may terminate the connection if it would be low on resources if the role switch fails. The decision to accept a connection must be completed before the connection accept timeout expires on the local Bluetooth Module.

Note: when accepting synchronous connection request, the Role parameter is not used and will be ignored by the Controller.

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR of the Device to be connected

Role:

Size: 1 Octet

Value	Parameter Description
0x00	Become the Master for this connection. The LM will perform the role switch.
0x01	Remain the Slave for this connection. The LM will NOT perform the role switch.

Return Parameters:

None.

Event(s) generated (unless masked away):

The Accept_Connection_Request command will cause the Command Status event to be sent from the Controller when the Controller begins setting up the connection. In addition, when the Link Manager determines the connection is established, the local Controller will send a Connection Complete event to its Host, and the remote Controller will send a Connection Complete event or a Synchronous Connection Complete event to the Host. The Connection Complete event contains the Connection Handle if this command is successful. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

😵 Bluetooth°

7.1.9 Reject Connection Request Command

Command	OCF	Command Parameters	Return Parameters
HCI_Reject_Connection _Request	0x000A	BD_ADDR, Reason	

Description:

The Reject_Connection_Request command is used to decline a new incoming connection request. The Reject_Connection_Request command shall only be called after a Connection Request event has occurred. The Connection Request event will return the BD_ADDR of the device that is requesting the connection. The Reason command parameter will be returned to the connecting device in the Status parameter of the Connection Complete event returned to the Host of the connection device, to indicate why the connection was declined.

Command Parameters:

BD_ADDR:	Size: 6 Octets

Value	Parameter Description	
0xXXXXXXXXXXXX	BD_ADDR of the Device to reject the connection from.	

Reason:

Size: 1 Octet

Value	Parameter Description
0x0D-0x0F	Host Reject Error Code. See "Error Codes" on page 319 [Part D] for list of Error Codes and descriptions.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Reject_Connection_Request command, the Controller sends the Command Status event to the Host. Then, the local Controller will send a Connection Complete event to its host, and the remote Controller will send a Connection Complete event or a Synchronous Connection Complete event to the host. The Status parameter of the Connection Complete event, which is sent to the Host of the device attempting to make the connection, will contain the Reason command parameter from this command. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

7.1.10 Link Key Request Reply Command

Command	OCF	Command Parameters	Return Parameters
HCI_Link_Key_Request_Reply	0x000B	BD_ADDR, Link_Key	Status, BD_ADDR

Description:

The Link_Key_Request_Reply command is used to reply to a Link Key Request event from the Controller, and specifies the Link Key stored on the Host to be used as the link key for the connection with the other Bluetooth Device specified by BD_ADDR. The Link Key Request event will be generated when the Controller needs a Link Key for a connection.

When the Controller generates a Link Key Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create_Connection or Authentication_Requested command from the remote Host), the local Host must respond with either a Link_Key_Request_Reply or Link_Key_Request_Negative_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 211 [Part C].)

Command Parameters:

BD ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR of the Device of which the Link Key is for.

Link_Key:

Size: 16 Octets

	Value	Parameter Description
T	0xXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX	Link Key for the associated BD_ADDR.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Link_Key_Request_Reply command succeeded.
0x01-0xFF	Link_Key_Request_Reply command failed. See "Error Codes" on page 319 [Part D] for error codes and description.

😵 Bluetooth°

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXX XXXX	BD_ADDR of the Device of which the Link Key request reply has completed.

Event(s) generated (unless masked away):

The Link Key_Request_Reply command will cause a Command Complete event to be generated.

7.1.11 Link Key Request Negative Reply Command

Command	OCF	Command Parameters	Return Parameters
HCI_Link_Key_Request _Negative_Reply	0x000C	BD_ADDR	Status, BD_ADDR

Description:

The Link_Key_Request_Negative_Reply command is used to reply to a Link Key Request event from the Controller if the Host does not have a stored Link Key for the connection with the other Bluetooth Device specified by BD_ADDR. The Link Key Request event will be generated when the Controller needs a Link Key for a connection.

When the Controller generates a Link Key Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create_Connection or Authentication_Requested command from the remote Host), the local Host must respond with either a Link_Key_Request_Reply or Link_Key_Request_Negative_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 211 [Part C].)

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXX XX	BD_ADDR of the Device which the Link Key is for.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Link_Key_Request_Negative_Reply command succeeded.
0x01-0xFF	Link_Key_Request_Negative_Reply command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXX XXXX	BD_ADDR of the Device which the Link Key request negative reply has completed.

Event(s) generated (unless masked away):

The Link_Key_Request_Negative_Reply command will cause a Command Complete event to be generated.

😵 Bluetooth

7.1.12 PIN Code Request Reply Command

Command	OCF	Command Parameters	Return Parameters
HCI_PIN_Code_Request_Reply	0x000D	BD_ADDR,	Status, BD_ADDR
		PIN_Code_Length,	
		PIN_Code	

Description:

The PIN_Code_Request_Reply command is used to reply to a PIN Code request event from the Controller, and specifies the PIN code to use for a connection. The PIN Code Request event will be generated when a connection with remote initiating device has requested pairing.

When the Controller generates a PIN Code Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create_Connection or Authentication_Requested command from the remote Host), the local Host must respond with either a PIN_Code_Request_Reply or PIN_Code_Request_Negative_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 211 [Part C].)

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXX XX	BD_ADDR of the Device which the PIN code is for.

PIN_Code_Length:

Size: 1 Octet

Value	Parameter Description
0xXX	The PIN code length specifics the length, in octets, of the PIN code to be used.
	Range: 0x01-0x10

PIN_Code:

Size: 16 Octets

Value	Parameter Description
0xXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX	PIN code for the device that is to be connected. The Host should insure that strong PIN Codes are used. PIN Codes can be up to a maximum of 128 bits. Note: the PIN_Code Parameter is a string parameter. Endianess does therefore not apply to the PIN_Code Parameter. The first octet of the PIN code should be transmitted first.

page 419 of 814

😵 Bluetooth

Host Controller Interface Functional Specification

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	PIN_Code_Request_Reply command succeeded.
0x01-0xFF	PIN_Code_Request_Reply command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXBD_ADDR of the Device which the PIN Code request reply has completed.	

Event(s) generated (unless masked away):

The PIN_Code_Request_Reply command will cause a Command Complete event to be generated.

😵 Bluetooth

7.1.13 PIN Code Request Negative Reply Command

Command	OCF	Command Parameters	Return Parameters
HCI_PIN_Code_ Request_Negative Reply	0x000E	BD_ADDR	Status, BD_ADDR

Description:

The PIN_Code_Request_Negative_Reply command is used to reply to a PIN Code request event from the Controller when the Host cannot specify a PIN code to use for a connection. This command will cause the pair request with remote device to fail.

When the Controller generates a PIN Code Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create_Connection or Authentication_Requested command from the remote Host), the local Host must respond with either a PIN_Code_Request_Reply or PIN_Code_Request_Negative_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 211 [Part C].)

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the Device which this command is responding to.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	PIN_Code_Request_Negative_Reply command succeeded.
0x01-0xFF	PIN_Code_Request_Negative_Reply command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

BD_ADDR:

Size: 6 Octets

Value		Parameter Description
0xXXXXX XXXX	XXXX	BD_ADDR of the Device which the PIN Code request negative reply has completed.

Event(s) generated (unless masked away):

The PIN_Code_Request_Negative_Reply command will cause a Command Complete event to be generated.

7.1.14 Change Connection Packet Type Command

Command	OCF	Command Parameters	Return Parameters
HCI_Change_Connection_	0x000F	Connection_Handle,	
Packet_Type		Packet_Type	

Description:

The Change_Connection_Packet_Type command is used to change which packet types can be used for a connection that is currently established. This allows current connections to be dynamically modified to support different types of user data. The Packet_Type command parameter specifies which packet types the Link Manager can use for the connection. When sending HCI ACL Data Packets the Link Manager shall only use the packet type(s) specified by the Packet_Type command parameter or the always-allowed DM1 packet type. The interpretation of the value for the Packet_Type command parameter will depend on the Link_Type command parameter returned in the Connection Complete event at the connection setup. Multiple packet types may be specified for the Packet_Type command parameter by bitwise OR operation of the different packet types. For a definition of the different packet types see the "Baseband Specification" on page 55 [Part B].

Note: The Host should enable as many packet types as possible for the Link Manager to perform efficiently. However, the Host must not enable packet types that the local device does not support.

Note: to change an eSCO connection, use the Setup Synchronous Connection command.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to for transmitting and receiving voice or data. Returned from creating a connection.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Packet_Type:

For	ACL	Link_	Type
1 01		<u></u>	. , , , , , , , , , , , , , , , , , , ,

Value	Parameter Description
0x0001	Reserved for future use.
0x0002	2-DH1 may not be used.
0x0004	3-DH1 may not be used.
0x0008 ¹	DM1 may be used.
0x0010	DH1 may be used.
0x0020	Reserved for future use.
0x0040	Reserved for future use.
0x0080	Reserved for future use.
0x0100	2-DH3 may not be used.
0x0200	3-DH3 may not be used.
0x0400	DM3 may be used.
0x0800	DH3 may be used.
0x1000	2-DH5 may not be used.
0x2000	3-DH5 may not be used.
0x4000	DM5 may be used.
0x8000	DH5 may be used.

1. This bit will be interpreted as set to 1 by Bluetooth V1.2 or later controllers.

Bluetooth[®]

Size: 2 Octets

😵 Bluetooth°

Host Controller Interface Functional Specification

For SCO Link Type

Value	Parameter Description
0x0001	Reserved for future use.
0x0002	Reserved for future use.
0x0004	Reserved for future use.
0x0008	Reserved for future use.
0x0010	Reserved for future use.
0x0020	HV1
0x0040	HV2
0x0080	HV3
0x0100	Reserved for future use.
0x0200	Reserved for future use.
0x0400	Reserved for future use.
0x0800	Reserved for future use.
0x1000	Reserved for future use.
0x2000	Reserved for future use.
0x4000	Reserved for future use.
0x8000	Reserved for future use.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Change Connection Packet Type command, the Controller sends the Command Status event to the Host. In addition, when the Link Manager determines the packet type has been changed for the connection, the Controller on the local device will send a Connection Packet Type Changed event to the Host. This will be done at the local side only. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Connection Packet Type Changed event will indicate that this command has been completed.

😵 Bluetooth°

7.1.15 Authentication Requested Command

Command	OCF	Command Parameters	Return Parameters
HCI_Authentication_ Requested	0x0011	Connection_Handle	

Description:

The Authentication_Requested command is used to try to authenticate the remote device associated with the specified Connection Handle. On an authentication failure, the Controller or Link Manager shall not automatically detach the link. The Host is responsible for issuing a Disconnect command to terminate the link if the action is appropriate.

Note: the Connection_Handle command parameter is used to identify the other Bluetooth device, which forms the connection. The Connection Handle should be a Connection Handle for an ACL connection.

Command Parameters:

Connection_Handle:

Size 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to set up authentication for all Connection Handles with the same Bluetooth device end-point as the specified Con- nection Handle. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Authentication_Requested command, it sends the Command Status event to the Host. The Authentication Complete event will occur when the authentication has been completed for the connection and is indication that this command has been completed. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Authentication Complete event will indicate that this command has been completed.

Note: When the local or remote Controller does not have a link key for the specified Connection_Handle, it will request the link key from its Host, before the local Host finally receives the Authentication Complete event.

7.1.16 Set Connection Encryption Command

Command	OCF	Command Parameters	Return Parameters
HCI_Set_Connection_ Encryption	0x0013	Connection_Handle, Encryption_Enable	

Description:

The Set_Connection_Encryption command is used to enable and disable the link level encryption. Note: the Connection_Handle command parameter is used to identify the other Bluetooth device which forms the connection. The Connection Handle should be a Connection Handle for an ACL connection. While the encryption is being changed, all ACL traffic must be turned off for all Connection Handles associated with the remote device.

Command Parameters:

Connection_Handle:

Size 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to enable/disable the link layer encryption for all Connection Handles with the same Bluetooth device end-point as the specified Connection Handle.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Encryption_Enable:

Size: 1 Octet

Value	Parameter Description
0x00	Turn Link Level Encryption OFF.
0x01	Turn Link Level Encryption ON.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Set_Connection_Encryption command, the Controller sends the Command Status event to the Host. When the Link Manager has completed enabling/disabling encryption for the connection, the Controller on the local Bluetooth device will send an Encryption Change event to the Host, and the Controller on the remote device will also generate an Encryption Change event.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Encryption Change event will indicate that this command has been completed.

😵 Bluetooth®

7.1.17 Change Connection Link Key Command

Command	OCF	Command Parameters	Return Parameters
HCI_Change_Connection_ Link_Key	0x0015	Connection_Handle	

Description:

The Change_Connection_Link_Key command is used to force both devices of a connection associated with the connection handle to generate a new link key. The link key is used for authentication and encryption of connections. Note: the Connection_Handle command parameter is used to identify the other Bluetooth device forming the connection. The Connection Handle should be a Connection Handle for an ACL connection.

Command Parameters:

Connection_Handle:

Size 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle used to identify a connection.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Change_Connection_Link_Key command, the Controller sends the Command Status event to the Host. When the Link Manager has changed the Link Key for the connection, the Controller on the local Bluetooth device will send a Link Key Notification event and a Change Connection Link Key Complete event to the Host, and the Controller on the remote device will also generate a Link Key Notification event. The Link Key Notification event indicates that a new connection link key is valid for the connection.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Change Connection Link Key Complete event will indicate that this command has been completed.

7.1.18 Master Link Key Command

Command	OCF	Command Parameters	Return Parameters
HCI_Master_Link_Key	0x0017	Key_Flag	

Description:

The Master Link Key command is used to force the device that is master of the piconet to use the temporary link key of the master device, or the semipermanent link keys. The temporary link key is used for encryption of broadcast messages within a piconet, and the semi-permanent link keys are used for private encrypted point-to-point communication. The Key_Flag command parameter is used to indicate which Link Key (temporary link key of the Master, or the semi-permanent link keys) shall be used.

Command Parameters:

Key_Flag:

Size: 1 Octet

Value	Parameter Description
0x00	Use semi-permanent Link Keys.
0x01	Use Temporary Link Key.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Master_Link_Key command, the Controller sends the Command Status event to the Host. When the Link Manager has changed link key, the Controller on both the local and the remote device will send a Master Link Key Complete event to the Host. The Connection Handle on the master side will be a Connection Handle for one of the existing connections to a slave. On the slave side, the Connection Handle will be a Connection Handle to the initiating master.

The Master Link Key Complete event contains the status of this command. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Master Link Key Complete event will indicate that this command has been completed.

😵 Bluetooth

7.1.19 Remote Name Request Command

Command	OCF	Command Parameters	Return Parameters
HCI_Remote_Name_Request	0x0019	BD_ADDR,	
		Page_Scan_Repetition_Mode,	
		Reserved,	
		Clock_Offset	

Description:

The Remote_Name_Request command is used to obtain the user-friendly name of another Bluetooth device. The user-friendly name is used to enable the user to distinguish one Bluetooth device from another. The BD_ADDR command parameter is used to identify the device for which the user-friendly name is to be obtained. The Page_Scan_Repetition_Mode parameter specifies the page scan repetition mode supported by the remote device with the BD_ADDR. This is the information that was acquired during the inquiry process. The Clock_Offset parameter is the difference between its own clock and the clock of the remote device with BD_ADDR. Only bits 2 through 16 of the difference are used and they are mapped to this parameter as bits 0 through 14 respectively. A Clock_Offset_Valid_Flag, located in bit 15 of the Clock_Offset command parameter, is used to indicate if the Clock Offset is valid or not. Note: if no connection exists between the local device and the device corresponding to the BD_ADDR, a temporary link layer connection will be established to obtain the name of the remote device.

Command Parameters:

 BD_ADDR:
 Size: 6 Octets

 Value
 Parameter Description

 0xXXXXXXXXX
 BD_ADDR for the device whose name is requested.

 XX
 BD_ADDR for the device whose name is requested.

Page_Scan_Repetition_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	R0
0x01	R1
0x02	R2
0x03 – 0xFF	Reserved.

Reserved:

Size: 1 Octet

Value	Parameter Description	
0x00	Reserved, must be set to 0x00.	
	See "Page Scan Mode" on page 612.	

Clock_Offset:

Size: 2 Octets

Bit format	Parameter Description
Bit 14.0	Bit 16.2 of CLKslave-CLKmaster.
Bit 15	Clock_Offset_Valid_Flag Invalid Clock Offset = 0 Valid Clock Offset = 1

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Remote_Name_Request command, the Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to obtain the remote name, the Controller on the local Bluetooth device will send a Remote Name Request Complete event to the Host. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, only the Remote Name Request Complete event will indicate that this command has been completed.

Bluetooth

Host Controller Interface Functional Specification

7.1.20 Remote Name Request Cancel Command

Command	OCF	Command Parameters	Return Parameters
HCI_Remote_Name_Request_Cancel	0x001A	BD_ADDR	Status, BD_ADDR

Description:

This command is used to request cancellation of the ongoing remote name request process, which was started by the Remote Name Request command.

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the Remote Name Request command that was issued before and that is subject of this cancellation request

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Remote Name Request Cancel command succeeded
0x01-0xff	Remote Name Request Cancel command failed. See "Error Codes" on page 319 [Part D] for list of error codes

BD_ADDR:

Size: 6 Octets

Value	Parameter Description	
0xXXXXXXXXXXXXXX	BD_ADDR of the Remote Name Request Cancel command that was issued before and that was subject of this cancellation request	

Event(s) generated (unless masked away):

When the Remote Name Request Cancel command has completed, a Command Complete event shall be generated.

If the Remote Name Request Cancel command is sent to the Controller without a preceding Remote Name Request command to the same device, the Controller will return a Command Complete event with the error code *Invalid HCI Command Parameters* (0x12).

The Remote Name Request Complete event for the corresponding Remote Name Request Command shall always be sent. The Remote Name Request

Complete event shall be sent after the Command Complete event for the Remote Name Request Cancel command. If the cancellation was successful, the Remote Name Request Complete event will be generated with the error code *Unknown Connection Identifier (0x02)*.

7.1.21 Read Remote Supported Features Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Remote_Supported_Features	0x001B	Connection_Handle	

Description:

This command requests a list of the supported features for the remote device identified by the Connection_Handle parameter. The Connection_Handle must be a Connection_Handle for an ACL connection. The Read Remote Supported Features Complete event will return a list of the LMP features. For details see "Link Manager Protocol" on page 211 [Part C].

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Specifies which Connection Handle's LMP-supported features list to get.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Read_Remote_Supported_Features command, the Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to determine the remote features, the Controller on the local Bluetooth device will send a Read Remote Supported Features Complete event to the Host. The Read Remote Supported Features Complete event contains the status of this command, and parameters describing the supported features of the remote device. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Read Remote Supported Features Complete event will indicate that this command has been completed.

😵 Bluetooth

7.1.22 Read Remote Extended Features Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Remote_Extended_Features	0x001C	Connection_Handle, Page Number	

Description:

The HCI_Read_Remote_Extended_Features command returns the requested page of the extended LMP features for the remote device identified by the specified connection handle. The connection handle must be the connection handle for an ACL connection. This command is only available if the extended features feature is implemented by the remote device. The Read Remote Extended Features Complete event will return the requested information. For details see "Link Manager Protocol" on page 211 [Part C].

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value Parameter Description		Parameter Description
	0xXXXX	The connection handle identifying the remote device for which extended feature information is required. Range: 0x0000-0x0EFF (0x0F00-0x0FFF Reserved for future use)

Page Number:

Size: 1 Octet

Value	Parameter Description
0x00	Requests the normal LMP features as returned by HCI_Read_Remote_Supported_Features
0x01-0xFF	Return the corresponding page of features

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the HCI_Read_Remote_Extended_Features command the Controller sends the Command Status command to the Host. When the Link Manager has completed the LMP sequence to determine the remote extended features the controller on the local device will generate a Read Remote Extended Features Complete event to the host. The Read Remote Extended Features Complete event contains the page number and the remote features returned by the remote device.

Note: no Command Complete event will ever be sent by the Controller to indicate that this command has been completed. Instead the Read Remote Extended Features Complete event will indicate that this command has been completed.

7.1.23 Read Remote Version Information Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Remote_Version_ Information	0x001D	Connection_Handle	

Description:

This command will obtain the values for the version information for the remote Bluetooth device identified by the Connection_Handle parameter. The Connection_Handle must be a Connection_Handle for an ACL connection.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Specifies which Connection Handle's version information to get.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Read_Remote_Version_Information command, the Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to determine the remote version information, the Controller on the local Bluetooth device will send a Read Remote Version Information Complete event to the Host. The Read Remote Version Information Complete event contains the status of this command, and parameters describing the version and subversion of the LMP used by the remote device.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Read Remote Version Information Complete event will indicate that this command has been completed.

😵 Bluetooth°

7.1.24 Read Clock Offset Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Clock_Offset	0x001F	Connection_Handle	

Description:

Both the System Clock and the clock offset to a remote device are used to determine what hopping frequency is used by a remote device for page scan. This command allows the Host to read clock offset to remote devices. The clock offset can be used to speed up the paging procedure when the local device tries to establish a connection to a remote device, for example, when the local Host has issued Create_Connection or Remote_Name_Request. The Connection_Handle must be a Connection_Handle for an ACL connection.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 bits meaningful)

Value	Parameter Description
0xXXXX	Specifies which Connection Handle's Clock Offset parameter is returned.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Read_Clock_Offset command, the Controller sends the Command Status event to the Host. If this command was requested at the master and the Link Manager has completed the LMP messages to obtain the Clock Offset information, the Controller on the local Bluetooth device will send a Read Clock Offset Complete event to the Host. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, only the Read Clock Offset Complete event will indicate that this command has been completed. If the command is requested at the slave, the LM will immediately send a Command Status event and a Read Clock Offset Complete event to the Host, without an exchange of LMP PDU.

7.1.25 Read LMP Handle Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_LMP_Handle	0x0020	Connection_Handle	Status, Connection_Handle, LMP_Handle, Reserved

Description:

This command will read the current LMP Handle associated with the Connection_Handle. The Connection_Handle must be a SCO or eSCO Handle. If the Connection_Handle is a SCO connection handle, then this command shall read the LMP SCO Handle for this connection. If the Connection_Handle is an eSCO connection handle, then this command shall read the LMP eSCO Handle for this connection.

Command Parameters:

Connection_Handle:

Size 2 Octets (12 bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify which connection to be used for reading the LMP Handle. This must be a synchronous handle. Range: 0x0000-0x0EFF (0x0F00 – 0x0FFF Reserved for future use)

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_LMP_Handle command succeeded.
0x01 – 0xFF	Read_LMP_Handle command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the Connection for which the LMP_Handle has been read.
	Range: 0x0000-0x0EFF (0x0F00 – 0x0FFF Reserved for future use)

LMP_Handle:

😵 Bluetooth

Size: 1 Octet

Value	Parameter Description
0xXX	The LMP Handle is the LMP Handle that is associated with this connection handle.
	For a synchronous handle, this would be the LMP Synchronous Handle used when negotiating the synchronous connection in the link manager.

Reserved:

Size: 4 Octets

Value	Parameter Description
0xXXXXXXXX	This parameter is reserved, must to set to zero.

Events(s) generated (unless masked away):

When the Read_LMP_Handle command has completed, a Command Complete event will be generated.

7.1.26 Setup Synchronous Connection Command

Command	OCF	Command Parameters	Return Parameters
HCI_Setup_Synchronous_ Connection	0x0028	Connection_Handle Transmit_Bandwidth Receive_Bandwidth Max_Latency Voice_Setting Retransmission_Effort Packet Type	

Description:

The HCI Setup Synchronous Connection command adds a new or modifies an existing synchronous logical transport (SCO or eSCO) on a physical link depending on the Connection_Handle parameter specified. If the Connection_Handle refers to an ACL link a new synchronous logical transport will be added. If the Connection_Handle refers to an already existing synchronous logical transport (eSCO only) this link will be modified. The parameters are specified per connection. This synchronous connection can be used to transfer synchronous voice at 64kbps or transparent synchronous data.

When used to setup a new synchronous logical transport, the Connection_Handle parameter shall specify an ACL connection with which the new synchronous connection will be associated. The other parameters relate to the negotiation of the link, and may be reconfigured during the lifetime of the link. The transmit and receive bandwidth specify how much bandwidth shall be available for transmitting and for receiving data. While in many cases the receive and transmit bandwidth parameters may be equal, they may be different. The latency specifies an upper limit to the time in milliseconds between the eSCO (or SCO) instants, plus the size of the retransmission window, plus the length of the reserved synchronous slots for this logical transport. The content format specifies the settings for voice or transparent data on this connection. The retransmission effort specifies the extra resources that are allocated to this connection if a packet may need to be retransmitted. The Retransmission_Effort parameter shall be set to indicate the required behavior, or to don't care.

When used to modify an existing synchronous logical transport, the Transmit_Bandwidth, Receive_Bandwidth and Voice_Settings shall be set to the same values as were used during the initial setup. The Packet_Type, Retransmission_Effort and Max_Latency parameters may be modified.

The Packet_Type field is a bitmap specifying which packet types the LM shall accept in the negotiation of the link parameters. Multiple packet types are specified by bitwise OR of the packet type codes in the table. At least one packet type must be specified for each negotiation. It is recommended to enable as many packet types as possible. Note that it is allowed to enable packet types that are not supported by the local device.

😵 Bluetooth

A connection handle for the new synchronous connection will be returned in the synchronous connection complete event.

Note: The link manager may choose any combination of packet types, timing, and retransmission window sizes that satisfy the parameters given. This may be achieved by using more frequent transmissions of smaller packets. The link manager may choose to set up either a SCO or an eSCO connection, if the parameters allow, using the corresponding LMP sequences.

Note: To modify a SCO connection, use the Change Connection Packet Type command.

Note: If the lower layers cannot achieve the exact transmit and receive bandwidth requested subject to the other parameters, then the link shall be rejected.

A synchronous connection may only be created when an ACL connection already exists and when it is not in park state.

Command Parameters:

Connection_Handle:

2 octets (12 bits meaningful)

Parameter Description
Connection Handle for the ACL connection being used to create a syn- chronous Connection or for the existing Connection that shall be modified. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Transmit_Bandwidth:

4 octets

4 octets

Value	Parameter Description
0xXXXXXXXX	Transmit bandwidth in octets per second.

Receive_Bandwidth:

—		
Value	Parameter Description	
0xXXXXXXXX	Receive bandwidth in octets per second.	

Max_Latency:

Value	Parameter Description
0x0000- 0x0003	Reserved
0x0004- 0xFFFE	This is a value in milliseconds representing the upper limit of the sum of the synchronous interval, the size of the eSCO window. (See Figure 8.7 in the Baseband specification)
0xFFFF	Don't care.

Voice_Setting:

2 octets (10 bits meaningful)

Value	Parameter Description
See Section 6.12 on page 387.	

Retransmission_Effort:

1 octet

Value	Parameter Description	
0x00	No retransmissions	
0x01	At least one retransmission, optimize for power consumption.	
0x02	At least one retransmission, optimize for link quality	
0xFF	Don't care	
0x03 – 0xFE	Reserved	

2 octets

Packet_Type:

😵 Bluetooth

2 octets

Value	Parameter Description
0x0001	HV1 may be used.
0x0002	HV2 may be used.
0x0004	HV3 may be used.
0x0008	EV3 may be used.
0x0010	EV4 may be used.
0x0020	EV5 may be used.
0x0040	2-EV3 may not be used.
0x0080	3-EV3 may not be used.
0x0100	2-EV5 may not be used.
0x0200	3-EV5 may not be used.
0x0400	Reserved for future use
0x0800	Reserved for future use
0x1000	Reserved for future use
0x2000	Reserved for future use
0x4000	Reserved for future use
0x8000	Reserved for future use

Return Parameters:

None

Event(s) generated (unless masked away)

When the Controller receives the Setup_Synchronous_Connection command, it sends the Command Status event to the Host. In addition, when the LM determines the connection is established, the local Controller will send a Synchronous Connection Complete event to the local Host, and the remote Controller will send a Synchronous Connection Complete event or a Connection Complete event to the remote Host. The synchronous Connection Complete event contains the Connection Handle if this command is successful.

If this command is used to change the parameters of an existing eSCO link, the Synchronous Connection Changed Event is sent to both hosts. In this case no Connection Setup Complete Event or Connection Request Event will be sent to either host. This command cannot be used to change the parameters of an SCO link.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the synchronous Connection Complete event will indicate that this command has been completed.

😵 Bluetooth°

7.1.27 Accept Synchronous Connection Request Command

Command	OCF	Command Parameters	Return Parameters
HCI_Accept_	0x0029	BD_ADDR	
Synchronous_		Transmit_Bandwidth	
Connection_Request		Receive_Bandwidth	
		Max_Latency	
		Content_Format	
		Retransmission_Effort	
		Packet_Type	

Description:

The Accept_Synchronous_Connection_Request command is used to accept an incoming request for a synchronous connection and to inform the local Link Manager about the acceptable parameter values for the synchronous connection. The Command shall only be issued after a Connection_Request event with link type SCO or eSCO has occurred. Connection_Request event contains the BD_ADDR of the device requesting the connection. The decision to accept a connection must be taken before the connection accept timeout expires on the local device.

The parameter set of the Accept_Synchronous_Connection_Request command is the same as for the Setup_Synchronous_Connection command. The Transmit_Bandwidth and Receive_Bandwidth values are required values for the new link and shall be met. The Max_Latency is an upper bound to the acceptable latency for the Link, as defined in Section 7.1.26 on page 437 Setup_Synchronous_Connection and shall not be exceeded. Content_Format specifies the encoding in the same way as in the

Setup_Synchronous_Connection command and shall be met. The Retransmission_Effort parameter shall be set to indicate the required behavior, or to don't care. The Packet_Type parameter is a bit mask specifying the synchronous packet types that are allowed on the link and shall be met. The reserved bits in the Packet_Type field shall be set to one. If all bits are set in the packet type field then all packets types shall be allowed.

If the Link Type of the incoming request is SCO, then only the Transmit_Bandwidth, Max_Latency, Content_Format, and Packet_Type fields are valid.

If the Connection_Request event is masked away, and the Controller is not set to auto-accept this connection attempt, the Controller will automatically reject it. If the controller is set to automatically accept the connection attempt, the LM should assume default parameters. In that case the Synchronous_Connection_Complete Event shall be generated, unless masked

Synchronous_Connection_Complete Event shall be generated, unless maske away.

Command Parameters:

BD_ADDR:

Value	Parameter Description
0xXXXXXXXXXXXXXXX	BD_ADDR of the device requesting the connection

Transmit_Bandwidth:

Value	Parameter Description
0x00000000-0xFFFFFFE	Maximum possible transmit bandwidth in octets per second.
0xFFFFFFF	Don't care

Default: Don't care

Receive_Bandwidth:

Value	Parameter Description
0x00000000-0xFFFFFFE	Maximum possible receive bandwidth in octets per second.
0xFFFFFFF	Don't care

Default: Don't care

Max_Latency:

2 octets

Value	Parameter Description
0x0000- 0x0003	Reserved
0x0004- 0xFFFE	This is a value in milliseconds representing the upper limit of the sum of the synchronous interval and the size of the eSCO window.
0xFFFF	Don't care.

Default: Don't care

4 octets

4 octets

6 octets

😵 Bluetooth°

Content_Format:

2 octets (10 bits meaningful)

Value	Parameter Description
00XXXXXXXX	Input Coding: Linear
01XXXXXXXX	Input Coding: u-law
10XXXXXXXX	Input Coding: A-law
11XXXXXXXX	Reserved for future use.
XX00XXXXXX	Input Data Format: 1's complement
XX01XXXXXX	Input Data Format: 2's complement
XX10XXXXXX	Input Data Format: Sign-Magnitude
XX11XXXXXX	Input Data Format: Unsigned
XXXX0XXXXX	Input Sample Size: 8 bit (only for Linear PCM)
XXXX1XXXXX	Input Sample Size: 16 bit (only for Linear PCM)
XXXXXnnnXX	Linear PCM Bit Position: number of bit positions that MSB of sample is away from starting at MSB (only for Linear PCM)
XXXXXXXX00	Air Coding Format: CVSD
XXXXXXXX01	Air Coding Format: u-law
XXXXXXXX10	Air Coding Format: A-law
XXXXXXXX11	Air Coding Format: Transparent Data

Default: When links are auto-accepted, the values written by the HCI_Write_Voice_Settings are used.

Retransmission_Effort:

1 octet

Value	Parameter Description
0x00	No retransmissions
0x01	At least one retransmission, optimize for power consumption.
0x02	At least one retransmission, optimize for link quality.
0x03-0xFE	Reserved
0xFF	Don't care

Default: Don't care

Packet_Type:

	Blue	too	th
--	------	-----	----

2 octets

Value	Parameter Description	
0x0001	HV1 may be used.	
0x0002	HV2 may be used.	
0x0004	HV3 may be used.	
0x0008	EV3 may be used.	
0x0010	EV4 may be used.	
0x0020	EV5 may be used.	
0x0040	2-EV3 may not be used.	
0x0080	3-EV3 may not be used	
0x0100	2-EV5 may not be used.	
0x0200	3-EV5 may not be used.	
0x0400	Reserved for future use	
0x0800	Reserved for future use	
0x1000	Reserved for future use	
0x2000	Reserved for future use	
0x4000	Reserved for future use	
0x8000	Reserved for future use	

Default: 0xFFFF - means all packet types may be used.

Return Parameters:

None

Event(s) generated (unless masked away):

The Accept_Synchronous_Request command will cause the Command Status event to be sent from the Host Controller when the Host Controller starts setting up the connection. When the link setup is complete, the local Controller will send a Synchronous Connection Complete event to its Host, and the remote Controller will send a Connection Complete event or a Synchronous Connection Complete event to the Host. The Synchronous Connection Complete will contain the connection handle and the link parameters if the setup is successful. No Command Complete event will be sent by the host controller as the result of this command.

Bluetooth

7.1.28 Reject Synchronous Connection Request Command

Command	OCF	Command Parameters	Return Parameters
HCI_Reject_Synchronous_ Connection_Request	0x002A	BD_ADDR Reason	

Description:

The Reject Synchronous Connection Request is used to decline an incoming request for a synchronous link. It shall only be issued after a Connection Request Event with Link Type equal to SCO or eSCO has occurred. The Connection Request Event contains the BD ADDR of the device requesting the connection. The Reason parameter will be returned to the initiating host in the Status parameter of the Synchronous connection complete event on the remote side.

Command Parameters:

BD_ADDR:		6 octets
Value	Parameter Description	
0xXXXXXXXXXXXXXXX	BD_ADDR of the device requesting the connection	

Reason:

1 octet

Value	Parameter Description
0x0D-0x0F	Host Reject Error Code. See "Error Codes" on page 319 [Part D] for error codes and description.

Return Parameters:

None.

Event(s) Generated (unless masked away):

When the Host Controller receives the

Reject Synchronous Connection Request, it sends a Command Status Event to the Host. When the setup is terminated, the local Controller will send a Synchronous Connection Complete event to its Host, and the remote Controller will send a Connection Complete event or a Synchronous Connection Complete event to the Host with the Reason code from this command. No Command complete Event will be sent by the Host Controller to indicate that this command has been completed.

7.2 LINK POLICY COMMANDS

The Link Policy Commands provide methods for the Host to affect how the Link Manager manages the piconet. When Link Policy Commands are used, the LM still controls how Bluetooth piconets and scatternets are established and maintained, depending on adjustable policy parameters. These policy commands modify the Link Manager behavior that can result in changes to the link layer connections with Bluetooth remote devices.

Note: only one ACL connection can exist between two Bluetooth Devices, and therefore there can only be one ACL HCI Connection Handle for each physical link layer Connection. The Bluetooth Controller provides policy adjustment mechanisms to provide support for a number of different policies. This capability allows one Bluetooth module to be used to support many different usage models, and the same Bluetooth module can be incorporated in many different types of Bluetooth devices. For the Link Policy Commands, the OGF is defined as 0x02.

7.2.1 Hold Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Hold_Mode	0x0001	Connection_Handle, Hold_Mode_Max_Interval, Hold_Mode_Min_Interval	

Description:

The Hold Mode command is used to alter the behavior of the Link Manager, and have it place the ACL baseband connection associated by the specified Connection Handle into the hold mode. The Hold Mode Max Interval and Hold Mode Min Interval command parameters specify the length of time the Host wants to put the connection into the hold mode. The local and remote devices will negotiate the length in the hold mode. The Hold Mode Max Interval parameter is used to specify the maximum length of the Hold interval for which the Host may actually enter into the hold mode after negotiation with the remote device. The Hold interval defines the amount of time between when the Hold Mode begins and when the Hold Mode is completed. The Hold Mode Min Interval parameter is used to specify the minimum length of the Hold interval for which the Host may actually enter into the hold mode after the negotiation with the remote device. Therefore the Hold Mode Min Interval cannot be greater than the Hold Mode Max Interval. The Controller will return the actual Hold interval in the Interval parameter of the Mode Change event, if the command is successful. This command enables the Host to support a lowpower policy for itself or several other Bluetooth devices, and allows the devices to enter Inquiry Scan, Page Scan, and a number of other possible actions.

Note: the connection handle cannot be of the SCO or eSCO link type

😵 Bluetooth®

If the Host sends data to the Controller with a Connection_Handle corresponding to a connection in hold mode, the Controller will keep the data in its buffers until either the data can be transmitted (the hold mode has ended) or a flush, a flush timeout or a disconnection occurs. This is valid even if the Host has not yet been notified of the hold mode through a Mode Change event when it sends the data.

Note: the above is not valid for an HCI Data Packet sent from the Host to the Controller on the master side where the Connection_Handle is a Connection_Handle used for broadcast and the Broadcast_Flag is set to Active Broadcast or Piconet Broadcast. The broadcast data will then never be received by slaves in hold mode.

The Hold_Mode_Max_Interval shall be less than the Link Supervision Timeout configuration parameter.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle to be used to identify a connection.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Hold_Mode_Max_Interval:

Size: 2 Octets

Value	Parameter Description
$N = 0 \times X \times X$	Maximum acceptable number of Baseband slots to wait in Hold Mode.
	Time Length of the Hold = N * 0.625 msec (1 Baseband slot)
	Range for N: 0x0002-0xFFFE; only even values are valid.
	Time Range: 1.25ms - 40.9 sec
	Mandatory Range: 0x0014 to 0x8000

Hold_Mode_Min_Interval:

Size: 2 Octets

Value	Parameter Description
$N = 0 \times X \times X$	Minimum acceptable number of Baseband slots to wait in Hold Mode.
	Time Length of the Hold = N * 0.625 msec (1 Baseband slot)
	Range for N: 0x0002-0xFF00; only even values are valid
	Time Range: 1.25 msec - 40.9 sec
	Mandatory Range: 0x0014 to 0x8000

Return Parameters:

None.

Event(s) generated (unless masked away):

The Controller sends the Command Status event for this command to the Host when it has received the Hold_Mode command. The Mode Change event will occur when the Hold Mode has started and the Mode Change event will occur again when the Hold Mode has completed for the specified connection handle. The Mode Change event signaling the end of the Hold Mode is an estimation of the hold mode ending if the event is for a remote Bluetooth device. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed. If an error occurs after the Command Status event has occurred, then the status in the Mode Change event will indicate the error.

OCF	Command Parameters	Return Parameters
0x0003	Connection_Handle,	
	Sniff_Max_Interval,	
	Sniff_Min_Interval,	
	Sniff_Attempt,	
	Sniff_Timeout	
		0x0003 Connection_Handle, Sniff_Max_Interval, Sniff_Min_Interval, Sniff_Attempt,

7.2.2 Sniff Mode Command

Description:

The Sniff Mode command is used to alter the behavior of the Link Manager and have it place the ACL baseband connection associated with the specified Connection Handle into the sniff mode. The Connection_Handle command parameter is used to identify which ACL link connection is to be placed in sniff mode. The Sniff_Max_Interval and Sniff_Min_Interval command parameters are used to specify the requested acceptable maximum and minimum periods in the Sniff_Mode. The Sniff_Min_Interval shall not be greater than the Sniff_Max_Interval. The sniff interval defines the amount of time between each consecutive sniff period. The Controller will return the actual sniff interval in the Interval parameter of the Mode Change event, if the command is successful. For a description of the meaning of the Sniff_Attempt and Sniff_Timeout parameters, see Baseband Specification, Section 8.7, on page 183.

Sniff_Attempt is there called N_{sniff attempt} and Sniff_Timeout is called N_{sniff timeout}. This command enables the Host to support a low-power policy for itself or several other Bluetooth devices, and allows the devices to enter Inquiry Scan, Page Scan, and a number of other possible actions.

Note: in addition, the connection handle cannot be one of the synchronous link types. If the Host sends data to the Controller with a Connection_Handle corresponding to a connection in sniff mode, the Controller will keep the data in its buffers until either the data can be transmitted or a flush, a flush timeout or a disconnection occurs. This is valid even if the Host has not yet been notified of the sniff mode through a Mode Change event when it sends the data. Note that it is possible for the master to transmit data to a slave without exiting sniff mode

😵 Bluetooth

(see description in Baseband Specification, Section 8.7, on page 183). Note: the above is not valid for an HCI Data Packet sent from the Host to the Controller on the master side where the Connection_Handle is a Connection_Handle used for broadcast and the Broadcast_Flag is set to Active Broadcast or Piconet Broadcast. In that case, the broadcast data will only be received by a slave in sniff mode if that slave happens to listen to the master when the broadcast is made.

The Sniff_Max_Interval shall be less than the Link Supervision Timeout configuration parameter.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle to be used to identify a connection.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Sniff_Max_Interval:

Size: 2 Octets

Value	Parameter Description		
$N = 0 \times X \times X$	Range: 0x0002 to 0xFFFE; only even values are valid		
	Mandatory Range: 0x0006 to 0x0540		
	Time = N * 0.625 msec		
	Time Range: 1.25 msec to 40.9 sec		

Sniff_Min_Interval:

Size: 2 Octets

Value	Parameter Description	
$N = 0 \times X \times X$	Range: 0x0002 to 0xFFFE; only even values are valid	
	Mandatory Range: 0x0006 to 0x0540	
	Time = N * 0.625 msec	
	Time Range: 1.25 msec to 40.9 sec)	

Sniff_Attempt:

Size: 2 Octets

Value	Parameter Description	
$N = 0 \times X \times X$	Number of Baseband receive slots for sniff attempt. Length = N* 1.25 msec	
	Range for N: 0x0001 – 0x7FFF	
	Time Range: 0.625msec - 40.9 Seconds Mandatory Range for Controller: 1 to T _{sniff} /2	

Sniff_Timeout:

Value	Parameter Description	
$N = 0 \times X \times X$	Number of Baseband receive slots for sniff timeout.	
	Length = N * 1.25 msec	
	Range for N: 0x0000 – 0x7FFF	
	Time Range: 0 msec - 40.9 Seconds	
	Mandatory Range for Controller: 0 to 0x0028	

Return Parameters:

None.

Event(s) generated (unless masked away):

The Controller sends the Command Status event for this command to the Host when it has received the Sniff_Mode command. The Mode Change event will occur when the Sniff Mode has started for the specified connection handle. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead only the Mode Change event will indicate that this command has been completed. If an error occurs after the Command Status event has occurred, then the status in the Mode Change event will indicate the error.

Size: 2 Octets

😵 Bluetooth

7.2.3 Exit Sniff Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Exit_Sniff_Mode	0x0004	Connection_Handle	

Description:

The Exit_Sniff_Mode command is used to end the sniff mode for a connection handle, which is currently in sniff mode. The Link Manager will determine and issue the appropriate LMP commands to remove the sniff mode for the associated Connection Handle.

Note: in addition, the connection handle cannot be one of the synchronous link types.

Command Parameters:

Connection Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Connection Handle to be used to identify a connection.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Return Parameters:

None.

Event(s) generated (unless masked away):

A Command Status event for this command will occur when Controller has received the Exit_Sniff_Mode command. The Mode Change event will occur when the Sniff Mode has ended for the specified connection handle. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed.

Bluetooth

Host Controller Interface Functional Specification

7.2.4 Park State Command

Command	OCF	Command Parameters	Return Parameters
HCI_Park_State	0x0005	Connection_Handle,	
		Beacon_Max_Interval,	
		Beacon_Min_Interval	

Description:

The Park State command is used to alter the behavior of the Link Manager, and have the LM place the baseband connection associated by the specified Connection Handle into Park state. The Connection Handle command parameter is used to identify which connection is to be placed in Park state. The Connection Handle must be a Connection Handle for an ACL connection. The Beacon Interval command parameters specify the acceptable length of the interval between beacons. However, the remote device may request shorter interval. The Beacon Max Interval parameter specifies the acceptable longest length of the interval between beacons. The Beacon Min Interval parameter specifies the acceptable shortest length of the interval between beacons. Therefore, the Beacon Min Interval cannot be greater than the Beacon Max Interval. The Controller will return the actual Beacon interval in the Interval parameter of the Mode Change event, if the command is successful. This command enables the Host to support a low-power policy for itself or several other Bluetooth devices, allows the devices to enter Inquiry Scan, Page Scan, provides support for large number of Bluetooth Devices in a single piconet, and a number of other possible activities. Note: when the Host issues the Park State command, no Connection Handles for synchronous connections are allowed to exist to the remote device that is identified by the Connection Handle parameter. If one or more Connection Handles for synchronous connections exist to that device, depending on the implementation, a Command Status event or a Mode Change event (following a Command Status event where Status=0x00) will be returned with the error code 0x0C Command Disallowed.

If the Host sends data to the Controller with a Connection_Handle corresponding to a parked connection, the Controller will keep the data in its buffers until either the data can be transmitted (after unpark) or a flush, a flush timeout or a disconnection occurs. This is valid even if the Host has not yet been notified of park state through a Mode Change event when it sends the data.

Note: the above is not valid for an HCI Data Packet sent from the Host to the Controller on the master side where the Connection_Handle is a Connection_Handle used for Piconet Broadcast and the Broadcast_Flag is set to Piconet Broadcast. In that case, slaves in park state will also receive the broadcast data. (If the Broadcast_Flag is set to Active Broadcast, the broadcast data will usually not be received by slaves in park state.)

It is possible for the Controller to do an automatic unpark to transmit data and then park the connection again depending on the value of the Link_Policy_Settings parameter (see Write_Link_Policy_Settings) and depending on whether the imple-

😵 Bluetooth®

mentation supports this or not (optional feature). The optional feature of automatic unpark/park can also be used for link supervision. Whether Mode Change events are returned or not at automatic unpark/park if this is implemented, is vendor specific. This could be controlled by a vendor specific HCI command.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Connection Handle to be used to identify a connection.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Beacon_Max_Interval:

Size: 2 Octets

Value	Parameter Description	
$N = 0 \times X \times X$	Range: 0x000E to 0xFFFE; only even values are valid	
	Mandatory Range: 0x000E to 0x1000	
	Time = N * 0.625 msec	
	Time Range: 8.75 msec to 40.9 sec	

Beacon_Min_Interval

Size: 2 Octets

Value	Parameter Description	
$N = 0 \times X \times X \times X$	Range: 0x000E to 0xFFFE; only even values are valid	
	Mandatory Range: 0x000E to 0x1000	
	Time = N * 0.625 msec	
	Time Range: 8.75 msec to 40.9 sec	

Return Parameters:

None.

Event(s) generated (unless masked away):

The Controller sends the Command Status event for this command to the Host when it has received the Park State command. The Mode Change event will occur when the Park State has started for the specified connection handle. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed. If an error occurs after the Command Status event has occurred, then the status in the Mode Change event will indicate

the error.

7.2.5 Exit Park State Command

Command	OCF	Command Parameters	Return Parameters
HCI_Exit_Park_State	0x0006	Connection_Handle	

Description:

The Exit_Park_State command is used to switch the Bluetooth device from park state back to the active mode. This command may only be issued when the device associated with the specified Connection Handle is in park state. The Connection_Handle must be a Connection_Handle for an ACL connection. This function does not complete immediately.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Connection Handle to be used to identify a connection.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Return Parameters:

None.

Event(s) generated (unless masked away):

A Command Status event for this command will occur when the Controller has received the Exit_Park_State command. The Mode Change event will occur when park state has ended for the specified connection handle. Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed.

😵 Bluetooth

7.2.6 QoS Setup Command

Command	OCF	Command Parameters	Return Parameters
HCI_QoS_Setup	0x0007	Connection_Handle,	
		Flags,	
		Service_Type,	
		Token_Rate,	
		Peak_Bandwidth,	
		Latency,	
		Delay_Variation	

Description:

The QoS_Setup command is used to specify Quality of Service parameters for a connection handle. The Connection_Handle must be a Connection_Handle for an ACL connection. These QoS parameter are the same parameters as L2CAP QoS. For more detail see "Logical Link Control and Adaptation Protocol Specification" on page 15[vol. 4]. This allows the Link Manager to have all of the information about what the Host is requesting for each connection. The LM will determine if the QoS parameters can be met. Bluetooth devices that are both slaves and masters can use this command. When a device is a slave, this command will trigger an LMP request to the master to provide the slave with the specified QoS as determined by the LM. When a device is a master, this command is used to request a slave device to accept the specified QoS as determined by the LM of the master. The Connection_Handle command parameter is used to identify for which connection the QoS request is requested.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify which connection for the QoS Setup.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Flags:

Size: 1 Octet

Value	Parameter Description
0x00 – 0xFF	Reserved for Future Use.

Service_Type:

Value	Parameter Description		
0x00	No Traffic.		
0x01	Best Effort.		
0x02	Guaranteed.		
0x03-0xFF	Reserved for Future Use.		

Token_Rate:

—	
Value	Parameter Description
0xXXXXXXXX	Token Rate in octets per second.

Peak_Bandwidth:

Value	Parameter Description	
0xXXXXXXXX	Peak Bandwidth in octets per second.	

Latency:

 Value
 Parameter Description

 0xXXXXXXXX
 Latency in microseconds.

Delay_Variation:

ValueParameter Description0xXXXXXXXDelay Variation in microseconds.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the QoS_Setup command, the Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to establish the requested QoS parameters, the Controller on the local Bluetooth device will send a QoS Setup Complete event to the Host, and the event may also be generated on the remote side if there was LMP negotiation. The values of the parameters of the QoS Setup Complete event may, however, be different on the initiating and the remote side. The QoS Setup Complete event returned by the Controller on the local side contains the status of this command, and returned QoS parameters describing the supported QoS for the connection.

Note: No Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the QoS Setup Complete event will indicate that this command has been completed.

HCI Commands and Events

Size: 1 Octet

Size: 4 Octets

Size: 4 Octets

Size: 4 Octets

Size: 4 Octets

😵 Bluetooth

Host Controller Interface Functional Specification

7.2.7 Role Discovery Command

Command	OCF	Command Parameters	Return Parameters
HCI_Role_Discovery	0x0009	Connection_Handle	Status, Connection_Handle,
			Current_Role

Description:

The Role_Discovery command is used for a Bluetooth device to determine which role the device is performing for a particular Connection Handle. The Connection_Handle must be a Connection_Handle for an ACL connection.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Connection Handle to be used to identify a connection.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Role_Discovery command succeeded,
0x01-0xFF	Role_Discovery command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify which connection the Role_Discovery command was issued on. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Current_Role:

Size: 1 Octet

Value	Parameter Description
0x00	Current Role is Master for this Connection Handle.
0x01	Current Role is Slave for this Connection Handle.

Event(s) generated (unless masked away):

When the Role_Discovery command has completed, a Command Complete event will be generated.

7.2.8 Switch Role Command

Command	OCF	Command Parameters	Return Parameters
HCI_Switch_Role	0x000B	BD_ADDR, Role	

Description:

The Switch_Role command is used for a Bluetooth device to switch the current role the device is performing for a particular connection with another specified Bluetooth device. The BD_ADDR command parameter indicates for which connection the role switch is to be performed. The Role indicates the requested new role that the local device performs.

Note: the BD_ADDR command parameter must specify a Bluetooth device for which a connection already exists.

Note: If there is an SCO connection between the local device and the device identified by the BD_ADDR parameter, an attempt to perform a role switch shall be rejected by the local device.

Note: If the connection between the local device and the device identified by the BD_ADDR parameter is placed in Sniff Mode, an attempt to perform a role switch will be rejected by the local device.

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXX XX	BD_ADDR for the connected device with which a role switch is to be performed.

Role:

Size: 1 Octet

Value	Parameter Description
0x00	Change own Role to Master for this BD_ADDR.
0x01	Change own Role to Slave for this BD_ADDR.

Return Parameters:

None.

Event(s) generated (unless masked away):

A Command Status event for this command will occur when the Controller has received the Switch_Role command. When the role switch is performed, a Role Change event will occur to indicate that the roles have been changed, and will be communicated to both Hosts.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, only the Role Change event will indicate that this command has been completed.

🛞 Bluetooth°

7.2.9 Read Link Policy Settings Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Link_Policy_ Settings	0x000C	Connection_Handle	Status, Connection_Handle Link_Policy_Settings

Description:

This command will read the Link Policy setting for the specified Connection Handle. The Connection_Handle must be a Connection_Handle for an ACL connection. Section 6.19 on page 391.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle to be used to identify a connection.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Link_Policy_Settings command succeeded.
0x01-0xFF	Read_Link_Policy_Settings command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify a connection.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Link_Policy_Settings

Host Controller Interface Functional Specification

😵 Bluetooth°

Size: 2 Octets

Value	Parameter Description
0x0000	Disable All LM Modes Default.
0x0001	Enable Role Switch.
0x0002	Enable Hold Mode.
0x0004	Enable Sniff Mode.
0x0008	Enable Park State.
0x0010	Reserved for Future Use.
-	
0x8000	

Event(s) generated (unless masked away):

When the Read_Link_Policy_Settings command has completed, a Command Complete event will be generated.

7.2.10 Write Link Policy Settings Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Link_Policy_	0x000D	Connection_Handle,	Status,
Settings		Link_Policy_Settings	Connection_Handle

Description:

This command will write the Link Policy setting for the specified Connection Handle. The Connection_Handle must be a Connection_Handle for an ACL connection. See Section 6.19 on page 391.

The default value is the value set by the Write Default Link Policy Settings Command.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle to be used to identify a connection.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

🛞 Bluetooth

Size: 2 Octets

Link_Policy_Settings

Value	Parameter Description
0x0000	Disable All LM Modes.
0x0001	Enable Role Switch.
0x0002	Enable Hold Mode.
0x0004	Enable Sniff Mode.
0x0008	Enable Park State.
0x0010	Reserved for Future Use.
-	
0x8000	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Link_Policy_Settings command succeeded.
0x01-0xFF	Write_Link_Policy_Settings command failed. See "Error Codes" on page 319 [Part D] for error codes and description.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle to be used to identify a connection.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Event(s) generated (unless masked away):

When the Write_Link_Policy_Settings command has completed, a Command Complete event will be generated.

7.2.11 Read Default Link Policy Settings Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Default_Link _Policy_Settings	0x000E		Status, Default_Link_Policy_Settings

Description:

This command will read the Default Link Policy setting for all new connections.

Note: Please refer to the Link Policy Settings configuration parameter for more information. See Section 6.19 on page 391.

Command Parameters:

None

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Link_Policy_Settings command succeeded
0x01-0xFF	Read_Link_Policy_Settings command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Default_Link_Policy_Settings

Size: 2 Octets

Value	Parameter Description
0x0000	Disable All LM Modes Default
0x0001	Enable Role Switch
0x0002	Enable Hold Mode
0x0004	Enable Sniff Mode
0x0008	Enable Park State
0x0010 - 0x8000	Reserved for future use.

Event(s) generated (unless masked away):

When the Read_Default_Link_Policy_Settings command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.2.12 Write Default Link Policy Settings Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Default_Link _Policy_Settings	0x000F	Default_Link_Policy _Settings	Status

Description:

This command will write the Default Link Policy configuration value. The Default_Link_Policy_Settings parameter determines the initial value of the Link_Policy_Settings for all new connections.

Note: Please refer to the Link Policy Settings configuration parameter for more information. See Section 6.19 on page 391.

Command Parameters:

Default	Link	Policy	Settings

Size: 2 Octets

Value	Parameter Description
0x0000	Disable All LM Modes Default
0x0001	Enable Role Switch
0x0002	Enable Hold Mode
0x0004	Enable Sniff Mode
0x0008	Enable Park State
0x0010 - 0x8000	Reserved for future use.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Link_Policy_Settings command succeeded
0x01-0xFF	Write_Link_Policy_Settings command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Default_Link_Policy_Settings command has completed, a Command Complete event will be generated.

7.2.13 Flow Specification Command

Command	OCF	Command Parameters	Return Parameters
HCI_Flow_Specification	0x0010	Connection_Handle, Flags, Flow_direction, Service_Type, Token_Rate, Token_Bucket_Size, Peak_Bandwidth, Access Latency	

Description:

The Flow_Specification command is used to specify the flow parameters for the traffic carried over the ACL connection identified by the Connection_Handle. The Connection_Handle must be a Connection_Handle for an ACL connection. The Connection_Handle command parameter is used to identify for which connection the Flow Specification is requested. The flow parameters refer to the outgoing or incoming traffic of the ACL link, as indicated by the Flow_direction field. The Flow Specification command allows the Link Manager to have the parameters of the outgoing as well as the incoming flow for the ACL connection. The flow parameters are defined in the L2CAP specification "Quality of Service (QoS) Option" on page 60[vol. 4]. The Link Manager will determine if the flow parameters can be supported. Bluetooth devices that are both master and slave can use this command.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle used to identify for which ACL connection the Flow is specified.
	Range: 0x0000 - 0x0EFF (0x0F00 – 0x0FFF Reserved for future use)

Flags:

Size: 1 Octet

Value	Parameter Description
0x00 – 0xFF	Reserved for Future Use.

Flow_direction:

Size: 1 Octet

Value	Parameter Description
0x00	Outgoing Flow i.e. traffic send over the ACL connection
0x01	Incoming Flow i.e. traffic received over the ACL connection
0x02 – 0xFF	Reserved for Future Use.

Bluetooth

Size: 1 Octet

Service Type:

Value	Parameter Description
0x00	No Traffic
0x01	Best Effort
0x02	Guaranteed
0x03 – 0xFF	Reserved for Future Use

Token Rate:

Size: 4 Octets

Value	Parameter Description	
0xXXXXXXXX	Token Rate in octets per second	

Token Bucket Size:

Value	Parameter Description	
0xXXXXXXXX	Token Bucket Size in octets	

Peak_Bandwidth:

	Value	Parameter Description	
0xXXXXXXXX Peak Bandwidth in octets per second		Peak Bandwidth in octets per second	

Access Latency:

Size: 4 Octets **Parameter Description** Value 0xXXXXXXXX Latency in microseconds

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Flow Specification command, the Controller sends the Command Status event to the Host. When the Link Manager has determined if the Flow specification can be supported, the Controller on the local Bluetooth device sends a Flow Specification Complete event to the Host. The Flow Specification Complete event returned by the Controller on the local side contains the status of this command, and returned Flow parameters describing the supported QoS for the ACL connection.

Note: No Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Flow Specification Complete event will indicate that this command has been completed.

Size: 4 Octets

Size: 4 Octets

7.3 CONTROLLER & BASEBAND COMMANDS

The Controller & Baseband Commands provide access and control to various capabilities of the Bluetooth hardware. These parameters provide control of Bluetooth devices and of the capabilities of the Controller, Link Manager, and Baseband. The host device can use these commands to modify the behavior of the local device. For the HCI Control and Baseband Commands, the OGF is defined as 0x03.

7.3.1 Set Event Mask Command

Command	OCF	Command Parameters	Return Parameters
HCI_Set_Event_Mask	0x0001	Event_Mask	Status

Description:

The Set_Event_Mask command is used to control which events are generated by the HCI for the Host. If the bit in the Event_Mask is set to a one, then the event associated with that bit will be enabled. The Host has to deal with each event that occurs by the Bluetooth devices. The event mask allows the Host to control how much it is interrupted.

Command Parameters:

Event_Mask:

Size: 8 Octets

Value	Parameter Description
0x000000000000000	No events specified
0x000000000000000000000000000000000000	Inquiry Complete Event
0x000000000000002	Inquiry Result Event
0x00000000000000004	Connection Complete Event
0x000000000000008	Connection Request Event
0x000000000000010	Disconnection Complete Event
0x0000000000000020	Authentication Complete Event
0x0000000000000040	Remote Name Request Complete Event
0x00000000000080	Encryption Change Event
0x000000000000100	Change Connection Link Key Complete Event
0x000000000000200	Master Link Key Complete Event
0x000000000000400	Read Remote Supported Features Complete Event
0x00000000000800	Read Remote Version Information Complete Event
0x000000000001000	QoS Setup Complete Event
0x000000000002000	Reserved
0x000000000004000	Reserved
0x00000000008000	Hardware Error Event

😵 Bluetooth[°]

Value	Parameter Description
0x000000000010000	Flush Occurred Event
0x000000000020000	Role Change Event
0x000000000040000	Reserved
0x000000000080000	Mode Change Event
0x000000000100000	Return Link Keys Event
0x000000000200000	PIN Code Request Event
0x000000000400000	Link Key Request Event
0x000000000800000	Link Key Notification Event
0x000000001000000	Loopback Command Event
0x000000002000000	Data Buffer Overflow Event
0x0000000004000000	Max Slots Change Event
0x000000008000000	Read Clock Offset Complete Event
0x00000001000000	Connection Packet Type Changed Event
0x00000002000000	QoS Violation Event
0x00000004000000	Page Scan Mode Change Event [deprecated]
0x00000008000000	Page Scan Repetition Mode Change Event
0x00000010000000	Flow Specification Complete Event
0x00000020000000	Inquiry Result with RSSI Event
0x00000040000000	Read Remote Extended Features Complete Event
0x00000080000000	Reserved
0x00000100000000	Reserved
0x00000200000000	Reserved
0x000000400000000	Reserved
0x00000800000000	Reserved
0x000001000000000	Reserved
0x000002000000000	Reserved
0x000004000000000	Reserved
0x000008000000000	Synchronous Connection Complete Event
0x000010000000000	Synchronous Connection Changed event
0xFFFFE00000000000	Reserved for future use
0x00001FFFFFFFFFFF	Default (All events enabled)

Bluetooth

Host Controller Interface Functional Specification

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Set_Event_Mask command succeeded.
0x01-0xFF	Set_Event_Mask command failed. See "Error Codes" on page 319 [Part D] for error codes and description.

Event(s) generated (unless masked away):

When the Set_Event_Mask command has completed, a Command Complete event will be generated.

7.3.2 Reset Command

Command	OCF	Command Parameters	Return Parameters
HCI_Reset	0x0003		Status

Description:

The Reset command will reset the Controller and the Link Manager. The reset command shall not affect the used HCI transport layer since the HCI transport layers may have reset mechanisms of their own. After the reset is completed, the current operational state will be lost, the Bluetooth device will enter standby mode and the Controller will automatically revert to the default values for the parameters for which default values are defined in the specification.

Note: the Host is not allowed to send additional HCI commands before the Command Complete event related to the Reset command has been received.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Reset command succeeded, was received and will be executed.
0x01-0xFF	Reset command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the reset has been performed, a Command Complete event will be generated.

😵 Bluetooth®

7.3.3 Set Event Filter Command

Command	OCF	Command Parameters	Return Parameters
HCI_Set_Event_Filter	0x0005	Filter_Type, Filter_Condition_Type, Condition	Status

Description:

The Set_Event_Filter command is used by the Host to specify different event filters. The Host may issue this command multiple times to request various conditions for the same type of event filter and for different types of event filters. The event filters are used by the Host to specify items of interest, which allow the Controller to send only events which interest the Host. Only some of the events have event filters. By default (before this command has been issued after power-on or Reset) no filters are set, and the Auto_Accept_Flag is off (incoming connections are not automatically accepted). An event filter is added each time this command is sent from the Host and the Filter_Condition_Type is not equal to 0x00. (The old event filters will not be overwritten). To clear all event filters, the Filter_Type = 0x00 is used. The Auto_Accept_Flag will then be set to off. To clear event filters for only a certain Filter_Type, the Filter_Condition_Type = 0x00 is used.

The Inquiry Result filter allows the Controller to filter out Inquiry Result events. The Inquiry Result filter allows the Host to specify that the Controller only sends Inquiry Results to the Host if the Inquiry Result event meets one of the specified conditions set by the Host. For the Inquiry Result filter, the Host can specify one or more of the following Filter Condition Types:

- 1. Return responses from all devices during the Inquiry process
- 2. A device with a specific Class of Device responded to the Inquiry process
- 3. A device with a specific BD_ADDR responded to the Inquiry process

The Inquiry Result filter is used in conjunction with the Inquiry and Periodic Inquiry command.

The Connection Setup filter allows the Host to specify that the Controller only sends a Connection Complete or Connection Request event to the Host if the event meets one of the specified conditions set by the Host. For the Connection Setup filter, the Host can specify one or more of the following Filter Condition Types:

- 1. Allow Connections from all devices
- 2. Allow Connections from a device with a specific Class of Device
- 3. Allow Connections from a device with a specific BD_ADDR

😵 Bluetooth[®]

For each of these conditions, an Auto_Accept_Flag parameter allows the Host to specify what action should be done when the condition is met. The Auto_ Accept_Flag allows the Host to specify if the incoming connection should be auto accepted (in which case the Controller will send the Connection Complete event to the Host when the connection is completed) or if the Host should make the decision (in which case the Controller will send the Connection Request event to the Host, to elicit a decision on the connection).

The Connection Setup filter is used in conjunction with the Read/Write_ Scan_Enable commands. If the local device is in the process of a page scan, and is paged by another device which meets one on the conditions set by the Host, and the Auto_Accept_Flag is off for this device, then a Connection Request event will be sent to the Host by the Controller. A Connection Complete event will be sent later on after the Host has responded to the incoming connection attempt. In this same example, if the Auto_Accept_Flag is on, then a Connection Complete event will be sent to the Host by the Controller. (No Connection Request event will be sent in that case.)

The Controller will store these filters in volatile memory until the Host clears the event filters using the Set_Event_Filter command or until the Reset command is issued. The number of event filters the Controller can store is implementation dependent. If the Host tries to set more filters than the Controller can store, the Controller will return the *Memory Full* error code and the filter will not be installed.

Note: the Clear All Filters has no Filter Condition Types or Conditions. Note: In the condition that a connection is auto accepted, a Link Key Request event and possibly also a PIN Code Request event and a Link Key Notification event could be sent to the Host by the Controller before the Connection Complete event is sent.

If there is a contradiction between event filters, the latest set event filter will override older ones. An example is an incoming connection attempt where more than one Connection Setup filter matches the incoming connection attempt, but the Auto-Accept_Flag has different values in the different filters.

Command Parameters:

Filter_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Clear All Filters (Note: In this case, the Filter_Condition_type and Condi- tion parameters should not be given, they should have a length of 0 octets. Filter_Type should be the only parameter.)
0x01	Inquiry Result.
0x02	Connection Setup.
0x03-0xFF	Reserved for Future Use.

😵 Bluetooth

Filter Condition Types: For each Filter Type one or more Filter Condition types exists.

Inquiry_Result_Filter_Condition_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Return responses from all devices during the Inquiry process. (Note: A device may be reported to the Host in an Inquiry Result event more than once during an inquiry or inquiry period depending on the implementation, see description in Section 7.1.1 on page 399 and Section 7.1.3 on page 402)
0x01	A device with a specific Class of Device responded to the Inquiry process.
0x02	A device with a specific BD_ADDR responded to the Inquiry process.
0x03-0xFF	Reserved for Future Use

Connection_Setup_Filter_Condition_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Allow Connections from all devices.
0x01	Allow Connections from a device with a specific Class of Device.
0x02	Allow Connections from a device with a specific BD_ADDR.
0x03-0xFF	Reserved for Future Use.

Condition: For each Filter Condition Type defined for the Inquiry Result Filter and the Connection Setup Filter, zero or more Condition parameters are required – depending on the filter condition type and filter type.

Condition for Inquiry_Result_Filter_Condition_Type = 0x00

Condition:

Size: 0 Octet

Value	Parameter Description
	The Condition parameter is not used.

Condition for Inquiry_Result_Filter_Condition_Type = 0x01

Condition:

Size: 6 Octets

Class_of_Device:

Size: 3 Octets

Value	Parameter Description
0x000000	Default, Return All Devices.
0xXXXXXX	Class of Device of Interest.

Class_of_Device_Mask:

Value	Parameter Description
0xXXXXXX	Bit Mask used to determine which bits of the Class of Device parameter are 'don't care'. Zero-value bits in the mask indicate the 'don't care' bits of the Class of Device.

Condition for Inquiry_Result_Filter_Condition_Type = 0x02

Condition:

Size: 6 Octets

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXX XX	BD_ADDR of the Device of Interest

Condition for Connection_Setup_Filter_Condition_Type = 0x00

Condition:

Size: 1 Octet

Auto_Accept_Flag:

Size:1 Octet

Value	Parameter Description
0x01	Do NOT Auto accept the connection. (Auto accept is off)
0x02	Do Auto accept the connection with role switch disabled. (Auto accept is on).
0x03	Do Auto accept the connection with role switch enabled. (Auto accept is on).
	Note: When auto accepting an incoming synchronous connection, no role switch will be performed. The value 0x03 of the Auto_Accept_Flag will then get the same effect as if the value had been 0x02.
0x04 – 0xFF	Reserved for future use.

😵 Bluetooth[®]

Condition for Connection_Setup_Filter_Condition_Type = 0x01

Condition:

Size: 7 Octets

Class_of_Device:

Size: 3 Octets

Value	Parameter Description	
0x000000	Default, Return All Devices.	
0xXXXXXX	Class of Device of Interest.	

Class_of_Device_Mask:

Size: 3 Octets

Value	Parameter Description
0xXXXXXX	Bit Mask used to determine which bits of the Class of Device parameter are 'don't care'. Zero-value bits in the mask indicate the 'don't care' bits of the Class of Device.
	Note: For an incoming SCO connection, if the class of device is unknown then the connection will be accepted.

Auto_Accept_Flag:

Size: 1 Octet

Value	Parameter Description	
0x01	Do NOT Auto accept the connection. (Auto accept is off)	
0x02	Do Auto accept the connection with role switch disabled. (Auto accept is on).	
0x03	Do Auto accept the connection with role switch enabled. (Auto accept is on).	
	Note: When auto accepting an incoming synchronous connection, no role switch will be performed. The value 0x03 of the Auto_Accept_Flag will then get the same effect as if the value had been 0x02.	
0x04 – 0xFF	Reserved for future use.	

Condition for Connection_Setup_Filter_Condition_Type = 0x02

Condition:

Size: 7 Octets

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXX XX	BD_ADDR of the Device of Interest.

Auto_Accept_Flag:

Value	Parameter Description	
0x01	Do NOT Auto accept the connection. (Auto accept is off)	
0x02	Do Auto accept the connection with role switch disabled. (Auto accept is on).	
0x03	Do Auto accept the connection with role switch enabled. (Auto accept is on). Note: When auto accepting an incoming synchronous con- nection, no role switch will be performed. The value 0x03 of the Auto_Accept_Flag will then get the same effect as if the value had been 0x02.	
0x04 – 0xFF	Reserved for future use.	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Set_Event_Filter command succeeded.	
0x01-0xFF	Set_Event_Filter command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Event(s) generated (unless masked away):

A Command Complete event for this command will occur when the Controller has enabled the filtering of events. When one of the conditions are met, a specific event will occur.

7.3.4 Flush Command

Command	OCF	Command Parameters	Return Parameters
HCI_Flush	0x0008	Connection_Handle	Status, Connection_Handle

Description:

The Flush command is used to discard all data that is currently pending for transmission in the Controller for the specified connection handle, even if there currently are chunks of data that belong to more than one L2CAP packet in the Controller. After this, all data that is sent to the Controller for the same connection handle will be discarded by the Controller until an HCI Data Packet with the start Packet_Boundary_Flag (0x02) is received. When this happens, a new transmission attempt can be made. This command will allow higher-level software to control how long the baseband should try to retransmit a baseband packet for a connection handle before all data that is currently pending for transmission in the Controller should be flushed. Note that the Flush command

HCI Commands and Events

😵 Bluetooth°

is used for ACL connections ONLY. In addition to the Flush command, the automatic flush timers (see section 7.3.31 on page 505) can be used to automatically flush the L2CAP packet that is currently being transmitted after the specified flush timer has expired.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle to be used to identify which connection to flush.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Flush command succeeded.	
0x01-0xFF	Flush command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle to be used to identify which connection the flush com- mand was issued on.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Event(s) generated (unless masked away):

The Flush Occurred event will occur once the flush is completed. A Flush Occurred event could be from an automatic Flush or could be cause by the Host issuing the Flush command. When the Flush command has completed, a Command Complete event will be generated, to indicate that the Host caused the Flush.

7.3.5 Read PIN Type Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_PIN_Type	0x0009		Status, PIN_Type

Description:

The Read PIN Type command is used to read the PIN_Type configuration parameter. See Section 6.13 on page 388.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_PIN_Type command succeeded.
0x01-0xFF	Read_PIN_Type command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

PIN_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Variable PIN.
0x01	Fixed PIN.

Event(s) generated (unless masked away):

When the Read_PIN_Type command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.6 Write PIN Type Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_PIN_Type	0x000A	PIN_Type	Status

Description:

The Write_PIN_Type command is used to write the PIN Type configuration parameter. See Section 6.13 on page 388.

Command Parameters:

PIN_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Variable PIN.
0x01	Fixed PIN.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write PIN Type command succeeded.
0x01-0xFF	Write PIN Type command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_PIN_Type command has completed, a Command Complete event will be generated.

7.3.7 Create New Unit Key Command

Command	OCF	Command Parameters	Return Parameters
HCI_Create_New_Unit_Key	0x000B		Status

Description:

The Create_New_Unit_Key command is used to create a new unit key. The Bluetooth hardware will generate a random seed that will be used to generate the new unit key. All new connection will use the new unit key, but the old unit key will still be used for all current connections.

Note: this command will not have any effect for a device which doesn't use unit keys (i.e. a device which uses only combination keys).

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Create New Unit Key command succeeded.
0x01-0xFF	Create New Unit Key command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Create_New_Unit_Key command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.3.8 Read Stored Link Key Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Stored_	0x000D	BD_ADDR,	Status,
Link_Key		Read_All_Flag	Max_Num_Keys,
			Num_Keys_Read

Description:

The Read_Stored_Link_Key command provides the ability to read one or more link keys stored in the Bluetooth Controller. The Bluetooth Controller can store a limited number of link keys for other Bluetooth devices. Link keys are shared between two Bluetooth devices, and are used for all security transactions between the two devices. A Host device may have additional storage capabilities, which can be used to save additional link keys to be reloaded to the Bluetooth Controller when needed. The Read_All_Flag parameter is used to indicate if all of the stored Link Keys should be returned. If Read_All_Flag indicates that all Link Keys are to be returned, then the BD_ADDR command parameter must be ignored The BD_ADDR command parameter is used to identify which link key to read. The stored Link Keys are returned by one or more Return Link Keys events. See Section 6.14 on page 388.

Command Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR for the stored link key to be read.

Read_All_Flag:

Size: 1 Octet

Value	Parameter Description
0x00	Return Link Key for specified BD_ADDR.
0x01	Return all stored Link Keys.
0x02-0xFF	Reserved for future use.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Stored_Link_Key command succeeded.
0x01-0xFF	Read_Stored_Link_Key command failed.See "Error Codes" on page 319 [Part D] for error codes and description.

4 November 2004

Max_Num_Keys:

Value	Parameter Description	
0xXXXX	Total Number of Link Keys that the Controller can store.	
	Range: 0x0000 – 0xFFFF	

Num_Keys_Read:

Size: 2 Octets

Value	Parameter Description	
0xXXXX	lumber of Link Keys Read.	
	Range: 0x0000 – 0xFFFF	

Event(s) generated (unless masked away):

Zero or more instances of the Return Link Keys event will occur after the command is issued. When there are no link keys stored, no Return Link Keys events will be returned. When there are link keys stored, the number of link keys returned in each Return Link Keys event is implementation specific. When the Read Stored Link Key command has completed a Command Complete event will be generated.

7.3.9 Write Stored Link Key Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Stored_Link_Key	0x0011	Num_Keys_To_Write,	Status,
		BD_ADDR[i],	Num_Keys_Written
		Link_Key[i]	

Description:

The Write_Stored_Link_Key command provides the ability to write one or more link keys to be stored in the Bluetooth Controller. The Bluetooth Controller can store a limited number of link keys for other Bluetooth devices. If no additional space is available in the Bluetooth Controller then no additional link keys will be stored. If space is limited and if all the link keys to be stored will not fit in the limited space, then the order of the list of link keys without any error will determine which link keys are stored. Link keys at the beginning of the list will be stored first. The Num_Keys_Written parameter will return the number of link keys that were successfully stored. If no additional space is available, then the Host must delete one or more stored link keys before any additional link keys are stored. The link key replacement algorithm is implemented by the Host and not the Controller. Link keys are shared between two Bluetooth devices and are used for all security transactions between the two devices. A Host device may have additional storage capabilities, which can be used to save additional link keys to be reloaded to the

😵 Bluetooth[®]

Size: 1 Octet

Bluetooth Controller when needed. See Section 6.14 on page 388. Note: Link Keys are only stored by issuing this command.

Command Parameters:

Num_Keys_To_Write:

Value	Parameter Description	
0xXX	Number of Link Keys to Write.	
	Range: 0x01 - 0x0B	

BD_ADDR [i]:

Size: 6 Octets * Num_Keys_To_Write

Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR for the associated Link Key.

Link_Key:

Size: 16 Octets

Value	Parameter Description
0xXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX	Link Key for an associated BD_ADDR.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description		
0x00	Write_Stored_Link_Key command succeeded.		
0x01-0xFF	Write_Stored_Link_Key command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.		

Num_Keys_Written:

Size: 1 Octets

Value	Parameter Description	
0xXX	Number of Link Keys successfully written.	
	Range: 0x00 – 0x0B	

Event(s) generated (unless masked away):

When the Write_Stored_Link_Key command has completed, a Command Complete event will be generated.

7.3.10 Delete Stored Link Key Command

Command	OCF	Command Parameters	Return Parameters
HCI_Delete_Stored_	0x0012	BD_ADDR,	Status,
Link_Key		Delete_All_Flag	Num_Keys_Deleted

Description:

The Delete_Stored_Link_Key command provides the ability to remove one or more of the link keys stored in the Bluetooth Controller. The Bluetooth Controller can store a limited number of link keys for other Bluetooth devices. Link keys are shared between two Bluetooth devices and are used for all security transactions between the two devices. The Delete_All_Flag parameter is used to indicate if all of the stored Link Keys should be deleted. If the Delete_All_Flag indicates that all Link Keys are to be deleted, then the BD_ADDR command parameter must be ignored This command provides the ability to negate all security agreements between two devices. The BD_ADDR command parameter is used to identify which link key to delete. If a link key is currently in use for a connection, then the link key will be deleted when all of the connections are disconnected. See Section 6.14 on page 388.

Command Parameters:

BD ADDR:

Size: 6 Octets

Value	Parameter Description	
0xXXXXXXXXXXXX	BD_ADDR for the link key to be deleted.	

Delete_All_Flag:

Size: 1 Octet

Value	Parameter Description	
0x00	Delete only the Link Key for specified BD_ADDR.	
0x01	Delete all stored Link Keys.	
0x02-0xFF	Reserved for future use.	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Delete_Stored_Link_Key command succeeded.	
0x01-0xFF	Delete_Stored_Link_Key command failed. See "Error Codes" on page 319 [Part D] for error codes and description.	

Size: 2 Octets

Host Controller Interface Functional Specification

😵 Bluetooth

Num_Keys_Deleted:

Value	Parameter Description	
0xXXXX	Number of Link Keys Deleted	

Event(s) generated (unless masked away):

When the Delete_Stored_Link_Key command has completed, a Command Complete event will be generated.

7.3.11 Write Local Name Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Local_Name	0x0013	Local Name	Status

Description:

The Write_Local_Name command provides the ability to modify the userfriendly name for the Bluetooth device. See Section 6.24 on page 394.

Command Parameters:

Local Name:

Size: 248 Octets

Value	Parameter Description
	A UTF-8 encoded User-Friendly Descriptive Name for the device.
	If the name contained in the parameter is shorter than 248 octets, the end of the name is indicated by a NULL octet $(0x00)$, and the following octets (to fill up 248 octets, which is the length of the parameter) do not have valid values.
	Null terminated Zero length String. Default.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description		
0x00	Write_Local_Name command succeeded.		
0x01-0xFF	Write_Local_Name command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.		

Event(s) generated (unless masked away):

When the Write_Local_Name command has completed, a Command Complete event will be generated.

7.3.12 Read Local Name Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Local_Name	0x0014		Status, Local Name

Description:

The Read_Local_Name command provides the ability to read the stored userfriendly name for the Bluetooth device. See Section 6.24 on page 394.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Local_Name command succeeded
0x01-0xFF	Read_Local_Name command failed see "Error Codes" on page 319 [Part D] for list of Error Codes

Local Name:

Size: 248 Octets

Value	Parameter Description			
	A UTF-8 encoded User Friendly Descriptive Name for the device.			
	If the name contained in the parameter is shorter than 248 octets, the end of the name is indicated by a NULL octet (0x00), and the following octets (to fill up 248 octets, which is the length of the parameter) do not have valid values.			

Event(s) generated (unless masked away):

When the Read_Local_Name command has completed a Command Complete event will be generated.

😵 Bluetooth

7.3.13 Read Connection Accept Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Connection_ Accept_Timeout	0x0015		Status, Conn_Accept_Timeout

Description:

This command will read the value for the Connection_Accept_Timeout configuration parameter. See Section 6.7 on page 385.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Connection_Accept_Timeout command succeeded.
0x01-0xFF	Read_Connection_Accept_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Conn_Accept_Timeout:

Size: 2 Octets

Value	Parameter Description		
$N = 0 \times X \times X$	Connection Accept Timeout measured in Number of Baseband slots.		
	Interval Length = N * 0.625 msec (1 Baseband slot)		
	Range for N: 0x0001 – 0xB540		
	Time Range: 0.625 msec -29 seconds		

Event(s) generated (unless masked away):

When the Read_Connection_Timeout command has completed, a Command Complete event will be generated.

7.3.14 Write Connection Accept Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Connection_ Accept_Timeout	0x0016	Conn_Accept_Timeout	Status

Description:

This command will write the value for the Connection_Accept_Timeout configuration parameter. See Section 6.7 on page 385.

Command Parameters:

Conn_Accept_Timeout:

Size: 2 Octets

Value	Parameter Description				
$N = 0 \times X \times X$	Connection Accept Timeout measured in Number of Baseband slots.				
	Interval Length = N * 0.625 msec (1 Baseband slot)				
	Range for N: 0x0001 – 0xB540				
	Time Range: 0.625 msec - 29 seconds				
	Default: N = 0x1FA0 Time = 5.06 Sec				
	Mandatory Range for Controller: 0x00A0 to 0xB540				

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Connection_Accept_Timeout command succeeded.
0x01-0xFF	Write_Connection_Accept_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Connection_Accept_Timeout command has completed, a Command Complete event will be generated.

Bluetooth

Host Controller Interface Functional Specification

7.3.15 Read Page Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Page_Timeout	0x0017		Status,
			Page_Timeout

Description:

This command will read the value for the Page_Timeout configuration parameter. See Section 6.6 on page 385.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Page_Timeout command succeeded.
0x01-0xFF	Read_Page_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Page_Timeout:

Size: 2 Octets

Value	Parameter Description			
$N = 0 \times X \times X$	Page Timeout measured in Number of Baseband slots.			
	Interval Length = N * 0.625 msec (1 Baseband slot)			
	Range for N: 0x0001 – 0xFFFF			
	Time Range: 0.625 msec -40.9 Seconds			

Event(s) generated (unless masked away):

When the Read_Page_Timeout command has completed, a Command Complete event will be generated.

7.3.16 Write Page Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Page_Timeout	0x0018	Page_Timeout	Status

Description:

This command will write the value for the Page_Timeout configuration parameter. The Page_Timeout configuration parameter defines the maximum time the local Link Manager will wait for a baseband page response from the remote device at a locally initiated connection attempt. If this time expires and the remote device has not responded to the page at baseband level, the connection attempt will be considered to have failed.

Command Parameters:

Page_Timeout:

Size: 2 Octets

Value	Parameter Description				
0	Illegal Page Timeout. Must be larger than 0.				
N = 0xXXXX	Page Timeout measured in Number of Baseband slots. Interval Length = N * 0.625 msec (1 Baseband slot) Range for N: 0x0001 – 0xFFFF Time Range: 0.625 msec -40.9 Seconds Default: N = 0x2000 Time = 5.12 Sec Mandatory Range for Controller: 0x0016 to 0xFFFF				

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Page_Timeout command succeeded.
0x01-0xFF	Write_Page_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Page_Timeout command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.17 Read Scan Enable Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Scan_Enable	0x0019		Status, Scan_Enable

Description:

This command will read the value for the Scan_Enable parameter configuration parameter. See Section 6.1 on page 383.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Scan_Enable command succeeded.
0x01-0xFF	Read_Scan_Enable command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Scan_Enable:

Size: 1 Octet

Value	Parameter Description
0x00	No Scans enabled.
0x01	Inquiry Scan enabled. Page Scan disabled.
0x02	Inquiry Scan disabled. Page Scan enabled.
0x03	Inquiry Scan enabled. Page Scan enabled.
0x04-0xFF	Reserved

Event(s) generated (unless masked away):

When the Read_Scan_Enable command has completed, a Command Complete event will be generated.

7.3.18 Write Scan Enable Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Scan_Enable	0x001A	Scan_Enable	Status

Description:

This command will write the value for the Scan_Enable configuration parameter. See Section 6.1 on page 383.

Command Parameters:

Scan_Enable:

Size: 1 Octet

Value	Parameter Description
0x00	No Scans enabled. Default.
0x01	Inquiry Scan enabled. Page Scan disabled.
0x02	Inquiry Scan disabled. Page Scan enabled.
0x03	Inquiry Scan enabled. Page Scan enabled.
0x04-0xFF	Reserved

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description		
0x00	Write_Scan_Enable command succeeded.		
0x01-0xFF	Write_Scan_Enable command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.		

Event(s) generated (unless masked away):

When the Write_Scan_Enable command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.19 Read Page Scan Activity Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Page_Scan_ Activity	0x001B		Status, Page_Scan_Interval, Page_Scan_Window

Description:

This command will read the value for Page_Scan_Interval and Page_Scan_Window configuration parameters. See Section 6.8 on page 386 and Section 6.9 on page 386.

Note: Page Scan is only performed when Page_Scan is enabled (see 6.1, 7.3.17 and 7.3.18).

A changed Page_Scan_Interval could change the local Page_Scan_ Repetition_Mode (see "Baseband Specification" on page 55 [Part B], Keyword: SR-Mode).

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description		
0x00	Read_Page_Scan_Activity command succeeded.		
0x01-0xFF	Read_Page_Scan_Activity command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.		

Page_Scan_Interval:

Size: 2 Octets

Value	Parameter Description			
$N = 0 \times X \times X$	Size: 2 Octets			
	Range: 0x0012 – 0x1000			
	Time = N * 0.625 msec			
	Range: 11.25 msec - 2560 msec; only even values are valid			

Page_Scan_Window:

Value	Parameter Description		
$N = 0 \times X \times X$	Size: 2 Octets		
	Range: 0x0011 - 0x1000		
	Time = N * 0.625 msec		
	Range: 10.625 msec - 2560 msec		

Event(s) generated (unless masked away):

When the Read_Page_Scan_Activity command has completed, a Command Complete event will be generated.

Size: 2 Octets

😵 Bluetooth

7.3.20 Write Page Scan Activity Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Page_Scan_ Activity	0x001C	Page_Scan_Interval, Page_Scan_Window	Status

Description:

This command will write the values for the Page_Scan_Interval and Page_Scan_Window configuration parameters. The Page_Scan_Window shall be less than or equal to the Page_Scan_Interval. See Section 6.8 on page 386 and Section 6.9 on page 386.

Note: Page Scan is only performed when Page_Scan is enabled (see 6.1, 7.3.17 and 7.3.18). A changed Page_Scan_Interval could change the local Page_Scan_Repetition_Mode (see Baseband Specification, Section 8.3.1, on page 154).

Command Parameters:

Page Scan Interval:

			2 001010
	Value Parameter Description		
See Section 6.8 on page 386			

Page_Scan_Window:

Value	Parameter Description			
See Section 6.9 on page 386				

Return Parameters:

Status:

Size: 1 Octet

Size: 2 Octets

Size: 2 Octets

Value	Parameter Description		
0x00	Write_Page_Scan_Activity command succeeded.		
0x01-0xFF	Write_Page_Scan_Activity command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.		

Event(s) generated (unless masked away):

When the Write_Page_Scan_Activity command has completed, a Command Complete event will be generated.

7.3.21 Read Inquiry Scan Activity Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_ Inquiry_Scan_Activity	0x001D		Status, Inquiry_Scan_Interval, Inquiry_Scan_Window

Description:

This command will read the value for Inquiry_Scan_Interval and Inquiry_Scan_Window configuration parameter. See Section 6.2 on page 383 and Section 6.3 on page 384.

Note: Inquiry Scan is only performed when Inquiry_Scan is enabled see 6.1, 7.3.17 and 7.3.18).

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Inquiry_Scan_Activity command succeeded.
0x01-0xFF	Read_Inquiry_Scan_Activity command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Inquiry_Scan_Interval:

Size: 2 Octets

Value	Parameter Description			
$N = 0 \times X \times X$	Size: 2 Octets			
	Range: 0x0012 – 0x1000			
	Time = N * 0.625 msec			
	Range: 11.25 - 2560 msec; only even values are valid			

Inquiry_Scan_Window:

Size: 2 Octets

Value	Parameter Description			
$N = 0 \times X \times X$	Size: 2 Octets			
	Range: 0x0011 - 0x1000			
	Time = N * 0.625 msec			
	Range: 10.625 msec - 2560 msec			

Event(s) generated (unless masked away):

When the Read_Inquiry_Scan_Activity command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.3.22 Write Inquiry Scan Activity Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Inquiry_ Scan_Activity	0x001E	Inquiry_Scan_Interval, Inquiry_Scan_Window	Status

Description:

This command will write the values for the Inquiry_Scan_Interval and Inquiry_Scan_Window configuration parameters. The Inquiry_Scan_Window shall be less than or equal to the Inquiry_Scan_Interval. See Section 6.2 on page 383 and Section 6.3 on page 384.

Note: Inquiry Scan is only performed when Inquiry_Scan is enabled (see 6.1, 7.3.17 and 7.3.18).

Command Parameters:

Inquiry_Scan_Interval:

Size: 2 Octets

Size: 2 Octets

Value	Parameter Description
See Section 6.2 on page 383.	

Inquiry_Scan_Window:

ValueParameter DescriptionSee Section 6.3 on page 384.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description			
0x00	Write_Inquiry_Scan_Activity command succeeded.			
0x01-0xFF	Write_Inquiry_Scan_Activity command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.			

Event(s) generated (unless masked away):

When the Write_Inquiry_Scan_Activity command has completed, a Command Complete event will be generated.

7.3.23 Read Authentication Enable Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_	0x001F		Status,
Authentication_Enable			Authentication_Enable

Description:

This command will read the value for the Authentication_Enable configuration parameter. See Section 6.15 on page 388.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description		
0x00	Read_Authentication_Enable command succeeded.		
0x01-0xFF	Read_Authentication_Enable command failed.See "Error Codes" on page 319 [Part D] for list of Error Codes.		

Authentication_Enable:

Size: 1 Octet

Value	Parameter Description	
0x00	Authentication not required.	
0x01	Authentication required for all connections.	
0x02-0xFF	Reserved	

Event(s) generated (unless masked away):

When the Read_Authentication_Enable command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.3.24 Write Authentication Enable Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_	0x0020	Authentication_Enable	Status
Authentication_Enable			

Description:

This command will write the value for the Authentication_Enable configuration parameter. See Section 6.15 on page 388.

Command Parameters:

Authentication_Enable:

Size: 1 Octet

Value	Parameter Description	
0x00	Authentication not required. Default.	
0x01	Authentication required for all connections.	
0x02-0xFF	Reserved	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description		
0x00	Write Authentication_Enable command succeeded.		
0x01-0xFF	Write Authentication_Enable command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.		

Event(s) generated (unless masked away):

When the Write_Authentication_Enable command has completed, a Command Complete event will be generated.

7.3.25 Read Encryption Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Encryption_Mode	0x0021		Status,
			Encryption_Mode

Description:

This command will read the value for the Encryption_Mode configuration parameter. See Section 6.16 on page 389.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Encryption_Mode command succeeded.
0x01-0xFF	Read_Encryption_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Encryption_Mode:

Size: 1 Octet

Value	Parameter Description
See Section 6.16 on page 389	

Event(s) generated (unless masked away):

When the Read_Encryption_Mode command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.26 Write Encryption Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Encryption_Mode	0x0022	Encryption_Mode	Status

Description:

This command will write the value for the Encryption_Mode configuration parameter. See Section 6.16 on page 389.

Command Parameters:

Encryption_Mode: Size: 1 Octet

	Value	Parameter Description
See Section 6.16 on page 389.		6 on page 389.

Return Parameters:

 Status:
 Size: 1 Octet

 Value
 Parameter Description

 0x00
 Write_Encryption_Mode command succeeded.

 0x01-0xFF
 Write_Encryption_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Encryption_Mode command has completed, a Command Complete event will be generated.

7.3.27 Read Class of Device Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Class_of_Device	0x0023		Status,
			Class_of_Device

Description:

This command will read the value for the Class_of_Device parameter. See Section 6.25 on page 394.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Class_of_Device command succeeded.
0x01-0xFF	Read_Class_of_Device command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Class_of_Device:

Size: 3 Octets

Value	Parameter Description
0xXXXXX Class of Device for the device.	

Event(s) generated (unless masked away):

When the Read_Class_of_Device command has completed, a Command Complete event will be generated.

Bluetooth

Host Controller Interface Functional Specification

7.3.28 Write Class of Device Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Class_of_Device	0x0024	Class_of_Device	Status

Description:

This command will write the value for the Class_of_Device parameter. See Section 6.25 on page 394.

Command Parameters:

Class_of_Device:

Size: 3 Octets

Value	Parameter Description
0xXXXXXX	Class of Device for the device.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Class_of_Device command succeeded.
0x01-0xFF	Write_Class_of_Device command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Class_of_Device command has completed, a Command Complete event will be generated.

7.3.29 Read Voice Setting Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Voice_Setting	0x0025		Status,
			Voice_Setting

Description:

This command will read the values for the Voice_Setting configuration parameter. See Section 6.12 on page 387.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Voice_Setting command succeeded.
0x01-0xFF	Read_Voice_Setting command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Voice_Setting:

Size: 2 Octets (10 Bits meaningful)

	Value	Parameter Description
See Section 6.12 on page 387.		

Event(s) generated (unless masked away):

When the Read_Voice_Setting command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.3.30 Write Voice Setting Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Voice_Setting	0x0026	Voice_Setting	Status

Description:

This command will write the values for the Voice_Setting configuration parameter. See Section 6.12 on page 387.

Command Parameters:

Voice_Setting: Size: 2 Octets (10 Bits meaningful)

Value	Parameter Description
See Section 6.12 on page 387.	

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Voice_Setting command succeeded.
0x01-0xFF	Write_Voice_Setting command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Voice_Setting command has completed, a Command Complete event will be generated.

7.3.31 Read Automatic Flush Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Automatic_Flush_	0x0027	Connection_Handle	Status,
Timeout			Connection_Handle,
			Flush_Timeout

Description:

This command will read the value for the Flush_Timeout parameter for the specified connection handle. See Section 6.20 on page 392.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Specifies which Connection Handle's Flush Timeout to read.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Automatic_Flush_Timeout command succeeded.
0x01-0xFF	Read_Automatic_Flush_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Specifies which Connection Handle's Flush Timeout has been read.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Flush_Timeout:

Size: 2 Octets

Value	Parameter Description
0	Timeout = ∞ ; No Automatic Flush
N = 0xXXXX	Flush Timeout = N * 0.625 msec Size: 11 bits Range: 0x0001 – 0x07FF

Event(s) generated (unless masked away):

When the Read_Automatic_Flush_Timeout command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.3.32 Write Automatic Flush Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Automatic_Flush_ Timeout	0x0028	Connection_Handle, Flush Timeout	Status, Connection Handle
		Fiusii_Timeout	

Description:

This command will write the value for the Flush_Timeout parameter for the specified connection handle. See Section 6.20 on page 392.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Specifies which Connection Handle's Flush Timeout to write to.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Flush_Timeout:

Size: 2 Octets

Value	Parameter Description
0	Timeout = ∞ ; No Automatic Flush. Default.
N = 0xXXXX	Flush Timeout = N * 0.625 msec Size: 11 bits Range: 0x0001 – 0x07FF Mandatory Range for Controller: 0x0002 to 0x07FF

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Automatic_Flush_Timeout command succeeded.
0x01-0xFF	Write_Automatic_Flush_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	Specifies which Connection Handle's Flush Timeout has been written.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Event(s) generated (unless masked away):

When the Write_Automatic_Flush_Timeout command has completed, a Command Complete event will be generated.

7.3.33 Read Num Broadcast Retransmissions Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Num_Broadcast_ Retransmissions	0x0029		Status, Num_Broadcast_Retransmissions

Description:

This command will read the device's parameter value for the Number of Broadcast Retransmissions. See Section 6.21 on page 392

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Num_Broadcast_Retransmissions command succeeded.
0x01-0xFF	Read_Num_Broadcast_Retransmissions command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Num_Broadcast_Retransmissions:

Size: 1 Octet

Value	Parameter Description
See Section 6.21 on page 392.	

Event(s) generated (unless masked away):

When the Read_Num_Broadcast_Retransmission command has completed, a Command Complete event will be generated.

😵 Bluetooth[®]

7.3.34 Write Num Broadcast Retransmissions Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Num_Broadcast_ Retransmissions	0x002A	Num_Broadcast_ Retransmissions	Status

Description:

This command will write the device's parameter value for the Number of Broadcast Retransmissions. See Section 6.21 on page 392.

Command Parameters:

Num_Broadcast_Retransmissions:

Size: 1 Octet

Value	Parameter Description	
See Section 6.21 on page 392.		

Return Parameters:

 Status:
 Size: 1 Octet

 Value
 Parameter Description

 0x00
 Write Num Broadcast Retransmissions command succeeded

000	white_num_broadcast_Retransmissions command succeeded.
0x01-0xFF	Write_Num_Broadcast_Retransmissions command failed. See "Error
	Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Num_Broadcast_Retransmissions command has completed, a Command Complete event will be generated.

7.3.35 Read Hold Mode Activity Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Hold_Mode_Activity	0x002B		Status, Hold_Mode_Activity

Description:

This command will read the value for the Hold_Mode_Activity parameter. See Section 6.18 on page 390.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Hold_Mode_Activity command succeeded.
0x01-0xFF	Read_Hold_Mode_Activity command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Hold_Mode_Activity:

Size: 1 Octet

Value	Parameter Description	
0x00	Maintain current Power State.	
0x01	Suspend Page Scan.	
0x02	Suspend Inquiry Scan.	
0x04	Suspend Periodic Inquiries.	
0x08-0xFF	Reserved for Future Use.	

Event(s) generated (unless masked away):

When the Read_Hold_Mode_Activity command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.36 Write Hold Mode Activity Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Hold_Mode_Activity	0x002C	Hold_Mode_Activity	Status

Description:

This command will write the value for the Hold_Mode_Activity parameter. See Section 6.18 on page 390.

Command Parameters:

Hold_Mode_Activity:

Size: 1 Octet

Value	Parameter Description
0x00	Maintain current Power State. Default.
0x01	Suspend Page Scan.
0x02	Suspend Inquiry Scan.
0x04	Suspend Periodic Inquiries.
0x08-0xFF	Reserved for Future Use.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Hold_Mode_Activity command succeeded.
0x01-0xFF	Write_Hold_Mode_Activity command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Hold_Mode_Activity command has completed, a Command Complete event will be generated.

7.3.37 Read Transmit Power Level Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Transmit_	0x002D	Connection_Handle,	Status,
Power_Level		Туре	Connection_Handle,
			Transmit_Power_Level

Description:

This command will read the values for the Transmit_Power_Level parameter for the specified Connection Handle. The Connection_Handle must be a Connection_Handle for an ACL connection.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Specifies which Connection Handle's Transmit Power Level setting to read.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Type:

Size: 1 Octet

Value	Parameter Description
0x00	Read Current Transmit Power Level.
0x01	Read Maximum Transmit Power Level.
0x02-0xFF	Reserved

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Transmit_Power_Level command succeeded.
0x01-0xFF	Read_Transmit_Power_Level command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Specifies which Connection Handle's Transmit Power Level setting is returned.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

😵 Bluetooth

Transmit_Power_Level:

Size: 1 Octet

Value	Parameter Description
N = 0xXX	Size: 1 Octet (signed integer)
	Range: $-30 \le N \le 20$
	Units: dBm

Event(s) generated (unless masked away):

When the Read_Transmit_Power_Level command has completed, a Command Complete event will be generated.

7.3.38 Read Synchronous Flow Control Enable Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_ Synchronous_Flow_ Control_Enable	0x002E		Status, Synchronous_Flow_ Control_Enable

Description:

The Read_Synchronous_Flow_Control_Enable command provides the ability to read the Synchronous_Flow_Control_Enable setting. See Section 6.23 on page 393.

Note: the Synchronous_Flow_Control_Enable setting can only be changed if no connections exist.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Synchronous_Flow_Control_Enable command succeeded
0x01-0xFF	Read_Synchronous_Flow_Control_Enable command failed see "Error Codes" on page 319 [Part D] for list of Error Codes

Synchronous_Flow_Control_Enable:

Size: 1 Octet

Value	Parameter Description
0x00	Synchronous Flow Control is disabled. No Number of Completed Packets events will be sent from the Controller for Synchronous Connection Handles.
0x01	Synchronous Flow Control is enabled. Number of Completed Packets events will be sent from the Controller for Synchronous Connection Handles.

Event(s) generated (unless masked away):

When the Read_Synchronous_Flow_Control_Enable command has completed a Command Complete event will be generated.

😵 Bluetooth

7.3.39 Write Synchronous Flow Control Enable Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Synchronous_ Flow_Control_Enable	0x002F	Synchronous_Flow_ Control_Enable	Status

Description:

The Write_Synchronous_Flow_Control_Enable command provides the ability to write the Synchronous_Flow_Control_Enable setting. See Section 6.23 on page 393.

Note: the Synchronous_Flow_Control_Enable setting can only be changed if no connections exist.

Command Parameters:

Synchronous_Flow_Control_Enable:

Size: 1 Octet

Value	Parameter Description
0x00	Synchronous Flow Control is disabled. No Number of Completed Packets events will be sent from the Controller for synchronous Connection Handles. Default
0x01	Synchronous Flow Control is enabled. Number of Completed Packets events will be sent from the Controller for synchronous Connection Handles.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Synchronous_Flow_Control_Enable command succeeded
0x01-0xFF	Write_Synchronous_Flow_Control_Enable command failed see "Error Codes" on page 319 [Part D] for list of Error Codes

Event(s) generated (unless masked away):

When the Write_Synchronous_Flow_Control_Enable command has completed a Command Complete event will be generated.

7.3.40 Set Controller To Host Flow Control Command

Command	OCF	Command Parameters	Return Parameters
HCI_Set_Controller_To_ Host_Flow_Control	0x0031	Flow_Control_Enable	Status

Description:

This command is used by the Host to turn flow control on or off for data and/or voice sent in the direction from the Controller to the Host. If flow control is turned off, the Host should not send the Host_Number_Of_Completed_Packets command. That command will be ignored by the Controller if it is sent by the Host and flow control is off. If flow control is turned on for HCI ACL Data Packets and off for HCI synchronous Data Packets, Host_Number_Of_Completed_Packets commands sent by the Host should only contain Connection Handles for ACL connections. If flow control is turned off for HCI ACL Data Packets and on for HCI synchronous Data Packets, Host_Number_Of_Completed_Packets commands sent by the Host should only contain Connection Handles for synchronous connections. If flow control is turned on for HCI ACL Data Packets and HCI synchronous Data Packets, Host_Number_Of_Completed_Packets connections. If flow control is turned on for HCI ACL Data Packets and HCI synchronous connections. If flow control is turned on for HCI ACL Data Packets and HCI synchronous connections. If flow control is turned on for HCI ACL Data Packets and HCI synchronous connections. If flow control is turned on for HCI ACL Data Packets and HCI synchronous connections. If flow control is turned on for HCI ACL Data Packets and HCI synchronous Data Packets, the Host will send Host_Number_Of_Completed_Packets commands both for ACL connections and synchronous connections.

The Flow_Control_Enable setting shall only be changed if no connections exist.

Command Parameters:

Flow_Control_Enable:

Size: 1 Octet

Value	Parameter Description
0x00	Flow control off in direction from Controller to Host. Default.
0x01	Flow control on for HCI ACL Data Packets and off for HCI synchronous Data Packets in direction from Controller to Host.
0x02	Flow control off for HCI ACL Data Packets and on for HCI synchronous Data Packets in direction from Controller to Host.
0x03	Flow control on both for HCI ACL Data Packets and HCI synchronous Data Packets in direction from Controller to Host.
0x04-0xFF	Reserved

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Set_Controller_To_Host_Flow_Control command succeeded.
0x01-0xFF	Set_Controller_To_Host_Flow_Control command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Set_Controller_To_Host_Flow_Control command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.3.41 Host Buffer Size Command

Command	OCF	Command Parameters	Return Parameters
HCI_Host_Buffer_Size	0x0033	Host_ACL_Data_Packet_Length, Host_Synchronous_Data_Packet_Length, Host_Total_Num_ACL_Data_Packets, Host_Total_Num_Synchronous_Data_ Packets	Status

Description:

The Host_Buffer_Size command is used by the Host to notify the Controller about the maximum size of the data portion of HCI ACL and synchronous Data Packets sent from the Controller to the Host. The Controller will segment the data to be transmitted from the Controller to the Host according to these sizes, so that the HCI Data Packets will contain data with up to these sizes. The Host_Buffer_Size command also notifies the Controller about the total number of HCI ACL and synchronous Data Packets that can be stored in the data buffers of the Host. If flow control from the Controller to the Host is turned off, and the Host_Buffer_Size command has not been issued by the Host, this means that the Controller will send HCI Data Packets to the Host with any lengths the Controller wants to use, and it is assumed that the data buffer sizes of the Host are unlimited. If flow control from the Controller to the Host is turned on, the Host_Buffer_Size command must after a power-on or a reset always be sent by the Host before the first Host_Number_Of_Completed_Packets command is sent.

(The Set Controller To Host Flow Control Command command is used to turn flow control on or off.) The Host_ACL_Data_Packet_Length command parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets, which are transferred from the Controller to the Host. The Host_Synchronous_Data_Packet_Length command parameter is used to determine the maximum size of HCI synchronous Data Packets. Both the Host and the Controller must support command and event packets, where the data portion (excluding header) contained in the packets is 255 octets in size.

The Host_Total_Num_ACL_Data_Packets command parameter contains the total number of HCI ACL Data Packets that can be stored in the data buffers of the Host. The Controller will determine how the buffers are to be divided between different Connection Handles. The Host_Total_Num_Synchronous_Data_Packets command parameter gives the same information for HCI synchronous Data Packets.

Note: the Host_ACL_Data_Packet_Length and Host_Synchronous_Data_ Packet_Length command parameters do not include the length of the HCI Data Packet header.

Command Parameters:

Host_ACL_Data_Packet_Length:

Value	Parameter Description
0xXXXX	Maximum length (in octets) of the data portion of each HCI ACL Data Packet that the Host is able to accept.

Host_Synchronous_Data_Packet_Length:

Value	Parameter Description
0xXX	Maximum length (in octets) of the data portion of each HCI synchronous Data Packet that the Host is able to accept.

Host_Total_Num_ACL_Data_Packets:

Value	Parameter Description
0xXXXX	Total number of HCI ACL Data Packets that can be stored in the data buffers of the Host.

Host_Total_Num_Synchronous_Data_Packets:

Value **Parameter Description** 0xXXXX Total number of HCI synchronous Data Packets that can be stored in the data buffers of the Host.

Return Parameters:

Status:

Value **Parameter Description** 0x00 Host_Buffer_Size command succeeded. 0x01-0xFF Host Buffer Size command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Host Buffer Size command has completed, a Command Complete event will be generated.

Size: 2 Octets

Size: 1 Octet

Size: 2 Octets

Size: 1 Octet

Size: 2 Octets

😵 Bluetooth

7.3.42 Host Number Of Completed Packets Command

Command	OCF	Command Parameters	Return Parameters
HCI_Host_Number_Of_ Completed_Packets	0x0035	Number_Of_Handles, Connection_ Handle[i], Host Num Of Completed Packets [i]	

Description:

The Host Number Of Completed Packets command is used by the Host to indicate to the Controller the number of HCI Data Packets that have been completed for each Connection Handle since the previous Host Number Of Completed Packetscommand was sent to the Controller. This means that the corresponding buffer space has been freed in the Host. Based on this information, and the Host Total Num ACL Data Packets and Host Total Num Synchronous Data Packets command parameters of the Host Buffer Size command, the Controller can determine for which Connection Handles the following HCI Data Packets should be sent to the Host. The command should only be issued by the Host if flow control in the direction from the Controller to the Host is on and there is at least one connection, or if the Controller is in local loopback mode. Otherwise, the command will be ignored by the Controller. When the Host has completed one or more HCI Data Packet(s) it shall send a Host Number Of Completed Packets command to the Controller, until it finally reports that all pending HCI Data Packets have been completed. The frequency at which this command is sent is manufacturer specific.

(The Set Controller To Host Flow Control Command command is used to turn flow control on or off.) If flow control from the Controller to the Host is turned on, the Host_Buffer_Size command must after a power-on or a reset always be sent by the Host before the first Host_Number_Of_Completed_Packets command is sent.

Note: the Host_Number_Of_Completed_Packets command is a special command in the sense that no event is normally generated after the command has completed. The command may be sent at any time by the Host when there is at least one connection, or if the Controller is in local loopback mode independent of other commands. The normal flow control for commands is not used for the Host_Number_Of_Completed_Packets command.

Size: 1 Octet

Command Parameters:

Number_Of_Handles:

Value	Parameter Description
0xXX	The number of Connection Handles and Host_Num_Of_Completed_Packets parameters pairs contained in this command.
	Range: 0-255

Connection_Handle[i]: Size: Number_Of_Handles*2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Host_Num_Of_Completed_Packets [i]: Size: Number_Of_Handles * 2 Octets

Value	Parameter Description
$N = 0 \times X \times X$	The number of HCI Data Packets that have been completed for the asso- ciated Connection Handle since the previous time the event was returned.
	Range for N: 0x0000-0xFFFF

Return Parameters:

None.

Event(s) generated (unless masked away):

Normally, no event is generated after the Host_Number_Of_Completed_ Packets command has completed. However, if the Host_Number_Of_ Completed_Packets command contains one or more invalid parameters, the Controller will return a Command Complete event with a failure status indicating the *Invalid HCI Command Parameters error code*. The Host may send the Host_Number_Of_Completed_Packets command at any time when there is at least one connection, or if the Controller is in local loopback mode. The normal flow control for commands is not used for this command.

😵 Bluetooth°

7.3.43 Read Link Supervision Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Link_Supervision_ Timeout	0x0036	Connection_Handle	Status, Connection_Handle, Link_Supervision_ Timeout

Description:

This command will read the value for the Link_Supervision_Timeout parameter for the device.

Note: the Connection_Handle used for this command must be the ACL connection to the appropriate device. See Section 6.22 on page 393.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Specifies which Connection Handle's Link Supervision Timeout value is to be read.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Link_Supervision_Timeout command succeeded.
0x01-0xFF	Read_Link_Supervision_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Specifies which Connection Handle's Link Supervision Timeout value was read.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

😵 Bluetooth°

Size: 2 Octets

Link_Supervision_Timeout:

Value	Parameter Description
0x0000	No Link_Supervision_Timeout.
N = 0xXXXX	Measured in Number of Baseband slots Link_Supervision_Timeout = N * 0.625 msec (1 Baseband slot) Range for N: 0x0001 – 0xFFFF Time Range: 0.625ms - 40.9 sec

Event(s) generated (unless masked away):

When the Read_Link_Supervision_Timeout command has completed, a Command Complete event will be generated.

7.3.44 Write Link Supervision Timeout Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Link_Supervision_ Timeout	0x0037	Connection_Handle, Link_Supervision_ Timeout	Status, Connection_Handle

Description:

This command will write the value for the Link_Supervision_Timeout parameter for the device. This command shall only be issued on the master for the given connection handle. If this command is issued on a slave, the command shall be rejected with the Command Disallowed.

Note: the Connection_Handle used for this command must be the ACL connection to the appropriate device. This command will set the Link_Supervision_ Timeout values for other Synchronous Connection_Handles to that device. See Section 6.22 on page 393.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Specifies which Connection Handle's Link Supervision Timeout value is to be written.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

🛞 Bluetooth

Size: 2 Octets

Link_Supervision_Timeout:

Value	Parameter Description
0x0000	No Link_Supervision_Timeout.
N = 0xXXXX	Measured in Number of Baseband slots
	Link_Supervision_Timeout = N*0.625 msec (1 Baseband slot)
	Range for N: 0x0001 – 0xFFFF
	Time Range: 0.625ms – 40.9 sec
	Default: N = 0x7D00
	Link_Supervision_Timeout = 20 sec
	Mandatory Range for Controller: 0x0190 to 0xFFFF; plus 0 for infinite timeout

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Link_Supervision_Timeout command succeeded.
0x01-0xFF	Write_Link_Supervision_Timeout command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Specifies which Connection Handle's Link Supervision Timeout value was written.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Event(s) generated (unless masked away):

When the Write_Link_Supervision_Timeout command has completed, a Command Complete event will be generated.

7.3.45 Read Number Of Supported IAC Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Number_Of_Supported_IAC	0x0038		Status, Num_Support_IAC

Description:

This command will read the value for the number of Inquiry Access Codes (IAC) that the local Bluetooth device can simultaneous listen for during an Inquiry Scan. All Bluetooth devices are required to support at least one IAC, the General Inquiry Access Code (the GIAC). Some Bluetooth devices support additional IACs.

Command Parameters:

None

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Number_Of_Supported_IAC command succeeded.
0x01-0xFF	Read_Number_Of_Supported_IAC command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Num_Support_IAC

Size: 1 Octet

Value	Parameter Description
0xXX	Specifies the number of Supported IAC that the local Bluetooth device can simultaneous listen for during an Inquiry Scan.
	Range: 0x01-0x40

Event(s) generated (unless masked away):

When the Read_Number_Of_Supported_IAC command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.46 Read Current IAC LAP Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Current_IAC_LAP	0x0039		Status, Num_Current_IAC, IAC_LAP[i]

Description:

This command reads the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans. All Bluetooth devices are required to support at least one IAC, the General Inquiry Access Code (the GIAC). Some Bluetooth devices support additional IACs.

Command Parameters:

None

Status:

Return Parameters:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Current_IAC_LAP command succeeded.
0x01-0xFF	Read_Current_IAC_LAP command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Num_Current_IAC

Size: 1 Octet

Value	Parameter Description
0xXX	Specifies the number of IACs which are currently in use by the local Blue- tooth device to simultaneously listen for during an Inquiry Scan.
	Range: 0x01-0x40

IAC_LAP[i]

Size: 3 Octets * Num_Current_IAC

Value	Parameter Description
0xXXXXXX	LAPs used to create the IAC which is currently in use by the local Blue- tooth device to simultaneously listen for during an Inquiry Scan.
	Range: 0x9E8B00-0x9E8B3F

Event(s) generated (unless masked away):

When the Read_Current_IAC_LAP command has completed, a Command Complete event will be generated.

7.3.47 Write Current IAC LAP Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Current_IAC_LAP	0x003A	Num_Current_IAC, IAC_LAP[i]	Status

Description:

This command writes the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans. All Bluetooth devices are required to support at least one IAC, the General Inquiry Access Code (the GIAC). Some Bluetooth devices support additional IACs.

This command shall clear any existing IACs and stores Num_Current_IAC and the IAC_LAPs in to the controller. If Num_Current_IAC is greater than Num_Support_IAC then only the first Num_Support_IACs shall be stored in the controller, and a Command Complete event with error code *Success (0x00)* shall be generated.

Command Parameters:

Num_Current_IAC

Size: 1 Octet

Value	Parameter Description
0xXX	Specifies the number of IACs which are currently in use by the local Blue- tooth device to simultaneously listen for during an Inquiry Scan. Range: 0x01-0x40

IAC_LAP[i]

Size: 3 Octets * Num_Current_IAC

Value	Parameter Description
0xXXXXXX	LAP(s) used to create IAC which is currently in use by the local Bluetooth device to simultaneously listen for during an Inquiry Scan.
	Range: 0x9E8B00-0x9E8B3F.
	The GIAC is the default IAC to be used. If additional IACs are supported, additional default IAC will be determined by the manufacturer.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Current_IAC_LAP command succeeded.
0x01-0xFF	Write_Current_IAC_LAP command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Current_IAC_LAP command has completed, a Command Complete event will be generated.

7.3.48 Read Page Scan Period Mode Command (Deprecated)

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Page_Scan_Period_ Mode	0x003B		Status, Page_Scan_Period_Mode

Description:

This command is used to read the mandatory Page_Scan_Period_Mode configuration parameter of the local Bluetooth device. See Section 6.10 on page 386.

Command Parameters:

None

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Page_Scan_Period_Mode command succeeded.
0x01-0xFF	Read_Page_Scan_Period_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Page_Scan_Period_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	P0
0x01	P1
0x02	P2
0x03-0xFF	Reserved.

Event(s) generated (unless masked away):

When the Read_Page_Scan_Period_Mode command has completed, a Command Complete event will be generated.

7.3.49 Write Page Scan Period Mode Command (Deprecated)

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Page_Scan_P eriod_Mode	0x003C	Page_Scan_Period_Mode	Status

Description:

This command is used to write the mandatory Page_Scan_Period_Mode configuration parameter of the local Bluetooth device. See Section 6.10 on page 386.

Command Parameters:

Page_Scan_Period_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	P0
0x01	P1
0x02	P2. Default.
0x03-0xFF	Reserved.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Page_Scan_Period_Mode command succeeded.
0x01-0xFF	Write_Page_Scan_Period_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Page_Scan_Period_Mode command has completed, a Command Complete event will be generated.

7.3.50 Set AFH Host Channel Classification Command

Command	OCF	Command Parameters	Return Parameters
Set_AFH_Host_Channel_ Classification	0x003F	AFH_Host_Channel_ Classification	Status

Description:

The Set_AFH_Host_Channel_Classification command allows the Bluetooth host to specify a channel classification based on its "local information". This classification persists until overwritten with a subsequent HCI

Set_AFH_Host_Channel_Classification command or until the Controller is reset.

This command shall be supported by a device that declares support for any of the AFH_capable_master, AFH_classification_slave or AFH classification master features.

If this command is used, then updates should be sent within 10 seconds, of the host knowing that the channel classification has changed. The interval between two successive commands sent shall be at least 1 second.

Command Parameters:

AFH_Host_Channel_Classification: Size: 10 Octets (79 Bits meaningful)

Value	Parameter Description
0xXXXXXXXX	This parameter contains 79 1-bit field.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	The n^{th} such field (in the range 0 to 78) contains the value for channel n :
	Channel <i>n</i> is bad = 0
	Channel <i>n</i> is unknown = 1
	The most significant bit is reserved and shall be set to 0
	At least N _{min} channels shall be marked as unknown. (See Baseband Specification, Section 2.3.1, on page 75)

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Set_AFH_Host_Channel_Classification command succeeded.
0x01-0xFF	Set_AFH_Host_Channel_Classification command failed. "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Set_AFH_Host_Channel_Classification command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.51 Read Inquiry Scan Type Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Inquiry_Scan_Type	0x0042		Status, Inquiry_Scan_Type

Description:

This command is used to read the Inquiry_Scan_Type configuration parameter of the local Bluetooth device. See Section 6.4 on page 384. For details, see the Baseband Specification, "Inquiry scan substate" on page 164 [Part B].

Command Parameters:

None

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Inquiry_Scan_Type command succeeded
0x01-0xFF	Read_Inquiry_Scan_Type command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Inquiry_Scan_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Mandatory: Standard Scan (default)
0x01	Optional: Interlaced Scan
0x02-0xFF	Reserved

Event(s) generated (unless masked away):

When the Read_Inquiry_Scan_Type command has completed, a Command Complete event will be generated.

7.3.52 Write Inquiry Scan Type Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Inquiry_Scan_Type	0x0043	Scan_Type	Status

Description:

This command is used to write the Inquiry Scan Type configuration parameter of the local Bluetooth device. See Section 6.4 on page 384. For details, see the Baseband Specification, "Inquiry scan substate" on page 164 [Part B].

Command Parameters:

Scan_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Mandatory: Standard Scan (default)
0x01	Optional: Interlaced Scan
0x02-0xFF	Reserved

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Inquiry_Scan_Type command succeeded
0x01-0xFF	Write_Inquiry_Scan_Type command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Inquiry_Scan_Type command has completed, a Command Complete event will be generated.

😵 Bluetooth

Host Controller Interface Functional Specification

7.3.53 Read Inquiry Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Inquiry_Mode	0x0044		Status, Inquiry_Mode

Description:

This command is used to read the Inquiry_Mode configuration parameter of the local Bluetooth device. See Section 6.5 on page 384.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Read_Inquiry_Mode command succeeded	
0x01-0xFF	Read_Inquiry_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes	

Inquiry_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	Standard Inquiry Result event format
0x01	Inquiry Result format with RSSI
0x02-0xFF	Reserved

Event(s) generated (unless masked away):

When the Read_Inquiry_Mode command has completed, a Command Complete event will be generated.

7.3.54 Write Inquiry Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Inquiry_Mode	0x0045	Inquiry_Mode	Status

Description:

This command is used to write the Inquiry_Mode configuration parameter of the local Bluetooth device. See Section 6.5 on page 384.

Command Parameters:

Inquiry_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	Standard Inquiry Result event format (default)
0x01	Inquiry Result format with RSSI
0x02-0xFF	Reserved

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Inquiry_Mode command succeeded
0x01-0xFF	Write_Inquiry_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Inquiry_Mode command has completed, a Command Complete event will be generated.

Bluetooth

Host Controller Interface Functional Specification

7.3.55 Read Page Scan Type Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Page_Scan_Type	0x0046		Status, Page_Scan_Type

Description:

This command is used to read the Page Scan Type configuration parameter of the local Bluetooth device. See Section 6.11 on page 387.

For details, see the Baseband Specification, "Page scan substate" on page 154 [Part B].

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Page_Scan_Type command succeeded
0x01-0xFF	Read_Page_Scan_Type command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Page_Scan_Type:

Size: 1 Octet

Value	Parameter Description	
0x00	Mandatory: Standard Scan (default)	
0x01	Optional: Interlaced Scan	
0x02-0xFF	Reserved	

Event(s) generated (unless masked away):

When the Read_Page_Scan_Type command has completed, a Command Complete event will be generated.

7.3.56 Write Page Scan Type Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Page_Scan_Type	0x0047	Page_Scan_Type	Status

Description:

This command is used to write the Page Scan Type configuration parameter of the local Bluetooth device. See Section 6.11 on page 387.

For details, see the Baseband Specification, "Page scan substate" on page 154 [Part B].

Command Parameters:

Page_Scan_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Mandatory: Standard Scan (default)
0x01	Optional: Interlaced Scan
0x02-0xFF	Reserved

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Write_Page_Scan_Type command succeeded	
0x01-0xFF	Write_Page_Scan_Type command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Event(s) generated (unless masked away):

When the Write_Page_Scan_Type command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.3.57 Read AFH Channel Assessment Mode Command

Command	OCF	Command Parameters	Return Parameters
Read_AFH_Channel_Assessment _Mode	0x0048		Status, AFH_Channel _Assessment_Mode

Description:

The Read_AFH_Channel_Assessment_Mode command reads the value for the AFH_Channel_Assessment_Mode parameter. The AFH_Channel_Assessment_Mode parameter controls whether the controller's channel assessment scheme is enabled or disabled.

This command shall be supported by a device that declares support for any of the AFH_capable_master, AFH_classification_slave or AFH_classification_master features.

Return Parameters:

Status:	Size: 1 Octet
Value	Parameter Description
0x00 Read_AFH_Channel_Assessment_Mode command succeeded.	
0x01-0xFF Read_AFH_Channel_Assessment_Mode command failed. See "E Codes" on page 319 [Part D] for list of Error Codes.	

AFH_Channel_Assessment_Mode:

Size: 1 Octet

Value	Parameter Description	
0x00	Controller channel assessment disabled.	
0x01	Controller channel assessment enabled.	
0x02-0xFF	Reserved for future use.	

Event(s) generated (unless masked away):

When the Read_AFH_Channel_Assessment_Mode command has completed, a Command Complete event will be generated.

7.3.58 Write AFH Channel Assessment Mode Command

Command	OCF	Command Parameters	Return Parameters
Write_AFH_Channel _Assessment_Mode	0x0049	AFH_Channel _Assessment_Mode	Status

Description:

The Write_AFH_Channel_Assessment_Mode command writes the value for the AFH_Channel_Assessment_Mode parameter. The AFH_Channel_Assessment_Mode parameter controls whether the Controller's channel assessment scheme is enabled or disabled.

Disabling channel assessment forces all channels to be unknown in the local classification, but does not affect the AFH_reporting_mode or support for the Set_AFH_Host_Channel_Classification command. A slave in the AFH_reporting_enabled state shall continue to send LMP channel classification messages for any changes to the channel classification caused by either this command (altering the AFH_Channel_Assessment_Mode) or HCI Set_AFH_Host_Channel_Classification command (providing a new channel classification from the Host).

This command shall be supported by a device that declares support for any of the AFH_capable_master, AFH_classification_slave or AFH_classification_master features.

If the AFH_Channel_Assessment_Mode parameter is enabled and the Controller does not support a channel assessment scheme, other than via the Set_AFH_Host_Channel_Classification command, then a Status parameter of 'Channel Assessment Not Supported' should be returned. See "Error Codes" on page 319 [Part D] for list of Error Codes.

If the Controller supports a channel assessment scheme then the default AFH_Channel_Assessment_Mode is enabled, otherwise the default is disabled.

Command Parameters:

AFH_Channel_Assessment_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	Controller channel assessment disabled.
0x01	Controller channel assessment enabled.
0x02-0xFF	Reserved for future use.

😵 Bluetooth[®]

Host Controller Interface Functional Specification

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Write_AFH_Channel_Assessment_Mode command succeeded.	
0x01-0xFF	Write_AFH_Channel_Assessment_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Event(s) generated (unless masked away):

When the Write_AFH_Channel_Assessment_Mode command has completed, a Command Complete event will be generated.

7.4 INFORMATIONAL PARAMETERS

The Informational Parameters are fixed by the manufacturer of the Bluetooth hardware. These parameters provide information about the Bluetooth device and the capabilities of the Controller, Link Manager, and Baseband. The host device cannot modify any of these parameters. For Informational Parameters Commands, the OGF is defined as 0x04.

7.4.1 Read Local Version Information Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Local_Version_	0x0001		Status,
Information			HCI Version,
			HCI Revision,
			LMP Version,
			Manufacturer_Name,
			LMP Subversion

Description:

This command will read the values for the version information for the local Bluetooth device.

The HCI Version information defines the version information of the HCI layer. The LMP Version information defines the version of the LMP. The Manufacturer_Name information indicates the manufacturer of the local device.

The HCI Revision and LMP Subversion are implementation dependant.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Local_Version_Information command succeeded.
0x01-0xFF	Read_Local_Version_Information command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

page 540 of 814

😵 Bluetooth

Size: 1 Octet

HCI_Version:

Value	Parameter Description
See https://www	bluetooth.org/foundry/assignnumb/document/assigned_numbers

HCI_Revision:

Value	Parameter Description
0xXXXX	Revision of the Current HCI in the Bluetooth device.

LMP_Version:

Size: 1 Octet

Size: 2 Octets

Value	Parameter Description
0xXX	Version of the Current LMP in the Bluetooth device, See https://www. bluetooth.org/foundry/assignnumb/document/assigned_numbers

Manufacturer_Name:

Size: 2 Octets

Value	Parameter Description	
0xXXXX	Manufacturer Name of the Bluetooth device, See https://www. bluetooth.org/foundry/assignnumb/document/assigned_numbers	

LMP_Subversion:

Size: 2 Octets

Value	Parameter Description
0xXXXX	Subversion of the Current LMP in the Bluetooth device, see Table 5.2 on page 303 in the Link Manager Protocol for assigned values (SubVersNr).

Event(s) generated (unless masked away):

When the Read_Local_Version_Information command has completed, a Command Complete event will be generated.

7.4.2 Read Local Supported Commands Command

Command	OCF	Command Parameters	Return Parameters
HCI_ Read_Local_Supported_Commands	0x0002		Status, Supported Commands

Description:

This command reads the list of HCI commands supported for the local device.

This command will return the Supported Commands configuration parameter. It is implied that if a command is listed as supported, the feature underlying that command is also supported.

See Section 6.26 on page 395 for more information.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0	Read Local Supported Commands command succeeded
0x01-0xff	Read Local Supported Commands command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Supported Commands:

Size: 64 Octets

Value	Parameter Description
	Bit mask for each HCI Command. If a bit is 1, the radio supports the corre- sponding command and the features required for the command. Unsup- ported or undefined commands shall be set to 0.
	See Section 6.26, "Supported Commands," on page 395.

Event(s) generated (unless masked away):

When the Read Local Supported Commands command has completed a Command Complete event will be generated.

😵 Bluetooth°

7.4.3 Read Local Supported Features Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Local_Supported_Features	0x0003		Status, LMP_Features

Description:

This command requests a list of the supported features for the local device. This command will return a list of the LMP features. For details see "Link Manager Protocol" on page 211 [Part C].

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Local_Supported_Features command succeeded.
0x01-0xFF	Read_Local_Supported_Features command failed. See "Error Codes" on page 319 [Part D]

LMP_Features:

Size: 8 Octets

Value	Parameter Description
0xXXXXXXXXX XXXXXXXXX	Bit Mask List of LMP features. For details see "Link Manager Protocol" on page 211 [Part C]

Event(s) generated (unless masked away):

When the Read_Local_Supported_Features command has completed, a Command Complete event will be generated.

7.4.4 Read Local Extended Features Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Local_ Extended_Features	0x0004	Page number	Status, Page number, Maximum Page Number, Extended_LMP_Features

Description:

The HCI_Read_Local_Extended_Features command returns the requested page of the extended LMP features.

Command Parameters:

Page Number:

Size: 1 Octet

Value	Parameter Description
0x00	Requests the normal LMP features as returned by HCI_Read_Local_Supported_Features
0x01-0xFF	Return the corresponding page of features

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	HCI_Read_Local_Extended_Features command succeeded
0x01-0xFF	HCI_Read_Local_Extended_Features command failed. See "Error Codes" on page 319 [Part D] for list of error codes

Page Number:

Size: 1 Octet

Value	Parameter Description
0x00	The normal LMP features as returned by HCI_Read_Local_Supported_Features
0x01-0xFF	The page number of the features returned

Maximum Page Number:

Value	Parameter Description
0x00-0xFF	The highest features page number which contains non-zero bits for the local device

BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol 3]

Host Controller Interface Functional Specification

😵 Bluetooth[®]

Extended_LMP_Features:

Size: 8 Octets

Value	Parameter Description
0xFFFFFFFFFFFFFFF	Bit map of requested page of LMP features. See LMP specification for details

Event(s) generated (unless masked away):

When the Controller receives the HCI_Read_Local_Extended_Features command the Controller sends the Command Complete command to the Host containing the requested information.

7.4.5 Read Buffer Size Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Buffer_Size	0x0005		Status,
			HC_ACL_Data_Packet_Length,
			HC_Synchronous_Data_Packet_ Length,
			HC_Total_Num_ACL_Data_Packets,
			HC_Total_Num_Synchronous_Data_ Packets

Description:

The Read_Buffer_Size command is used to read the maximum size of the data portion of HCI ACL and synchronous Data Packets sent from the Host to the Controller. The Host will segment the data to be transmitted from the Host to the Controller according to these sizes, so that the HCI Data Packets will contain data with up to these sizes. The Read_Buffer_Size command also returns the total number of HCI ACL and synchronous Data Packets that can be stored in the data buffers of the Controller. The Read_Buffer_Size command must be issued by the Host before it sends any data to the Controller.

The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets, which are transferred from the Host to the Controller to be broken up into baseband packets by the Link Manager. The HC_Synchronous_Data_Packet_Length return parameter is used to determine the maximum size of HCI synchronous Data Packets. Both the Host and the Controller must support command and event packets, where the data portion (excluding header) contained in the packets is 255 octets in size. The HC_Total_Num_ACL_Data_Packets return parameter contains the total number of HCI ACL Data Packets that can be stored in the data buffers of the Controller. The Host will determine how the buffers are to be divided between different Connection Handles. The HC_Total_Num_ Synchronous_Data_Packets return parameter gives the same information but for HCI synchronous Data Packets.

Note: the HC_ACL_Data_Packet_Length and HC_Synchronous_Data_ Packet_Length return parameters do not include the length of the HCI Data Packet header.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Size: 2 Octets

Value	Parameter Description		
0x00	Read_Buffer_Size command succeeded.		
0x01-0xFF	Read_Buffer_Size command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.		

HC ACL Data Packet Length:

Value **Parameter Description** 0xXXXX Maximum length (in octets) of the data portion of each HCI ACL Data Packet that the Controller is able to accept.

HC_Synchronous_Data_Packet_Length:

Value **Parameter Description** 0xXX Maximum length (in octets) of the data portion of each HCI Synchronous Data Packet that the Controller is able to accept.

HC_Total_Num_ACL_Data_Packets:

Value	Parameter Description
0xXXXX	Total number of HCI ACL Data Packets that can be stored in the data buffers of the Controller.

HC_Total_Num_Synchronous_Data_Packets:

Value **Parameter Description** 0xXXXX Total number of HCI Synchronous Data Packets that can be stored in the data buffers of the Controller.

Event(s) generated (unless masked away):

When the Read_Buffer_Size command has completed, a Command Complete event will be generated.

Size: 1 Octet

Size: 2 Octets

Size: 2 Octets

7.4.6 Read BD_ADDR Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_BD_ADDR	0x0009		Status, BD_ADDR

Description:

This command shall read the Bluetooth device address (BD_ADDR). See the "Baseband Specification" on page 55 [Part B] for details of how BD_ADDR is used.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_BD_ADDR command succeeded.
0x01-0xFF	Read_BD_ADDR command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR of the Device

Event(s) generated (unless masked away):

When the Read_BD_ADDR command has completed, a Command Complete event will be generated.

😵 Bluetooth°

7.5 STATUS PARAMETERS

The Controller modifies all status parameters. These parameters provide information about the current state of the Controller, Link Manager, and Baseband. The host device cannot modify any of these parameters other than to reset certain specific parameters. For the Status and baseband, the OGF is defined as 0x05.

7.5.1 Read Failed Contact Counter Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Failed_ Contact_Counter	0x0001	Connection_Handle	Status, Connection_Handle, Failed_Contact_Counter

Description:

This command will read the value for the Failed_Contact_Counter parameter for a particular connection to another device. The Connection_Handle must be a Connection_Handle for an ACL connection. See Section 6.17 on page 390.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	The Connection Handle for the Connection for which the Failed Contact Counter should be read.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Return Parameters:

Status:

Value	Parameter Description
0x00	Read_Failed_Contact_Counter command succeeded.
0x01-0xFF	Read_Failed_Contact_Counter command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

🚯 Bluetooth

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	The Connection Handle for the Connection for which the Failed Contact Counter has been read.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Failed_Contact_Counter:

Size: 2 Octets

Value	Parameter Description
0xXXXX	Number of consecutive failed contacts for a connection corresponding to the connection handle.

Event(s) generated (unless masked away):

When the Read_Failed_Contact_Counter command has completed, a Command Complete event will be generated.

😵 Bluetooth

7.5.2 Reset Failed Contact Counter Command

Command	OCF	Command Parameters	Return Parameters
HCI_Reset_Failed_ Contact_Counter	0x0002	Connection_Handle	Status, Connection_Handle

Description:

This command will reset the value for the Failed_Contact_Counter parameter for a particular connection to another device. The Connection_Handle must be a Connection_Handle for an ACL connection. See Section 6.17 on page 390.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the Connection for which the Failed Contact Counter should be reset.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Reset_Failed_Contact_Counter command succeeded.
0x01-0xFF	Reset_Failed_Contact_Counter command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	The Connection Handle for the Connection for which the Failed Contact Counter has been reset.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Event(s) generated (unless masked away):

When the Reset_Failed_Contact_Counter command has completed, a Command

Complete event will be generated.

7.5.3 Read Link Quality Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Link_Quality	0x0003	Connection_Handle	Status,
			Connection_Handle,
			Link_Quality

Description:

This command will return the value for the Link_Quality for the specified Connection Handle. The Connection_Handle must be a Connection_Handle for an ACL connection. This command will return a Link_Quality value from 0-255, which represents the quality of the link between two Bluetooth devices. The higher the value, the better the link quality is. Each Bluetooth module vendor will determine how to measure the link quality.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the connection for which link quality parame- ters are to be read.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Link_Quality command succeeded.
0x01-0xFF	Read_Link_Quality command failed.See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the connection for which the link quality parameter has been read.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

😵 Bluetooth°

Size: 1 Octet

Link_Quality:

Value	Parameter Description
0xXX	The current quality of the Link connection between the local device and the remote device specified by the Connection Handle Range: 0x00 – 0xFF The higher the value, the better the link quality is.

Event(s) generated (unless masked away):

When the Read_Link_Quality command has completed, a Command Complete event will be generated.

7.5.4 Read RSSI Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_RSSI	0x0005	Connection_Handle	Status, Connection_Handle, RSSI

Description:

This command will read the value for the difference between the measured Received Signal Strength Indication (RSSI) and the limits of the Golden Receive Power Range (see Radio Specification Section 4.1.6 on page 43) for a connection handle to another Bluetooth device. The Connection_Handle must be a Connection_Handle for an ACL connection. Any positive RSSI value returned by the Controller indicates how many dB the RSSI is above the upper limit, any negative value indicates how many dB the RSSI is below the lower limit. The value zero indicates that the RSSI is inside the Golden Receive Power Range. Note: how accurate the dB values will be depends on the Bluetooth hardware. The only requirements for the hardware are that the Bluetooth device is able to tell whether the RSSI is inside, above or below the Golden Device Power Range.

The RSSI measurement compares the received signal power with two threshold levels, which define the Golden Receive Power Range. The lower threshold level corresponds to a received power between -56 dBm and 6 dB above the actual sensitivity of the receiver. The upper threshold level is 20 dB above the lower threshold level to an accuracy of +/- 6 dB.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description		
0xXXXX	The Connection Handle for the Connection for which the RSSI is to be read.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Return Parameters:

Status:

Size:	1	Octet
-------	---	-------

Value	Parameter Description
0x00	Read_RSSI command succeeded.
0x01-0xFF	Read_RSSI command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the Connection for which the RSSI has been read.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

RSSI:

Size: 1 Octet

Value	Parameter Description
N = 0xXX	Size: 1 Octet (signed integer)
	Range: $-128 \le N \le 127$
	Units: dB

Event(s) generated (unless masked away):

When the Read_RSSI command has completed, a Command Complete event will be generated.

移 Bluetooth

7.5.5 Read AFH Channel Map Command

Command	OCF	Command Parameters	Return Parameters
Read_AFH _Channel_Map	0x0006	Connection_Handle	Status, Connection_Handle, AFH_Mode, AFH_Channel_Map

Description:

This command will return the values for the AFH_Mode and AFH_Channel_Map for the specified Connection Handle. The Connection_Handle must be a Connection_Handle for an ACL connection.

The returned values indicate the state of the hop sequence specified by the most recent LMP_Set_AFH message for the specified Connection_Handle, regardless of whether the master has received the baseband ACK or whether the AFH_Instant has passed.

This command shall be supported by a device that declares support for either the AFH_capable_slave or AFH_capable_master feature.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the Connection for which the Channel Map is to be read.
	Range: 0x0000-0x0EFF (0x0F00-0x0FFF Reserved for future use)

Return Parameters:

Status:

Value	Parameter Description
0x00	Read_AFH_Channel_Map command succeeded.
0x01-0xFF	Read_AFH_Channel_Map command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

😵 Bluetooth

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the Connection for which the Channel Map is to be read.
	Range: 0x0000-0x0EFF (0x0F00-0x0FFF Reserved for future use)

AFH_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	AFH disabled.
0x01	AFH enabled.
0x02-0xFF	Reserved for future use.

AFH_Channel_Map:

Size: 10 Octets (79 Bits meaningful)

Value	Parameter Description
0xXXXXXXXX XXXXXXXXX XXX	If AFH_Mode is AFH enabled then this parameter contains 79 1-bit fields, otherwise the contents are reserved.
	The <i>nth</i> such field (in the range 0 to 78) contains the value for channel <i>n</i> :
	Channel <i>n</i> is unused = 0
	Channel <i>n</i> is used = 1
	Range: 0x00000000000000000000000000000000000

Event(s) generated (unless masked away):

When the Read_AFH_Channel_Map command has completed, a Command Complete event will be generated.

7.5.6 Read Clock Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Clock	0x0007	Connection_Handle Which_Clock	Status, Connection_Handle, Clock, Accuracy

Description:

This command will read the estimate of the value of the Bluetooth Clock.

If the Which_Clock value is 0, then the Connection_Handle shall be ignored, and the local Bluetooth Clock value shall be returned, and the accuracy parameter shall be set to 0.

If the Which_Clock value is 1, then the Connection_Handle must be a valid ACL connection handle. If the current role of this ACL connection is Master, then the Bluetooth Clock of this device shall be returned. If the current role is Slave, then an estimate of the Bluetooth Clock of the remote master and the accuracy of this value shall be returned.

The accuracy reflects the clock drift that might have occurred since the slave last received a valid transmission from the master.

Note: The Bluetooth Clock has a minimum accuracy of 250ppm, or about 22 seconds drift in one day.

Note: See Baseband Specification, Section 1.1, on page 64 for more information about the Bluetooth Clock.

Command Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify which connection to be used for reading the masters Bluetooth Clock.
	Range: 0x0000-0x0EFF (0x0F00 – 0x0FFF Reserved for future use)

Which_Clock:

Value	Parameter Description
0xXX	0x00 = Local Clock (Connection Handle does not have to be a valid handle)
	0x01 = Piconet Clock (Connection Handle shall be a valid ACL Handle)
	0x02 to 0xFF = Reserved

Return Parameters:

Status:

Status:	Size: 1 Octet
Value	Parameter Description
0x00	Read_BD_CLOCK command succeeded.
0x01 – 0xFF	Read_BD_CLOCK command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The Connection Handle for the Connection for which the master clock has been read. If the Which_Clock was 0, then the Connection_Handle shall be set to 0 and ignored upon receipt
	Range: 0x0000-0x0EFF (0x0F00 – 0x0FFF Reserved for future use)

Clock:

Size: 4 Octets (28 bits meaningful)

1	Malua]
	Value	Parameter Description	
	0xXXXXXXXX	Bluetooth Clock of the device requested.	

Accuracy:

Size: 2 Octets

Value	Parameter Description
0xXXXX	+/- maximum Bluetooth Clock error. Value of 0xFFFF means Unknown.
	Accuracy = +/- N * 0.3125 msec (1 Bluetooth Clock)
	Range for N: 0x0000 - 0xFFFE
	Time Range for N: 0 - 20479.375 msec

Event(s) generated (unless masked away):

When the Read_Clock command has completed, a Command Complete event will be generated.

7.6 TESTING COMMANDS

The Testing commands are used to provide the ability to test various functionalities of the Bluetooth hardware. These commands provide the ability to arrange various conditions for testing. For the Testing Commands, the OGF is defined as 0x06.

7.6.1 Read Loopback Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Read_Loopback_Mode	0x0001		Status, Loopback_Mode

Description:

This command will read the value for the setting of the Controller's Loopback Mode. The setting of the Loopback Mode will determine the path of information. In Non-testing Mode operation, the Loopback Mode is set to Non-testing Mode and the path of the information is as specified by the Bluetooth specifications. In Local Loopback Mode, every Data Packet (ACL, SCO and eSCO) and Command Packet that is sent from the Host to the Controller is sent back with no modifications by the Controller, as shown in Figure 7.1 on page 560.]For details of loopback modes see Section 7.6.2 on page 559.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Loopback_Mode command succeeded.
0x01-0xFF	Read_Loopback_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Loopback_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	No Loopback mode enabled. Default.
0x01	Enable Local Loopback.
0x02	Enable Remote Loopback.
0x03-0xFF	Reserved for Future Use.

Event(s) generated (unless masked away):

When the Read_Loopback_Mode command has completed, a Command Complete event will be generated.

7.6.2 Write Loopback Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Write_Loopback_Mode	0x0002	Loopback_Mode	Status

Description:

This command will write the value for the setting of the Controller's Loopback Mode. The setting of the Loopback Mode will determine the path of information. In Non-testing Mode operation, the Loopback Mode is set to Non-testing Mode and the path of the information as specified by the Bluetooth specifications. In Local Loopback Mode, every Data Packet (ACL, SCO and eSCO) and Command Packet that is sent from the Host to the Controller is sent back with no modifications by the Controller, as shown in Figure 7.1 on page 560.

When the Bluetooth Host Controller enters Local Loopback Mode, it shall respond with one to four connection handles, one for an ACL connection and zero to three for synchronous connections. The Host should use these connection handles when sending data in Local Loopback Mode. The number of connection handles returned for synchronous connections (between zero and three) is implementation specific. When in Local Loopback Mode, the Controller loops back commands and data to the Host. The Loopback Command event is used to loop back commands that the Host sends to the Controller.

There are some commands that are not looped back in Local Loopback Mode: Reset, Set_Controller_To_Host_Flow_Control, Host_Buffer_Size, Host_ Number_Of_Completed_Packets, Read_Buffer_Size, Read_Loopback_Mode and Write_Loopback_Mode. These commands should be executed in the way they are normally executed. The commands Reset and Write_Loopback_Mode can be used to exit local loopback mode.

If Write_Loopback_Mode is used to exit Local Loopback Mode, Disconnection Complete events corresponding to the Connection Complete events that were sent when entering Local Loopback Mode should be sent to the Host. Furthermore, no connections are allowed in Local Loopback mode. If there is a connection, and there is an attempt to set the device to Local Loopback Mode, the attempt will be refused. When the device is in Local Loopback Mode, the Controller will refuse incoming connection attempts. This allows the Host Controller Transport Layer to be tested without any other variables.

If a device is set to Remote Loopback Mode, it will send back all data (ACL, SCO and eSCO) that comes over the air. It will only allow a maximum of one ACL connection and three synchronous connections, and these shall all be to the same remote device. If there are existing connections to a remote device and there is an attempt to set the local device to Remote Loopback Mode, the attempt shall be refused.

See Figure 7.2 on page 560, where the rightmost device is set to Remote Loopback Mode and the leftmost device is set to Non-testing Mode. This allows the Bluetooth Air link to be tested without any other variables.

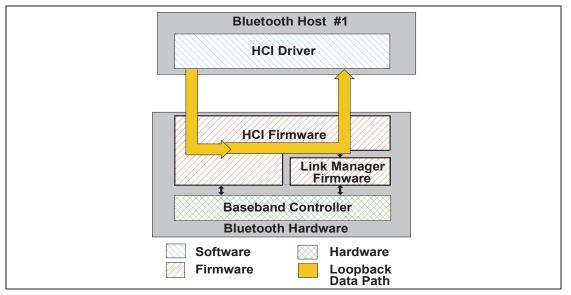


Figure 7.1: Local Loopback Mode

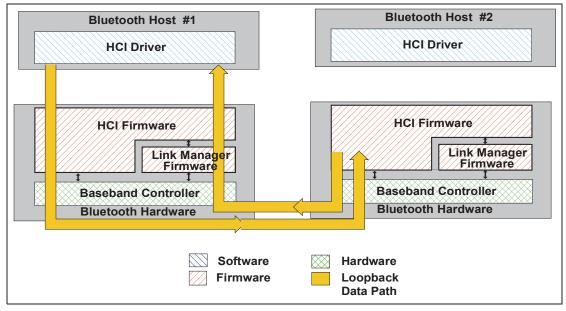


Figure 7.2: Remote Loopback Mode

Command Parameters:

Loopback_Mode:

Value	Parameter Description
0x00	No Loopback mode enabled. Default.
0x01	Enable Local Loopback.
0x02	Enable Remote Loopback.
0x03-0xFF	Reserved for Future Use.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Write_Loopback_Mode command succeeded.	
0x01-0xFF	Write_Loopback_Mode command failed. See "Error Codes" on page 31 [Part D] for list of Error Codes.	

Event(s) generated (unless masked away):

When the Write_Loopback_Mode command has completed, a Command Complete event will be generated.

561

😵 Bluetooth

7.6.3 Enable Device Under Test Mode Command

Command	OCF	Command Parameters	Return Parameters
HCI_Enable_Device_Under_ Test_Mode	0x0003		Status

Description:

The Enable_Device_Under_Test_Mode command will allow the local Bluetooth module to enter test mode via LMP test commands. For details see "Link Manager Protocol" on page 211 [Part C]. The Host issues this command when it wants the local device to be the DUT for the Testing scenarios as described in the "Test Methodology" on page 231[vol. 4]. When the Controller receives this command, it will complete the command with a Command Complete event. The Controller functions as normal until the remote tester issues the LMP test command to place the local device into Device Under Test mode. To disable and exit the Device Under Test Mode, the Host can issue the HCI_Reset command. This command prevents remote Bluetooth devices from causing the local Bluetooth device to enter test mode without first issuing this command.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Enter_Device_Under_Test_Mode command succeeded.
0x01-0xFF	Enter_Device_Under_Test_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Enter_Device_Under_Test_Mode command has completed, a Command Complete event will be generated.

🚯 Bluetooth°

Host Controller Interface Functional Specification

7.7 EVENTS

7.7.1 Inquiry Complete Event

Event	Event Code	Event Parameters
Inquiry Complete	0x01	Status

Description:

The Inquiry Complete event indicates that the Inquiry is finished. This event contains a status parameter, which is used to indicate if the Inquiry completed successfully or if the Inquiry was not completed.

Event Parameters:

Status:

Value	Parameter Description
0x00	Inquiry command completed successfully.
0x01-0xFF	Inquiry command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

😵 Bluetooth

7.7.2 Inquiry Result Event

Event	Event Code	Event Parameters
Inquiry Result	0x02	Num_Responses,
		BD_ADDR[i],
		Page_Scan_Repetition_Mode[i],
		Reserved[i],
		Reserved[i],
		Class_of_Device[i]
		Clock_Offset[i]

Description:

The Inquiry Result event indicates that a Bluetooth device or multiple Bluetooth devices have responded so far during the current Inquiry process. This event will be sent from the Controller to the Host as soon as an Inquiry Response from a remote device is received if the remote device supports only mandatory paging scheme. The Controller may queue these Inquiry Responses and send multiple Bluetooth devices information in one Inquiry Result event. The event can be used to return one or more Inquiry responses in one event.

Event Parameters:

Num_Responses:

Size: 1 Octet

Value	Parameter Description	
0xXX	Number of responses from the Inquiry.	

BD_ADDR[i]:

Size: 6 Octets * Num_Responses

Value	Parameter Description
0xXXXXXXXXXXX XX	BD_ADDR for each device which responded.

Page_Scan_Repetition_Mode[i]:

🛞 Bluetooth

Value	Parameter Description
0x00	R0
0x01	R1
0x02	R2
0x03 – 0xFF	Reserved

Reserved[i]: ¹

Size: 1 Octet * Num_Responses

Value	Parameter Description
0xXX	Reserved.

Reserved[i]: ²

Size: 1 Octet * Num_Responses

Value	Parameter Description
0xXX	Reserved, must be set to 0x00.

Class_of_Device[i]:

Size: 3 Octets * Num_Responses

Value	Parameter Description
0xXXXXXX	Class of Device for the device

Clock_Offset[i]:

Size: 2 Octets * Num_Responses

Bit format	Parameter Description
Bit 14-0	Bit 16-2 of CLKslave-CLKmaster.
Bit 15	Reserved

^{1.} This was the Page_Scan_Period_Mode parameter in the v1.1 specification. This parameter has no meaning in v1.2 and no default value.

^{2.} This was the Page_Scan_Mode parameter in the v1.1 specification.

😵 Bluetooth

Host Controller Interface Functional Specification

7.7.3 Connection Complete Event

Event	Event Code	Event Parameters
Connection Complete	0x03	Status,
		Connection_Handle,
		BD_ADDR,
		Link_Type,
		Encryption_Mode

Description:

The Connection Complete event indicates to both of the Hosts forming the connection that a new connection has been established. This event also indicates to the Host, which issued the Create Connection, or Accept_Connection_ Request or Reject_Connection_Request command and then received a Command Status event, if the issued command failed or was successful.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Connection successfully completed.
0x01-0xFF	Connection failed to Complete. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify a connection between two Blue- tooth devices. The Connection Handle is used as an identifier for transmit- ting and receiving voice or data. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the other connected Device forming the connection.

Link_Type:

Value	Parameter Description
0x00	SCO connection.
0x01	ACL connection (Data Channels).
0x02-0xFF	Reserved for future use.

Size: 1 Octet

Encryption_Mode:

		0,20: 1 00,00	
	Value	Parameter Description	
	See Section 6.16 on page 389.		

7.7.4 Connection Request Event

Event	Event Code	Event Parameters
Connection Request	0x04	BD_ADDR, Class_of_Device, Link_Type

Description:

The Connection Request event is used to indicate that a new incoming connection is trying to be established. The connection may either be accepted or rejected. If this event is masked away and there is an incoming connection attempt and the Controller is not set to auto-accept this connection attempt, the Controller will automatically refuse the connection attempt. When the Host receives this event and the link type parameter is ACL, it should respond with either an Accept Connection Request or Reject Connection Request command before the timer Conn Accept Timeout expires. If the link type is SCO or eSCO, the Host should reply with the Accept Synchronous Connection Request or the Reject Synchronous Connection Request Command. If the link type is SCO, the host may respond with Accept Connection Request. If the Event is responded to with Accept Connection Request, then the default parameter settings of the Accept Synchronous Connection Request (see Section 7.1.27 on page 442) should be used by the local LM when negotiating the SCO or eSCO link parameters. In that case, the Connection Complete Event and not the Synchronous Connection Complete Event, shall be returned on completion of the connection.

Event Parameters:

BD	ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR of the device that requests the connection.

Class_of_Device:

😵 Bluetooth°

Size: 3 Octets

Value	Parameter Description
0xXXXXXX	Class of Device for the device, which requests the connection.
0x000000	Unknown Class of Device

Link_Type:

Value	Parameter Description
0x00	SCO Connection requested
0x01	ACL Connection requested
0x02	eSCO Connection requested
0x03-0xFF	Reserved for Future Use.

7.7.5 Disconnection Complete Event

Event	Event Code	Event Parameters
Disconnection Complete	0x05	Status,
		Connection_Handle, Reason

Description:

The Disconnection Complete event occurs when a connection is terminated. The status parameter indicates if the disconnection was successful or not. The reason parameter indicates the reason for the disconnection if the disconnection was successful. If the disconnection was not successful, the value of the reason parameter can be ignored by the Host. For example, this can be the case if the Host has issued the Disconnect command and there was a parameter error, or the command was not presently allowed, or a connection handle that didn't correspond to a connection was given.

Note: When a physical link fails, one Disconnection Complete event will be returned for each logical channel on the physical link with the corresponding Connection handle as a parameter.

Event Parameters:

Status: Size: 1	
Value	Parameter Description
0x00	Disconnection has occurred.
0x01-0xFF	Disconnection failed to complete. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle which was disconnected.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Reason:

Size: 1 Octet

Value	Parameter Description
0xXX	Reason for disconnection. See "Error Codes" on page 319 [Part D] for error codes and description.

04-4

😵 Bluetooth

7.7.6 Authentication Complete Event

Event	Event Code	Event Parameters
Authentication Complete	0x06	Status, Connection_Handle

Description:

The Authentication Complete event occurs when authentication has been completed for the specified connection. The Connection_Handle must be a Connection_Handle for an ACL connection.

Event Parameters:

Status:	Size: 1 Octet
Value	Parameter Description
0x00	Authentication Request successfully completed.
0x01-0xFF	Authentication Request failed to complete. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle for which Authentication has been performed.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

7.7.7 Remote Name Request Complete Event

Event	Event Code	Event Parameters
Remote Name Request Complete	0x07	Status,
		BD_ADDR, Remote_Name

Description:

The Remote Name Request Complete event is used to indicate that a remote name request has been completed. The Remote_Name event parameter is a UTF-8 encoded string with up to 248 octets in length. The Remote_Name event parameter will be null-terminated (0x00) if the UTF-8 encoded string is less than 248 octets. The BD_ADDR event parameter is used to identify which device the user-friendly name was obtained from.

Note: the Remote_Name Parameter is a string parameter. Endianess does therefore not apply to the Remote_Name Parameter. The first octet of the name is received first.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Remote_Name_Request command succeeded.
0x01-0xFF	Remote_Name_Request command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXXX	BD_ADDR for the device whose name was requested.

Remote_Name:

Size: 248 Octets

Value	Parameter Description
Name[248]	A UTF-8 encoded user-friendly descriptive name for the remote device.
	If the name contained in the parameter is shorter than 248 octets, the end of the name is indicated by a NULL octet (0x00), and the following octets (to fill up 248 octets, which is the length of the parameter) do not have valid values.

Bluetooth

Host Controller Interface Functional Specification

7.7.8 Encryption Change Event

Event	Event Code	Event Parameters
Encryption Change	0x08	Status, Connection Handle,
		Encryption_Enable

Description:

The Encryption Change event is used to indicate that the change in the encryption has been completed for the Connection Handle specified by the Connection_Handle event parameter. The Connection_Handle will be a Connection_Handle for an ACL connection. The Encryption_Enable event parameter specifies the new Encryption Enable for the Connection Handle specified by the Connection_Handle event parameter. This event will occur on both devices to notify the Hosts when Encryption has changed for the specified Connection Handle between two devices.

Event Parameters:

 Status:
 Size: 1 Octet

 Value
 Parameter Description

 0x00
 Encryption Change has occurred.

 0x01-0xFF
 Encryption Change failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle for which the link layer encryption has been enabled/ disabled for all Connection Handles with the same Bluetooth device end- point as the specified Connection Handle.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Encryption_Enable:

Value	Parameter Description
0x00	Link Level Encryption is OFF.
0x01	Link Level Encryption is ON.

7.7.9 Change Connection Link Key Complete Event

Event	Event Code	Event Parameters
Change Connection Link Key Complete	0x09	Status, Connection_Handle

Description:

The Change Connection Link Key Complete event is used to indicate that the change in the Link Key for the Connection Handle specified by the Connection_Handle event parameter has been completed. The Connection_Handle will be a Connection_Handle for an ACL connection. The Change Connection Link Key Complete event is sent only to the Host which issued the Change_Connection_Link_Key command.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Change_Connection_Link_Key command succeeded.
0x01-0xFF	Change_Connection_Link_Key command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value I	Parameter Description
t	Connection Handle which the Link Key has been change for all Connec- tion Handles with the same Bluetooth device end point as the specified Connection Handle. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Bluetooth

7.7.10 Master Link Key Complete Event

Event	Event Code	Event Parameters
Master Link Key Complete	0x0A	Status,
		Connection_Handle, Key_Flag

Description:

The Master Link Key Complete event is used to indicate that the Link Key managed by the master of the piconet has been changed. The Connection_Handle will be a Connection Handle for an ACL connection. The link key used for the connection will be the temporary link key of the master device or the semipermanent link key indicated by the Key_Flag. The Key_Flag event parameter is used to indicate which Link Key (temporary link key of the Master, or the semi-permanent link keys) is now being used in the piconet. Note: for a master, the change from a semi-permanent Link Key to temporary Link Key will affect all Connection Handles related to the piconet. For a slave, this change affects only this particular connection handle. A temporary link key

must be used when both broadcast and point-to-point traffic shall be encrypted.

Event Parameters:

Status:

Value	Parameter Description
0x00	Master_Link_Key command succeeded.
0x01-0xFF	Master_Link_Key command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle for which the Link Key has been changed for all devices in the same piconet.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Key_Flag:

Size: 1 Octet

Value	Parameter Description
0x00	Using Semi-permanent Link Key.
0x01	Using Temporary Link Key.

7.7.11 Read Remote Supported Features Complete Event

Event	Event Code	Event Parameters
Read Remote Supported	0x0B	Status,
Features Complete		Connection_Handle, LMP_Features

Description:

The Read Remote Supported Features Complete event is used to indicate the completion of the process of the Link Manager obtaining the supported features of the remote Bluetooth device specified by the Connection_Handle event parameter. The Connection_Handle will be a Connection_Handle for an ACL connection. The event parameters include a list of LMP features. For details see "Link Manager Protocol" on page 211[vol. 3].

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Read_Remote_Supported_Features command succeeded.	
0x01-0xFF	Read_Remote_Supported_Features command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle which is used for the Read_Remote_Supported_Features command.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

LMP_Features:

Size: 8 Octets

Value	Parameter Description
0xXXXXXXXXX XXXXXXXXX	Bit Mask List of LMP features. See "Link Manager Protocol" on page 211 [Part C].

😵 Bluetooth

7.7.12 Read Remote Version Information Complete Event

Event	Event Code	Event Parameters
Read Remote Version Information	0x0C	Status,
Complete		Connection_Handle,
		LMP_Version,
		Manufacturer_Name,
		LMP_Subversion

Description:

The Read Remote Version Information Complete event is used to indicate the completion of the process of the Link Manager obtaining the version information of the remote Bluetooth device specified by the Connection_Handle event parameter. The Connection_Handle will be a Connection_Handle for an ACL connection. The LMP_Version event parameter defines the specification version of the Bluetooth device. The Manufacturer_Name event parameter indicates the manufacturer of the remote Bluetooth device. The LMP_Subversion event parameter defines the various revisions that each version of the Bluetooth hardware will go through as design processes change and errors are fixed. This allows the software to determine what Bluetooth hardware is being used and, if necessary, to work around various bugs in the hardware.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Read_Remote_Version_Information command succeeded.	
0x01-0xFF	Read_Remote_Version_Information command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle which is used for the Read_Remote_Version_Information command.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

LMP_Version:

Value	Parameter Description
0xXX	Version of the Current LMP in the remote Bluetooth device. For LMP_Version information see https://www.bluetooth.org/foundry/assign- numb/document/assigned_numbers

Manufacturer_Name:

Size: 2 Octets

Value	Parameter Description
0xXXXX	Manufacturer Name of the remote Bluetooth device, see Table 5.2 on page 303 in the Link Manager Protocol for assigned val- ues (CompId).

LMP_Subversion:

Size: 2 Octets

Value	Parameter Description
0xXXXX	Subversion of the Current LMP in the remote Bluetooth device, see Table 5.2 on page 303 in the Link Manager Protocol for assigned values (Sub-VersNr).

7.7.13 QoS Setup Complete Event

Event	Event Code	Event Parameters
QoS Setup Complete	0x0D	Status,
		Connection_Handle,
		Flags,
		Service_Type,
		Token_Rate,
		Peak_Bandwidth,
		Latency,
		Delay_Variation

Description:

The QoS Setup Complete event is used to indicate the completion of the process of the Link Manager setting up QoS with the remote Bluetooth device specified by the Connection Handle event parameter. The Connection Handle will be a Connection Handle for an ACL connection. For more detail see "Logical Link Control and Adaptation Protocol Specification" on page 15[vol. 4].

Size: 1 Octet

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	QoS_Setup command succeeded.
0x01-0xFF	QoS_Setup command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle which is used for the QoS_Setup command.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

Flags:

Size: 1 Octet

Size: 1 Octet

Value	Parameter Description
0x00 – 0xFF	Reserved for Future Use.

Service_Type:

ValueParameter Description0x00No Traffic Available.0x01Best Effort Available.0x02Guaranteed Available.0x03-0xFFReserved for Future Use.

Token_Rate:

 Value
 Parameter Description

 0xXXXXXXX
 Available Token Rate, in octets per second.

Peak_Bandwidth:

Size: 4 Octets

Size: 4 Octets

Value	Parameter Description
0xXXXXXXXX Available Peak Bandwidth, in octets per second.	

Latency:

Size: 4 Octets

Value	Parameter Description	
0xXXXXXXXX	Available Latency, in microseconds.	

Delay_Variation:

Value	Parameter Description
0xXXXXXXXX	Available Delay Variation, in microseconds.

7.7.14 Command Complete Event

Event	Event Code	Event Parameters
Command Complete	0x0E	Num_HCI_Command_Packets,
		Command_Opcode, Return_Parameters

Description:

The Command Complete event is used by the Controller for most commands to transmit return status of a command and the other event parameters that are specified for the issued HCI command.

The Num_HCI_Command_Packets event parameter allows the Controller to indicate the number of HCI command packets the Host can send to the Controller. If the Controller requires the Host to stop sending commands, the Num_HCI_Command_Packets event parameter will be set to zero. To indicate to the Host that the Controller is ready to receive HCI command_packets, the Controller generates a Command Complete event with the Command_Opcode 0x0000, and the Num_HCI_Command_Packets event parameter is set to 1 or more. Command_Opcode, 0x0000 is a NOP (No OPeration), and can be used to change the number of outstanding HCI command packets that the Host can send before waiting. See each command for the parameters that are returned by this event.

Event Parameters:

Num_HCI_Command_Packets:

Size: 1 Octet

Value	Parameter Description
N = 0xXX	The Number of HCI command packets which are allowed to be sent to the Controller from the Host. Range for N: 0 – 255

Command_Opcode:

Size: 2 Octets

Value	Parameter Description
0xXXXX	Opcode of the command which caused this event.

Return_Parameter(s):

Size: Depends on Command

Value	Parameter Description
0xXX	This is the return parameter(s) for the command specified in the Command_Opcode event parameter. See each command's definition for the list of return parameters associated with that command.

🚯 Bluetooth

Host Controller Interface Functional Specification

7.7.15 Command Status Event

Event	Event Code	Event Parameters
Command Status	0x0F	Status, Num_HCI_Command_Packets, Command_Opcode

Description:

The Command Status event is used to indicate that the command described by the Command Opcode parameter has been received, and that the Controller is currently performing the task for this command. This event is needed to provide mechanisms for asynchronous operation, which makes it possible to prevent the Host from waiting for a command to finish. If the command can not begin to execute (a parameter error may have occurred, or the command may currently not be allowed), the Status event parameter will contain the corresponding error code, and no complete event will follow since the command was not started. The Num HCI Command Packets event parameter allows the Controller to indicate the number of HCI command packets the Host can send to the Controller. If the Controller requires the Host to stop sending commands, the Num HCI Command Packets event parameter will be set to zero. To indicate to the Host that the Controller is ready to receive HCI command packets, the Controller generates a Command Status event with Status 0x00 and Command_Opcode 0x0000, and the Num_HCI_Command_Packets event parameter is set to 1 or more. Command Opcode, 0x0000 is a NOP (No OPeration) and can be used to change the number of outstanding HCI command packets that the Host can send before waiting.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Command currently in pending.	
0x01-0xFF	Command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.	

Num_HCI_Command_Packets:

Size: 1 Octet

Value	Parameter Description
N = 0xXX	The Number of HCI command packets which are allowed to be sent to the Controller from the Host. Range for N: 0 – 255

Command_Opcode:

Size: 2 Octets

Value	Parameter Description
0xXXXX	Opcode of the command which caused this event and is pending completion.

7.7.16 Hardware Error Event

Event	Event Code	Event Parameters
Hardware Error	0x10	Hardware_Code

Description:

The Hardware Error event is used to indicate some type of hardware failure for the Bluetooth device. This event is used to notify the Host that a hardware failure has occurred in the Bluetooth device.

Event Parameters:

Hardware_Code:

Size: 1 Octet

Value	Parameter Description
0x00-0xFF	These Hardware_Codes will be implementation-specific, and can be assigned to indicate various hardware problems.

7.7.17 Flush Occurred Event

Event	Event Code	Event Parameters
Flush Occurred	0x11	Connection_Handle

Description:

The Flush Occurred event is used to indicate that, for the specified Connection Handle, the current user data to be transmitted has been removed. The Connection_Handle will be a Connection_Handle for an ACL connection. This could result from the flush command, or be due to the automatic flush. Multiple blocks of an L2CAP packet could have been pending in the Controller. If one baseband packet part of an L2CAP packet is flushed, then the rest of the HCI data packets for the L2CAP packet must also be flushed.

Event Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle which was flushed.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

😵 Bluetooth

7.7.18 Role Change Event

Event	Event Code	Event Parameters
Role Change	0x12	Status,
		BD_ADDR, New_Role

Description:

The Role Change event is used to indicate that the current Bluetooth role related to the particular connection has changed. This event only occurs when both the remote and local Bluetooth devices have completed their role change for the Bluetooth device associated with the BD_ADDR event parameter. This event allows both affected Hosts to be notified when the Role has been changed.

Event Parameters:

Size: 1 Octet

Value	Parameter Description
0x00	Role change has occurred.
0x01-0xFF	Role change failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

BD_ADDR:

Status:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the Device for which a role change has completed.

New_Role:

Size: 1 Octet

Value	Parameter Description
0x00	Currently the Master for specified BD_ADDR.
0x01	Currently the Slave for specified BD_ADDR.

7.7.19 Number Of Completed Packets Event

Event	Event Code	Event Parameters
Number Of Completed Packets	0x13	Number_of_Handles,
		Connection_Handle[i],
		HC_Num_Of_Completed_Packets[i]

Description:

The Number Of Completed Packets event is used by the Controller to indicate to the Host how many HCI Data Packets have been completed (transmitted or flushed) for each Connection Handle since the previous Number Of Completed Packets event was sent to the Host. This means that the corresponding buffer space has been freed in the Controller. Based on this information, and the HC_Total_Num_ACL_Data_Packets and HC_Total_ Num_Synchronous_Data_Packets return parameter of the Read_Buffer_Size command, the Host can determine for which Connection Handles the following HCI Data Packets should be sent to the Controller. The Number Of Completed Packets event must not be sent before the corresponding Connection Complete event. While the Controller has HCI data packets in its buffer, it must keep sending the Number Of Completed Packets event to the Host at least periodically, until it finally reports that all the pending ACL Data Packets have been transmitted or flushed. The rate with which this event is sent is manufacturer specific.

Note that Number Of Completed Packets events will not report on synchronous connection handles if synchronous Flow Control is disabled. (See Read/ Write_Synchronous_Flow_Control_Enable on page 513 and page 514.)

Event Parameters:

Number_of_Handles:

Size: 1 Octet

Value	Parameter Description
0xXX	The number of Connection Handles and Num_HCI_Data_Packets parameters pairs contained in this event. Range: 0-255

Connection_Handle[i]: Size: Number_of_Handles * 2 Octets(12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

😵 Bluetooth®

HC_Num_Of_Completed_Packets [i]: Size: Number_of_Handles * 2 Octets

Value	Parameter Description
N = 0xXXXX	The number of HCI Data Packets that have been completed (transmitted or flushed) for the associated Connection Handle since the previous time the event was returned. Range for N: 0x0000-0xFFFF

7.7.20 Mode Change Event

Event	Event Code	Event Parameters
Mode Change	0x14	Status,
		Connection_Handle,
		Current_Mode,
		Interval

Description:

The Mode Change event is used to indicate when the device associated with the Connection Handle changes between Active mode, Hold mode, Sniff mode, and Park state. The Connection_Handle will be a Connection_Handle for an ACL connection. The Connection_Handle event parameter is used to indicate which connection the Mode Change event is for. The Current_Mode event parameter is used to indicate which state the connection is currently in. The Interval parameter is used to specify a time amount specific to each state. Each Controller that is associated with the Connection Handle which has changed Modes will send the Mode Change event to its Host.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	A Mode Change has occurred.
0x01-0xFF	Hold_Mode, Sniff_Mode, Exit_Sniff_Mode, Park_State, or Exit_Park_State command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets(12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Current_Mode:

Value	Parameter Description
0x00	Active Mode.
0x01	Hold Mode.
0x02	Sniff Mode.
0x03	Park State.
0x04-0xFF	Reserved for future use.

Interval:

Size: 2 Octets

Value	Parameter Description
$N = 0 \times X \times X$	Hold:
	Number of Baseband slots to wait in Hold Mode.
	Hold Interval = N * 0.625 msec (1 Baseband slot)
	Range for N: 0x0002-0xFFFE
	Time Range: 1.25 msec-40.9 sec
	Sniff: Number of Baseband slots between sniff intervals. Time between sniff intervals = 0.625 msec (1 Baseband slot)
	Range for N: 0x0002-0xFFFE Time Range: 1.25 msec-40.9 sec
	Park: Number of Baseband slots between consecutive beacons. Interval Length = N * 0.625 msec (1 Baseband slot) Range for N: 0x0002-0xFFFE Time Range: 1.25 msec-40.9 Seconds

😵 Bluetooth[°]

Size: 1 Octet

😵 Bluetooth

Host Controller Interface Functional Specification

7.7.21 Return Link Keys Event

Event	Event Code	Event Parameters
Return Link Keys	0x15	Num_Keys,
		BD_ADDR [i], Link_Key[i]

Description:

The Return Link Keys event is used by the Controller to send the Host one or more stored Link Keys. Zero or more instances of this event will occur after the Read_Stored_Link_Key command. When there are no link keys stored, no Return Link Keys events will be returned. When there are link keys stored, the number of link keys returned in each Return Link Keys event is implementation specific.

Event Parameters:

Num_Keys:

Size: 1 Octet

Value	Parameter Description	
0xXX Number of Link Keys contained in this event.		
	Range: 0x01 – 0x0B	

BD_ADDR [i]:

Size: 6 Octets * Num_Keys

Value	Parameter Description
0xXXXXXXXXXXXX	BD_ADDR for the associated Link Key.

Link_Key[i]:

Size:16 Octets * Num_Keys

Value	Parameter Description
0xXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX	Link Key for the associated BD_ADDR.

7.7.22 PIN Code Request Event

Event	Event Code	Event Parameters
PIN Code Request	0x16	BD_ADDR

Description:

The PIN Code Request event is used to indicate that a PIN code is required to create a new link key. The Host must respond using either the PIN Code Request Reply or the PIN Code Request Negative Reply command, depending on whether the Host can provide the Controller with a PIN code or not. Note: If the PIN Code Request event is masked away, then the Controller will assume that the Host has no PIN Code.

When the Controller generates a PIN Code Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create_Connection or Authentication_Requested command from the remote Host), the local Host must respond with either a PIN_Code_Request_Reply or PIN_Code_Request_Negative_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 211 [Part C].)

Event Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the Device which a new link key is being created for.

😵 Bluetooth

7.7.23 Link Key Request Event

Event	Event Code	Event Parameters
Link Key Request	0x17	BD_ADDR

Description:

The Link Key Request event is used to indicate that a Link Key is required for the connection with the device specified in BD_ADDR. If the Host has the requested stored Link Key, then the Host will pass the requested Key to the Controller using the Link_Key_Request_Reply Command. If the Host does not have the requested stored Link Key, then the Host will use the Link_Key_Request_Negative_Reply Command to indicate to the Controller that the Host does not have the requested stored have the requested key.

Note: If the Link Key Request event is masked away, then the Controller will assume that the Host has no additional link keys.

When the Controller generates a Link Key Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create_Connection or Authentication_Requested command from the remote Host), the local Host must respond with either a Link_Key_Request_Reply or Link_Key_Request_Negative_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 211 [Part C].)

Event Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the Device which a stored link key is being requested.

7.7.24 Link Key Notification Event

Event	Event Code	Event Parameters
Link Key Notification	0x18	BD_ADDR, Link_Key, Key_Type

Description:

The Link Key Notification event is used to indicate to the Host that a new Link Key has been created for the connection with the device specified in BD_ADDR. The Host can save this new Link Key in its own storage for future use. Also, the Host can decided to store the Link Key in the Controller's Link Key Storage by using the Write_Stored_Link_Key command. The Key_Type event parameter informs the Host about which key type (combination key, local unit key or remote unit key) that has been used during pairing. If pairing with unit key is not supported, the Host can for instance discard the key or disconnect the link.

Event Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the Device for which the new link key has been generated.

Link_Key:

Size: 16 Octets

Value	Parameter Description
0xXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX	Link Key for the associated BD_ADDR.

Key_Type:

Size: 1 Octets

Value	Parameter Description
0x00	Combination Key
0x01	Local Unit Key
0x02	Remote Unit Key
0x03-0xFF	Reserved

😵 Bluetooth°

7.7.25 Loopback Command Event

Event	Event Code	Event Parameters
Loopback Command	0x19	HCI_Command_Packet

Description:

When in Local Loopback mode, the Controller loops back commands and data to the Host. The Loopback Command event is used to loop back all commands that the Host sends to the Controller with some exceptions. See Section 7.6.1, "Read Loopback Mode Command," on page 558 for a description of which commands that are not looped back. The HCI_Command_Packet event parameter contains the entire HCI Command Packet including the header. Note: the event packet is limited to a maximum of 255 octets in the payload; since an HCI Command Packet has 3 octets of header data, only the first 252 octets of the command parameters will be returned.

Event Parameters:

HCI_Command_Packet:

Size: Depends on Command

Value	Parameter Description
0xXXXXXX	HCI Command Packet, including header.

7.7.26 Data Buffer Overflow Event

Event	Event Code	Event Parameters
Data Buffer Overflow	0x1A	Link_Type

Description:

This event is used to indicate that the Controller's data buffers have been overflowed. This can occur if the Host has sent more packets than allowed. The Link_Type parameter is used to indicate that the overflow was caused by ACL or synchronous data.

Event Parameters:

Link_Type:

Size: 1 Octet

Value	Parameter Description
0x00	Synchronous Buffer Overflow (Voice Channels).
0x01	ACL Buffer Overflow (Data Channels).
0x02-0xFF	Reserved for Future Use.

7.7.27 Max Slots Change Event

Event	Event Code	Event Parameters
Max Slots Change	0x1B	Connection_Handle, LMP_Max_Slots

Description:

This event is used to notify the Host about the LMP_Max_Slots parameter when the value of this parameter changes. It will be sent each time the maximum allowed length, in number of slots, for baseband packets transmitted by the local device, changes. The Connection_Handle will be a Connection_Handle for an ACL connection.

Event Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

LMP_Max_Slots:

Size: 1 octet

Value	Parameter Description
0x01, 0x03, 0x05	Maximum number of slots allowed to use for baseband packets, see Section 4.1.10 on page 247 and Section 5.2 on page 303 in "Link Man- ager Protocol" on page 211 [Part C].

😵 Bluetooth

Host Controller Interface Functional Specification

7.7.28 Read Clock Offset Complete Event

Event	Event Code	Event Parameters
Read Clock Offset Complete	0x1C	Status,
		Connection_Handle, Clock_Offset

Description:

The Read Clock Offset Complete event is used to indicate the completion of the process of the Link Manager obtaining the Clock Offset information of the Bluetooth device specified by the Connection_Handle event parameter. The Connection_Handle will be a Connection_Handle for an ACL connection.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Clock_Offset command succeeded.
0x01-0xFF	Read_Clock_Offset command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 bits meaningful)

Value	Parameter Description		
0xXXXX	Specifies which Connection Handle's Clock Offset parameter is returned.		
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)		

Clock_Offset:

Size: 2 Octets

Bit format	Parameter Description
Bit 14-0	Bit 16-2 of CLKslave-CLKmaster.
Bit 15	Reserved.

7.7.29 Connection Packet Type Changed Event

Event	Event Code	Event Parameters
Connection Packet Type Changed	0x1D	Status,
		Connection_Handle, Packet_Type

Description:

The Connection Packet Type Changed event is used to indicate that the process has completed of the Link Manager changing which packet types can be used for the connection. This allows current connections to be dynamically modified to support different types of user data. The Packet_Type event parameter specifies which packet types the Link Manager can use for the connection identified by the Connection_Handle event parameter for sending L2CAP data or voice. The Packet_Type event parameter does not decide which packet types the LM is allowed to use for sending LMP PDUs.

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Connection Packet Type changed successfully.
0x01-0xFF	Connection Packet Type Changed failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Bluetooth

Size: 2 Octets

Packet_	Туре:	
For ACL	_Link_	Туре

Value	Parameter Description
0x0001	Reserved for future use.
0x0002	2-DH1 may not be used.
0x0004	3-DH1 may not be used.
0x0008 ¹	DM1 may be used.
0x0010	DH1 may be used.
0x0020	Reserved for future use.
0x0040	Reserved for future use.
0x0080	Reserved for future use.
0x0100	2-DH3 may not be used.
0x0200	3-DH3 may not be used.
0x0400	DM3 may be used.
0x0800	DH3 may be used.
0x1000	2-DH5 may not be used.
0x2000	3-DH5 may not be used.
0x4000	DM5 may be used.
0x8000	DH5 may be used.

1. This bit will be interpreted as set to 1 by Bluetooth V1.2 or later controllers.

For SCO_Link_Type

Value	Parameter Description
0x0001	Reserved for future use.
0x0002	Reserved for future use.
0x0004	Reserved for future use.
0x0008	Reserved for future use.
0x0010	Reserved for future use.
0x0020	HV1
0x0040	HV2
0x0080	HV3
0x0100	Reserved for future use.
0x0200	Reserved for future use.

0x0400	Reserved for future use.
0x0800	Reserved for future use.
0x1000	Reserved for future use.
0x2000	Reserved for future use.
0x4000	Reserved for future use.
0x8000	Reserved for future use.

😵 Bluetooth°

7.7.30 QoS Violation Event

Event	Event Code	Event Parameters
QoS Violation	0x1E	Connection_Handle

Description:

The QoS Violation event is used to indicate the Link Manager is unable to provide the current QoS requirement for the Connection Handle. This event indicates that the Link Manager is unable to provide one or more of the agreed QoS parameters. The Host chooses what action should be done. The Host can reissue QoS_Setup command to renegotiate the QoS setting for Connection Handle. The Connection_Handle will be a Connection_Handle for an ACL connection.

Event Parameters:

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle that the LM is unable to provide the current QoS requested for.	
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)	

7.7.31 Page Scan Repetition Mode Change Event

Event	Event Code	Event Parameters
Page Scan Repetition Mode Change	0x20	BD_ADDR,
		Page_Scan_Repetition_Mode

Description:

The Page Scan Repetition Mode Change event indicates that the remote Bluetooth device with the specified BD_ADDR has successfully changed the Page_Scan_Repetition_Mode (SR).

Event Parameters:

BD_ADDR:

Size: 6 Octets

Value	Parameter Description
0xXXXXXXXX XXXX	BD_ADDR of the remote device.

Page_Scan_Repetition_Mode:

Size: 1 Octet

Value	Parameter Description
0x00	R0
0x01	R1
0x02	R2
0x03 – 0xFF	Reserved.

😵 Bluetooth

7.7.32 Flow Specification Complete Event

Event	Event Code	Event Parameters
HCI Flow Specification Complete	0x21	Status, Connection_Handle,
		Flags, Flow_direction,
		Service_Type, Token_Rate,
		Token_Bucket_Size,
		Peak_Bandwidth, Access Latency

Description:

The Flow Specification Complete event is used to inform the Host about the Quality of Service for the ACL connection the Controller is able to support. The Connection Handle will be a Connection Handle for an ACL connection. The flow parameters refer to the outgoing or incoming traffic of the ACL link, as indicated by the Flow direction field. The flow parameters are defined in the L2CAP specification "Quality of Service (QoS) Option" on page 60[vol. 4]. When the Status parameter indicates a successful completion, the flow parameters specify the agreed values by the Controller. When the Status parameter indicates a failed completion with the Error Code QoS Unacceptable Parameters (0x2C), the flow parameters specify the acceptable values of the Control-Ier. This enables the Host to continue the 'QoS negotiation' with a new HCI Flow Specification command with flow parameter values that are acceptable for the Controller. When the Status parameter indicates a failed completion with the Error Code QoS Rejected (0x2D), this indicates a request of the Controller to discontinue the 'QoS negotiation'. When the Status parameter indicates a failed completion, the flow parameter values of the most recently successful completion must be assumed (or the default values when there was no success completion).

Event Parameters:

Status:

Size: 1 Octet

Value	Parameter Description	
0x00	Flow Specification command succeeded	
0x01 – 0xFF	Flow Specification command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes	

page 599 of 814

Host Controller Interface Functional Specification

Connection_Handle:

😵 Bluetooth

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description	
0xXXXX	Connection Handle used to identify for which ACL connection the Flow is specified.	
	Range: 0x0000 - 0x0EFF (0x0F00 – 0x0FFF Reserved for future use)	

Flags:

Size: 1 Octet)

Value	Parameter Description
0x00 – 0xFF	Reserved for Future Use.

Flow_direction:

Size: 1 Octet

Size: 1 Octet

Size: 4 Octets

Size: 4 Octets

Size: 4 Octets

Value	Parameter Description	
0x00	Outgoing Flow i.e. traffic send over the ACL connection	
0x01	Incoming Flow i.e. traffic received over the ACL connection	
0x02 – 0xFF	Reserved for Future Use.	

Service_Type:

Value	Parameter Description
0x00	No Traffic
0x01	Best Effort
0x02	Guaranteed
0x03 – 0xFF	Reserved for Future Use

Token Rate:

Value	Parameter Description
0xXXXXXXXX Token Rate in octets per second	

Token Bucket Size:

Value	Parameter Description
0xXXXXXXXX	Token Bucket Size in octets

Peak_Bandwidth:

Value	Parameter Description	
0xXXXXXXXX	Peak Bandwidth in octets per second	

Access Latency:

Size: 4 Octets

Va	llue	Parameter Description	
0xXXXXXXX Access Latency in microseconds			

😵 Bluetooth

7.7.33 Inquiry Result with RSSI Event

Event	Event Code	Event Parameters
Inquiry Result with RSSI	0x22	Num_responses,
		BD_ADDR[i],
		Page_Scan_Repetition_Mode[i],
		Reserved[i],
		Class_of_Device[i],
		Clock_Offset[i],
		RSSI[i]

Description:

The Inquiry Result with RSSI event indicates that a Bluetooth device or multiple Bluetooth devices have responded so far during the current Inquiry process. This event will be sent from the Controller to the Host as soon as an Inquiry Response from a remote device is received if the remote device supports only mandatory paging scheme. This Controller may queue these Inquiry Responses and send multiple Bluetooth devices information in one Inquiry Result event. The event can be used to return one or more Inquiry responses in one event. The RSSI parameter is measured during the FHS packet returned by each responding slave.

This event shall only be generated if the Inquiry Mode parameter of the last Write_Inquiry_Mode command was set to 0x01 (Inquiry Result format with RSSI).

Event Parameters:

Num_Responses:

Size: 1 Octet

Value	Parameter Description	
0xXX	Number of responses from the Inquiry.	

BD_ADDR[i]:

Size: 6 Octets * Num_Responses

Value	Parameter Description
0xXXXXXXXXXXX XX	BD_ADDR for each device which responded.

Page_Scan_Repetition_Mode[i]:

🛞 Bluetooth

Value	Parameter Description
0x00	R0
0x01	R1
0x02	R2
0x03 – 0xFF	Reserved

Reserved[i]:1

Size: 1 Octet* Num_Responses

Value	Parameter Description
0xXX	Reserved.

Class_of_Device[i]:

Size: 3 Octets * Num_Responses

Value	Parameter Description
0xXXXXXX	Class of Device for the device

Clock_Offset[i]:

Size: 2 Octets * Num_Responses

Bit format	Parameter Description
Bit 14-0	Bit 16-2 of CLKslave-CLKmaster.
Bit 15	Reserved

RSSI[i]:

Size: 1 Octet * Num_Responses

Value	Parameter Description
0xXX	Range: -127 to +20 Units: dBm

HCI Commands and Events

^{1.} This was the Page_Scan_Period_Mode parameter in the v1.1 specification. This parameter has no meaning in v1.2 and no default value.

😵 Bluetooth

7.7.34 Read Remote Extended Features Complete Event

Event	Event Code	Event Parameters
Read Remote Extended Features Complete	0x23	Status, Connection_Handle, Page_Number, Maximum page number, Extended_LMP_Features

Description:

The Read Remote Extended Features Complete event is used to indicate the completion of the process of the Link Manager obtaining the remote extended LMP features of the remote device specified by the connection handle event parameter. The connection handle will be a connection handle for an ACL connection. The event parameters include a page of the remote devices extended LMP features. For details see "Link Manager Protocol" on page 211 [Part C].

Event Parameters:

Status:	Size: 1 Octet
Value	Parameter Description
0x00	Request for remote extended features succeeded
0x01-0xFF	Request for remote extended features failed – standard HCI error value

Connection_Handle:

Size: 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	The connection handle identifying the device to which the remote features apply. Range: 0x0000-0x0EFF (0x0F00-0x0FFF Reserved for future use)

Page Number:

Size: 1Octet

Value	Parameter Description
0x00	The normal LMP features as returned by HCI_Read_Remote_Supported_Features
0x01-0xFF	The page number of the features returned

Maximum Page Number:

Size: 10ctet

Value	Parameter Description
0x00-0xFF	The highest features page number which contains non-zero bits for the local device

Extended_LMP_Features:

Size: 8 Octets

Value	Parameter Description
0xFFFFFFFFFFFFFFFF	Bit map of requested page of LMP features. See LMP specification for details

7.7.35 Synchronous Connection Complete Event

Event	Event Code	Event Parameters
Synchronous Connection Complete	0x2C	Status, Connection_Handle, BD_ADDR, Link Type, Transmission_Interval, Retransmission Window, Rx_Packet_Length, Tx_Packet_Length Air Mode

Description:

The Synchronous Connection Complete event indicates to both the Hosts that a new Synchronous connection has been established. This event also indicates to the Host, which issued the Setup_Synchronous_Connection, or Accept_Synchronous_Connection_Request or

Reject_Synchronous_Connection_Request command and then received a Command Status event, if the issued command failed or was successful.

Event Parameters:

Status:

1 octet

Value	Parameter Description
0x00	Connection successfully completed.
0x01 –0xFF	Connection failed to complete.See "Error Codes" on page 319 [Part D] for error codes and description.

Connection_Handle:

2 octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify a connection between two Blue- tooth devices.
	Range: 0x0000-0x0EFF (0x0F00 – 0x0FFF Reserved for future use)

BD_ADDR:

6 octets

Value	Parameter Description
0xXXXXXXXXXXXXX	BD_ADDR of the other connected device forming the connection.

😵 Bluetooth

Size: 1 Octet

1 octets

1 octets

Link_	Туре:	

Value	Parameter Description
0x00	SCO Connection
0x01	Reserved
0x02	eSCO Connection
0x03 – 0xFF	Reserved

Transmission_Interval:

Value	Parameter Description
0xXX	Time between two consecutive eSCO instants measured in slots. Must be zero for SCO links.

Retransmission window:

Value Parameter Description 0xXX The size of the retransmission window measured in slots. Must be zero for SCO links.

Rx_Packet_Length:

Value Parameter Description 0xXXXX Length in bytes of the eSCO payload in the receive direction. Must be zero for SCO links.

Tx_Packet_Length:

2 octets

2 octets

Value	Parameter Description
0xXXXX	Length in bytes of the eSCO payload in the transmit direction. Must be zero for SCO links.

Air Mode:

Size: 1 Octet

Value	Parameter Description
0x00	μ-law log
0x01	A-law log
0x02	CVSD
0x03	Transparent Data
0x04 – 0xFF	Reserved

7.7.36 Synchronous Connection Changed event

Event	Event Code	Event Parameters
Synchronous Connection Changed	0x2D	Status, Connection_Handle, Transmission_Interval, Retransmission Window, Rx_Packet_Length, Tx_Packet_Length

Description:

The Synchronous Connection Changed event indicates to the Host that an existing Synchronous connection has been reconfigured. This event also indicates to the initiating Host (if the change was host initiated) if the issued command failed or was successful.

Command Parameters:

Status:

1 octet

Value	Parameter Description
0x00	Connection successfully reconfigured.
0x01 –0xFF	Reconfiguration failed to complete. See "Error Codes" on page 319 [Part D] for error codes and description.

Connection_Handle:

2 octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle to be used to identify a connection between two Bluetooth devices.
	Range: 0x0000-0x0EFF (0x0F00 – 0x0FFF Reserved for future use)

Transmission_Interval:

1 octet

1 octet

Value	Parameter Description
0xXX	Time between two consecutive SCO/eSCO instants measured in slots.

Retransmission window:

Value	Parameter Description
0xXX	The size of the retransmission window measured in slots. Must be zero for SCO links.

😵 Bluetooth[°]

Rx_Packet_Length:

Value	Parameter Description
0xXXXX	Length in bytes of the SCO/eSCO payload in the receive direction.

Tx_Packet_Length:

2 octets

2 octets

Value	Parameter Description
0xXXXX	Length in bytes of the SCO/eSCO payload in the transmit direction.

606

😵 Bluetooth[®]

8 LIST OF FIGURES

Figure 1.1:	Overview of the Lower Software Layers	339
Figure 1.2:	End to End Overview of Lower Software Layers to T 340	ransfer Data
Figure 5.1:	HCI Command Packet	
Figure 5.2:	HCI ACL Data Packet	375
Figure 5.3:	HCI Synchronous Data Packet	
Figure 5.4:	HCI Event Packet	
Figure 7.1:	Local Loopback Mode	556
Figure 7.2:	Remote Loopback Mode	556

🚯 Bluetooth°

Host Controller Interface Functional Specification

9 LIST OF TABLES

Table 3.1:	Overview of commands and events	
Table 3.2:	Generic events	
Table 3.3:	Controller flow control	345
Table 3.4:	Controller information	345
Table 3.5:	Controller configuration	346
Table 3.6:	Device discovery	
Table 3.7:	Connection setup	349
Table 3.8:	Remote information	351
Table 3.9:	Synchronous connections	352
Table 3.10:	Connection state	353
Table 3.11:	Piconet structure	354
Table 3.12:	Quality of service	355
Table 3.13:	Physical links	356
Table 3.14:	Controller flow control.	357
Table 3.15:	Link information	358
Table 3.16:	Authentication and encryption	359
Table 3.17:	Testing	
Table 3.18:	Alphabetical list of commands and events	

APPENDIX A: DEPRECATED COMMANDS, EVENTS AND CONFIGURATION PARAMETERS

Commands, events and configuration parameters in this section were in prior versions of the specification, but have been determined not to be required.

They may be implemented by a controller to allow for backwards compatibility with a host utilizing a prior version of the specification.

A host should not use these commands.

Contents:

Page Scan Mode	658
Read Page Scan Mode Command	659
Write Page Scan Mode Command	660
Read Country Code Command	661
Add SCO Connection Command	662

Page Scan Mode

The Page_Scan_Mode parameter indicates the page scan mode that is used for default page scan. Currently one mandatory page scan mode and three optional page scan modes are defined. Following an inquiry response, if the Baseband timer T_mandatory_pscan has not expired, the mandatory page scan mode must be applied. For details see the "Baseband Specification" on page 55 [Part B] (Keyword: Page-Scan-Mode, FHS-Packet, T_mandatory_pscan)

Value	Parameter Description
0x00	Mandatory Page Scan Mode
0x01	Optional Page Scan Mode I
0x02	Optional Page Scan Mode II
0x03	Optional Page Scan Mode III
0x04-0xFF	Reserved

Read Page Scan Mode Command

Command	OGF	OCF	Command Parameters	Return Parameters
HCI_Read_Page_Scan_Mode	0x03	0x003D		Status,
				Page_Scan_Mode

Description:

This command is used to read the default Page Scan Mode configuration parameter of the local Bluetooth device. See "Page Scan Mode" on page 612...

Command Parameters:

None

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Page_Scan_Mode command succeeded.
0x01-0xFF	Read_Page_Scan_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Page_Scan_Mode:

Size: 1 Octet

Value	Parameter Description
See Appendix A, "Page Scan Mode" on page 612.	

Event(s) generated (unless masked away):

When the Read_Page_Scan_Mode command has completed, a Command Complete event will be generated.

Write Page Scan Mode Command

OGF: 0x03 (Controller and baseband commands)

Command	OGF	OCF	Command Parameters	Return Parameters
HCI_Write_Page_Scan_Mode	0x03	0x003E	Page_Scan_Mode	Status

Description:

This command is used to write the default Page Scan Mode configuration parameter of the local Bluetooth device. See "Page Scan Mode" on page 612.

Command Parameters:

Page_Scan_Mode:

Size: 1 Octet

Value	Parameter Description	
See Appendix A, "Page Scan Mode" on page 612.		

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Write_Page_Scan_Mode command succeeded.
0x01-0xFF	Write_Page_Scan_Mode command failed. See "Error Codes" on page 319 [Part D] for list of Error Codes.

Event(s) generated (unless masked away):

When the Write_Page_Scan_Mode command has completed, a Command Complete event will be generated.

Read Country Code Command

Command	OGF	OCF	Command Parameters	Return Parameters
HCI_Read_Country_Code	0x05	0x0007		Status, Country_Code

Description:

This command will read the value for the Country_Code return parameter. The Country_Code defines which range of frequency band of the ISM 2.4 GHz band will be used by the device. Each country has local regulatory bodies regulating which ISM 2.4 GHz frequency ranges can be used.

Command Parameters:

None.

Return Parameters:

Status:

Size: 1 Octet

Value	Parameter Description
0x00	Read_Country_Code command succeeded.
0x01-0xFF	Read_Country_Code command failed. See "Error Codes" on page 319 [Part D] for error codes and description.

Country_Code:

Size: 1 Octet

Value	Parameter Description
0x00	North America & Europe* and Japan
0x01	France
0x04-FF	Reserved for Future Use.

*. Except France

Event(s) generated (unless masked away):

When the Read_Country_Code command has completed, a Command Complete event will be generated.

😵 Bluetooth

Add SCO Connection Command

Command	OGF	OCF	Command Parameters	Return Parameters
HCI_Add_SCO_Connection	0x01	0x0007	Connection_Handle, Packet_Type	

Description:

This command will cause the Link Manager to create a SCO connection using the ACL connection specified by the Connection_Handle command parameter. This command causes the local Bluetooth device to create a SCO connection. The Link Manager will determine how the new connection is established. This connection is determined by the current state of the device, its piconet, and the state of the device to be connected. The Packet_Type command parameter specifies which packet types the Link Manager should use for the connection. The Link Manager must only use the packet type(s) specified by the Packet_Type command parameter for sending HCI SCO Data Packets. Multiple packet types may be specified for the Packet_Type command parameter by performing a bitwise OR operation of the different packet types. The Link Manager may choose which packet type is to be used from the list of acceptable packet types. A Connection Handle for this connection is returned in the Connection Complete event (see below).

Note: An SCO connection can only be created when an ACL connection already exists and when it is not put in park. For a definition of the different packet types, see the "Baseband Specification" on page 55 [Part B].

Note: At least one packet type must be specified. The Host should enable as many packet types as possible for the Link Manager to perform efficiently. However, the Host must not enable packet types that the local device does not support.

Command Parameters:

Connection_Handle

Size 2 Octets (12 Bits meaningful)

Value	Parameter Description
0xXXXX	Connection Handle for the ACL connection being used to create an SCO connection.
	Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

Packet_Type:

Size: 2 Octets

Value	Parameter Description
0x0001	Reserved for future use.
0x0002	Reserved for future use.
0x0004	Reserved for future use.
0x0008	Reserved for future use.
0x0010	Reserved for future use.
0x0020	HV1
0x0040	HV2
0x0080	HV3
0x0100	Reserved for future use.
0x0200	Reserved for future use.
0x0400	Reserved for future use.
0x0800	Reserved for future use.
0x1000	Reserved for future use.
0x2000	Reserved for future use.
0x4000	Reserved for future use.
0x8000	Reserved for future use.

Return Parameters:

None.

Event(s) generated (unless masked away):

When the Controller receives the Add_SCO_Connection command, it sends the Command Status event to the Host. In addition, when the LM determines the connection is established, the local Controller will send a Connection Complete event to its Host, and the remote Controller will send a Connection Complete event or a Synchronous Connection Complete event to the Host. The Connection Complete event contains the Connection Handle if this command is successful.

Note: no Command Complete event will be sent by the Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

😵 Bluetooth[®]

Size: 1 Octet

Page Scan Mode Change Event

Event	Event Code	Event Parameters
Page Scan Mode Change	0x1F	BD_ADDR, Page_Scan_Mode

Description:

The Page Scan Mode Change event indicates that the connected remote Bluetooth device with the specified BD_ADDR has successfully changed the Page_Scan_Mode.

Event Parameters:

 BD_ADDR:
 Size: 6 Octets

 Value
 Parameter Description

0xXXXXXXXX XXXX	BD_ADDR of the remote device.

Page_Scan_Mode:

ValueParameter Description0x00Mandatory Page Scan Mode.0x01Optional Page Scan Mode I.0x02Optional Page Scan Mode II.0x03Optional Page Scan Mode III.0x04 – 0xFFReserved.

MESSAGE SEQUENCE CHARTS

Between Host and Host Controller/Link Manager

Examples of interactions between Host Controller Interface Commands and Events and Link Manager Protocol Data Units are represented in the form of message sequence charts. These charts show typical interactions and do not indicate all possible protocol behavior.

😵 Bluetooth[°]

CONTENTS

1	Introduction		
	1.1	Notation	623
	1.2	Flow of Control	624
	1.3	Example MSC	624
2	Servi	ices Without Connection Request	625
	2.1	Remote Name Request	625
	2.2	One-time Inquiry	626
	2.3	Periodic Inquiry	628
3	ACL	Connection Establishment and Detachment	631
	3.1	Connection Setup	632
4	Optio	onal Activities After ACL Connection Establishment	639
	4.1	Authentication Requested	
	4.2	Set Connection Encryption	640
	4.3	Change Connection Link Key	641
	4.4	Master Link Key	642
	4.5	Read Remote Supported Features	644
	4.6	Read Remote Extended Features	644
	4.7	Read Clock Offset	
	4.8	Read Remote Version Information	
	4.9	QOS Setup	
	4.10	Switch Role	646
5	Sync	hronous Connection Establishment and Detachment	649
	5.1	Synchronous Connection Setup	649
6	Sniff	, Hold and Park	655
	6.1	sniff Mode	655
	6.2	Hold Mode	656
	6.3	Park State	658
7	Buffe	er Management, Flow Control	661
8	Loopback Mode		663
	8.1	Local Loopback Mode	
	8.2	Remote Loopback Mode	665
9	List o	of Figures	667

1 INTRODUCTION

This section shows typical interactions between Host Controller Interface (HCI) Commands and Events and Link Manager (LM) Protocol Data Units (PDU). It focuses on the message sequence charts (MSCs) for the procedures specified in [3] "Bluetooth Host Controller Interface Functional Specification" with regard to LM Procedures from [2] "Link Manager Protocol".

This section illustrates only the most useful scenarios, it does not cover all possible alternatives. Furthermore, the message sequence charts do not consider errors over the air interface or host interface. In all message sequence charts it is assumed that all events are not masked, so the Host Controller will not filter out any events.

The sequence of messages in these message sequence charts is for illustrative purposes. The messages may be sent in a different order where allowed by the Link Manager or HCI sections. If any of these charts differ with text in the Baseband, Link Manager, or HCI sections, the text in those sections shall be considered normative. This section is informative.

1.1 NOTATION

The notation used in the message sequence charts (MSCs) consists of ovals, elongated hexagons, boxes, lines, and arrows. The vertical lines terminated on the top by a shadow box and at the bottom by solid oval indicate a protocol entity that resides in a device. MSCs describe interactions between these entities and states those entities may be in.

Oval	Defines the context for the message sequence chart.
Hexagon	Indicates a condition needed to start the transactions below this hexagon. The location and width of the Hexagon indicates which entity or entities make this decision.
Box	Replaces a group of transactions. May indicate a user action, or a proce- dure in the baseband.
Dashed Box	Optional group of transactions.
Solid Arrow	Represents a message, signal or transaction. Can be used to show LMP and HCl traffic. Some baseband packet traffic is also shown. These are prefixed by BB followed by either the type of packet, or an indication that there is an ACK signal in a packet.
Dashed Arrow	Represents a optional message, signal or transaction. Can be used to show LMP and HCI traffic.

The following symbols represent interactions and states:

😵 Bluetooth®

1.2 FLOW OF CONTROL

Some message sequences are split into several charts. These charts are marked in sequence with different step numbers with multiple paths through with optional letters after the step numbers. Numbers indicate normal or required ordering. The letters represent alternative paths. For example, Step 4 is after Step 3, and Step 5a could be executed instead of Step 5b.

1.3 EXAMPLE MSC

The protocol entities represented in the example shown in Figure 1.1 on page 624 illustrate the interactions of two devices named A and B. Note that each device includes a Host and a LM entity in this example. Other MSCs in this section may show the interactions of more than two devices.

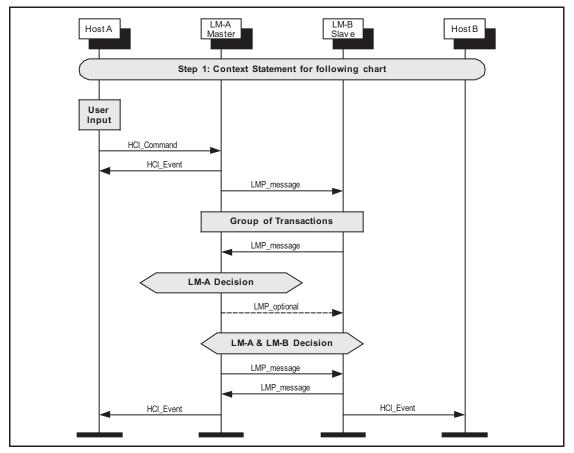


Figure 1.1: Example MSC.

Bluetooth[®]

2 SERVICES WITHOUT CONNECTION REQUEST

2.1 REMOTE NAME REQUEST

The service Remote Name Request is used to find out the name of the remote device without requiring an explicit ACL Connection.

Step 1: The host sends an HCI_Remote_Name_Request command expecting that its local device will automatically try to connect to the remote device. (See Figure 2.1 on page 625)

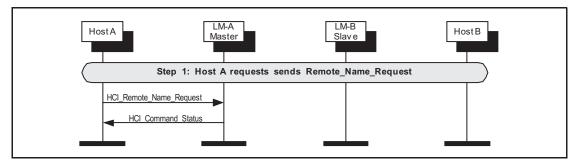


Figure 2.1: Remote name request.

Step 2a: If an ACL Connection does not exist device A pages device B. After the Baseband paging procedure, the local device attempts to get the name, disconnect, and return the name of the remote device to the Host. (See Figure 2.2 on page 625)

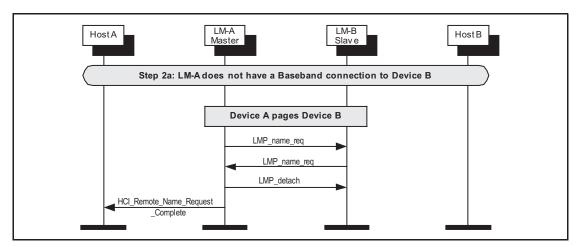


Figure 2.2: Remote name request if no current baseband connection.

😵 Bluetooth®

Step 2b: If an ACL Connection exists when the request is made, then the Remote Name Request procedure will be executed like an optional service. No Paging and no ACL disconnect is done. (See Figure 2.3 on page 626)

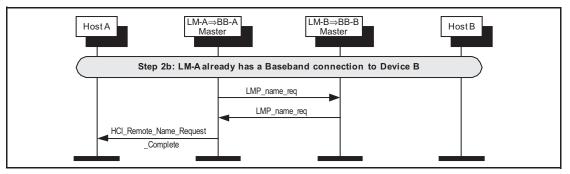


Figure 2.3: Remote name request with baseband connection.

2.2 ONE-TIME INQUIRY

Inquiry is used to detect and collect nearby devices.

Step 1: The host sends an HCI_Inquiry command. (See Figure 2.4 on page 626)

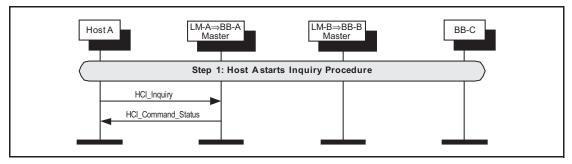


Figure 2.4: Host A starts inquiry procedure.

<table-of-contents> Bluetooth°

Step 2: The Controller will start the Baseband inquiry procedure with the specified Inquiry Access Code and Inquiry Length. When Inquiry Responses are received, the Controller extracts the required information and returns the information related to the found devices using one or more Inquiry Result events to the Host. (See Figure 2.5 on page 627)

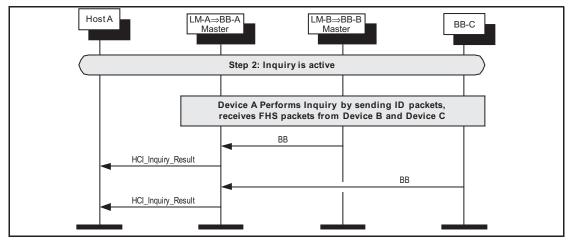


Figure 2.5: LM-A performs inquiry and reports result.

Step 3a: If the host wishes to terminate an Inquiry, the HCI_Inquiry_Cancel command is used to immediately stop the inquiry procedure. (See Figure 2.6 on page 627)

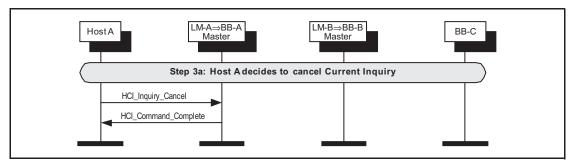


Figure 2.6: Host A cancels inquiry.

😵 Bluetooth°

Step 3b: If the Inquiry procedure is completed due to the number of results obtained, or the Inquiry Length has expired, an Inquiry Complete event is returned to the Host. (See Figure 2.7 on page 628)

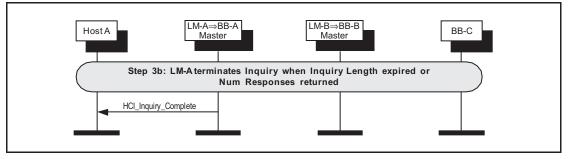


Figure 2.7: LM-A terminates current inquiry.

2.3 PERIODIC INQUIRY

Periodic inquiry is used when the inquiry procedure is to be repeated periodically.

Step 1: The hosts sends an HCI_Periodic_Inquiry_Mode command. (See Figure 2.8 on page 628)

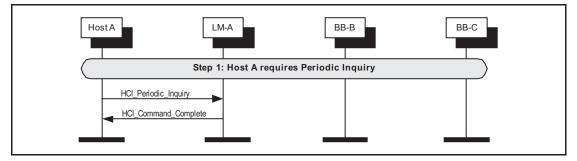


Figure 2.8: Host A starts periodic inquiry.

<table-of-contents> Bluetooth°

Step 2: The Controller will start a periodic Inquiry. In the inquiry cycle, one or several Inquiry Result events will be returned. (See Figure 2.9 on page 629)

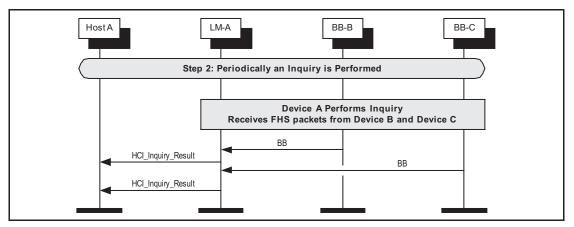


Figure 2.9: LM-A periodically performs an inquiry and reports result.

Step 3: An Inquiry Complete event will be returned to the Host when the current periodic inquiry has finished. (See Figure 2.10 on page 629)

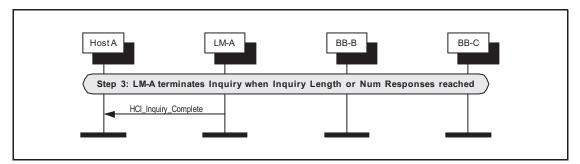


Figure 2.10: LM-A terminates current inquiry.

Step 4: The periodic Inquiry can be stopped using the HCI_Exit_Periodic_Inquiry_Mode command. (See Figure 2.11 on page 629)

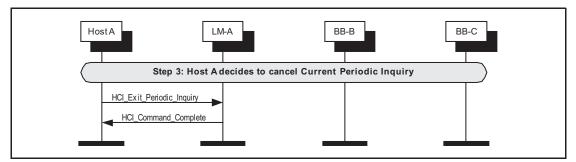


Figure 2.11: Host A decides to exit periodic inquiry.

3 ACL CONNECTION ESTABLISHMENT AND DETACHMENT

A flow diagram of the establishment and detachment of a connection between two devices is shown in Figure 3.1 on page 631. The process is illustrated in 9 distinct steps. A number of these steps may be optionally performed, such as authentication and encryption. Some steps are required, such as the Connection Request and Setup Complete steps. The steps in the overview diagram directly relate to the steps in the following message sequence charts.

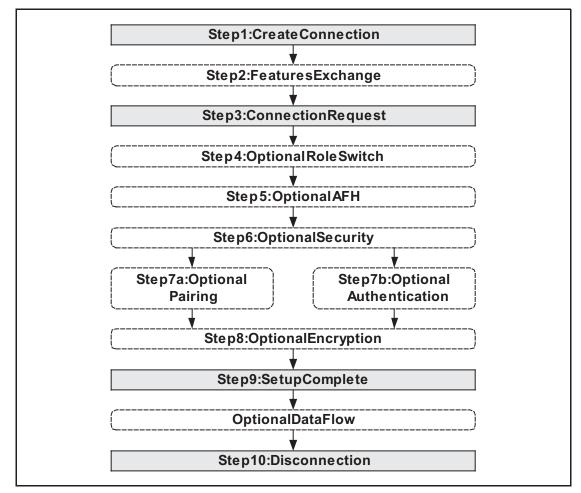


Figure 3.1: Overview diagram for connection setup.

8 Bluetooth®

3.1 CONNECTION SETUP

Step 1: The host sends an HCI_Create_Connection command to the Controller. The Controller then performs a Baseband paging procedure with the specified BD_ADDR. (See Figure 3.2 on page 632)

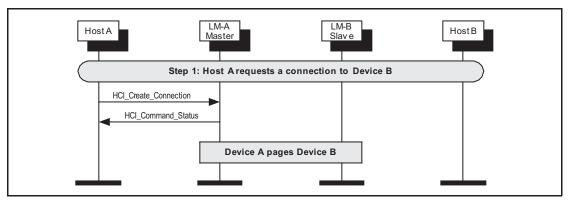


Figure 3.2: Host A requests connection with device B.

Step 2: Optionally, the LM may decide to exchange features. (See Figure 3.3 on page 632)

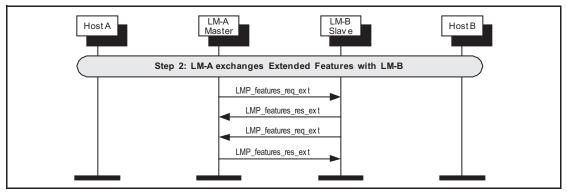


Figure 3.3: LM-A and LM-B exchange features.

Step 3: The LM on the master will request an LMP_host_connection_req PDU. The LM on the slave will then confirm that a connection is OK, and if so, what role is preferred. (See Figure 3.4 on page 632)

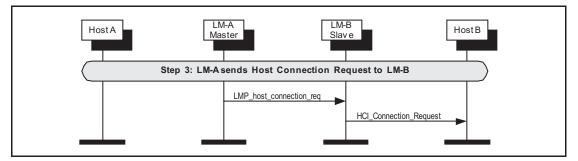
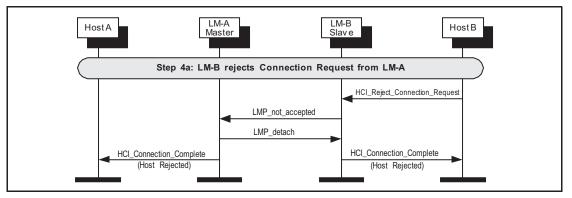



Figure 3.4: LM-A requests host connection.

😵 Bluetooth°

Step 4a: The remote host rejects this connection, and the link is terminated. (See Figure 3.5 on page 633)

Figure 3.5: Device B rejects connection request.

Step 4b: The remote host accepts this connection. (See Figure 3.6 on page 633)

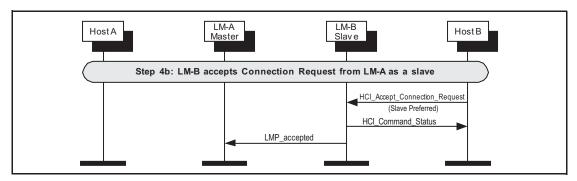


Figure 3.6: Device B accepts connection request.

😵 Bluetooth®

Step 4c: The remote host accepts this connection but with the preference of being a master. This will cause a role switch to occur before the LMP_accepted for the LMP_host_connection_req PDU is sent. (See Figure 3.7 on page 634)

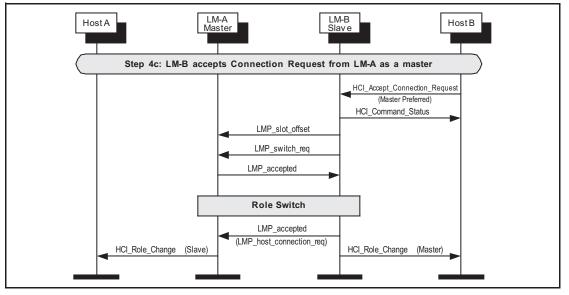


Figure 3.7: Device B accepts connection requests as master.

Step 5: After the features have been exchanged and AFH support is determined to be available, the master may at any time send an LMP_set_AFH and LMP_channel_classification_req PDU. (See Figure 3.8 on page 634)

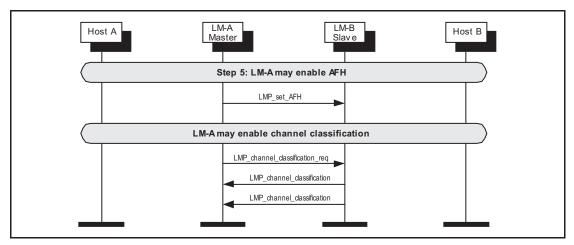


Figure 3.8: LM-A starts adaptive frequency hopping.

😵 Bluetooth°

Step 6: The LM will request if authentication is required. It does this by requesting the Link Key for this connection from the Host. (See Figure 3.9 on page 635)

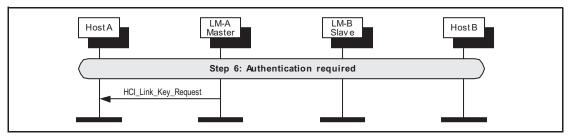


Figure 3.9: Authentication initiated.

😵 Bluetooth°

Step 7a: If authentication is required by the higher layers and the devices to be connected do not have a common link key, a pairing procedure will be used. The LM will have requested a link key from the host for this connection. If there is a negative reply, then a PIN code will be requested. This PIN code will be requested on both sides of the connection, and authentication performed based on this PIN code. The last step is for the new link key for this connection to be passed to the host so that it may store it for future connections. (See Figure 3.10 on page 636)

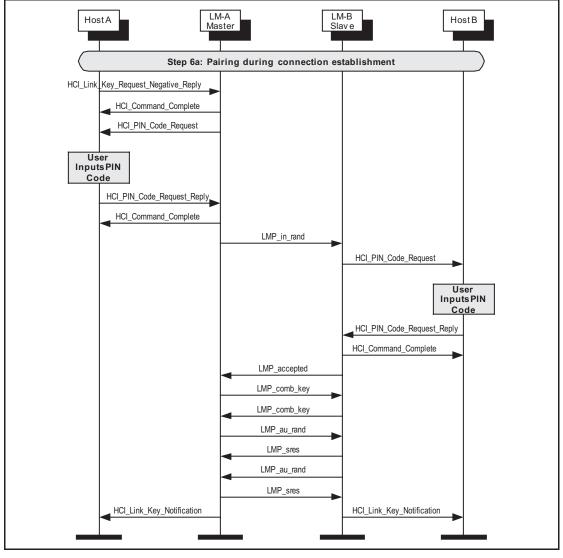


Figure 3.10: Pairing during connection setup.

😵 Bluetooth°

Step 7b: If a common link key exists between the devices, then pairing is not needed. The LM will have asked for a link key from the host for this connection. If this is a positive reply, then the link key is used for authentication. If the configuration parameter Authentication_Enable is set, then the authentication procedure must be executed. This MSC only shows the case when Authentication_Enable is set on both sides. (See Figure 3.11 on page 637)

Figure 3.11: Authentication during connection setup.

Step 8: Once the pairing or authentication procedure is successful, the encryption procedure may be started. This MSC only shows the set up of an encrypted point-to-point connection. (See Figure 3.12 on page 637)

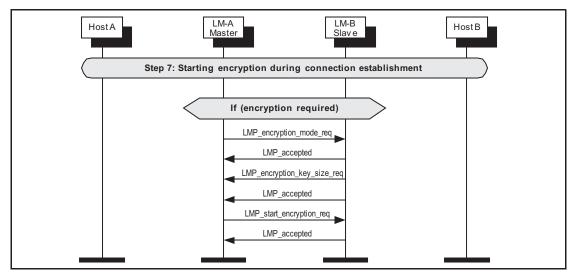


Figure 3.12: Starting encryption during connection setup.

😵 Bluetooth°

Step 9: The LMs indicate that the connection is setup by sending LMP_setup_complete PDU. This will cause the Host to be notified of the new connection handle, and this connection may be used to send higher layer data such as L2CAP information. (See Figure 3.13 on page 638)

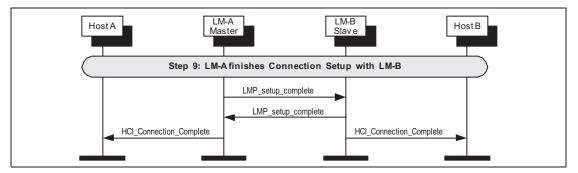


Figure 3.13: LM-A and LM-B finishes connection setup.

Step 10: Once the connection is no longer needed, either device may terminate the connection using the HCI_Disconnect command and LMP_detach message PDU. The disconnection procedure is one-sided and does not need an explicit acknowledgment from the remote LM. The use of ARQ Acknowledgment from the Baseband is needed to ensure that the remote LM has received the LMP_detach PDU. (See Figure 3.13 on page 638)

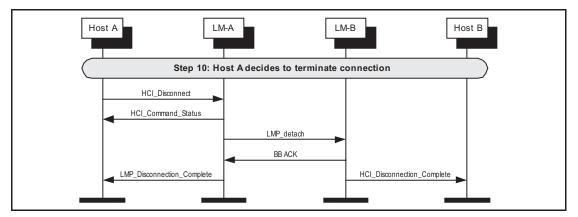


Figure 3.14: Host A decides to disconnect.

ESTABLISHMENT

🚯 Bluetooth **4 OPTIONAL ACTIVITIES AFTER ACL CONNECTION**

4.1 AUTHENTICATION REQUESTED

Step 1: Authentication can be explicitly executed at any time after a connection has been established. If no Link Key is available then the Link Key is required from the Host. (See Figure 4.1 on page 639)

Note: If the Controller or LM and the Host do not have the Link Key a PIN Code Request event will be sent to the Host to request a PIN Code for pairing. A procedure identical to that used during Connection Setup (Section 3.1, Step 7a:) will be used. (See Figure 3.9 on page 635)

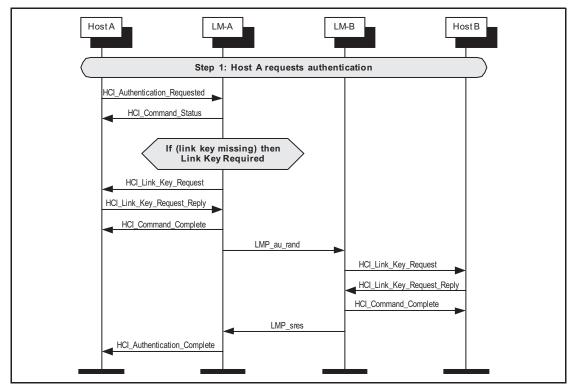


Figure 4.1: Authentication requested.

4.2 SET CONNECTION ENCRYPTION

Step 1: The host may at any time turn on encryption using the HCI_Set_Connection_Encryption command. This command can be originated from either the master or slave sides. Only the master side is shown in Figure 4.2 on page 640. If this command is sent from a slave, the only difference is that the LMP_encryption_mode_req PDU will be sent from the slave. The LMP_encryption_key_size_req and LMP_start_encryption_req PDUs will always be requested from the master. (See Figure 4.2 on page 640)

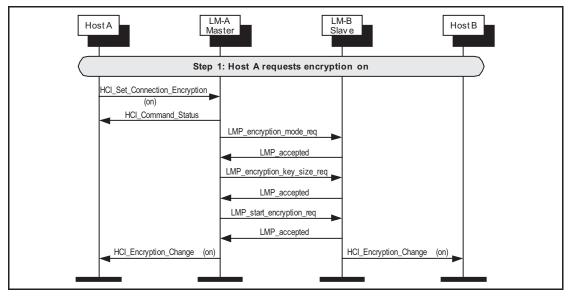


Figure 4.2: Encryption requested.

Step 2: To terminate the use of encryption, The HCI_Set_Connection_Encryption command is used. (See Figure 4.3 on page 640)

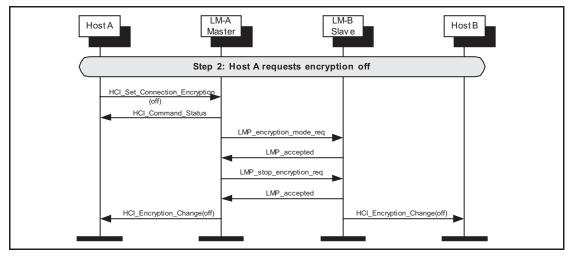


Figure 4.3: Encryption off requested.

4.3 CHANGE CONNECTION LINK KEY

Step 1: The master host (Host A) may change the connection link key using the HCI_Change_Connection_Link_Key command. A new link key will be generated and the hosts will be notified of this new link key. (See Figure 4.4 on page 641).

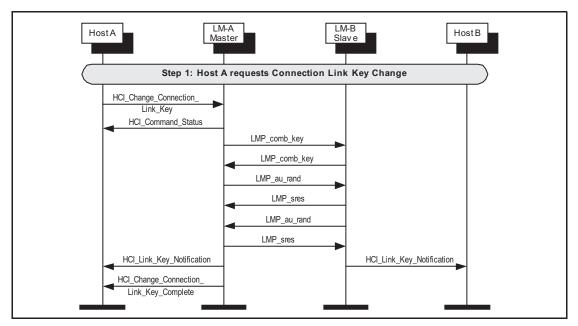


Figure 4.4: Change connection link key.

8 Bluetooth[®]

4.4 MASTER LINK KEY

Step 1: The host changes to a Master Link Key from a Semi-permanent Link Key using the HCI_Master_Link_Key command. (See Figure 4.5 on page 642)

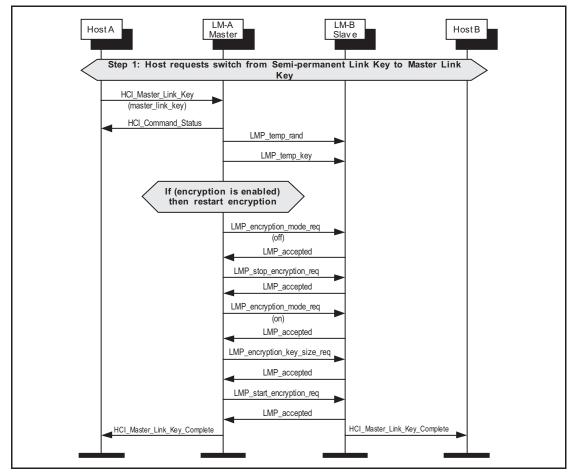


Figure 4.5: Change to master link key.

😵 Bluetooth°

Step 2: The host changes to a Semi-permanent Link Key from a Master Link Key using the HCI_Master_Link_Key command. (See Figure 4.6 on page 643)

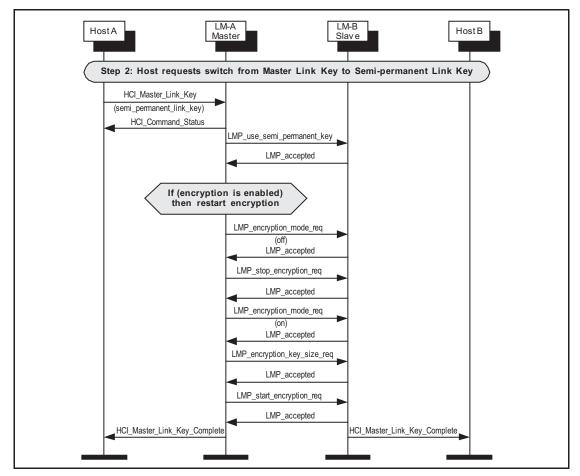


Figure 4.6: Change to semi permanent link key.

😵 Bluetooth°

4.5 READ REMOTE SUPPORTED FEATURES

Using the HCI_Read_Remote_Supported_Features command the supported LMP Features of a remote device can be read. (See Figure 4.7 on page 644)

If the remote supported features have been obtained previously then the Controller may return them without sending any LMP PDUs.

Step 1: The host requests the supported features of a remote device.

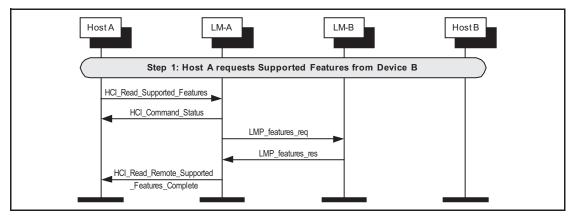


Figure 4.7: Read remote supported features.

4.6 READ REMOTE EXTENDED FEATURES

Using the HCI_Read_Remote_Extended_Features command the extended LMP features of a remote device can be read. (See Figure 4.8 on page 644)

If the remote extended features have been obtained previously then the Controller may return them without sending any LMP PDUs.

Step 1: The host requests the extended features of a remote device.

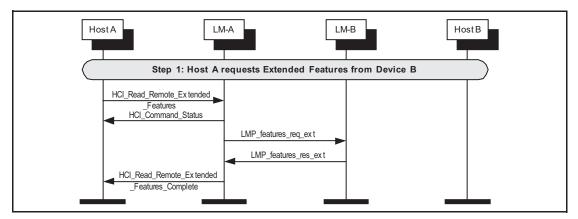


Figure 4.8: Read remote extended features.

4.7 READ CLOCK OFFSET

Using the HCI_Read_Clock_Offset command the device acting as the master can read the Clock Offset of a slave. The Clock Offset can be used to speed up the paging procedure in a later connection attempt. If the command is requested from the slave device, the Controller will directly return a Command Status event and a Read Clock Offset Complete event without sending any LMP PDUs. (See Figure 4.9 on page 645)

Step 1: The host requests the clock offset of a remote device.

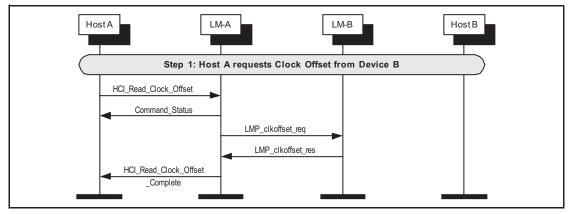


Figure 4.9: Read clock offset.

4.8 READ REMOTE VERSION INFORMATION

Using the HCI_Read_Remote_Version_Information command the version information of a remote device can be read. (See Figure 4.10 on page 645)

If the remote version information has been obtained previously then the Controller may return them without sending any LMP PDUs.

Step 1: The host requests the version information of a remote device.

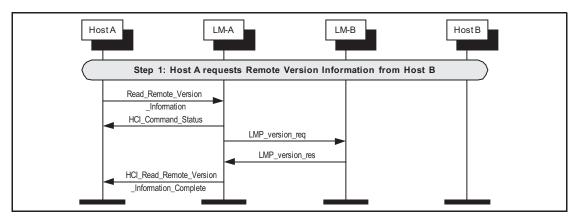


Figure 4.10: Read remote version information.

Bluetooth

Message Sequence Charts

4.9 QOS SETUP

Using the HCI_Flow_Specification command the Quality of Service (QoS) and Flow Specification requirements of a connection can be notified to a Controller. The Controller may then change the quality of service parameters with a remote device. (See Figure 4.11 on page 646)

Step 1: The host sends QoS parameters to a remote device.

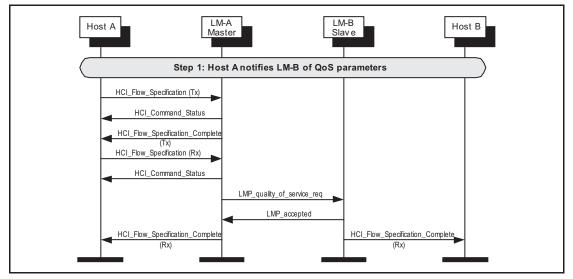


Figure 4.11: QoS flow specification.

4.10 SWITCH ROLE

The HCI_Switch_Role command can be used to explicitly switch the current master / slave role of the local device with the specified device.

Step 1a: The master host (A) requests a role switch with a slave. This will send the switch request, and the slave will respond with the slot offset and accepted. (See Figure 4.12 on page 646)

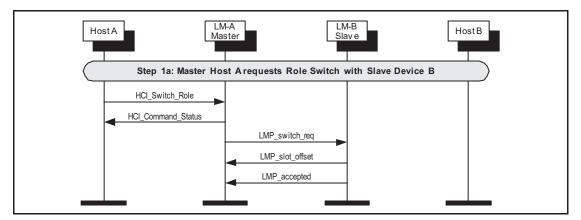


Figure 4.12: Master requests role switch.

😵 Bluetooth°

Step 1b: The slave host (B) requests a role switch with a master. This will send the slot offset and the switch request, and the master will respond with a LMP_accepted PDU. (See Figure 4.13 on page 647)

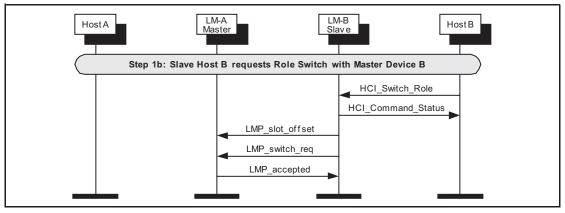


Figure 4.13: Slave requests role switch.

Step 2: The role switch is performed by doing the TDD switch and piconet switch. Finally an HCI_Role_Change event is sent on both sides. (See Figure 4.14 on page 647)

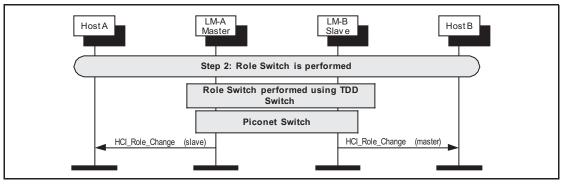


Figure 4.14: Role switch is performed.

🚯 Bluetooth° **5 SYNCHRONOUS CONNECTION ESTABLISHMENT** AND DETACHMENT

5.1 SYNCHRONOUS CONNECTION SETUP

Using the HCI_Setup_Synchronous_Connection command, a host can add a synchronous logical channel to the link. A synchronous logical link can be provided by creating a SCO or an eSCO logical transport.

Note: An ACL Connection must be established before a synchronous connection can be created.

Step 1a: Master device requests a synchronous connection with a device. (See Figure 5.1 on page 649)

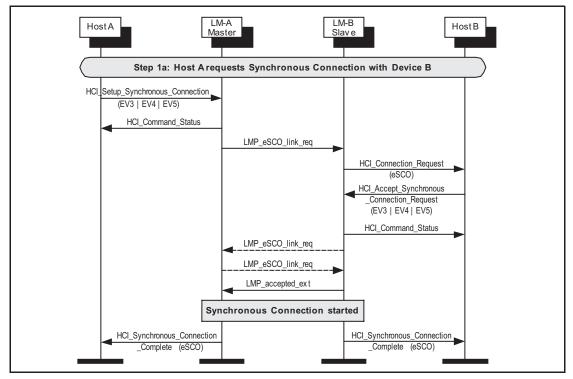


Figure 5.1: Master requests synchronous EV3, EV4 OR EV5 connection.

😵 Bluetooth°

Step 1b: Slave device requests a synchronous connection with a device. (See Figure 5.2 on page 650)

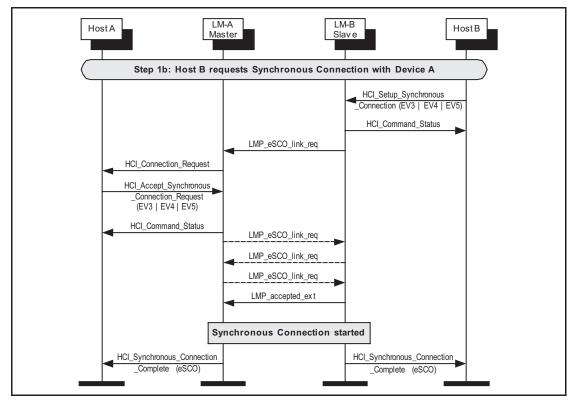


Figure 5.2: Slave requests synchronous EV3, EV4 OR EV5 connection.

Step 1c: Master device requests a SCO connection with a device. (See Figure 5.3 on page 650)

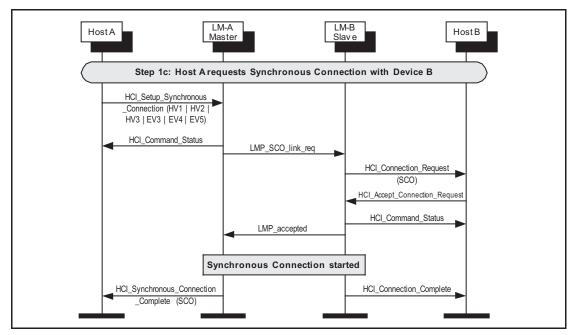


Figure 5.3: Master requests synchronous connection using SCO.

😵 Bluetooth°

Step 1d: Master device requests a SCO connection with a device. (See Figure 5.4 on page 651)

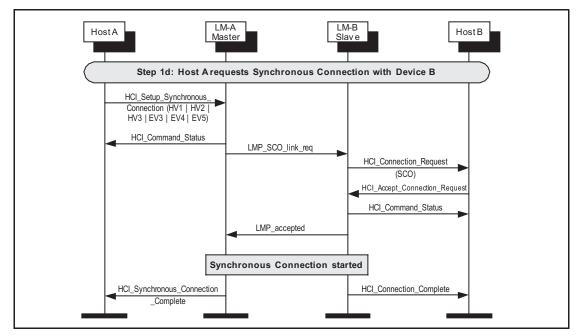
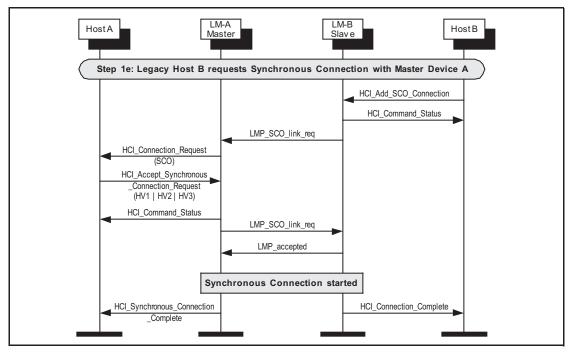



Figure 5.4: Master requests synchronous connection with legacy slave.

Step 1e: Host device requests a SCO connection with a device. (See Figure 5.5 on page 651)

Figure 5.5: Any device that supports only SCO connections requests a synchronous connection with a device.

🛞 Bluetooth

Step 2a: Master renegotiates eSCO connection (See Figure 5.6 on page 652).

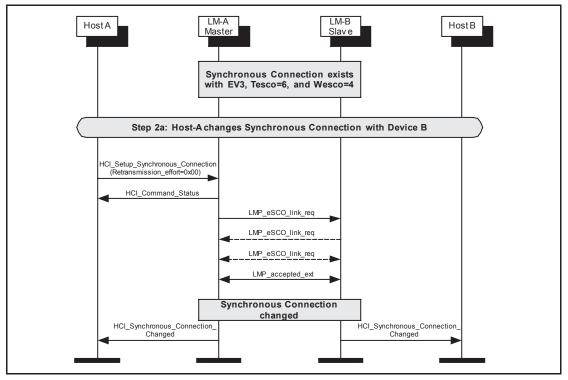


Figure 5.6: Master renegotiates eSCO connection.

Step 2b: Slave renegotiates eSCO connection (See Figure 5.7 on page 652).

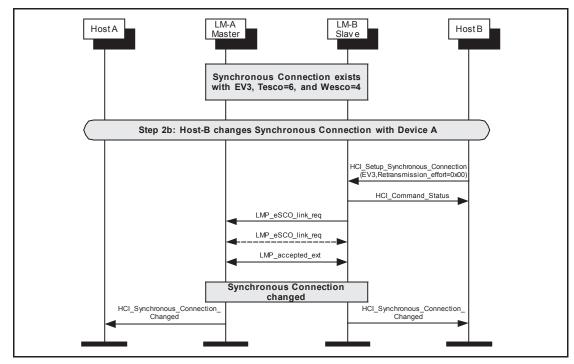


Figure 5.7: Slave renegotiates eSCO connection.

😵 Bluetooth°

Step 3a: eSCO Disconnection. (See Figure 5.8 on page 653)

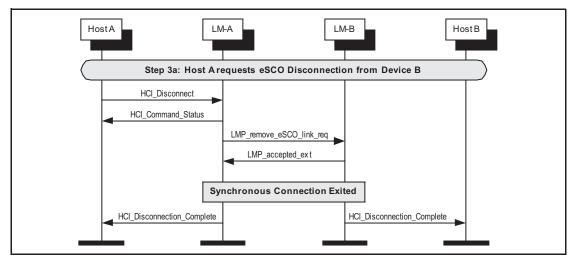


Figure 5.8: Synchronous disconnection of eSCO connection.

Step 3b: SCO Disconnection. (See Figure 5.9 on page 653)

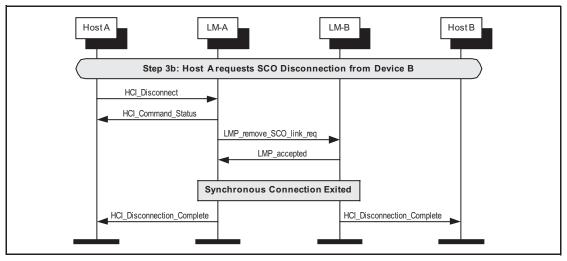


Figure 5.9: Synchronous disconnection of SCO connection.

6 SNIFF, HOLD AND PARK

Entry into sniff mode, hold mode or park state requires an established ACL Connection.

6.1 SNIFF MODE

The HCI_Sniff_Mode command is used to enter sniff mode. The HCI_Exit_Sniff_Mode command is used to exit sniff mode.

Step 1: Host requests to enter sniff mode. Multiple LMP_sniff_req PDUs may be sent as the parameters for sniff mode are negotiated. (See Figure 6.1 on page 655)

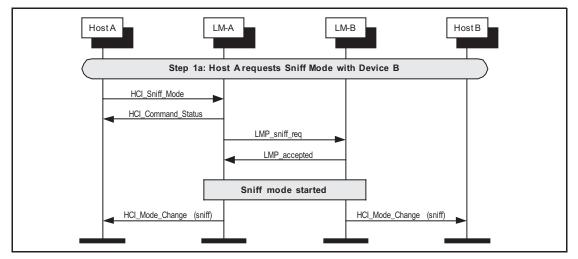


Figure 6.1: Sniff mode request.

Step 2: Host requests to exit sniff mode. (See Figure 6.2 on page 655)

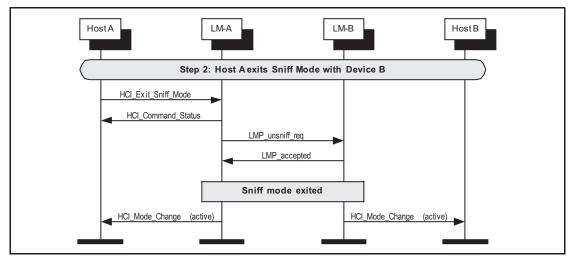


Figure 6.2: Exit sniff mode request.

🚯 Bluetooth°

Message Sequence Charts

6.2 HOLD MODE

The HCI_Hold_Mode command can be used to place a device into hold mode. The Controller may do this by either negotiating the hold mode parameters or forcing hold mode. Hold mode will automatically end after the negotiated length of time.

Step 1a: A host requests hold mode. (See Figure 6.3 on page 656)

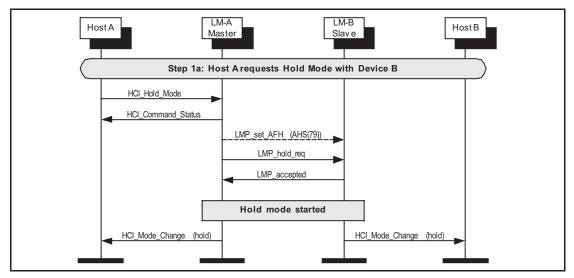


Figure 6.3: Hold request.

Step 1b: A host may force hold mode. (See Figure 6.4 on page 656)

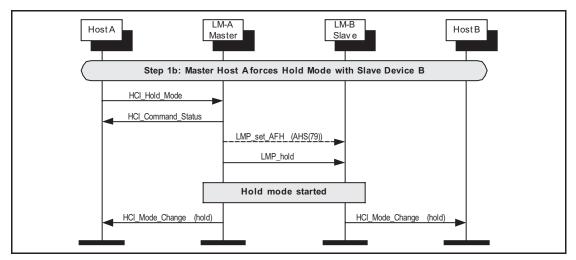


Figure 6.4: Master forces hold mode.

😵 Bluetooth°

Step 1c: A slave device requests hold mode. (See Figure 6.5 on page 657)

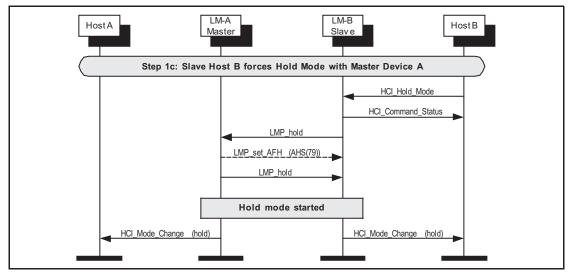


Figure 6.5: Slave forces hold mode.

Step 2: When hold mode completes the hosts are notified using the HCI_Mode_Change event. (See Figure 6.6 on page 657)

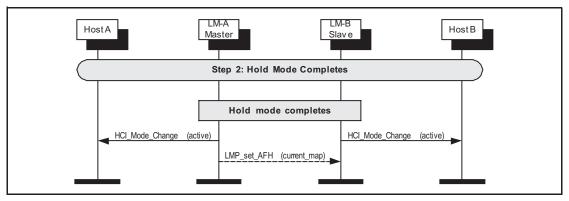


Figure 6.6: Hold mode completes.

😵 Bluetooth°

6.3 PARK STATE

Park state can be entered by using the HCI_Park_State command.

Step 1a: The master requests to place the slave in the park state. Before sending the LMP_park_req PDU, the master may disable AFH by setting the connection into AHS(79). (See Figure 6.7 on page 658)

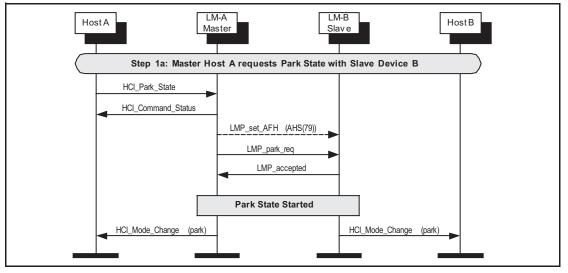
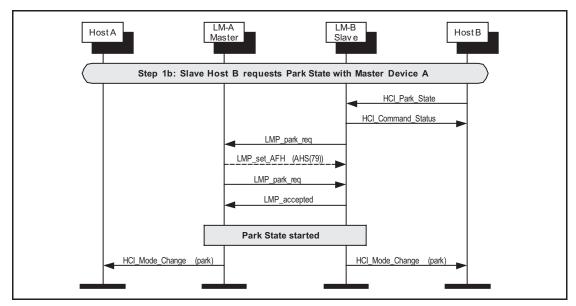



Figure 6.7: Park state request from master.

Step 1b: The slave requests to be placed in the park state. Before sending the LMP_park_req PDU back to the slave, the master may disable AFH by setting the connection into AHS(79). (See Figure 6.8 on page 658)

Figure 6.8: Park state request from slave.

<table-of-contents> Bluetooth°

Step 2: When in the park state, a slave still needs to unparked for link supervision purposes. The master sends an LMP_unpark_PM_ADDR_req PDU or an LMP_unpark_BD_ADDR_req PDU to the slave during the beacon. Only the PM_ADDR version is illustrated in the figure. (See Figure 6.9 on page 659)

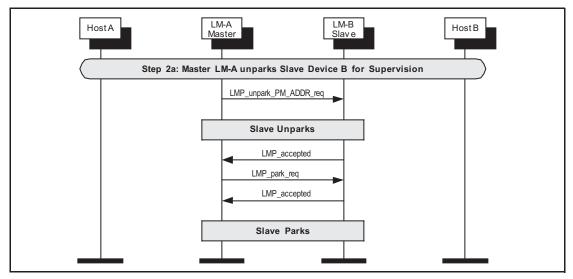


Figure 6.9: Master unparks slave for supervision.

Step 3a: A master may unpark a slave to exit park state. The master should reenable AFH by setting the current AFH channel map to the unparked slave. (See Figure 6.10 on page 659)

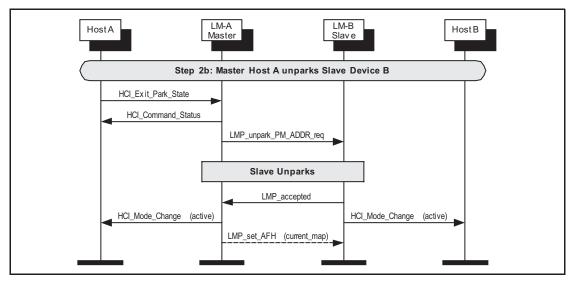


Figure 6.10: Master exits park state with slave.

😵 Bluetooth®

Step 3b: A slave may request to be unparked by sending a message in an access window. It will then receive instructions from the master to unpark. The master should re-enable AFH by setting the current AFH channel map to the unparked slave. (See Figure 6.11 on page 660)

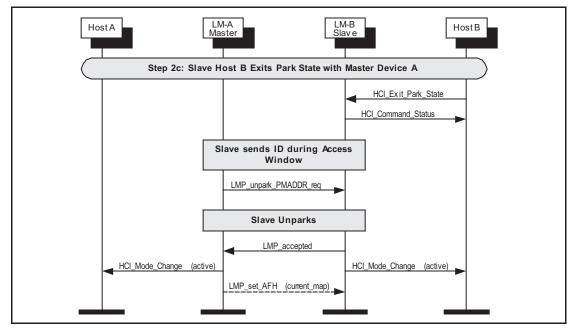


Figure 6.11: Slave exits park state with master.

7 BUFFER MANAGEMENT, FLOW CONTROL

Buffer management is very important for resource limited devices. This can be achieved on the Host Controller Interface using the HCI_Read_Buffer_Size command, and the HCI_Number_Of_Completed_Packets event, and the HCI_Set_Host_Controller_To_Host_Flow_Control, HCI_Host_Buffer_Size and HCI_Host_Number_Of_Completed_Packets commands.

Step 1: During initialization, the host reads the buffer sizes available in the Controller. When an HCI Data Packet has been transferred to the remote device, and a Baseband acknowledgement has been received for this data, then an HCI_Number_Of_Completed_Packets event will be generated. (See Figure 7.1 on page 661)

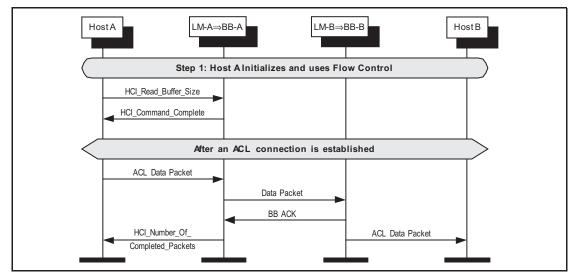


Figure 7.1: Host to Controller flow control.

😵 Bluetooth®

Step 2: During initialization, the host notifies the Controller that host flow control shall be used, and then the host buffer sizes available. When a data packet has been received from a remote device, an HCI Data Packet is sent to the host from the Controller, and the host shall acknowledge its receipt by sending HCI_Host_Number_Of_Completed_Packets. (See Figure 7.2 on page 662)

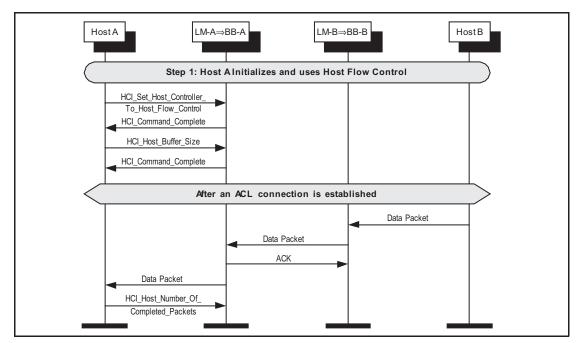


Figure 7.2: Controller to Host flow control.

8 LOOPBACK MODE

The loopback modes are used for testing of a device only.

8.1 LOCAL LOOPBACK MODE

The local loopback mode is used to loopback received HCI Commands, and HCI ACL and HCI Synchronous packets sent from the Host to the Controller.

Step 1: The host enters local loopback mode. Four connection complete events are generated and then a command complete event. (See Figure 8.1 on page 663)

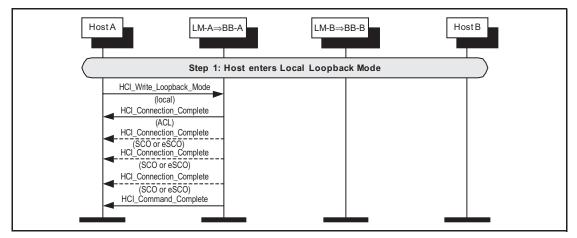


Figure 8.1: Entering local loopback mode.

Step 2a: The host sending HCI Data Packet will receive the exact same data back in HCI Data Packets from the Controller. (See Figure 8.2 on page 663)

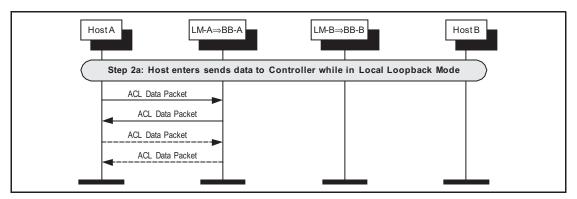


Figure 8.2: Looping back data in local loopback mode.

😵 Bluetooth®

Step 2b: The host sending most HCI Command Packets to the Controller will receive an HCI_Loopback_Command event with the contents of the HCI Command Packet in the payload. (See Figure 8.3 on page 664)

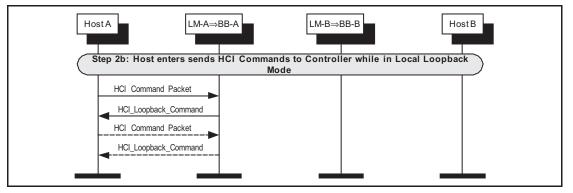


Figure 8.3: Looping back commands in local loopback mode.

Step 3: The host exits local loopback mode. Multiple disconnection complete events are generated before the command complete event. (See Figure 8.4 on page 664)

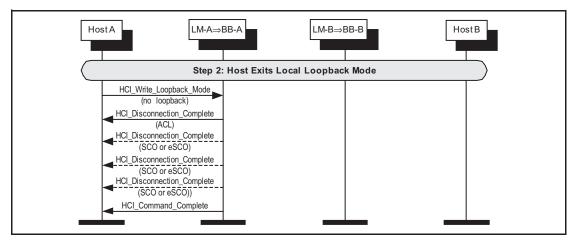


Figure 8.4: Exiting local loopback mode.

8.2 REMOTE LOOPBACK MODE

The remote loopback mode is used to lookback data to a remote device over the air.

Step 1: The remote host first sets up an connection to the local device. The local device then enables remote loopback. (See Figure 8.5 on page 665)

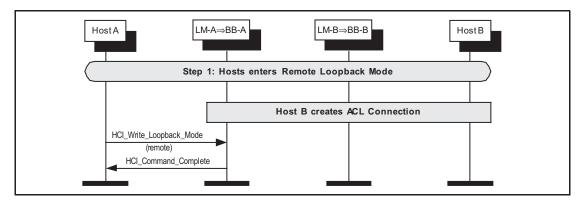


Figure 8.5: Entering remote loopback mode.

Step 2: Any data received from the remote host will be loopbacked in the Controller of the local device. (See Figure 8.6 on page 665)

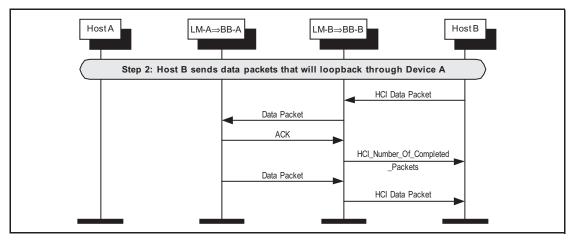


Figure 8.6: Looping back data in Remote Loopback Mode.

😵 Bluetooth[®]

Step 3: The local host exits remote loopback mode. Any connections can then be disconnected by the remote device. (See Figure 8.7 on page 666)

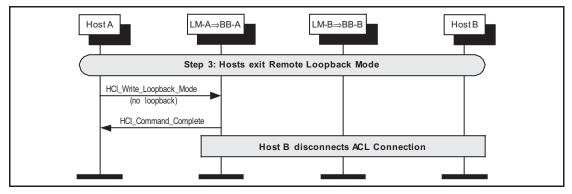


Figure 8.7: Exiting remote loopback mode.

😵 Bluetooth[®]

9 LIST OF FIGURES

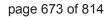
Figure 1.1:	Example MSC.	620
Figure 2.1:	Remote name request.	
Figure 2.2:	Remote name request if no current baseband connection.	621
Figure 2.3:	Remote name request with baseband connection.	
Figure 2.4:	Host A starts inquiry procedure.	
Figure 2.5:	LM-A performs inquiry and reports result.	623
Figure 2.6:	Host A cancels inquiry.	
Figure 2.7:	LM-A terminates current inquiry.	624
Figure 2.8:	Host A starts periodic inquiry.	624
Figure 2.9:	LM-A periodically performs an inquiry and reports result	625
Figure 2.10:	LM-A terminates current inquiry.	
Figure 2.11:	Host A decides to exit periodic inquiry.	625
Figure 3.1:	Overview diagram for connection setup.	627
Figure 3.2:	Host A requests connection with device B.	628
Figure 3.3:	LM-A and LM-B exchange features.	628
Figure 3.4:	LM-A requests host connection.	628
Figure 3.5:	Device B rejects connection request.	629
Figure 3.6:	Device B accepts connection request.	
Figure 3.7:	Device B accepts connection requests as master.	630
Figure 3.8:	LM-A starts adaptive frequency hopping	630
Figure 3.9:	Authentication initiated.	631
Figure 3.10:	Pairing during connection setup.	632
	Authentication during connection setup.	
Figure 3.12:	Starting encryption during connection setup.	633
Figure 3.13:	LM-A and LM-B finishes connection setup	634
Figure 3.14:	Host A decides to disconnect.	634
Figure 4.1:	Authentication requested.	635
Figure 4.2:	Encryption requested.	636
Figure 4.3:	Encryption off requested.	636
Figure 4.4:	Change connection link key	637
Figure 4.5:	Change to master link key	638
Figure 4.6:	Change to semi permanent link key	639
Figure 4.7:	Read remote supported features.	640
Figure 4.8:	Read remote extended features.	640
Figure 4.9:	Read clock offset.	641
Figure 4.10:	Read remote version information.	641
Figure 4.11:	QoS flow specification.	642
Figure 4.12:	Master requests role switch.	642
Figure 4.13:	Slave requests role switch.	643
Figure 4.14:	Role switch is performed.	643

Figure 5.1:	Master requests synchronous EV3, EV4 OR EV5 connection.	615
Figure 5.2:	Slave requests synchronous EV3, EV4 OR EV5 connection.	
0		
Figure 5.3:	Master requests synchronous connection using SCO.	
Figure 5.4:	Master requests synchronous connection with legacy slave.	047
Figure 5.5:	Any device that supports only SCO connections requests a synchronous connection with a device. 647	
Figure 5.6:	Master renegotiates eSCO connection.	648
Figure 5.7:	Slave renegotiates eSCO connection.	648
Figure 5.8:	Synchronous disconnection of eSCO connection.	649
Figure 5.9:	Synchronous disconnection of SCO connection.	649
Figure 6.1:	Sniff mode request.	651
Figure 6.2:	Exit sniff mode request.	651
Figure 6.3:	Hold request.	652
Figure 6.4:	Master forces hold mode.	652
Figure 6.5:	Slave forces hold mode.	653
Figure 6.6:	Hold mode completes.	653
Figure 6.7:	Park state request from master.	654
Figure 6.8:	Park state request from slave.	654
Figure 6.9:	Master unparks slave for supervision.	655
Figure 6.10:	Master exits park state with slave	655
Figure 6.11:	Slave exits park state with master	656
Figure 7.1:	Host to Controller flow control.	657
Figure 7.2:	Controller to Host flow control.	658
Figure 8.1:	Entering local loopback mode.	659
Figure 8.2:	Looping back data in local loopback mode	659
Figure 8.3:	Looping back commands in local loopback mode	660
Figure 8.4:	Exiting local loopback mode.	660
Figure 8.5:	Entering remote loopback mode.	661
Figure 8.6:	Looping back data in Remote Loopback Mode	661
Figure 8.7:	Exiting remote loopback mode.	662

Core System Package [Controller volume] Part G

SAMPLE DATA

This appendix contains sample data for various parts of the Bluetooth baseband specification. All sample data are provided for reference purpose only; they are intended as a complement to the definitions provided elsewhere in the specification. They can be used to check the behavior of an implementation and avoid misunderstandings. Fulfilling these sample data is a necessary but not sufficient condition for an implementation to be fully Bluetooth compliant.



😵 Bluetooth[°]

CONTENTS

Enci	ryption Sample Data	673
1.1	Generating Kc' from Kc,	673
Enci	ryption Sample Data	673
1.2	First Set of Sample Data	676
1.3	Second Set of Sample Data	
1.4	Third Set of Samples	692
1.5	Fourth Set of Samples	700
Freq	uency Hopping Sample Data	709
2.1		
2.2	Second set	716
2.3	Third set	722
Acce	ess Code Sample Data	729
HEC	and Packet Header Sample Data	733
CRC	Sample Data	735
Com	plete Sample Packets	737
6.1	Example of DH1 Packet	737
6.2	Example of DM1 Packet	738
Whit	tening Sequence Sample Data	739
FEC	Sample Data	743
Enci	rvption Key Sample Data	
9.1		
9.2	Four Tests of E21	
9.3		
9.4	Tests of E22 With Pin Augmenting	754
	1.1 Enci 1.2 1.3 1.4 1.5 Freq 2.1 2.2 2.3 Acco HEC CRC CCM 6.1 6.2 White FEC Enci 9.1 9.2	Encryption Sample Data1.2First Set of Sample Data1.3Second Set of Sample Data1.4Third Set of Samples1.5Fourth Set of SamplesFrequency Hopping Sample Data2.1First set2.2Second set2.3Third setAccess Code Sample DataHEC and Packet Header Sample DataCRC Sample DataComplete Sample Packets6.1Example of DH1 Packet6.2Example of DM1 PacketWhitening Sequence Sample DataFEC Sample Data9.1Four Tests of E19.2Four Tests of E21

LSB

1 ENCRYPTION SAMPLE DATA

This section contains four sets of sample data for the encryption process.

With respect to the functional description of the encryption engine in the Bluetooth baseband specification, the contents of registers and resulting concurrent values are listed as well. This by no means excludes different implementations (as far as they produce the same encryption stream) but is intended to describe the functional behavior.

In case of misunderstandings or inconsistencies, these sample data form the normative reference.

1.1 GENERATING KC' FROM KC,

where $Kc'(x) = g2(x)(Kc(x) \mod g1(x))$.

Note: All polynomials are in hexadecimal notation. 'L' is the effective key length in bytes. The notation 'p: [m]' implies that deg(p(x)) = m.

		MSB			
L = 1					
g1:	[8]	00000000	00000000	00000000	0000011d
g2:	[119]	00e275a0	abd218d4	cf928b9b	bf6cb08f
Kc:		a2b230a4	93f281bb	61a85b82	a9d4a30e
Kc mod g1:	[7]	00000000	00000000	00000000	0000009f
g2(Kc mod g1):					
L = 2					
	[16]	00000000	00000000	00000000	0001003f
q2:	[112]				
Kc:		64e7df78	bb7ccaa4	61433123	5b3222ad
Kc mod g1:	[12]	00000000	00000000	00000000	00001ff0
g2(Kc mod g1):					
L = 3					
g1:	[24]	00000000	00000000	00000000	01000db
g2:	[104]	000001be	f66c6c3a	b1030a5a	1919808b
Kc:		575e5156	ba685dc6	112124ac	edb2c179
Kc mod g1:	[23]	00000000	00000000	00000000	008ddbc8
g2(Kc mod g1):	[127]	d56d0adb	8216cb39	7fe3c591	1ff95618
L = 4					
gl:	[32]	00000000	00000000	00000001	000000af
g2:	[96]		6ab89969		
Kc:		8917b4fc	403b6db2	1596b86d	1cb8adab
Kc mod g1:					
g2(Kc mod g1):	[127]	91910128	b0e2f5ed	a132a03e	af3d8cda

😵 Bluetooth[°]

Sample Data

L = 5					
g1:	[40]	00000000	00000000	00000100	0000039
g2:	[88]	00000000	01630632	91da50ec	55715247
Kc:		785c915b	dd25b9c6	0102ab00	b6cd2a68
Kc mod g1:	[38]	00000000	00000000	000007f	13d44436
g2(Kc mod g1):	[126]	6fb5651c	cb80c8d7	ealee56d	flec5d02
L = 6					
g1:	[48]	00000000	00000000	00010000	00000291
g1: g2:	[48] [77]		00000000 00002c93		
5		00000000		52aa6cc0	54468311
g2:	[77]	00000000 5e77d19f	00002c93	52aa6cc0 798f9a32	54468311 3b83e5d8
g2: Kc:	[77]	00000000 5e77d19f 00000000	00002c93 55ccd7d5 00000000	52aa6cc0 798f9a32 000082eb	54468311 3b83e5d8 4af213ed
g2: Kc: Kc mod g1:	[77]	00000000 5e77d19f 00000000	00002c93 55ccd7d5 00000000	52aa6cc0 798f9a32 000082eb	54468311 3b83e5d8 4af213ed

page 675 of 814

*	Bluetooth
---	-----------

L = 7					
gl:	[56]	00000000	00000000	01000000	00000095
g2:	[71]	00000000	000000b3	f7fffce2	79f3a073
Kc:		05454e03	8ddcfbe3	ed024b2d	92b7f54c
Kc mod g1:	[55]	00000000	00000000	0095b8a4	8eb816da
g2(Kc mod g1):	[126]	50f9c0d4	e3178da9	4a09fe0d	34f67b0e
L = 8					
g1:	[64]	00000000	0000001	00000000	000001b
g2:	[63]	00000000	00000000	alab815b	c7ec8025
Kc:		7ce149fc	f4b38ad7	2a5d8a41	eb15ba31
Kc mod g1:	[63]	00000000	00000000	8660806c	1865deec
g2(Kc mod g1):	[126]	532c36d4	5d0954e0	922989b6	826f78dc
L = 9					
g1:	[72]	00000000	00000100	00000000	00000609
g2:	[49]	00000000	00000000	0002c980	11d8b04d
Kc:				9c051726	
Kc mod g1:					
g2(Kc mod g1):	[120]	016313f6	0d3771cf	7f8e4bb9	4aa6827d
L = 10					
g1:	[80]	00000000	00010000	00000000	00000215
g2:	[42]	00000000	00000000	0000058e	24f9a4bb
Kc:		7b13846e	88beb4de	34e7160a	fd44dc65
Kc mod g1:	[79]	00000000	0000b4de	34171767	£36981c3
g2(Kc mod g1):	[121]	023bclec	34a0029e	f798dcfb	618ba58d
L = 11	[00]		01000000		00000101
-	[88]				
-	[35]	00000000			
Kc:	[0.6]			8dfe2d49	
Kc mod g1:				8dfe88aa	
g2(Kc mod g1):					
L = 12		0000001			
	[96]				
5	[28]				
Kc:	[02]			9a658f97	
Kc mod g1:					
g2(Kc mod g1):		03007520			
L = 13					
	[104]	00000100	00000000	00000000	0000049d
5	[21]				
Kc:		d79d281d			
Kc mod g1:	[100]				
g2(Kc mod g1):					

Sample Data			<table-of-contents> Bluetooth®</table-of-contents>
L = 14			
g1:	[112]	00010000 0000000 00000000 0000014f	
g2:	[14]	0000000 0000000 0000000 00004377	
Kc:		cad9a65b 9fcalc1d a2320fcf 7c4ae48e	
Kc mod g1:	[111]	0000a65b 9fcalc1d a2320fcf 7cb6a909	
g2(Kc mod g1):	[125]	284840fd f1305f3c 529f5703 76adf7cf	
L = 15			
g1:	[120]	01000000 0000000 00000000 000000e7	
g2:	[7]	0000000 0000000 0000000 00000089	
Kc:		21f0cc31 049b7163 d375e9e1 06029809	
Kc mod g1:	[119]	00f0cc31 049b7163 d375e9e1 0602840e	
g2(Kc mod g1):	[126]	7f10b53b 6df84b94 f22e566a 3754a37e	
L = 16			
g1:	[128]	00000001 0000000 0000000 00000000 00	000000
g2:	[0]	00000000 0000000 00000000 00000001	
Kc:		35ec8fc3 d50ccd32 5f2fd907 bde206de	
Kc mod g1:	[125]	35ec8fc3 d50ccd32 5f2fd907 bde206de	
g2(Kc mod g1):	[125]	35ec8fc3 d50ccd32 5f2fd907 bde206de	

1.2 FIRST SET OF SAMPLE DATA

Initial values for the key, pan address and clock

```
CL1[0] = 00 CL1[1] = 00 CL1[2] = 00 CL1[3] = 00
```

	F11 =======	.1 LFSRs w:	ith initia: ============	l data ============		:					:		
t	clk#	LFSR1	LFSR2	LFSR3	LFSR4	X1	Х2	Х3	X4	Ζ	C[t+1]	C[t]	C[t-1]
0	0	0000000*	00000000*	000000000*	0000000000*	0	0	0	0	0	00	00	00
1	1	0000000*	0000001*	00000000*	000000001*	0	0	0	0	0	00	00	00
2	2	0000000*	00000002*	00000000*	000000003*	0	0	0	0	0	00	00	00
3	3	0000000*	0000004*	00000000*	000000007*	0	0	0	0	0	00	00	00
4	4	0000000*	0000008*	00000000*	00000000E*	0	0	0	0	0	00	00	00
5	5	0000000*	0000010*	00000000*	00000001C*	0	0	0	0	0	00	00	00
6	6	0000000*	00000020*	00000000*	000000038*	0	0	0	0	0	00	00	00

Sam	ple Da	ata										B	luetooth
7	7	0000000*	00000040*	000000000*	0000000070*	0	0	0	0	0	00	00	00
8	8				00000000E0*	0	0	0	0	0	00	00	00
9	9				00000001C0*	0	0	0	0	0	00	00	00
10	10				0000000380*	0	0	0	0	0	00	0.0	00
11	11				0000000700*	0	0	0	0	0	00	00	00
12	12				0000000E00*	0	0	0	0	0	00	00	00
13	13				0000001C00*	0	0	0	0	0	00	00	00
14	14				0000003800*	0	0	0	0	0	00	00	00
15	15				0000007000*	0	0	0	0	0	00	00	00
16	16				000000E000*	0	0	0	0	0	00	00	00
17	17				000001C000*	0	0	0	0	0	00	00	00
18	18				0000038000*	0	0	0	0	0	00	00	00
19	19				0000070000*	0	0	0	0	0	00	00	00
20	20				00000E0000*	0	0	0	0	0	00	00	00
21	21				00001C0000*	0	0	0	0	0	00	00	00
22	22				0000380000*	0	0	0	0	0	00	00	00
23	23				0000700000*	0	0	0	0	0	00	00	00
24	24				0000E00000*	0	1	0	0	1	00	00	00
24	24				0001C00000*	0	0	0	0	0	00	00	00
26	26	0000000			0003800000*	0	0	0	0	0	00	00	00
20	20	0000000			0007000000*	0	0	0	0	0	00	00	00
28	28	0000000			000E000000*	0	0	0	0	0	00	00	00
29	29	0000000			001C000000*	0	0	0	0	0	00	00	00
30	30	0000000			0038000000*	0	0	0	0	0	00	00	00
31	31	0000000			0070000000*	0	0	0	0	0	00	0.0	00
32	32	0000000	00000001		00E0000000*	0	0	0	1	1	00	0.0	00
33	33	0000000	00000002		01C0000000*	0	0	0	1	1	00	0.0	00
34	34	0000000	00000004	000000000	0380000000*	0	0	0	1	1	00	0.0	00
35	35	0000000	0000008	000000000	0700000000*	0	0	0	0	0	00	0.0	00
36	36	0000000	00000010	000000000	0E00000000*	0	0	0	0	0	00	0 0	00
37	37	0000000	00000020	000000000	1C00000000*	0	0	0	0	0	00	0 0	00
38	38	0000000	00000040	000000000	3800000000*	0	0	0	0	0	00	0 0	00
39	39	0000000	00000080	000000000	7000000000*	0	0	0	0	0	00	0 0	00
						======							
			-	on Combiner									
40	1				6000000001	0	0	0	0	0	00	00	00
41	2	0000000	00000200	000000000	400000003	0	0	0	0	0	00	0 0	00
42	3	0000000	00000400	000000000	0000000007	0	0	0	0	0	00	0 0	00
43	4	0000000	00000800	000000000	000000000E	0	0	0	0	0	00	0 0	00
44	5	0000000	00001001	000000000	000000001D	0	0	0	0	0	00	0 0	00
45	6	0000000	00002002	000000000	00000003B	0	0	0	0	0	00	0 0	00
46	7	0000000	00004004	000000000	000000077	0	0	0	0	0	00	0 0	00
47	8	0000000	00008008	000000000	0000000EE	0	0	0	0	0	00	0 0	00
48	9	0000000	00010011	000000000	0000001DD	0	0	0	0	0	00	0 0	00
49	10	0000000	00020022	000000000	0000003BB	0	0	0	0	0	00	0 0	00
50	11	0000000	00040044	000000000	0000000777	0	0	0	0	0	00	0 0	00
51	12	0000000	00080088	000000000	0000000EEE	0	0	0	0	0	00	0 0	00
52	13	0000000	00100110	000000000	0000001DDD	0	0	0	0	0	00	0 0	00
53	14	0000000	00200220	000000000	000003BBB	0	0	0	0	0	00	0 0	00
54	15	0000000	00400440	000000000	0000007777	0	0	0	0	0	00	0 0	00
55	16	0000000	00800880	000000000	000000EEEE	0	1	0	0	1	00	0 0	00
56	17	0000000	01001100	000000000	000001DDDD	0	0	0	0	0	00	0 0	00
57	18	0000000	02002200	000000000	000003BBBB	0	0	0	0	0	00	0 0	00
58	19	0000000	04004400	000000000	0000077777	0	0	0	0	0	00	0 0	00
59	20	0000000	08008800	000000000	00000EEEEE	0	0	0	0	0	00	0 0	00
60	21	0000000	10011000	000000000	00001DDDDD	0	0	0	0	0	00	0 0	00

61	22	0000000	20022000	000000000	00003BBBBB	0	0	0	0	0	00	0 0	00
62	23	0000000	40044000	000000000	0000777777	0	0	0	0	0	00	0 0	00
63	24	0000000	00088001	000000000	0000EEEEEE	0	0	0	0	0	00	0 0	00
64	25	0000000	00110003	000000000	0001DDDDDD	0	0	0	0	0	00	0 0	00
65	26	0000000	00220006	000000000	0003BBBBBB	0	0	0	0	0	00	0 0	00
66	27	0000000	0044000C	000000000	0007777777	0	0	0	0	0	00	0 0	00
67	28	0000000	00880018	000000000	000EEEEEE	0	1	0	0	1	00	0 0	00
68	29	0000000	01100031	000000000	001DDDDDDC	0	0	0	0	0	00	0 0	00
69	30	0000000	02200062	000000000	003BBBBBB8	0	0	0	0	0	00	0 0	00
70	31	0000000	044000C4	000000000	0077777770	0	0	0	0	0	00	0 0	00
71	32	0000000	08800188	000000000	00EEEEEE0	0	1	0	1	0	01	0 0	00
72	33	0000000	11000311	000000000	01DDDDDDC1	0	0	0	1	0	00	01	00
73	34	0000000	22000622	000000000	03BBBBBB83	0	0	0	1	1	11	0 0	01
74	35	0000000	44000C44	000000000	077777707	0	0	0	0	1	10	11	00
75	36	0000000	08001888	000000000	OEEEEEEOE	0	0	0	1	1	01	10	11
76	37	0000000	10003111	000000000	1DDDDDDC1D	0	0	0	1	0	01	01	10
77	38	0000000	20006222	000000000	3BBBBBB83B	0	0	0	1	0	11	01	01
78	39	0000000	4000C444	000000000	7777777077	0	0	0	0	1	01	11	01
79	40	0000000	00018888	000000000	6EEEEE0EF	0	0	0	1	0	10	01	11
80	41	0000000	00031110	000000000	5DDDDDC1DE	0	0	0	1	1	00	10	01
81	42	0000000	00062220	000000000	3BBBBB83BC	0	0	0	1	1	01	0 0	10
82	43	0000000	000C4440	000000000	7777770779	0	0	0	0	1	01	01	00
83	44	0000000	00188880	000000000	6EEEEE0EF2	0	0	0	1	0	11	01	01
84	45	0000000	00311100	000000000	5DDDDC1DE5	0	0	0	1	0	10	11	01
85	46	0000000	00622200	000000000	3BBBB83BCB	0	0	0	1	1	01	10	11
86	47	0000000	00C44400	000000000	7777707797	0	1	0	0	0	01	01	10
87	48	0000000	01888801	000000000	6EEEE0EF2F	0	1	0	1	1	11	01	01
88	49	0000000	03111003	000000000	5DDDC1DE5E	0	0	0	1	0	10	11	01
89	50	0000000	06222006	000000000	3BBB83BCBC	0	0	0	1	1	01	10	11
90	51	0000000	0C44400C	000000000	7777077979	0	0	0	0	1	00	01	10
91	52	0000000	18888018	000000000	6EEE0EF2F2	0	1	0	1	0	10	00	01
92	53	0000000	31110030	000000000	5DDC1DE5E5	0	0	0	1	1	11	10	00
93	54	0000000	62220060	000000000	3BB83BCBCB	0	0	0	1	0	00	11	10
94	55	0000000	444400C1	000000000	7770779797	0	0	0	0	0	10	00	11
95	56	0000000	08880183	000000000	6EE0EF2F2F	0	1	0	1	0	00	10	00
96	57	0000000	11100307	000000000	5DC1DE5E5F	0	0	0	1	1	01	00	10
97	58	0000000	2220060E	000000000	3B83BCBCBF	0	0	0	1	0	00	01	00
98	59	0000000	44400C1C	000000000	770779797E	0	0	0	0	0	11	00	01
99	60	0000000	08801838	000000000	6E0EF2F2FC	0	1	0	0	0	01	11	00
100	61 62	0000000	11003070	000000000	5C1DE5E5F8	0	0	0	0	1	11	01	11
101 102	63	0000000	220060E0 4400C1C0	000000000000000000000000000000000000000	383BCBCBF0 70779797E0	0	0	0	0	1	01 11	11 01	01 11
102	64	0000000	08018380	0000000000	60EF2F2FC1	0	0	0	1	1	10	11	01
103	65	0000000	10030701	0000000000	41DE5E5F82	0	0	0	1	1	01	10	11
104	66	0000000	20060E02	0000000000	03BCBCBF04	0	0	0	1	0	01	01	10
105	67	0000000	400C1C05	0000000000	0779797E09	0	0	0	0	1	10	01	01
107	68	0000000	40001003	0000000000	0F2F2FC12	0	0	0	1	1	00	10	01
108	69	0000000	00307015	0000000000	1DE5E5F825	0	0	0	1	1	01	00	10
109	70	0000000	0060E02A	0000000000	3BCBCBF04B	0	0	0	1	0	00	01	00
110	71	0000000	00C1C055	0000000000	779797E097	0	1	0	1	0	10	00	01
111	72	0000000	018380AA	0000000000	6F2F2FC12F	0	1	0	0	1	11	10	00
112	73	0000000	03070154	0000000000	5E5E5F825E	0	0	0	0	1	11	11	10
113	74	0000000	060E02A8	0000000000	3CBCBF04BC	0	0	0	1	0	11	11	11
114	75	0000000	0C1C0550	0000000000	79797E0979	0	0	0	0	1	00	11	11
115	76	0000000	18380AA0	0000000000	72F2FC12F2	0	0	0	1	1	10	00	11
116	77	0000000	30701541	000000000	65E5F825E5	0	0	0	1	1	11	10	00
117	78	0000000	60E02A82	000000000	4BCBF04BCB	0	1	0	1	1	00	11	10

Sam	nple Da	ata										B	luetooth®
118	79	0000000	41C05505	000000000	1797E09796	0	1	0	1	0	11	00	11
119	80	0000000	0380AA0A	000000000	2F2FC12F2C	0	1	0	0	0	01	11	00
120	81	0000000	07015415	000000000	5E5F825E59	0	0	0	0	1	11	01	11
121	82	0000000	0E02A82A	000000000	3CBF04BCB2	0	0	0	1	0	10	11	01
122	83	0000000	1C055054	000000000	797E097964	0	0	0	0	0	01	10	11
123	84	0000000	380AA0A8	000000000	72FC12F2C9	0	0	0	1	0	01	01	10
124	85	0000000	70154151	000000000	65F825E593	0	0	0	1	0	11	01	01
125	86	0000000	602A82A3	000000000	4BF04BCB26	0	0	0	1	0	10	11	01
126	87	0000000	40550546	000000000	17E097964C	0	0	0	1	1	01	10	11
127	88	0000000	00AA0A8D	000000000	2FC12F2C99	0	1	0	1	1	01	01	10
128	89	0000000	0154151A	000000000	5F825E5932	0	0	0	1	0	11	01	01
129	90	0000000	02A82A34	000000000	3F04BCB264	0	1	0	0	0	10	11	01
130	91	0000000	05505468	000000000	7E097964C9	0	0	0	0	0	01	10	11
131	92	0000000	0AA0A8D0	000000000	7C12F2C992	0	1	0	0	0	01	01	10
132	93	0000000	154151A1	000000000	7825E59324	0	0	0	0	1	10	01	01
133	94	0000000	2A82A342	000000000	704BCB2648	0	1	0	0	1	00	10	01
134	95	0000000	55054684	000000000	6097964C91	0	0	0	1	1	01	0 0	10
135	96	0000000	2A0A8D09	000000000	412F2C9923	0	0	0	0	1	01	01	00
136	97	0000000	54151A12	000000000	025E593246	0	0	0	0	1	10	01	01
137	98	0000000	282A3424	000000000	04BCB2648D	0	0	0	1	1	00	10	01
138	99	0000000	50546848	000000000	097964C91A	0	0	0	0	0	01	0 0	10
139	100	0000000	20A8D090	000000000	12F2C99235	0	1	0	1	1	00	01	00
140	101	0000000	4151A120	000000000	25E593246A	0	0	0	1	1	11	00	01
141	102	0000000	02A34240	000000000	4BCB2648D5	0	1	0	1	1	01	11	00
142	103	0000000	05468481	000000000	17964C91AB	0	0	0	1	0	10	01	11
143	104	0000000	0A8D0903	000000000	2F2C992357	0	1	0	0	1	00	10	01
144	105	0000000	151A1206	000000000	5E593246AE	0	0	0	0	0	01	0.0	10
145	106	0000000	2A34240C	000000000	3CB2648D5C	0	0	0	1	0	0.0	01	00
146	107	0000000	54684818	0000000000	7964C91AB8	0	0	0	0	0	11	0.0	01
147	108	0000000	28D09030	000000000	72C9923571	0	1	0	1	1	01	11	00
148	109	0000000	51A12060	000000000	6593246AE2	0	1	0	1	1	10	01	11
149	110	0000000	234240C0	000000000	4B2648D5C5	0	0	0	0	0	00	10	01
150	111	0000000	46848180	000000000	164C91AB8A	0	1	0	0	1	01	0.0	10
151	112	0000000	0D090301	000000000	2C99235714	0	0	0	1	0	00	01	00
152	113	0000000	1A120602	000000000	593246AE28	0	0	0	0	0	11	0.0	01
153	114	0000000	34240C04	000000000	32648D5C51	0	0	0	0	1	10	11	00
154	115	0000000			64C91AB8A2	0	0	0	1	1	01	10	11
155	116	0000000	50903012		4992357144	0	1	0	1	1	01	01	10
156	117	0000000	21206024		13246AE288	0	0	0	0	1	10	01	01
157	118	0000000			2648D5C511	0	0	0	0	0	00	10	01
158	119	0000000			4C91AB8A23	0	1	0	1	0	00	00	10
159	120	0000000			1923571446	0	0	0	0	0	00	00	00
160	120	0000000	12060240		3246AE288D	0	0	0	0	0	00	00	00
161	121	0000000	240C0480		648D5C511B	0	0	0	1	1	00	00	00
162	122	0000000			491AB8A237	0	0	0	0	0	00	00	00
163	123	0000000	10301200		123571446F	0	0	0	0	0	00	00	00
164	125	0000000	20602400		246AE288DF	0	0	0	0	0	00	00	00
165	125	0000000			48D5C511BE	0	1	0	1	0	01	00	00
166	120	0000000			11AB8A237D	0	1	0	1	1	00	01	00
167	128	0000000			23571446FA	0	0	0	0	0	11	00	01
168	120	0000000	06024004		46AE288DF5	0	0	0	1	0	01	11	00
169	130	0000000	0C048008	0000000000		0	0	0	0	1	11	01	11
170	130	0000000	18090011		1AB8A237D5	0	0	0	1	1	10	11	01
171	131	0000000	30120022		3571446FAA	0	0	0	0	0	01	10	11
172	133	0000000	60240044		6AE288DF55	0	0	0	1	0	01	01	10
172	134	0000000	40480089	0000000000		0	0	0	1	0	11	01	01
174	134	0000000	00900113	0000000000	2B8A237D54	0	1	0	1	1	10	11	01
1/4	CCT	0000000	00200113	000000000000000000000000000000000000000	200A23/D34	U	Ŧ	U	Ŧ	Ť	τU	ΤT	0 T

175	136	0000000	01200227	000000000	571446FAA8	0	0	0	0	0	01	10	11
176	137	0000000	0240044E	000000000	2E288DF550	0	0	0	0	1	00	01	10
177	138	0000000	0480089C	000000000	5C511BEAA0	0	1	0	0	1	11	00	01
178	139	0000000	09001138	000000000	38A237D540	0	0	0	1	0	01	11	00
179	140	0000000	12002270	000000000	71446FAA81	0	0	0	0	1	11	01	11
180	141	0000000	240044E0	000000000	6288DF5503	0	0	0	1	0	10	11	01
181	142	0000000	480089C0	000000000	4511BEAA06	0	0	0	0	0	01	10	11
182	143	0000000	10011381	000000000	0A237D540D	0	0	0	0	1	00	01	10
183	144	0000000	20022702	000000000	1446FAA81A	0	0	0	0	0	11	00	01
184	145	0000000	40044E04	000000000	288DF55035	0	0	0	1	0	01	11	00
185	146	0000000	00089C08	000000000	511BEAA06A	0	0	0	0	1	11	01	11
186	147	0000000	00113810	000000000	2237D540D5	0	0	0	0	1	01	11	01
187	148	0000000	00227021	000000000	446FAA81AA	0	0	0	0	1	11	01	11
188	149	0000000	0044E042	000000000	08DF550355	0	0	0	1	0	10	11	01
189	150	0000000	0089C085	000000000	11BEAA06AA	0	1	0	1	0	10	10	11
190	151	0000000	0113810A	000000000	237D540D54	0	0	0	0	0	10	10	10
191	152	0000000	02270215	000000000	46FAA81AA9	0	0	0	1	1	10	10	10
192	153	0000000	044E042A	000000000	0DF5503553	0	0	0	1	1	10	10	10
193	154	0000000	089C0854	000000000	1BEAA06AA7	0	1	0	1	0	01	10	10
194	155	0000000	113810A8	000000000	37D540D54E	0	0	0	1	0	01	01	10
195	156	0000000	22702150	000000000	6FAA81AA9D	0	0	0	1	0	11	01	01
196	157	0000000	44E042A0	000000000	5F5503553A	0	1	0	0	0	10	11	01
197	158	0000000	09C08540	000000000	3EAA06AA75	0	1	0	1	0	10	10	11
198	159	0000000	13810A80	000000000	7D540D54EA	0	1	0	0	1	10	10	10
199	160	0000000	27021500	000000000	7AA81AA9D5	0	0	0	1	1	10	10	10
200	161	0000000	4E042A00	000000000	75503553AB	0	0	0	0	0	10	10	10
201	162	0000000	1C085400	000000000	6AA06AA756	0	0	0	1	1	10	10	10
202	163	0000000	3810A800	000000000	5540D54EAC	0	0	0	0	0	10	10	10
203	164	0000000	70215000	000000000	2A81AA9D58	0	0	0	1	1	10	10	10
204	165	0000000	6042A001	000000000	5503553AB0	0	0	0	0	0	10	10	10
205	166	0000000	40854002	000000000	2A06AA7561	0	1	0	0	1	10	10	10
206	167	0000000	010A8004	000000000	540D54EAC3	0	0	0	0	0	10	10	10
207	168	0000000	02150009	000000000	281AA9D586	0	0	0	0	0	10	10	10
208	169	0000000	042A0012	000000000	503553AB0C	0	0	0	0	0	10	10	10
209	170	0000000	08540024	000000000	206AA75618	0	0	0	0	0	10	10	10
210	171	0000000	10A80048	000000000	40D54EAC30	0	1	0	1	0	01	10	10
211	172	0000000	21500091	000000000	01AA9D5861	0	0	0	1	0	01	01	10
212	173	0000000	42A00122	000000000	03553AB0C3	0	1	0	0	0	11	01	01
213	174	0000000	05400244	000000000	06AA756186	0	0	0	1	0	10	11	01
214	175	0000000	0A800488	000000000	0D54EAC30D	0	1	0	0	1	01	10	11
215	176	0000000	15000911	000000000	1AA9D5861A	0	0	0	1	0	01	01	10
216	177	0000000	2A001223	000000000	3553AB0C35	0	0	0	0	1	10	01	01
217	178	0000000	54002446	000000000	6AA756186A	0	0	0	1	1	00	10	01
218	179	0000000	2800488D	000000000	554EAC30D5	0	0	0	0	0	01	00	10
219	180	0000000	5000911B	000000000	2A9D5861AA	0	0	0	1	0	00	01	00
220	181	0000000	20012236	000000000	553AB0C355	0	0	0	0	0	11	00	01
221	182	0000000	4002446C	000000000	2A756186AA	0	0	0	0	1	10	11	00
222	183	0000000	000488D9	000000000	54EAC30D54	0	0	0	1	1	01	10	11
223	184	0000000	000911B2	000000000	29D5861AA8	0	0	0	1	0	01	01	10
224	185	0000000	00122364	000000000	53AB0C3550	0	0	0	1	0	11	01	01
225	186	0000000	002446C8	000000000	2756186AA0	0	0	0	0	1	01	11	01
226	187	0000000	00488D90	000000000	4EAC30D540	0	0	0	1	0	10	01	11
227	188	0000000	00911B20	000000000	1D5861AA81	0	1	0	0	1	00	10	01
228	189	0000000	01223640	000000000	3AB0C35502	0	0	0	1	1	01	00	10
229	190	0000000	02446C80	000000000	756186AA05	0	0	0	0	1	01	01	00
230	191	0000000	0488D901	000000000	6AC30D540B	0	1	0	1	1	11	01	01
231	192	0000000	0911B203	000000000	55861AA817	0	0	0	1	0	10	11	01

						-							
Sample Data Bluetooth													luetooth®
232	193	0000000	12236407	000000000	2B0C35502F	0	0	0	0	0	01	10	11
233	194	0000000	2446C80E	000000000	56186AA05F	0	0	0	0	1	00	01	10
234	195	0000000	488D901C	000000000	2C30D540BF	0	1	0	0	1	11	0 0	01
235	196	0000000	111B2039	000000000	5861AA817E	0	0	0	0	1	10	11	00
236	197	0000000	22364072	000000000	30C35502FD	0	0	0	1	1	01	10	11
237	198	0000000	446C80E4	000000000	6186AA05FB	0	0	0	1	0	01	01	10
238	199	0000000	08D901C8	000000000	430D540BF6	0	1	0	0	0	11	01	01
239	200	0000000	11B20391	000000000	061AA817EC	0	1	0	0	0	10	11	01
	= 3D												
	= C1												
	= F0												
	= BB												
	= 58 = 1E												
	= 42												
	= 42												
	= 4B												
	= 8E												
Z[10]	= C1												
Z[11]	= 2A												
Z[12]	= 40												
Z[13]	= 63												
Z[14]	= 7A												
Z[15]	= 1E												
													======
	KC.												
	Ho			to the LFSR		lculat	e r	new	C[t]	-11 a	ınd Z	values	
	Но	ld content			r regs and ca	lculat	e r	new	C[t+	-1] a	ind Z	values	
		ld content				lculat	e r.	1ew ====	C[t+	1] a	ind Z	values	
LFSR1	<= 04	ld content				lculat	.e r. ====	1ew ====	C[t+	-1] a	und Z	values	
LFSR1 LFSR2	<= 04	ld content ======= 4B583D				lculat =====	.e r.	1ew 	C[t+	-1] a	ind Z	values	
LFSR1 LFSR2 LFSR3	<pre><= 04 <= 20 <= 00</pre>	ld content 4B583D 08E1EC1				lculat =====	.e r.	1ew	C[t+	-1] a	und Z	values	
LFSR1 LFSR2 LFSR3 LFSR4	<pre><= 04 <= 20 <= 00</pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB				lculat =====	:e r. :===	1ew ====	C[t+	-1] a	und Z	values	
LFSR1 LFSR2 LFSR3 LFSR4	<pre><= 04 <<= 20 <<= 00 <<= 01</pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB				lculat	e r.	1ew	C[t+	-1] a	und Z	values	
LFSR1 LFSR2 LFSR3 LFSR4	<pre>< = 04 < <= 20 < <= 00 < <= 01] <= 10</pre>	ld content 48583D 08E1EC1 63C142F0 F7A2A42BB 0	of Summat	ion Combine	r regs and ca						und Z 	values	
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1	<pre>. <= 04 . <= 20 . <= 00 . <= 01 .] <= 10</pre>	ld content 48583D 08E1EC1 63C142F0 F7A2A42BB 0 merating 1	of Summat	ion Combine	r regs and ca	====== ion se	:====						
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240	<pre> <= 04 <= 20 <= 01 <= 10 Ger 1</pre>	ld content 48583D 08E1EC1 63C142F0 F7A2A42BB 0 nerating 1 enerating 1 04B583D	of Summat 25 key sym 208E1EC1	ion Combine	r regs and ca ption/decrypt 0F7A2A42BB	====== ion se ======	:=== :que :==== 1	 ence 	-==== 2) -==== 0	 0	 10		01
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241	<pre> <= 04 <= 20 <= 00 <= 01 <= 10 Gen 1 2</pre>	ld content 48583D 08E1EC1 63C142F0 F7A2A42BB 0 nerating 1 04B583D 096B07A	of Summat 25 key sym 208E1EC1 411C3D82	ion Combine 	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577	 ion se 0 1	:==== :que :==== 1 0	 ence 0 1) 0 1	 0 1	 10 10	 11 10	01 11
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242	<pre> <= 04 <= 26 <= 26 <= 06 <= 01 <= 10 Gen 1 2 3</pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 nerating 1 04B583D 096B07A 12D60F4	of Summat 25 key sym 208E1EC1 411C3D82 02387B04	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF	 ion se 0 1 0	:==== :que :==== 1 0 0	 ence 0 1 1	<pre>>) 0 1 1</pre>	0 1 0	 10 10 01	11 10 10	01 11 10
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243	<pre> <= 04 <= 20 <= 06 <= 01 <= 10 Gen 1 2 3 4</pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9	25 key sym 208E1EC1 411C3D82 02387B04 0470F609	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF		:==== :que :==== 1 0 0 0	===== ence ===== 0 1 1 0	0 1 1	0 1 0	10 10 01	11 10 10 01	01 11 10 10
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244	<pre> <= 04 <= 20 <= 06 <= 01 <= 10 Gen 1 2 3 4 5</pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2	25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF	 ion se 0 1 0 0 1	==== eque ==== 1 0 0 1	 ence 0 1 1 0 0	e) 0 1 1 1 1	0 1 0 0	10 10 01 00	11 10 10 01 01	01 11 10 10 01
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245	<pre> <= 04 <= 20 <= 06 <= 01 <= 10 Gen 1 2 3 4</pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18	rr regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E	ion se 0 1 0 1 0	==== eque ==== 1 0 0 1 1	===== ence ==== 0 1 1 0 0 0	0 1 1	0 1 0	10 10 01	11 10 10 01	01 11 10 10
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244	<pre> <= 04 <= 20 <= 00 <= 01 <= 10 Ger 1 2 3 4 5 6</pre>	ld content 48583D 08E1EC1 63C142F0 F7A2A42BB 0 nerating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B	25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF	 ion se 0 1 0 0 1	==== eque ==== 1 0 0 1	 ence 0 1 1 0 0	0 1 1 1 0	0 1 0 0 1 0 1	10 10 01 00 11	11 10 10 01 00	01 11 10 10 01 01 01
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246	<pre></pre>	ld content 48583D 08E1EC1 63C142F0 F7A2A42BB 0 enerating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860	rr regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD	ion se 0 1 0 1 0 1 1 0	:==== eque 1 0 0 1 1 1	ence 0 1 0 0 0 1	0 1 1 1 0 1	0 1 0 0 1 1 1	10 10 01 01 00 11 00	11 10 10 01 00 11	01 11 10 10 01 01 01 00
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246 247	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860 1C142F0C0	rr regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA	ion se 0 1 0 1 0 1 1 1	eque eque 1 0 0 1 1 1 0	ence 0 1 0 0 0 1 1 1 0 0	0 1 1 1 0 1 0	0 1 0 0 1 1 0 0	10 10 01 00 11 00 11	11 10 01 01 00 11 00	01 11 10 10 01 01 01 00 11
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246 247 248	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9 0E583D2 16B07A5 0D60F4B 1AC1E97 1583D2E 0B07A5D	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860 1C142F0C0 18285E181	rr regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA 7A2A42BBF4	 ion se 0 1 0 1 0 1 1 0 1 0	==== 2 0 0 1 1 1 0 0	ence 0 1 0 0 1 1 1 1 1 1	0 1 1 1 0 1 0 0	0 1 0 0 1 1 0 0 0 1 1 0 0	10 10 01 00 11 00 11 00 11 00	11 10 01 01 00 11 00 11	01 11 10 10 01 01 01 00 11 00
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 244 245 246 247 248 249	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 herating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E 0B07A5D 160F4BB	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860 1C142F0C0 18285E181 1050BC302	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA 7A2A42BBF4 7A2A42BBF4 7A2A42BBF4 7A548577E9	ion se 0 1 0 1 0 1 1 0 1 1 1 0	<pre>:==== :que :==== 1 0 0 1 1 1 1 0 0 0</pre>	<pre></pre>	0 1 1 0 1 0 0 0 0 0	0 1 0 0 1 1 0 0 1 1	10 10 01 00 11 00 11 01 11 01 10	11 10 10 01 01 00 11 00 11 00 11 00	01 11 10 10 01 01 01 00 11 00 11
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246 247 248 249 250	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E 0B07A5D 160F4BB 0C1E976	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7 70F609EE	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860 1C142F0C0 18285E181 1050BC302 00A178605	rr regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA 7A2A42BBF4 7A2A42BBF4 7A548577E9 68A90AEFD2		eque eque 1 0 0 1 1 1 0 0 0 0 0 0 0 0	ence 0 1 0 0 1 1 1 1 1 1	0 1 1 0 1 0 0 0 0 0 0	0 1 0 0 1 1 0 0 1 1 0 0 1 1	10 10 01 00 11 00 11 00 11 00 11 00	11 10 10 01 01 00 11 00 11 00 11 01 10	01 11 10 01 01 01 01 00 11 00 11 00
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246 247 248 249 250 251	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 4B583D 096B07A 12060F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E 0B07A5D 160F4BB 0C1E976 183D2ED 107A5DA	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7 70F609EE 61EC13DD 43D827BA	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860 1C142F0C0 18285E181 1050BC302 00A178605 0142F0C0B 0285E1817	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 7TA2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA 7A2A42BBF4 7A548577E9 68A90AEFD2 515215DFA5 22A42BBF4B 4548577E97	ion se 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1	===== eque ===== 1 0 0 1 1 1 0 0 0 0 0 1	 ence 0 1 1 0 0 0 1 1 1 1 0 0	0 1 1 0 1 0 0 0 0 1 0 0 0	0 1 0 1 1 0 0 1 1 0 0 1 1 0 0	10 10 01 00 11 00 11 00 11 00 11 00 00 0	11 10 01 01 00 11 00 11 00 11 01 01 01 0	01 11 10 10 01 01 01 00 11 00 11 00 11 01 10
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E 0B07A5D 160F4BB 0C1E976 183D2ED 107A5DA 00F4BB4	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7 70F609EE 61EC13DD 43D827BA 07B04F74	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860 1C142F0C0 18285E181 1050BC302 00A178605 0142F0C0B 0285E1817 050BC302F	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA 7A2A42BBF4 7A548577E9 68A90AEFD2 515215DFA5 22A42BBF4B 4548577E97 0A90AEFD2E	======= ion se ====== 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0	<pre>eque cque cque l l l l l l l l l l l l l l l l l l l</pre>	ence once 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0	0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0	0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0	10 10 10 01 00 11 00 11 00 11 00 00 00 0	11 10 10 01 01 00 11 00 11 00 11 00 00 0	01 11 10 10 01 01 01 01 00 11 00 11 00 11 00 11 00 01
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 erating 1 04B583D 096B07A 12D60F4 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E 0B07A5D 160F4BB 0C1E976 183D2ED 107A5DA 00F4BB4 01E9769	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F7 470F609EE 0E1EC13D 1C3D827B 387B04F7 70F609EE 61EC13DD 43D827BA 07B04F74 0F609EE8	ion Combine bols (encry 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A17860 1C142F0C0 18285E181 1050BC302 0A178605E	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA 7A2A42BBF4 7A548577E9 68A90AEFD2 515215DFA5 22A42BBF4B 4548577E97 0A90AEFD2E 15215DFA5C	ion se 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0	<pre>eque eque 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0</pre>	ence 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1	0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	10 10 01 00 11 00 11 00 11 00 00 00 00 0	11 10 10 01 01 01 00 11 00 11 00 11 00 00	01 11 10 10 01 01 01 00 11 00 11 00 11 00 11 00 01 00 00
LFSR1 LFSR2 LFSR3 LFSR4 C[t+1 ====== 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254	<pre></pre>	ld content 4B583D 08E1EC1 63C142F0 F7A2A42BB 0 0 merating 1 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E 0B07A5D 160F4BB 0C1E976 183D2ED 107A5DA 00F4BB4	of Summat 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F7 470F609EE 0E1EC13D 1C3D827B 387B04F7 70F609EE 61EC13DD 43D827BA 07B04F74 0F609EE8 1EC13DD0	ion Combine bols (encry 063C142F0 063C142F0 0C78285E1 18F050BC3 11E0A1786 03C142F0C 078285E18 0F050BC30 1E0A178605 0142F0C0B 0285E1817 050BC302F 0A178605E 142F0C0BD	r regs and ca ption/decrypt 0F7A2A42BB 1EF4548577 3DE8A90AEF 7BD15215DF 77A2A42BBF 6F4548577E 5E8A90AEFD 3D15215DFA 7A2A42BBF4 7A548577E9 68A90AEFD2 515215DFA5 22A42BBF4B 4548577E97 0A90AEFD2E	======= ion se ====== 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0	<pre>sque eque 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1</pre>	ence ence 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0	0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0	10 10 10 01 00 11 00 11 00 11 00 00 00 0	11 10 10 01 01 00 11 00 11 00 11 00 00 0	01 11 10 10 01 01 01 01 00 11 00 11 00 11 00 11 00 01

258	19	0F4BB4F	7B04F740	10BC302F6	290AEFD2E5	1	0	0	0	0	01	11	00
259	20	1E9769F	7609EE80	0178605ED	5215DFA5CA	1	0	0	0	0	10	01	11
260	21	1D2ED3F	6C13DD01	02F0C0BDA	242BBF4B94	1	0	0	0	1	00	10	01
261	22	1A5DA7E	5827BA03	05E1817B4	48577E9729	1	0	0	0	1	01	0 0	10
262	23	14BB4FC	304F7407	0BC302F69	10AEFD2E53	0	0	1	1	1	00	01	00
263	24	09769F9	609EE80E	178605ED2	215DFA5CA7	1	1	0	0	0	10	0 0	01
264	25	12ED3F2	413DD01C	0F0C0BDA4	42BBF4B94F	0	0	1	1	0	00	10	00
265	26	05DA7E5	027BA038	1E1817B49	0577E9729F	0	0	1	0	1	01	0 0	10
266	27	0BB4FCA	04F74071	1C302F693	0AEFD2E53F	1	1	1	1	1	11	01	00
267	28	1769F95	09EE80E3	18605ED27	15DFA5CA7F	0	1	1	1	0	11	11	01
268	29	0ED3F2B	13DD01C6	10C0BDA4F	2BBF4B94FE	1	1	0	1	0	10	11	11
269	30	1DA7E56	27BA038D	01817B49F	577E9729FD	1	1	0	0	0	10	10	11
270	31	1B4FCAD	4F74071B	0302F693E	2EFD2E53FB	1	0	0	1	0	01	10	10
271	32	169F95B	1EE80E37	0605ED27D	5DFA5CA7F7	0	1	0	1	1	01	01	10
272	33	0D3F2B7	3DD01C6E	0C0BDA4FB	3BF4B94FEF	1	1	1	1	1	00	01	01
273	34	1A7E56F	7BA038DC	1817B49F6	77E9729FDE	1	1	1	1	0	01	0 0	01
274	35	14FCADF	774071B9	102F693ED	6FD2E53FBD	0	0	0	1	0	00	01	00
275	36	09F95BE	6E80E373	005ED27DB	5FA5CA7F7B	1	1	0	1	1	10	0 0	01
276	37	13F2B7C	5D01C6E7	00BDA4FB6	3F4B94FEF7	0	0	0	0	0	11	10	00
277	38	07E56F9	3A038DCE	017B49F6C	7E9729FDEE	0	0	0	1	0	00	11	10
278	39	0FCADF2	74071B9C	02F693ED8	7D2E53FBDD	1	0	0	0	1	10	0.0	11
279	40	1F95BE5	680E3738	05ED27DB0	7A5CA7F7BA	1	0	0	0	1	11	10	00
280	41	1F2B7CA	501C6E71	0BDA4FB60	74B94FEF74	1	0	1	1	0	01	11	10
281	42	1E56F94	2038DCE2	17B49F6C0	69729FDEE8	1	0	0	0	0	10	01	11
282	43	1CADF29	4071B9C4	0F693ED80	52E53FBDD1	1	0	1	1	1	11	10	01
283	44	195BE53	00E37389	1ED27DB01	25CA7F7BA3	1	1	1	1	1	01	11	10
284	45	12B7CA6	01C6E713	1DA4FB602	4B94FEF747	0	1	1	1	0	01	01	11
285	46	056F94C	038DCE26	1B49F6C04	1729FDEE8E	0	1	1	0	1	11	01	01
286	47	0ADF299	071B9C4D	1693ED808	2E53FBDD1C	1	0	0	0	0	10	11	01
287	48	15BE532	0E37389A	0D27DB011	5CA7F7BA38	0	0	1	1	0	10	10	11
288	49	0B7CA64	1C6E7135	1A4FB6022	394FEF7471	1	0	1	0	0	01	10	10
289	50	16F94C9	38DCE26A	149F6C044	729FDEE8E2	0	1	0	1	1	01	01	10
290	51	0DF2993	71B9C4D4	093ED8089	653FBDD1C4	1	1	1	0	0	00	01	01
291	52	1BE5327	637389A9	127DB0112	4A7F7BA388	1	0	0	0	1	11	0 0	01
292	53	17CA64E	46E71353	04FB60224	14FEF74710	0	1	0	1	1	01	11	00
293	54	0F94C9C	0DCE26A6	09F6C0448	29FDEE8E21	1	1	1	1	1	01	01	11
294	55	1F29939	1B9C4D4D	13ED80890	53FBDD1C42	1	1	0	1	0	00	01	01
295	56	1E53272	37389A9A	07DB01121	27F7BA3884	1	0	0	1	0	10	0 0	01
296	57	1CA64E5	6E713534	0FB602242	4FEF747108	1	0	1	1	1	00	10	00
297	58	194C9CB	5CE26A69	1F6C04485	1FDEE8E210	1	1	1	1	0	11	0 0	10
298	59	1299397	39C4D4D3	1ED80890A	3FBDD1C420	0	1	1	1	0	00	11	00
299	60	053272F	7389A9A6	1DB011214	7F7BA38840	0	1	1	0	0	11	0.0	11
300	61	0A64E5E	6713534C	1B6022428	7EF7471081	1	0	1	1	0	00	11	00
301	62	14C9CBD	4E26A699	16C044850	7DEE8E2102	0	0	0	1	1	10	0.0	11
302	63	099397A	1C4D4D32	0D80890A0	7BDD1C4205	1	0	1	1	1	00	10	00
303	64	13272F4	389A9A65	1B0112141	77BA38840B	0	1	1	1	1	00	0.0	10
304	65	064E5E8	713534CB	160224283	6F74710817	0	0	0	0	0	00	0.0	00
305	66	0C9CBD1	626A6997	0C0448507	5EE8E2102E	1	0	1	1	1	01	0.0	00
306	67	19397A3	44D4D32E	180890A0E	3DD1C4205C	1	1	1	1	1	11	01	00
307	68	1272F46	09A9A65D	10112141D	7BA38840B8	0	1	0	1	1	10	11	01
308	69	04E5E8C	13534CBA	00224283A	7747108171	0	0	0	0	0	01	10	11
309	70	09CBD19	26A69975	004485075	6E8E2102E3	1	1	0	1	0	10	01	10
310	71	1397A32	4D4D32EB	00890A0EA	5D1C4205C7	0	0	0	0	0	00	10	01
311	72	072F465	1A9A65D7	0112141D5	3A38840B8F	0	1	0	0	1	01	00	10
312	73	0E5E8CA	3534CBAF	0224283AA	747108171F	1	0	0	0	0	00	01	00
313	74	1CBD194	6A69975E	044850755	68E2102E3E	1	0	0	1	0	10	00	01
314	75	197A329	54D32EBC	0890A0EAB	51C4205C7D	1	1	1	1	0	01	10	00

315 76 1274653 29465D79 112141D56 2384088FA 0 1 0	Sam	nple Da	ata										🛞 B	luetooth®
317 76 08D194D 269975E5 0425075E5 02102E3E9 1 1 0 0 0 1 10 00 318 79 17A1294 4032E8C 090A0EME 124025C7D2 0 0 1 0 0 0 1 0	315	76	12F4653	29A65D79	112141D56	238840B8FA	0	1	0	1	1	01	01	10
319 79 17A329A 4D32EBCB 0000ABAB 1C4205C7D2 0	316	77	05E8CA6	534CBAF2	024283AAD	47108171F4	0	0	0	0	1	10	01	01
319 80 0P4633 1A65D79 12141D56D 3B40B8PAS 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>317</td> <td>78</td> <td>0BD194D</td> <td>269975E5</td> <td>04850755B</td> <td>0E2102E3E9</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>11</td> <td>10</td> <td>01</td>	317	78	0BD194D	269975E5	04850755B	0E2102E3E9	1	1	0	0	0	11	10	01
320 81 182AAA 34CBAP2F 04283AAA 7108171F4B 1 1 1 0 0 1 11 01 321 82 1013405 697765F 065075584 6210223E97 1 1 0 0 0<	318	79	17A329A	4D32EBCB	090A0EAB6	1C4205C7D2	0	0	1	0	0	00	11	10
321 62 10194D5 69975E57 08075584 62102E3E97 1 1 1 1 0	319	80	0F46535	1A65D797	12141D56D	38840B8FA5	1	0	0	1	0	11	0 0	11
312 63 1.3.2.9.M. 5.3.2.B.C.F.F 1.0.0.0.A.D.B.G. 4.4.2.0.5.7.7.7 1.4.1.0.5.01 0.4.0.8.8.7.6.5.7 0.4.0.8.8.7.6.5.7 0.4.0.8.8.7.6.5.7 0.4.0.8.8.7.6.5.7 0.4.0.8.8.7.7.7 0.4.1.0.5.01 0.4.0.8.8.7.7.7 0.4.1.0.5.01 0.4.0.8.7.7.7 0.4.1.0.7.7.7 0.4.1.0.7 0.4.0.7	320	81	1E8CA6A	34CBAF2F	04283AADA	7108171F4B	1	1	0	0	1	01	11	00
323 84 1465355 265D797F 0141D56D 084088FASE 0	321	82	1D194D5	69975E5F	0850755B4	62102E3E97	1	1	1	0	0	01	01	11
324 85 08CA6AB 4CBAF2FF 023BAADA 108171F4BC 1 1 0 <	322	83	1A329AA	532EBCBF	10A0EAB68	44205C7D2F	1	0	0	0	0	11	01	01
325 86 1194D5 1975EFF 05075E45 2102E3E979 0 <	323	84	1465355	265D797F	0141D56D1	0840B8FA5E	0	0	0	0	1	01	11	01
326 67 0329AD 32BECFF 0A0EAB66A 420SC7D2F3 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0	324	85	08CA6AB	4CBAF2FF	0283AADA2	108171F4BC	1	1	0	1	0	01	01	11
327 68 065355A 65D797FF 141D56D14 04086FA5E7 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0	325	86	1194D56	1975E5FF	050755B45	2102E3E979	0	0	0	0	1	10	01	01
328 89 OCA6AB4 4BAP2FFF 093ADA23 08171F4BCF 1 1 1 1 1 1 1 1 1 1 00 11 329 90 194D563 175ESFFF 1075BA450 102E3B979E 1 0	326	87	0329AAD	32EBCBFF	0A0EAB68A	4205C7D2F3	0	1	1	0	0	11	10	01
329 90 1940569 175ESFF 1075ES450 1022B3P79E 1 0	327	88	065355A	65D797FF	141D56D14	040B8FA5E7	0	1	0	0	0	00	11	10
330 91 129AAD3 28ECEFFF 00EAB68A1 205C7D2F3C 0 1 0 0 10 01 11 331 92 05355A 5D797FFF 01D5CD142 408BFASE78 0 0 0 00 <td>328</td> <td>89</td> <td>0CA6AB4</td> <td>4BAF2FFF</td> <td>083AADA28</td> <td>08171F4BCF</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>11</td> <td>0 0</td> <td>11</td>	328	89	0CA6AB4	4BAF2FFF	083AADA28	08171F4BCF	1	1	1	0	1	11	0 0	11
331 92 05355A6 5D797FFF 01565D142 4089FA5E76 0	329	90	194D569	175E5FFF	10755B450	102E3E979E	1	0	0	0	0	01	11	00
332 93 0A6AB4D 3AP2FFFE 03AAD285 0171F4BCF1 1 1 0 0 00 10 333 94 14D569B 75ESFFFD 0755B450A 023E979E2 0 1 0 1 00 00 334 95 09AAD37 6CCPFFA 0EAB66A15 05C7D2F3C4 1 1 1 0 0 0 1 0 1 0 11 01 00 336 96 1355A6E 5797FF4 1D56D142A 0BFAD57823 0 <td>330</td> <td>91</td> <td>129AAD3</td> <td>2EBCBFFF</td> <td>00EAB68A1</td> <td>205C7D2F3C</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>10</td> <td>01</td> <td>11</td>	330	91	129AAD3	2EBCBFFF	00EAB68A1	205C7D2F3C	0	1	0	0	0	10	01	11
333 94 14D5698 7SESFFFD 075SB450. 0223P37922 0 1 0 1 0 1 0 1 0 0 0 334 95 09AAD37 6BCBFFA 0EAB68A15 05C7D2F3C4 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1	331	92	05355A6	5D797FFF	01D56D142	40B8FA5E78	0	0	0	1	1	00	10	01
334 95 09AAD37 6BCEFFFA 0EAB68A15 05C7D2F3C4 1	332	93	0A6AB4D	3AF2FFFE	03AADA285	0171F4BCF1	1	1	0	0	0	00	0 0	10
335 96 1355A6E 5797FFF4 1D56D142A 0B8FA5E78B 0 1 1 1 11 11 11 336 97 06AB4DC 2P2FFE8 1AADA2854 171F4BCF11 0 0 0 0 1 11 11 11 337 98 0D569B8 SESFFFD 155B450A 2E3E979E23 1 0 0 0 1 1 11 11 338 99 1AAD370 3CBFFR1 0AB68153 5C7D2F3C46 1 1 1 0 10 0 </td <td>333</td> <td>94</td> <td>14D569B</td> <td>75E5FFFD</td> <td>0755B450A</td> <td>02E3E979E2</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>01</td> <td>0 0</td> <td>00</td>	333	94	14D569B	75E5FFFD	0755B450A	02E3E979E2	0	1	0	1	0	01	0 0	00
336 97 06AB4DC 2F2FFFE 1AADA2854 171F4BCF11 0 0 1 0 0 1 11 11 11 337 98 0D569B8 ES5FFFD 155B450A9 2E3E979E23 1 0 0 0 10 11 11 11 338 99 1AAD370 3CBFFA1 0AB68A153 SCTD2F3C46 1 1 1 1 10 0 0 1 1 1 10 11 10 11 10 10 11 10 10 11 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11	334	95	09AAD37	6BCBFFFA	0EAB68A15	05C7D2F3C4	1	1	1	1	1	11	01	00
337 98 0D569B8 5E5FFFD0 155B450A9 2E3E979E23 1 0 0 0 11 11 11 338 99 1AAD370 3CBFFFA1 0AB68A153 5C7D2F3C46 1 1 1 0 0 10 10 11 11 340 101 0AB4DC0 72FFE87 0AD2854E 71F4ECF11B 1 1 1 1 1 1 1 1 10 01 01 10 11 10 01 341 102 1569B81 65FFF00 158450A9 638979E236 0 1 1 1 10 01 11 10 01 342 103 0AD3703 4BFFA1 0B68A153B 47D2F3C46C1 1 1 1 0 11 10 01 11 10 01 11 10 01 11 10 01 11 10 01 11 10 01 11 10 01 11 10 01 11 10 01 11	335	96	1355A6E	5797FFF4	1D56D142A	0B8FA5E788	0	1	1	1	0	11	11	01
338 99 1AAD370 3CEFFFA1 0AB68A153 5C7D2F3C46 1 1 1 0 0 10 11 11 339 100 155A6E0 797FF43 15GD142A7 38FA5E788D 0 0 0 1 1 0 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11 10 11 11 10 11 11 10 11	336	97	06AB4DC	2F2FFFE8	1AADA2854	171F4BCF11	0	0	1	0	0	11	11	11
339100155AÉE797FFF43156D142A738FA5E78BD0000111010113401010AB4DC72FFE870ADA2854E71F4BCF11B11111100101013411021569B365FFFD0E15B450A9D63E979E2360111100111101110113421030AD37034BFFFA1C0B68A153B47D293C46C111111001111001111110111110111111101111101111111110111111101111111011111111101111111011111111111110111	337	98	0D569B8	5E5FFFD0	155B450A9	2E3E979E23	1	0	0	0	0	11	11	11
3401010AB4DC072FFF870ADA2854E71F4BCF11B11<	338	99	1AAD370	3CBFFFA1	0AB68A153	5C7D2F3C46	1	1	1	0	0	10	11	11
341102156988165FFFDDE15B450A9D63E979E236010101110013421030AD37034BFFFA1C0B68A153B47D2F3C46C11111101110111034310415A6E0717FFF43B16D142A760FA5E78B1B01111110011110013441050B4DC0F2FFFB8700DA2854EC1F4BCF11B011111001111001345106169B1F5FFFD0E11B450A9DB3E979E236001110011110013461070D3703F3FFFA1C3168A153B07D2F3C46C111100111100134810914DC0FD7FF870C1A2854EC74BCF11B07011100111100134911009B81FB7FD0E191450A9D86979E2360E111110111011101135011113703F67FFA1C308A153B052F3C46C1C011111011101135111206E07EC7FF3867122A76125E788D83811111111111111111<	339	100	155A6E0	797FFF43	156D142A7	38FA5E788D	0	0	0	1	1	01	10	11
3421030AD37034EFFFAIC0B68A153B47D2F3C46C111110111034310415A6E0717FFF43816D142A760FA5E788B801111001113441050B4DC0F2FFF8700DA2854EC1F4BCF11B01110011110013451061698B1F5FFF0E11B450A9B3E979E23600110011110013461070D3703F3FFFA1C3168A153B07D2F3C46C11100110011110013471081A6E07F7FF43660D142A7617A5E788D8311100111100111100134810914DC0FD7FF870C11A2854EC274BCF11B0701100111100135011113703F67FFA1C3308A153B052F3C46C1C01110011100135111206E07EC7FF438671142A761225E788D8301111001110013531141881FB17FD0E19E05A9D84179E2360E31110011001100113551160E07EC7F43867B142A76125F78D	340	101	0AB4DC0	72FFFE87	0ADA2854E	71F4BCF11B	1	1	1	1	1	10	01	10
94310415AGE0717FFF43816D142A760FA5E78B0R01111001113441050B4DC0F2FFFE3700DA2854C1F4BCF11B01110110111011345106169B81F5FFFD0E11B450A9D83E979E236001111011103461070D3703F3FFFA1C3168A153B07D2F3C46C11100110113471081A6E07E7FFF3860D142A7617A5E78B0B311100110111034810914DC0FD7FFE3701A284E274BCF11B0701110011110111034911009881FB7FFD0E191450A9D86979E2360E1111100111101110111011101110111011101110111011101110111011101110111110111011101110111110111011111011111011111011111110111111111111111111111111111111	341	102	1569B81	65FFFD0E	15B450A9D	63E979E236	0	1	0	1	0	11	10	01
9441050B4DC0F2FFFE8700DA2854EC1F4BCF11B01110111001345106169B81F5FFFD0E11B450A9D83E979E2360011001103461070D3703F3FFFA1C3168A153B07D2F3C46C11100110013471081A6E07E7FF43860D142A7617A5E78BB3311100011100134810914DC0FD7FF870C1A285AEC274BCF11B0701100011100134911009B81FB7FFD0E191450A9D846979E2360E1110011100135011113703F67FFA1C308A153B052F3C46C1C0111001110035111206E07EC7FF387CF02854EC24BCF11B0711110111011011011011011101110110110110111011101111111111111111111 <td>342</td> <td>103</td> <td>0AD3703</td> <td>4BFFFA1C</td> <td>0B68A153B</td> <td>47D2F3C46C</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>01</td> <td>11</td> <td>10</td>	342	103	0AD3703	4BFFFA1C	0B68A153B	47D2F3C46C	1	1	1	1	1	01	11	10
145106169B81FSFFFD0E118450A9D83E979E2360011100111103461070D3703F3FFFA1C3168A153B07D2F3C46C1111011001113471081A6E07E7FFF43860D142A7617A5E78BD8311100111100134810914DC0FD7FFE3701A2854EC274BCF11B070111001111034911009B81FE7FFD0E191450A9D846979E2360E1111001111035011113703F67FFA1C3308A153B052F3C46C1C0111001111035111206E07EC7FF438671142A761225E78BD838011100111103521130DC0FD87FB70CF02854EC24BCF11B071111001100113531141B81FB17FD0E19E05A9D84B179E2360E311001100113551160E07EC47FA367B142A76125E78BD8381100110011356117103F627FA1C330A153B09257C46C1C71011001100113561160E07EC47FA367B </td <td>343</td> <td>104</td> <td>15A6E07</td> <td>17FFF438</td> <td>16D142A76</td> <td>0FA5E788D8</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>10</td> <td>01</td> <td>11</td>	343	104	15A6E07	17FFF438	16D142A76	0FA5E788D8	0	1	0	1	1	10	01	11
3461070D3703F3FFFA1C3168A153B07D2F3C46C1110011001113471081A6E07E7FFF43860D142A7617A5E788D83111001100134810914DC0FD7FFE870C1A2854EC274ECF11B070110011001111034911009B81FB7FFD0E191450A9D846979E2360E111110011110011135011113703F67FFA1C308A153B052F3C46C1C0111100111100135111206E07EC7FF438671142A761225E78BB38011100111011001135311418B1FB17FD0E19E050A9D84B179E2360E31101001100110011001100110011001100110011001101110011001100110011001100110011001100110011001100110111011101110111011101110111011101110	344	105	0B4DC0F	2FFFE870	0DA2854EC	1F4BCF11B0	1	1	1	0	1	11	10	01
3471081A6E07E7FFF43860D142A7617A5E788D831110111100134810914DC0FD7FFE870C1A2854EC274ECF11B07011001111034911009B81FE7FFD0E191450A9D846979E2360E1111100111100135011113703F67FFA1C3308A153B0952F3C46C1C0111100111100135111206E07EC7FF438671142A761225E788D8380111001110013521130DC0FD87FE870CF02854EC254ECF11B07111101100113531141881F817FD0E19E050A9D84B179E2360E311101100113541151703F627FA1C33D0A153B0962F3C46C1C701101100113551160E07EC47F4367B142A76125E788D838E1000011011003561171C0FD887E870CF60854EC253CF11B071C111011101111011110111101111	345	106	169B81F	5FFFD0E1	1B450A9D8	3E979E2360	0	1	1	1	0	01	11	10
34810914DCOFD7FFE870C1A2854EC274BCF11B07011001111034911009B81FB7FFD0E191450A9D846979E2360E1110011135011113703F67FFA1C3308A153B0952F3C46C1C011110011135111206E07EC7FF436671142A761225E788D83801110011103521130DC0FD87FE870CF02854EC254BCF11B07111101100113531141B81FB17FD0E19E050A9D84B179E2360E31101001100113541151703F627FA1C33D0A153B0962F3C46C1C701101100113551160E07EC47F43867B142A76125E78B0838E10001100113551160E07EC47F43867B142A76125E78B0838E10001100113561171C0FD887E870CF60854EC2593CF11B071C111101110111357118181FB17D0E19ED10A9D84B379E2360E381001101110111358119103F6227A1C3DA0153B0967	346	107	0D3703F	3FFFA1C3	168A153B0	7D2F3C46C1	1	1	0	0	1	10	01	11
349 110 09B81FB 7FFD0E19 1450A9D84 6979E2360E 1 1 0 0 1 10 01 11 350 111 13703F6 7FFA1C33 08A153B09 52F3C46C1C 0 1 1 1 10 01 11 351 112 06E07EC 7FF43867 1142A7612 25E788D838 0 1 0 1 1 10 01 11 10 01 352 113 0DC0FD8 7FE870CF 02854EC25 4BCF11B071 1 1 0 0 11 10 01 11 00	347	108	1A6E07E	7FFF4386	0D142A761	7A5E788D83	1	1	1	0	1	11	10	01
35011113703F67FFA1C3308A153B0952F3C46C1C01111100135111206E07EC7FF438671142A761225E78BD388010110011103521130DC0FD87FE870CF02854EC254BCF11B07111101100113531141B81FE17FD0E19E050A9D84B179E2360E31101001100113541151703F627FA1C33D0A153B0962F3C46C1C7011001100113551160E07EC47F43867B142A7612C5E788D38E10000011003561171C0FD887E870CF60854EC2593CF11B071C1111011100357118181FB17D0E19ED10A9D84B379E2360E381011010111358119103F6227A1C33DA0153B096773C46C1C71001101110111360121007EC45743867B02A7612CE6788D38E300110111011136112201FB11750E19ED70A9D84B31E2360E38C001100011011362123 <td>348</td> <td>109</td> <td>14DC0FD</td> <td>7FFE870C</td> <td>1A2854EC2</td> <td>74BCF11B07</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>01</td> <td>11</td> <td>10</td>	348	109	14DC0FD	7FFE870C	1A2854EC2	74BCF11B07	0	1	1	1	0	01	11	10
35111206E07EC7FF438671142A761225E788D8380101011103521130DC0FD87FE870CF02854EC254BCF11B0711101100113531141B81FB17FD0E19E050A9D84B179E2360E3110100110011003541151703F627FA1C33D0A153B0962F3C46C1C7011001100113551160E07EC47F43867B142A7612C5E788D838E1000001100113561171C0FD887E870CF60854EC2593CF11B071C111010111003561171C0FD887E870CF60854EC2593CF11B071C1110110111357118181FB17D0E19ED10A9D84B379E2360E381011010111358119103F627A1C33DA0153B096773C46C1C71001101110111360121007EC45743867B502A7612CE6788D838E300110111101136112201FB11750E19ED70A9D84B31E2360E38C0110110111010362	349	110	09B81FB	7FFD0E19	1450A9D84	6979E2360E	1	1	0	0	1	10	01	11
3521130DC0FD87FE870CF02854EC254BCF11B071111011100113531141B81FB17FD0E19E050A9D84B179E2360E31110001100113541151703F627FA1C33D0A153B0962F3C46C1C70110001100113551160E07EC47F4367B142A7612C5E78B038E10000011100113561171C0FD887E870CF60854EC2593CF11B071C1111010111357118181FB17D0E19ED10A9D84B379E2360E381011010111358119103F627A1C33DA0153B096773C46C1C71001101110101359120007EC45743867B502A7612CE6788D838E300110111011136012100FD88B6870CF6B054EC259C4F11B071C6001100011136112201FB11750E19ED70A9D84B31E2360E38C0110001101136212303F622F21C33DAE153B096713C46C1C71B0110001 <td< td=""><td>350</td><td>111</td><td>13703F6</td><td>7FFA1C33</td><td>08A153B09</td><td>52F3C46C1C</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>11</td><td>10</td><td>01</td></td<>	350	111	13703F6	7FFA1C33	08A153B09	52F3C46C1C	0	1	1	1	1	11	10	01
3531141B81FB17FD0E19E050A9D84B179E2360E3110100011003541151703F627FA1C33D0A153B0962F3C46C1C7011001100113551160E07EC47F43867B142A7612C5E78BB38E100000011003561171C0FD887E870CF60854EC2593CF11B071C1111010111357118181FB17D0E19ED10A9D84B379E2360E3810011010101358119103F6227A1C33DA0153B096773C46C1C71001101011101359120007EC45743867B502A7612CE6788D838E300110111011136012100FD88B6870CF6B054EC259C4F11B071C6001101101136112201FB11750E19ED70A9D84B381E2360E38C0110001101036212303F622F21C33DAE153B096713C46C1C7180100110000	351	112	06E07EC	7FF43867	1142A7612	25E788D838	0	1	0	1	1	00	11	10
3541151703F627FA1C33D0A153B0962F3C46C1C7011001100113551160E07EC47F43867B142A7612C5E788D83EE1000000111003561171C0FD887E870CF60854EC2593CF11B071C11111010111357118181FB17D0E19ED10A9D84B379E2360E3810011010101358119103F6227A1C33DA0153B096773C46C1C710001001110101359120007EC45743867B502A7612CE6788D83E83001101101136012100FD88B6870CF6B054EC259C4F11B071C6000100011036112201FB11750E19ED70A9D84B381E2360E38C011000011036212303F622F21C33DAE153B096713C46C1C718010011010	352	113	0DC0FD8	7FE870CF	02854EC25	4BCF11B071	1	1	0	1	1	11	0 0	11
3551160E07EC47F43867B142A7612C5E788D838E1000000111003561171C0FD887E870CF60854EC2593CF11B071C1111010111357118181FB17D0E19ED10A9D84B379E2360E3810011010101358119103F6227A1C33DA0153B096773C46C1C710001010110101359120007EC45743867B502A7612CE6788D838E3001101101136012100FD88B6870CF6B054EC259C4F11B071C6000100011036112201FB11750E19ED70A9D84B381E2360E38C0110000011036212303F622F21C33DAE153B096713C46C1C718010001100001	353	114	1B81FB1	7FD0E19E	050A9D84B	179E2360E3	1	1	0	1	0	00	11	00
3561171C0FD887E870CF60854EC2593CF11B071C11111010111357118181FB117D0E19ED10A9D84B379E2360E38100111010101358119103F6227A1C33DA0153B096773C46C1C710001001011010111359120007EC45743867B502A7612CE6788D838E3001101101136012100FD88B6870CF6B054EC259C4F11B071C6000100011036112201FB11750E19ED70A9D84B381E2360E38C011000001100036212303F622F21C33DAE153B096713C46C1C7180100111000	354	115	1703F62	7FA1C33D	0A153B096	2F3C46C1C7	0	1	1	0	0	11	0 0	11
357118181FB117D0E19ED10A9D84B379E2360E3810011110101358119103F6227A1C33DA0153B096773C46C1C7100010101101359120007EC45743867B502A7612CE678BD38E3300110110101036012100FD88B6870CF6B054EC259C4F11B071C60000100011036112201FB11750E19ED70A9D84B381E2360E38C011000011136212303F622F21C33DAE153B096713C46C1C7180101111000	355	116	0E07EC4	7F43867B	142A7612C	5E788D838E	1	0	0	0	0	01	11	00
358 119 103F622 7A1C33DA 0153B0967 73C46C1C71 0 0 0 1 0 10 11 01 359 120 007EC45 743867B5 02A7612CE 6788D838E3 0 0 0 1 1 01 10 10 11 01 360 121 00FD88B 6870CF6B 054EC259C 4F11B071C6 0 0 0 1 0 0 01 10 10 10 10 10 361 122 01FB117 50E19ED7 0A9D84B38 1E2360E38C 0 1 1 00 00 01 10 01 362 123 03F622F 21C33DAE 153B09671 3C46C1C718 0 1 1 10 00 01 1 10 00 01 1 10 00 01 1 10 00 01 1 10 00 01 10 00 01 10 00 01 10 00 01 01 00 01	356	117	1C0FD88	7E870CF6	0854EC259	3CF11B071C	1	1	1	1	1	01	01	11
359 120 007EC45 743867B5 02A7612CE 6788D838E3 0 0 0 1 1 01 10 11 360 121 00FD88B 6870CF6B 054EC259C 4F11B071C6 0 <td>357</td> <td>118</td> <td>181FB11</td> <td>7D0E19ED</td> <td>10A9D84B3</td> <td>79E2360E38</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>11</td> <td>01</td> <td>01</td>	357	118	181FB11	7D0E19ED	10A9D84B3	79E2360E38	1	0	0	1	1	11	01	01
360 121 00FD88B 6870CF6B 054EC259C 4F11B071C6 0 0 0 1 00 01 10 361 122 01FB117 50E19ED7 0A9D84B38 1E2360E38C 0 1 1 0 0 00 01 10 362 123 03F622F 21C33DAE 153B09671 3C46C1C718 0 1 1 10 00	358	119	103F622	7A1C33DA	0153B0967	73C46C1C71	0	0	0	1	0	10	11	01
361 122 01FB117 50E19ED7 0A9D84B38 1E2360E38C 0 1 1 0 0 10 00 01 362 123 03F622F 21C33DAE 153B09671 3C46C1C718 0 1 0 0 1 11 10 00 01	359	120	007EC45	743867B5	02A7612CE	6788D838E3	0	0	0	1	1	01	10	11
362 123 03F622F 21C33DAE 153B09671 3C46C1C718 0 1 0 1 11 10 00	360	121	00FD88B	6870CF6B	054EC259C	4F11B071C6	0	0	0	0	1	00	01	10
	361	122	01FB117	50E19ED7	0A9D84B38	1E2360E38C	0	1	1	0	0	10	0 0	01
363 124 07EC45F 43867B5C 0A7612CE2 788D838E30 0 1 1 1 0 01 11 10	362	123	03F622F	21C33DAE	153B09671	3C46C1C718	0	1	0	0	1	11	10	00
	363	124	07EC45F	43867B5C	0A7612CE2	788D838E30	0	1	1	1	0	01	11	10
364 125 0FD88BF 070CF6B9 14EC259C4 711B071C61 1 0 0 0 0 10 01 11	364	125	0FD88BF	070CF6B9	14EC259C4	711B071C61	1	0	0	0	0	10	01	11

😵 Bluetooth[°]

1.3 SECOND SET OF SAMPLE DATA

Initial values for the key, ${\tt BD_ADDR}$ and clock

K′c2[0]	= 00	K'c2[1]	= 00	K′c2[2]	= 00	K′c2[3]	= 00
K′c2[4]	= 00	K'c2[5]	= 00	K′c2[6]	= 00	K′c2[7]	= 00
K′c2[8]	= 00	K′c2[9]	= 00	K'c2[10]	= 00	K'c2[11]	= 00
K'c2[12]	= 00	K'c2[13]	= 00	K'c2[14]	= 00	K'c2[15]	= 00
Addr2[0]	= 00	Addr2[1] =	00	Addr2[2] =	00		
Addr2[3]	= 00	Addr2[4] =	00	Addr2[5] =	00		
CL2[0]	= 00	CL2[1] = 0	0 0	CL2[2] = 00	CL2 [3	3] = 03	

Fill LFSRs with initial data

t	clk#	LFSR1	LFSR2	LFSR3	LFSR4	Xl	X2	X3	X4	Ζ	C[t+1]	C[t]	C[t-1]
0	0	0000000*	00000000*	000000000*	0000000000*	0	0	0	0	0	00	00	00
1	1	0000001*	00000001*	00000001*	000000001*	0	0	0	0	0	00	00	00
2	2	0000002*	00000002*	000000002*	000000003*	0	0	0	0	0	00	00	00
3	3	0000004*	00000004*	00000004*	0000000007*	0	0	0	0	0	00	00	00
4	4	0000008*	0000008*	00000008*	00000000E*	0	0	0	0	0	00	00	00
5	5	0000010*	00000010*	00000010*	00000001C*	0	0	0	0	0	00	00	00
6	6	0000020*	00000020*	000000020*	000000038*	0	0	0	0	0	00	00	00
7	7	0000040*	00000040*	00000040*	000000070*	0	0	0	0	0	0 0	00	00
8	8	0000080*	00000080*	00000080*	0000000E0*	0	0	0	0	0	0 0	00	00
9	9	0000100*	00000100*	00000100*	0000001C0*	0	0	0	0	0	0 0	00	00
10	10	0000200*	00000200*	000000200*	000000380*	0	0	0	0	0	00	00	00
11	11	0000400*	00000400*	000000400*	000000700*	0	0	0	0	0	00	00	00
12	12	0000800*	00000800*	000000800*	0000000E00*	0	0	0	0	0	00	00	00
13	13	0001000*	00001000*	000001000*	000001C00*	0	0	0	0	0	00	00	00
14	14	0002000*	00002000*	000002000*	000003800*	0	0	0	0	0	00	00	00
15	15	0004000*	00004000*	000004000*	000007000*	0	0	0	0	0	00	00	00
16	16	0008000*	00008000*	000008000*	000000E000*	0	0	0	0	0	00	00	00
17	17	0010000*	00010000*	000010000*	000001C000*	0	0	0	0	0	00	00	00
18	18	0020000*	00020000*	000020000*	0000038000*	0	0	0	0	0	00	00	00
19	19	0040000*	00040000*	000040000*	0000070000*	0	0	0	0	0	00	00	00
20	20	008000*	00080000*	000080000*	00000E0000*	0	0	0	0	0	00	00	00
21	21	0100000*	00100000*	000100000*	00001C0000*	0	0	0	0	0	00	00	00
22	22	0200000*	00200000*	000200000*	0000380000*	0	0	0	0	0	00	00	00
23	23	0400000*	00400000*	000400000*	0000700000*	0	0	0	0	0	00	00	00
24	24	0800000*	00800000*	00080000*	0000E00000*	1	1	0	0	0	01	00	00
25	25	1000000*	01000000*	001000000*	0001C00000*	0	0	0	0	0	00	00	00
26	26	0000001	02000000*	002000000*	0003800000*	0	0	0	0	0	00	00	00
27	27	0000002	04000000*	004000000*	0007000000*	0	0	0	0	0	00	00	00
28	28	0000004	08000000*	00800000*	000E000000*	0	0	0	0	0	00	00	00
29	29	000008	10000000*	01000000*	001C000000*	0	0	0	0	0	00	00	00
30	30	0000010	20000000*	020000000*	0038000000*	0	0	0	0	0	00	00	00
31	31	0000020	40000000*	04000000*	0070000000*	0	0	0	0	0	00	00	00
32	32	0000040	0000001	080000000*	00E0000000*	0	0	1	1	0	01	00	00
33	33	0000080	00000002	10000000*	01C0000000*	0	0	0	1	1	00	00	00
34	34	0000101	00000004	00000001	0380000000*	0	0	0	1	1	00	00	00

					-	-							
Sam	ple Da	ata										₿	luetooth
35	35	0000202	00000008	000000002	0700000000*	0	0	0	0	0	00	0 0	00
36	36	0000404	00000010	00000004	0E00000000*	0	0	0	0	0	00	0 0	00
37	37	0000808	00000020	00000008	1C00000000*	0	0	0	0	0	00	0 0	00
38	38	0001011	0000040	00000011	3800000000*	0	0	0	0	0	00	0 0	00
39	39	0002022	00000080	000000022	7000000000*	0	0	0	0	0	00	0 0	00
:====	st	art clocki		on Combiner				===	====		====		
40	1	0004044	00000100	000000044	6000000001	 0	0	0	0	·==== 0	00	00	00
41	2	0008088	00000200	000000088	4000000003	0	0	0	0	0	00	00	00
42	3	0010111	00000400	000000111	0000000007	0	0	0	0	0	00	00	00
43	4	0020222	00000800	000000222	000000000E	0	0	0	0	0	00	00	00
44	5	0040444	00001001	000000444	000000001D	0	0	0	0	0	00	00	00
45	6	0080888	00002002	000000888	00000003B	0	0	0	0	0	00	00	00
46	7	0101111	00004004	000001111	0000000077	0	0	0	0	0	00	00	00
47	8	0202222	00008008	000002222	00000000EE	0	0	0	0	0	00	00	00
48	9	0404444	00010011	000004444	00000001DD	0	0	0	0	0	0.0	0.0	00
19	10	0808888	00020022	000008888	0000003BB	1	0	0	0	1	0.0	0.0	00
50	11	1011110	00040044	000011111	0000000777	0	0	0	0	0	00	00	00
51	12	0022221	00080088	000022222	0000000EEE	0	0	0	0	0	00	00	00
52	13	0044442	00100110	000044444	0000001DDD	0	0	0	0	0	00	00	00
53	14	0088884	00200220	000088888	0000003BBB	0	0	0	0	0	00	00	00
54	15	0111109	00400440	000111111	0000007777	0	0	0	0	0	00	00	00
55	16	0222212	00800880	000222222	0000000EEEE	0	1	0	0	1	00	00	00
56	17	0444424	01001100	000444444	000001DDDD	0	0	0	0	0	00	00	00
57	18	0888848	02002200	000888888	000003BBBB	1	0	0	0	1	00	00	00
58	19	1111090	02002200	001111110	0000038888	0	0	0	0	0	00	00	00
		0222120	08008800		000000777777 000000EEEEE			0			00	00	00
59	20			002222220		0	0		0	0			
60	21	0444240	10011000	004444440	00001DDDDD 00003BBBBB	0	0	0	0	0	00	00	00
61	22	0888480 1110900	20022000	008888880 011111100	0000388888	1	0	0	0	1	00	00	00
62 62	23	0221200	00088001		000007777777 00000EEEEEE	0	0		0	0	00	00	00
63	24 25		00110003	022222200		0	0	0	0	0	00	00	00
64		0442400		04444400	0001DDDDDD	0	0	0	0	0			00
65	26	0884800	00220006	088888800	0003BBBBBB	1	0	1	0	0	01	00	00
66	27	1109000		111111000	0007777777	0	0	0	0	1	01	01	00
67	28	0212001		022222001	000EEEEEE	0	1	0	0	0	11	01	01
68	29	0424002			001DDDDDDC	0	0	0	0	1	01	11	01
69	30	0848004			003BBBBBBB	1	0	1	0	1	10	01	11
70	31	1090008		111110008	0077777770	0	0	0	0	0	00	10	01
71	32	0120010		022220010 044440020	00EEEEEE0	0	1	0	1	0	00 00	00	10 00
72	33	0240020			01DDDDDDC1	0	0	0	1	1			00
73	34	0480040			03BBBBBB83	0	0	1	1	0	01	00	
74	35	0900081			0777777707	1	0	0	0	0	00	01	00
75	36	1200103			OEEEEEEOE	0	0	0	1	1	11	00	01
76	37	0400207			1DDDDDDC1D	0	0	0	1	0	01	11	00
77	38	080040E			3BBBBBB83B	1	0	1	1	0	01	01	11
78	39	100081C		111000808	7777777077	0	0	0	0	1	10	01	01
79	40	0001038			6EEEEEE0EF	0	0	0	1	1	00	10	01
80	41	0002070			5DDDDDC1DE	0	0	0	1	1	01	00	10
81	42	00040E0			3BBBBB83BC	0	0	1	1	1	00	01	00
82	43	00081C1			7777770779	0	0	0	0	0	11	00	01
83	44	0010383	00188880		6EEEEE0EF2	0	0	0	1	0	01	11	00
84	45	0020707			5DDDDC1DE5	0	0	0	1	0	10	01	11
85	46	0040E0E			3BBBB83BCB	0	0	1	1	0	11	10	01
86	47	0081C1D		100080819	7777707797	0	1	0	0	0	00	11	10
87	48	010383A	01888801		6EEEE0EF2F	0	1	0	1	0	11	00	11
88	49	0207075	03111003	000202064	5DDDC1DE5E	0	0	0	1	0	01	11	00

89	50	040E0EA	06222006	0004040C8	3BBB83BCBC	0	0	0	1	0	10	01	11
90	51	081C1D5	0C44400C	000808191	7777077979	1	0	0	0	1	00	10	01
91	52	10383AB	18888018	001010323	6EEE0EF2F2	0	1	0	1	0	00	0 0	10
92	53	0070756	31110030	002020646	5DDC1DE5E5	0	0	0	1	1	00	0 0	00
93	54	00E0EAC	62220060	004040C8C	3BB83BCBCB	0	0	0	1	1	00	0 0	00
94	55	01C1D59	444400C1	008081919	7770779797	0	0	0	0	0	00	0 0	00
95	56	0383AB2	08880183	010103232	6EE0EF2F2F	0	1	0	1	0	01	0 0	00
96	57	0707565	11100307	020206464	5DC1DE5E5F	0	0	0	1	0	00	01	00
97	58	0E0EACA	2220060E	04040C8C8	3B83BCBCBF	1	0	0	1	0	10	0 0	01
98	59	1C1D594	44400C1C	080819191	770779797E	1	0	1	0	0	00	10	00
99	60	183AB28	08801838	101032323	6E0EF2F2FC	1	1	0	0	0	00	0 0	10
100	61	1075650	11003070	002064647	5C1DE5E5F8	0	0	0	0	0	00	0 0	00
101	62	00EACA1	220060E0	0040C8C8E	383BCBCBF0	0	0	0	0	0	00	0 0	00
102	63	01D5943	4400C1C0	00819191D	70779797E0	0	0	0	0	0	00	0 0	00
103	64	03AB286	08018380	01032323A	60EF2F2FC1	0	0	0	1	1	00	0 0	00
104	65	075650C	10030701	020646475	41DE5E5F82	0	0	0	1	1	00	0 0	00
105	66	0EACA18	20060E02	040C8C8EA	03BCBCBF04	1	0	0	1	0	01	0 0	00
106	67	1D59430	400C1C05	0819191D4	0779797E09	1	0	1	0	1	00	01	00
107	68	1AB2861	0018380A	1032323A9	0EF2F2FC12	1	0	0	1	0	10	0 0	01
108	69	15650C3	00307015	006464752	1DE5E5F825	0	0	0	1	1	11	10	00
109	70	0ACA186	0060E02A	00C8C8EA4	3BCBCBF04B	1	0	0	1	1	00	11	10
110	71	159430C	00C1C055	019191D48	779797E097	0	1	0	1	0	11	0 0	11
111	72	0B28618	018380AA	032323A90	6F2F2FC12F	1	1	0	0	1	01	11	00
112	73	1650C30	03070154	064647520	5E5E5F825E	0	0	0	0	1	11	01	11
113	74	0CA1860	060E02A8	0C8C8EA40	3CBCBF04BC	1	0	1	1	0	11	11	01
114	75	19430C0	0C1C0550	19191D480	79797E0979	1	0	1	0	1	11	11	11
115	76	1286180	18380AA0	12323A900	72F2FC12F2	0	0	0	1	0	11	11	11
116	77	050C301	30701541	046475201	65E5F825E5	0	0	0	1	0	11	11	11
117	78	0A18602	60E02A82	08C8EA402	4BCBF04BCB	1	1	1	1	1	10	11	11
118	79	1430C04	41C05505	1191D4804	1797E09796	0	1	0	1	0	10	10	11
119	80	0861808	0380AA0A	0323A9008	2F2FC12F2C	1	1	0	0	0	01	10	10
120	81	10C3011	07015415	064752011	5E5F825E59	0	0	0	0	1	00	01	10
121	82	0186022	0E02A82A	0C8EA4022	3CBF04BCB2	0	0	1	1	0	10	0 0	01
122	83	030C045	1C055054	191D48044	797E097964	0	0	1	0	1	11	10	00
123	84	061808A	380AA0A8	123A90088	72FC12F2C9	0	0	0	1	0	00	11	10
124	85	0C30115	70154151	047520111	65F825E593	1	0	0	1	0	11	0 0	11
125	86	186022A	602A82A3	08EA40222	4BF04BCB26	1	0	1	1	0	00	11	00
126	87	10C0455	40550546	11D480444	17E097964C	0	0	0	1	1	10	0 0	11
127	88	01808AA	00AA0A8D	03A900888	2FC12F2C99	0	1	0	1	0	00	10	00
128	89	0301155	0154151A	075201111	5F825E5932	0	0	0	1	1	01	00	10
129	90	06022AA	02A82A34	0EA402222	3F04BCB264	0	1	1	0	1	00	01	00
130	91	0C04555	05505468	1D4804445	7E097964C9	1	0	1	0	0	10	0 0	01
131	92	1808AAA	0AA0A8D0	1A900888A	7C12F2C992	1	1	1	0	1	00	10	00
132	93	1011555	154151A1	152011115	7825E59324	0	0	0	0	0	01	0 0	10
133	94	0022AAB	2A82A342	0A402222B	704BCB2648	0	1	1	0	1	00	01	00
134	95	0045556	55054684	148044457	6097964C91	0	0	0	1	1	11	0 0	01
135	96	008AAAC	2A0A8D09	0900888AE	412F2C9923	0	0	1	0	0	01	11	00
136	97	0115559	54151A12	12011115D	025E593246	0	0	0	0	1	11	01	11
137	98	022AAB2	282A3424	0402222BA	04BCB2648D	0	0	0	1	0	10	11	01
138	99	0455564	50546848	080444575	097964C91A	0	0	1	0	1	01	10	11
139	100	08AAAC8	20A8D090	100888AEA	12F2C99235	1	1	0	1	0	10	01	10
140	101	1155591	4151A120	0011115D5	25E593246A	0	0	0	1	1	00	10	01
141	102	02AAB22	02A34240	002222BAA	4BCB2648D5	0	1	0	1	0	00	00	10
142	103	0555644	05468481	004445755	17964C91AB	0	0	0	1	1	00	00	00
143	104	0AAAC88	0A8D0903	00888AEAA	2F2C992357	1	1	0	0	0	01	00	00
144	105	1555911	151A1206	011115D55	5E593246AE	0	0	0	0	1	01	01	00
145	106	0AAB222	2A34240C	02222BAAA	3CB2648D5C	1	0	0	1	1	11	01	01

Sam	nple Da	ata										🛞 B	luetooth®
146	107	1556445	54684818	044457555	7964C91AB8	0	0	0	0	1	01	11	01
147	108	0AAC88B	28D09030	0888AEAAA	72C9923571	1	1	1	1	1	01	01	11
148	109	1559117	51A12060	11115D555	6593246AE2	0	1	0	1	1	11	01	01
149	110	0AB222F	234240C0	0222BAAAB	4B2648D5C5	1	0	0	0	0	10	11	01
150	111	156445F	46848180	044575557	164C91AB8A	0	1	0	0	1	01	10	11
151	112	0AC88BF	0D090301	088AEAAAE	2C99235714	1	0	1	1	0	10	01	10
152	113	159117F	1A120602	1115D555D	593246AE28	0	0	0	0	0	00	10	01
153	114	0B222FE	34240C04	022BAAABA	32648D5C51	1	0	0	0	1	01	0 0	10
154	115	16445FD	68481809	045755574	64C91AB8A2	0	0	0	1	0	00	01	00
155	116	0C88BFA	50903012	08AEAAAE8	4992357144	1	1	1	1	0	01	0 0	01
156	117	19117F5	21206024	115D555D1	13246AE288	1	0	0	0	0	00	01	00
157	118	1222FEA	4240C048	02BAAABA2	2648D5C511	0	0	0	0	0	11	0 0	01
158	119	0445FD5	04818090	057555744	4C91AB8A23	0	1	0	1	1	01	11	00
159	120	088BFAA	09030120	0AEAAAE88	1923571446	1	0	1	0	1	10	01	11
160	121	1117F55	12060240	15D555D11	3246AE288D	0	0	0	0	0	00	10	01
161	122	022FEAA	240C0480	0BAAABA22	648D5C511B	0	0	1	1	0	00	0 0	10
162	123	045FD54	48180900	175557444	491AB8A237	0	0	0	0	0	00	0 0	00
163	124	08BFAA9	10301200	0EAAAE889	123571446F	1	0	1	0	0	01	0 0	00
164	125	117F553	20602400	1D555D113	246AE288DF	0	0	1	0	0	00	01	00
165	126	02FEAA7	40C04800	1AAABA227	48D5C511BE	0	1	1	1	1	10	0 0	01
166	127	05FD54F	01809001	15557444F	11AB8A237D	0	1	0	1	0	00	10	00
167	128	0BFAA9F	03012002	0AAAE889E	23571446FA	1	0	1	0	0	00	0 0	10
168	129	17F553F	06024004	1555D113D	46AE288DF5	0	0	0	1	1	00	0 0	00
169	130	0FEAA7E	0C048008	0AABA227A	0D5C511BEA	1	0	1	0	0	01	0 0	00
170	131	1FD54FC	18090011	1557444F5	1AB8A237D5	1	0	0	1	1	00	01	00
171	132	1FAA9F9	30120022	0AAE889EB	3571446FAA	1	0	1	0	0	10	0 0	01
172	133	1F553F2	60240044	155D113D7	6AE288DF55	1	0	0	1	0	00	10	00
173	134	1EAA7E4	40480089	0ABA227AE	55C511BEAA	1	0	1	1	1	00	0 0	10
174	135	1D54FC9	00900113	157444F5D	2B8A237D54	1	1	0	1	1	01	00	00
175	136	1AA9F93	01200227	0AE889EBA	571446FAA8	1	0	1	0	1	00	01	00
176	137	1553F26	0240044E	15D113D75	2E288DF550	0	0	0	0	0	11	0 0	01
177	138	0AA7E4C	0480089C	0BA227AEA	5C511BEAA0	1	1	1	0	0	00	11	00
178	139	154FC98	09001138	17444F5D4	38A237D540	0	0	0	1	1	10	0 0	11
179	140	0A9F931	12002270	0E889EBA9	71446FAA81	1	0	1	0	0	00	10	00
180	141	153F262	240044E0	1D113D753	6288DF5503	0	0	1	1	0	00	0 0	10
181	142				4511BEAA06		0	1		0	01	0 0	00
182	143	14FC98B	10011381	1444F5D4F	0A237D540D	0	0	0	0	1	01	01	00
183	144				1446FAA81A	1	0	1	0	1	11	01	01
184	145				288DF55035	0	0	0	1	0	10	11	01
185	146				511BEAA06A	0	0	0	0	0	01	10	11
186	147				2237D540D5		0	0	0	0	01	01	10
187	148				446FAA81AA	1	0	1	0	1	11	01	01
188	149				08DF550355		0		1	1	10	11	01
189	150				11BEAA06AA		1		1	1	10	10	11
190	151				237D540D54		0		0	1	10	10	10
191	152				46FAA81AA9		0	1		1		10	10
192	153				0DF5503553	0		0	1	0	01	01	10
193	154				1BEAA06AA7		1		1	1	11	01	01
194	155				37D540D54E		0	1		0	11	11	01
195	156				6FAA81AA9D		0	1	1	1	11	11	11
196	157				5F5503553A		1	1	0	1	11	11	11
197	158				3EAA06AA75		1			1	10	11	11
198	159				7D540D54EA		1		0	0	10	10	11
199	160				7AA81AA9D5	0		1	1	0	01	10	10
200	161				75503553AB	0			0	1	00	01	10
200	162				6AA06AA756	0		1		0	10	00	01
202	163				5540D54EAC			1			00	10	00
	200					-	5	-	-	0	50	± 0	

😵 Bluetooth[°]

													Jucit
203	164	169100F	70215000	1A9EB8971	2A81AA9D58	0	0	1	1	0	00	00	10
204	165	0D2201E	6042A001	153D712E3	5503553AB0	1	0	0	0	1	00	0 0	00
205	166	1A4403C	40854002	0A7AE25C6	2A06AA7561	1	1	1	0	1	01	0 0	00
206	167	1488079	010A8004	14F5C4B8D	540D54EAC3	0	0	0	0	1	01	01	00
207	168	09100F2	02150009	09EB8971B	281AA9D586	1	0	1	0	1	11	01	01
208	169	12201E5	042A0012	13D712E37	503553AB0C	0	0	0	0	1	01	11	01
209	170	04403CA	08540024	07AE25C6E	206AA75618	0	0	0	0	1	11	01	11
210	171	0880795	10A80048	0F5C4B8DD	40D54EAC30	1	1	1	1	1	11	11	01
211	172	1100F2A	21500091	1EB8971BA	01AA9D5861	0	0	1	1	1	11	11	11
212	173	0201E54	42A00122	1D712E374	03553AB0C3	0	1	1	0	1	11	11	11
213	174	0403CA9	05400244	1AE25C6E9	06AA756186	0	0	1	1	1	11	11	11
214	175	0807952	0A800488	15C4B8DD3	0D54EAC30D	1	1	0	0	1	11	11	11
215	176	100F2A5	15000911	0B8971BA6	1AA9D5861A	0	0	1	1	1	11	11	11
216	177	001E54A	2A001223	1712E374C	3553AB0C35	0	0	0	0	1	00	11	11
217	178	003CA94	54002446	0E25C6E98	6AA756186A	0	0	1	1	0	11	00	11
218	179	0079528	2800488D	1C4B8DD31	554EAC30D5	0	0	1	0	0	01	11	00
219	180	00F2A50	5000911B	18971BA62	2A9D5861AA	0	0	1	1	1	10	01	11
220	181	01E54A0	20012236	112E374C4	553AB0C355	0	0	0	0	0	00	10	01
221	182	03CA940	4002446C	025C6E988	2A756186AA	0	0	0	0	0	01	0 0	10
222	183	0795280	000488D9	04B8DD310	54EAC30D54	0	0	0	1	0	00	01	00
223	184	0F2A500	000911B2	0971BA620	29D5861AA8	1	0	1	1	1	10	0 0	01
224	185	1E54A00	00122364	12E374C40	53AB0C3550	1	0	0	1	0	00	10	00
225	186	1CA9400	002446C8	05C6E9880	2756186AA0	1	0	0	0	1	01	00	10
226	187	1952800	00488D90	0B8DD3101	4EAC30D540	1	0	1	1	0	11	01	00
227	188	12A5000	00911B20	171BA6202	1D5861AA81	0	1	0	0	0	10	11	01
228	189	054A000	01223640	0E374C404	3AB0C35502	0	0	1	1	0	10	10	11
229	190	0A94000	02446C80	1C6E98808	756186AA05	1	0	1	0	0	01	10	10
230	191	1528001	0488D901	18DD31011	6AC30D540B	0	1	1	1	0	10	01	10
231	192	0A50003	0911B203	11BA62023	55861AA817	1	0	0	1	0	11	10	01
232	193	14A0006	12236407	0374C4047	2B0C35502F	0	0	0	0	1	11	11	10
233	194	094000C	2446C80E	06E98808E	56186AA05F	1	0	0	0	0	11	11	11
234	195	1280018	488D901C	0DD31011D	2C30D540BF	0	1	1	0	1	11	11	11
235	196	0500030	111B2039	1BA62023A	5861AA817E	0	0	1	0	0	11	11	11
236	197	0A00060	22364072	174C40475	30C35502FD	1	0	0	1	1	11	11	11
237	198	14000C0	446C80E4	0E98808EA	6186AA05FB	0	0	1	1	1	11	11	11
238	199	0800180	08D901C8	1D31011D5	430D540BF6	1	1	1	0	0	10	11	11
239	200	1000301	11B20391	1A62023AB	061AA817EC	0	1	1	0	0	10	10	11
Z[0]	= 25												
Z[1]	= 45												
Z[2]	= 6B												
Z[3]	= 55												
Z[4]	= 5F												
Z[5]	= C2												
Z[6]	= 20												
Z[7]	= E5												
Z[8]	= C4												
Z[9]	= F8												
Z[10]	= 3A												
Z[11]	= F1												
Z[12]	= FF												
Z[13]	= 89												
Z[14]	= 02												
Z[15]	= 35												

Reload this pattern into the LFSRs

44

45

46

18127C5 41960FA5 0F4A0CB0B

1E9419616

0049F15 06583E97 1D2832C2C 2C5019AE9F

1024F8A 032C1F4B

283

284

285

1 1 1 0

0 0 1 0

0 0 1 0

1 11

1 10

0 00

10

11

00 11

01

10

2B14066BA7

56280CD74F

286	47	0093E2B	0CB07D2F	1A5065859	58A0335D3E	0	1	1	1	1	00	10	00	
287	48	0127C56	1960FA5E	14A0CB0B2	314066BA7D	0	0	0	0	0	01	0 0	10	
288	49	024F8AD	32C1F4BC	094196164	6280CD74FB	0	1	1	1	0	11	01	00	
289	50	049F15A	6583E978	12832C2C8	45019AE9F6	0	1	0	0	0	10	11	01	
290	51	093E2B5	4B07D2F0	050658591	0A0335D3ED	1	0	0	0	1	01	10	11	
291	52	127C56B	160FA5E0	0A0CB0B22	14066BA7DA	0	0	1	0	0	01	01	10	
292	53	04F8AD7	2C1F4BC1	141961645	280CD74FB5	0	0	0	0	1	10	01	01	
293	54	09F15AF	583E9783	0832C2C8A	5019AE9F6A	1	0	1	0	0	11	10	01	
294	55	13E2B5E	307D2F06	106585915	20335D3ED5	0	0	0	0	1	11	11	10	
295	56	07C56BD	60FA5E0D	00CB0B22B	4066BA7DAA	0	1	0	0	0	11	11	11	
296	57	0F8AD7A	41F4BC1B	019616457	00CD74FB54	1	1	0	1	0	10	11	11	
297	58	1F15AF4	03E97836	032C2C8AF	019AE9F6A9	1	1	0	1	1	10	10	11	
298	59	1E2B5E9	07D2F06C	06585915E	0335D3ED52	1	1	0	0	0	01	10	10	
299	60	1C56BD2	0FA5E0D8	0CB0B22BC	066BA7DAA4	1	1	1	0	0	10	01	10	
300	61	18AD7A5	1F4BC1B0	196164578	0CD74FB549	1	0	1	1	1	11	10	01	
301	62	115AF4B	3E978361	12C2C8AF0	19AE9F6A92	0	1	0	1	1	00	11	10	
302	63	02B5E96	7D2F06C2	0585915E0	335D3ED524	0	0	0	0	0	10	00	11	
303	64	056BD2D	7A5E0D85	0B0B22BC1	66BA7DAA49	0	0	1	1	0	00	10	00	
304	65	0AD7A5B	74BC1B0A	161645783	4D74FB5493	1	1	0	0	0	00	00	10	
305	66	15AF4B6	69783615	0C2C8AF07	1AE9F6A926	0	0	1	1	0	01	00	00	
306	67	0B5E96D	52F06C2B	185915E0F	35D3ED524C	1	1	1	1	1	11	01	00	
307	68	16BD2DB	25E0D857	10B22BC1F	6BA7DAA499	0	1	0	1	1	10	11	01	
308	69	0D7A5B7	4BC1B0AF	01645783F	574FB54933	1	1	0	0	0	10	10	11	
309	70	1AF4B6F	1783615F	02C8AF07F	2E9F6A9266	1	1	0	1	1	01	10	10	
310	71	15E96DF	2F06C2BF	05915E0FF	5D3ED524CC	0	0	0	0	1	00	01	10	
311	72	0BD2DBF	5E0D857F	0B22BC1FE	3A7DAA4998	1	0	1	0	0	10	00	01	
312	73	17A5B7F	3C1B0AFE	1645783FD	74FB549331	0	0	0	1	1	11	10	00	
313	74	0F4B6FF	783615FD	0C8AF07FA	69F6A92662	1	0	1	1	0	01	11	10	
314	75	1E96DFF	706C2BFB	1915E0FF5	53ED524CC4	1	0	1	1	0	01	01	11	
315	76	1D2DBFE	60D857F6	122BC1FEB	27DAA49988	1	1	0	1	0	00	01	01	
316	77	1A5B7FD	41B0AFEC	045783FD7	4FB5493310	1	1	0	1	1	10	00	01	
317	78	14B6FFA	03615FD8	08AF07FAE	1F6A926620	0	0	1	0	1	11	10	00	
318	79	096DFF4	06C2BFB1	115E0FF5D	3ED524CC40	1	1	0	1	0	01	11	10	
319	80	12DBFE8	0D857F63	02BC1FEBB	7DAA499881	0	1	0	1	1	10	01	11	
320	81	05B7FD0	1B0AFEC6	05783FD77	7B54933103	0	0	0	0	0	00	10	01	
321	82	0B6FFA1	3615FD8C	0AF07FAEF	76A9266206	1	0	1	1	1	00	00	10	
322	83	16DFF42	6C2BFB18	15E0FF5DE	6D524CC40C	0	0	0	0	0	00	00	00	
323	84	0DBFE85	5857F631	0BC1FEBBD	5AA4998819	1	0	1	1	1	01	00	00	
324	85		30AFEC62		3549331033	1	1	0	0	1	00	01	00	
325	86	16FFA16	615FD8C5	0F07FAEF5	6A92662067	0	0	1	1	0	10	00	01	
326	87		42BFB18B	1E0FF5DEA	5524CC40CE	1	1	1	0	1	00	10	00	
327	88		057F6317	1C1FEBBD5		1	0	1	0	0	00	00	10	
328	89		0AFEC62E		5493310339	0	1	1	1	1	01	00	00	
329	90	0FFA16F	15FD8C5C	107FAEF55	2926620672	1	1	0	0	1	00	01	00	
330	91	1FF42DF	2BFB18B9		524CC40CE5	1	1	0	0	0	10	0.0	01	
331	92	1FE85BF	57F63172	01FEBBD55		1	1	0	1	1	0.0	10	00	
332	93	1FD0B7F	2FEC62E4		4933103394	1	1	0	0	0	0.0	00	10	
333	94	1FA16FF	5FD8C5C9	07FAEF555	1266206728	1	1	0	0	0	01	00	00	
334	95	1F42DFF	3FB18B93		24CC40CE51	1	1	1	1	1	11	01	00	
335	96		7F631727		4998819CA3	1	0	1	1	0	11	11	01	
336	97		7EC62E4F		1331033947	1	1	1	0	0	10	11	11	
337	98		7D8C5C9F		266206728E	1	1	1	0	1	10	10	11	
338	99	142DFF9	7B18B93F		4CC40CE51D	0	0	1	1	0	01	10	10	
339	100	085BFF3	7631727F		198819CA3B	1	0	1	1	0	10	01	10	
340	101	10B7FE6	6C62E4FF		3310339477	0	0	1	0	1	00	10	01	
341	102	016FFCC	58C5C9FE		66206728EE	0	1	1	0	0	00	00	10	
342	102	02DFF98	318B93FC		4C40CE51DC	0	1	0	0	1	00	00	00	
						0	-	Ŭ	5	-	00	50		

Sam	ple Da	ata										B	luetooth°
343	104	05BFF31	631727F8	0BBD554E1	18819CA3B9	0	0	1	1	0	01	0 0	00
344	105	0B7FE62	462E4FF1	177AAA9C2	3103394772	1	0	0	0	0	00	01	00
345	106	16FFCC5	0C5C9FE2	0EF555384	6206728EE4	0	0	1	0	1	11	0 0	01
346	107	0DFF98A	18B93FC4	1DEAAA709	440CE51DC9	1	1	1	0	0	00	11	00
347	108	1BFF315	31727F88	1BD554E12	0819CA3B93	1	0	1	0	0	11	0 0	11
348	109	17FE62A	62E4FF11	17AAA9C24	1033947726	0	1	0	0	0	01	11	00
349	110	0FFCC54	45C9FE22	0F5553849	206728EE4C	1	1	1	0	0	01	01	11
350	111	1FF98A8	0B93FC44	1EAAA7093	40CE51DC99	1	1	1	1	1	00	01	01
351	112	1FF3150	1727F889	1D554E127	019CA3B933	1	0	1	1	1	10	0 0	01
352	113	1FE62A0	2E4FF112	1AAA9C24F	0339477267	1	0	1	0	0	00	10	00
353	114	1FCC541	5C9FE225	15553849E	06728EE4CF	1	1	0	0	0	00	0 0	10
354	115	1F98A82	393FC44B	0AAA7093C	0CE51DC99F	1	0	1	1	1	01	0 0	00
355	116	1F31504	727F8897	1554E1279	19CA3B933E	1	0	0	1	1	00	01	00
356	117	1E62A09	64FF112F	0AA9C24F2	339477267D	1	1	1	1	0	01	0 0	01
357	118	1CC5412	49FE225E	1553849E4	6728EE4CFB	1	1	0	0	1	00	01	00
358	119	198A824	13FC44BC	0AA7093C9	4E51DC99F7	1	1	1	0	1	10	0 0	01
359	120	1315049	27F88979	154E12792	1CA3B933EE	0	1	0	1	0	00	10	00
360	121	062A093	4FF112F3	0A9C24F24	39477267DC	0	1	1	0	0	00	0 0	10
361	122	0C54127	1FE225E6	153849E48	728EE4CFB8	1	1	0	1	1	01	0 0	00
362	123	18A824E	3FC44BCD	0A7093C91	651DC99F71	1	1	1	0	0	11	01	00
363	124	115049C	7F88979A	14E127922	4A3B933EE2	0	1	0	0	0	10	11	01
364	125	02A0938	7F112F35	09C24F244	1477267DC5	0	0	1	0	1	01	10	11

😵 Bluetooth[°]

1.4 THIRD SET OF SAMPLES

Initial values for the key, pan address and clock

K′c3[0]	$= \mathbf{F}\mathbf{F}$	K′c3[1]	= FF	K′c3[2]	= FF	K′c3[3]	= FF
K′c3[4]	= FF	K'c3[5]	= FF	K′c3[6]	= FF	K′c3[7]	= FF
K′c3[8]	= FF	K'c3[9]	= FF	K'c3[10]	= FF	K'c3[11]	= FF
K'c3[12]	= FF	K′c3[13]	= FF	K'c3[14]	= FF	K'c3[15]	= FF
Addr3[0]	= FF	Addr3[1] =	FF	Addr3[2] =	FF		
Addr3[3]	= FF	Addr3[4] =	FF	Addr3[5] =	FF		

 $CL3[0] = FF \quad CL3[1] = FF \quad CL3[2] = FF \quad CL3[3] = 03$

Fill LFSRs with initial data

t	clk#	LFSR1	LFSR2	LFSR3	LFSR4	Xl	X2	X3	X4	Z	C[t+1]	C[t]	C[t-1]
0	0	0000000*	00000000*	000000000*	0000000000*	0	0	0	0	0	00	00	00
1	1	0000001*	00000001*	00000001*	000000001*	0	0	0	0	0	00	00	00
2	2	0000003*	00000002*	00000003*	000000003*	0	0	0	0	0	00	00	00
3	3	0000007*	00000004*	000000007*	000000007*	0	0	0	0	0	00	00	00
4	4	000000F*	00000009*	0000000F*	00000000F*	0	0	0	0	0	00	00	00
5	5	000001F*	00000013*	0000001F*	00000001F*	0	0	0	0	0	00	00	00
6	6	000003F*	00000027*	0000003F*	00000003F*	0	0	0	0	0	0 0	00	00
7	7	000007F*	0000004F*	0000007F*	00000007F*	0	0	0	0	0	00	00	00
8	8	00000FF*	0000009F*	000000FF*	0000000FF*	0	0	0	0	0	00	00	00
9	9	00001FF*	0000013F*	000001FF*	0000001FF*	0	0	0	0	0	00	00	00
10	10	00003FF*	0000027F*	000003FF*	0000003FF*	0	0	0	0	0	00	00	00
11	11	00007FF*	000004FF*	000007FF*	0000007FF*	0	0	0	0	0	00	00	00
12	12	0000FFF*	000009FF*	000000FFF*	000000FFF*	0	0	0	0	0	00	00	00
13	13	0001FFF*	000013FF*	000001FFF*	000001FFF*	0	0	0	0	0	00	00	00
14	14	0003FFF*	000027FF*	000003FFF*	000003FFF*	0	0	0	0	0	00	00	00
15	15	0007FFF*	00004FFF*	000007FFF*	0000007FFF*	0	0	0	0	0	00	00	00
16	16	000FFFF*	00009FFF*	00000FFFF*	000000FFFF*	0	0	0	0	0	00	00	00
17	17	001FFFF*	00013FFF*	00001FFFF*	000001FFFF*	0	0	0	0	0	00	00	00
18	18	003FFFF*	00027FFF*	00003FFFF*	000003FFFF*	0	0	0	0	0	00	00	00
19	19	007FFFF*	0004FFFF*	00007FFFF*	000007FFFF*	0	0	0	0	0	00	00	00
20	20	00FFFFF*	0009FFFF*	0000FFFFF*	00000FFFFF*	0	0	0	0	0	00	00	00
21	21	01FFFFF*	0013FFFF*	0001FFFFF*	00001FFFFF*	0	0	0	0	0	00	00	00
22	22	03FFFFF*	0027FFFF*	0003FFFFF*	00003FFFFF*	0	0	0	0	0	00	00	00
23	23	07FFFFF*	004FFFFF*	0007FFFFF*	00007FFFFF*	0	0	0	0	0	0 0	00	00
24	24	OFFFFFF*	009FFFFF*	000FFFFFF*	0000FFFFFF*	1	1	0	0	0	01	00	00
25	25	1FFFFFF*	013FFFFF*	001FFFFFF*	0001FFFFFF*	1	0	0	0	1	00	00	00
26	26	1FFFFFF	027FFFFF*	003FFFFFF*	0003FFFFFF*	1	0	0	0	1	00	00	00
27	27	1FFFFFF	04FFFFFF*	007FFFFFF*	0007FFFFFF*	1	1	0	0	0	01	00	00
28	28	1FFFFFF	09FFFFFF*	00FFFFFFF*	000FFFFFFF*	1	1	0	0	0	01	00	00
29	29	1FFFFFF	13FFFFFF*	01FFFFFFF*	001FFFFFFF*	1	1	0	0	0	01	00	00
30	30	1FFFFFF	27FFFFFF*	03FFFFFFF*	003FFFFFFF*	1	1	0	0	0	01	00	00
31	31	1FFFFFF	4FFFFFFF*	07FFFFFFF*	007FFFFFFF*	1	1	0	0	0	01	00	00
32	32	1FFFFFF	1FFFFFFF	OFFFFFFF*	00FFFFFFF*	1	1	1	1	0	10	00	00
33	33	1FFFFFF	3FFFFFFE	1FFFFFFFF*	01FFFFFFFF*	1	1	1	1	0	10	00	00
34	34	1FFFFFF	7FFFFFC	1FFFFFFFF	03FFFFFFFF*	1	1	1	1	0	10	00	00

Sam	ple Da	ata										B	luetooth
25	25	100000		1	AGDDDDDDD+	-	1	1	-	0	1.0	-	
35	35	1FFFFFF	7FFFFFF9	1FFFFFFFF	07FFFFFFF*	1	1	1	1	0	10	00	00
36 37	36 37	1FFFFFF 1FFFFFF	7FFFFFF3 7FFFFFE7	1FFFFFFFF 1FFFFFFFF	OFFFFFFFFF* 1FFFFFFFFF*	1	1 1	1	1	0	10 10	00	00 00
37	37	1FFFFFF	7FFFFFE7	1FFFFFFFF	JFFFFFFFFF*		1	1	1	0	10	00	00
39	39	1FFFFFF				1		1	1	0	10	00	00
39			7FFFFF9F	1FFFFFFFF	7FFFFFFFFF* =============	1	1 ===	1					=======
	St	art clocki	ng Summati	on Combiner	:								
40	1	1FFFFFF	7FFFFF3F	1FFFFFFFF	7FFFFFFFF	1	1	1	1	0	01	10	00
41	2	1FFFFFF	7FFFFE7F	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	1	10	01	10
42	3	1FFFFFF	7FFFFCFF	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	0	10	10	01
43	4	1FFFFFF	7FFFF9FF	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	0	00	10	10
44	5	1FFFFFF	7FFFF3FF	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	0	11	0 0	10
45	6	1FFFFFF	7FFFE7FE	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	1	00	11	00
46	7	1FFFFFF	7FFFCFFC	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	0	00	0 0	11
47	8	1FFFFFF	7FFF9FF9	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	0	10	0 0	00
48	9	1FFFFFF	7FFF3FF3	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	0	01	10	00
49	10	1FFFFFF	7FFE7FE6	1FFFFFFFF	7FFFFFFFFF	1	1	1	1	1	10	01	10
50	11	1FFFFFE	7FFCFFCC	1FFFFFFFE	7FFFFFFFFF	1	1	1	1	0	10	10	01
51	12	1FFFFFC	7FF9FF99	1FFFFFFFC	7FFFFFFFFF	1	1	1	1	0	00	10	10
52	13	1FFFFF8	7FF3FF33	1FFFFFFF8	7FFFFFFFFF	1	1	1	1	0	11	0 0	10
53	14	1FFFFF0	7FE7FE67	1FFFFFFF0	7FFFFFFFFF	1	1	1	1	1	00	11	00
54	15	1FFFFE0	7FCFFCCF	1FFFFFFE1	7FFFFFFFFF	1	1	1	1	0	00	0 0	11
55	16	1FFFFC0	7F9FF99F	1FFFFFFC3	7FFFFFFFFF	1	1	1	1	0	10	0 0	00
56	17	1FFFF80	7F3FF33E	1FFFFFF87	7FFFFFFFFE	1	0	1	1	1	00	10	00
57	18	1FFFF00	7E7FE67C	1FFFFFF0F	7FFFFFFFC	1	0	1	1	1	00	0 0	10
58	19	1FFFE01	7CFFCCF8	1FFFFFE1E	7FFFFFFF8	1	1	1	1	0	10	0 0	00
59	20	1FFFC03	79FF99F0	1FFFFFC3C	7FFFFFFF0	1	1	1	1	0	01	10	00
60	21	1FFF807	73FF33E0	1FFFFF878	7FFFFFFFE1	1	1	1	1	1	10	01	10
61	22	1FFF00F	67FE67C0	1FFFFF0F0	7FFFFFFC3	1	1	1	1	0	10	10	01
62	23	1FFE01E	4FFCCF80	1FFFFE1E1	7FFFFFF87	1	1	1	1	0	00	10	10
63	24	1FFC03C	1FF99F00	1FFFFC3C3	7FFFFFF0F	1	1	1	1	0	11	0 0	10
64	25	1FF8078	3FF33E01	1FFFF8787	7FFFFFFE1E	1	1	1	1	1	00	11	00
65	26	1FF00F0	7FE67C02	1FFFF0F0F	7FFFFFC3C	1	1	1	1	0	00	0 0	11
66	27	1FE01E1	7FCCF805	1FFFE1E1E	7FFFFF878	1	1	1	1	0	10	0 0	00
67	28	1FC03C3	7F99F00A	1FFFC3C3C	7FFFFF0F0	1	1	1	1	0	01	10	00
68	29	1F80787	7F33E015	1FFF87878	7FFFFFE1E1	1	0	1	1	0	10	01	10
69	30	1F00F0F	7E67C02A	1FFF0F0F0	7FFFFFC3C3	1	0	1	1	1	11	10	01
70	31	1E01E1E	7CCF8054	1FFE1E1E1	7FFFF8787	1	1	1	1	1	01	11	10
71	32	1C03C3C	799F00A9	1FFC3C3C3	7FFFFF0F0F	1	1	1	1	1	01	01	11
72	33	1807878	733E0152	1FF878787	7FFFFE1E1E	1	0	1	1	0	00	01	01
73	34	100F0F0	667C02A5	1FF0F0F0F	7FFFFC3C3C	0	0	1	1	0	10	0 0	01
74	35	001E1E0	4CF8054B	1FE1E1E1F	7FFFF87878	0	1	1	1	1	00	10	00
75	36	003C3C1	19F00A96	1FC3C3C3F	7FFFF0F0F0	0	1	1	1	1	00	0 0	10
76	37	0078783	33E0152C	1F878787F	7FFFE1E1E1	0	1	1	1	1	01	0 0	00
77	38	00F0F07	67C02A59	1F0F0F0FF	7FFFC3C3C3	0	1	1	1	0	11	01	00
78	39	01E1E0E	4F8054B3	1E1E1E1FF	7FFF878787	0	1	1	1	0	11	11	01
79	40	03C3C1C	1F00A966	1C3C3C3FF	7FFF0F0F0F	0	0	1	1	1	11	11	11
80	41	0787838	3E0152CC	1878787FF	7FFE1E1E1E	0	0	1	1	1	11	11	11
81	42	0F0F070	7C02A598	10F0F0FFF	7FFC3C3C3C	1	0	0	1	1	11	11	11
82	43	1E1E0E0	78054B30	01E1E1FFF	7FF8787878	1	0	0	1	1	11	11	11
83	44	1C3C1C0	700A9660	03C3C3FFE	7FF0F0F0F0	1	0	0	1	1	11	11	11
84	45	1878380	60152CC0	078787FFC	7FE1E1E1E0	1	0	0	1	1	11	11	11
85	46	10F0700	402A5980	0F0F0FFF8	7FC3C3C3C0	0	0	1	1	1	11	11	11
86	47	01E0E00	0054B300	1E1E1FFF0	7F87878780	0	0	1	1	1	11	11	11
87	48	03C1C00	00A96601	1C3C3FFE0	7F0F0F0F00	0	1	1	0	1	11	11	11
88	49	0783800	0152CC03	18787FFC0	7E1E1E1E01	0	0	1	0	0	11	11	11

89	50	0F07000	02A59806	10F0FFF80	7C3C3C3C03	1	1	0	0	1	11	11	11
90	51	1E0E000	054B300D	01E1FFF00	7878787807	1	0	0	0	0	11	11	11
91	52	1C1C001	0A96601A	03C3FFE01	70F0F0F00F	1	1	0	1	0	10	11	11
92	53	1838003	152CC035	0787FFC03	61E1E1E01E	1	0	0	1	0	10	10	11
93	54	1070007	2A59806B	0F0FFF807	43C3C3C03C	0	0	1	1	0	01	10	10
94	55	00E000F	54B300D7	1E1FFF00F	0787878078	0	1	1	1	0	10	01	10
95	56	01C001F	296601AE	1C3FFE01F	0F0F0F00F1	0	0	1	0	1	00	10	01
96	57	038003F	52CC035C	187FFC03F	1E1E1E01E2	0	1	1	0	0	00	0 0	10
97	58	070007F	259806B8	10FFF807F	3C3C3C03C4	0	1	0	0	1	00	0 0	00
98	59	OEOOOFE	4B300D71	01FFF00FE	7878780788	1	0	0	0	1	00	0 0	00
99	60	1C001FD	16601AE2	03FFE01FD	70F0F00F10	1	0	0	1	0	01	00	00
100	61	18003FA	2CC035C5	07FFC03FB	61E1E01E21	1	1	0	1	0	11	01	00
101	62	10007F4	59806B8B	0FFF807F7	43C3C03C43	0	1	1	1	0	11	11	01
102	63	0000FE8	3300D717	1FFF00FEE	0787807887	0	0	1	1	1	11	11	11
103	64	0001FD0	6601AE2F	1FFE01FDC	0F0F00F10E	0	0	1	0	0	11	11	11
104	65	0003FA0	4C035C5F	1FFC03FB8	1E1E01E21D	0	0	1	0	0	11	11	11
105	66	0007F40	1806B8BE	1FF807F70	3C3C03C43B	0	0	1	0	0	11	11	11
106	67	000FE81	300D717C	1FF00FEE1	7878078877	0	0	1	0	0	11	11	11
107	68	001FD02	601AE2F8	1FE01FDC2	70F00F10EF	0	0	1	1	1	11	11	11
108	69	003FA05	4035C5F0	1FC03FB84	61E01E21DE	0	0	1	1	1	11	11	11
109	70	007F40B	006B8BE0	1F807F708	43C03C43BC	0	0	1	1	1	11	11	11
110	70	007F40B	000D717C0	1F00FEE11	0780788778	0	1	1	1	0	10	11	11
		01FD02C		1E01FDC23	0780788778 0F00F10EF1			1					
111	72		01AE2F81			0	1		0	0	10	10	11
112	73	03FA059	035C5F02	1C03FB847	1E01E21DE3	0	0	1	0	1	10	10	10
113	74	07F40B3	06B8BE05	1807F708F	3C03C43BC7	0	1	1	0	0	01	10	10
114	75	0FE8166	0D717C0B	100FEE11E	780788778F	1	0	0	0	0	01	01	10
115	76	1FD02CD	1AE2F817	001FDC23D	700F10EF1F	1	1	0	0	1	11	01	01
116	77	1FA059B	35C5F02F	003FB847A	601E21DE3F	1	1	0	0	1	10	11	01
117	78	1F40B37	6B8BE05E	007F708F4	403C43BC7F	1	1	0	0	0	10	10	11
118	79	1E8166E	5717C0BD	00FEE11E9	00788778FF	1	0	0	0	1	10	10	10
119	80	1D02CDC	2E2F817A	01FDC23D3	00F10EF1FE	1	0	0	1	0	01	10	10
120	81	1A059B9	5C5F02F5	03FB847A6	01E21DE3FD	1	0	0	1	1	01	01	10
121	82	140B373	38BE05EB	07F708F4C	03C43BC7FB	0	1	0	1	1	11	01	01
122	83	08166E7	717C0BD7	0FEE11E98	0788778FF7	1	0	1	1	0	11	11	01
123	84	102CDCF	62F817AE	1FDC23D31	0F10EF1FEF	0	1	1	0	1	11	11	11
124	85	0059B9F	45F02F5C	1FB847A63	1E21DE3FDE	0	1	1	0	1	11	11	11
125	86	00B373E	0BE05EB9	1F708F4C7	3C43BC7FBC	0	1	1	0	1	11	11	11
126	87	0166E7D	17C0BD72	1EE11E98F	788778FF78	0	1	1	1	0	10	11	11
127	88	02CDCFB	2F817AE5	1DC23D31F	710EF1FEF1	0	1	1	0	0	10	10	11
128	89	059B9F7	5F02F5CA	1B847A63F	621DE3FDE2	0	0	1	0	1	10	10	10
129	90	0B373EF	3E05EB94	1708F4C7F	443BC7FBC4	1	0	0	0	1	10	10	10
130	91	166E7DF	7C0BD728	0E11E98FF	08778FF788	0	0	1	0	1	10	10	10
131	92	0 CDCFBE	7817AE50	1C23D31FF	10EF1FEF10	1	0	1	1	1	01	10	10
132	93	19B9F7D	702F5CA1	1847A63FE	21DE3FDE21	1	0	1	1	0	10	01	10
133	94	1373EFB	605EB942	108F4C7FC	43BC7FBC43	0	0	0	1	1	00	10	01
134	95	06E7DF7	40BD7285	011E98FF8	0778FF7886	0	1	0	0	1	01	0 0	10
135	96	0DCFBEF	017AE50A	023D31FF0	0EF1FEF10D	1	0	0	1	1	00	01	00
136	97	1B9F7DF	02F5CA15	047A63FE1	1DE3FDE21A	1	1	0	1	1	10	00	01
137	98	173EFBF	05EB942B	08F4C7FC3	3BC7FBC434	0	1	1	1	1	00	10	00
138	99	0E7DF7F	0BD72856	11E98FF87	778FF78869	1	1	0	1	1	00	0 0	10
139	100	1CFBEFF	17AE50AC	03D31FF0F	6F1FEF10D3	1	1	0	0	0	01	0 0	00
140	101	19F7DFE	2F5CA159	07A63FE1E	5E3FDE21A7	1	0	0	0	0	00	01	00
141	102	13EFBFC	5EB942B3	0F4C7FC3C	3C7FBC434F	0	1	1	0	0	10	0 0	01
142	103	07DF7F8	3D728566	1E98FF878	78FF78869F	0	0	1	1	0	00	10	00
143	104	0FBEFF0	7AE50ACD	1D31FF0F0	71FEF10D3E	1	1	1	1	0	11	0.0	10
144	105	1F7DFE1	75CA159B		63FDE21A7D	1	1	1	1	1	00	11	00
145	106	1EFBFC3			47FBC434FB	1	1	0	1	1	11	00	11
						-	-	-	-	-			-

Sam	ple Da	ata										🛞 B	luetooth°
146	107	1DF7F86	5728566D	098FF8786	0FF78869F7	1	0	1	1	0	00	11	00
147	108	1BEFF0C	2E50ACDB	131FF0F0C	1FEF10D3EF	1	0	0	1	0	11	0 0	11
148	109	17DFE19	5CA159B6	063FE1E19	3FDE21A7DF	0	1	0	1	1	01	11	00
149	110	0FBFC33	3942B36D	0C7FC3C32	7FBC434FBF	1	0	1	1	0	01	01	11
150	111	1F7F866	728566DB	18FF87865	7F78869F7E	1	1	1	0	0	00	01	01
151	112	1EFF0CC	650ACDB6	11FF0F0CB	7EF10D3EFC	1	0	0	1	0	10	0 0	01
152	113	1DFE199	4A159B6D	03FE1E196	7DE21A7DF9	1	0	0	1	0	00	10	00
153	114	1BFC333	142B36DB	07FC3C32C	7BC434FBF3	1	0	0	1	0	00	0 0	10
154	115	17F8666	28566DB6	0FF878659	778869F7E6	0	0	1	1	0	01	0 0	00
155	116	OFFOCCC	50ACDB6D	1FF0F0CB3	6F10D3EFCC	1	1	1	0	0	11	01	00
156	117	1FE1999	2159B6DA	1FE1E1966	5E21A7DF99	1	0	1	0	1	10	11	01
157	118	1FC3332	42B36DB5	1FC3C32CC	3C434FBF33	1	1	1	0	1	10	10	11
158	119	1F86664	0566DB6B	1F8786599	78869F7E67	1	0	1	1	1	01	10	10
159	120	1F0CCC8	0ACDB6D6	1F0F0CB33	710D3EFCCE	1	1	1	0	0	10	01	10
160	121	1E19991	159B6DAC	1E1E19666	621A7DF99D	1	1	1	0	1	11	10	01
161	122	1C33323	2B36DB58	1C3C32CCC	4434FBF33B	1	0	1	0	1	00	11	10
162	123	1866647	566DB6B0	187865999	0869F7E676	1	0	1	0	0	11	0 0	11
163	124	10CCC8F	2CDB6D60	10F0CB333	10D3EFCCEC	0	1	0	1	1	01	11	00
164	125	019991E	59B6DAC0	01E196666	21A7DF99D9	0	1	0	1	1	10	01	11
165	126	033323C	336DB580	03C32CCCD	434FBF33B3	0	0	0	0	0	00	10	01
166	127	0666478	66DB6B01	07865999A	069F7E6766	0	1	0	1	0	00	0 0	10
167	128	0CCC8F0	4DB6D603	0F0CB3334	0D3EFCCECD	1	1	1	0	1	01	0 0	00
168	129	19991E1	1B6DAC07	1E1966669	1A7DF99D9B	1	0	1	0	1	00	01	00
169	130	13323C3	36DB580E	1C32CCCD3	34FBF33B37	0	1	1	1	1	10	00	01
170	131	0664786	6DB6B01C	1865999A7	69F7E6766F	0	1	1	1	1	00	10	00
171	132	0CC8F0D	5B6D6039	10CB3334F	53EFCCECDF	1	0	0	1	0	00	00	10
172	133	1991E1A	36DAC073	01966669E	27DF99D9BF	1	1	0	1	1	01	00	00
173	134	1323C35	6DB580E6	032CCCD3C	4FBF33B37E	0	1	0	1	1	00	01	00
174	135	064786A	5B6B01CD	065999A78	1F7E6766FC	0	0	0	0	0	11	00	01
175	136	0C8F0D5	36D6039B	0CB3334F0	3EFCCECDF9	1	1	1	1	1	00	11	00
176	137	191E1AA	6DAC0737	1966669E1	7DF99D9BF3	1	1	1	1	0	00	00	11
177	138	123C354	5B580E6E	12CCCD3C3	7BF33B37E7	0	0	0	1	1	00	00	00
178	139	04786A9	36B01CDC	05999A787	77E6766FCE	0	1	0	1	0	01	00	00
179	140	08F0D53	6D6039B8	0B3334F0E	6FCCECDF9C	1	0	1	1	0	11	01	00
180	141	11E1AA6	5AC07370	166669E1D	5F99D9BF38	0	1	0	1	1	10	11	01
181	142				3F33B37E70	0	1	1	0	0	10	10	11
182	143	0786A99	6B01CDC0	1999A7875	7E6766FCE1	0	0	1	0	1	10	10	10
183	144	0F0D533	56039B81	13334F0EB	7CCECDF9C2	1	0	0	1	0	01	10	10
184	145	1E1AA66	2C073703	06669E1D6	799D9BF385	1	0	0	1	1	01	01	10
185	146	1C354CC	580E6E06	0CCD3C3AC	733B37E70B	1	0	1	0	1	11	01	01
186	147	186A998	301CDC0C	199A78759	66766FCE17	1	0	1	0	1	10	11	01
187	148	10D5331	6039B818	1334F0EB2	4CECDF9C2F	0	0	0	1	1	01	10	11
188	149				19D9BF385E	0	0	0	1	0	01	01	10
189	150				33B37E70BD	0	1	1	1	0	00	01	01
190	151				6766FCE17B	0	1	1	0	0	10	0.0	01
191	152				4ECDF9C2F6	1	1	0	1	1	00	10	00
192	153				1D9BF385ED	1	0	0	1	0	00	0.0	10
193	154				3B37E70BDB	0	0	1	0	1	00	0 0	00
194	155				766FCE17B6	1	1	1	0	1	01	0.0	00
195	156				6CDF9C2F6C	0	1	0	1	1	00	01	00
196	157				59BF385ED8	1	0	1	1	1	10	0.0	01
197	158	14CC547			337E70BDB0	0	1	0	0	1	11	10	00
198	159				66FCE17B61	1	1	0	1	0	01	11	10
199	160	133151D			4DF9C2F6C2	0	1	1	1	0	01	01	11
200	161				1BF385ED85	0	0	1	1	1	11	01	01
201	162	0CC5477			37E70BDB0B	1	0	1	1	0	11	11	01
202	163	198A8EF			6FCE17B617	1		1	1	0	10	11	11

😵 Bluetooth[°]

													iucu
203	164	13151DE	3818C05F	10EB2CEB2	5F9C2F6C2F	0	0	0	1	1	01	10	11
204	165	062A3BC	703180BF	01D659D65	3F385ED85E	0	0	0	0	1	00	01	10
205	166	0C54779	6063017E	03ACB3ACB	7E70BDB0BD	1	0	0	0	1	11	00	01
206	167	18A8EF2	40C602FD	075967597	7CE17B617B	1	1	0	1	0	00	11	00
207	168	1151DE4	018C05FA	0EB2CEB2F	79C2F6C2F7	0	1	1	1	1	11	00	11
208	169	02A3BC9	03180BF5	1D659D65E	7385ED85EE	0	0	1	1	1	01	11	00
209	170	0547793	063017EB	1ACB3ACBC	670BDB0BDC	0	0	1	0	0	10	01	11
210	171	0A8EF27	0C602FD6	159675978	4E17B617B9	1	0	0	0	1	00	10	01
211	172	151DE4E	18C05FAD	0B2CEB2F1	1C2F6C2F73	0	1	1	0	0	00	00	10
212	173	0A3BC9C	3180BF5A	1659D65E3	385ED85EE6	1	1	0	0	0	01	00	00
213	174	1477938	63017EB5	0CB3ACBC6	70BDB0BDCC	0	0	1	1	1	00	01	00
214	175	08EF270	4602FD6A	19675978D	617B617B99	1	0	1	0	0	10	00	01
215	176	11DE4E1	0C05FAD5	12CEB2F1A	42F6C2F733	0	0	0	1	1	11	10	00
216	177	03BC9C3	180BF5AA	059D65E34	05ED85EE67	0	0	0	1	0	00	11	10
217	178	0779387	3017EB55	0B3ACBC68	0BDB0BDCCF	0	0	1	1	0	11	00	11
218	179	0EF270F	602FD6AA	1675978D0	17B617B99F	1	0	0	1	1	01	11	00
219	180	1DE4E1F	405FAD54	0CEB2F1A1	2F6C2F733F	1	0	1	0	1	10	01	11
220	181	1BC9C3F	00BF5AA9	19D65E342	5ED85EE67F	1	1	1	1	0	10	10	01
221	182	179387F	017EB552	13ACBC684	3DB0BDCCFE	0	0	0	1	1	10	10	10
222	183	0F270FF	02FD6AA5	075978D09	7B617B99FC	1	1	0	0	0	01	10	10
223	184	1E4E1FF	05FAD54A	0EB2F1A12	76C2F733F9	1	1	1	1	1	10	01	10
224	185	1C9C3FE	0BF5AA94	1D65E3425	6D85EE67F2	1	1	1	1	0	10	10	01
225	186	19387FD	17EB5529	1ACBC684B	5B0BDCCFE4	1	1	1	0	1	01	10	10
226	187	1270FFA	2FD6AA53	15978D096	3617B99FC9	0	1	0	0	0	01	01	10
227	188	04E1FF5	5FAD54A7	0B2F1A12C	6C2F733F93	0	1	1	0	1	11	01	01
228	189	09C3FEB	3F5AA94E	165E34258	585EE67F27	1	0	0	0	0	10	11	01
229	190	1387FD7	7EB5529C	0CBC684B1	30BDCCFE4F	0	1	1	1	1	10	10	11
230	191	070FFAE	7D6AA538	1978D0962	617B99FC9E	0	0	1	0	1	10	10	10
231	192	0E1FF5C	7AD54A70	12F1A12C4	42F733F93D	1	1	0	1	1	01	10	10
232	193	1C3FEB9	75AA94E1	05E342588	05EE67F27A	1	1	0	1	0	10	01	10
233	194	187FD73	6B5529C3	0BC684B10	0BDCCFE4F4	1	0	1	1	1	11	10	01
234	195	10FFAE6	56AA5386	178D09621	17B99FC9E8	0	1	0	1	1	00	11	10
235	196	01FF5CC	2D54A70C	0F1A12C43	2F733F93D0	0	0	1	0	1	10	00	11
236	197	03FEB98	5AA94E19	1E3425887	5EE67F27A1	0	1	1	1	1	00	10	00
237	198	07FD731	35529C33	1C684B10F	3DCCFE4F42	0	0	1	1	0	00	00	10
238	199	0FFAE63	6AA53866	18D09621F	7B99FC9E84	1	1	1	1	0	10	00	00
239	200	1FF5CC6	554A70CD	11A12C43F	7733F93D09	1	0	0	0	1	11	10	00
T [0]	= 0												
	= 59												
	= 3B												
	= EF												
	= 07 = 13												
	= 13												
	= 70 = 9B												
	= 9B												
	= 52												
	= 32 = 8F												
	= 3E												
	= 3E												
	= A5												
	= AC												
	= EA												
	70												

Z[15] = 9E

Sample Data

page 697 of 814

			-	to the LFSR		aul	o	017	с [+ ·	11 -	nd 7	waluoc	
					r regs and cal								
		.521359											
LFSR2	<= 5	28F703B											
		AC3E9BEF											
		FEAB9B707											
C[t+1]													
0[011]	~- 0												
					======================================								
	=====					=====		===					
					4FEAB9B707						00	10	00
241					1FD5736E0F						00	00	10
242					3FAAE6DC1E			1			01	00	00
243					7F55CDB83D		0	0	0	0		01	00
244					7EAB9B707B		1	1	1	1		00	01
245					7D5736E0F6		1	1	0	0	00	10	00
246	7			10FA6FBD7			1		1	1		00	10
247	8						1	0	0	1	00	00	00
248	9	01359E4	0F703B59	03E9BEF5E	6AB9B707B1	0	0	0	1	1	00	00	00
249	10	026B3C8	1EE076B3	07D37DEBD	55736E0F63	0	1	0	0	1	00	00	00
250	11	04D6791	3DC0ED67	0FA6FBD7A	2AE6DC1EC7	0	1	1	1	1	01	00	00
251	12	09ACF22	7B81DACF	1F4DF7AF4	55CDB83D8F	1	1	1	1	1	11	01	00
252	13	1359E44	7703B59E	1E9BEF5E8	2B9B707B1F	0	0	1	1	1	10	11	01
253	14	06B3C88	6E076B3C	1D37DEBD0	5736E0F63F	0	0	1	0	1	01	10	11
254	15	0D67911	5C0ED678	1A6FBD7A1	2E6DC1EC7E	1	0	1	0	1	01	01	10
255	16	1ACF223	381DACF0	14DF7AF42	5CDB83D8FD	1	0	0	1	1	11	01	01
256	17	159E446	703B59E0	09BEF5E85	39B707B1FA	0	0	1	1	1	10	11	01
257	18	0B3C88C	6076B3C0	137DEBD0A	736E0F63F4	1	0	0	0	1	01	10	11
258	19	1679118	40ED6780	06FBD7A15	66DC1EC7E8	0	1	0	1	1	01	01	10
259	20	0CF2231	01DACF00	0DF7AF42A	4DB83D8FD1	1	1	1	1	1	00	01	01
260	21	19E4463	03B59E01	1BEF5E854	1B707B1FA3	1	1	1	0	1	10	00	01
261	22	13C88C6	076B3C03	17DEBD0A9	36E0F63F47	0	0	0	1	1	11	10	00
262	23	079118C	0ED67807	0FBD7A152	6DC1EC7E8E	0	1	1	1	0	01	11	10
263	24	0F22318	1DACF00E	1F7AF42A4	5B83D8FD1D	1	1	1	1	1	01	01	11
264	25	1E44630	3B59E01C		3707B1FA3B	1	0	1	0	1	11	01	01
265	26	1C88C61	76B3C039			1	1	1	0	0	11	11	01
266	20		6D678073			1		1	0	1	11	11	11
267	28		5ACF00E6		383D8FD1DE	0	1	0	0	0	11	11	11
267	20 29		359E01CC			0	1	1	0	1	11	11	11
269	30		6B3C0399		60F63F477B	1		1	1	0	10	11	11
269 270	30		56780733		41EC7E8EF6	0	0	1	1	0	10	10	11
271	32		2CF00E67		03D8FD1DEC 07B1FA3BD8	0	1	1	1	1	01	10	10
272	33		59E01CCE			0	1	0	1	1	01	01	10
273	34		33C0399D			1		1	0	0	00	01	01
274	35		6780733A		1EC7E8EF63	0	1	0	1	0	10	00	01
275	36		4F00E674			0	0	1	1	0	00	10	00
276	37		1E01CCE8			0	0	1	0	1	01	00	10
277	38	0C61CB5	3C0399D0	1D0A91A3B	763F477B1C	1	0	1	0	1	00	01	00
278	39	18C396A	780733A0	1A1523477	6C7E8EF639	1	0	1	0	0	10	00	01
279	40	11872D5	700E6741	142A468EF	58FD1DEC72	0	0	0	1	1	11	10	00
280	41	030E5AB	601CCE83	08548D1DF	31FA3BD8E5	0	0	1	1	1	00	11	10
281	42	061CB57	40399D07	10A91A3BF	63F477B1CB	0	0	0	1	1	10	00	11
282	43	0C396AF	00733A0F	01523477E	47E8EF6396	1	0	0	1	0	00	10	00

284	45	10E5ABE	01CCE83F	0548D1DFA	1FA3BD8E58	0	1	0	1	0	01	00	00
285	46	01CB57C	0399D07F	0A91A3BF4	3F477B1CB0	0	1	1	0	1	00	01	00
286	47	0396AF9	0733A0FE	1523477E9	7E8EF63961	0	0	0	1	1	11	0 0	01
287	48	072D5F3	0E6741FD	0A468EFD2	7D1DEC72C3	0	0	1	0	0	01	11	00
288	49	0E5ABE7	1CCE83FA	148D1DFA4	7A3BD8E587	1	1	0	0	1	10	01	11
289	50	1CB57CE	399D07F4	091A3BF49	7477B1CB0F	1	1	1	0	1	11	10	01
290	51	196AF9D	733A0FE9	123477E92	68EF63961E	1	0	0	1	1	00	11	10
291	52	12D5F3B	66741FD2	0468EFD25	51DEC72C3C	0	0	0	1	1	10	0 0	11
292	53	05ABE77	4CE83FA4	08D1DFA4B	23BD8E5879	0	1	1	1	1	00	10	00
293	54	0B57CEE	19D07F49	11A3BF496	477B1CB0F2	1	1	0	0	0	00	0 0	10
294	55	16AF9DC	33A0FE92	03477E92C	0EF63961E4	0	1	0	1	0	01	0 0	00
295	56	0D5F3B8	6741FD25	068EFD259	1DEC72C3C9	1	0	0	1	1	00	01	00
296	57	1ABE771	4E83FA4B	0D1DFA4B3	3BD8E58793	1	1	1	1	0	01	0 0	01
297	58	157CEE2	1D07F496	1A3BF4967	77B1CB0F26	0	0	1	1	1	00	01	00
298	59	0AF9DC5	3A0FE92D	1477E92CE	6F63961E4D	1	0	0	0	1	11	0 0	01
299	60	15F3B8B	741FD25A	08EFD259C	5EC72C3C9B	0	0	1	1	1	01	11	00
300	61	0BE7716	683FA4B4	11DFA4B39	3D8E587937	1	0	0	1	1	10	01	11
301	62	17CEE2D	507F4968	03BF49672	7B1CB0F26E	0	0	0	0	0	00	10	01
302	63	0F9DC5B	20FE92D0	077E92CE4	763961E4DC	1	1	0	0	0	00	0 0	10
303	64	1F3B8B6	41FD25A0	0EFD259C9	6C72C3C9B9	1	1	1	0	1	01	0 0	00
304	65	1E7716D	03FA4B40	1DFA4B393	58E5879373	1	1	1	1	1	11	01	00
305	66	1CEE2DB	07F49680	1BF496727	31CB0F26E6	1	1	1	1	1	11	11	01
306	67	19DC5B7	0FE92D00	17E92CE4E	63961E4DCD	1	1	0	1	0	10	11	11
307	68	13B8B6F	1FD25A00	0FD259C9C	472C3C9B9A	0	1	1	0	0	10	10	11
308	69	07716DF	3FA4B400	1FA4B3938	0E58793735	0	1	1	0	0	01	10	10
309	70	0EE2DBF	7F496800	1F4967271	1CB0F26E6A	1	0	1	1	0	10	01	10
310	71	1DC5B7F	7E92D000	1E92CE4E2	3961E4DCD4	1	1	1	0	1	11	10	01
311	72	1B8B6FF	7D25A001	1D259C9C4	72C3C9B9A9	1	0	1	1	0	01	11	10
312	73	1716DFF	7A4B4002	1A4B39389	6587937352	0	0	1	1	1	10	01	11
313	74	0E2DBFF	74968005	149672713	4B0F26E6A5	1	1	0	0	0	11	10	01
314	75	1C5B7FE	692D000B	092CE4E26	161E4DCD4B	1	0	1	0	1	00	11	10
315	76	18B6FFC	525A0017	1259C9C4D	2C3C9B9A96	1	0	0	0	1	10	0 0	11
316	77	116DFF8	24B4002F	04B39389B	587937352C	0	1	0	0	1	11	10	00
317	78	02DBFF1	4968005F	096727136	30F26E6A58	0	0	1	1	1	00	11	10
318	79	05B7FE3	12D000BF	12CE4E26C	61E4DCD4B1	0	1	0	1	0	11	0 0	11
319	80	0B6FFC7	25A0017F	059C9C4D8	43C9B9A963	1	1	0	1	0	00	11	00
320	81	16DFF8E	4B4002FF	0B39389B1	07937352C6	0	0	1	1	0	11	0 0	11
321	82	0DBFF1C	168005FF	167271363	0F26E6A58C	1	1	0	0	1	01	11	00
322	83	1B7FE38	2D000BFF	0CE4E26C7	1E4DCD4B18	1	0	1	0	1	10	01	11
323	84	16FFC70	5A0017FF	19C9C4D8F	3C9B9A9631	0	0	1	1	0	11	10	01
324	85	0DFF8E1	34002FFF	139389B1E	7937352C62	1	0	0	0	0	00	11	10
325	86	1BFF1C3	68005FFF	07271363D	726E6A58C4	1	0	0	0	1	10	0.0	11
326	87	17FE387	5000BFFE	0E4E26C7B	64DCD4B188	0	0	1	1	0	00	10	00
327	88	0FFC70F	20017FFD	1C9C4D8F6	49B9A96311	1	0	1	1	1	00	0.0	10
328	89	1FF8E1F	4002FFFB	19389B1ED	137352C623	1	0	1	0	0	01	0 0	00
329	90	1FF1C3F	0005FFF7	1271363DB	26E6A58C46	1	0	0	1	1	00	01	00
330	91	1FE387F	000BFFEE	04E26C7B6	4DCD4B188C	1	0	0	1	0	10	0.0	01
331	92	1FC70FF	0017FFDC	09C4D8F6D	1B9A963118	1	0	1	1	1	00	10	00
332	93	1F8E1FF	002FFFB8	1389B1EDA	37352C6231	1	0	0	0	1	01	00	10
333	94	1F1C3FF	005FFF70	071363DB4	6E6A58C462	1	0	0	0	0	00	01	00
334	95	1E387FE	00BFFEE0	0E26C7B68	5CD4B188C5	1	1	1	1	0	01	00	01
335	96	1C70FFC	017FFDC1	1C4D8F6D1	39A963118A	1	0	1	1	0	11	01	00
336	97	18E1FF9	02FFFB82	189B1EDA2	7352C62315	1	1	1	0	0	11	11	01
337	98	11C3FF2	05FFF705	11363DB45	66A58C462B	0	1	0	1	1	11	11	11
338	99	0387FE4	OBFFEEOA	026C7B68B	4D4B188C56	0	1	0	0	0	11	11	11
339	100	070FFC9	17FFDC15	04D8F6D16	1A963118AD	0	1	0	1	1	11	11	11
340	101	0E1FF92	2FFFB82B	09B1EDA2C	352C62315A	1	1	1	0	0	10	11	11

Sample Data	1
-------------	---

	341	102	1C3FF24	5FFF7057	1363DB458	6A58C462B4	1	1	0	0	0	10	10	11
-	342	103	187FE48	3FFEE0AE	06C7B68B0	54B188C569	1	1	0	1	1	01	10	10
-	343	104	10FFC90	7FFDC15C	0D8F6D161	2963118AD2	0	1	1	0	1	01	01	10
-	344	105	01FF920	7FFB82B9	1B1EDA2C2	52C62315A5	0	1	1	1	0	00	01	01
-	345	106	03FF240	7FF70573	163DB4584	258C462B4B	0	1	0	1	0	10	00	01
-	346	107	07FE481	7FEE0AE6	0C7B68B08	4B188C5696	0	1	1	0	0	00	10	00
	347	108	0FFC902	7FDC15CD	18F6D1610	163118AD2D	1	1	1	0	1	00	00	10
	348	109	1FF9204	7FB82B9A	11EDA2C20	2C62315A5B	1	1	0	0	0	01	00	00
-	349	110	1FF2408	7F705735	03DB45841	58C462B4B6	1	0	0	1	1	00	01	00
	350	111	1FE4810	7EE0AE6B	07B68B082	3188C5696C	1	1	0	1	1	10	00	01
-	351	112	1FC9021	7DC15CD6	0F6D16105	63118AD2D8	1	1	1	0	1	00	10	00
	352	113	1F92042	7B82B9AD	1EDA2C20B	462315A5B0	1	1	1	0	1	00	00	10
	353	114	1F24084	7705735A	1DB458416	0C462B4B61	1	0	1	0	0	01	00	00
	354	115	1E48108	6E0AE6B5	1B68B082C	188C5696C3	1	0	1	1	0	11	01	00
	355	116	1C90211	5C15CD6A	16D161059	3118AD2D86	1	0	0	0	0	10	11	01
	356	117	1920422	382B9AD5	0DA2C20B3	62315A5B0D	1	0	1	0	0	10	10	11
	357	118	1240845	705735AA	1B4584167	4462B4B61A	0	0	1	0	1	10	10	10
	358	119	048108A	60AE6B55	168B082CF	08C5696C34	0	1	0	1	0	01	10	10
	359	120	0902114	415CD6AB	0D161059E	118AD2D869	1	0	1	1	0	10	01	10
	360	121	1204228	02B9AD56	1A2C20B3D	2315A5B0D2	0	1	1	0	0	11	10	01
1	361	122	0408451	05735AAD	14584167B	462B4B61A4	0	0	0	0	1	11	11	10
1	362	123	08108A2	0AE6B55B	08B082CF7	0C5696C348	1	1	1	0	0	10	11	11
	363	124	1021144	15CD6AB6	1161059EF	18AD2D8690	0	1	0	1	0	10	10	11
	364	125	0042289	2B9AD56C	02C20B3DE	315A5B0D20	0	1	0	0	1	10	10	10

😵 Bluetooth[°]

1.5 FOURTH SET OF SAMPLES

Initial values for the key, pan address and clock

K'c4[0]	= 21	K'c4[1]	= 87	K'c4[2]	= F0	K′c4[3]	= 4A
K'c4[4]	= BA	K'c4[5]	= 90	K'c4[6]	= 31	K'c4[7]	= D0
K'c4[8]	= 78	K'c4[9]	= 0D	K'c4[10]	= 4C	K'c4[11]	= 53
K'c4[12]	= E0	K'c4[13]	= 15	K'c4[14]	= 3A	K'c4[15]	= 63
Addr4[0]	= 2C	Addr4[1] =	7F	Addr4[2] =	94		
Addr4[3]	= 56	Addr4[4] =	0F	Addr4[5] =	1B		

CL4[0] = 5F CL4[1] = 1A CL4[2] = 00 CL4[3] = 02

Fill LFSRs with initial data

t	clk#	LFSR1	LFSR2	LFSR3	LFSR4	X1	X2	X3	X4	Ζ	C[t+1]	C[t]	C[t-1]
0	0	0000000*	00000000*	000000000*	0000000000*	0	0	0	0	0	00	00	00
1	1	0000000*	00000001*	00000001*	000000001*	0	0	0	0	0	00	00	00
2	2	0000001*	00000002*	000000002*	000000003*	0	0	0	0	0	00	00	00
3	3	0000002*	00000004*	00000004*	000000007*	0	0	0	0	0	00	00	00
4	4	0000004*	00000009*	00000008*	00000000F*	0	0	0	0	0	00	00	00
5	5	0000008*	00000013*	00000010*	00000001E*	0	0	0	0	0	00	00	00
6	6	0000010*	00000027*	000000021*	00000003D*	0	0	0	0	0	00	00	00
7	7	0000021*	0000004F*	00000043*	00000007A*	0	0	0	0	0	00	00	00
8	8	0000042*	0000009F*	00000087*	0000000F4*	0	0	0	0	0	00	00	00
9	9	0000084*	0000013F*	0000010F*	0000001E9*	0	0	0	0	0	00	00	00
10	10	0000108*	0000027F*	00000021F*	0000003D2*	0	0	0	0	0	00	00	00
11	11	0000211*	000004FE*	00000043E*	0000007A5*	0	0	0	0	0	00	00	00
12	12	0000422*	000009FC*	00000087C*	000000F4A*	0	0	0	0	0	00	00	00
13	13	0000845*	000013F8*	0000010F8*	000001E94*	0	0	0	0	0	00	00	00
14	14	000108B*	000027F0*	0000021F1*	000003D29*	0	0	0	0	0	00	00	00
15	15	0002117*	00004FE1*	0000043E3*	0000007A52*	0	0	0	0	0	00	00	00
16	16	000422E*	00009FC2*	0000087C6*	00000F4A4*	0	0	0	0	0	00	00	00
17	17	000845D*	00013F84*	000010F8C*	000001E948*	0	0	0	0	0	00	00	00
18	18	00108BA*	00027F08*	000021F18*	000003D290*	0	0	0	0	0	00	00	00
19	19	0021174*	0004FE10*	000043E30*	000007A520*	0	0	0	0	0	00	00	00
20	20	00422E8*	0009FC21*	000087C61*	00000F4A41*	0	0	0	0	0	00	00	00
21	21	00845D1*	0013F842*	00010F8C3*	00001E9482*	0	0	0	0	0	00	00	00
22	22	0108BA3*	0027F084*	00021F186*	00003D2905*	0	0	0	0	0	00	00	00
23	23	0211747*	004FE109*	00043E30C*	00007A520B*	0	0	0	0	0	00	00	00
24	24	0422E8F*	009FC213*	00087C619*	0000F4A417*	0	1	0	0	1	00	00	00
25	25	0845D1E*	013F8426*	0010F8C32*	0001E9482F*	1	0	0	0	1	00	00	00
26	26	108BA3D	027F084D*	0021F1864*	0003D2905E*	0	0	0	0	0	00	00	00
27	27	011747B	04FE109B*	0043E30C9*	0007A520BC*	0	1	0	0	1	00	00	00
28	28	022E8F6	09FC2136*	0087C6192*	000F4A4179*	0	1	0	0	1	00	00	00
29	29	045D1EC	13F8426C*	010F8C325*	001E9482F2*	0	1	0	0	1	00	00	00
30	30	08BA3D9	27F084D8*	021F1864B*	003D2905E5*	1	1	0	0	0	01	00	00
31	31	11747B3	4FE109B0*	043E30C97*	007A520BCA*	0	1	0	0	1	00	00	00
32	32	02E8F67	1FC21360	087C6192E*	00F4A41795*	0	1	1	1	1	01	00	00
33	33	05D1ECF	3F8426C1	10F8C325C*	01E9482F2B*	0	1	0	1	0	01	00	00
34	34	0BA3D9F	7F084D82	01F1864B8	03D2905E56*	1	0	0	1	0	01	00	00

Sam	ple Da	ata										R	luetooth
35	35	1747B3E	7E109B04	03E30C970	07A520BCAC*	0	0	0	1	1	00	0 0	00
36	36	0E8F67C	7C213608	07C6192E1	0F4A417958*	1	0	0	0	1	00	0 0	00
37	37	1D1ECF8	78426C11	0F8C325C3	1E9482F2B1*	1	0	1	1	1	01	0 0	00
38	38	1A3D9F0	7084D822	1F1864B86	3D2905E563*	1	1	1	0	1	01	0 0	00
39	39	147B3E1	6109B044	1E30C970C	7A520BCAC6*	0	0	1	0	1	00	0 0	00
=====		art clocki	ng Summati	on Combiner		=====	===		:===:		====		
=====								===					
40	1	08F67C2	42136088	1C6192E18	74A417958D	1	0	1	1	1	01	0 0	00
41	2	11ECF84	0426C111	18C325C30	69482F2B1B	0	0	1	0	0	00	01	00
42	3	03D9F08	084D8222	11864B861	52905E5637	0	0	0	1	1	11	0 0	01
43	4	07B3E10	109B0444	030C970C3	2520BCAC6E	0	1	0	0	0	01	11	00
44	5	0F67C21	21360889	06192E186	4A417958DC	1	0	0	0	0	10	01	11
45	6	1ECF843	426C1112	0C325C30C	1482F2B1B8	1	0	1	1	1	11	10	01
46	7	1D9F086	04D82225	1864B8619	2905E56370	1	1	1	0	0	01	11	10
47	8	1B3E10D	09B0444B	10C970C32	520BCAC6E1	1	1	0	0	1	10	01	11
48	9	167C21B	13608897	0192E1865	2417958DC3	0	0	0	0	0	00	10	01
49	10	0CF8436	26C1112F	0325C30CB	482F2B1B87	1	1	0	0	0	00	00	10
50	11	19F086D	4D82225E	064B86197	105E56370F	1	1	0	0	0	01	00	00
51	12	13E10DB	1B0444BC	0C970C32F	20BCAC6E1F	0	0	1	1	1	00	01	00
52	13	07C21B7	36088979	192E1865E	417958DC3F	0	0	1	0	1	11	0 0	01
53	14	0F8436E	6C1112F2	125C30CBD	02F2B1B87F	1	0	0	1	1	01	11	00
54	15	1F086DD	582225E4	04B86197B	05E56370FF	1	0	0	1	1	10	01	11
55	16	1E10DBA	30444BC9	0970C32F7	0BCAC6E1FF	1	0	1	1	1	11	10	01
56	17	1C21B75	60889793	12E1865EE	17958DC3FF	1	1	0	1	0	01	11	10
57	18	18436EA	41112F27	05C30CBDD	2F2B1B87FF	1	0	0	0	0	10	01	11
58	19	1086DD4	02225E4E	0B86197BA	5E56370FFF	0	0	1	0	1	00	10	01
59	20	010DBA8	0444BC9D	170C32F74	3CAC6E1FFF	0	0	0	1	1	01	00	10
60	21	021B750	0889793A	0E1865EE8	7958DC3FFF	0	1	1	0 1	1	00	01	00
61	22 23	0436EA0 086DD40	1112F274	1C30CBDD0 186197BA1	72B1B87FFE 656370FFFC	0	0	1		0	10 00	00	01 00
62 63	23	10DBA81	2225E4E9 444BC9D3	10C32F743	4AC6E1FFF8	1 0	0	1 0	0 1	1	00	00	10
64	24	01B7502	089793A7	01865EE86	158DC3FFF1	0	1	0	1	1	00	00	00
65	25	036EA05	112F274E	030CBDD0D	2B1B87FFE3	0	0	0	0	0	11	00	01
66	20			06197BA1A		0		0	0	1	10	11	00
67	28				2C6E1FFF8D	-	-	1			10	10	11
68	29				58DC3FFF1B		0		1		01	10	10
69	30				31B87FFE36		1		1		01	01	
70	31				6370FFFC6D		1		0		11	01	
71	32				46E1FFF8DA		1		1		11	11	
72	33				0DC3FFF1B4		1		1		11	11	
73	34				1B87FFE369		0	1			10	11	11
74	35				370FFFC6D2		0		0		10	10	11
75	36				6E1FFF8DA5		1	0	0		01	10	10
76	37				5C3FFF1B4B		0	0	0	1	00	01	10
77	38	0A05D05	7274E5ED	OBDD0D0FF	387FFE3696	1	0	1	0	0	10	0 0	01
78	39	140BA0B	64E9CBDA	17BA1A1FF	70FFFC6D2C	0	1	0	1	0	00	10	00
79	40				61FFF8DA59		1	1	1	0	11	0 0	10
80	41				43FFF1B4B3		1	1	1	0	00	11	00
81	42	005D058	274E5ED2	1DD0D0FFA	07FFE36966	0	0	1	1	0	11	0 0	11
82	43	00BA0B0	4E9CBDA5	1BA1A1FF5	0FFFC6D2CD	0	1	1	1	0	00	11	00
83	44	0174160	1D397B4A	174343FEA	1FFF8DA59B	0	0	0	1	1	10	0 0	11
84	45	02E82C0	3A72F695	0E8687FD4	3FFF1B4B37	0	0	1	1	0	00	10	00
85	46	05D0580	74E5ED2B	1D0D0FFA9	7FFE36966E	0	1	1	1	1	00	0 0	10
86	47	0BA0B00	69CBDA56	1A1A1FF53	7FFC6D2CDC	1	1	1	1	0	10	0 0	00
87	48	1741600	5397B4AC	14343FEA6	7FF8DA59B8	0	1	0	1	0	00	10	00
88	49	0E82C01	272F6959	08687FD4D	7FF1B4B370	1	0	1	1	1	00	0 0	10

89	50	1D05802	4E5ED2B3	10D0FFA9A	7FE36966E0	1	0	0	1	0	01	00	00
90	51	1A0B004	1CBDA566	01A1FF535	7FC6D2CDC0	1	1	0	1	0	11	01	00
91	52	1416009	397B4ACC	0343FEA6B	7F8DA59B80	0	0	0	1	0	10	11	01
92	53	082C013	72F69599	0687FD4D7	7F1B4B3701	1	1	0	0	0	10	10	11
93	54	1058026	65ED2B33	0D0FFA9AF	7E36966E03	0	1	1	0	0	01	10	10
94	55	00B004D	4BDA5667	1A1FF535E	7C6D2CDC06	0	1	1	0	1	01	01	10
95	56	016009B	17B4ACCE	143FEA6BD	78DA59B80D	0	1	0	1	1	11	01	01
96	57	02C0137	2F69599D	087FD4D7B	71B4B3701A	0	0	1	1	1	10	11	01
97	58	058026F	5ED2B33B	10FFA9AF6	636966E034	0	1	0	0	1	01	10	11
98	59	0B004DF	3DA56677	01FF535ED	46D2CDC068	1	1	0	1	0	10	01	10
99	60	16009BF	7B4ACCEF	03FEA6BDB	0DA59B80D0	0	0	0	1	1	00	10	01
100	61	0C0137F	769599DF	07FD4D7B7	1B4B3701A1	1	1	0	0	0	00	00	10
101	62	18026FE	6D2B33BE	0FFA9AF6E	36966E0342	1	0	1	1	1	01	00	00
102	63	1004DFC	5A56677D	1FF535EDD	6D2CDC0684	0	0	1	0	0	0.0	01	00
103	64	0009BF9	34ACCEFB	1FEA6BDBB	5A59B80D09	0	1	1	0	0	10	00	01
104	65	00137F2	69599DF7	1FD4D7B76	34B3701A12	0	0	1	1	0	00	10	00
105	66	00157F2	52B33BEF	1FA9AF6EC	6966E03424	0	1	1	0	0	00	00	10
105	67	0020FE5	256677DF	1F535EDD8	52CDC06848	0	0	1	1	0	01	00	00
		004DFCA				0	0	1	1	0	11		
107	68		4ACCEFBE	1EA6BDBB0	259B80D091	-	1	-	-	-		01	00
108	69	0137F29	1599DF7C	1D4D7B760	4B3701A123	0	1	1	0	1	10	11	01
109	70	026FE53	2B33BEF9	1A9AF6EC0	166E034246	0	0	1	0	1	01	10	11
110	71	04DFCA7	56677DF2	1535EDD81	2CDC06848D	0	0	0	1	0	01	01	10
111	72	09BF94F	2CCEFBE4	0A6BDBB03	59B80D091B	1	1	1	1	1	00	01	01
112	73	137F29E	599DF7C9	14D7B7607	33701A1236	0	1	0	0	1	11	00	01
113	74	06FE53C	333BEF93	09AF6EC0E	66E034246C	0	0	1	1	1	01	11	00
114	75	0DFCA79	6677DF26	135EDD81D	4DC06848D8	1	0	0	1	1	10	01	11
115	76	1BF94F2	4CEFBE4D	06BDBB03B	1B80D091B1	1	1	0	1	1	11	10	01
116	77	17F29E5	19DF7C9A	0D7B76077	3701A12363	0	1	1	0	1	00	11	10
117	78	0FE53CA	33BEF934	1AF6EC0EF	6E034246C6	1	1	1	0	1	11	00	11
118	79	1FCA794	677DF269	15EDD81DF	5C06848D8C	1	0	0	0	0	01	11	00
119	80	1F94F29	4EFBE4D2	0BDBB03BE	380D091B19	1	1	1	0	0	01	01	11
120	81	1F29E53	1DF7C9A5	17B76077D	701A123633	1	1	0	0	1	11	01	01
121	82	1E53CA6	3BEF934B	0F6EC0EFB	6034246C66	1	1	1	0	0	11	11	01
122	83	1CA794D	77DF2696	1EDD81DF6	406848D8CD	1	1	1	0	0	10	11	11
123	84	194F29B	6FBE4D2C	1DBB03BED	00D091B19B	1	1	1	1	0	11	10	11
124	85	129E536	5F7C9A59	1B76077DA	01A1236337	0	0	1	1	1	00	11	10
125	86	053CA6C	3EF934B3	16EC0EFB4	034246C66E	0	1	0	0	1	10	00	11
126	87	0A794D9	7DF26967	0DD81DF69	06848D8CDD	1	1	1	1	0	01	10	00
127	88	14F29B3	7BE4D2CF	1BB03BED3	0D091B19BB	0	1	1	0	1	01	01	10
128	89	09E5366	77C9A59F	176077DA6	1A12363377	1	1	0	0	1	11	01	01
129	90	13CA6CD	6F934B3F	0EC0EFB4D	34246C66EF	0	1	1	0	1	10	11	01
130	91	0794D9B	5F26967F	1D81DF69A	6848D8CDDF	0	0	1	0	1	01	10	11
131	92	0F29B37	3E4D2CFE	1B03BED35	5091B19BBE	1	0	1	1	0	10	01	10
132	93	1E5366F	7C9A59FD	16077DA6B	212363377C	1	1	0	0	0	11	10	01
133	94	1CA6CDF	7934B3FB	0C0EFB4D6	4246C66EF9	1	0	1	0	1	00	11	10
134	95	194D9BE	726967F6	181DF69AD	048D8CDDF2	1	0	1	1	1	11	00	11
135	96	129B37D	64D2CFED	103BED35B	091B19BBE5	0	1	0	0	0	01	11	00
	97	05366FA	49A59FDA		12363377CA	0	1	0	0	0	10	01	11
	98	0A6CDF5	134B3FB4		246C66EF95	1	0	0	0	1	00	10	01
138	99		26967F69		48D8CDDF2B	0	1	0	1	0	00	00	10
130	100	09B37D4	4D2CFED2		48D8CDDF2B	1	0	0	1	0	01	00	00
140	101	1366FA8	1A59FDA5		2363377CAC	0	0	0	0	1	01	01	00
141	102	06CDF51	34B3FB4A		46C66EF959	0	1	1	1	0	00	01	01
142	103	0D9BEA2	6967F695		0D8CDDF2B2	1	0	1	1	1	10	00	01
143	104	1B37D45	52CFED2A		1B19BBE564	1	1	1	0	1	00	10	00
144	105		259FDA54		363377CAC8	0	1	0	0	1	01	00	10
145	106	0CDF515	4B3FB4A9	UFB4D6EFC	6C66EF9591	1	0	1	0	1	00	01	00

Sam	ple Da	ata										₿	luetooth°
146	107	19BEA2B	167F6952	1F69ADDF8	58CDDF2B22	1	0	1	1	1	10	0 0	01
147	108	137D457	2CFED2A5	1ED35BBF1	319BBE5645	0	1	1	1	1	00	10	00
148	109	06FA8AF	59FDA54A	1DA6B77E2	63377CAC8B	0	1	1	0	0	00	0 0	10
149	110	0DF515F	33FB4A95	1B4D6EFC4	466EF95916	1	1	1	0	1	01	0 0	00
150	111	1BEA2BF	67F6952A	169ADDF88	0CDDF2B22C	1	1	0	1	0	11	01	00
151	112	17D457F	4FED2A55	0D35BBF10	19BBE56459	0	1	1	1	0	11	11	01
152	113	0FA8AFE	1FDA54AB	1A6B77E20	3377CAC8B3	1	1	1	0	0	10	11	11
153	114	1F515FD	3FB4A957	14D6EFC40	66EF959166	1	1	0	1	1	10	10	11
154	115	1EA2BFA	7F6952AF	09ADDF880	4DDF2B22CC	1	0	1	1	1	01	10	10
155	116	1D457F4	7ED2A55F	135BBF100	1BBE564598	1	1	0	1	0	10	01	10
156	117	1A8AFE8	7DA54ABF	06B77E200	377CAC8B31	1	1	0	0	0	11	10	01
157	118	1515FD0	7B4A957F	0D6EFC401	6EF9591663	0	0	1	1	1	00	11	10
158	119	0A2BFA1	76952AFE	1ADDF8803	5DF2B22CC7	1	1	1	1	0	00	0 0	11
159	120	1457F42	6D2A55FD	15BBF1007	3BE564598E	0	0	0	1	1	00	0 0	00
160	121	08AFE84	5A54ABFB	0B77E200F	77CAC8B31C	1	0	1	1	1	01	0 0	00
161	122	115FD09	34A957F7	16EFC401F	6F95916639	0	1	0	1	1	00	01	00
162	123	02BFA12	6952AFEF	0DDF8803E	5F2B22CC73	0	0	1	0	1	11	0 0	01
163	124	057F424	52A55FDF	1BBF1007D	3E564598E7	0	1	1	0	1	01	11	00
164	125	0AFE848	254ABFBF	177E200FA	7CAC8B31CF	1	0	0	1	1	10	01	11
165	126	15FD090	4A957F7E	0EFC401F5	795916639E	0	1	1	0	0	11	10	01
166	127	0BFA121	152AFEFD	1DF8803EA	72B22CC73C	1	0	1	1	0	01	11	10
167	128	17F4243	2A55FDFA	1BF1007D4	6564598E78	0	0	1	0	0	10	01	11
168	129	0FE8486	54ABFBF4	17E200FA8	4AC8B31CF0	1	1	0	1	1	11	10	01
169	130	1FD090C	2957F7E8	0FC401F51	15916639E1	1	0	1	1	0	01	11	10
170	131	1FA1219	52AFEFD1	1F8803EA3	2B22CC73C2	1	1	1	0	0	01	01	11
171	132	1F42432	255FDFA2	1F1007D47	564598E785	1	0	1	0	1	11	01	01
172	133	1E84865	4ABFBF44	1E200FA8F	2C8B31CF0B	1	1	1	1	1	11	11	01
173	134	1D090CB	157F7E88	1C401F51E	5916639E17	1	0	1	0	1	11	11	11
174	135	1A12196	2AFEFD11	18803EA3C	322CC73C2E	1	1	1	0	0	10	11	11
175	136	142432C	55FDFA23	11007D479	64598E785C	0	1	0	0	1	01	10	11
176	137	0848659	2BFBF446	0200FA8F2	48B31CF0B9	1	1	0	1	0	10	01	10
177	138	1090CB2	57F7E88C	0401F51E4	116639E173	0	1	0	0	1	00	10	01
178	139	0121964	2FEFD118	0803EA3C8	22CC73C2E6	0	1	1	1	1	00	00	10
179	140	02432C9	5FDFA230	1007D4791	4598E785CD	0	1	0	1	0	01	00	00
180	141			000FA8F23	0B31CF0B9B	0	1	0	0	0	00	01	00
181	142				16639E1736	1	0	0	0	1	11	00	01
182	143				2CC73C2E6C	0	1	0	1	1	01	11	00
183	144				598E785CD8	0	1	0	1	1	10	01	11
184	145				331CF0B9B0	1	1	0	0	0	11	10	01
185	146				6639E17361	0	1	0	0	0	00	11	10
186	147				4C73C2E6C2	0	1	0	0	1	10	00	11
187	148	032C9B4			18E785CD84	0	1	0	1	0	00	10	00
188	149				31CF0B9B09	0	0	1	1	0	00	00	10
189	150				639E173612	1	1	1	1	0	10	0 0	00
190	151				473C2E6C24	1	0	1	0	0	00	10	00
191	152				0E785CD848	0	0	1	0	1	01	00	10
192	153				1CF0B9B091	0	0	1	1	1	00	01	00
193	154				39E1736123	1	1	0	1	1	10	00	01
194	155	164DA0D			73C2E6C247	0	0	1	1	0	00	10	00
195	156				6785CD848F	1	0	0	1	0	00	00	10
196	157				4F0B9B091E	1	0	1	0	0	01	00	00
197	158				1E1736123C	0	1	0	0	0	00	01	00
198	159				3C2E6C2478	0	1	0	0	1	11	00	01
199	160				785CD848F1	1	0	0	0	0	01	11	00
200	161				70B9B091E3	0	0	1	1	1	10	01	11
201	162				61736123C6	0	0	1	0	1	00	10	01
202	163	UDA0D52	187091C3	LC8F271BE	42E6C2478D	1	0	1	1	1	00	00	10

Encryption Sample Data

													iuci	Ļ
203	164	1B41AA4	30E12387	191E4E37C	05CD848F1A	1	1	1	1	0	10	00	00	
204	165	1683549	61C2470F	123C9C6F9	0B9B091E34	0	1	0	1	0	00	10	00	
205	166	0D06A92	43848E1E	047938DF3	1736123C68	1	1	0	0	0	00	00	10	
206	167	1A0D524	07091C3C	08F271BE7	2E6C2478D1	1	0	1	0	0	01	00	00	
207	168	141AA49	0E123879	11E4E37CF	5CD848F1A2	0	0	0	1	0	00	01	00	
208	169	0835492	1C2470F3	03C9C6F9F	39B091E345	1	0	0	1	0	10	00	01	
209	170	106A925	3848E1E6	07938DF3F	736123C68B	0	0	0	0	0	11	10	00	
210	171	00D524A	7091C3CD	0F271BE7E	66C2478D16	0	1	1	1	0	01	11	10	
211	172	01AA495	6123879B	1E4E37CFD	4D848F1A2D	0	0	1	1	1	10	01	11	
212	173	035492A	42470F36	1C9C6F9FB	1B091E345B	0	0	1	0	1	00	10	01	
213	174	06A9255	048E1E6C	1938DF3F6	36123C68B7	0	1	1	0	0	00	00	10	
214	175	0D524AB	091C3CD8	1271BE7EC	6C2478D16E	1	0	0	0	1	00	00	00	
215	176	1AA4957	123879B1	04E37CFD8	5848F1A2DD	1	0	0	0	1	00	00	00	
216	177	15492AF	2470F363	09C6F9FB0	3091E345BA	0	0	1	1	0	01	00	00	
217	178	0A9255E	48E1E6C7	138DF3F61	6123C68B75	1	1	0	0	1	00	01	00	
218	179	1524ABD	11C3CD8F	071BE7EC3	42478D16EB	0	1	0	0	1	11	00	01	
219	180	0A4957B	23879B1F	0E37CFD87	048F1A2DD6	1	1	1	1	1	00	11	00	
220	181	1492AF6	470F363F	1C6F9FB0E	091E345BAD	0	0	1	0	1	10	00	11	
221	182	09255EC	0E1E6C7F	18DF3F61D	123C68B75B	1	0	1	0	0	00	10	00	
222	183	124ABD9	1C3CD8FF	11BE7EC3A	2478D16EB6	0	0	0	0	0	01	0 0	10	
223	184	04957B3	3879B1FE	037CFD874	48F1A2DD6D	0	0	0	1	0	00	01	00	
224	185	092AF66	70F363FD	06F9FB0E9	11E345BADB	1	1	0	1	1	10	0 0	01	
225	186	1255ECD	61E6C7FA	0DF3F61D3	23C68B75B7	0	1	1	1	1	00	10	00	
226	187	04ABD9B	43CD8FF5	1BE7EC3A7	478D16EB6E	0	1	1	1	1	00	0 0	10	
227	188	0957B37	079B1FEA	17CFD874E	0F1A2DD6DD	1	1	0	0	0	01	0 0	00	
228	189	12AF66F	0F363FD4	0F9FB0E9C	1E345BADBB	0	0	1	0	0	00	01	00	
229	190	055ECDE	1E6C7FA9	1F3F61D39	3C68B75B76	0	0	1	0	1	11	0 0	01	
230	191	0ABD9BC	3CD8FF53	1E7EC3A73	78D16EB6EC	1	1	1	1	1	00	11	00	
231	192	157B379	79B1FEA7	1CFD874E6	71A2DD6DD9	0	1	1	1	1	11	0 0	11	
232	193	0AF66F3	7363FD4E	19FB0E9CD	6345BADBB2	1	0	1	0	1	01	11	00	
233	194	15ECDE6	66C7FA9D	13F61D39A	468B75B765	0	1	0	1	1	10	01	11	
234	195	0BD9BCC	4D8FF53A	07EC3A735	0D16EB6ECA	1	1	0	0	0	11	10	01	
235	196	17B3799	1B1FEA75	0FD874E6A	1A2DD6DD94	0	0	1	0	0	00	11	10	
236	197	0F66F33	363FD4EA	1FB0E9CD5	345BADBB28	1	0	1	0	0	11	00	11	
237	198	1ECDE67	6C7FA9D5	1F61D39AA	68B75B7650	1	0	1	1	0	00	11	00	
238	199	1D9BCCF	58FF53AB	1EC3A7354	516EB6ECA0	1	1	1	0	1	11	00	11	
239	200	1B3799E	31FEA756	1D874E6A8	22DD6DD940	1	1	1	1	1	00	11	00	
	= 3F													
	= B1													
	= 67													
	= D2													
	= 2F													
	= A6													
	= 1F													
	= B9													
	= E6													
	= 84													
	= 43 = 07													
	= D8													
Δ[13]	= 1E													

page 705 of 814

	Re	load this	pattern in	to the LFSR									
					r regs and ca								
		E62F3F											
LFSR2	<= 6	C84A6B1											
LFSR3	<= 1	1E431F67											
LFSR4	<= 6	1E707B9D2											
C[t+1]	<= 0	0											
	Ge	nerating 1	25 key sym	bols (encry	ption/decrypt	ion se	que	nce)				
240	1	0E62F3F	6C84A6B1	11E431F67	61E707B9D2	1	1	0	1	0	00	11	00
241	2	1CC5E7F	59094D63	03C863ECE	43CE0F73A5	1	0	0	1	0	11	0 0	11
242	3	198BCFF	32129AC6	0790C7D9D	079C1EE74A	1	0	0	1	1	01	11	00
243	4	13179FE	6425358C	0F218FB3A	0F383DCE94	0	0	1	0	0	10	01	11
244	5	062F3FD	484A6B19	1E431F675	1E707B9D28	0	0	1	0	1	00	10	01
245	6	0C5E7FB	1094D632	1C863ECEB	3CE0F73A50	1	1	1	1	0	11	0 0	10
246	7	18BCFF7	2129AC64	190C7D9D7	79C1EE74A1	1	0	1	1	0	00	11	00
247	8	1179FEE	425358C8	1218FB3AE	7383DCE942	0	0	0	1	1	10	0 0	11
248	9	02F3FDD	04A6B190	0431F675D	6707B9D285	0	1	0	0	1	11	10	00
249	10	05E7FBB	094D6320	0863ECEBB	4E0F73A50B	0	0	1	0	0	00	11	10
250	11	0BCFF77	129AC640	10C7D9D77	1C1EE74A16	1	1	0	0	0	11	0 0	11
251	12	179FEEE	25358C80	018FB3AEE	383DCE942C	0	0	0	0	1	10	11	00
252	13	0F3FDDC	4A6B1900	031F675DD	707B9D2859	1	0	0	0	1	01	10	11
253	14	1E7FBB8	14D63200	063ECEBBA	60F73A50B3	1	1	0	1	0	10	01	10
254	15	1CFF771	29AC6401	0C7D9D774	41EE74A167	1	1	1	1	0	10	10	01
255	16	19FEEE2	5358C803	18FB3AEE9	03DCE942CE	1	0	1	1	1	01	10	10
256	17	13FDDC4	26B19007	11F675DD2	07B9D2859C	0	1	0	1	1	01	01	10
257	18	07FBB88	4D63200E	03ECEBBA4	0F73A50B38	0	0	0	0	1	10	01	01
258	19	0FF7711	1AC6401D	07D9D7748	1EE74A1670	1	1	0	1	1	11	10	01
259	20	1FEEE23	358C803B	0FB3AEE91	3DCE942CE1	1	1	1	1	1	01	11	10
260	21				7B9D2859C2	1	0	1	1	0	01	01	11
261	22				773A50B385	1	0	1	0	1	11	01	01
262	23				6E74A1670A			1			10	11	01
263	24				5CE942CE15			1			11	10	11
264					39D2859C2B	1				-	01		
265	26				73A50B3856		0		1	0	01	01	11
266	27				674A1670AD	0		1	0	0	11	01	01
265	27				4E942CE15B		1	1	1	0	11	11	01
267	20 29				1D2859C2B7		0	0	0	0	11	11	11
268	29 30				3A50B3856E	1		1	0	1	11	11	11
209	31				74A1670ADC	0		1	1	1	11	11	11
	31				6942CE15B8	1		1	0	1	11	11	11
271 272	32 33				52859C2B71		0	1	1	1	11	11	11
272	33				250B3856E3	1		1	0	1	11	11	11
	34 35							1	0	1	00		
274					4A1670ADC7		0					11	11
275	36				142CE15B8E		0	1	0	1	10	00	11
276	37				2859C2B71C	0		1	0	1	11	10	00
277	38				50B3856E39	1		1	1	1	01	11	10
278	39				21670ADC72		1	0	0	0	10	01	11
279	40				42CE15B8E4		1	1	1	1	11	10	01
280	41				059C2B71C8	0		1	1	1	00	11	10
281	42				0B3856E390	1		1	0	1	11	0 0	11
282	43	1E83C29	1DB20A0F	148F53D52	1670ADC720		1		0	1	01	11	00
283	44	1007052	38641418	091 877775	2CE15B8E40	1	0	1	1	0	01	01	11

284	45	1A0F0A6	76C8283C	123D4F54B	59C2B71C81	1	1	0	1	0	00	01	01	
285	46	141E14C	6D905079	047A9EA97	33856E3902	0	1	0	1	0	10	0 0	01	
286	47	083C299	5B20A0F2	08F53D52F	670ADC7204	1	0	1	0	0	00	10	00	
287	48	1078533	364141E4	11EA7AA5E	4E15B8E408	0	0	0	0	0	01	0 0	10	
288	49	00F0A67	6C8283C8	03D4F54BC	1C2B71C811	0	1	0	0	0	00	01	00	
289	50	01E14CE	59050791	07A9EA978	3856E39022	0	0	0	0	0	11	0 0	01	
290	51	03C299C	320A0F23	0F53D52F1	70ADC72045	0	0	1	1	1	01	11	00	
291	52	0785339	64141E47	1EA7AA5E2	615B8E408A	0	0	1	0	0	10	01	11	
292	53	0F0A673	48283C8E	1D4F54BC4	42B71C8115	1	0	1	1	1	11	10	01	
293	54	1E14CE6	1050791C	1A9EA9788	056E39022B	1	0	1	0	1	00	11	10	
294	55	1C299CD	20A0F239	153D52F10	0ADC720456	1	1	0	1	1	11	00	11	
295	56	185339B	4141E472	0A7AA5E20	15B8E408AC	1	0	1	1	0	00	11	00	
296	57	10A6736	0283C8E4	14F54BC41	2B71C81158	0	1	0	0	1	10	00	11	
297	58	014CE6C	050791C9	09EA97882	56E39022B0	0	0	1	1	0	00	10	00	
298	59	0299CD9	0A0F2393	13D52F104	2DC7204561	0	0	0	1	1	01	00	10	
299	60	05339B3	141E4726	07AA5E208	5B8E408AC3	0	0	0	1	0	0.0	01	0.0	
300	61	0A67366	283C8E4C	0F54BC411	371C811587	1	0	1	0	0	10	00	01	
301	62	14CE6CC	50791098	1EA978822	6E39022B0F	- 0	0	1	0	1	11	10	00	
302	63	0990099	20F23930	1D52F1045	5C7204561E	1	1	1	0	0	01	10	10	
302	64	1339B33	41E47260	1AA5E208B	38E408AC3D	0	1	1	1	0	01	01	11	
303	65	0673666		154BC4117		0							01	
			03C8E4C0	154BC4117 0A978822E	71C811587A		1	0	1	1	11	01		
305	66	0CE6CCC	0791C980		639022B0F5	1	1	1	1	1	11	11	01	
306	67	19CD999	0F239301	152F1045C	47204561EB	1	0	0	0	0	11	11	11	
307	68	139B332	1E472603	0A5E208B9	0E408AC3D6	0	0	1	0	0	11	11	11	
308	69	0736664	3C8E4C06	14BC41172	1C811587AD	0	1	0	1	1	11	11	11	
309	70	0E6CCC8	791C980C	0978822E5	39022B0F5A	1	0	1	0	1	11	11	11	
310	71	1CD9990	72393019	12F1045CB	7204561EB4	1	0	0	0	0	11	11	11	
311	72	19B3320	64726033	05E208B97	6408AC3D69	1	0	0	0	0	11	11	11	
312	73	1366640	48E4C067	0BC41172F	4811587AD3	0	1	1	0	1	11	11	11	
313	74	06CCC81	11C980CF	178822E5E	1022B0F5A6	0	1	0	0	0	11	11	11	
314	75	0D99903	2393019E	0F1045CBC	204561EB4C	1	1	1	0	0	10	11	11	
315	76	1B33206	4726033D	1E208B979	408AC3D699	1	0	1	1	1	10	10	11	
316	77	166640D	0E4C067B	1C41172F2	011587AD33	0	0	1	0	1	10	10	10	
317	78	0CCC81B	1C980CF6	18822E5E5	022B0F5A66	1	1	1	0	1	01	10	10	
318	79	1999036	393019EC	11045CBCA	04561EB4CD	1	0	0	0	0	01	01	10	
319	80	133206C	726033D9	0208B9794	08AC3D699B	0	0	0	1	0	11	01	01	
320	81	06640D9	64C067B3	041172F29	11587AD337	0	1	0	0	0	10	11	01	
321	82	0CC81B3	4980CF66	0822E5E53	22B0F5A66F	1	1	1	1	0	11	10	11	
322	83	1990366	13019ECC	1045CBCA6	4561EB4CDF	1	0	0	0	0	00	11	10	
323	84	13206CC	26033D98	008B9794D	0AC3D699BE	0	0	0	1	1	10	0 0	11	
324	85	0640D98	4C067B31	01172F29B	1587AD337C	0	0	0	1	1	11	10	00	
325	86	0C81B30	180CF662	022E5E537	2B0F5A66F9	1	0	0	0	0	00	11	10	
326	87	1903660	3019ECC5	045CBCA6F	561EB4CDF3	1	0	0	0	1	10	0 0	11	
327	88	1206CC1	6033D98A	08B9794DE	2C3D699BE6	0	0	1	0	1	11	10	00	
328	89	040D983	4067B315	1172F29BD	587AD337CC	0	0	0	0	1	11	11	10	
329	90	081B306	00CF662A	02E5E537A	30F5A66F98	1	1	0	1	0	10	11	11	
330	91	103660C	019ECC55	05CBCA6F4	61EB4CDF31	0	1	0	1	0	10	10	11	
331	92	006CC19	033D98AB	0B9794DE8	43D699BE62	0	0	1	1	0	01	10	10	
332	93	00D9833	067B3156	172F29BD0	07AD337CC5	0	0	0	1	0	01	01	10	
333	94	01B3066	0CF662AC		0F5A66F98B	0	1	1	0	1	11	01	01	
334	95		19ECC559	1CBCA6F41		0	1	1	1	0	11	11	01	
335	96	06CC19B	33D98AB2	19794DE83		0	1	1	0	1	11	11	11	
336	97	0D98336	67B31565		7AD337CC5F	1	1	0	1	0	10	11	11	
337	98		4F662ACA		75A66F98BF	1	0	0	1	0	10	10	11	
338	99	1660CDB	1ECC5594		6B4CDF317E	0	1	1	0	0	01	10	10	
339	100	0CC19B7	3D98AB29	1794DE831		1	1	1	1	0	10	01	10	
340	100		7B315653		2D337CC5F9	1	1	1	0	0	11	10	01	
54U	TUT	130330F	10313033	01220002	2000/00019	T	U	Ŧ	U	U	ΤŢ	ΤU	ΟT	

Sam	nple Da	ata										🛞 B	luetooth°
341	102	13066DE	7662ACA7	1E537A0C5	5A66F98BF2	0	0	1	0	0	00	11	10
342	103	060CDBC	6CC5594F	1CA6F418B	34CDF317E4	0	1	1	1	1	11	0 0	11
343	104	0C19B78	598AB29F	194DE8317	699BE62FC9	1	1	1	1	1	00	11	00
344	105	18336F1	3315653F	129BD062E	5337CC5F92	1	0	0	0	1	10	0 0	11
345	106	1066DE2	662ACA7E	0537A0C5C	266F98BF25	0	0	0	0	0	11	10	00
346	107	00CDBC5	4C5594FD	0A6F418B9	4CDF317E4B	0	0	1	1	1	00	11	10
347	108	019B78B	18AB29FA	14DE83172	19BE62FC96	0	1	0	1	0	11	0 0	11
348	109	0336F16	315653F4	09BD062E5	337CC5F92C	0	0	1	0	0	01	11	00
349	110	066DE2D	62ACA7E8	137A0C5CA	66F98BF258	0	1	0	1	1	10	01	11
350	111	0CDBC5B	45594FD1	06F418B95	4DF317E4B1	1	0	0	1	0	11	10	01
351	112	19B78B6	0AB29FA2	0DE83172B	1BE62FC962	1	1	1	1	1	01	11	10
352	113	136F16C	15653F45	1BD062E57	37CC5F92C5	0	0	1	1	1	10	01	11
353	114	06DE2D9	2ACA7E8B	17A0C5CAE	6F98BF258B	0	1	0	1	0	11	10	01
354	115	0DBC5B2	5594FD16	0F418B95D	5F317E4B16	1	1	1	0	0	01	11	10
355	116	1B78B64	2B29FA2C	1E83172BB	3E62FC962C	1	0	1	0	1	10	01	11
356	117	16F16C8	5653F458	1D062E577	7CC5F92C58	0	0	1	1	0	11	10	01
357	118	0DE2D91	2CA7E8B0	1A0C5CAEF	798BF258B1	1	1	1	1	1	01	11	10
358	119	1BC5B23	594FD161	1418B95DF	7317E4B163	1	0	0	0	0	10	01	11
359	120	178B647	329FA2C2	083172BBF	662FC962C7	0	1	1	0	0	11	10	01
360	121	0F16C8E	653F4584	1062E577F	4C5F92C58E	1	0	0	0	0	00	11	10
361	122	1E2D91C	4A7E8B09	00C5CAEFE	18BF258B1C	1	0	0	1	0	11	0 0	11
362	123	1C5B238	14FD1613	018B95DFC	317E4B1639	1	1	0	0	1	01	11	00
363	124	18B6471	29FA2C27	03172BBF9	62FC962C72	1	1	0	1	0	01	01	11
364	125	116C8E2	53F4584E	062E577F3	45F92C58E4	0	1	0	1	1	11	01	01

2 FREQUENCY HOPPING SAMPLE DATA

The section contains three sets of sample data showing the basic and adapted hopping schemes for different combinations of addresses and initial clock values.

😵 Bluetooth[°]

2.1 FIRST SET

Hop sequence {k CLKN start: UAP / LAP: #ticks:	<pre>{ for PAGE \$ 0x0000000 0x00000000 00000 100</pre>		VIRY SCAN	SUBSTA 4000		6000	7000	I
0x0000000: 0x008000: 0x0010000: 0x0018000: 0x0020000: 0x0028000: 0x0030000: 0x0038000:	0 2 16 16 32 34 48 5 0 2 16 16 32 34 48 5	2 4 3 20 4 36 52 2 4 3 20 4 36	6 22 38 54 6 22 38 54 6 22 38 54	8 24 40 56 8 24 40 56	10 26 42 58 10 26 42 58	12 28 44 60 12 28 44 60	14 30 46 62 14 30 46 62	
Hop sequence {k CLKE start: UAP / LAP: #ticks:	<pre>{ for PAGE \$ 0x0000000 0x00000000 0x00000000</pre>		UIRY SUE	STATE: 08 09	0a 0b	0c 0d	0e Of	
0x0000000: 0x0000010: 0x0000020: 0x0000030:	48 50 09 1 00 02 64 6 48 50 09 1 00 02 64 6	3 04 06 3 52 54	41 45 17 21 41 45 17 21	56 58 08 10 56 58 08 10	66 70 11 15	12 14 60 62	43 47 19 23 43 47 19 23	
 0x0001000: 0x0001010: 0x0001020: 0x0001030:	48 18 09 09 32 34 72 70 48 18 09 09 32 34 72 70	5 36 38 5 20 22	33 37 25 29 33 37 25 29	24 26 40 42 24 26 40 42	74 78 03 07	44 46 28 30	35 39 27 31 35 39 27 31	
 0x0002000: 0x0002010: 0x0002020: 0x0002030:	16 18 01 0 00 02 64 6 16 18 01 0 00 02 64 6	3 04 06 5 52 54	41 45 17 21 41 45 17 21	56 58 08 10 56 58 08 10	66 70 11 15	12 14 60 62	43 47 19 23 43 47 19 23	
 0x0003000: 0x0003010: 0x0003020: 0x0003030:	48 50 09 1: 32 34 72 7 48 50 09 1: 32 34 72 7	5 36 38 3 52 22	41 37 25 29 41 37 25 29			44 46 28 30	35 39 27 31 35 39 27 31	
Hop sequence {k CLKN* = UAP / LAP: #ticks:	<pre>for SLAVE 0x0000010 0x00000000 00 02 04</pre>	PAGE RES	PONSE SU		12 1	4 16	18 1a	a 1c 1e
0x0000012: 0x0000032: 0x0000052: 0x0000072:	64 02 68 01 18 05 72 34 76 09 50 13	04 17 20 33 36 25 52 41	06 21 22 37 38 29 54 45	08 66 24 03 40 74 56 11	26 0 42 7	7 28 8 44	35 30 27 46	5 31 48
Hop sequence {k Offset value: CLKE* = UAP / LAP: #ticks:	24 0x0000012 0x0000000 00 02 04					4 16	18 1a	1c 1e
0x0000014: 0x0000034: 0x0000054: 0x0000074:	180520347636	17 06 33 22 25 38 41 54	37242940	03 26 74 42	07 2 78 4	2 19 8 35 4 27 0 43	14 23 30 39 46 31 62 47	16 01 32 72 48 09 00 64

Hop sequence {k} CLK start: UAP/LAP:	0x0000010 0x00000000			nce; ie, non-AFH):
#ticks:	00 02 04 06	08 0a 0c 0e	10 12 14 16	18 1a 1c 1e
<pre>#ticks: 0x0000010: 0x0000030: 0x0000050: 0x0000000: 0x0000000: 0x0000000: 0x0000000: 0x000010: 0x0000130: 0x0000150: 0x0000150: 0x0000190: 0x0000100: 0x0000100: 0x0000100: 0x0000100: 0x0000100: 0x0000210: 0x0000250: 0x0000250: 0x0000250: 0x0000250: 0x0000270: 0x000</pre>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	08 0a 0c 0e 12 19 14 23 28 35 30 39 44 27 46 31 60 43 62 47 42 53 46 55 58 69 62 71 74 61 78 63 11 77 15 00 05 04 07 08 13 12 15 16 37 20 39 24 45 28 47 32 35 38 39 40 43 46 47 48 67 54 71 56 75 62 00 64 61 68 63 76 77 05 00 13 14 72 16 01 30 09 32 17 12 23 16 31 28	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18 1a 1c 1e 20 33 22 37 36 25 38 29 52 41 54 45 34 49 38 51 50 65 54 67 66 57 70 59 03 73 07 75 68 02 70 06 76 10 78 14 21 18 23 22 29 26 31 30 19 34 23 36 27 42 31 44 51 50 55 52 59 58 63 60 57 66 59 74 73 03 75 11 10 70 12 78 26 07 28 15 10 19 14 27 26 35 30 43 42
0x0000310: 0x0000330: 0x0000350: 0x0000370:	38 21 40 37 46 29 48 45 70 25 72 41 78 33 01 49	54 53 56 69 62 61 64 77 07 57 09 73 15 65 17 02	42 27 44 43 66 23 68 39 74 31 76 47 66 51 70 67	58 59 60 75 03 55 05 71 11 63 13 00 03 04 07 20
0x0000390: 0x00003b0: 0x00003d0:	68 55 72 71 76 63 01 00 21 57 25 73	05 08 09 24 13 16 17 32 37 10 41 26	745978751953236927613177	11 12 15 28 35 06 39 22 43 14 47 30
0x00003f0:	29 65 33 02	45 18 49 34	19 04 21 08	23 20 25 24

😵 Bluetooth[°]

Hop Sequence all channel u			E (Adapted channel hopping sequer	nce with
CLK start:	0x000	0010		
ULAP:	0x000	00000		
Used Channels	:0x7ff	ffffffffffffffff		
#ticks:	00 02	04 06 08 0a	Oc Oe 10 12 14 16 18 1a	1c 1e
0x000010	08 08	10 10 12 12	14 14 16 16 18 18 20 20	22 22
0x000030	24 24	26 26 28 28	30 30 32 32 34 34 36 36	38 38
0x000050	40 40	42 42 44 44	46 46 48 48 50 50 52 52	54 54
0x000070	56 56	58 58 60 60	62 62 32 32 36 36 34 34	38 38
0x0000090	40 40	44 44 42 42	46 46 48 48 52 52 50 50	54 54
0x00000b0	56 56	60 60 58 58	62 62 64 64 68 68 66 66	70 70
0x00000d0	72 72	76 76 74 74	78 78 01 01 05 05 03 03	07 07
0x0000f0	09 09	13 13 11 11	15 15 64 64 66 66 68 68	70 70
0x0000110	01 01	03 03 05 05	07 07 72 72 74 74 76 76	78 78
0x0000130	09 09	11 11 13 13	15 15 17 17 19 19 21 21	23 23
0x0000150	33 33	35 35 37 37	39 39 25 25 27 27 29 29	31 31
0x0000170	41 41	43 43 45 45	47 47 17 17 21 21 19 19	23 23
0x0000190	33 33	37 37 35 35	39 39 25 25 29 29 27 27	31 31
0x00001b0	41 41	45 45 43 43	47 47 49 49 53 53 51 51	55 55
0x00001d0	65 65	69 69 67 67	71 71 57 57 61 61 59 59	63 63
0x00001f0	73 73	77 77 75 75	00 00 49 49 51 51 57 57	59 59
0x0000210	53 53	55 55 61 61	63 63 65 65 67 67 73 73	75 75
0x0000230	69 69	71 71 77 77	00 00 02 02 04 04 10 10	12 12
0x0000250	06 06	08 08 14 14	16 16 18 18 20 20 26 26	28 28
0x0000270	22 22	24 24 30 30	32 32 02 02 06 06 10 10	14 14
0x0000290	04 04	08 08 12 12	16 16 18 18 22 22 26 26	30 30
0x00002b0	20 20	24 24 28 28	32 32 34 34 38 38 42 42	46 46
0x00002d0	36 36	40 40 44 44	48 48 50 50 54 54 58 58	62 62
0x00002f0	52 52	56 56 60 60	64 64 34 34 36 36 50 50	52 52
0x0000310	38 38	40 40 54 54	56 56 42 42 44 44 58 58	60 60
0x0000330	46 46	48 48 62 62	64 64 66 66 68 68 03 03	05 05
0x0000350	70 70	72 72 07 07	09 09 74 74 76 76 11 11	13 13
0x0000370	78 78	01 01 15 15	17 17 66 66 70 70 03 03	07 07
0x0000390	68 68	72 72 05 05	09 09 74 74 78 78 11 11	15 15
0x0003b0	76 76	01 01 13 13	17 17 19 19 23 23 35 35	3939
0x00003d0	21 21	25 25 37 37	41 41 27 27 31 31 43 43	47 47
0x00003f0	29 29	33 33 45 45	49 49 19 19 21 21 23 23	25 25

Hop Sequence channels 0 to	$\{k\}$ for CONNECTION STATE (Adapted channel hopping sequent 21 unused):	nce with
CLK start:	0x000010	
ULAP:	0x00000000	
Used Channels	:0x7ffffffffffffc00000	
#ticks:	00 02 04 06 08 0a 0c 0e 10 12 14 16 18 1a	1c 1e
0x0000010	30 30 32 32 34 34 36 36 38 38 40 40 42 42	22 22
0x000030	24 24 26 26 28 28 30 30 32 32 34 34 36 36	38 38
0x0000050	40 40 42 42 44 44 46 46 48 48 50 50 52 52	54 54
0x0000070	56 56 58 58 60 60 62 62 32 32 36 36 34 34	38 38
0x0000090	40 40 44 44 42 42 46 46 48 48 52 52 50 50	54 54
0x00000b0	56 56 60 60 58 58 62 62 64 64 68 68 66 66	70 70
0x00000d0	72 72 76 76 74 74 78 78 45 45 49 49 47 47	51 51
0x00000f0	53 53 57 57 55 55 59 59 64 64 66 66 68 68	70 70
0x0000110	45 45 47 47 49 49 51 51 72 72 74 74 76 76	78 78
0x0000130	53 53 55 55 57 57 59 59 61 61 63 63 65 65	23 23
0x0000150	33 33 35 35 37 37 39 39 25 25 27 27 29 29	31 31
0x0000170	41 41 43 43 45 45 47 47 61 61 65 65 63 63	23 23
0x0000190	33 33 37 37 35 35 39 39 25 25 29 29 27 27	31 31
0x00001b0	41 41 45 45 43 43 47 47 49 49 53 53 51 51	55 55
0x00001d0	65 65 69 69 67 67 71 71 57 57 61 61 59 59	63 63
0x00001f0	73 73 77 77 75 75 66 66 49 49 51 51 57 57	59 59
0x0000210	53 53 55 55 61 61 63 63 65 65 67 67 73 73	75 75
0x0000230	69 69 71 71 77 77 66 66 68 68 70 70 76 76	78 78
0x0000250	72 72 74 74 23 23 25 25 27 27 29 29 26 26	28 28
0x0000270	22 22 24 24 30 30 32 32 68 68 72 72 76 76	23 23
0x0000290	70 70 74 74 78 78 25 25 27 27 22 22 26 26	30 30
0x00002b0	29 29 24 24 28 28 32 32 34 34 38 38 42 42	46 46
0x00002d0	36 36 40 40 44 44 48 48 50 50 54 54 58 58	62 62
0x00002f0	52 52 56 56 60 60 64 64 34 34 36 36 50 50	52 52
0x0000310	38 38 40 40 54 54 56 56 42 42 44 44 58 58	60 60
0x0000330	46 46 48 48 62 62 64 64 66 66 68 68 34 34	36 36
0x0000350	70 70 72 72 38 38 40 40 74 74 76 76 42 42	44 44
0x0000370	78 78 32 32 46 46 48 48 66 66 70 70 34 34	38 38
0x0000390	68 68 72 72 36 36 40 40 74 74 78 78 42 42	46 46
0x00003b0	76 76 32 32 44 44 48 48 50 50 23 23 35 35	39 39
0x00003d0	52 52 25 25 37 37 41 41 27 27 31 31 43 43	47 47
0x00003f0	29 29 33 33 45 45 49 49 50 50 52 52 23 23	25 25

page 714 of 814

😵 Bluetooth[°]

Hop Sequence even channels			CO	INEC	TI	ON	STA	ΓE	(A	dapt	ce	d c	hanı	ne	l h	oppi	ng	S	eque	nce	wit	h
CLK start:	0x	0000	010																			
ULAP:	0x	0000	000)																		
Used Channels	:0x	5555	555	5555	55	555	5555	5														
#ticks:	00	02	0	106		08	0a		0c	0e		10	12		14	16		18	1a	10	: 1e	e
0x000010	08	08	10	10		12	12		14	14		16	16		18	18	2	0	20	22	22	
0x000030	24	24	20	26		28	28		30	30		32	32		34	34	3	6	36	38	38	
0x000050	40	40	42	42		44	44		46	46		48	48		50	50	5	2	52	54	54	
0x000070	56	56	58	58		60	60		62	62		32	32		36	36	3	4	34	38	38	
0x0000090	40	40	44	44		42	42		46	46		48	48		52	52	5	0	50	54	54	
0x00000b0	56	56	60	60		58	58		62	62		64	64		68	68	6	6	66	70	70	
0x00000d0	72	72	70	5 76		74	74		78	78		00	00		04	04	0	2	02	06	06	
0x00000f0	08	08	12	12		10	10		14	14		64	64		66	66	6	8	68	70	70	
0x0000110	00	00	02	2 02		04	04		06	06		72	72		74	74	7	6	76	78	78	
0x0000130	08	08	10	10		12	12		14	14		16	16		18	18	2	0	20	22	22	
0x0000150	32	32	34	34		36	36		38	38		24	24		26	26	2	8	28	30	30	
0x0000170	40	40	42	42		44	44		46	46		16	16		20	20	1	8	18	22	22	
0x0000190	32	32	36	36		34	34		38	38		24	24		28	28	2	6	26	30	30	
0x00001b0	40	40	44	44		42	42		46	46		48	48		52	52	5	0	50	54	54	
0x00001d0	64	64	68	68		66	66		70	70		56	56		60	60	5	8	58	62	62	
0x00001f0	72	72	70	5 76		74	74		00	00		48	48		50	50	5	6	56	58	58	
0x0000210	52	52	54	54		60	60		62	62		64	64		66	66	7	2	72	74	74	
0x0000230	68	68	70	70		76	76		00	00		02	02		04	04	1	0	10	12	12	
0x0000250	06	06	08	8 0 8		14	14		16	16		18	18		20	20	2	6	26	28	28	
0x0000270	22	22	24	24		30	30		32	32		02	02		06	06	1	0	10	14	14	
0x0000290	04	04	08	8 0 8		12	12		16	16		18	18		22	22	2	6	26	30	30	
0x00002b0	20	20	24	24		28	28		32	32		34	34		38	38	4	2	42	46	46	
0x00002d0	36	36	40	40		44	44		48	48		50	50		54	54	5	8	58	62	62	
0x00002f0	52	52	50	56		60	60		64	64		34	34		36	36	5	0	50	52	52	
0x0000310	38	38	40	40		54	54		56	56		42	42		44	44	5	8	58	60	60	
0x0000330	46	46	48	8 48		62	62		64	64		66	66		68	68	0	0	00	02	02	
0x0000350	70	70	72	2 72		04	04		06	06		74	74		76	76	C	8	08	10	10	
0x0000370	78	78	78	8 78		12	12		14	14		66	66		70	70	0	0	00	04	04	
0x0000390	68	68	72	2 72		02	02		06	06		74	74		78	78	0	8	08	12	12	
0x0003b0	76	76	78	8 78		10	10		14	14		16	16		20	20	3	2	32	36	36	
0x00003d0	18	18	22	22		34	34		38	38		24	24		28	28	4	0	40	44	44	
0x00003f0	26	26	3	30		42	42		46	46		16	16		18	18		20	20	22	22	2

≯	Blue	tooth°
---	------	--------

Hop Sequence odd channels		E (Adapted channel hopping sequence with
CLK start:	0x000010	
ULAP:	0x0000000	
Used Channels	:0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
#ticks:	00 02 04 06 08 0a	Oc Oe 10 12 14 16 18 1a 1c 1e
0x0000010	09 09 11 11 13 13	15 15 17 17 19 19 21 21 23 23
0x000030	25 25 27 27 29 29	31 31 33 33 35 35 37 37 39 39
0x0000050	41 41 43 43 45 45	47 47 49 49 51 51 53 53 55 55
0x0000070	57 57 59 59 61 61	63 63 33 33 37 37 35 35 39 39
0x0000090	41 41 45 45 43 43	47 47 49 49 53 53 51 51 55 55
0x00000b0	57 57 61 61 59 59	63 63 65 65 69 69 67 67 71 71
0x00000d0	73 73 77 77 75 75	01 01 01 01 05 05 03 03 07 07
0x00000f0	09 09 13 13 11 11	15 15 65 65 67 67 69 69 71 71
0x0000110	01 01 03 03 05 05	07 07 73 73 75 75 77 77 01 01
0x0000130	09 09 11 11 13 13	15 15 17 17 19 19 21 21 23 23
0x0000150	33 33 35 35 37 37	39 39 25 25 27 27 29 29 31 31
0x0000170	41 41 43 43 45 45	47 47 17 17 21 21 19 19 23 23
0x0000190	33 33 37 37 35 35	39 39 25 25 29 29 27 27 31 31
0x00001b0	41 41 45 45 43 43	47 47 49 49 53 53 51 51 55 55
0x00001d0	65 65 69 69 67 67	71 71 57 57 61 61 59 59 63 63
0x00001f0	73 73 77 77 75 75	03 03 49 49 51 51 57 57 59 59
0x0000210	53 53 55 55 61 61	63 63 65 65 67 67 73 73 75 75
0x0000230	69 69 71 71 77 77	03 03 05 05 07 07 13 13 15 15
0x0000250	09 09 11 11 17 17	19 19 21 21 23 23 29 29 31 31
0x0000270	25 25 27 27 33 33	35 35 05 05 09 09 13 13 17 17
0x0000290	07 07 11 11 15 15	19 19 21 21 25 25 29 29 33 33
0x00002b0	23 23 27 27 31 31	35 35 37 37 41 41 45 45 49 49
0x00002d0	39 39 43 43 47 47	51 51 53 53 57 57 61 61 65 65
0x00002f0	55 55 59 59 63 63	67 67 37 37 39 39 53 53 55 55
0x0000310	41 41 43 43 57 57	59 59 45 45 47 47 61 61 63 63
0x0000330	49 49 51 51 65 65	67 67 69 69 71 71 03 03 05 05
0x0000350	73 73 75 75 07 07	09 09 77 77 01 01 11 11 13 13
0x0000370	03 03 01 01 15 15	17 17 69 69 73 73 03 03 07 07
0x0000390	71 71 75 75 05 05	09 09 77 77 03 03 11 11 15 15
0x00003b0	01 01 01 01 13 13	17 17 19 19 23 23 35 35 39 39
0x00003d0	21 21 25 25 37 37	41 41 27 27 31 31 43 43 47 47
0x00003f0	29 29 33 33 45 45	49 49 19 19 21 21 23 23 25 25

2.2 SECOND SET

Hop sequence {k CLKN start: ULAP: #ticks:	0x0000 0x2a96	0000 ef25	AN/INQU:		I SUBSTA		6000	7000		
0x0000000: 0x0010000: 0x0010000: 0x0020000: 0x0028000: 0x0030000: 0x0038000:	49 57 33 41 49 57 33 41	13 21 76 5 13 21 76 5	17 25 1 9 17 25 1 9	51 27 35 43 51 27 35 43	55 31 39 47 55 31 39 47	19 74 3 11 19 74 3 11	23 78 7 15 23 78 78 7 15	53 29 37 45 53 29 37 45		
Hop sequence {k CLKE start: ULAP: #ticks:	0x0000 0x2a96	000		JIRY SUE 06 07		0a 0b	0c 0d	0e 0f		
0x0000000: 0x0000010: 0x0000020: 0x0000030:	41 05 49 13 41 05 49 13	34 28 10 04			47 11 55 19 47 11 55 19	26 20	15 45 23 53 15 45 23 53			
0x0001000: 0x0001010: 0x0001020: 0x0001030:	41 21	10 36 02 75 10 36 02 75	25 27 01 35 25 27 01 35		31 74 39 03 31 74 39 03	65 59 73 67 65 59 73 67	78 29 07 37 78 29 07 37	69 08 61 00		
0x0002000: 0x0002010: 0x0002020: 0x0002030:	57 21 49 13 57 21 49 13	34 28 42 36	17 51 09 43		47 11 55 19 47 11 55 19	26 20	15 45 23 53 15 45 23 53	14 32		
0x0003000: 0x0003010: 0x0003020: 0x0003030:	33 76	10 04 02 75 10 04 02 75	09 27	77 71	31 74 39 03 31 74 39 03		78 29 07 37 78 29 07 37			
Hop sequence {k CLKN* = ULAP: #ticks:	0x0000 0x2a96	010	AGE RESI 06 08	PONSE SU			14 16	18 1a	a 1c	1e
0x0000012: 0x0000032: 0x0000052: 0x0000072:	42 2 02 7	.3 28 21 36 76 75 95 04	17 30 25 38 01 77 09 06	51 24 27 63 35 71 43 16	55 26 31 65 39 73 47 18	5 74 3 03	59 78 67 07	61 29 69 37	3 40 9 00 7 08 5 32	57 33 41 49
Hop sequence {k Offset value: CLKE* = ULAP: #ticks:	} for M 24 0x0000 0x2a96 00 02	012 sef25					14 16	18 la	1c 1	Le
0x0000014: 0x0000034: 0x0000054: 0x0000074:	13 28 21 36 76 75 05 04	17 30 25 38 01 77 09 06	3 27 0 7 35 7	24 55 63 31 71 39 16 47	65 74 73 03	9 20 4 59 3 67 L 12	23 22 78 61 07 69 15 14	53 40 29 00 37 08 45 32	41 1	12 12 10 34

Hop sequence {k} CLK start: ULAP:	0x0000010 0x2a96ef25		Basic chanr				
#ticks:	00 02 04	06 08 0a	a 0c 0e	10 12	14 16	18 1a	1c 1e
0x000010:	55 26 19	20 23 22		57 42	21 36	25 38	27 63
0x000030:	31 65 74	59 78 61		33 02	76 75	01 77	35 71
0x0000050: 0x0000070:	39 73 03 47 18 11	67 07 69 12 15 14		41 10 02 66	05 04 47 60	09 06 49 64	43 16 04 54
0x0000070:	47 18 11 06 58 51	52 53 56		10 74	4760 5568	49 64 57 72	04 54 59 14
0x00000000:	61 18 27	12 29 16		65 34	31 28	33 32	67 22
0x00000d0:	69 26 35	20 37 24		73 42	39 36	41 40	75 46
0x00000f0:	77 50 43	44 45 48		26 11	69 05	73 07	36 17
0x0000110:	40 19 04	13 08 15	5 38 25	42 27	06 21	10 23	12 48
0x0000130:	16 50 59	44 63 46	5 14 56	18 58	61 52	65 54	28 64
0x0000150:	32 66 75	60 00 62	2 30 72	34 74	77 68	02 70	20 01
0x0000170:	24 03 67	76 71 78	3 22 09	58 43	24 37	26 41	68 47
0x0000190:	70 51 36	45 38 49		74 59	40 53	42 57	44 78
0x00001b0:	46 03 12	76 14 01		50 11	16 05	18 09	60 15
0x00001d0:	62 19 28	13 30 1		66 27	32 21	34 25	52 31
0x00001f0:	54 35 20	29 22 33		19 04	62 63	66 00	07 73
0x0000210:	11 10 54	69 58 06		27 12	70 71	74 08	76 33
0x0000230:	01 49 44	29 48 45		17 51	60 31	64 47	05 41
0x0000250: 0x0000270:	09 57 52 03 02 46	37 56 53 61 50 73		25 59 51 36	68 39 17 18	72 55 19 34	78 65 41 24
0x0000270: 0x0000290:	43 40 09	22 11 38		51 36	25 26	19 34 27 42	29 63
0x00002b0:	31 00 76	61 78 7		47 04	13 65	15 02	37 71
0x00002d0:	39 08 05	69 07 06		55 12	21 73	23 10	33 16
0x00002f0:	35 32 01	14 03 30		75 60	39 48	43 56	00 66
0x0000310:	04 74 47	62 51 70		12 76	55 64	59 72	61 18
0x0000330:	65 26 29	14 33 22	2 69 20	73 28	37 16	41 24	77 34
0x0000350:	02 42 45	30 49 38	3 06 36	10 44	53 32	57 40	63 50
0x0000370:	67 58 31	46 35 54	4 71 52	28 13	73 03	75 11	34 17
0x0000390:	36 25 02	15 04 23		44 29	10 19	12 27	14 48
0x0003b0:	16 56 61	46 63 54	-	24 60	69 50	71 58	30 64
0x00003d0:	32 72 77	62 00 70		40 76	06 66	08 74	18 01
0x00003f0:	20 09 65	78 67 07	7 26 05	44 29	32 23	36 25	70 43

😵 Bluetooth[°]

Hop Sequence all channel u			Adapted channel hopping sequence with
CLK start:	0x0000	010	
ULAP:	0x2a96	ef25	
Used Channels	:0x7fff	fffffffffffff	
#ticks:	00 02	04 06 08 0a 00	c 0e 10 12 14 16 18 1a 1c 1e
0x000010	55 55	19 19 23 23 53	53 57 57 21 21 25 25 27 27
0x000030	31 31	74 74 78 78 29	29 33 33 76 76 01 01 35 35
0x000050	39 39	03 03 07 07 37	37 41 41 05 05 09 09 43 43
0x000070	47 47	11 11 15 15 45	45 02 02 47 47 49 49 04 04
0x0000090	06 06	51 51 53 53 08	08 10 10 55 55 57 57 59 59
0x00000b0	61 61	27 27 29 29 63	63 65 65 31 31 33 33 67 67
0x00000d0	69 69	35 35 37 37 71	71 73 73 39 39 41 41 75 75
0x00000f0	77 77	43 43 45 45 00	00 26 26 69 69 73 73 36 36
0x0000110	40 40	04 04 08 08 38	38 42 42 06 06 10 10 12 12
0x0000130	16 16	59 59 63 63 14	14 18 18 61 61 65 65 28 28
0x0000150	32 32	75 75 00 00 30	30 34 34 77 77 02 02 20 20
0x0000170	24 24	67 67 71 71 22	22 58 58 24 24 26 26 68 68
0x0000190	70 70	36 36 38 38 72	72 74 74 40 40 42 42 44 44
0x00001b0	46 46	12 12 14 14 48	48 50 50 16 16 18 18 60 60
0x00001d0	62 62	28 28 30 30 64	64 66 66 32 32 34 34 52 52
0x00001f0	54 54	20 20 22 22 56	56 19 19 62 62 66 66 07 07
0x0000210	11 11	54 54 58 58 23	23 27 27 70 70 74 74 76 76
0x0000230	01 01	44 44 48 48 13	13 17 17 60 60 64 64 05 05
0x0000250	09 09	52 52 56 56 21	21 25 25 68 68 72 72 78 78
0x0000270	03 03	46 46 50 50 15	15 51 51 17 17 19 19 41 41
0x0000290	43 43	09 09 11 11 57	57 59 59 25 25 27 27 29 29
0x00002b0	31 31	76 76 78 78 45	45 47 47 13 13 15 15 37 37
0x00002d0	39 39	05 05 07 07 53	53 55 55 21 21 23 23 33 33
0x00002f0	35 35	01 01 03 03 49	49 75 75 39 39 43 43 00 00
0x0000310	04 04	47 47 51 51 08	08 12 12 55 55 59 59 61 61
0x0000330	65 65	29 29 33 33 69	69 73 73 37 37 41 41 77 77
0x0000350	02 02	45 45 49 49 06	06 10 10 53 53 57 57 63 63
0x0000370	67 67	31 31 35 35 71	71 28 28 73 73 75 75 34 34
0x0000390	36 36	02 02 04 04 42	42 44 44 10 10 12 12 14 14
0x00003b0	16 16	61 61 63 63 22	22 24 24 69 69 71 71 30 30
0x00003d0	32 32	77 77 00 00 38	38 40 40 06 06 08 08 18 18
0x00003f0	20 20	65 65 67 67 26	5 26 44 44 32 32 36 36 70 70

Hop Sequence channels 0 to	. ,		(Adapted channel hopping sequence with
CLK start:	0x00000	010	
ULAP:	0x2a96e	ef25	
Used Channels	:0x7fff	Effffffffc00000	
#ticks:	00 02	04 06 08 0a	Oc Oe 10 12 14 16 18 1a 1c 1e
0x0000010	55 55	50 50 23 23	53 53 57 57 52 52 25 25 27 27
0x000030	31 31	74 74 78 78	29 29 33 33 76 76 32 32 35 35
0x0000050	39 39	34 34 38 38	37 37 41 41 36 36 40 40 43 43
0x0000070	47 47	42 42 46 46	45 45 55 55 47 47 49 49 57 57
0x0000090	59 59	51 51 53 53	61 61 63 63 55 55 57 57 59 59
0x00000b0	61 61	27 27 29 29	63 63 65 65 31 31 33 33 67 67
0x00000d0	69 69	35 35 37 37	71 71 73 73 39 39 41 41 75 75
0x00000f0	77 77	43 43 45 45	53 53 26 26 69 69 73 73 36 36
0x0000110	40 40	57 57 61 61	38 38 42 42 59 59 63 63 65 65
0x0000130	69 69	59 59 63 63	67 67 71 71 61 61 65 65 28 28
0x0000150	32 32	75 75 53 53	30 30 34 34 77 77 55 55 73 73
0x0000170	24 24	67 67 71 71	22 22 58 58 24 24 26 26 68 68
0x0000190	70 70	36 36 38 38	72 72 74 74 40 40 42 42 44 44
0x00001b0	46 46	65 65 67 67	48 48 50 50 69 69 71 71 60 60
0x00001d0	62 62	28 28 30 30	64 64 66 66 32 32 34 34 52 52
0x00001f0	54 54	73 73 22 22	56 56 37 37 62 62 66 66 25 25
0x0000210	29 29	54 54 58 58	23 23 27 27 70 70 74 74 76 76
0x0000230	76 76	44 44 48 48	31 31 35 35 60 60 64 64 23 23
0x0000250	27 27	52 52 56 56	39 39 25 25 68 68 72 72 78 78
0x0000270	78 78	46 46 50 50	33 33 51 51 35 35 37 37 41 41
0x0000290	43 43	27 27 29 29	57 57 59 59 25 25 27 27 29 29
0x00002b0	31 31	76 76 78 78	45 45 47 47 31 31 33 33 37 37
0x00002d0	39 39	23 23 25 25	53 53 55 55 39 39 23 23 33 33
0x00002f0	35 35	76 76 78 78	49 49 75 75 39 39 43 43 40 40
0x0000310	44 44	47 47 51 51	48 48 52 52 55 55 59 59 61 61
0x0000330	65 65	29 29 33 33	69 69 73 73 37 37 41 41 77 77
0x0000350	42 42	45 45 49 49	46 46 50 50 53 53 57 57 63 63
0x0000370	67 67	31 31 35 35	71 71 28 28 73 73 75 75 34 34
0x0000390	36 36	42 42 44 44	42 42 44 44 50 50 52 52 54 54
0x00003b0	56 56	61 61 63 63	22 22 24 24 69 69 71 71 30 30
0x00003d0	32 32	77 77 40 40	38 38 40 40 46 46 48 48 58 58
0x00003f0	60 60	65 65 67 67	26 26 44 44 32 32 36 36 70 70

😵 Bluetooth[°]

Hop Sequence $\{k\}$ for CONNECTION STATE (Adapted channel hopping sequence with even channels used):														h									
CLK start:	LK start: 0x0000010																						
ULAP: 0x2a96ef25																							
Used Channels:0x555555555555555555555555555555555555																							
#ticks:	00	02		04	06		08	0a		0c	0e		10	12		14	16		18	1a	10	: 1e	:
0x000010	52	52		16	16		20	20		50	50		54	54		18	18		22	22	24	24	
0x000030	28	28		74	74		78	78		26	26		30	30		76	76		78	78	32	32	
0x000050	36	36		00	00		04	04		34	34		38	38		02	02		06	06	40	40	
0x000070	44	44		08	08		12	12		42	42		02	02		44	44		46	46	04	04	
0x0000090	06	06		48	48		50	50		08	08		10	10		52	52		54	54	56	56	
0x0000b0	58	58		24	24		26	26		60	60		62	62		28	28		30	30	64	64	
0x0000d0	66	66		32	32		34	34		68	68		70	70		36	36		38	38	72	72	
0x00000f0	74	74		40	40		42	42		00	00		26	26		66	66		70	70	36	36	
0x0000110	40	40		04	04		08	08		38	38		42	42		06	06		10	10	12	12	
0x0000130	16	16		56	56		60	60		14	14		18	18		58	58		62	62	28	28	
0x0000150	32	32		72	72		00	00		30	30		34	34		74	74		02	02	20	20	
0x0000170	24	24		64	64		68	68		22	22		58	58		24	24		26	26	68	68	
0x0000190	70	70		36	36		38	38		72	72		74	74		40	40		42	42	44	44	
0x00001b0	46	46		12	12		14	14		48	48		50	50		16	16		18	18	60	60	
0x00001d0	62	62		28	28		30	30		64	64		66	66		32	32		34	34	52	52	
0x00001f0	54	54		20	20		22	22		56	56		14	14		62	62		66	66	02	02	
0x0000210	06	06		54	54		58	58		18	18		22	22		70	70		74	74	76	76	
0x0000230	76	76		44	44		48	48		08	08		12	12		60	60		64	64	00	00	
0x0000250	04	04		52	52		56	56		16	16		20	20		68	68		72	72	78	78	
0x0000270	78	78		46	46		50	50		10	10		46	46		12	12		14	14	36	36	
0x0000290	38	38		04	04		06	06		52	52		54	54		20	20		22	22	24	24	
0x00002b0	26	26		76	76		78	78		40	40		42	42		08	08		10	10	32	32	
0x00002d0	34	34		00	00		02	02		48	48		50	50		16	16		18	18	28	28	
0x00002f0	30	30		76	76		78	78		44	44		70	70		34	34		38	38	00	00	
0x0000310	04	04		42	42		46	46		08	08		12	12		50	50		54	54	56	56	
0x0000330	60	60		24	24		28	28		64	64		68	68		32	32		36	36	72	72	
0x0000350	02	02		40	40		44	44		06	06		10	10		48	48		52	52	58	58	
0x0000370	62	62		26	26		30	30		66	66		28	28		68	68		70	70	34	34	
0x0000390	36	36		02	02		04	04		42	42		44	44		10	10		12	12	14	14	
0x0003b0	16	16		56	56		58	58		22	22		24	24		64	64		66	66	30	30	
0x00003d0	32	32		72	72		00	00		38	38		40	40		06	06		8 0	08	18	18	
0x00003f0	20	20		60	60		62	62		26	26		44	44		32	32		36	36	70) 70	

≯	Blue	tooth°
---	------	--------

Hop Sequence odd channels	$\{k\}$ for CONNECTION STATE (Adapted channel hopping sequence with used):	
CLK start:	0x000010	
ULAP:	0x2a96ef25	
Used Channels	s:0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
#ticks:	00 02 04 06 08 0a 0c 0e 10 12 14 16 18 1a 1c 1e	
		-
0x000010	55 55 19 19 23 23 53 53 57 57 21 21 25 25 27 27	
0x000030	31 31 77 77 03 03 29 29 33 33 01 01 01 01 35 35	
0x0000050	39 39 03 03 07 07 37 37 41 41 05 05 09 09 43 43	
0x0000070	47 47 11 11 15 15 45 45 07 07 47 47 49 49 09 09	
0x0000090	11 11 51 51 53 53 13 13 15 15 55 55 57 57 59 59	
0x00000b0	61 61 27 27 29 29 63 63 65 65 31 31 33 33 67 67	
0x00000d0	69 69 35 35 37 37 71 71 73 73 39 39 41 41 75 75	
0x00000f0	77 77 43 43 45 45 05 05 31 31 69 69 73 73 41 41	
0x0000110	45 45 09 09 13 13 43 43 47 47 11 11 15 15 17 17	
0x0000130	21 21 59 59 63 63 19 19 23 23 61 61 65 65 33 33	
0x0000150	37 37 75 75 05 05 35 35 39 39 77 77 07 07 25 25	
0x0000170	29 29 67 67 71 71 27 27 63 63 29 29 31 31 73 73	
0x0000190	75 75 41 41 43 43 77 77 01 01 45 45 47 47 49 49	
0x00001b0	51 51 17 17 19 19 53 53 55 55 21 21 23 23 65 65	
0x00001d0	67 67 33 33 35 35 69 69 71 71 37 37 39 39 57 57	
0x00001f0	59 59 25 25 27 27 61 61 19 19 67 67 71 71 07 07	
0x0000210	11 11 59 59 63 63 23 23 27 27 75 75 01 01 03 03	
0x0000230	01 01 49 49 53 53 13 13 17 17 65 65 69 69 05 05	
0x0000250	09 09 57 57 61 61 21 21 25 25 73 73 77 77 05 05	
0x0000270	03 03 51 51 55 55 15 15 51 51 17 17 19 19 41 41	
0x0000290	43 43 09 09 11 11 57 57 59 59 25 25 27 27 29 29	
0x00002b0	31 31 03 03 05 05 45 45 47 47 13 13 15 15 37 37	
0x00002d0	39 39 05 05 07 07 53 53 55 55 21 21 23 23 33 33	
0x00002f0	35 35 01 01 03 03 49 49 75 75 39 39 43 43 07 07	
0x0000310	11 11 47 47 51 51 15 15 19 19 55 55 59 59 61 61	
0x0000330	65 65 29 29 33 33 69 69 73 73 37 37 41 41 77 77	
0x0000350	09 09 45 45 49 49 13 13 17 17 53 53 57 57 63 63	
0x0000370	67 67 31 31 35 35 71 71 35 35 73 73 75 75 41 41	
0x0000390	43 43 09 09 11 11 49 49 51 51 17 17 19 19 21 21	
0x0003b0	23 23 61 61 63 63 29 29 31 31 69 69 71 71 37 37	
0x00003d0	39 39 77 77 07 07 45 45 47 47 13 13 15 15 25 25	
0x00003f0	27 27 65 65 67 67 33 33 51 51 39 39 43 43 77 77	

Bluetooth°

2.3 THIRD SET

Hop sequence {k CLKN start: ULAP: #ticks:	for PAGE SCAN/INQUIRY SCAN SUBSTATE: 0x0000000 0x6587cba9 0000 1000 2000 3000 4000 5000 6000 7000									
0x0000000: 0x0010000: 0x0018000: 0x0020000: 0x0028000: 0x0030000: 0x0038000:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Hop sequence {k} for PAGE STATE/INQUIRY SUBSTATE: CLKE start: 0x000000 ULAP: 0x6587cba9 #ticks: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f										
0x0000000: 0x0000010: 0x0000020: 0x0000030:	00 49 36 38 51 02 42 40 04 61 44 46 63 14 50 48 16 65 52 54 67 18 58 56 20 53 60 62 55 06 66 64 00 49 36 38 51 02 42 40 04 61 44 46 63 14 50 48 16 65 52 54 67 18 58 56 20 53 60 62 55 06 66 64 16 65 52 54 67 18 58 56 20 53 60 62 55 06 66 64									
0x0001000: 0x0001010: 0x0001020: 0x0001030:	00573670591074721269767871220301247305077526110928451330477734320057367059107472126976787122030124730507752611092845133047773432									
0x0002000: 0x0002010: 0x0002020: 0x0002030:	08 57 68 70 51 02 42 40 04 61 44 46 63 14 50 48 16 65 52 54 67 18 58 56 20 53 60 62 55 06 66 64 08 57 68 70 51 02 42 40 04 61 44 46 63 14 50 48 16 65 52 54 67 18 58 56 20 53 60 62 55 06 66 64 16 65 52 54 67 18 58 56 20 53 60 62 55 06 66 64									
0x0003000: 0x0003010: 0x0003020: 0x0003030:	00 49 36 38 51 10 42 72 12 69 76 78 71 22 03 01 24 73 05 07 75 26 11 09 28 45 13 30 47 77 34 32 00 49 36 38 51 10 42 72 12 69 76 78 71 22 03 01 24 73 05 07 75 26 11 09 28 45 13 30 47 77 34 32 24 73 05 07 75 26 11 09 28 45 13 30 47 77 34 32									
Hop sequence {k CLKN* = ULAP: #ticks:	for SLAVE PAGE RESPONSE SUBSTATE: 0x0000010 0x6587cba9 00 02 04 06 08 0a 0c 0e 10 12 14 16 18 1a 1c 1e									
0x0000012: 0x0000032: 0x0000052: 0x0000072:	52 65 54 67 58 18 56 20 60 53 62 55 66 06 64 08 68 57 70 59 74 10 72 12 76 69 78 71 03 22 01 24 05 73 07 75 11 26 09 28 13 45 30 47 34 77 32 00 36 49 38 51 42 02 40 04 44 61 46 63 50 14 48 16									
Hop sequence {k Offset value: CLKE* = ULAP: #ticks:	for MASTER PAGE RESPONSE SUBSTATE: 24 0x0000012 0x6587cba9 00 02 04 06 08 0a 0c 0e 10 12 14 16 18 1a 1c 1e									
0x0000014: 0x0000034: 0x0000054: 0x0000074:	65 54 67 58 18 56 20 60 53 62 55 66 06 64 08 68 57 70 59 74 10 72 12 76 69 78 71 03 22 01 24 05 73 07 75 11 26 09 28 13 45 30 47 34 77 32 00 36 49 38 51 42 02 40 04 44 61 46 63 50 14 48 16 52									

Hop sequence {k} CLK start: ULAP: #ticks:	for CONNECT: 0x0000010 0x6587cba9 00 02 04		asic chann Oc Oe	el hoppi 10 12		; ie, non-AFH): 8 la 1c le
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0c 0e 06 64 22 01 77 32 14 48 38 19 54 35 30 66 46 03 78 49 07 57 62 17 70 25 31 04 39 12 15 51 23 59 55 34 59 38 47 02 51 06 08 68 10 70 00 36 02 38 48 19 52 23 32 66	$\begin{array}{c cccc} 08 & 68 \\ 24 & 05 \\ 00 & 36 \\ 50 & 05 \\ 42 & 21 \\ 58 & 37 \\ 34 & 68 \\ 72 & 29 \\ 01 & 53 \\ 09 & 61 \\ 64 & 21 \\ 27 & 61 \\ 35 & 06 \\ 43 & 14 \\ 19 & 53 \\ 53 & 22 \\ 57 & 50 \\ 61 & 54 \\ 49 & 18 \\ 06 & 54 \\ 12 & 05 \\ 14 & 07 \\ 04 & 52 \\ 38 & 78 \\ 50 & 27 \\ 54 & 31 \\ 34 & 74 \\ \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0x0000370: 0x0000390: 0x00003b0: 0x00003d0: 0x00003f0:	15 00 32	68 06 76 49 52 57 51 54 59 17 36 25 19 38 27	36 70 01 53 03 55 64 21 66 23	70 31 05 61 07 63 68 29 11 71	42 35 4 56 65 6 58 67 6 40 33 4 05 18 0	0 73 09 69 2 75 11 71 4 41 72 37

BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol 3]

😵 Bluetooth[°]

Hop Sequence all channel u	• •	CONNECTION STATE (Adapted channel hopping seque 2, AFH(79)):	nce with							
CLK start:	0x0000	010								
ULAP:	0x6587	Cba9								
Used Channels	:0x7fff	ffffffffffffff								
#ticks:	00 02	04 06 08 0a 0c 0e 10 12 14 16 18 1a	1c 1e							
0x000010	20 20	53 53 55 55 06 06 08 08 57 57 59 59	10 10							
0x000030	12 12	69 69 71 71 22 22 24 24 73 73 75 75	26 26							
0x000050	28 28	45 45 47 47 77 77 00 00 49 49 51 51	02 02							
0x000070	04 04	61 61 63 63 14 14 50 50 16 16 20 20	48 48							
0x0000090	52 52	06 06 10 10 38 38 42 42 08 08 12 12	40 40							
0x00000b0	44 44	22 22 26 26 54 54 58 58 24 24 28 28	56 56							
0x0000d0	60 60	77 77 02 02 30 30 34 34 00 00 04 04	32 32							
0x00000f0	36 36	14 14 18 18 46 46 72 72 42 42 44 44	74 74							
0x0000110	76 76	46 46 48 48 78 78 01 01 50 50 52 52	03 03							
0x0000130	05 05	54 54 56 56 07 07 09 09 58 58 60 60	11 11							
0x0000150	13 13	30 30 32 32 62 62 64 64 34 34 36 36	66 66							
0x0000170	68 68	38 38 40 40 70 70 27 27 72 72 76 76	25 25							
0x0000190	29 29	78 78 03 03 31 31 35 35 01 01 05 05	33 33							
0x00001b0	37 37	07 07 11 11 39 39 43 43 09 09 13 13	41 41							
0x00001d0	45 45	62 62 66 66 15 15 19 19 64 64 68 68	17 17							
0x00001f0	21 21	70 70 74 74 23 23 53 53 35 35 37 37	67 67							
0x0000210	69 69	23 23 25 25 55 55 57 57 39 39 41 41	71 71							
0x0000230	73 73	27 27 29 29 59 59 61 61 43 43 45 45	75 75							
0x0000250	77 77	15 15 17 17 47 47 49 49 31 31 33 33	63 63							
0x0000270	65 65	19 19 21 21 51 51 06 06 65 65 69 69	18 18							
0x0000290	22 22	55 55 59 59 08 08 12 12 71 71 75 75	24 24							
0x00002b0	28 28	57 57 61 61 10 10 14 14 73 73 77 77	26 26							
0x00002d0	30 30	47 47 51 51 00 00 04 04 63 63 67 67	16 16							
0x00002f0	20 20	49 49 53 53 02 02 38 38 12 12 14 14	44 44							
0x0000310	46 46	16 16 18 18 48 48 50 50 24 24 26 26	56 56							
0x0000330	58 58	20 20 22 22 52 52 54 54 28 28 30 30	60 60							
0x0000350	62 62	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 40							
0x0000370	42 42	04 04 06 06 36 36 70 70 42 42 46 46	74 74							
0x0000390	78 78	48 48 52 52 01 01 05 05 56 56 60 60	09 09							
0x0003b0	13 13	50 50 54 54 03 03 07 07 58 58 62 62	11 11							
0x00003d0	15 15	32 32 36 36 64 64 68 68 40 40 44 44	72 72							
0x00003f0	76 76	34 34 38 38 66 66 11 11 05 05 07 07	13 13							

	<pre>{k} for CONNECTION STATE (Adapted channel hopping sequence)</pre>	e with									
channels 0 to											
CLK start:											
ULAP:											
	:0x7ffffffffffffffc00000										
#ticks:	00 02 04 06 08 0a 0c 0e 10 12 14 16 18 1a	1c 1e									
0x0000010	29 29 53 53 55 55 72 72 74 74 57 57 59 59 7	76 76									
0x0000030		26 26									
0x0000050		58 68									
0x0000070		8 48									
0x0000090		40 40									
0x00000b0		56 56									
0x00000d0		32 32									
0x00000f0		4 74									
0x0000110		34 34									
0x0000130		2 42									
0x0000150		56 66									
0x0000170		25 25									
0x0000190		3 33									
0x00001b0		1 41									
0x00001d0		8 48									
0x00001f0		57 67									
0x0000210		1 71									
0x0000230		75 75									
0x0000250		53 63									
0x0000270		1 71									
0x0000290		24 24									
0x00002b0		26 26									
0x00002d0		59 69									
0x00002f0		4 44									
0x0000310		6 56									
0x0000330		50 60									
0x0000350		0 40									
0x0000370		4 74									
0x0000390		27 27									
0x00003b0		29 29									
0x00003d0		2 72									
0x00003f0		31 31									

BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol 3]

😵 Bluetooth[°]

Hop Sequence even channels			CON	INECT	ION	STA	TE	(A	dap	te	d c	hanr	nel	hopp:	ing	seque	ence	wit	h
CLK start:	0x0	0000	010																
ULAP:	0x6	5587	cbas)															
Used Channels	:0x5	5555	5555	5555	555	5555	55												
#ticks:	00	02	04	06	0	8 0a	1	0c	0e		10	12	1	4 16	1	8 1a	10	: 1e	
0x000010	20	20	52	52	5	4 54		06	06		08	08	5	5 56	58	58	10	10	
0x000030	12	12	68	68	7	0 70		22	22		24	24	7:	2 72	74	74	26	26	
0x000050	28	28	44	44	4	5 46		76	76		00	00	4	3 4 8	50	50	02	02	
0x000070	04	04	60	60	6	2 62		14	14		50	50	1	5 16	20	20	48	48	
0x0000090	52	52	06	06	1	0 10		38	38		42	42	0	8 0 8	12	12	40	40	
0x0000b0	44	44	22	22	2	5 26		54	54		58	58	24	24	28	28	56	56	
0x00000d0	60	60	76	76	0	2 02		30	30		34	34	0	00	04	04	32	32	
0x0000f0	36	36	14	14	1	3 18		46	46		72	72	42	2 42	44	44	74	74	
0x0000110	76	76	46	46	4	3 4 8		78	78		78	78	5	50	52	52	00	00	
0x0000130	02	02	54	54	5	5 56		04	04		06	06	5	3 58	60	60	08	08	
0x0000150	10	10	30	30	3	2 32		62	62		64	64	34	4 34	36	36	66	66	
0x0000170	68	68	38	38	4	0 40		70	70		24	24	7	2 72	76	76	22	22	
0x0000190	26	26	78	78	0	00 0		28	28		32	32	7	3 78	02	02	30	30	
0x00001b0	34	34	04	04	0	8 08		36	36		40	40	0	5 06	10	10	38	38	
0x00001d0	42	42	62	62	6	5 66		12	12		16	16	6	64	68	68	14	14	
0x00001f0	18	18	70	70	7	4 74		20	20		50	50	32	2 32	34	34	64	64	
0x0000210	66	66	20	20	2	2 22		52	52		54	54	3	536	38	38	68	68	
0x0000230	70	70	24	24	2	5 26		56	56		58	58	4	0 40	42	42	72	72	
0x0000250	74	74	12	12	1	1 14		44	44		46	46	2	3 28	30	30	60	60	
0x0000270	62	62	16	16	1	3 18		48	48		06	06	62	2 62	66	66	18	18	
0x0000290	22	22	52	52	5	5 56		08	08		12	12	6	8 68	72	72	24	24	
0x00002b0	28	28	54	54	5	8 58		10	10		14	14	7	70	74	74	26	26	
0x00002d0	30	30	44	44	4	3 48		00	00		04	04	6	60	64	64	16	16	
0x00002f0	20	20	46	46	5	50		02	02		38	38	13	2 12	14	14	44	44	
0x0000310	46	46	16	16	1	3 18		48	48		50	50	24	24	26	26	56	56	
0x0000330	58	58	20	20	2	2 22		52	52		54	54	2	3 28	30	30	60	60	
0x0000350	62	62	00	00	0	2 02		32	32		34	34	0	8 0 8	10	10	40	40	
0x0000370	42	42	04	04	0	5 06		36	36		70	70	42	2 42	46	46	74	74	
0x0000390	78	78	48	48	5	2 52		76	76		00	00	5	5 56	60	60	04	04	
0x0003b0	08	08	50	50	5	4 54		78	78		02	02	5	3 58	62	62	06	06	
0x00003d0	10	10	32	32	3	536		64	64		68	68	4	0 40	44	44	72	72	
0x00003f0	76	76	34	34	3	838	8	66	66		06	06	0	0 0 0	0	2 02	08	8 0 8	

≯	BI	uet	ooth°
---	----	-----	-------

Hop Sequence odd channels	$\{k\}$ for CONNECTION STATE (Adapted channel hopping sequence with used):	L
CLK start:	0x000010	
ULAP:	0x6587cba9	
Used Channels	:0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
#ticks:	00 02 04 06 08 0a 0c 0e 10 12 14 16 18 1a 1c 1e	
		-
0x0000010	23 23 53 53 55 55 09 09 11 11 57 57 59 59 13 13	
0x000030	15 15 69 69 71 71 25 25 27 27 73 73 75 75 29 29	
0x0000050	31 31 45 45 47 47 77 77 03 03 49 49 51 51 05 05	
0x0000070	07 07 61 61 63 63 17 17 53 53 19 19 23 23 51 51	
0x0000090	55 55 09 09 13 13 41 41 45 45 11 11 15 15 43 43	I
0x00000b0	47 47 25 25 29 29 57 57 61 61 27 27 31 31 59 59	I
0x0000d0	63 63 77 77 05 05 33 33 37 37 03 03 07 07 35 35	l
0x00000f0	39 39 17 17 21 21 49 49 75 75 45 45 47 47 77 77	l
0x0000110	01 01 49 49 51 51 03 03 01 01 53 53 55 55 03 03	1
0x0000130	05 05 57 57 59 59 07 07 09 09 61 61 63 63 11 11	ĺ
0x0000150	13 13 33 33 35 35 65 65 67 67 37 37 39 39 69 69	1
0x0000170	71 71 41 41 43 43 73 73 27 27 75 75 01 01 25 25	
0x0000190	29 29 03 03 03 03 31 31 35 35 01 01 05 05 33 33	
0x00001b0	37 37 07 07 11 11 39 39 43 43 09 09 13 13 41 41	
0x00001d0	45 45 65 65 69 69 15 15 19 19 67 67 71 71 17 17	
0x00001f0	21 21 73 73 77 77 23 23 53 53 35 35 37 37 67 67	
0x0000210	69 69 23 23 25 25 55 55 57 57 39 39 41 41 71 71	
0x0000230	73 73 27 27 29 29 59 59 61 61 43 43 45 45 75 75	
0x0000250	77 77 15 15 17 17 47 47 49 49 31 31 33 33 63 63	
0x0000270	65 65 19 19 21 21 51 51 11 11 65 65 69 69 23 23	
0x0000290	27 27 55 55 59 59 13 13 17 17 71 71 75 75 29 29	
0x00002b0	33 33 57 57 61 61 15 15 19 19 73 73 77 77 31 31	ĺ
0x00002d0	35 35 47 47 51 51 05 05 09 09 63 63 67 67 21 21	ĺ
0x00002f0	25 25 49 49 53 53 07 07 43 43 17 17 19 19 49 49	
0x0000310	51 51 21 21 23 23 53 53 55 55 29 29 31 31 61 61	
0x0000330	63 63 25 25 27 27 57 57 59 59 33 33 35 35 65 65	
0x0000350	67 67 05 05 07 07 37 37 39 39 13 13 15 15 45 45	
0x0000370	47 47 09 09 11 11 41 41 75 75 47 47 51 51 01 01	
0x0000390	05 05 53 53 57 57 01 01 05 05 61 61 65 65 09 09	i I
0x0000390	13 13 55 55 59 59 03 03 07 07 63 63 67 67 11 11	
0x00003d0	15 15 37 37 41 41 69 69 73 73 45 45 49 49 77 77]
		· .
0x00003f0	03 03 39 39 43 43 71 71 11 11 05 05 07 07 13 13	I

3 ACCESS CODE SAMPLE DATA

Different access codes (GIAC, DIACs, others...)

LAP with LSB as rightmost bit.

	Bi [.]	t transmit order or	
LAP:	Preambl	e: Sync word:	Trailer:
000000	5	7e7041e3 4000000	1 5
ffffff	a	e758b522 7ffffff2	2 a
9e8b33	5	475c58cc 73345e72	2 a
9e8b34	5	28ed3c34 cb345e72	2 a
9e8b36	5	62337b64 1b345e72	2 a
9e8b39	a	c05747b9 e7345e72	2 a
9e8b3d	5	7084eab0 2f345e72	2 a
9e8b42	5	64c86d2b 90b45e72	2 a
9e8b48	a	e3c3725e 04b45e72	2 a
9e8b4f	a	8c7216a6 bcb45e72	2 a
9e8b57	a	b2f16c30 fab45e72	2 a
9e8b60	5	57bd3b22 c1b45e72	2 a
9e8b6a	a	d0b62457 55b45e72	2 a
9e8b75	a	81843a39 abb45e72	2 a
9e8b81	5	0ca96681 e0745e72	2 a
9e8b8e	a	aecd5a5c 1c745e72	2 a
9e8b9c	5	17453fbf ce745e72	2 a
9e8bab	a	f20968ad f5745e72	2 a
9e8bbb	5	015f4ale f7745e72	2 a
9e8bcc	a	d8c695a0 0cf45e72	2 a
9e8bde	5	614ef043 def45e72	2 a
9e8bf1	a	ba81ddc7 a3f45e72	2 a
9e8c05	5	64a7dc4f 680c5e72	2 a
9e8c1a	5	3595c221 960c5e72	2 a
9e8c30	a	cb35cc0d 830c5e72	2 a
9e8c47	5	12ac13b3 788c5e72	2 a
9e8c5f	5	2c2f6925 3e8c5e72	2 a
9e8c78	5	3a351c84 078c5e72	2 a
9e8c92	5	7396d0f3 124c5e72	2 a
9e8cad	5	5b0fdfc4 6d4c5e72	2 a
9e8cc9	a	aea2eb38 e4cc5e72	2 a
9e8ce6	5	756dc6bc 99cc5e72	2 a
9e8d04	5	214cf934 882c5e72	2 a
9e8d23	5	37568c95 b12c5e72	2 a
9e8d43	5	72281560 f0ac5e72	2 a
9e8d64	5	643260c1 c9ac5e72	2 a
9e8d86	а	e044f493 986c5e72	2 a
9e8da9	5	3b8bd917 e56c5e72	2 a
9e8dcd	а	ce26edeb 6cec5e72	2 a
9e8df2	а	e6bfe2dc 13ec5e72	2 a
9e8e18	a	82dcde3d c61c5e72	2 a
9e8e3f	а	94c6ab9c ff1c5e72	2 a

9e8e67	a	969059a6 799c5e72	a	
9e8e90	a	c4dfccef 425c5e72	a	I
9e8eba	5	3a7fc2c3 575c5e72	a	
9e8ee5	5	57985401 69dc5e72	a	I
9e8f11	5	0ae2a363 623c5e72	a	l
9e8f3e	a	d12d8ee7 1f3c5e72	a	I
9e8f6c	5	547063a8 0dbc5e72	a	I
9e8f9b	5	063ff6e1 367c5e72	a	I
9e8fcb	a	c9bc5cfe f4fc5e72	a	I
9e8ffc	5	2cf00bec cffc5e72	a	l
9e902e	a	8ec5052f 5d025e72	a	
9e9061	5	1074b15e 61825e72	a	l
9e9095	a	9d59ede6 2a425e72	a	
9e90ca	a	f0be7b24 14c25e72	a	
9e9100	5	10e10dd0 c0225e72	a	
9e9137	a	f5ad5ac2 fb225e72	a	
9e916f	a	f7fba8f8 7da25e72	a	
9e91a8	5	2f490e5b c5625e72	a	
9e91e2	a	94979982 91e25e72	a	
9e921d	5	26cda478 2e125e72	a	
9e9259	a	aacb81dd 26925e72	a	
9e9296	a	bfac7f5b da525e72	a	
9e92d4	a	c9a7b0a7 cad25e72	a	
9e9313	a	c142bdde 32325e72	a	
616cec	5	586a491f 0dcda18d	5	
616ceb	5	37db2de7 b5cda18d	5	
616ce9	5	7d056ab7 65cda18d	5	
616ce6	a	df61566a 99cda18d	5	1
616ce2	∝ 5	6fb2fb63 51cda18d	5	
616cdd	5	472bf454 2ecda18d	5	1
616cd7	a	c020eb21 bacda18d	5	1
616cd0	l a	af918fd9 02cda18d	5	
616cc8	a	9112f54f 44cda18d	5	
616cbf	<u>a</u> 5	488b2af1 bf4da18d	5	
616cb5	a	cf803584 2b4da18d	5	
616caa	a	9eb22bea d54da18d	5	
616c9e	a	a49cb509 9e4da18d	5	
616c91	a 5	06f889d4 624da18d	5	1
616c83	a	bf70ec37 b04da18d	5	1
616c74	1	ed3f797e 8b8da18d	5	1
616c64	a 5	1e695bcd 898da18d	5	
616c53		fb250cdf b28da18d	5	1
616c41	a 5	42ad693c 608da18d	5	
	1	42ad693C 608da18d		
616c2e	a		5	
616c1a	a	9f9952f7 960da18d	5	
616c05	a	ceab4c99 680da18d	5	
616bef	a -	d403ddde fdf5a18d	5	
616bd8	5	314f8acc c6f5a18d	5	
616bc0	5	0fccf05a 80f5a18d	5	
616ba7	5	25030d57 7975a18d	5	
616b8d	a	dba3037b 6c75a18d	5	
616b72	5	4439ce17 13b5a18d	5	

616b56		a	8d417247	5ab5a18d		5	
616b39		5	6a5bd76f	e735a18d		5	
616b1b		5	592e8166	b635a18d		5	
616afc		5	28609d46	cfd5a18d		5	
616adc		5	51cb8c1f	4ed5a18d		5	
616abb		5	7b047112	b755a18d		5	
616a99		5	4871271b	e655a18d		5	
616a76		5	24bdc8c4	9b95a18d		5	
616a52		a	edc57494	d295a18d		5	
616a2d		a	f989f30f	6d15a18d		5	
616a07		5	0729fd23	7815a18d		5	
6169e0		a	8bf0ba4f	81e5a18d		5	
6169b8		a	89a64875	0765a18d		5	
61698f		5	6cealf67	3c65a18d		5	
616965		5	2549d310	29a5a18d		5	
61693a		5	48ae45d2	1725a18d		5	
61690e		5	7280db31	5c25a18d		5	
6168e1		a	ce1b9f34	61c5a18d		5	
6168b3		5	4b46727b	7345a18d		5	
616884		a	ae0a2569	4845a18d		5	
616854		a	ea5fc581	4a85a18d		5	
616823		5	33c61a3f	b105a18d		5	
6167f1		a	c49fb8c5	63f9a18d		5	
6167be		5	5a2e0cb4	5f79a18d		5	
61678a		5	60009257	1479a18d		5	
616755		a	86314e62	eab9a18d		5	
61671f		5	3defd9bb	be39a18d		5	
6166e8		a	bff7e728	c5d9a18d		5	
6166b0		a	bda11512	4359a18d		5	
616677		5	6513b3b1	fb99a18d		5	
61663d		a	decd2468	af19a18d		5	
616602		a	f6542b5f	d019a18d		5	
6165c6		a	dc44b49b	d8e9a18d		5	
616589		5	42f500ea	e469a18d		5	
61654b		a	bf2885e1	34a9a18d		5	
61650c		a	ec4c69b5	4c29a18d		5	

🛞 Bluetooth°

4 HEC AND PACKET HEADER SAMPLE DATA

This section contains examples of HECs computed for sample UAP and packet header contents (Data). The resulting 54 bit packet headers are shown in the rightmost column. Note that the UAP, Data and HEC values are in hexadecimal notation, while the header is in octal notation. The header is transmitted from left to right over the air.

UAP	Data	HEC	Header	(octal))
00	123	el	770007	007070	000777
47	123	06	770007	007007	700000
00	124	32	007007	007007	007700
47	124	d5	007007	007070	707077
00	125	5a	707007	007007	077070
47	125	bd	707007	007070	777707
00	126	e2	077007	007007	000777
47	126	05	077007	007070	700000
00	127	8a	777007	007007	070007
47	127	6d	777007	007070	770770
00	11b	9e	770770	007007	777007
47	11b	79	770770	007070	077770
00	11c	4d	007770	007070	770070
47	11c	aa	007770	007007	070707
00	11d	25	707770	007070	700700
47	11d	c2	707770	007007	000077
00	11e	9d	077770	007070	777007
47	11e	7a	077770	007007	077770
00	11f	f5	777770	007070	707777
47	11f	12	777770	007007	007000

5 CRC SAMPLE DATA

This section shows the CRC computed for a sample 10 byte payload and a UAP of 0x47.

Data:

data[0] = 0x4e data[1] = 0x01 data[2] = 0x02 data[3] = 0x03 data[4] = 0x04 data[5] = 0x06 data[6] = 0x06 data[7] = 0x07 data[8] = 0x08 data[9] = 0x09

UAP = 0x47

==> CRC = 6d d2

Codeword (hexadecimal notation):

4e 01 02 03 04 05 06 07 08 09 6d d2

NB: Over the air each byte in the codeword is sent with the LSB first.

6 COMPLETE SAMPLE PACKETS

6.1 EXAMPLE OF DH1 PACKET

```
Packet header: (MSB...LSB)
LT_ADDR = 011
TYPE = 0100 (DH1)
FLOW = 0
ARQN = 1
SEQN = 0
Payload: (MSB...LSB)
-----
payload length: 5 bytes
logical channel = 10 (UA/I, Start L2CAP message)
flow = 1
data byte 1 = 00000001
data byte 2 = 00000010
data byte 3 = 00000011
data byte 4 = 00000100
data byte 5 = 00000101
HEC and CRC initialization: (MSB...LSB)
_____
uap = 01000111
NO WHITENING USED
AIR DATA (LSB...MSB)
Packet header (incl HEC):
------
111111000
00000111000
000111000
0001111110000000000000000
Payload (incl payload header and CRC):
_____
01110100
1000000
0100000
11000000
00100000
10100000
1110110000110110
```

🚯 Bluetooth®

6.2 EXAMPLE OF DM1 PACKET

```
Packet header: (MSB...LSB)
LT ADDR = 011
TYPE = 0011 (DM1)
FLOW = 0
ARQN = 1
SEQN = 0
Payload: (MSB...LSB)
-----
payload length: 5 bytes
logical channel = 10 (UA/I, Start L2CAP message)
flow = 1
data byte 1 = 00000001
data byte 2 = 00000010
data byte 3 = 00000011
data byte 4 = 00000100
data byte 5 = 00000101
HEC and CRC initialization: (MSB...LSB)
-----
uap = 01000111
NO WHITENING USED
AIR DATA (LSB...MSB)
Packet header (incl HEC):
------
111111000
111111000000
000111000
111000000111111111111000
Payload (incl payload header, FEC23, CRC and 6 padded zeros):
-----
0111010010 11001
000000100 01011
0000110000 11110
0000100000 00111
1010000011 01100
1011000011 00010
0110000000 10001
```

😵 Bluetooth

7 WHITENING SEQUENCE SAMPLE DATA

This section shows the output of the whitening sequence generator.

Whitening	Whitening
Sequence	LFSR
(=D7)	D7D0
1	1111111
1	1101111
1	1001111
0	0001111
0	0011110
0	0111100
1	1111000
1	1100001
1	1010011
0	0110111
1	1101110
1	1001101
0	0001011
0	0010110
0	0101100
1	1011000
0	0100001
1	1000010
0	0010101
0	0101010
1	1010100
0	0111001
1	1110010
1	1110101
1	1111011
1	1100111
1	1011111
0	0101111
1	1011110
0	0101101
1	1011010
0	0100101
1	1001010
0	0000101
0	0001010
0	0010100
0	0101000
1	1010000
0	0110001
1	1100010
1	1010101
0	0111011
1	1110110

1	1111101
1	1101011
1	1000111
0	0011111
0	0111110
1	1111100
1	1101001
1	1000011
0	0010111
0	0101110
1	1011100
0	0101001
1	1010010
0	0110101
1	1101010
1	1000101
0	0011011
0	0110110
1	1101100
1	1001001
0	0000011
0	0000110
0	0001100
0	0011000
0	0110000
1	1100000
1	1010001
0	0110011
1	1100110
1	1011101
0	0101011
1	1010110
0	0111101
1	1111010
1	1100101
1	1011011
0	0100111
1	1001110
0	0001101
0	0011010
0	0110100
1	1101000
1	1000001
0	0010011
0	0100110
1	1001100
0	0001001
0	0010010
0	0100100
1	1001000
0	0000001
0	0000010

0	0000100
0	0001000
0	0010000

- 0 0100000
- 1 1000000
- 0 0010001
- 0 0100010 1 1000100
- 1 1000100 0 0011001
- 0 0110010
- 1 1100100
- 1 1011001
- 0 0100011
- 1 1000110
- 0 0011101
- 0 0111010
- 1 1110100
- 1 1111001
- 1 1100011
- 1 1010111
- 0 0111111
- 1 1111110
- 1 1101101 1 1001011
- 0 0000111
- 0 0001110
- 0 0011100
- 0 0111000
- 1 1110000
- 1 1110001
- 1 1110011
- 1 1110111
- 1 1111111

8 FEC SAMPLE DATA

Rate 2/3 FEC -- (15,10) Shortened Hamming Code

Data is in hexadecimal notation, the codewords are in binary notation. The codeword bits are sent from left to right over the air interface. The space in the codeword indicates the start of parity bits.

Data:	Codeword:	
0x001	1000000000	11010
0x002	010000000	01101
0x004	001000000	11100
0x008	0001000000	01110
0x010	0000100000	00111
0x020	0000010000	11001
0x040	000001000	10110
0x080	000000100	01011
0x100	000000010	11111
0x200	000000001	10101

9 ENCRYPTION KEY SAMPLE DATA

Explanation:

For the sections 9.1 - 9.5, the hexadecimal sample data is written with the least significant byte at the leftmost position and the most significant byte at the rightmost position. Within each byte, the *least significant bit* (LSB) is at the rightmost position and the *most significant bit* (MSB) is at the leftmost position Thus, a line reading:

aco: 48afcdd4bd40fef76693b113

means aco[0]=0x48, ac[1]=0xaf, ..., aco[11]=0x13. The LSB of aco[11] is '1' and the MSB of aco[11] is '0'.

- Key [i]:denotes the ith sub-key in Ar or A'r;round r:denotes the input to the rth round;
- added ->: denotes the input to round 3 in

A'r after adding original input (of round 1).

9.1 FOUR TESTS OF E1

rand :000000000000000000000000000000000000
address :00000000000
key :000000000000000000000000000000000000
round 1:000000000000000000000000000000000000
Key [1]:000000000000000000000000000000000000
Key [2]:4697b1baa3b7100ac537b3c95a28ac64
round 2:78d19f9307d2476a523ec7a8a026042a
Key [3]:ecabaac66795580df89af66e66dc053d
Key [4]:8ac3d8896ae9364943bfebd4969b68a0
round 3:600265247668dda0e81c07bbb30ed503
Key [5]:5d57921fd5715cbb22c1be7bbc996394
Key [6]:2a61b8343219fdfb1740e6511d41448f
round 4:d7552ef7cc9dbde568d80c2215bc4277
Key [7]:dd0480dee731d67f01a2f739da6f23ca
Key [8]:3ad01cd1303e12a1cd0fe0a8af82592c
round 5:fb06bef32b52ab8f2a4f2b6ef7f6d0cd
Key [9]:7dadb2efc287ce75061302904f2e7233
Key [10]:c08dcfa981e2c4272f6c7a9f52e11538
round 6:b46b711ebb3cf69e847a75f0ab884bdd
Key [11]:fc2042c708e409555e8c147660ffdfd7
Key [12]:fa0b21001af9a6b9e89e624cd99150d2
round 7:c585f308ff19404294f06b292e978994
Key [13]:18b40784ea5ba4c80ecb48694b4e9c35
Key [14]:454d54e5253c0c4a8b3fcca7db6baef4
round 8:2665fadb13acf952bf74b4ab12264b9f
Key [15]:2df37c6d9db52674f29353b0f011ed83
Key [16]:b60316733b1e8e70bd861b477e2456f1
Key [17]:884697b1baa3b7100ac537b3c95a28ac

round 1:158ffe43352085e8a5ec7a88e1ff2ba8
Key [1]:e9e5dfc1b3a79583e9e5dfc1b3a79583
Key [2]:7595bf57e0632c59f435c16697d4c864
round 2:0b5cc75febcdf7827ca29ec0901b6b5b
Key [3]:e31b96afcc75d286ef0ae257cbbc05b7
Key [4]:0d2a27b471bc0108c6263aff9d9b3b6b
round 3:e4278526c8429211f7f2f0016220aef4
added ->:f1b68365fd6217f952de6a89831fd95c
Key [5]:98d1eb5773cf59d75d3b17b3bc37c191
Key [6]:fd2b79282408ddd4ea0aa7511133336f
round 4:d0304ad18337f86040145d27aa5c8153
Key [7]:331227756638a41d57b0f7e071ee2a98
Key [8]:aa0dd8cc68b406533d0f1d64aabacf20
round 5:84db909d213bb0172b8b6aaf71bf1472
Key [9]:669291b0752e63f806fce76f10e119c8
Key [10]:ef8bdd46be8ee0277e9b78adef1ec154
round 6:f835f52921e903dfa762f1df5abd7f95
Key [11]:f3902eb06dc409cfd78384624964bf51
Key [12]:7d72702b21f97984a721c99b0498239d
round 7:ae6c0b4bb09f25c6a5d9788a31b605d1
Key [13]:532e60bceaf902c52a06c2c283ecfa32
Key [14]:181715e5192efb2a64129668cf5d9dd4
round 8:744a6235b86cc0b853cc9f74f6b65311
Key [15]:83017c1434342d4290e961578790f451
Key [16]:2603532f365604646ff65803795ccce5
Key [17]:882f7c907b565ea58dae1c928a0dcf41
sres :056c0fe6
aco :48afcdd4bd40fef76693b113
rand :bc3f30689647c8d7c5a03ca80a91eceb
address :7ca89b233c2d
key :159dd9f43fc3d328efba0cd8a861fa57
Key :1590091431C30326e1Da0C06a6611a57
round 1:bc3f30689647c8d7c5a03ca80a91eceb
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57
<pre>round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57</pre>
<pre>round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b</pre>
<pre>round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682</pre>
<pre>round 1:bc3f30689647c8d7c5a03ca80a9leceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db</pre>
<pre>round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73</pre>
<pre>round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31</pre>
<pre>round 1:bc3f30689647c8d7c5a03ca80a9leceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009</pre>
<pre>round 1:bc3f30689647c8d7c5a03ca80a9leceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7</pre>
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6 Key [8]:3fcd73524b533e00b7f7825bea2040a4
<pre>round 1:bc3f30689647c8d7c5a03ca80a9leceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6 Key [8]:3fcd73524b533e00b7f7825bea2040a4 round 5:e97f8ea4ed1a6f4a36ffc179dc6bb563</pre>
round 1:bc3f30689647c8d7c5a03ca80a9leceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6fc66 Key [8]:3fcd73524b533e00b7f7825bea2040a4 round 5:e97f8ea4ed1a6f4a36ffc179dc6bb563 Key [9]:6c67bec76ae8c8cc4d289f69436d3506
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6 Key [8]:3fcd73524b533e00b7f7825bea2040a4 round 5:e97f8ea4ed1a6f4a36ffc179dc6bb563 Key [9]:6c67bec76ae8c8cc4d289f69436d3506 Key [10]:95ed95ee8cb97e61d75848464bffb379
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6 Key [8]:3fcd73524b533e00b7f7825bea2040a4 round 5:e97f8ea4ed1a6f4a36ffc179dc6bb563 Key [9]:6c67bec76ae8c8cc4d289f69436d3506 Key [10]:95ed95ee8cb97e61d75848464bffb379 round 6:38b07261d7340d028749de1773a415c7
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6 Key [8]:3fcd73524b533e00b7f7825bea2040a4 round 5:e97f8ea4ed1a6f4a36ffc179dc6bb563 Key [9]:6c67bec76ae8c8cc4d289f69436d3506 Key [0]:95ed95ee8cb97e61d75848464bffb379 round 6:38b07261d7340d028749de1773a415c7 Key [11]:ff56c1fc6b9da9ac502514550f3e9d2
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6 Key [8]:3fcd73524b533e00b7f7825bea2040a4 round 5:e97f8ea4ed1a6f4a36ffc179dc6bb563 Key [9]:6c67bec76ae8c8cc4d289f69436d3506 Key [10]:95ed95ee8cb97e61d75848464bffb379 round 6:38b07261d7340d028749de1773a415c7 Key [11]:ff566c1fc6b9da9ac502514550f3e9d2 Key [12]:ab5ce3f5c887d0f49b87e0d380e12f47
round 1:bc3f30689647c8d7c5a03ca80a91eceb Key [1]:159dd9f43fc3d328efba0cd8a861fa57 Key [2]:326558b3c15551899a97790e65ff669e round 2:3e950edf197615638cc19c09f8fedc9b Key [3]:62e879b65b9f53bbfbd020c624b1d682 Key [4]:73415f30bac8ab61f410adc9442992db round 3:6a7640791cb536678936c5ecd4ae5a73 Key [5]:5093cfa1d31c1c48acd76df030ea3c31 Key [6]:0b4acc2b8f1f694fc7bd91f4a70f3009 round 4:fca2c022a577e2ffb2aa007589693ec7 Key [7]:2ca43fc817947804ecff148d50d6f6c6 Key [8]:3fcd73524b533e00b7f7825bea2040a4 round 5:e97f8ea4ed1a6f4a36ffc179dc6bb563 Key [9]:6c67bec76ae8c8cc4d289f69436d3506 Key [0]:95ed95ee8cb97e61d75848464bffb379 round 6:38b07261d7340d028749de1773a415c7 Key [11]:ff56c1fc6b9da9ac502514550f3e9d2

page	747	of	814
------	-----	----	-----

Key [14]:f5caff88af0af8c42a20b5bbd2c8b460
round 8:3dlaaeff53c0910de63b9788b13c490f
Key [15]:185099c1131cf97001e2f36fda415025
Key [16]:a0ebb82676bc75e8378b189eff3f6b1d
Key [17]:cf5b348aaee27ae332b4f1bfa10289a6
round 1:2e4b417b9a2a9cfd7d8417d9a6a556eb
Key [1]:fe78b835f26468ab069fd3991b086fda
Key [2]:095c5a51c6fa6d3ac1d57fa19aa382bd
round 2:b8bca81d6bb45af9d92beadd9300f5ed
Key [3]:1af866df817fd9f4ec00bc704192cffc
Key [4]:f4a8a059c1f575f076f5fbb24bf16590
round 3:351aa16dec2c3a4787080249ed323eae
added ->:1b65e2167656d6bafa8c19904bd79445
Key [5]:8c9d18d9356a9954d341b4286e88ea1f
Key [6]:5c958d370102c9881bf753e69c7da029
-
round 4:2ce8fef47dda6a5bee74372e33e478a2
Key [7]:7eb2985c3697429fbe0da334bb51f795
Key [8]:af900f4b63a1138e2874bfb7c628b7b8
round 5:572787f563e1643c1c862b7555637fb4
Key [9]:834c8588dd8f3d4f31117a488420d69b
Key [10]:bc2b9b81c15d9a80262f3f48e9045895
round 6:16b4968c5d02853c3a43aa4cdb5f26ac
Key [11]:f08608c9e39ad3147cba61327919c958
Key [12]:2d4131decf4fa3a959084714a9e85c11
round 7:10e4120c7cccef9dd4ba4e6da8571b01
Key [13]:c934fd319c4a2b5361fa8eef05ae9572
Key [14]:4904c17aa47868e40471007cde3a97c0
round 8:f9081772498fed41b6ffd72b71fcf6c6
Key [15]:ea5e28687e97fa3f833401c86e6053ef
Key [16]:1168f58252c4ecfccafbdb3af857b9f2
Key [17]:b3440f69ef951b78b5cbd6866275301b
sres :8d5205c5
aco :3ed75df4abd9af638d144e94
rand :0891caee063f5da1809577ff94ccdcfb
address :c62f19f6ce98
key :45298d06e46bac21421ddfbed94c032b
round 1:0891caee063f5da1809577ff94ccdcfb
Key [1]:45298d06e46bac21421ddfbed94c032b
Key [2]:8f03e1e1fe1c191cad35a897bc400597
round 2:1c6ca013480a685c1b28e0317f7167e1
Key [3]:4f2ce3a092dde854ef496c8126a69e8e
Key [4]:968caee2ac6d7008c07283daec67f2f2
round 3:06b4915f5fcc1fc551a52048f0af8a26
Key [5]:ab0d5c31f94259a6bf85ee2d22edf56c
Key [6]:dfb74855c0085ce73dc17b84bfd50a92
round 4:077a92b040acc86e6e0a877db197a167
Key [7]:8f888952662b3db00d4e904e7ea53b5d
Key [8]:5e18bfcc07799b0132db88cd6042f599
round 5:7204881fb300914825fdc863e8ceadf3
Key [9]:bfca91ad9bd3d1a06c582b1d5512dddf
*
Key [10]:a88bc477e3fa1d5a59b5e6cf793c7a41

round 6:27031131d86cea2d747deb4f756143aa Key [11]:f3cfb8dac8aea2a6a8ef95af3a2a2767 Key [12]:77beb90670c5300b03aa2b2232d3d40c round 7:fc8c13d49149b1ce8d86f96e44a00065 Key [13]:b578373650af36a06e19fe335d726d32 Key [14]:6bcee918c7d0d24dfdf42237fcf99d53 round 8:04ef5f5a7ddf846cda0a07782fc23866 Key [15]:399f158241eb3e079f45d7b96490e7ea Key [16]:1bcfbe98ecde2add52aa63ea79fb917a Key [17]:ee8bc03ec08722bc2b075492873374af round 1:d989d7a40cde7032d17b52f8117b69d5 Key [1]:2ecc6cc797cc41a2ab02007f6af396ae Key [2]:acfaef7609c12567d537ae1cf9dc2198 round 2:8e76eb9a29b2ad5eea790db97aee37c1 Key [3]:079c8ff9b73d428df879906a0b87a6c8 Key [4]:19f2710baf403a494193d201f3a8c439 round 3:346bb7c35b2539676375aafe3af69089 added ->:edf48e675703a955b2f0fc062b71f95c Key [5]:d623a6498f915cb2c8002765247b2f5a Key [6]:900109093319bc30108b3d9434a77a72 round 4:fafb6c1f3ebbd2477be2da49dd923f69 Key [7]:e28e2ee6e72e7f4e5b5c11f10d204228 Key [8]:8e455cd11f8b9073a2dfa5413c7a4bc5 round 5:7c72230df588060a3cf920f9b0a08f06 Key [9]:28afb26e2c7a64238c41cefc16c53e74 Key [10]:d08dcafc2096395ba0d2dddd0e471f4d round 6:55991df991db26ff00073a12baa3031d Key [11]:fcffdcc3ad8faae091a7055b934f87c1 Key [12]:f8df082d77060252c02d91e55bd6a7d6 round 7:70ec682ff864375f63701fa4f6be5377 Key [13]:bef3706e523d708e8a44147d7508bc35 Key [14]:3e98ab283ca2422d56a56cf8b06caeb3 round 8:172f12ec933da85504b4ea5c90f8f0ea Key [15]:87ad9625d06645d22598dd5ef811ea2c Key [16]:8bd3db0cc8168009e5da90877e13a36f Key [17]:0e74631d813a8351ac7039b348c41b42 sres :00507e5f :2a5f19fbf60907e69f39ca9f aco rand :0ecd61782b4128480c05dc45542b1b8c address :f428f0e624b3 :35949a914225fabad91995d226de1d92 kev round 1:0ecd61782b4128480c05dc45542b1b8c Key [1]:35949a914225fabad91995d226de1d92 Key [2]:ea6b3dcccc8ee5d88de349fa5010404f round 2:8935e2e263fbc4b9302cabdfc06bce3e Key [3]:920f3a0f2543ce535d4e7f25ad80648a Key [4]:ad47227edf9c6874e80ba80ebb95d2c9 round 3:b4c8b878675f184a0c72f3dab51f8f05 Key [5]:81a941ca7202b5e884ae8fa493ecac3d Key [6]:bcde1520bee3660e86ce2f0fb78b9157 round 4:77ced9f2fc42bdd5c6312b87fc2377c5

😵 Bluetooth°

Key [7]:c8eee7423d7c6efa75ecec0d2cd969d3
Key [8]:910b3f838a02ed441fbe863a02b4a1d0
round 5:fe28e8056f3004d60bb207e628b39cf2
Key [9]:56c647c1e865eb078348962ae070972d
Key [10]:883965da77ca5812d8104e2b640aec0d
round 6:1f2ba92259d9e88101518f145a33840f
Key [11]:61d4cb7e4f8868a283327806a9bd8d4d
Key [12]:9f57de3a3ff310e21dc1e696ce060304
round 7:cc9b5d0218d29037e88475152ebebb2f
Key [13]:7aald8adc1aeed7127ef9a18f6eb2d8e
Key [14]:b4db9da3bf865912acd14904c7f7785d
round 8:b04d352bedc02682e4a7f59d7cda1dba
Key [15]:a13d7141ef1f6c7d867e3d175467381b
Key [16]:08b2bc058e50d6141cdd566a307e1acc
Key [17]:057b2b4b4be5dc0ac49e50489b8006c9
round 1:5cfacc773bae995cd7f1b81e7c9ec7df
Key [1]:1e717950f5828f3930fe4a9395858815
Key [2]:d1623369b733d98bbc894f75866c544c
round 2:d571ffa21d9daa797b1a0a3c962fc64c
Key [3]:4abf27664ae364cc8a7e5bcf88214cc4
Key [4]:2aaedda8dc4933dd6aeaf6e5c0d5a482
round 3:e17c8e498a00f125bf654c938c23f36d
added ->:bd765a3eb1ae8a796856048df0c1bab2
Key [5]:bc7f8ab2d86000f47b1946cc8d7a7a2b
Key [6]:6b28544cb13ec6c5d98470df2cf900b7
round 4:a9727c26f2f06bd9920e83c8605dcd76
Key [7]:1be840d9107f2c9523f66bb19f5464a1
Key [8]:61d6fb1aa2f0c2b26fb2a3d6de8c177c
round 5:aeff751f146eab7e4626b2e2c9e2fb39
Key [9]:adabfc82570c568a233173099f23f4c2
Key [10]:b7df6b55ad266c0f1ff7452101f59101
round 6:cf412b95f454d5185e67ca671892e5bd
Key [11]:8e04a7282a2950dcbaea28f300e22de3
Key [12]:21362c114433e29bda3e4d51f803b0cf
round 7:16165722fe4e07ef88f8056b17d89567
Key [13]:710c8fd5bb3cbb5f132a7061de518bd9
Key [14]:0791de7334f4c87285809343f3ead3bd
round 8:28854cd6ad4a3c572b15490d4b81bc3f
Key [15]:4f47f0e5629a674bfcd13770eb3a3bd9
Key [16]:58a6d9a16a284cc0aead2126c79608a1
Key [17]:a564082a0a98399f43f535fd5cefad34
sres :80e5629c
aco :a6fe4dcde3924611d3cc6ba1

<table-of-contents>

Sample Data

9.2 FOUR TESTS OF E21

rand :000000000000000000000000000000000000
address :00000000000
round 1:000000000000000000000000000000000000
Key [1]:000000000000000000000000000000000000
Key [2]:4697b1baa3b7100ac537b3c95a28dc94
round 2:98611307ab76bbde9a86af1ce8cad412
Key [3]:ecabaac66795580df89af66e665d863d
Key [4]:8ac3d8896ae9364943bfebd4a2a768a0
round 3:820999ad2e6618f4b578974beeedf9e7
added ->:820999ad2e6618f4b578974beeedf9e7
Key [5]:5d57921fd5715cbb22c1bedb1c996394
Key [6]:2a61b8343219fdfb1740e9541d41448f
round 4:acd6edec87581ac22dbdc64ea4ced3a2
Key [7]:dd0480dee731d67f01ba0f39da6f23ca
Key [8]:3ad01cd1303e12a18dcfe0a8af82592c
round 5:1c7798732f09fbfe25795a4a2fbc93c2
Key [9]:7dadb2efc287ce7b0c1302904f2e7233
Key [10]:c08dcfa981e2f4572f6c7a9f52e11538
round 6:c05b88b56aa70e9c40c79bb81cd911bd
Key [11]:fc2042c708658a555e8c147660ffdfd7
Key [12]:fa0b21002605a6b9e89e624cd99150d2
round 7:abacc71b481c84c798d1bdf3d62f7e20
Key [13]:18b407e44a5ba4c80ecb48694b4e9c35
Key [14]:454d57e8253c0c4a8b3fcca7db6baef4
round 8:e8204e1183ae85cf19edb2c86215b700
Key [15]:2d0b946d9db52674f29353b0f011ed83
Key [16]:76c316733b1e8e70bd861b477e2456f1
Key [17]:8e4697b1baa3b7100ac537b3c95a28ac
Ka :d14ca028545ec262cee700e39b5c39ee
rand :2dd9a550343191304013b2d7e1189d09
address :cac4364303b6
round 1:cac4364303b6cac4364303b6cac43643
Key [1]:2dd9a550343191304013b2d7e1189d0f
Key [2]:14c4335b2c43910c5dcc71d81a14242b
round 2:e169f788aad45a9011f11db5270b1277
Key [3]:55bfb712cba168d1a48f6e74cd9f4388
Key [4]:2a2b3aacca695caef2821b0fb48cc253
round 3:540f9c76652e92c44987c617035037bf
added ->:9ed3d23566e45c007fcac9a1c9146dfc
Key [5]:a06aab22d9a287384042976b4b6b00ee
Key [6]:c229d054bb72e8eb230e6dcdb32d16b7
round 4:83659a41675f7171ea57909dc5a79ab4
Key [7]:23c4812ab1905ddf77dedaed4105649a
Key [8]:40d87e272a7a1554ae2e85e3638cdf52
round 5:0b9382d0ed4f2fccdbb69d0db7b130a4
Key [9]:bdc064c6a39f6b84fe40db359f62a3c4
Key [10]:58228db841ce3cee983aa721f36aa1b9
round 6:c6ebda0f8f489792f09c189568226c1f
Key [11]:a815bacd6fa747a0d4f52883ac63ebe7

Key [12]:a9ce513b38ea006c333ecaaefcf1d0f8
round 7:75a8aba07e69c9065bcd831c40115116
Key [13]:3635e074792d4122130e5b824e52cd60
Key [14]:511bdb61bb28de72a5d794bffbf407df
round 8:57a6e279dcb764cf7dd6a749dd60c735
Key [15]:a32f5f21044b6744b6d913b13cdb4c0a
Key [16]:9722bbaeef281496ef8c23a9d41e92f4
Key [17]:807370560ad7e8a13a054a65a03b4049
Ka :e62f8bac609139b3999aedbc9d228042
rand :dab3cffe9d5739d1b7bf4a667ae5ee24
address :02f8fd4cd661
round 1:02f8fd4cd66102f8fd4cd66102f8fd4c
Key [1]:dab3cffe9d5739d1b7bf4a667ae5ee22
Key [2]:e315a8a65d809ec7c289e69c899fbdcc
round 2:ef85ff081b8709405e19f3e275cec7dc
Key [3]:df6a119bb50945fc8a3394e7216448f3
Key [4]:87fe86fb0d58b5dd0fb3b6b1dab51d07
round 3:aa25c21bf577d92dd97381e3e9edcc54
added ->:a81dbf5723d8dbd524bf5782ebe5c918
Key [5]:36cc253c506c0021c91fac9d8c469e90
Key [6]:d5fda00f113e303809b7f7d78a1a2b0e
round 4:9e69ce9b53caec3990894d2baed41e0d
Key [7]:c14b5edc10cabf16bc2a2ba4a8ae1e40
Key [8]:74c6131afc8dce7e11b03b1ea8610c16
round 5:a5460fa8cedca48a14fd02209e01f02e
Key [9]:346cfc553c6cbc9713edb55f4dcbc96c
Key [10]:bddf027cb059d58f0509f8963e9bdec6
round 6:92b33f11eadcacc5a43dd05f13d334dd
Key [11]:8eb9e040c36c4c0b4a7fd3dd354d53c4
Key [12]:c6ffecdd5e135b20879b9dfa4b34bf51
round 7:fb0541aa5e5df1a61c51aef606eb5a41
Key [13]:bf12f5a6ba08dfc4fda4bdfc68c997d9
Key [14]:37c4656b9215f3c959ea688fb64ad327
round 8:f0bbd2b94ae374346730581fc77a9c98
Key [15]:e87bb0d86bf421ea4f779a8eee3a866c
Key [16]:faa471e934fd415ae4c0113ec7f0a5ad
Key [17]:95204a80b8400e49db7cf6fd2fd40d9a
Ka :b0376d0a9b338c2e133c32b69cb816b3
rand :13ecad08ad63c37f8a54dc56e82f4dc1
address :9846c5ead4d9
round 1:9846c5ead4d99846c5ead4d99846c5ea
Key [1]:13ecad08ad63c37f8a54dc56e82f4dc7
Key [2]:ad04f127bed50b5e671d6510d392eaed
round 2:97374e18cdd0a6f7a5aa49d1ac875c84
Key [3]:57ad159e5774fa222f2f3039b9cd5101
Key [4]:9ale9e1068fede02ef90496e25fd8e79
round 3:9dd3260373edd9d5f4e774826b88fd2d
added ->:0519ebe9a7c6719331d1485bf3cec2c7
Key [5]:378dce167db62920b0b392f7cfca316e
Key [6]:db4277795c87286faee6c9e9a6b71a93

😵 Bluetooth®

Sample Data

round 4:40ec6563450299ac4e120d88672504d6 Key [7]:ec01aa2f5a8a793b36c1bb858d254380 Key [8]:2921a66cfa5bf74ac535424564830e98 round 5:57287bbb041bd6a56c2bd931ed410cd4 Key [9]:07018e45aab61b3c3726ee3d57dbd5f6 Key [10]:627381f0fa4c02b0c7d3e7dfbffc3333 round 6:66affa66a8dcd36e36bf6c3f1c6a276e Key [11]:33b57c925bd5551999f716e138efbe79 Key [12]:a6dc7f9aa95bcc9243aebd12608f657a round 7:450e65184fd8c72c578d5cdecb286743 Kev [13]:a6a6db00fd8c72a28ea57ea542f6e102 Key [14]:dcf3377daeb2e24e61f0ad6620951c1f round 8:e5eb180b519a4e673f21b7c4f4573f3d Key [15]:621240b9506b462a7fa250da41844626 Key [16]:ae297810f01f43dc35756cd119ee73d6 Key [17]:b959835ec2501ad3894f8b8f1f4257f9 :5b61e83ad04d23e9d1c698851fa30447 Ka _____

9.3 THREE TESTS OF E22

(for K_master and overlay generation)

```
rand
        :001de169248850245a5f7cc7f0d6d633
PTN
        :d5a51083a04a1971f18649ea8b79311a
round 1:001de169248850245a5f7cc7f0d6d623
Key [ 1]:d5a51083a04a1971f18649ea8b79311a
Key [ 2]:7317cdbff57f9b99f9810a2525b17cc7
round 2:5f05c143347b59acae3cb002db23830f
Key [ 3]:f08bd258adf1d4ae4a54d8ccb26220b2
Key [ 4]:91046cbb4ccc43db18d6dd36ca7313eb
round 3:c8f3e3300541a25b6ac5a80c3105f3c4
added ->:c810c45921c9f27f302424cbc1dbc9e7
Key [ 5]:67fb2336f4d9f069da58d11c82f6bd95
Key [ 6]:4fed702c75bd72c0d3d8f38707134c50
round 4:bd5e0c3a97fa55b91a3bbbf306ebb978
Key [ 7]:41c947f80cdc0464c50aa89070af314c
Key [ 8]:680eecfa8daf41c7109c9a5cb1f26d75
round 5:21c1a762c3cc33e75ce8976a73983087
Key [ 9]:6e33fbd94d00ff8f72e8a7a0d2cebc4c
Key [10]:f4d726054c6b948add99fabb5733ddc3
round 6:56d0df484345582f6b574a449ba155eb
Key [11]:4eda2425546a24cac790f49ef2453b53
Key [12]:cf2213624ed1510408a5a3e00b7333df
round 7:120cf9963fe9ff22993f7fdf9600d9b8
Key [13]:d04b1a25b0b8fec946d5ecfa626d04c9
Key [14]:01e5611b0f0e140bdb64585fd3ae5269
round 8:a6337400ad8cb47fefb91332f5cb2713
Key [15]:f15b2dc433f534f61bf718770a3698b1
Key [16]:f990d0273d8ea2b9e0b45917a781c720
Key [17]:f41b3cc13d4301297bb6bdfcb3e5a1dd
        :539e4f2732e5ae2de1e0401f0813bd0d
Ka
```

page	753	of	814
------	-----	----	-----

rand :67ed56bfcf99825f0c6b349369da30ab
PIN :7885b515e84b1f082cc499976f1725ce
round 1:67ed56bfcf99825f0c6b349369da30bb
Key [1]:7885b515e84b1f082cc499976f1725ce
Key [2]:72445901fdaf506beb036f4412512248
round 2:6b160b66a1f6c26c1f3432f463ef5aa1
Key [3]:59f0e4982e97633e5e7fd133af8f2c5b
Key [4]:b4946ec77a41bf7c729d191e33d458ab
round 3:3f22046c964c3e5ca2a26ec9a76a9f67
added ->:580f5ad359e5c003ae0da25ace44cfdc
Key [5]:eb0b839f97bdf534183210678520bbef
Key [6]:cff0bc4a94e5c8b2a2d24d9f59031e19
round 4:87aa61fc0ff88e744c195249b9a33632
Key [7]:592430f14d8f93db95dd691af045776d
Key [8]:3b55b404222bf445a6a2ef5865247695
round 5:83dcf592a854226c4dcd94e1ecf1bc75
Key [9]:a9714b86319ef343a28b87456416bd52
Key [10]:e6598b24390b3a0bf2982747993b0d78
round 6:dee0d13a52e96bcf7c72045a21609fc6
Key [11]:62051d8c51973073bff959b032c6e1e2
Key [12]:29e94f4ab73296c453c833e217a1a85b
round 7:08488005761e6c7c4dbb203ae453fe3a
Key [13]:0e255970b3e2fc235f59fc5acb10e8ce
Key [14]:d0dfbb3361fee6d4ffe45babf1cd7abf
round 8:0d81e89bddde7a7065316c47574feb8f
Key [15]:cl2eee4eb38b7a171f0f736003774b40
Key [16]:8f962523f1c0abd9a087a0dfb11643d3
Key [17]:24be1c66cf8b022f12f1fb4c60c93fd1
Ka :04435771e03a9daceb8bb1a493ee9bd8
rand :40a94509238664f244ff8e3d13b119d3
PIN :1ce44839badde30396d03c4c36f23006
round 1:40a94509238664f244ff8e3d13b119c3
Key [1]:1ce44839badde30396d03c4c36f23006
Key [2]:6dd97a8f91d628be4b18157af1a9dcba
round 2:0eac5288057d9947a24eabc1744c4582
Key [3]:fef9583d5f55fd4107ad832a725db744
Key [4]:fc3893507016d7c1db2bd034a230a069
round 3:60b424f1082b0cc3bd61be7b4c0155f0
added ->:205d69f82bb17031f9604c465fb26e33
Key [5]:0834d04f3e7e1f7f85f0c1db685ab118
Key [6]:1852397f9a3723169058e9b62bb3682b
round 4:2c6b65a49d66af6566675afdd6fa7d7d
Key [7]:6c10da21d762ae4ac1ba22a96d9007b4
Key [8]:9aa23658b90470a78d686344b8a9b0e7
round 5:a2c537899665113a42f1ac24773bdc31
Key [9]:137dee3bf879fe7bd02fe6d888e84f16
Key [10]:466e315a1863f47d0f93bc6827cf3450
round 6:e26982980d79b21ed3e20f8c3e71ba96
Key [11]:0b33cf831465bb5c979e6224d7f79f7c
Key [12]:92770660268ede827810d707a0977d73
· · · · · · · · · · · · · · · · · · ·

Bluetooth

Sample Data

roun	d 7	7:e7b063c4e2e3110b89b7e1631c762dd5
Key	[13]	:7be30ae4961cf24ca17625a77bb7a9f8
Key	[14]	:be65574a33ae30e6e82dbd2826d3cc1a
roun	.d 8	3:7a963e37b2c2e76b489cfe40a2cf00e5
Кеу	[15]	ed0ba7dd30d60a5e69225f0a33011e5b:
Key	[16]	:765c990f4445e52b39e6ed6105ad1c4f
Кеу	[17]	:52627bf9f35d94f30d5b07ef15901adc
Ka		:9cde4b60f9b5861ed9df80858bac6f7f

9.4 TESTS OF E22 WITH PIN AUGMENTING

for PIN lengths 1,...,16 bytes

```
:24b101fd56117d42c0545a4247357048
rand
PIN length =16 octets
PIN
       :fd397c7f5c1f937cdf82d8816cc377e2
round 1:24b101fd56117d42c0545a4247357058
Key [ 1]:fd397c7f5c1f937cdf82d8816cc377e2
Key [ 2]:0f7aac9c9b53f308d9fdbf2c78e3c30e
round 2:838edfe1226266953ccba8379d873107
Key [ 3]:0b8ac18d4bb44fad2efa115e43945abc
Key [ 4]:887b16b062a83bfa469772c25b456312
round 3:8cd0c9283120aba89a7f9d635dd4fe3f
added ->:a881cad5673128ea5ad3f7211a096e67
Key [ 5]:2248cbe6d299e9d3e8fd35a91178f65b
Key [ 6]:b92af6237385bd31f8fb57fb1bdd824e
round 4:2648d9c618a622b10ef80c4dbaf68b99
Key [ 7]:2bf5ffe84a37878ede2d4c30be60203b
Key [ 8]:c9cb6cec60cb8a8f29b99fcf3e71e40f
round 5:b5a7d9e96f68b14ccebf361de3914d0f
Key [ 9]:5c2f8a702e4a45575b103b0cce8a91c6
Key [10]:d453db0c9f9ddbd11e355d9a34d9b11b
round 6:632a091e7eefe1336857ddafd1ff3265
Key [11]:32805db7e59c5ed4acabf38d27e3fece
Key [12]:fde3a8eedfa3a12be09c1a8a00890fd7
round 7:048531e9fd3efa95910540150f8b137b
Key [13]:def07eb23f3a378f059039a2124bc4c2
Key [14]:2608c58f23d84a09b9ce95e5caac1ab4
round 8:461814ec7439d412d0732f0a6f799a6a
Key [15]:0a7ed16481a623e56ee1442ffa74f334
Key [16]:12add59aca0d19532f1516979954e369
Key [17]:dd43d02d39ffd6a386a4b98b4ac6eb23
       :a5f2adf328e4e6a2b42f19c8b74ba884
Ka
rand
       :321964061ac49a436f9fb9824ac63f8b
PIN length =15 octets
PIN
       :ad955d58b6b8857820ac1262d617a6
address :0314c0642543
round 1:321964061ac49a436f9fb9824ac63f9b
```

page 755 of 814
😵 Bluetooth

Key [1]:ad955d58b6b8857820ac1262d617a603 Key [2]:f281736f68e3d30b2ac7c67f125dc416 round 2:7c4a4ece1398681f4bafd309328b7770 Key [3]:43c157f4c8b360387c32ab330f9c9aa8 Key [4]:3a3049945a298f6d076c19219c47c3cb round 3:9672b00738bdfaf9bd92a855bc6f3afb added ->:a48b1401228194bad23161d7f6357960 Key [5]:c8e2eaa6d73b7de18f3228ab2173bc69 Key [6]:8623f44488222e66a293677cf30bf2bb round 4:9b30247aad3bf133712d034b46d21c68 Kev [7]:f3e500902fba31db9bae50ef30e484a4 Key [8]:49d4b1137c18f4752dd9955a5a8d2f43 round 5:4492c25fda08083a768b4b5588966b23 Key [9]:9d59c451989e74785cc097eda7e42ab8 Key [10]:251de25f3917dcd99c18646107a641fb round 6:21ae346635714d2623041f269978c0ee Key [11]:80b8f78cb1a49ec0c3e32a238e60fddf Key [12]:beb84f4d20a501e4a24ecfbde481902b round 7:9b56a3d0f8932f20c6a77a229514fb00 Key [13]:852571b44f35fd9d9336d3c1d2506656 Key [14]:d0a0d510fb06ba76e69b8ee3ebc1b725 round 8:6cd8492b2fd31a86978bcdf644eb08a8 Key [15]:c7ffd523f32a874ed4a93430a25976de Key [16]:16cdcb25e62964876d951fdcc07030d3 Key [17]:def32c0e12596f9582e5e3c52b303f52 :c0ec1a5694e2b48d54297911e6c98b8f Ka :d4ae20c80094547d7051931b5cc2a8d6 rand PIN length =14 octets PIN :e1232e2c5f3b833b3309088a87b6 address :fabecc58e609 round 1:d4ae20c80094547d7051931b5cc2a8c6 Key [1]:e1232e2c5f3b833b3309088a87b6fabe Key [2]:5f0812b47cd3e9a30d7707050fffa1f2 round 2:1f45f16be89794bef33e4547c9c0916a Key [3]:77b681944763244ffa3cd71b248b79b5 Key [4]:e2814e90e04f485958ce58c9133e2be6 round 3:b10d2f4ac941035263cee3552d774d2f added ->:65bb4f82c9d5572f131f764e7139f5e9 Key [5]:520acad20801dc639a2c6d66d9b79576 Key [6]:c72255cdb61d42be72bd45390dd25ba5 round 4:ead4dc34207b6ea721c62166e155aaad Key [7]:ebf04c02075bf459ec9c3ec06627d347 Key [8]:a1363dd2812ee800a4491c0c74074493 round 5:f507944f3018e20586d81d7f326aae9d Key [9]:b0b6ba79493dc833d7f425be7b8dadb6 Key [10]:08cd23e536b9b9b53e85eb004cba3111 round 6:fff450f4302a2b3571e8405e148346da Key [11]:fec22374c6937dcd26171f4d2edfada3 Key [12]:0f1a8ef5979c69ff44f620c2e007b6e4 round 7:de558779589897f3402a90ee78c3f921 Key [13]:901fb66f0779d6aad0c0fba1fe812cb5

Key [14]:a0cab3cd15cd23603adc8d4474efb239
round 8:b2df0aa0c9f07fbbaa02f510a29cf540
Key [15]:18edc3f4296dd6f1dea13f7c143117a1
Key [16]:8d3d52d700a379d72ded81687f7546c7
Key [17]:5927badfe602f29345f840bb53e1dea6
Ka :d7b39be13e3692c65b4a9e17a9c55e17
rand :272b73a2e40db52a6a61c6520549794a
PIN length =13 octets
PIN :549f2694f353f5145772d8ae1e
address :20487681eb9f
round 1:272b73a2e40db52a6a61c6520549795a
Key [1]:549f2694f353f5145772d8ae1e204876
Key [2]:42c855593d66b0c458fd28b95b6a5fbf
round 2:d7276dc8073f7677c31f855bde9501e2
Key [3]:75d0a69ae49a2da92e457d767879df52
Key [4]:b3aa7e7492971afaa0fb2b64827110df
round 3:71aae503831133d19bc452da4d0e409b
added ->:56d558a1671ee8fbf12518884857b9c1
Key [5]:9c8cf1604a98e9a503c342e272de5cf6
Key [6]:d35bc2df6b85540a27642106471057d9
round 4:f41a709c89ea80481aa3d2b9b2a9f8ca
Key [7]:b454dda74aeb4eff227ba48a58077599
Key [8]:bcba6aec050116aa9b7c6a9b7314d796
round 5:20fdda20f4a26b1bd38eb7f355a7be87
Key [9]:d41f8a9de0a716eb7167a1b6e321c528
Key [10]:5353449982247782d168ab43f17bc4d8
round 6:a70e316997eeed49a5a9ef9ba5e913b5
Key [11]:32cbc9cf1a81e36a45153972347ce4ac
Key [12]:5747619006cf4ef834c749f2c4b9feb6
round 7:e66f2317a825f589f76b47b6aa6e73fb
Key [13]:f9b68beba0a09d2a570a7dc88cc3c3c2
- Key [14]:55718f9a4f0b1f9484e8c6b186a41a4b
round 8:5f68f940440a9798e074776019804ada
Key [15]:4ecc29be1b4d78433f6aa30db974a7fb
Key [16]:8470a066ffb00cda7b08059599f919f5
Key [17]:f39a36d74e960a051e1ca98b777848f4
Ka :9ac64309a37c25c3b4a584fc002a1618
rand :7edb65f01a2f45a2bc9b24fb3390667e
PIN length =12 octets
PIN :2e5a42797958557b23447ca8
address :04f0d2737f02
round 1:7edb65f01a2f45a2bc9b24fb3390666e
Key [1]:2e5a42797958557b23447ca804f0d273
Key [2]:18a97c856561eb23e71af8e9e1be4799
round 2:3436e12db8ffdc1265cb5a86da2fed0b
Key [3]:7c0908dcbc73201e17c4f7aalab8aec8
•
Key [4]:7cb58833602fbe4194c7cc797ce8c454
round 3:caed6af4226f67e4ad1914620803ef2a
added ->:b4c8cf04389eac4611b438993b935544
Key [5]:f4dce7d607b5234562d0ebb2267b08b8

😵 Bluetooth[°]

page 757 of 814

Key [6]:560b75c5545751fd8fa99fa4346e654b round 4:ee67c87d6f74bb75db98f68bff0192c1 Key [7]:32f10cefd8d3e6424c6f91f1437808af Key [8]:a934a46045be30fb3be3a5f3f7b18837 round 5:792398dcbeb8d10bdb07ae3c819e943c Key [9]:a0f12e97c677a0e8ac415cd2c8a7ca88 Key [10]:e27014c908785f5ca03e8c6a1da3bf13 round 6:e778b6e0c3e8e7edf90861c7916d97a8 Key [11]:1b4a4303bcc0b2e0f41c72d47654bd9f Key [12]:4b1302a50046026d6c9054fc8387965a round 7:1fafddc7efa5f04c1dec1869d3f2d9bb Key [13]:58c334bb543d49eca562cdbe0280e0fc Key [14]:bdb60d383c692d06476b76646c8dec48 round 8:3d7c326d074bd6aa222ea050f04a3c7f Key [15]:78c0162506be0b5953e8403c01028f93 Key [16]:24d7dbbe834dbd7b67f57fcf0d39d60f Key [17]:2e74f1f3331c0f6585e87b2f715e187e :d3af4c81e3f482f062999dee7882a73b Ka rand :26a92358294dce97b1d79ec32a67e81a PIN length =11 octets PIN :05fbad03f52fa9324f7732 address :b9ac071f9d70 round 1:26a92358294dce97b1d79ec32a67e80a Key [1]:05fbad03f52fa9324f7732b9ac071f9d Key [2]:2504c9691c04a18480c8802e922098c0 round 2:0be20e3d76888e57b6bf77f97a8714fb Key [3]:576b2791d1212bea8408212f2d43e77e Key [4]:90ae36dcce8724adb618f912d1b27297 round 3:1969667060764453257d906b7e58bd5b added ->:3f12892849c312c494542ea854bfa551 Key [5]:bc492c42c9e87f56ec31af5474e9226e Key [6]:c135d1dbed32d9519acfb4169f3e1a10 round 4:ac404205118fe771e54aa6f392da1153 Key [7]:83ccbdbbaf17889b7d18254dc9252fa1 Key [8]:80b90a1767d3f2848080802764e21711 round 5:41795e89ae9a0cf776ffece76f47fd7a Key [9]:cc24e4a86e8eed129118fd3d5223a1dc Key [10]:7b1e9c0eb9dab083574be7b7015a62c9 round 6:29ca9e2f87ca00370ef1633505bfba4b Key [11]:888e6d88cf4beb965cf7d4f32b696baa Key [12]:6d642f3e5510b0b043a44daa2cf5eec0 round 7:81fc891c3c6fd99acc00028a387e2366 Key [13]:e224f85da2ab63a23e2a3a036e421358 Key [14]:c8dc22aaa739e2cb85d6a0c08226c7d0 round 8:e30b537e7a000e3d2424a9c0f04c4042 Key [15]:a969aa818c6b324bae391bedcdd9d335 Key [16]:6974b6f2f07e4c55f2cc0435c45bebd1 Key [17]:134b925ebd98e6b93c14aee582062fcb :be87b44d079d45a08a71d15208c5cb50 Ka :0edef05327eab5262430f21fc91ce682 rand

😵 Bluetooth°

PIN length =10 octets :8210e47390f3f48c32b3 PIN address :7a3cdfe377d1 round 1:0edef05327eab5262430f21fc91ce692 Key [1]:8210e47390f3f48c32b37a3cdfe377d1 Key [2]:c6be4c3e425e749b620a94c779e33a7e round 2:07ca3c7a7a6bcbc31d79a856d9cffc0e Key [3]:2587cec2a4b8e4f996a9ed664350d5dd Key [4]:70e4bf72834d9d3dbb7eb2c239216dc0 round 3:792ad2ac4e4559d1463714d2f161b6f4 added ->:7708c2ff692f0ef7626706cd387d9c66 Key [5]:6696e1e7f8ac037e1fff3598f0c164e2 Key [6]:23dbfe4d0b561bea08fbcef25e49b648 round 4:7d8c71a9d7fbdcbd851bdf074550b100 Key [7]:b03648acd021550edee904431a02f00c Key [8]:cb169220b7398e8f077730aa4bf06baa round 5:b6fcaa45064ffd557e4b7b30cfbb83e0 Key [9]:af602c2ba16a454649951274c2be6527 Key [10]:5d60b0a7a09d524143eca13ad680bc9c round 6:b3416d391a0c26c558843debd0601e9e Key [11]:9a2f39bfe558d9f562c5f09a5c3c0263 Key [12]:72cae8eebd7fabd9b1848333c2aab439 round 7:abe4b498d9c36ea97b8fd27d7f813913 Key [13]:15f27ea11e83a51645d487b81371d7dc Key [14]:36083c8666447e03d33846edf444eb12 round 8:8032104338a945ba044d102eabda3b22 Key [15]:0a3a8977dd48f3b6c1668578befadd02 Key [16]:f06b6675d78ca0ee5b1761bdcdab516d Key [17]:cbc8a7952d33aa0496f7ea2d05390b23 Ka :bf0706d76ec3b11cce724b311bf71ff5 rand :86290e2892f278ff6c3fb917b020576a PIN length = 9 octets :3dcdffcfd086802107 PIN address :791a6a2c5cc3 round 1:86290e2892f278ff6c3fb917b0205765 Key [1]:3dcdffcfd086802107791a6a2c5cc33d Key [2]:b4962f40d7bb19429007062a3c469521 round 2:1ec59ffd3065f19991872a7863b0ef02 Key [3]:eb9ede6787dd196b7e340185562bf28c Key [4]:2964e58aacf7287d1717a35b100ae23b round 3:f817406f1423fc2fe33e25152679eaaf added ->:7e404e47861574d08f7dde02969941ca Key [5]:6abf9a314508fd61e486fa4e376c3f93 Key [6]:6da148b7ee2632114521842cbb274376 round 4:e9c2a8fac22b8c7cf0c619e2b3f890ed Key [7]:df889cc34fda86f01096d52d116e620d Key [8]:5eb04b147dc39d1974058761ae7b73fc round 5:444a8aac0efee1c02f8d38f8274b7b28 Key [9]:8426cc59eee391b2bd50cf8f1efef8b3 Key [10]:8b5d220a6300ade418da791dd8151941 round 6:9185f983db150b1bccab1e5c12eb63a1

page 759 of 814

Key [11]:82ba4ddef833f6a4d18b07aa011f2798 Key [12]:ce63d98794682054e73d0359dad35ec4 round 7:5eded2668f5916dfd036c09e87902886 Key [13]:da794357652e80c70ad8b0715dbe33d6 Key [14]:732ef2c0c3220b31f3820c375e27bb29 round 8:88a5291b4acbba009a85b7dd6a834b3b Key [15]:3ce75a61d4b465b70c95d7ccd5799633 Key [16]:5df9bd2c3a17a840cdaafb76c171db7c Key [17]:3f8364b089733d902bccb0cd3386846f :cdb0cc68f6f6fbd70b46652de3ef3ffb Ka :3ab52a65bb3b24a08eb6cd284b4b9d4b rand PIN length = 8 octets PTN :d0fb9b6838d464d8 address :25a868db91ab round 1:3ab52a65bb3b24a08eb6cd284b4b9d45 Key [1]:d0fb9b6838d464d825a868db91abd0fb Key [2]:2573f47b49dad6330a7a9155b7ae8ba1 round 2:ad2ffdff408fcfab44941016a9199251 Key [3]:d2c5b8fb80cba13712905a589adaee71 Key [4]:5a3381511b338719fae242758dea0997 round 3:2ddc17e570d7931a2b1d13f6ace928a5 added ->:17914180cb12b7baa5d3e0dee734c5e0 Key [5]:e0a4d8ac27fbe2783b7bcb3a36a6224d Key [6]:949324c6864deac3eca8e324853e11c3 round 4:62c1db5cf31590d331ec40ad692e8df5 Key [7]:6e67148088a01c2d4491957cc9ddc4aa Key [8]:557431deab7087bb4c03fa27228f60c6 round 5:9c8933bc361f4bde4d1bda2b5f8bb235 Key [9]:a2551aca53329e70ade3fd2bb7664697 Key [10]:05d0ad35de68a364b54b56e2138738fe round 6:9156db34136aa06655bf28a05be0596a Key [11]:1616a6b13ce2f2895c722e8495181520 Key [12]:b12e78a1114847b01f6ed2f5a1429a23 round 7:84dcc292ed836c1c2d523f2a899a2ad5 Key [13]:316e144364686381944e95afd8a026bb Key [14]:1ab551b88d39d97ea7a9fe136dbfe2e1 round 8:87bdcac878d777877f4eccf042cfee5e Key [15]:70e21ab08c23c7544524b64492b25cc9 Key [16]:35f730f2ae2b950a49a1bf5c8b9f8866 Key [17]:2f16924c22db8b74e2eadf1ba4ebd37c :983218718ca9aa97892e312d86dd9516 Ka rand :a6dc447ff08d4b366ff96e6cf207e179 PIN length = 7 octets PIN :9c57e10b4766cc address :54ebd9328cb6 round 1:a6dc447ff08d4b366ff96e6cf207e174 Key [1]:9c57e10b4766cc54ebd9328cb69c57e1 Key [2]:00a609f4d61db26993c8177e3ee2bba8 round 2:1ed26b96a306d7014f4e5c9ee523b73d Key [3]:646d7b5f9aaa528384bda3953b542764

Key [4]:a051a42212c0e9ad5c2c248259aca14e
round 3:a53f526db18e3d7d53edbfc9711041ed
added ->:031b9612411b884b3ce62da583172299
Key [5]:d1bd5e64930e7f838d8a33994462d8b2
Key [6]:5dc7e2291e32435665ebd6956bec3414
round 4:9438be308ec83f35c560e2796f4e0559
Key [7]:10552f45af63b0f15e2919ab37f64fe7
Key [8]:c44d5717c114a58b09207392ebe341f8
round 5:b79a7b14386066d339f799c40479cb3d
Key [9]:6886e47b782325568eaf59715a75d8ff
Key [10]:8e1e335e659cd36b132689f78c147bda
round 6:ef232462228aa166438d10c34e17424b
Key [11]:8843efeedd5c2b7c3304d647f932f4d1
Key [12]:13785aaedd0adf67abb4f01872392785
round 7:02d133fe40d15f1073673b36bba35abd
Key [13]:837d7ca2722419e6be3fae35900c3958
Key [14]:93f8442973e7fccf2e7232d1d057c73a
round 8:275506a3d08c84e94cc58ed60054505e
Key [15]:8a7a9edffa3c52918bc6a45f57d91f5d
Key [16]:f214a95d777f763c56109882c4b52c84
Key [17]:10e2ee92c5ea1ddc5eb010e55510c403
Ka :9cd6650ead86323e87cafb1ff516d1e0
rand :3348470a7ea6cc6eb81b40472133262c
PIN length = 6 octets
PIN :fcad169d7295
address :430d572f8842
round 1:3348470a7ea6cc6eb81b404721332620
Key [1]:fcad169d7295430d572f8842fcad169d
Key [2]:b3479d4d4fd178c43e7bc5b0c7d8983c
round 2:af976da9225066d563e10ab955e6fc32
Key [3]:7112462b37d82dd81a2a35d9eb43cb7c
- Key [4]:c5a7030f8497945ac7b84600d1d161fb
round 3:d08f826ebd55a0bd7591c19a89ed9bde
added ->:e3d7c964c3fb6cd3cdac01dda820c1fe
Key [5]:84b0c6ef4a63e4dff19b1f546d683df5
Key [6]:f4023edfc95d1e79ed4bb4de9b174f5d
round 4:6cd952785630dfc7cf81eea625e42c5c
Key [7]:ea38dd9a093ac9355918632c90c79993
Key [8]:dbba01e278ddc76380727f5d7135a7de
round 5:93573b2971515495978264b88f330f7f
Key [9]:d4dc3a31be34e412210fafa6eca00776
Key [10]:39d1e190ee92b0ff16d92a8be58d2fa0
round 6:b3f01d5e7fe1ce6da7b46d8c389baf47
Key [11]:1eb081328d4bcf94c9117b12c5cf22ac
-
Key [12]:7e047c2c552f9f1414d946775fabfe30 round 7:0b833bff6106d5bae033b4ce5af5a924
Key [13]:e78e685d9b2a7e29e7f2a19d1bc38ebd
Key [14]:1b582272a3121718c4096d2d8602f215
round 8:23de0bbdc70850a7803f4f10c63b2c0f
Key [15]:8569e860530d9c3d48a0870dac33f676
Key [16]:6966b528fdd1dc222527052c8f6cf5a6

page 1	761	of 814
--------	-----	--------

Key [17]:a34244c757154c53171c663b0b56d5c2 Ka :98f1543ab4d87bd5ef5296fb5e3d3a21 _____ :0f5bb150b4371ae4e5785293d22b7b0c rand PIN length = 5 octets:b10d068bca PIN address :b44775199f29 round 1:0f5bb150b4371ae4e5785293d22b7b07 Key [1]:b10d068bcab44775199f29b10d068bca Key [2]:aec70d1048f1bbd2c18040318a8402ad round 2:342d2b79d7fb7cd110379742b9842c79 Key [3]:6d8d5cf338f29ef4420639ef488e4fa9 Key [4]:a1584117541b759ba6d9f7eb2bedcbba round 3:9407e8e3e810603921bf81cfda62770a added ->:9b6299b35c477addc437d35c088df20d Key [5]:09a20676666aeed6f22176274eb433f4 Key [6]:840472c001add5811a054be5f5c74754 round 4:9a3ba953225a7862c0a842ed3d0b2679 Key [7]:fad9e45c8bf70a972fcd9bff0e8751f5 Key [8]:e8f30ff666dfd212263416496ff3b2c2 round 5:2c573b6480852e875df34b28a5c44509 Key [9]:964cdba0cf8d593f2fc40f96daf8267a Key [10]:bcd65c11b13e1a70bcd4aafba8864fe3 round 6:21b0cc49e880c5811d24dee0194e6e9e Key [11]:468c8548ea9653c1a10df6288dd03c1d Key [12]:5d252d17af4b09d3f4b5f7b5677b8211 round 7:e6d6bdcd63e1d37d9883543ba86392fd Key [13]:e814bf307c767428c67793dda2df95c7 Key [14]:4812b979fdc20f0ff0996f61673a42cc round 8:e3dde7ce6bd7d8a34599aa04d6a760ab Key [15]:5b1e2033d1cd549fc4b028146eb5b3b7 Key [16]:0f284c14fb8fe706a5343e3aa35af7b1 Key [17]:b1f7a4b7456d6b577fded6dc7a672e37 Ka :c55070b72bc982adb972ed05d1a74ddb :148662a4baa73cfadb55489159e476e1 rand PIN length = 4 octets :fb20f177 PIN address :a683bd0b1896 round 1:148662a4baa73cfadb55489159e476eb Key [1]:fb20f177a683bd0b1896fb20f177a683 Key [2]:47266cefbfa468ca7916b458155dc825 round 2:3a942eb6271c3f4e433838a5d3fcbd27 Key [3]:688853a6d6575eb2f6a2724b0fbc133b Key [4]:7810df048019634083a2d9219d0b5fe0 round 3:9c835b98a063701c0887943596780769 added ->:8809bd3c1a0aace6d3dcdca4cf5c7d82 Key [5]:c78f6dcf56da1bbd413828b33f5865b3 Key [6]:eb3f3d407d160df3d293a76d1a513c4a round 4:7e68c4bafa020a4a59b5a1968105bab5 Key [7]:d330e038d6b19d5c9bb0d7285a360064 Key [8]:9bd3ee50347c00753d165faced702d9c

round 5:227bad0cf0838bdb15b3b3872c24f592 Key [9]:9543ad0fb3fe74f83e0e2281c6d4f5f0 Key [10]:746cd0383c17e0e80e6d095a87fd0290 round 6:e026e98c71121a0cb739ef6f59e14d26 Key [11]:fa28bea4b1c417536608f11f406ea1dd Key [12]:3aee0f4d21699df9cb8caf5354a780ff round 7:cd6a6d8137d55140046f8991da1fa40a Key [13]:372b71bc6d1aa6e785358044fbcf05f4 Key [14]:00a01501224c0405de00aa2ce7b6ab04 round 8:52cd7257fe8d0c782c259bcb6c9f5942 Key [15]:c7015c5c1d7c030e00897f104a006d4a Key [16]:260a9577790c62e074e71e19fd2894df Key [17]:c041b7a231493acd15ddcdaee94b9f52 :7ec864df2f1637c7e81f2319ae8f4671 Кa :193a1b84376c88882c8d3b4ee93ba8d5 rand PIN length = 3 octets PIN :a123b9 address :4459a44610f6 round 1:193a1b84376c88882c8d3b4ee93ba8dc Key [1]:a123b94459a44610f6a123b94459a446 Key [2]:5f64d384c8e990c1d25080eb244dde9b round 2:3badbd58f100831d781ddd3ccedefd3f Key [3]:5abc00eff8991575c00807c48f6dbea5 Key [4]:127521158ad6798fb6479d1d2268abe6 round 3:0b53075a49c6bf2df2421c655fdedf68 added ->:128d22de7e3247a5decf572bb61987b4 Key [5]:f2a1f620448b8e56665608df2ab3952f Key [6]:7c84c0af02aad91dc39209c4edd220b1 round 4:793f4484fb592e7a78756fd4662f990d Key [7]:f6445b647317e7e493bb92bf6655342f Key [8]:3cae503567c63d3595eb140ce60a84c0 round 5:9e46a8df925916a342f299a8306220a0 Key [9]:734ed5a806e072bbecb4254993871679 Key [10]:cda69ccb4b07f65e3c8547c11c0647b8 round 6:6bf9cd82c9e1be13fc58eae0b936c75a Key [11]:c48e531d3175c2bd26fa25cc8990e394 Key [12]:6d93d349a6c6e9ff5b26149565b13d15 round 7:e96a9871471240f198811d4b8311e9a6 Key [13]:5c4951e85875d663526092cd4cbdb667 Key [14]:f19f7758f5cde86c3791efaf563b3fd0 round 8:e94ca67d3721d5fb08ec069191801a46 Key [15]:bf0c17f3299b37d984ac938b769dd394 Key [16]:7edf4ad772a6b9048588f97be25bde1c Key [17]:6ee7ba6afefc5b561abbd8d6829e8150 Ka :ac0daabf17732f632e34ef193658bf5d _____ :1453db4d057654e8eb62d7d62ec3608c rand PIN length = 2 octetsPTN •3eaf address :411fbbb51d1e round 1:1453db4d057654e8eb62d7d62ec36084

page 763 of 814

Key [1]:3eaf411fbbb51d1e3eaf411fbbb51d1e Key [2]:c3a1a997509f00fb4241aba607109c64 round 2:0b78276c1ebc65707d38c9c5fa1372bd Key [3]:3c729833ae1ce7f84861e4dbad6305cc Key [4]:c83a43c3a66595cb8136560ed29be4ff round 3:23f3f0f6441563d4c202cee0e5cb2335 added ->:3746cbbb418bb73c2964a536cb8e83b1 Key [5]:18b26300b86b70acdd1c8f5cbc7c5da8 Key [6]:04efc75309b98cd8f1cef5513c18e41e round 4:c6lafa90d3c14bdf588320e857afdc00 Kev [7]:517c789cecadc455751af73198749fb8 Key [8]:fd9711f913b5c844900fa79dd765d0e2 round 5:a8a0e02ceb556af8bfa321789801183a Key [9]:bb5cf30e7d3ceb930651b1d16ee92750 Key [10]:3d97c7862ecab42720e984972f8efd28 round 6:0b58e922438d224db34b68fca9a5ea12 Key [11]:4ce730344f6b09e449dcdb64cd466666 Key [12]:38828c3a56f922186adcd9b713cdcc31 round 7:b90664c4ac29a8b4bb26debec9ffc5f2 Key [13]:d30fd865ea3e9edcff86a33a2c319649 Key [14]:1fdb63e54413acd968195ab6fa424e83 round 8:6934de3067817cefd811abc5736c163b Key [15]:a16b7c655bbaa262c807cba8ae166971 Key [16]:7903dd68630105266049e23ca607cda7 Key [17]:888446f2d95e6c2d2803e6f4e815ddc9 Ka :1674f9dc2063cc2b83d3ef8ba692ebef :1313f7115a9db842fcedc4b10088b48d rand PIN length = 1 octets PIN :6d address :008aa9be62d5 round 1:1313f7115a9db842fcedc4b10088b48a Key [1]:6d008aa9be62d56d008aa9be62d56d00 Key [2]:46ebfeafb6657b0a1984a8dc0893accf round 2:839b23b83b5701ab095bafd162ec0ac7 Key [3]:8e15595edcf058af62498ee3c1dc6098 Key [4]:dd409c3444e94b9cc08396ae967542a0 round 3:c0a2010cc44f2139427f093f4f97ae68 added ->:d3b5f81d9eecd97bbe6ccd8e4f1f62e2 Key [5]:487deff5d519f6a6481e947b926f633c Key [6]:5b4b6e3477ed5c2c01f6e607d3418963 round 4:1a5517a0efad3575931d8ea3bee8bd07 Key [7]:34b980088d2b5fd6b6a2aceeda99c9c4 Key [8]:e7d06d06078acc4ecdbc8da800b73078 round 5:d3ce1fdfe716d72c1075ff37a8a2093f Key [9]:7d375bad245c3b757380021af8ecd408 Key [10]:14dac4bc2f4dc4929a6cceec47f4c3a3 round 6:47e90cb55be6e8dd0f583623c2f2257b Key [11]:66cfda3c63e464b05e2e7e25f8743ad7 Key [12]:77cfccda1ad380b9fdf1df10846b50e7 round 7:f866ae6624f7abd4a4f5bd24b04b6d43 Key [13]:3e11dd84c031a470a8b66ec6214e44cf

😵 Bluetooth°

Sample Data

 Key
 [14]:2f03549bdb3c511eea70b65ddbb08253

 round
 8:02e8e17cf8be4837c9c40706b613dfa8

 Key
 [15]:e2f331229ddfcc6e7bea08b01ab7e70c

 Key
 [16]:b6b0c3738c5365bc77331b98b3fba2ab

 Key
 [17]:f5b3973b636119e577c5c15c87bcfd19

 Ka
 :38ec0258134ec3f08461ae5c328968a1

9.5 FOUR TESTS OF E3

rand :000000000000000000000000000000000000
aco :48afcdd4bd40fef76693b113
key :000000000000000000000000000000000000
round 1:000000000000000000000000000000000000
Key [1]:000000000000000000000000000000000000
Key [2]:4697b1baa3b7100ac537b3c95a28ac64
round 2:78d19f9307d2476a523ec7a8a026042a
Key [3]:ecabaac66795580df89af66e66dc053d
Key [4]:8ac3d8896ae9364943bfebd4969b68a0
round 3:600265247668dda0e81c07bbb30ed503
Key [5]:5d57921fd5715cbb22c1be7bbc996394
Key [6]:2a61b8343219fdfb1740e6511d41448f
round 4:d7552ef7cc9dbde568d80c2215bc4277
Key [7]:dd0480dee731d67f01a2f739da6f23ca
Key [8]:3ad01cd1303e12a1cd0fe0a8af82592c
round 5:fb06bef32b52ab8f2a4f2b6ef7f6d0cd
Key [9]:7dadb2efc287ce75061302904f2e7233
Key [10]:c08dcfa981e2c4272f6c7a9f52e11538
round 6:b46b711ebb3cf69e847a75f0ab884bdd
Key [11]:fc2042c708e409555e8c147660ffdfd7
Key [12]:fa0b21001af9a6b9e89e624cd99150d2
round 7:c585f308ff19404294f06b292e978994
Key [13]:18b40784ea5ba4c80ecb48694b4e9c35
Key [14]:454d54e5253c0c4a8b3fcca7db6baef4
round 8:2665fadb13acf952bf74b4ab12264b9f
Key [15]:2df37c6d9db52674f29353b0f011ed83
Key [16]:b60316733b1e8e70bd861b477e2456f1
Key [17]:884697b1baa3b7100ac537b3c95a28ac
round 1:5d3ecb17f26083df0b7f2b9b29aef87c
Key [1]:e9e5dfc1b3a79583e9e5dfc1b3a79583
Key [2]:7595bf57e0632c59f435c16697d4c864
round 2:de6fe85c5827233fe22514a16f321bd8
Key [3]:e31b96afcc75d286ef0ae257cbbc05b7
Key [4]:0d2a27b471bc0108c6263aff9d9b3b6b
round 3:7cd335b50d09d139ea6702623af85edb
added ->:211100a2ff6954e6e1e62df913a656a7
Key [5]:98d1eb5773cf59d75d3b17b3bc37c191
Key [6]:fd2b79282408ddd4ea0aa7511133336f
round 4:991dccb3201b5b1c4ceff65a3711e1e9
Key [7]:331227756638a41d57b0f7e071ee2a98

page	765	of	814	
------	-----	----	-----	--

Key [8]:aa0dd8cc68b406533d0f1d64aabacf20
round 5:18768c7964818805fe4c6ecae8a38599
Key [9]:669291b0752e63f806fce76f10e119c8
Key [10]:ef8bdd46be8ee0277e9b78adef1ec154
round 6:82f9aa127a72632af43d1a17e7bd3a09
Key [11]:f3902eb06dc409cfd78384624964bf51
Key [12]:7d72702b21f97984a721c99b0498239d
round 7:1543d7870bf2d6d6efab3cbf62dca97d
Key [13]:532e60bceaf902c52a06c2c283ecfa32
Key [14]:181715e5192efb2a64129668cf5d9dd4
round 8:eee3e8744a5f8896de95831ed837ffd5
Key [15]:83017c1434342d4290e961578790f451
Key [16]:2603532f365604646ff65803795ccce5
Key [17]:882f7c907b565ea58daelc928a0dcf41
kc :cc802aecc7312285912e90af6ale1154
rand :950e604e655ea3800fe3eb4a28918087
aco :68f4f472b5586ac5850f5f74
key :34e86915d20c485090a6977931f96df5
round 1:950e604e655ea3800fe3eb4a28918087
Key [1]:34e86915d20c485090a6977931f96df5
Key [2]:8de2595003f9928efaf37e5229935bdb
round 2:d46f5a04c967f55840f83d1cdb5f9afc
Key [3]:46f05ec979a97cb6ddf842ecc159c04a
Key [4]:b468f0190a0a83783521deae8178d071
round 3:e16edede9cb6297f32e1203e442ac73a
Key [5]:8a171624dedbd552356094daaadcf12a
Key [6]:3085e07c85e4b99313f6e0c837b5f819
round 4:805144e55e1ece96683d23366fc7d24b
Key [7]:fe45c27845169a66b679b2097d147715
Key [8]:44e2f0c35f64514e8bec66c5dc24b3ad
round 5:edbaf77af070bd22e9304398471042f1
Key [9]:0d534968f3803b6af447eaf964007e7b
- Key [10]:f5499a32504d739ed0b3c547e84157ba
round 6:0dab1a4c846aef0b65b1498812a73b50
Key [11]:e17e8e456361c46298e6592a6311f3fb
Key [12]:ec6d14da05d60e8abac807646931711f
round 7:1e7793cac7f55a8ab48bd33bc9c649e0
Key [13]:2b53dde3d89e325e5ff808ed505706ae
Key [14]:41034e5c3fb0c0d4f445f0cf23be79b0
• • •
round 8:3723768baa78b6a23ade095d995404da
Key [15]:e2ca373d405a7abf22b494f28a6fd247
Key [16]:74e09c9068c0e8f1c6902d1b70537c30
Key [17]:767a7f1acf75c3585a55dd4a428b2119
round 1:39809afb773efd1b7510cd4cb7c49f34
Key [1]:1d0d48d485abddd3798b483a82a0f878
Key [2]:aed957e600a5aed5217984dd5fef6fd8
round 2:6436ddbabe92655c87a7d0c12ae5e5f6
round 2:6436ddbabe92655c87a7d0c12ae5e5f6 Key [3]:fee00bb0de89b6ef0a289696a4faa884
Key [3]:fee00bb0de89b6ef0a289696a4faa884

Key [5]:b5116f5c6c29e05e4acb4d02a46a3318
Key [6]:ff4fa1f0f73d1a3c67bc2298abc768f9
round 4:dcdfe942e9f0163fc24a4718844b417d
Key [7]:5453650c0819e001e48331ad0e9076e0
Key [8]:b4ff8dda778e26c0dce08349b81c09a1
round 5:265a16b2f766afae396e7a98c189fda9
Key [9]:f638fa294427c6ed94300fd823b31d10
Key [10]:1ccfa0bd86a9879b17d4bc457e3e03d6
round 6:628576b5291d53d1eb8611c8624e863e
Key [11]:0eaee2ef4602ac9ca19e49d74a76d335
Key [12]:6e1062f10a16e0d378476da3943842e9
round 7:d7b9c2e9b2d5ea5c27019324cae882b3
Key [13]:40be960bd22c744c5b23024688e554b9
Key [14]:95c9902cb3c230b44d14ba909730d211
round 8:97fb6065498385e47eb3df6e2ca439dd
Key [15]:10d4b6e1d1d6798aa00aa2951e32d58d
Key [16]:c5d4b91444b83ee578004ab8876ba605
- Key [17]:1663a4f98e2862eddd3ec2fb03dcc8a4
kc :clbeafea6e747e304cf0bd7734b0a9e2
rand :6a8ebcf5e6e471505be68d5eb8a3200c
aco :658d791a9554b77c0b2f7b9f
key :35cf77b333c29467ld426fa79993a133
round 1:6a8ebcf5e6e471505be68d5eb8a3200c
Key [1]:35cf77b333c294671d426fa79993a133
Key [2]:c4524e53b95b4bf2d7b2f095f63545fd
round 2:ade94ec585db0d27e17474b58192c87a
Key [3]:c99776768c6e9f9dd3835c52cea8d18a
Key [4]:f1295db23823ba2792f21217fc01d23f
round 3:da8dc1a10241ef9e6e069267cd2c6825
Key [5]:9083db95a6955235bbfad8aeefec5f0b
Key [6]:8bab6bc253d0d0c7e0107feab728ff68
round 4:e6665ca0772ceecbc21222ff7be074f8
Key [7]:2fa1f4e7a4cf3ccd876ec30d194cf196
Key [8]:267364be247184d5337586a19df8bf84
round 5:a857a9326c9ae908f53fee511c5f4242
Key [9]:9aef21965b1a6fa83948d107026134c7
Key [10]:d2080c751def5dc0d8ea353cebf7b973
round 6:6678748a1b5f21ac05cf1b117a7c342f
Key [11]:d709a8ab70b0d5a2516900421024b81e
Key [12]:493e4843805f1058d605c8d1025f8a56
round 7:766c66fe9c460bb2ae39ec01e435f725
Key [13]:b1ed21b71daea03f49fe74b2c11fc02b
Key [14]:0e1ded7ebf23c72324a0165a698c65c7
round 8:396e0ff7b2b9b7a3b35c9810882c7596
Key [15]:b3bf4841dc92f440fde5f024f9ce8be9
Key [16]:1c69bc6c2994f4c84f72be8f6b188963
Key [17]:bb7b66286dd679a471e2792270f3bb4d
round 1:45654f2f26549675287200f07cb10ec9
Key [1]:1e2a5672e66529e4f427b0682a3a34b6
1
$K_{PV} = 2 \cdot 974944 + 1 c_{P} \cdot 037 + 1 + e + c + 61 + 2 + c_{P} \cdot 2 + c_{P}$
Key [2]:974944flce0037blfebcf61a2bc961a2 round 2:990cd869c534e76ed4f4af7b3bfbc6c8

page	767	of	814
------	-----	----	-----

Key [3]:8147631fb1ce95d624b480fc7389f6c4
Key [4]:6e90a2db33d284aa13135f3c032aa4f4
round 3:ceb662f875aa6b94e8192b5989abf975
added ->:8b1bb1d753fe01e1c08b2ba9f55c07bc
Key [5]:cbad246d24e36741c46401e6387a05f9
Key [6]:dcf52aaec5713110345a41342c566fc8
round 4:d4e000be5de78c0f56ff218f3c1df61b
Key [7]:8197537aa9d27e67d17c16b182c8ec65
Key [8]:d66e00e73d835927a307a3ed79d035d8
round 5:9a4603bdef954cfaade2052604bed4e4
Key [9]:71d46257ecc1022bcd312ce6c114d75c
Key [10]:f91212fa528379651fbd2c32890c5e5f
round 6:09a0fd197ab81eb933eece2fe0132dbb
Key [11]:283acc551591fadce821b02fb9491814
- Key [12]:ca5f95688788e20d94822f162b5a3920
round 7:494f455a2e7a5db861ece816d4e363e4
Key [13]:ba574aef663c462d35399efb999d0e40
Key [14]:6267afc834513783fef1601955fe0628
round 8:37a819f91c8380fb7880e640e99ca947
Key [15]:fdcd9be5450eef0f8737e6838cd38e2b
Key [16]:8cfbd9b8056c6a1ce222b92b94319b38
Key [17]:4f64c1072c891c39eeb95e63318462e0
kc :a3032b4df1cceba8adc1a04427224299
rand :5ecd6d75db322c75b6afbd799cb18668
aco :63f701c7013238bbf88714ee
key :b9f90c53206792b1826838b435b87d4d
round 1:5ecd6d75db322c75b6afbd799cb18668
Key [1]:b9f90c53206792b1826838b435b87d4d
Key [2]:15f74bbbde4b9d1e08f858721f131669
round 2:72abb85fc80c15ec2b00d72873ef9ad4
Key [3]:ef7fb29f0b01f82706c7439cc52f2dab
Key [4]:3003a6aecdee06b9ac295cce30dcdb93
round 3:2f10bab93a0f73742183c68f712dfa24
Key [5]:5fcdbb3afdf7df06754c954fc6340254
Key [6]:ddaa90756635579573fe8ca1f93d4a38
round 4:183b145312fd99d5ad08e7ca4a52f04e
Key [7]:27ca8a7fc703aa61f6d7791fc19f704a
Key [8]:702029d8c6e42950762317e730ec5d18
round 5:cbad52d3a026b2e38b9ae6fefffecc32
Key [9]:ff15eaa3f73f4bc2a6ccfb9ca24ed9c5
Key [10]:034e745246cd2e2cfc3bda39531ca9c5
round 6:ce5f159d0a1acaacd9fb4643272033a7
Key [11]:0a4d8ff5673731c3dc8fe87e39a34b77
Key [12]:637592fab43a19ac0044a21afef455a2
round 7:8a49424a10c0bea5aba52dbbffcbcce8
Key [13]:6b3fde58f4f6438843cdbe92667622b8
Key [14]:a10bfa35013812f39bf2157f1c9fca4e
round 8:f5e12da0e93e26a5850251697ec0b917
Key [15]:2228fe5384e573f48fdd19ba91f1bf57
Key [15]:2228fe5384e573f48fdd19ba91f1bf57 Key [16]:5f174db2bc88925c0fbc6b5485bafc08

😵 Bluetooth[°]

Sample Data

rour	nd	1:0c75eed2b54c1cfb9ff522daef94ed4d
Кеу	[1]:a21ceb92d3c027326b4de775865fe8d0
Кеу	[2]:26f64558a9f0a1652f765efd546f3208
rour	nd	2:48d537ac209a6aa07b70000016c602e8
Кеу	[3]:e64f9ef630213260f1f79745a0102ae5
Кеу	[4]:af6a59d7cebfd0182dcca9a537c4add8
rour	ıd	3:8b6d517ac893743a401b3fb7911b64e1
adde	ed	->:87e23fa87ddf90c1df10616d7eaf51ac
Кеу	[5]:9a6304428b45da128ab64c8805c32452
Key	[6]:8af4d1e9d80cb73ec6b44e9b6e4f39d8
rour	ıd	4:9f0512260a2f7a5067efc35bf1706831
Key	[7]:79cc2d138606f0fca4e549c34a1e6d19
Кеу	[8]:803dc5cdde0efdbee7a1342b2cd4d344
rour	ıd	5:0cfd7856edfafac51f29e86365de6f57
Кеу	[9]:e8fa996448e6b6459ab51e7be101325a
Кеу	[1	0]:2acc7add7b294acb444cd933f0e74ec9
rour	ıd	6:2f1fa34bf352dc77c0983a01e8b7d622
Key	[]	1]:f57de39e42182efd6586b86a90c86bb1
Кеу	[1	2]:e418dfd1bb22ebf1bfc309cd27f5266c
rour	ıd	7:ee4f7a53849bf73a747065d35f3752b1
Кеу	[1	13]:80a9959133856586370854db6e0470b3
Кеу	[1	4]:f4c1bc2f764a0193749f5fc09011a1ae
rour	ıd	8:8fec6f7249760ebf69e370e9a4b80a92
Кеу	[1	L5]:d036cef70d6470c3f52f1b5d25b0c29d
Кеу	[1	L6]:d0956af6b8700888a1cc88f07ad226dc
Кеу	[]	17]:1ce8b39c4c7677373c30849a3ee08794
kc		:ea520cfc546b00eb7c3a6cea3ecb39ed

This document describes the specification of the security system which may be used at the link layer. The Encryption, Authentication and Key Generation schemes are specified. The requirements for the supporting process of random number generation are also specified.

😵 Bluetooth[°]

CONTENTS

1	Secu	Security Overview		
2	Ran	Random Number Generation77		
3	Key	777		
	3.1	Key Types	777	
	3.2	Key Generation and Initialization	779	
		3.2.1 Generation of initialization key,	780	
		3.2.2 Authentication	780	
		3.2.3 Generation of a unit key	780	
		3.2.4 Generation of a combination key	781	
		3.2.5 Generating the encryption key	782	
		3.2.6 Point-to-multipoint configuration	783	
		3.2.7 Modifying the link keys	784	
		3.2.8 Generating a master key	784	
4	Enci	ryption	787	
	4.1	Encryption Key Size Negotiation	788	
	4.2	Encryption of Broadcast Messages		
	4.3	Encryption Concept		
	4.4	Encryption Algorithm		
		4.4.1 The operation of the cipher		
	4.5	LFSR Initialization		
	4.6	Key Stream Sequence		
5		nentication		
	5.1	Repeated Attempts		
6		Authentication And Key-Generating Functions		
	6.1 6.2	The Authentication Function E1 The Functions Ar and A'r		
	0.2	6.2.1 The round computations		
		6.2.2 The substitution boxes "e" and "l"		
	6.3	6.2.3 Key scheduling E2-Key Generation Function for Authentication		
	6.4	E3-Key Generation Function for Encryption		
7		of Figures		
-		-		
8	LIST	of Tables		

1 SECURITY OVERVIEW

Bluetooth wireless technology provides peer-to-peer communications over short distances. In order to provide usage protection and information confidentiality, the system provides security measures both at the application layer and the link layer. These measures are designed to be appropriate for a peer environment. This means that in each device, the authentication and encryption routines are implemented in the same way. Four different entities are used for maintaining security at the link layer: a Bluetooth device address, two secret keys, and a pseudo-random number that shall be regenerated for each new transaction. The four entities and their sizes are summarized in Table 1.1.

Entity	Size
BD_ADDR	48 bits
Private user key, authentication	128 bits
Private user key, encryption configurable length (byte-wise)	8-128 bits
RAND	128 bits

Table 1.1: Entities used in authentication and encryption procedures.

The Bluetooth device address (BD_ADDR) is the 48-bit address. The BD_ADDR can be obtained via user interactions, or, automatically, via an inquiry routine by a device.

The secret keys are derived during initialization and are never disclosed. The encryption key is derived from the authentication key during the authentication process. For the authentication algorithm, the size of the key used is always 128 bits. For the encryption algorithm, the key size may vary between 1 and 16 octets (8 - 128 bits). The size of the encryption key is configurable for two reasons. The first has to do with the many different requirements imposed on cryptographic algorithms in different countries – both with respect to export regulations and official attitudes towards privacy in general. The second reason is to facilitate a future upgrade path for the security without the need of a costly redesign of the algorithms and encryption hardware; increasing the effective key size is the simplest way to combat increased computing power at the opponent side.

The encryption key is entirely different from the authentication key (even though the latter is used when creating the former, as is described in Section 6.4 on page 807). Each time encryption is activated, a new encryption key shall be generated. Thus, the lifetime of the encryption key does not necessarily correspond to the lifetime of the authentication key.

It is anticipated that the authentication key will be more static in its nature than the encryption key – once established, the particular application running on the device decides when, or if, to change it. To underline the fundamental impor-

😵 Bluetooth°

tance of the authentication key to a specific link, it is often be referred to as the link key.

The RAND is a pseudo-random number which can be derived from a random or pseudo-random process in the device. This is not a static parameter, it will change frequently.

In the remainder of this chapter, the terms user and application will be used interchangeably to designate the entity that is at either side.

2 RANDOM NUMBER GENERATION

Each device has a pseudo-random number generator. Pseudo-random numbers are used for many purposes within the security functions – for instance, for the challenge-response scheme, for generating authentication and encryption keys, etc. Ideally, a true random generator based on some physical process with inherent randomness should be used as a seed. Examples of such processes are thermal noise from a semiconductor or resistor and the frequency instability of a free running oscillator. For practical reasons, a software based solution with a pseudo-random generator is probably preferable. In general, it is quite difficult to classify the randomness of a pseudo-random sequence. Within this specification, the requirements placed on the random numbers used are non-repeating and randomly generated.

The expression 'non-repeating' means that it shall be highly unlikely that the value will repeat itself within the lifetime of the authentication key. For example, a non-repeating value could be the output of a counter that is unlikely to repeat during the lifetime of the authentication key, or a date/time stamp.

The expression 'randomly generated' means that it shall not be possible to predict its value with a chance that is significantly larger than 0 (e.g., greater than $1/2^{L}$ for a key length of L bits).

The LM may use such a generator for various purposes; i.e. whenever a random number is needed (such as the RANDs, the unit keys, K_{init} , K_{master} , and random back-off or waiting intervals).

3 KEY MANAGEMENT

It is important that the encryption key size within a specific device cannot be set by the user – this should be a factory preset entity. In order to prevent the user from over-riding the permitted key size, the Bluetooth baseband processing shall not accept an encryption key given from higher software layers. Whenever a new encryption key is required, it shall be created as defined in Section 6.4 on page 807.

Changing a link key shall also be done through the defined baseband procedures. Depending on what kind of link key it is, different approaches are required. The details are found in Section 3.2.7 on page 784.

3.1 KEY TYPES

The link key is a 128-bit random number which is shared between two or more parties and is the base for all security transactions between these parties. The link key itself is used in the authentication routine. Moreover, the link key is used as one of the parameters when the encryption key is derived.

In the following, a session is defined as the time interval for which the device is a member of a particular piconet. Thus, the session terminates when the device disconnects from the piconet.

The link keys are either semi-permanent or temporary. A semi-permanent link key may be stored in non-volatile memory and may be used after the current session is terminated. Consequently, once a semi-permanent link key is defined, it may be used in the authentication of several subsequent connections between the devices sharing it. The designation semi-permanent is justified by the possibility of changing it. How to do this is described in Section 3.2.7 on page 784.

The lifetime of a temporary link key is limited by the lifetime of the current session – it shall not be reused in a later session. Typically, in a point-to-multipoint configuration where the same information is to be distributed securely to several recipients, a common encryption key is useful. To achieve this, a special link key (denoted master key) may temporarily replace the current link keys. The details of this procedure are found in Section 3.2.6 on page 783.

In the following, the current link key is the link key in use at the current moment. It can be semi-permanent or temporary. Thus, the current link key is used for all authentications and all generation of encryption keys in the on-going connection (session).

😵 Bluetooth°

In order to accommodate different types of applications, four types of link keys have been defined:

- the combination key $K_{\mbox{\scriptsize AB}}$
- the unit key K_A
- the temporary key K_{master}
- the initialization key K_{init}

Note: the use of unit keys is deprecated since it is implicitly insecure.

In addition to these keys there is an encryption key, denoted K_c . This key is derived from the current link key. Whenever encryption is activated by an LM command, the encryption key shall be changed automatically. The purpose of separating the authentication key and encryption key is to facilitate the use of a shorter encryption key without weakening the strength of the authentication procedure. There are no governmental restrictions on the strength of authentication the strength of encryption algorithms.

The combination key K_{AB} and the unit key K_A are functionally indistinguishable; the difference is in the way they are generated. The unit key K_A is generated in, and therefore dependent on, a single device A. The unit key shall be generated once at installation of the device; thereafter, it is very rarely changed. The combination key is derived from information in both devices A and B, and is therefore always dependent on two devices. The combination key is derived for each new combination of two devices.

It depends on the application or the device whether a unit key or a combination key is used. Devices which have little memory to store keys, or are installed in equipment that will be accessible to a large group of users, should use their own unit key. In that case, they only have to store a single key. Applications that require a higher security level should use the combination keys. These applications will require more memory since a combination key for each link to a different device has to be stored.

The master key, K_{master} , shall only be used during the current session. It shall only replace the original link key temporarily. For example, this may be utilized when a master wants to reach more than two devices simultaneously using the same encryption key, see Section 3.2.6 on page 783.

The initialization key, K_{init}, shall be used as the link key during the initialization process when no combination or unit keys have been defined and exchanged yet or when a link key has been lost. The initialization key protects the transfer of initialization parameters. The key is derived from a random number, an L-octet PIN code, and a BD_ADDR. This key shall only be used during initialization.

😵 Bluetooth°

The PIN may be a fixed number provided with the device (for example when there is no user interface as in a PSTN plug). Alternatively, the PIN can be selected by the user, and then entered in both devices that are to be matched. The latter procedure should be used when both devices have a user interface, for example a phone and a laptop. Entering a PIN in both devices is more secure than using a fixed PIN in one of the devices, and should be used whenever possible. Even if a fixed PIN is used, it shall be possible to change the PIN; this is in order to prevent re-initialization by users who once got hold of the PIN. If no PIN is available, a default value of zero may be used. The length of this default PIN is one byte, PIN(default) = 0x00. This default PIN may be provided by the host.

For many applications the PIN code will be a relatively short string of numbers. Typically, it may consist of only four decimal digits. Even though this gives sufficient security in many cases, there exist countless other, more sensitive, situations where this is not reliable enough. Therefore, the PIN code may be chosen to be any length from 1 to 16 octets. For the longer lengths, the devices exchanging PIN codes may not use mechanical (i.e. human) interaction, but rather may use software at the application layer. For example, this can be a Diffie-Hellman key agreement, where the exchanged key is passed on to the K_{init} generation process in both devices, just as in the case of a shorter PIN code.

3.2 KEY GENERATION AND INITIALIZATION

The link keys must be generated and distributed among the devices in order to be used in the authentication procedure. Since the link keys shall be secret, they shall not be obtainable through an inquiry routine in the same way as the Bluetooth device addresses. The exchange of the keys takes place during an initialization phase which shall be carried out separately for each two devices that are using authentication and encryption. The initialization procedures consist of the following five parts:

- · generation of an initialization key
- generation of link key
- link key exchange
- authentication
- · generation of encryption key in each device (optional)

After the initialization procedure, the devices can proceed to communicate, or the link can be disconnected. If encryption is implemented, the E_0 algorithm shall be used with the proper encryption key derived from the current link key. For any new connection established between devices A and B, they should use the common link key for authentication, instead of once more deriving K_{init} from the PIN. A new encryption key derived from that particular link key shall be created next time encryption is activated.

If no link key is available, the LM shall automatically start an initialization procedure.

😵 Bluetooth°

3.2.1 Generation of initialization key, *K*_{init}

A link key is used temporarily during initialization, the initialization key K_{init} . This key shall be derived by the E_{22} algorithm from a BD_ADDR, a PIN code, the length of the PIN (in octets), and a random number IN_RAND. The principle is depicted in Figure 6.4 on page 807. The 128-bit output from E_{22} shall be used for key exchange during the generation of a link key. When the devices have performed the link key exchange, the initialization key shall be discarded.

When the initialization key is generated, the PIN is augmented with the BD_ADDR. If one device has a fixed PIN the BD_ADDR of the other device shall be used. If both devices have a variable PIN the BD_ADDR of the device that received IN_RAND shall be used. If both devices have a fixed PIN they cannot be paired. Since the maximum length of the PIN used in the algorithm cannot exceed 16 octets, it is possible that not all octets of BD_ADDR will be used. This procedure ensures that K_{init} depends on the identity of the device with a variable PIN. A fraudulent device may try to test a large number of PINs by claiming another BD_ADDR each time. It is the application's responsibility to take countermeasures against this threat. If the device address is kept fixed, the waiting interval before the next try may be increased exponentially (see Section 5.1 on page 799).

The details of the E_{22} algorithm can be found in Section 6.3 on page 805.

3.2.2 Authentication

The authentication procedure shall be carried out as described in Section 5 on page 797. During each authentication, a new AU_RAND_A shall be issued.

Mutual authentication is achieved by first performing the authentication procedure in one direction and then immediately performing the authentication procedure in the opposite direction.

As a side effect of a successful authentication procedure an auxiliary parameter, the Authenticated Ciphering Offset (ACO), will be computed. The ACO shall be used for ciphering key generation as described in Section 3.2.5 on page 782.

The claimant/verifier status is determined by the LM.

3.2.3 Generation of a unit key

A unit key K_A shall be generated when the device is in operation for the first time; i.e. not during each initialization. The unit key shall be generated by the E_{21} algorithm as described in Section 6.3 on page 805. Once created, the unit key should be stored in non-volatile memory and very rarely changed. If after initialization

😵 Bluetooth°

the unit key is changed, any previously initialized devices will possess a wrong link key. At initialization, the application must determine which of the two parties will provide the unit key as the link key. Typically, this will be the device with restricted memory capabilities, since this device only has to remember its own unit key. The unit key shall be transferred to the other party and then stored as the link key for that particular party. So, for example in Figure 3.1 on page 781, the unit key of device A, K_A , is being used as the link key for the connection A-B; device A sends the unit key K_A to device B; device B will store K_A as the link key K_{BA} . For another initialization, for example with device C, device A will reuse its unit key K_A , whereas device C stores it as K_{CA} .

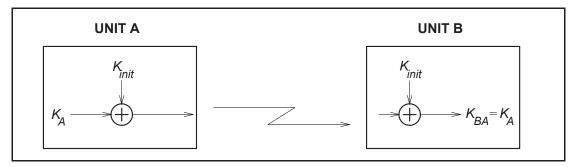


Figure 3.1: Generation of unit key. When the unit key has been exchanged, the initialization key is discarded in both devices.

3.2.4 Generation of a combination key

To use a combination key, it is first generated during the initialization procedure. The combination key is the combination of two numbers generated in device A and B, respectively. First, each device shall generate a random number, LK_RAND_A and LK_RAND_B. Then, utilizing E_{21} with the random number and their own BD_ADDRs, the two random numbers

$$LK_K_A = E_{21}(LK_RAND_A, BD_ADDR_A),$$
(EQ 1)

and

$$LK_K_B = E_{21}(LK_RAND_B, BD_ADDR_B),$$
(EQ 2)

shall be created in device A and device B, respectively. These numbers constitute the devices' contribution to the combination key that is to be created. Then, the two random numbers LK_RAND_A and LK_RAND_B shall be exchanged securely by XORing with the current link key, *K*. Thus, device A shall send $K \oplus LK_RAND_A$ to device B, while device B shall send $K \oplus LK_RAND_B$ to device A. If this is done during the initialization phase the link key $K = K_{init}$.

😵 Bluetooth®

When the random numbers LK_RAND_A and LK_RAND_B have been mutually exchanged, each device shall recalculate the other device's contribution to the combination key. This is possible since each device knows the Bluetooth device address of the other device. Thus, device A shall calculate (EQ 2) on page 781 and device B shall calculate (EQ 1) on page 781. After this, both devices shall combine the two numbers to generate the 128-bit link key. The combining operation is a simple bitwise modulo-2 addition (i.e. XOR). The result shall be stored in device A as the link key K_{AB} and in device B as the link key K_{BA} . When both devices have derived the new combination key, a mutual authentication procedure shall be initiated to confirm the success of the transaction. The old link key shall be discarded after a successful exchange of a new combination key. The message flow between master and slave and the principle for creating the combination key is depicted in Figure 3.2 on page 782.

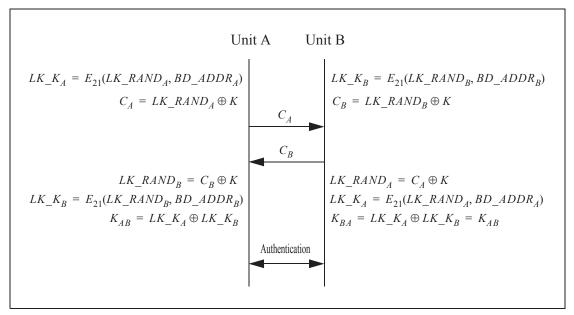


Figure 3.2: Generating a combination key. The old link key (K) is discarded after the exchange of a new combination key has succeeded

3.2.5 Generating the encryption key

The encryption key, K_C , is derived by algorithm E_3 from the current link key, a 96-bit Ciphering OFfset number (COF), and a 128-bit random number. The COF is determined in one of two ways. If the current link key is a master key, then COF shall be derived from the master BD_ADDR. Otherwise the value of COF shall be set to the value of ACO as computed during the authentication procedure. Therefore:¹

^{1.} $x \cup y$ denotes the concatenation of x and y.

$$COF = \begin{cases} BD_ADDR \cup BD_ADDR, & if link key is a master key \\ ACO, & otherwise. \end{cases}$$

(EQ 3)

There is an explicit call of E_3 when the LM activates encryption. Consequently, the encryption key is automatically changed each time the device enters encryption mode. The details of the key generating function E_3 can be found in Section 6.4 on page 807.

3.2.6 Point-to-multipoint configuration

It is possible for the master to use separate encryption keys for each slave in a point-to-multipoint configuration with ciphering activated. Then, if the application requires more than one slave to listen to the same payload, each slave must be addressed individually. This can cause unwanted capacity loss for the piconet. Moreover, a slave might not be capable of switching between two or more encryption keys in real time (e.g., after looking at the LT_ADDR in the header). Thus, the master cannot use different encryption keys for broadcast messages and individually addressed traffic. Therefore, the master may tell several slave devices to use a common link key (and, hence, indirectly also to use a common encrypted. For many applications, this key is only of temporary interest. In the following discussion, this key is denoted by K_{master} .

The transfer of necessary parameters shall be protected by the routine described in Section 3.2.8 on page 784. After the confirmation of successful reception in each slave, the master shall issue a command to the slaves to replace their respective current link key by the new (temporary) master key. Before encryption can be activated, the master shall also generate and distribute a common EN_RAND to all participating slaves. Using this random number and the newly derived master key, each slave shall generate a new encryption key.

Note that the master must negotiate the encryption key length to use individually with each slave that will use the master key. If the master has already negotiated with some of these slaves, it has knowledge of the sizes that can be accepted. There may be situations where the permitted key lengths of some devices are incompatible. In that case, the master must exclude the limiting device from the group.

When all slaves have received the necessary data, the master can communicate information on the piconet securely using the encryption key derived from the new temporary link key. Each slave in possession of the master key can eavesdrop on all encrypted traffic, not only the traffic intended for itself. The master may tell all participants to fall back to their old link keys simultaneously.

😵 Bluetooth°

3.2.7 Modifying the link keys

A link key based on a unit key can be changed. The unit key is created once during first use. Typically, the link key should be changed rather than the unit key, as several devices may share the same unit key as link key (e.g. a printer whose unit key is distributed to all users using the printer's unit key as link key). Changing the unit key will require re-initialization of all devices connecting. Changing the unit key can be justified in some circumstances, e.g. to deny access to all previously allowed devices.

If the key change concerns combination keys, then the procedure is straightforward. The change procedure is identical to the procedure described in Figure 3.2 on page 782, using the current value of the combination key as link key. This procedure can be carried out at any time after the authentication and encryption start. Since the combination key corresponds to a single link, it can be modified each time this link is established. This will improve the security of the system since then old keys lose their validity after each session.

Starting up an entirely new initialization procedure is also possible. In that case, user interaction is necessary since a PIN will be required in the authentication and encryption procedures.

3.2.8 Generating a master key

The key-change routines described so far are semi-permanent. To create the master link key, which can replace the current link key during a session (see Section 3.2.6 on page 783), other means are needed. First, the master shall create a new link key from two 128-bit random numbers, RAND1 and RAND2. This shall be done by

$$K_{master} = E_{22}(\text{RAND1}, \text{RAND2}, 16). \tag{EQ 4}$$

This key is a 128-bit random number. The reason for using the output of E_{22} and not directly choosing a random number as the key, is to avoid possible problems with degraded randomness due to a poor implementation of the random number generator within the device.

Then, a third random number, RAND, shall be transmitted to the slave. Using E_{22} with the current link key and RAND as inputs, both the master and the slave shall compute a 128-bit overlay. The master shall send the bitwise XOR of the overlay and the new link key to the slave. The slave, who knows the overlay, shall recalculate K_{master} . To confirm the success of this transaction, the devices shall perform a mutual authentication procedure using the new link key. This procedure shall then be repeated for each slave that receives the new link key. The ACO values from the authentications shall not replace the current ACO, as this ACO is needed to (re)compute a ciphering key when the master falls back to the previous (non-temporary) link key.

😵 Bluetooth°

page 785 of 814

The master activates encryption by an LM command. Before activating encryption, the master shall ensure that all slaves receive the same random number, EN_RAND, since the encryption key is derived through the means of E_3 individually in all participating devices. Each slave shall compute a new encryption key as follows:

$$K_C = E_3(K_{master}, \text{EN}_{RAND}, \text{COF})$$
 (EQ 5)

where the value of COF shall be derived from the master's BD_ADDR as specified by equation (EQ 3) on page 783. The details of the encryption key generating function are described in Section 6.4 on page 807. The message flow between the master and the slave when generating the master key is depicted in Figure 3.3. Note that in this case the ACO produced during the authentication is not used when computing the ciphering key.

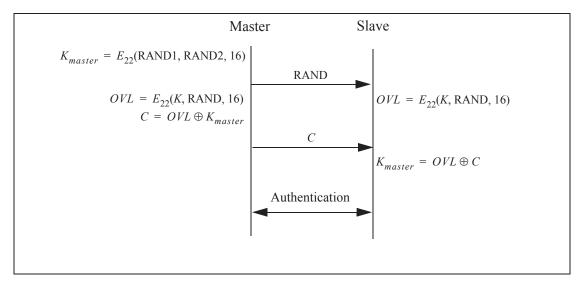


Figure 3.3: Master link key distribution and computation of the corresponding encryption key.

4 ENCRYPTION

User information can be protected by encryption of the packet payload; the access code and the packet header shall never be encrypted. The encryption of the payload shall be carried out with a stream cipher called E_0 that shall be re-synchronized for every payload. The overall principle is shown in Figure 4.1 on page 787.

The stream cipher system E_0 shall consist of three parts:

- the first part performs initialization (generation of the payload key). The payload key generator shall combine the input bits in an appropriate order and shall shift them into the four LFSRs used in the key stream generator.
- the second part generates the key stream bits and shall use a method derived from the summation stream cipher generator attributable to Massey and Rueppel. The second part is the main part of the cipher system, as it will also be used for initialization.
- the third part performs encryption and decryption.

The Massey and Rueppel method has been thoroughly investigated, and there exist good estimates of its strength with respect to presently known methods for cryptanalysis. Although the summation generator has weaknesses that can be used in correlation attacks, the high re-synchronization frequency will disrupt such attacks.

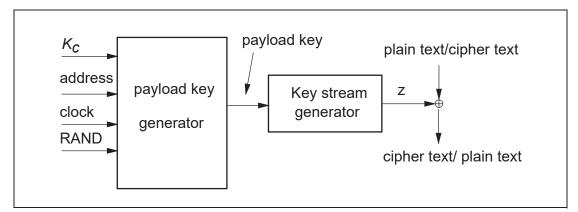


Figure 4.1: Stream ciphering for Bluetooth with E_0 .

🚯 Bluetooth®

4.1 ENCRYPTION KEY SIZE NEGOTIATION

Each device implementing the baseband specification shall have a parameter defining the maximal allowed key length, L_{max} , $1 \le L_{max} \le 16$ (number of octets in the key). For each application using encryption, a number L_{min} shall be defined indicating the smallest acceptable key size for that particular application. Before generating the encryption key, the devices involved shall negotiate to decide the key size to use.

The master shall send a suggested value, $L_{sug}^{(M)}$, to the slave. Initially, the suggested value shall be set to $L_{max}^{(M)}$. If $L_{sug}^{(S)} \le L_{sug}^{(M)}$, and, the slave supports the suggested length, the slave shall acknowledge and this value shall be the length of the encryption key for this link. However, if both conditions are not fulfilled, the slave shall send a new proposal, $L_{sug}^{(S)} < L_{sug}^{(M)}$, to the master. This value shall be the largest among all supported lengths less than the previous master suggestion. Then, the master shall perform the corresponding test on the slave suggestion. This procedure shall be repeated until a key length agreement is reached, or, one device aborts the negotiation. An abort may be caused by lack of support for L_{sug} and all smaller key lengths, or if $L_{sug} < L_{min}$ in one of the devices. In case of an abort link encryption can not be employed.

The possibility of a failure in setting up a secure link is an unavoidable consequence of letting the application decide whether to accept or reject a suggested key size. However, this is a necessary precaution. Otherwise a fraudulent device could enforce a weak protection on a link by claiming a small maximum key size.

4.2 ENCRYPTION OF BROADCAST MESSAGES

There may be three settings for the baseband regarding encryption:

1. No encryption.

This is the default setting. No messages are encrypted

2. Point-to-point only encryption.

Broadcast messages are not encrypted. This may be enabled either during the connection establishment procedure or after the connection has been established.

3. Point-to-point and broadcast encryption.

All messages are encrypted. This may be enabled after the connection has been established only. This setting should not be enabled unless all affected links share the same master link key as well as the same EN_RAND value, both used in generating the encryption key.

Bluetooth°

4.3 ENCRYPTION CONCEPT

Broadcast traffic	Individually addressed traffic
No encryption	No encryption
No encryption	Encryption, K_{master}
Encryption, K_{master}	Encryption, K_{master}

Table 4.1: Possible encryption modes for a slave in possession of a master key.

For the encryption routine, a stream cipher algorithm is used in which ciphering bits are bit-wise modulo-2 added to the data stream to be sent over the air interface. The payload is ciphered after the CRC bits are appended, but, prior to the FEC encoding.

Each packet payload shall be ciphered separately. The cipher algorithm E_0 uses the master Bluetooth device address (BD_ADDR), 26 bits of the master real-time clock (CLK ₂₆₋₁) and the encryption key K_C as input, see Figure 4.2 on page 790 (where it is assumed that device A is the master).

The encryption key K_C is derived from the current link key, COF, and a random number, EN_RAND_A (see Section 6.4 on page 807). The random number shall be issued by the master before entering encryption mode. Note that EN_RAND_A is publicly known since it is transmitted as plain text over the air.

Within the E_0 algorithm, the encryption key K_C is modified into another key denoted K'_C . The maximum effective size of this key shall be factory preset and may be set to any multiple of eight between one and sixteen (8-128 bits). The procedure for deriving the key is described in Section 4.5 on page 793.

The real-time clock is incremented for each slot. The E_0 algorithm shall be reinitialized at the start of each new packet (i.e. for Master-to-Slave as well as for Slave-to-Master transmission). By using CLK₂₆₋₁ at least one bit is changed between two transmissions. Thus, a new keystream is generated after each reinitialization. For packets covering more than a single slot, the Bluetooth clock as found in the first slot shall be used for the entire packet.

The encryption algorithm E_0 generates a binary keystream, K_{cipher} , which shall be modulo-2 added to the data to be encrypted. The cipher is symmetric; decryption shall be performed in exactly the same way using the same key as used for encryption.

😵 Bluetooth®



Figure 4.2: Functional description of the encryption procedure

4.4 ENCRYPTION ALGORITHM

The system uses linear feedback shift registers (LFSRs) whose output is combined by a simple finite state machine (called the summation combiner) with 16 states. The output of this state machine is the key stream sequence, or, during initialization phase, the randomized initial start value. The algorithm uses an encryption key K_C , a 48-bit Bluetooth address, the master clock bits CLK₂₆₋₁, and a 128-bit RAND value. Figure 4.3 on page 791 shows the setup.

There are four LFSRs (LFSR₁,...,LFSR₄) of lengths $L_1 = 25$, $L_2 = 31$, $L_3 = 33$, and, $L_4 = 39$, with feedback polynomials as specified in Table 4.2 on page 791. The total length of the registers is 128. These polynomials are all primitive. The Hamming weight of all the feedback polynomials is chosen to be five – a reasonable trade-off between reducing the number of required XOR gates in the hardware implementation and obtaining good statistical properties of the generated sequences.

page 791 of 814

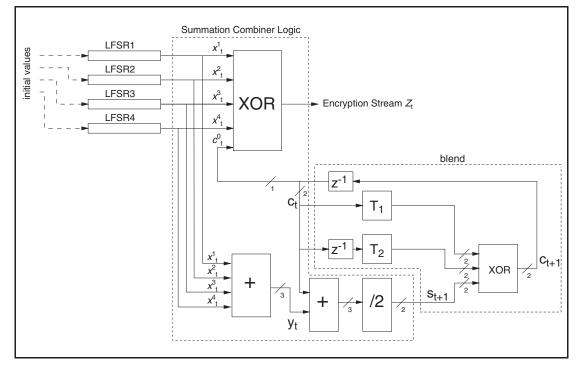


Figure 4.3: Concept of the encryption engine.

i	L_i	feedback $f_i(t)$	weight
1	25	$t^{25} + t^{20} + t^{12} + t^8 + 1$	5
2	31	$t^{31} + t^{24} + t^{16} + t^{12} + 1$	5
3	33	$t^{33} + t^{28} + t^{24} + t^4 + 1$	5
4	39	$t^{39} + t^{36} + t^{28} + t^4 + 1$	5

Table 4.2: The four primitive feedback polynomials.

Let x_t^i denote the t^{th} symbol of LFSR_i. The value y_t is derived from the fourtuple $x_t^1, ..., x_t^4$ using the following equation:

$$y_t = \sum_{i=1}^{4} x_t^i,$$
 (EQ 6)

where the sum is over the integers. Thus y_t can take the values 0,1,2,3, or 4. The output of the summation generator is obtained by the following equations:

$$z_t = x_t^1 \oplus x_t^2 \oplus x_t^3 \oplus x_t^4 \oplus c_t^0 \in \{0, 1\},$$
(EQ 7)

$$s_{t+1} = (s_{t+1}^1, s_{t+1}^0) = \left\lfloor \frac{y_t + c_t}{2} \right\rfloor \in \{0, 1, 2, 3\},$$
 (EQ 8)

$$c_{t+1} = (c_{t+1}^1, c_{t+1}^0) = s_{t+1} \oplus T_1[c_t] \oplus T_2[c_{t-1}],$$
(EQ 9)

where $T_1[.]$ and $T_2[.]$ are two different linear bijections over GF(4). Suppose GF(4) is generated by the irreducible polynomial $x^2 + x + 1$, and let α be a zero of this polynomial in GF(4). The mappings T_1 and T_2 are now defined as:

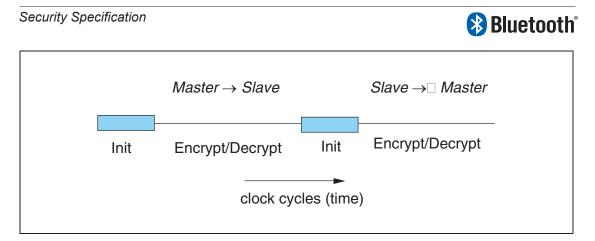
$$T_1: GF(4) \to GF(4)$$
$$x \mapsto x$$
$$T_2: GF(4) \to GF(4)$$
$$x \mapsto (\alpha + 1)x$$

The elements of GF(4) can be written as binary vectors. This is summarized in Table 4.3. $T_1[x] \qquad T_2[x]$

x	$T_1[x]$	$T_2[x]$
00	00	00
01	01	11
10	10	01
11	11	10

Table 4.3: The mappings T_1 and T_2 .

Since the mappings are linear, they can be implemented using XOR gates; i.e.


$$T_1: \qquad (x_1, x_0) \mapsto (x_1, x_0),$$

$$T_2: \qquad (x_1, x_0) \mapsto (x_0, x_1 \oplus x_0)$$

4.4.1 The operation of the cipher

Figure 4.4 on page 792 gives an overview of the operation in time. The encryption algorithm shall run through the initialization phase before the start of transmission or reception of a new packet. Thus, for multislot packets the cipher is initialized using the clock value of the first slot in the multislot sequence.

Figure 4.4: Overview of the operation of the encryption engine. Between each start of a packet (TX or RX), the LFSRs are re-initialized.

page 793 of 814

4.5 LFSR INITIALIZATION

The key stream generator is loaded with an initial value for the four LFSRs (in total 128 bits) and the 4 bits that specify the values of c_0 and c_{-1} . The 132 bit initial value is derived from four inputs by using the key stream generator. The input parameters are the key K_C , a 128-bit random number RAND, a 48-bit Bluetooth device address, and the 26 master clock bits CLK₂₆₋₁.

The effective length of the encryption key may vary between 8 and 128 bits. Note that the actual key length as obtained from E_3 is 128 bits. Then, within E_0 , the key length may be reduced by a modulo operation between K_C and a polynomial of desired degree. After reduction, the result is encoded with a block code in order to distribute the starting states more uniformly. The operation shall be as defined in (EQ 10) on page 794.

When the encryption key has been created the LFSRs are loaded with their initial values. Then, 200 stream cipher bits are created by operating the generator. Of these bits, the last 128 are fed back into the key stream generator as an initial value of the four LFSRs. The values of c_t and c_{t-1} are kept. From this point on, when clocked the generator produces the encryption (decryption) sequence which is bitwise XORed to the transmitted (received) payload data.

In the following, octet *i* of a binary sequence *X* is X[i]. Bit 0 of *X* is the LSB. Then, the LSB of X[i] corresponds to bit 8i of the sequence *X*, the MSB of X[i] is bit 8i + 7 of *X*. For instance, bit 24 of the Bluetooth device address is the LSB of BD_ADDR[3].

The details of the initialization shall be as follows:

1. Create the encryption key to use from the 128-bit secret key K_C and the 128-bit publicly known EN_RAND. Let $L, 1 \le L \le 16$, be the

😵 Bluetooth°

effective key length in number of octets. The resulting encryption key is K_C :

$$K_C(x) = g_2^{(L)}(x)(K_C(x) \mod g_1^{(L)}(x)),$$
 (EQ 10)

where $\deg(g_1^{(L)}(x)) = 8L$ and $\deg(g_2^{(L)}(x)) \le 128 - 8L$. The polynomials are defined in Table 4.4.

- 2. Shift the 3 inputs K_C , the Bluetooth device address, the clock, and the six-bit constant 111001 into the LFSRs. In total, 208 bits are shifted in:
 - a) Open all switches shown in Figure 4.5 on page 795;
 - b) Arrange inputs bits as shown in Figure 4.5; Set the content of all shift register elements to zero. Set t = 0.
 - c) Start shifting bits into the LFSRs. The rightmost bit at each level of Figure 4.5 is the first bit to enter the corresponding LFSR.
 - d) When the first input bit at level i reaches the rightmost position of LFSR_i, close the switch of this LFSR.
 - e) At t = 39 (when the switch of LFSR₄ is closed), reset both blend registers $c_{39} = c_{39-1} = 0$; Up to this point, the content of c_t and c_{t-1} has been of no concern. However, their content will now be used in computing the output sequence.
 - f) From now on output symbols are generated. The remaining input bits are continuously shifted into their corresponding shift registers. When the last bit has been shifted in, the shift register is clocked with input = 0;

Note: When finished, LFSR₁ has effectively clocked 30 times with feedback closed, LFSR₂ has clocked 24 times, LFSR₃ has clocked 22 times, and LFSR₄ has effectively clocked 16 times with feedback closed.

- 3. To mix initial data, continue to clock until 200 symbols have been produced with all switches closed (t = 239);
- 4. Keep blend registers c_t and c_{t-1} , make a parallel load of the last 128 generated bits into the LFSRs according to Figure 4.6 at t = 240;

After the parallel load in item 4, the blend register contents shall be updated for each subsequent clock.

L	deg	$g_1^{(L)}$	deg	$g_2^{(L)}$
1	[8]	00000000 00000000 00000000 0000011d	[119]	00e275a0 abd218d4 cf928b9b bf6cb08f
2	[16]	00000000 00000000 00000000 0001003f	[112]	0001e3f6 3d7659b3 7f18c258 cff6efef
3	[24]	00000000 00000000 00000000 010000db	[104]	000001be f66c6c3a b1030a5a 1919808b
4	[32]	00000000 00000000 00000001 000000af	[96]	00000001 6ab89969 de17467f d3736ad9

Table 4.4: Polynomials used when creating K'_{c} .¹

L	deg	$g_1^{(L)}$	deg	$g_2^{(L)}$
5	[40]	00000000 00000000 00000100 00000039	[88]	00000000 01630632 91da50ec 55715247
6	[48]	00000000 00000000 00010000 00000291	[77]	00000000 00002c93 52aa6cc0 54468311
7	[56]	00000000 00000000 01000000 00000095	[71]	00000000 000000b3 f7fffce2 79f3a073
8	[64]	00000000 0000001 00000000 0000001b	[63]	00000000 00000000 alab815b c7ec8025
9	[72]	00000000 00000100 00000000 00000609	[49]	00000000 00000000 0002c980 11d8b04d
10	[80]	00000000 00010000 00000000 00000215	[42]	00000000 00000000 0000058e 24f9a4bb
11	[88]	00000000 01000000 00000000 0000013b	[35]	00000000 00000000 0000000c a76024d7
12	[96]	00000001 00000000 00000000 000000dd	[28]	00000000 0000000 00000000 1c9c26b9
13	[104]	00000100 0000000 00000000 0000049d	[21]	00000000 0000000 0000000 0026d9e3
14	[112]	00010000 0000000 00000000 0000014f	[14]	00000000 0000000 0000000 00004377
15	[120]	01000000 00000000 00000000 000000e7	[7]	0000000 0000000 0000000 00000089
16	[128]	1 00000000 0000000 00000000 00000000	[0]	00000000 0000000 0000000 00000001

Table 4.4: Polynomials used when creating K'_{c} .¹

1. All polynomials are in hexadecimal notation. The LSB is in the rightmost position.

In Figure 4.5, all bits are shifted into the LFSRs, starting with the least significant bit (LSB). For instance, from the third octet of the address, BD_ADDR[2], first BD_ADDR₁₆ is entered, followed by BD_ADDR₁₇, etc. Furthermore, CL₀ corresponds to CLK₁,..., CL₂₅ corresponds to CLK₂₆.

Note that the output symbols x_{t}^{i} , i = 1, ..., 4 are taken from the positions 24, 24, 32, and 32 for LFSR₁, LFSR₂,LFSR₃, and LFSR₄, respectively (counting the leftmost position as number 1).

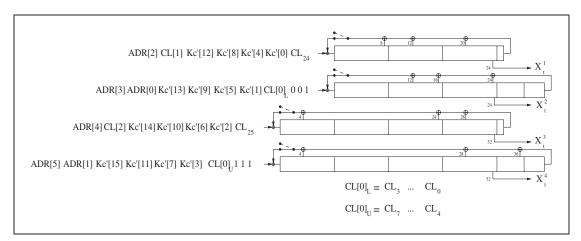


Figure 4.5: Arranging the input to the LFSRs.

😵 Bluetooth°

In Figure 4.6, the 128 binary output symbols $Z_0,..., Z_{127}$ are arranged in octets denoted Z[0],..., Z[15]. The LSB of Z[0] corresponds to the first of these symbols, the MSB of Z[15] is the last output from the generator. These bits shall be loaded into the LFSRs according to the figure. It is a parallel load and no update of the blend registers is done. The first output symbol is generated at the same time. The octets shall be written into the registers with the LSB in the leftmost position (i.e. the opposite of before). For example, Z_{24} is loaded into position 1 of LFSR₄.

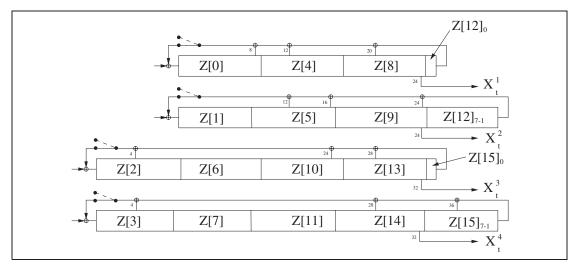


Figure 4.6: Distribution of the 128 last generated output symbols within the LFSRs.

4.6 KEY STREAM SEQUENCE

When the initialization is finished, the output from the summation combiner is used for encryption/decryption. The first bit to use shall be the one produced at the parallel load, i.e. at t = 240. The circuit shall be run for the entire length of the current payload. Then, before the reverse direction is started, the entire initialization process shall be repeated with updated values on the input parameters.

Sample data of the encryption output sequence can be found in [Part G] Section 1 on page 673. A necessary, but not sufficient, condition for all Bluetooth compliant implementations of encryption is to produce these encryption streams for identical initialization values.

5 AUTHENTICATION

Authentication uses a challenge-response scheme in which a claimant's knowledge of a secret key is checked through a 2-move protocol using symmetric secret keys. The latter implies that a correct claimant/verifier pair share the same secret key, for example K. In the challenge-response scheme the verifier challenges the claimant to authenticate a random input (the challenge), denoted by AU_RAND_A, with an authentication code, denoted by E_1 , and return the result SRES to the verifier, see Figure 5.1 on page 797. This figure also shows that the input to E_1 consists of the tuple AU_RAND_A and the Bluetooth device address (BD_ADDR) of the claimant. The use of this address prevents a simple reflection attack¹. The secret K shared by devices A and B is the current link key.

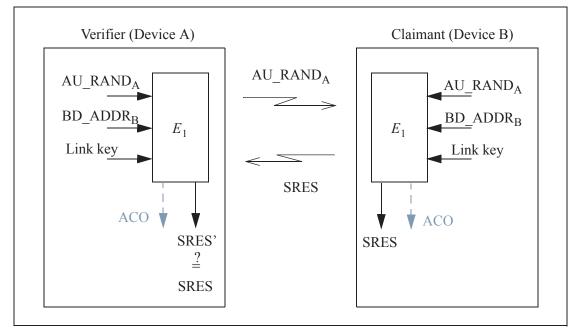


Figure 5.1: Challenge-response for the Bluetooth.

The challenge-response scheme for symmetric keys is depicted in Figure 5.2 on page 798.

^{1.} The reflection attack actually forms no threat because all service requests are dealt with on a FIFO bases. When preemption is introduced, this attack is potentially dangerous.

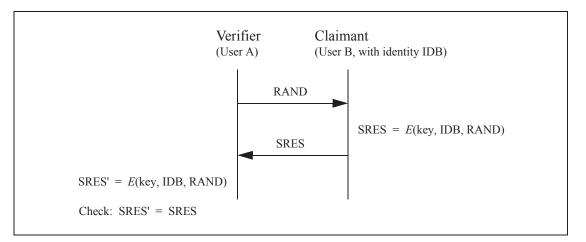


Figure 5.2: Challenge-response for symmetric key systems.

The verifier is not required to be the master. The application indicates which device has to be authenticated. Some applications only require a one-way authentication. However, some peer-to-peer communications, should use a mutual authentication in which each device is subsequently the challenger (verifier) in two authentication procedures. The LM shall process authentication preferences from the application to determine in which direction(s) the authentication(s) takes place. For mutual authentication with the devices of Figure 5.1 on page 797, after device A has successfully authenticated device B, device B could authenticate device A by sending an AU_RAND_B (different from the AU_RAND_A that device A issued) to device A, and deriving the SRES and SRES' from the new AU_RAND_B, the address of device A, and the link key K_{AB} .

If an authentication is successful the value of ACO as produced by E_1 shall be retained.

5.1 REPEATED ATTEMPTS

When the authentication attempt fails, a waiting interval shall pass before the verifier will initiate a new authentication attempt to the same claimant, or before it will respond to an authentication attempt initiated by a device claiming the same identity as the failed device. For each subsequent authentication failure with the same Bluetooth device address, the waiting interval shall be increased exponentially. That is, after each failure, the waiting interval before a new attempt can be made, could be for example, twice as long as the waiting interval prior to the previous attempt¹. The waiting interval shall be limited to a maximum. The maximum waiting interval depends on the implementation. The waiting time shall exponentially decrease to a minimum when no new failed attempts are made during a certain time period. This procedure prevents an intruder from repeating the authentication procedure with a large number of different keys.

To make the system less vulnerable to denial-of-service attacks, the devices should keep a list of individual waiting intervals for each device it has established contact with. The size of this list may be restricted to only contain the N devices with which the most recent contacts have been made. The number N may vary for different devices depending on available memory size and user environment.

^{1.} Another appropriate value larger than 1 may be used.

Bluetooth

Security Specification

6 THE AUTHENTICATION AND KEY-GENERATING FUNCTIONS

This section describes the algorithms used for authentication and key generation.

6.1 THE AUTHENTICATION FUNCTION E₁

The authentication function E_1 is a computationally secure authentication code. E_1 uses the encryption function SAFER+. The algorithm is an enhanced version of an existing 64-bit block cipher SAFER-SK128, and it is freely available. In the following discussion, the block cipher will be denoted as the function A_r which maps using a 128-bit key, a 128-bit input to a 128-bit output, i.e.

$$A_r: \{0, 1\}^{128} \times \{0, 1\}^{128} \to \{0, 1\}^{128}$$

$$(EQ \ 11)$$

$$(k \times x) \mapsto t.$$

The details of A_r are given in the next section. The function E_1 is constructed using A_r as follows

$$E_{1}: \{0, 1\}^{128} \times \{0, 1\}^{128} \times \{0, 1\}^{48} \to \{0, 1\}^{32} \times \{0, 1\}^{96}$$
(EQ 12)
(K, RAND, address) \mapsto (SRES, ACO),

where SRES = Hash(K, RAND, address, 6)[0, ..., 3], where Hash is a keyed hash function defined as¹,

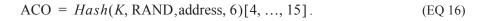
$$\begin{aligned} Hash: \{0, 1\}^{128} \times \{0, 1\}^{128} \times \{0, 1\}^{8 \times L} \times \{6, 12\} \to \{0, 1\}^{128} \\ (K, I_1, I_2, L) &\mapsto A'_r(\tilde{K}], [E(I_2, L) +_{16} (A_r(K, I_1) \oplus_{16} I_1)]), \end{aligned}$$
(EQ 13)

and where

$$E:\{0,1\}^{8\times L} \times \{6,12\} \to \{0,1\}^{8\times 16}$$

$$(X[0,...,L-1],L) \mapsto (X[i(\text{mod L})] \text{ for } i = 0...15),$$
(EQ 14)

is an expansion of the *L* octet word *X* into a 128-bit word. The function A_r is evaluated twice for each evaluation of E_1 . The key \tilde{K} for the second use of A_r (actually A'_r) is offset from *K* as follows²


^{1.} The operator $+_{16}$ denotes bytewise addition mod 256 of the 16 octets, and the operator \oplus_{16} denotes bytewise XORing of the 16 octets.

^{2.} The constants are the largest primes below 257 for which 10 is a primitive root.

😵 Bluetooth°

$\tilde{K}[0] = (K[0] + 233)$	mod 256, $\tilde{K}[1] = K[1] \oplus 229$,	
$\tilde{K}[2] = (K[2] + 223)$	mod 256, $\tilde{K}[3] = K[3] \oplus 193$,	
$\tilde{K}[4] = (K[4] + 179)$	mod 256, $\tilde{K}[5] = K[5] \oplus 167$,	
$\tilde{K}[6] = (K[6] + 149)$	mod 256, $\tilde{K}[7] = K[7] \oplus 131$,	(EQ 15)
$\tilde{K}{8} = K[8] \oplus 233,$	$\tilde{K}[9] = (K[9] + 229) \mod 256,$	(- ()
$\tilde{K}[10] = K[10] \oplus 223,$	$\tilde{K}[11] = (K[11] + 193) \mod 256,$	
$\tilde{K}[12] = K[12] \oplus 179,$	$\tilde{K}[13] = (K[13] + 167) \mod 256,$	
$\tilde{K}[14] = K[14] \oplus 149,$	$\tilde{K}[15] = (K[15] + 131) \mod 256.$	

A data flowchart of the computation of E_1 is shown in Figure 6.1 on page 802. E_1 is also used to deliver the parameter ACO (Authenticated Ciphering Offset) that is used in the generation of the ciphering key by E_3 , see equations (EQ 3) on page 783 and (EQ 23) on page 807. The value of ACO is formed by the octets 4 through 15 of the output of the hash function defined in (EQ 13) on page 801, i.e.

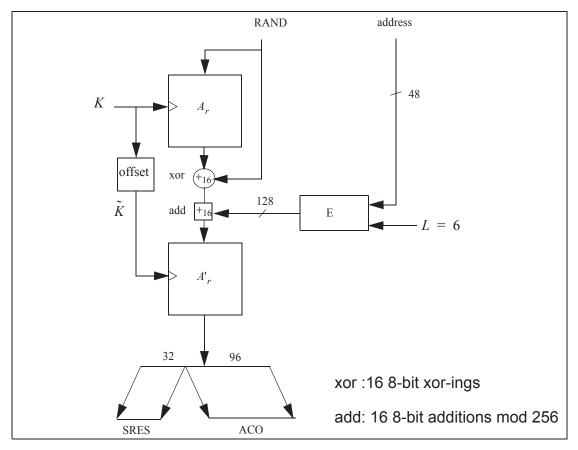


Figure 6.1: Flow of data for the computation of E_1 .

6.2 THE FUNCTIONS A_r AND A'_r

The function A_r is identical to SAFER+. It consists of a set of 8 layers, (each layer is called a round) and a parallel mechanism for generating the sub keys $K_p[j]$, p = 1, 2, ..., 17, which are the round keys to be used in each round. The function will produce a 128-bit result from a 128-bit random input string and a 128-bit key. Besides the function A_r , a slightly modified version referred to as A'_r is used in which the input of round 1 is added to the input of round 3. This is done to make the modified version non-invertible and prevents the use of A'_r (especially in E_{2x}) as an encryption function. See Figure 6.2 on page 804 for details.

6.2.1 The round computations

The computations in each round are a composition of encryption with a round key, substitution, encryption with the next round key, and, finally, a Pseudo Hadamard Transform (PHT). The computations in a round shall be as shown in Figure 6.2 on page 804. The sub keys for round r, r = 1, 2, ..., 8 are denoted $K_{2r-1}[j], K_{2r}[j], j = 0, 1, ..., 15$. After the last round $K_{17}[j]$ is applied identically to all previous odd numbered keys.

6.2.2 The substitution boxes "e" and "I"

In Figure 6.2 on page 804 two boxes are shown, marked "e" and "I". These boxes implement the same substitutions as are used in SAFER+; i.e. they implement

 $e, l : {0, ..., 255} → {0, ..., 255},$ e : i ↦ (45ⁱ (mod 257)) (mod 256),l : i ↦ j s.t. i = e(j).

Their role, as in the SAFER+ algorithm, is to introduce non-linearity.

😵 Bluetooth°

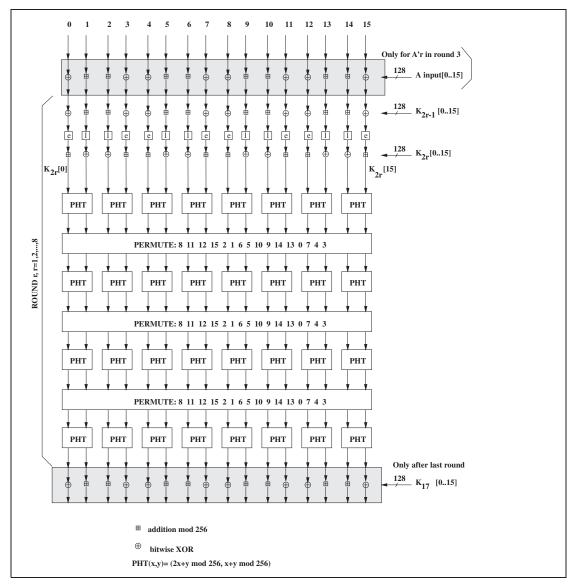


Figure 6.2: One round in A_r and A'_r . The permutation boxes show how input byte indices are mapped onto output byte indices. Thus, position 8 is mapped on position 0 (leftmost), position 11 is mapped on position 1, etc.

6.2.3 Key scheduling

In each round, 2 batches of 16 octet-wide keys are needed. These round keys are derived as specified by the key scheduling in SAFER+. Figure 6.3 on page 805 gives an overview of how the round keys $K_p[j]$ are determined. The bias vectors B₂, B₃, ..., B₁₇ shall be computed according to following equation:

$$B_p[i] = ((45^{(45^{17p+i+1} \mod 257)} \mod 257) \mod 256), \text{ for } i = 0, ..., 15.$$
(EQ 17)

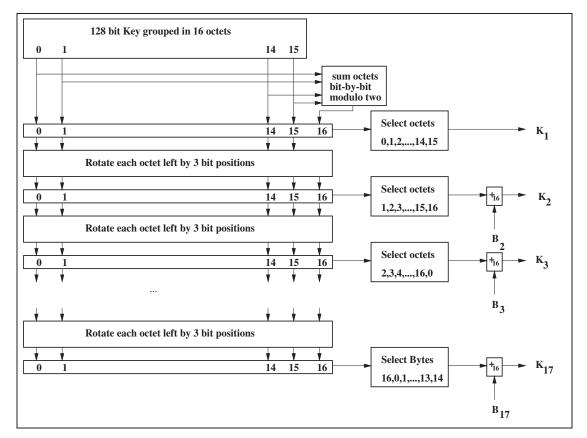


Figure 6.3: Key scheduling in A_r .

6.3 E₂-KEY GENERATION FUNCTION FOR AUTHENTICATION

The key used for authentication shall be derived through the procedure that is shown in Figure 6.4 on page 807. The figure shows two modes of operation for the algorithm. In the first mode, E_{21} produces a 128-bit kink key, K, using a 128-bit RAND value and a 48-bit address. This mode shall be utilized when creating unit keys and combination keys. In the second mode, E_{22} produces a 128-bit link key, K, using a 128-bit RAND value and a 128-bit RAND value and a mode at a 128-bit RAND value and a mode at a mode. The second mode shall be used to create the initialization key, and also when a master key is to be generated.

When the initialization key is generated, the PIN is augmented with the BD_ADDR, see Section 3.2.1 on page 780 for which address to use. The augmentation shall always start with the least significant octet of the address immediately following the most significant octet of the PIN. Since the maximum length of the PIN used in the algorithm cannot exceed 16 octets, it is possible that not all octets of BD_ADDR will be used.

😵 Bluetooth°

Security Specification

This key generating algorithm again exploits the cryptographic function. E_2 for mode 1 (denoted E_{21}) is computed according to following equations:

$$E_{21}: \{0, 1\}^{128} \times \{0, 1\}^{48} \to \{0, 1\}^{128}$$
(EQ 18)
(RAND, address) $\mapsto A'_r(X, Y)$

where (for mode 1)

$$\begin{cases} X = \operatorname{RAND}[0...14] \cup (\operatorname{RAND}[15] \oplus 6) \\ 15 \\ Y = \bigcup_{i = 0} \operatorname{address}[i \pmod{6}] \\ i = 0 \end{cases}$$
(EQ 19)

Let L be the number of octets in the user PIN. The augmenting is defined by

$$PIN' = \begin{cases} PIN[0...L-1] \cup BD_ADDR[0...min\{5, 15-L\}], & L < 16, \\ PIN[0...L-1], & L = 16, \end{cases}$$
(EQ 20)

Then, in mode 2, E_2 (denoted E_{22}) is

$$E_{22}: \{0, 1\}^{8L'} \times \{0, 1\}^{128} \times \{1, 2, ..., 16\} \to \{0, 1\}^{128}$$
(EQ 21)
(PIN', RAND, L') $\mapsto A'_r(X, Y)$

where

$$\begin{cases}
15 \\
X = \bigcup \text{PIN'}[i \pmod{L'}], \\
i = 0 \\
Y = \text{RAND}[0...14] \cup (\text{RAND}[15] \oplus L'),
\end{cases}$$
(EQ 22)

and $L' = \min\{16, L+6\}$ is the number of octets in PIN'.

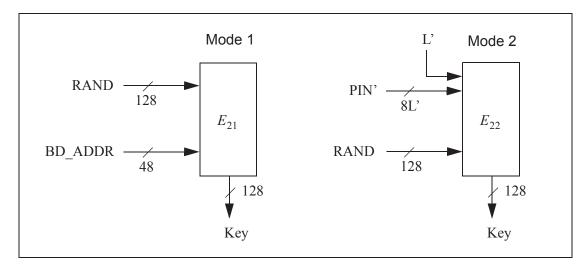


Figure 6.4: Key generating algorithm E_2 and its two modes. Mode 1 is used for unit and combination keys, while mode 2 is used for K_{init} and K_{master} .

6.4 E₃-KEY GENERATION FUNCTION FOR ENCRYPTION

The ciphering key K_C used by E_0 shall be generated by E_3 . The function E_3 is constructed using A'_r as follows

$$E_{3}: \{0, 1\}^{128} \times \{0, 1\}^{128} \times \{0, 1\}^{96} \to \{0, 1\}^{128}$$
(EQ 23)
(K, RAND, COF) $\mapsto Hash(K, \text{RAND}, \text{COF}, 12)$

where Hash is the hash function as defined by (EQ 13) on page 801. The key length produced is 128 bits. However, before use within E_0 , the encryption key K_C is shortened to the correct encryption key length, as described in Section 4.5 on page 793. A block scheme of E_3 is depicted in Figure 6.5.

The value of COF is determined as specified by equation (EQ 3) on page 783.

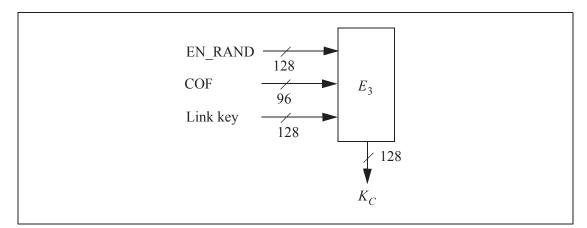


Figure 6.5: Generation of the encryption key.

😵 Bluetooth[®]

7 LIST OF FIGURES

Figure 3.1:	Generation of unit key. When the unit key has been exchanged, the initialization key is discarded in both devices
Figure 3.2:	Generating a combination key. The old link key (K) is discarded after the exchange of a new combination key has succeeded 778
Figure 3.3:	Master link key distribution and computation of the corresponding encryption key
Figure 4.1:	Stream ciphering for Bluetooth with E0
Figure 4.2:	Functional description of the encryption procedure
Figure 4.3:	Concept of the encryption engine
Figure 4.4:	Overview of the operation of the encryption engine. Between each start of a packet (TX or RX), the LFSRs are
	re-initialized
Figure 4.5:	Arranging the input to the LFSRs
Figure 4.6:	Distribution of the 128 last generated output symbols within the LFSRs
Figure 5.1:	Challenge-response for the Bluetooth
Figure 5.2:	Challenge-response for symmetric key systems
Figure 6.1:	Flow of data for the computation of E ₁
Figure 6.2:	One round in and . The permutation boxes show how input byte indices are mapped onto output byte indices. Thus, position 8 is mapped on position 0 (leftmost), position 11 is mapped on position 1, etc
Figure 6.3:	Key scheduling in A _r
Figure 6.4:	Key generating algorithm E_2 and its two modes. Mode 1 is used for unit and combination keys, while mode 2 is used for K_{init} and K_{master}
Figure 6.5:	Generation of the encryption key

8 LIST OF TABLES

Table 1.1:	Entities used in authentication and encryption procedures76	9
Table 4.1:	Possible encryption modes for a slave in possession of a master key.785	-
Table 4.2:	The four primitive feedback polynomials78	7
Table 4.3:	The mappings <i>T1</i> and <i>T2</i> 78	8
Table 4.4:	Polynomials used when creating K'c	0

