
ZigBee Specification

June 27, 2005

ZigBee Document 053474r06, Version 1.0

December 14th, 2004

Sponsored by: ZigBee Alliance

Accepted by ZigBee Alliance Board of Directors.

Abstract The ZigBee Specification describes the infrastructure and services available to
applications operating on the ZigBee platform.

Keywords ZigBee, Stack, Network, Application, Profile, Framework, Device description, Bind-
ing, Security
Geotab Exhibit 1031
Geotab v. Fractus

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Legal Notice The ZigBee Specification is available to individuals, companies and institutions free of
charge for all non-commercial purposes (including university research, technical evalua-
tion, and development of non-commercial software, tools, or documentation). For ease of
use, clearly marked errata have been incorporated into this document. These errata may
not have been subjected to an Intellectual Property review, and as such, may contain
undeclared Necessary Claims. No part of this specification may be used in development
of a product for sale without becoming a member of ZigBee Alliance.

Copyright © ZigBee Alliance, Inc. (2005). All rights Reserved. This information within this
document is the property of the ZigBee Alliance and its use and disclosure are restricted.

Elements of ZigBee Alliance specifications may be subject to third party intellectual prop-
erty rights, including without limitation, patent, copyright or trademark rights (such a third
party may or may not be a member of ZigBee). ZigBee is not responsible and shall not be
held responsible in any manner for identifying or failing to identify any or all such third
party intellectual property rights.

This document and the information contained herein are provided on an “AS IS” basis
and ZigBee DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITH-
OUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT,
COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-
INFRINGEMENT. IN NO EVENT WILL ZIGBEE BE LIABLE FOR ANY LOSS OF PROF-
ITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS,
OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL,
PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN
TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CON-
TAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAM-
AGE. All Company, brand and product names may be trademarks that are the sole
property of their respective owners.

The above notice and this paragraph must be included on all copies of this document that
are made.

ZigBee Alliance, Inc.
2400 Camino Ramon, Suite 375
San Ramon, CA 94583
3 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
4 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Contents

Chapter 1 Application Layer Specification... 29
1.1 General description .. 29

1.1.1 Application support sub-layer... 29
1.1.2 Application framework.. 29
1.1.3 Addressing ... 30
1.1.4 Application communication fundamentals.. 32
1.1.5 Discovery ... 32
1.1.6 Binding ... 33
1.1.7 Messaging.. 34
1.1.8 ZigBee device objects.. 35

1.2 The ZigBee application support (APS) sub-layer ... 35
1.2.1 Scope... 35
1.2.2 Purpose.. 36
1.2.3 Application support (APS) sub-layer overview... 36
1.2.4 Service specification .. 37
1.2.5 Frame formats.. 51
1.2.6 Command frames .. 56
1.2.7 Constants and PIB attributes ... 56
1.2.8 Functional description .. 57

1.3 The ZigBee application framework ... 62
1.3.1 Creating a ZigBee profile ... 62
1.3.2 Standard data type formats.. 64
1.3.3 ZigBee descriptors ... 67
1.3.4 AF frame formats ... 77
1.3.5 KVP command frames... 81
1.3.6 Functional description .. 86

1.4 The ZigBee device profile... 86
1.4.1 Scope... 86
1.4.2 Device Profile overview.. 86
1.4.3 Client services.. 89
1.4.4 Server services .. 109
1.4.5 ZDP enumeration description .. 132
1.4.6 Conformance ... 133

1.5 The ZigBee device objects (ZDO) .. 133
1.5.1 Scope... 133
1.5.2 Device Object Descriptions.. 134
1.5.3 Layer Interface Description .. 136
1.5.4 System Usage.. 137
1.5.5 Object Definition and Behavior .. 140
1.5.6 Configuration Attributes ... 151

Chapter 2 Network Specification... 159
2.1 NWK layer status values .. 159

2.2 General description .. 160
2.2.1 Network (NWK) layer overview.. 160
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 5

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3 Service specification... 161
2.3.1 NWK data service .. 161
2.3.2 Network discovery.. 166
2.3.3 Network formation.. 169
2.3.4 Allowing devices to join.. 172
2.3.5 Begin as a router.. 173
2.3.6 Joining a network ... 175
2.3.7 Joining a device directly to a network .. 181
2.3.8 Leaving a network.. 183
2.3.9 Resetting a device ... 186
2.3.10 Receiver synchronization... 188
2.3.11 Information base maintenance... 192

2.4 Frame formats .. 195
2.4.1 General NPDU frame format.. 195
2.4.2 Format of individual frame types.. 197

2.5 Command frames... 198
2.5.1 Route request command.. 199
2.5.2 Route reply command.. 200
2.5.3 Route error command.. 202
2.5.4 Leave command .. 203

2.6 Constants and NIB attributes.. 204
2.6.1 NWK constants .. 204
2.6.2 NWK information base ... 206

2.7 Functional description... 209
2.7.1 Network and device maintenance.. 209
2.7.2 Transmission and reception... 230
2.7.3 Routing... 231
2.7.4 Scheduling beacon transmissions ... 245
2.7.5 Broadcast communication.. 247
2.7.6 NWK information in the MAC beacons .. 249
2.7.7 Persistent data ... 251

Chapter 3 Security Services Specification ... 253
3.1 Document Organization.. 253

3.2 General Description.. 253
3.2.1 Security Architecture and Design... 253
3.2.2 MAC Layer Security ... 255
3.2.3 NWK Layer Security... 256
3.2.4 APL Layer Security .. 258
3.2.5 Trust Center Role... 259

3.3 MAC Layer Security.. 260
3.3.1 Frame Security... 260
3.3.2 Security-Related MAC PIB Attributes .. 262

3.4 NWK Layer Security ... 262
3.4.1 Frame Security... 263
3.4.2 Secured NPDU Frame... 265
3.4.3 Security-Related NIB Attributes ... 265

3.5 APS Layer Security .. 267
3.5.1 Frame Security... 268
6 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
.

Contents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.2 Key-Establishment Services .. 271
3.5.3 Transport-Key Services ... 278
3.5.4 Update-Device Services .. 283
3.5.5 Remove Device Services... 285
3.5.6 Request Key Services.. 287
3.5.7 Switch Key Services .. 289
3.5.8 Secured APDU Frame ... 291
3.5.9 Command Frames ... 291
3.5.10 Security-Related AIB Attributes ... 296

3.6 Common Security Elements ... 297
3.6.1 Auxiliary Frame Header Format... 298
3.6.2 Security Parameters .. 299
3.6.3 Cryptographic Key Hierarchy ... 300
3.6.4 Implementation Guidelines (Informative) ... 300

3.7 Functional Description .. 301
3.7.1 ZigBee Coordinator.. 301
3.7.2 Trust Center Application .. 301
3.7.3 Security Procedures... 302

Annex A CCM* Mode of Operation .. 315
A.1 Notation and representation ... 315

A.2 CCM* mode encryption and authentication transformation.. 315
A.2.1 Input transformation ... 316
A.2.2 Authentication transformation .. 316
A.2.3 Encryption transformation .. 317

A.3 CCM* mode decryption and authentication checking transformation............................... 318
A.3.1 Decryption transformation.. 318
A.3.2 Authentication checking transformation ... 318

A.4 Restrictions... 318

Annex B Security Building Blocks .. 319
B.1 Symmetric-key cryptographic building blocks .. 319

B.1.1 Block-cipher ... 319
B.1.2 Mode of operation .. 319
B.1.3 Cryptographic hash function .. 319
B.1.4 Keyed hash function for message authentication .. 319
B.1.5 Specialized keyed hash function for message authentication 320
B.1.6 Challenge domain parameters... 320

B.2 Key Agreement Schemes... 320
B.2.1 Symmetric-key key agreement scheme... 320

B.3 Challenge Domain Parameter Generation and Validation ... 320
B.3.1 Challenge Domain Parameter Generation... 321
B.3.2 Challenge Domain Parameter Verification... 321

B.4 Challenge Validation Primitive.. 321

B.5 Secret Key Generation (SKG) Primitive ... 322
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 7

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.6 Block-Cipher-Based Cryptographic Hash Function.. 323

B.7 Symmetric-Key Authenticated Key Agreement Scheme.. 323
B.7.1 Initiator Transformation .. 325
B.7.2 Responder Transformation .. 326

Annex C Test Vectors for Cryptographic Building Blocks 329
C.1 Data Conversions... 329

C.2 AES Block Cipher... 329

C.3 CCM* Mode Encryption and Authentication Transformation.. 329
C.3.1 Input Transformation.. 329
C.3.2 Authentication Transformation ... 330
C.3.3 Encryption Transformation... 331

C.4 CCM* Mode Decryption and Authentication Checking Transformation............................ 331
C.4.1 Decryption Transformation... 332
C.4.2 Authentication Checking Transformation ... 333

C.5 Cryptographic Hash Function... 333
C.5.1 Test Vector Set 1 ... 333
C.5.2 Test Vector Set 2 ... 334

C.6 Keyed Hash Function for Message Authentication .. 335
C.6.1 Test Vector Set 1 ... 335
C.6.2 Test Vector Set 2 ... 335

C.7 Specialized Keyed Hash Function for Message Authentication 336

C.8 Symmetric-Key Key Agreement Scheme... 337
C.8.1 Initiator Transformation .. 337
C.8.2 Responder Transformation .. 339

Annex D ZigBee Protocol Stack, Settable Values (Knobs) 341
D.1 Network Settings .. 341

D.1.1 nwkMaxDepth and nwkMaxChildren.. 341
D.1.2 NwkMaxRouters... 342
D.1.3 Size of routing table ... 344
D.1.4 Size of neighbor table .. 345
D.1.5 Size of route discovery table.. 346
D.1.6 Number of reserved routing table entries... 347
D.1.7 Buffering pending route discovery ... 348
D.1.8 Buffering on behalf of end devices... 349
D.1.9 Routing cost calculation ... 349
D.1.10 nwkSymLink... 350

D.2 Application Settings.. 351

D.3 Security Settings .. 360

Annex E ZigBee Stack Profiles.. 367
8 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
.

Contents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.1 Stack Profiles ... 367

E.2 Stack Profile Definitions ... 367

E.3 Home Controls Stack Profile .. 367
E.3.1 Network Settings.. 368
E.3.2 Application Settings ... 368
E.3.3 Security Settings .. 369

E.4 Building Automation Stack Profile .. 369
E.4.1 Network Settings.. 369
E.4.2 Application Settings ... 370
E.4.3 Security Settings .. 371

E.5 Plant Control Stack Profile ... 371
E.5.1 Network Settings.. 371
E.5.2 Application Settings ... 372
E.5.3 Security Settings .. 372

Annex F KVP XML schemas .. 373
F.1 XML schema for the get command .. 373

F.2 XML schema for the get response command... 373

F.3 XML schema for the set command... 374

F.4 XML schema for the set response command... 374

F.5 XML schema for the event command... 375

F.6 XML schema for the event response command... 375

F.7 Example KVP commands... 376

F.8 Example MSG command ... 377
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 9

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
10 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figures

Figure 1 Outline ZigBee stack architecture ... 18
Figure 2 Multiple subunits in a single node ... 31
Figure 3 ZigBee binding and binding table.. 33
Figure 4 The APS sub-layer reference model ... 37
Figure 5 General APS frame format.. 51
Figure 6 Format of the frame control field ... 51
Figure 7 Data frame format ... 54
Figure 8 APS command frame format... 54
Figure 9 Acknowledgement frame format ... 55
Figure 10 Direct binding on a ZigBee coordinator or SrcAddr device ... 59
Figure 11 Successful data transmission without an acknowledgement 61
Figure 12 Successful data transmission with an acknowledgement ... 61
Figure 13 Format of the character string type ... 67
Figure 14 Format of the octet string type .. 67
Figure 15 Format of the complex descriptor.. 68
Figure 16 Format of an individual complex descriptor field ... 68
Figure 17 Format of the MAC capability flags field.. 70
Figure 18 Format of the language and character set field... 75
Figure 19 Format of the general application framework command frame................................... 77
Figure 20 Format of a transaction field.. 77
Figure 21 Format of the general KVP command frame... 78
Figure 22 Format of the MSG transaction frame... 80
Figure 23 Format of the get with acknowledgement command frame .. 81
Figure 24 Format of the get response command frame.. 82
Figure 25 Format of the set/set with acknowledgement command frame................................... 83
Figure 26 Format of the set response command frame .. 84
Figure 27 Format of the event/event with acknowledgement command frame........................... 84
Figure 28 Format of the event response command frame .. 85
Figure 29 Cluster ID Format for the Device Profile ... 89
Figure 30 ZigBee Device Object details .. 139
Figure 31 The NWK layer reference model... 161
Figure 32 Capability Information parameter format... 182
Figure 33 Message sequence chart for resetting the network layer.. 188
Figure 34 Message sequence chart for synchronizing in a non-beaconing network................. 191
Figure 35 Message sequence chart for synchronizing in a beacon-enabled network............... 191
Figure 36 General NWK frame format... 195
Figure 37 Frame control field .. 195
Figure 38 Data frame format ... 197
Figure 39 NWK command frame format.. 198
Figure 40 Route request command frame format ... 199
Figure 41 Route request command options field... 200
Figure 42 Route reply command format.. 200
Figure 43 Route reply command options field... 201
Figure 44 Route error command frame format.. 202
Figure 45 Leave command frame format .. 203
Figure 46 Leave command options field ... 204
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 11

Figures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 47 Establishing a new network... 211
Figure 48 Permitting devices to join a network.. 212
Figure 49 Procedure for joining a network through association .. 215
Figure 50 Procedure for handling a join request ... 216
Figure 51 Joining a device to a network directly ... 217
Figure 52 Child procedure for joining or re-joining a network through orphaning 218
Figure 53 Parent procedure for joining or re-joining a device to its network through orphaning219
Figure 54 Address assignment in an example network... 224
Figure 55 Sequence diagrams for NLME-LEAVE.request, various scenarios 228
Figure 56 Leave command, various scenarios.. 229
Figure 57 Basic routing algorithm.. 237
Figure 58 Receipt of route request.. 241
Figure 59 Receipt of route reply .. 243
Figure 60 Typical frame structure for a beaconing device .. 245
Figure 61 Parent-child superframe positioning relationship .. 246
Figure 62 Broadcast transaction message sequence chart .. 249
Figure 63 Format of the MAC sub-layer beacon payload.. 251
Figure 64 ZigBee frame with security at the MAC level .. 256
Figure 65 ZigBee frame with security on the NWK level ... 257
Figure 66 ZigBee frame with security on the APS level .. 258
Figure 67 Secured NWK layer frame format ... 265
Figure 68 Sequence chart for successful APSME-ESTABLISH-KEY primitives....................... 275
Figure 69 Secured APS layer frame format .. 291
Figure 70 Generic SKKE frame command format... 292
Figure 71 Transport-key command frame... 293
Figure 72 Trust center master key descriptor field in transport-key command 293
Figure 73 Network key descriptor field in transport-key command ... 294
Figure 74 Application master key descriptor in transport-key command................................... 294
Figure 75 Update-device command frame format... 294
Figure 76 Remove-device command frame format ... 295
Figure 77 Request-key command frame format.. 295
Figure 78 Switch-key command frame format... 296
Figure 79 Auxiliary frame header format ... 298
Figure 80 Security control field format... 298
Figure 81 CCM* nonce.. 300
Figure 82 Example of joining a secured network .. 302
Figure 83 Example residential-mode authentication procedure .. 307
Figure 84 Example commercial-mode authentication procedure .. 308
Figure 85 Example Network key-update procedure .. 309
Figure 86 Example Network key-recovery procedure ... 310
Figure 87 Example end-to-end application key establishment procedure................................. 312
Figure 88 Example remove-device procedure .. 314
Figure 89 Example device-leave procedure.. 314
Figure 90 Symmetric-Key Authenticated Key Agreement Scheme... 324
Figure 91 Example of a set with acknowledgement command frame....................................... 376
Figure 92 Example of a set response command frame... 376
Figure 93 Example of a KVP set command frame .. 376
Figure 94 Example of an MSG command frame to set the speed of a fan 377
Figure 95 Example of an MSG command frame to set x and y coordinates of a sensor 377
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Tables

Table 1 APSDE-SAP primitives.. 37
Table 2 APSDE-DATA.request parameters ... 38
Table 3 APSDE-DATA.confirm parameters ... 41
Table 4 APSDE-DATA.indication parameters .. 42
Table 5 Summary of the primitives accessed through the APSME-SAP 43
Table 6 APSME-BIND.request parameters.. 44
Table 7 APSME-BIND.confirm parameters .. 45
Table 8 APSME-UNBIND.request parameters... 46
Table 9 APSME-UNBIND.confirm parameters... 47
Table 10 APSME-GET.request parameters ... 48
Table 11 APSME-GET.confirm parameters ... 49
Table 12 APSME-SET.request parameters ... 50
Table 13 APSME-SET.confirm parameters.. 50
Table 14 Values of the frame type sub-field... 52
Table 15 Values of the delivery mode sub-field ... 52
Table 16 APS sub-layer constants ... 56
Table 17 APS IB attributes ... 57
Table 18 Address Map ... 57
Table 19 ZigBee standard data types .. 64
Table 20 ZigBee descriptors .. 67
Table 21 Fields of the node descriptor ... 69
Table 22 Values of the logical type field... 69
Table 23 Values of the frequency band field .. 70
Table 24 Fields of the node power descriptor .. 71
Table 25 Values of the current power mode field... 71
Table 26 Values of the available power sources field .. 72
Table 27 Values of the current power sources field ... 72
Table 28 Values of the current power source level field... 72
Table 29 Fields of the simple descriptor... 73
Table 30 Values of the application device version field.. 74
Table 31 Values of the application flags field ... 74
Table 32 Fields of the complex descriptor.. 75
Table 33 Values of the character set identifier sub-field .. 76
Table 34 Fields of the user descriptor .. 77
Table 35 Values of the frame type field.. 77
Table 36 Values of the command type identifier field... 79
Table 37 Values of the error code field .. 79
Table 38 Device and Service Discovery Client Services primitives ... 90
Table 39 NWK_addr_req parameters .. 91
Table 40 IEEE_addr_req parameters... 92
Table 41 Node_Desc_req parameters ... 93
Table 42 Power_Desc_req parameters.. 93
Table 43 Simple_Desc_req parameters... 94
Table 44 Active_EP_req parameters ... 95
Table 45 Match_Desc_req parameters .. 95
Table 46 Complex_Desc_req parameters.. 97
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 13

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 47 User_Desc_req parameters .. 97
Table 48 Discovery_Register_req parameters... 98
Table 49 End_Device_annce parameters .. 99
Table 50 User_Desc_set parameters... 99
Table 51 End Device Bind, Bind and Unbind Client Services primitives 100
Table 52 End_Device_Bind_req parameters ... 101
Table 53 Bind_req parameters... 102
Table 54 Unbind_req parameters... 103
Table 55 Network Management Client Services primitives .. 104
Table 56 Mgmt_NWK_Disc_req parameters.. 105
Table 57 Mgmt_Lqi_req parameters .. 106
Table 58 Mgmt_Rtg_req parameters ... 106
Table 59 Mgmt_Bind_req parameters.. 107
Table 60 Mgmt_Leave_req parameters ... 108
Table 61 Mgmt_Direct_Join_req parameters ... 109
Table 62 Device and Service Discovery Server Services primitives 109
Table 63 NWK_addr_rsp parameters... 110
Table 64 IEEE_addr_rsp parameters... 112
Table 65 Node_Desc_rsp parameters ... 113
Table 66 Power_Desc_rsp parameters.. 114
Table 67 Simple_Desc_rsp parameters ... 115
Table 68 Active_EP_rsp parameters.. 116
Table 69 Match_Desc_rsp parameters .. 117
Table 70 Complex_Desc_rsp parameters.. 118
Table 71 User_Desc_rsp parameters .. 119
Table 72 Discovery_Register_rsp parameters ... 119
Table 73 User_Desc_conf parameters... 120
Table 74 End Device Bind, Bind and Unbind Server Services primitives............................... 121
Table 75 End_Device_Bind_rsp parameters.. 121
Table 76 Bind_rsp parameters ... 122
Table 77 Unbind_rsp parameters... 123
Table 78 Network Management Server Services primitives... 123
Table 79 Mgmt_NWK_Disc_rsp parameters.. 124
Table 80 Mgmt_Lqi_rsp parameters .. 125
Table 81 NeighborTableList record format ... 126
Table 82 Mgmt_Rtg_rsp parameters.. 128
Table 83 RoutingTableList record format ... 128
Table 84 Mgmt_Bind_rsp parameters .. 130
Table 85 BindingTableList record format.. 130
Table 86 Mgmt_Leave_rsp parameters ... 131
Table 87 Mgmt_Direct_Join_rsp parameters ... 132
Table 88 ZDP enumerations description .. 133
Table 89 ZigBee Device Objects.. 140
Table 90 Device and Service Discovery Attributes .. 146
Table 91 Security Manager Attributes .. 147
Table 92 Binding Manager Attributes ... 148
Table 93 Network Manager Attributes.. 149
Table 94 Node manager attributes... 150
Table 95 Configuration Attributes... 151
Table 96 NWK layer status values ... 159
Table 97 NLDE-SAP Primitives.. 161
Table 98 NLDE-DATA.request parameters.. 162
Table 99 NLDE-DATA.confirm parameters .. 164
Table 100 NLDE-DATA.indication parameters... 165
14 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Tables

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 101 Summary of the primitives accessed through the NLME-SAP................................ 165
Table 102 NLME-NETWORK-DISCOVERY.request parameters .. 167
Table 103 NLME-NETWORK-DISCOVERY.confirm parameters .. 168
Table 104 Network descriptor information fields .. 168
Table 105 NLME-NETWORK-FORMATION.request parameters.. 169
Table 106 NLME-NETWORK-FORMATION.confirm parameters .. 171
Table 107 NLME-PERMIT-JOINING.request parameters.. 172
Table 108 NLME-PERMIT-JOINING.confirm parameters.. 173
Table 109 NLME-START-ROUTER.request parameters... 174
Table 110 NLME-START-ROUTER.confirm parameters ... 175
Table 111 NLME-JOIN.request parameters... 176
Table 112 CapabilityInformation bit-fields .. 178
Table 113 NLME-JOIN.indication parameters.. 180
Table 114 NLME-JOIN.confirm parameters ... 181
Table 115 NLME-DIRECT-JOIN.request parameters .. 182
Table 116 NLME-DIRECT-JOIN.confirm parameters .. 183
Table 117 NLME-LEAVE.request parameters ... 184
Table 118 NLME-LEAVE.indication parameters .. 185
Table 119 NLME-LEAVE.confirm parameters.. 186
Table 120 NLME-RESET.confirm parameters ... 187
Table 121 NLME-SYNC.request parameters ... 189
Table 122 NLME-SYNC.confirm parameters ... 190
Table 123 NLME-GET.request parameters.. 192
Table 124 NLME-GET.confirm parameters.. 193
Table 125 NLME-SET.request parameters .. 193
Table 126 NLME-SET.confirm parameters .. 194
Table 127 Values of the frame type sub-field... 196
Table 128 Values of the discover route sub-field ... 196
Table 129 NWK command frames ... 198
Table 130 Error codes for route error command frame.. 203
Table 131 NWK layer constants... 204
Table 132 NWK IB attributes.. 206
Table 133 Neighbor table entry format... 220
Table 134 Example addressing offset values for each given depth within the network 224
Table 135 Routing table ... 233
Table 136 Route status values... 233
Table 137 Route discovery table.. 234
Table 138 Start time for beacon transmissions .. 247
Table 139 NWK layer information fields ... 250
Table 140 NIB security attributes .. 265
Table 141 Elements of the network security material descriptor.. 266
Table 142 Elements of the incoming frame counter descriptor .. 267
Table 143 The APS layer security primitives.. 267
Table 144 APSME-ESTABLISH-KEY.request parameters .. 271
Table 145 APSME-ESTABLISH-KEY.confirm parameters .. 273
Table 146 APSME-ESTABLISH-KEY.indication parameters ... 273
Table 147 APSME-ESTABLISH-KEY.response parameters 274
Table 148 Mapping of frame names to symmetric-key key agreement scheme messages..... 275
Table 149 Mapping of symmetric-key key agreement error conditions to status codes........... 276
Table 150 APSME-TRANSPORT-KEY.request parameters.. 279
Table 151 KeyType parameter of the transport-key primitive .. 279
Table 152 TransportKeyData parameter for a trust-center master key.................................... 279
Table 153 TransportKeyData parameter for a Network key... 280
Table 154 TransportKeyData parameter for an application master or link key 280
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 15

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 155 APSME-TRANSPORT-KEY.indication parameters... 281
Table 156 TransportKeyData parameter for a trust-center master key.................................... 282
Table 157 TransportKeyData parameter for a Network key... 282
Table 158 APSME-UPDATE-DEVICE.request parameters ... 284
Table 159 APSME-UPDATE-DEVICE.indication parameters .. 285
Table 160 APSME- REMOVE-DEVICE.request parameters ... 286
Table 161 APSME-REMOVE-DEVICE.indication parameters ... 287
Table 162 APSME-REQUEST-KEY.request parameters... 287
Table 163 APSME-REQUEST-KEY.indication parameters ... 288
Table 164 APSME-SWITCH-KEY.request parameters.. 289
Table 165 APSME-SWITCH-KEY.indication parameters... 290
Table 166 Command identifier values.. 291
Table 167 AIB security attributes ... 296
Table 168 Elements of the key-pair descriptor... 297
Table 169 Security levels available to the MAC, NWK, and APS layers.................................. 298
Table 170 Encoding for the key identifier sub-field .. 299
16 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Preface

The ZigBee Alliance is developing a very low-cost, very low power consumption, two-way, wireless
communications standard. Solutions adopting the ZigBee standard will be embedded in consumer
electronics, home and building automation, industrial controls, PC peripherals, medical sensor applications,
toys and games.

Scope

This document contains specifications, interface descriptions, object descriptions, protocols and algorithms
pertaining to the ZigBee protocol standard, including the application support sub-layer (APS), the ZigBee
device objects (ZDO), ZigBee device profile (ZDP), the application framework, the network layer (NWK)
and ZigBee security services.

Purpose

The purpose of this document is to provide a definitive description of the ZigBee protocol standard as a basis
for future implementations, such that any number of implementers incorporating the ZigBee standard into
platforms and devices on the basis of this document will produce interoperable, low-cost and highly usable
products for the burgeoning wireless marketplace.

Stack architecture

The ZigBee stack architecture is made up of a set of blocks called layers. Each layer performs a specific set
of services for the layer above: a data entity provides a data transmission service and a management entity
provides all other services. Each service entity exposes an interface to the upper layer through a service
access point (SAP), and each SAP supports a number of service primitives to achieve the required
functionality.

The ZigBee stack architecture, which is depicted in Figure 1, is based on the standard Open Systems
Interconnection (OSI) seven-layer model (see [B14]) but defines only those layers relevant to achieving
functionality in the intended market space. The IEEE 802.15.4-2003 standard defines the lower two layers:
the physical (PHY) layer and the medium access control (MAC) sub-layer. The ZigBee Alliance builds on
this foundation by providing the network (NWK) layer and the framework for the application layer, which
includes the application support sub-layer (APS), the ZigBee device objects (ZDO) and the manufacturer-
defined application objects.

IEEE 802.15.4-2003 has two PHY layers that operate in two separate frequency ranges: 868/915 MHz and
2.4 GHz. The lower frequency PHY layer covers both the 868 MHz European band and the 915 MHz band
that is used in countries such as the United States and Australia. The higher frequency PHY layer is used
virtually worldwide. A complete description of the IEEE 802.15.4-2003 PHY layer can be found in [B1].

The IEEE 802.15.4-2003 MAC sub-layer controls access to the radio channel using a CSMA-CA
mechanism. Its responsibilities may also include transmitting beacon frames, synchronization and providing
a reliable transmission mechanism. A complete description of the IEEE 802.15.4-2003 MAC sub-layer can
be found in [B1].

The responsibilities of the ZigBee NWK layer shall include mechanisms used to join and leave a network, to
apply security to frames and to route frames to their intended destinations. In addition, the discovery and
maintenance of routes between devices devolve to the NWK layer. Also the discovery of one-hop neighbors
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 17

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
and the storing of pertinent neighbor information are done at the NWK layer. The NWK layer of a ZigBee
coordinator (see "Network topology") is responsible for starting a new network, when appropriate, and
assigning addresses to newly associated devices

The ZigBee application layer consists of the APS, the Application Framework (AF), the ZDO and the
manufacturer-defined application objects. The responsibilities of the APS sub-layer include maintaining
tables for binding, which is the ability to match two devices together based on their services and their needs,
and forwarding messages between bound devices. The responsibilities of the ZDO include defining the role
of the device within the network (e.g., ZigBee coordinator or end device), initiating and/or responding to
binding requests and establishing a secure relationship between network devices. The ZDO is also
responsible for discovering devices on the network and determining which application services they provide.

Figure 1 Outline ZigBee stack architecture

Network topology

The ZigBee network layer (NWK) supports star, tree and mesh topologies. In a star topology, the network is
controlled by one single device called the ZigBee coordinator. The ZigBee coordinator is responsible for
initiating and maintaining the devices on the network, and all other devices, known as end devices, directly
communicate with the ZigBee coordinator. In mesh and tree topologies, the ZigBee coordinator is
responsible for starting the network and for choosing certain key network parameters but the network may
be extended through the use of ZigBee routers. In tree networks, routers move data and control messages
through the network using a hierarchical routing strategy. Tree networks may employ beacon-oriented
communication as described in the IEEE 802.15.4-2003 specification. Mesh networks shall allow full peer-
to-peer communication. ZigBee routers in mesh networks shall not emit regular IEEE 802.15.4-2003
beacons.

IEEE 802.15.4
defined
ZigBee TM Alliance
defined
End manufacturer
defined
Layer
function
Layer
interface

Physical (PHY) Layer

Medium Access Control (MAC) Layer

Network (NWK) Layer
-

Application Support Sublayer (APS)
APS Message

Broker
ASL Security
Management
APS Security
Management

Reflector
Management

Application
Object 240

Application
Object 1…

Application (APL) Layer

ZigBee Device Object
(ZDO)

Endpoint 240
APSDE-SAP

Endpoint 1
APSDE-SAP

Endpoint 0
APSDE-SAP

NLDE-SAP

MLDE-SAP MLME-SAP

PD-SAP PLME-SAP

NWK Security
Management

NWK Message
Broker

Routing
Management

Network
Management

2.4 GHz Radio 868/915 MHz
di

Security
Service
Provider

ZD
O

 Public
Interfaces

Application Framework

ZDO Management Plane

A
PSM

E-SA
P

N
LM

E-SA
P

18 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Preface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
This specification describes only intra-PAN networks, i.e., networks in which communications begin and
terminate within the same network.

Definitions, Abbreviations, and References

Conformance Levels

The conformance level definitions shall follow those in Clause 13, section 1 of the IEEE Style Manual
[B12].

Expected: A key word used to describe the behavior of the hardware or software in the design models
assumed by this Specification. Other hardware and software design models may also be implemented.

May: A key word indicating a course of action permissible within the limits of the standard (may equals is
permitted).

Shall: A key word indicating mandatory requirements strictly to be followed in order to conform to the
standard and from which no deviation is permitted (shall equals is required to).

Should: A key word indicating that among several possibilities one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (should
equals is recommended that).

Reserved Codes: A set of codes that are defined in this specification, but not otherwise used. Future
specifications may implement the use of these codes. A product implementing this specification shall not
generate these codes.

Reserved Fields: A set fields that are defined in this specification, but are not otherwise used. Products that
implement this specification shall zero these fields and shall make no further assumptions about these fields
nor perform processing based on their content. Products that implement future revisions of this specification
may set these fields as defined by the specification.

ZigBee v1.0: The version of the ZigBee protocols governed by this specification. ZigBee v1.0 is the first
officially recognized version of these protocols. The protocol version sub-field of the frame control field in
the NWK header of all ZigBee v1.0 frames shall have a value of 0x01. Frames defined in later versions of
the specification may set the protocol version sub-field of the frame control field to a different value. A
ZigBee device that conforms to this specification shall discard all frames that carry a protocol version sub-
field value other than 0x01.1

Strings and string operations

A string is a sequence of symbols over a specific set (e.g., the binary alphabet {0,1} or the set of all octets).
The length of a string is the number of symbols it contains (over the same alphabet). The right-concatenation
of two strings x and y of length m and n respectively (notation: x || y), is the string z of length m+n that
coincides with x on its leftmost m symbols and with y on its rightmost n symbols. An octet is a symbol string
of length 8. In our context, all octets are strings over the binary alphabet.

1CCB Comment 263
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 19

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Transmission order

By convention, frame structures are presented such that the leftmost field as written in this document shall
be transmitted or received first. All multiple octet fields shall be transmitted or received least significant
octet first. Each individual octet shall be transmitted or received least significant bit first.

Integers, octets, and their representation

Throughout this specification, the representation of integers as octet strings and of octet strings as binary
strings shall be fixed. All integers shall be represented as octet strings in most-significant-octet first order.
This representation conforms to the convention in Section 4.3 of ANSI X9.63-2001 [B7]. All octets shall be
represented as binary strings in most-significant-bit first order.

Entities

Throughout this specification, each entity shall be a DEV and shall be uniquely identified by its 64-bit IEEE
device address [B1]. The parameter entlen shall have the integer value 64.

Definitions

For the purposes of this standard, the following terms and definitions apply. Terms not defined in this clause
can be found in IEEE P802.15.4 §3 [B1] or in ANSI X9.63-2001 §2.1 [B7].

Access control list: a table used by a device to determine which devices are authorized to perform a specific
function. This table may also store the security material (e.g., cryptographic keys, frame counts, key counts,
security level information) used for securely communicating with other devices.

Active network key: the key used by a ZigBee device to secure outgoing NWK frames and that is available
for use to process incoming NWK frames.

Alternate network key: a key available for use in lieu of the active Network key to process incoming NWK
frames.

Application domain: this describes a broad area of applications, such as building automation.

Application object: a component of the top portion of the application layer defined by the manufacturer that
actually implements the application.

Application segment: some application domains are split into application segments, for instance the light-
ing application segment within the home control application domain.

Application support sub-layer protocol data unit: a unit of data that is exchanged between the application
support sub-layers of two peer entities.

APS command frame: an APS frame that contains neither source nor endpoints.

Association: the service provided by the IEEE 802.15.4-2003 MAC sub-layer that is used to establish
membership in a network.

Attribute: a data entity which represents a physical quantity or state. This data is communicated to other
devices using commands.

Beacon-enabled personal area network: a personal area network containing at least one device that trans-
mits beacon frames at a regular interval.
20 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Preface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Binding: the creation of a unidirectional logical link between a source endpoint/cluster identifier pair and a
destination endpoint, which may exist on one or more devices.2

Broadcast: the transmission of a message to every device within a network.

Broadcast jitter: random delay time introduced by a device before relaying a broadcast transaction.

Broadcast transaction record: a local receipt of a broadcast message that was either initiated or relayed by
a device.

Broadcast transaction table: collection of broadcast transaction records.

Cluster: is a container for one or more attributes under the KVP service type and is synonymous with “mes-
sage” under the MSG service type.

Cluster identifier: a reference to the unique enumeration of clusters within a specific profile. The cluster
identifier is an 8-bit number unique within the scope of the application domain segment and identifies a spe-
cific cluster. Cluster identifiers are identified as inputs or outputs in the simple descriptor for use in creating
a binding table.

Component: a component consists of a physical object (e.g., switch, controller, etc.) and its corresponding
application profile(s).

Coordinator: an IEEE 802.15.4-2003 device responsible for associating and disassociating devices into its
PAN. A coordinator must be a full function device (FFD).

Data integrity: assurance that the data has not been modified from its original form.

Data key: a key shared between two devices for peer-to-peer data communications.

Device: any entity that contains an implementation of the ZigBee protocol stack.

Device application: a special application that is responsible for Device operation. The Device Application
resides on Endpoint 0 by convention and contains logic to manage the Devices networking and general
maintenance features.

Device description: a description of a specific device within an application segment and/or domain. For
instance, the light sensor monochromatic device description is a member of the lighting application segment.
The device description also has a unique identifier that is exchanged as part of the discovery process.

Direct addressing: a mode of addressing in which the destination of a frame is completely specified in the
frame itself.

Direct binding: the procedure through which the uppers layers of a device which maintains a binding table
in the APS can create or remove a binding link in that binding table.

Direct transmission: frame transmission using direct addressing.

Disassociation: the service provided by the IEEE 802.15.4-2003 MAC sub-layer that is used to discontinue
the membership of a device in a network.

End application: applications that reside on Endpoints 1 through 240 on a Device. The End Applications
implement features that are non-networking and ZigBee protocol related.

End device binding: the procedure for creating or removing a binding link initiated by each of the end
devices that will form the link. The procedure may or may not involve user intervention.

2CCB Comment #127
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 21

Preface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Endpoint: a particular component within a unit. Each ZigBee device may support up to 240 such compo-
nents.

Endpoint address: the address assigned to an endpoint. This address is assigned in addition to the unique,
64-bit IEEE address and 16-bit network address.

First hop indirect frame: a period in the transit of a frame that has been indirectly addressed when only the
source address appears in the frame.

Indirect addressing: the ability for resource limited devices to communicate without having to know the
address of the desired destination. Indirect transmissions shall include only the source endpoint-addressing
field along with the Indirect Addressing bit set in the APDU and are directed to the ZigBee Coordinator by
the source. The ZigBee Coordinator is expected to lookup the source address/endpoint/cluster ID within its
binding table and re-issues the message to each corresponding destination address/endpoint.

Information base: a collection of variables that define certain behavior in a layer. These variables can be
specified or obtained from a layer through its management service.

Key establishment: A mechanism that involves the execution of a protocol by two devices to derive a
mutually shared secret key.

Key transport: A mechanism for communicating a key from one device to another device or other devices.

Key-transport key: A key used to protect key transport messages.

Key update: A mechanism implementing the replacement of a key shared amongst two or more devices by
means of another key available to that same group.

Local coordinator: A ZigBee Coordinator or ZigBee Router, which is the IEEE 802.15.4 coordinator,
which processed the association request for a specific End Device.

Link key: A key that is shared between two devices within a PAN.

Master key: A shared key used during the execution of a symmetric-key key establishment protocol. The
master key is the basis for long-term security between the two devices, and may be used to generate link
keys.

Mesh network: a network in which the routing of messages is performed as a decentralized, cooperative
process involving many peer devices routing on each others’ behalf.

Multihop network: a network, in particular a wireless network, in which there is no guarantee that the
transmitter and the receiver of a given message are connected or linked to each other. This implies that inter-
mediate devices must be used as routers.

Non-beacon-enabled personal area network: a personal area network that does not contain any devices
that transmit beacon frames at a regular interval.

Neighbor table: a table used by a ZigBee device to keep track of other devices within the POS.

Network address: the address assigned to a device by the network layer and used by the network layer for
routing messages between devices.

Network broadcast delivery time: time duration required by a broadcast transaction to reach every device
of a given network.

Network protocol data unit: a unit of data that is exchanged between the network layers of two peer enti-
ties.

Network service data unit: Information that is delivered as a unit through a network service access point.

Node: a collection of independent device descriptions and applications residing in a single unit and sharing a
common 802.15.4 radio.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 22

Preface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Normal operating state: processing which occurs after all startup and initialization processing has occurred
and prior to initiation of shutdown processing.

NULL: A parameter or variable value that mean unspecified, undefined or unknown.

Octet: eight bits of data, used as a synonym for a byte.

One-way function: A function that is computationally much easier to perform than its inverse.

Orphaned device: a device that has lost communication contact with or information about the ZigBee
device through which it has its PAN membership.

PAN coordinator: The principal controller of an IEEE 802.15.4-2003-based network that is responsible for
network formation and maintenance. The PAN coordinator must be a full function device (FFD).

PAN information base: A collection of variables in the IEEE 802.15.4-2003 standard that are passed
between layers, in order to exchange information. This database may include the access control list, which
stores the security material.

Personal operating space: the area within reception range of a single device.

Private method: attributes which are accessible to ZigBee device objects only and unavailable to the end
applications.

Profile: a collection of device descriptions, which together form a cooperative application. For instance, a
thermostat on one node communicates with a furnace on another node. Together, they cooperatively form a
heating application profile.

Protocol data unit: the unit of data that is exchanged between two peer entities.

Proxy binding: the procedure through which a device can create or remove a binding link on the ZigBee
coordinator between two devices (none of which may be the device itself).

Public method: attributes which are accessible to End Applications.

Radio: the IEEE 802.15.4-2003 radio that is part of every ZigBee device.

Route discovery: an operation in which a ZigBee coordinator or ZigBee router attempts to discover a route
to a remote device by issuing a route request command frame.3

Route discovery table: a table used by a ZigBee coordinator or ZigBee router to store temporary informa-
tion used during route discovery.

Route reply: a ZigBee network layer command frame used to reply to route requests.

Route request: a ZigBee network layer command frame used to discover paths through the network over
which subsequent messages may be delivered.

Routing table: a table in which a ZigBee coordinator or ZigBee router stores information required to partic-
ipate in the routing of frames.

Service discovery: the ability of a device to locate services of interest.

Symmetric-key key establishment: a mechanism by which two parties establish a shared secret, based on a
pre-shared secret (a so-called master key).

Trust center: the device trusted by devices within a ZigBee network to distribute keys for the purpose of
network and end-to-end application configuration management.

Unicast: the transmission of a message to a single device in a network.

3CCB Comment #126
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 23

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Unit: a component or collection of components that share a single ZigBee radio. Each unit has a unique 64-
bit IEEE address and a 16-bit network address.

ZigBee coordinator: an IEEE 802.15.4-2003 PAN coordinator.

ZigBee device object: the portion of the application layer responsible for defining the role of the device
within the network (e.g., ZigBee coordinator or end device), initiating and/or responding to binding and dis-
covery requests and establishing a secure relationship between network devices.

ZigBee end device: an IEEE 802.15.4-2003 RFD or FFD participating in a ZigBee network, which is nei-
ther the ZigBee coordinator nor a ZigBee router.

ZigBee router: an IEEE 802.15.4-2003 FFD participating in a ZigBee network, which is not the ZigBee
coordinator but may act as an IEEE 802.15.4-2003 coordinator within its personal operating space, that is
capable of routing messages between devices and supporting associations.

Acronyms and Abbreviations

For the purposes of this standard, the following acronyms and abbreviations apply.

AIB Application support layer information base

AF Application framework

APDU Application support sub-layer protocol data unit

APL Application layer

APS Application support sub-layer

APSDE Application support sub-layer data entity

APSDE-SAP Application support sub-layer data entity – service access point

APSME Application support sub-layer management entity - service access point

APSME-SAP Application support sub-layer management entity – service access point

BRT Broadcast retry timer

BTR Broadcast transaction record

BTT Broadcast transaction table

CCM* Enhanced counter with CBC-MAC mode of operation

CSMA-CA Carrier sense multiple access – collision avoidance

FFD Full function device

GTS Guaranteed time slot

IB Information base

KVP Key-value pair

LQI Link quality indicator

LR-WPAN Low rate wireless personal area network

MAC Medium access control

MCPS-SAP Medium access control common part sub-layer – service access point
24 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Preface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
MIC Message integrity code

MLME-SAP Medium access control sub-layer management entity – service access point

MSC Message sequence chart

MSDU Medium access control sub-layer service data unit

MSG Message service type

NBDT Network broadcast delivery time

NHLE Next Higher Layer Entity

NIB Network layer information base

NLDE Network layer data entity

NLDE-SAP Network layer data entity – service access point

NLME Network layer management entity

NLME-SAP Network layer management entity – service access point

NPDU Network layer protocol data unit

NSDU Network service data unit

NWK Network

OSI Open systems interconnection

PAN Personal area network

PD-SAP Physical layer data – service access point

PDU Protocol data unit

PHY Physical layer

PIB Personal area network information base

PLME-SAP Physical layer management entity – service access point

POS Personal operating space

QoS Quality of service

RC Radius counter

RFD Reduced function device

RREP Route reply

RREQ Route request

RN Routing node

SAP Service access point

SKG Secret key generation

SKKE Symmetric-key key establishment

SSP Security services provider

SSS Security services specification
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 25

Preface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Symbols and Notation

Notation follows from ANSI X9.63-2001, §2.2 [B7]

References

The following standards contain provisions, which, through reference in this document, constitute
provisions of this standard. Normative references are given in "ZigBee/IEEE References" and "Normative
References" and informative references are given in "Informative References". At the time of publication,
the editions indicated were valid. All standards are subject to revision, and parties to agreements based on
this standard are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below.

ZigBee/IEEE References

[B1] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.4-2003, IEEE Standard for
Information Technology — Telecommunications and Information Exchange between Systems — Local and
Metropolitan Area Networks — Specific Requirements — Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs).
New York: IEEE Press. 2003.

[B2] IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, IEEE, 1985.

[B3] Document 03285r0: Suggestions for the Improvement of the IEEE 802.15.4 Standard, July 2003.

[B4] Document 02055r4: Network Requirements Definition, August 2003.

Normative References

[B5] ISO/IEC 639-1:2002 Codes for the representation of names of languages - Part 1: Alpha-2 code.

[B6] ISO/IEC 646:199 Information technology -- ISO 7-bit coded character set for information interchange.

[B7] ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry - Key Agreement and
Key Transport Using Elliptic Curve Cryptography, American Bankers Association, November 20, 2001.
Available from http://www.ansi.org.

[B8] FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Processing Standards Publi-
cation 197, US Department of Commerce/N.I.S.T, Springfield, Virginia, November 26, 2001. Available
from http://csrc.nist.gov/.

[B9] FIPS Pub 198, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Process-
ing Standards Publication 198, US Department of Commerce/N.I.S.T., Springfield, Virginia, March 6, 2002.
Available from http://csrc.nist.gov/.

[B10] ISO/IEC 9798-2, Information Technology - Security Techniques - Entity Authentication Mechanisms
- Part 2: Mechanisms Using Symmetric Encipherment Algorithms, International Standardization Organiza-
tion, Geneva, Switzerland, 1994 (first edition). Available from http://www.iso.org/.

WPAN Wireless personal area network

XML Extensible markup language

ZB ZigBee

ZDO ZigBee device object
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 26

http://www.ansi.org
http://csrc.nist.gov/
http://csrc.nist.gov/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/

Preface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

[B11] NIST Pub 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation – Methods and
Techniques, NIST Special Publication 800-38A, 2001 Edition, US Department of Commerce/N.I.S.T.,
December 2001. Available from http://csrc.nist.gov/.

Informative References

[B12] FIPS Pub 140-2, Security requirements for Cryptographic Modules, US Department of Commerce/
N.I.S.T., Springfield, Virginia, June 2001 (supersedes FIPS Pub 140-1). Available from http://csrc.nist.gov/.

[B13] IEEE Standards Style Manual, published and distributed in May 2000 and revised on September 20,
2001. Available from http://standards.ieee.org/guides/style/.

[B14] ISO/IEC 7498-1:1994 Information technology - Open systems interconnection - Basic reference
model: The basic model.

[B15] ISO/IEC 10731:1994, Information technology - Open Systems Interconnection - Conventions for the
definition of OSI services.

[B16] ISO/IEC 9646-1:1991, Information technology - Open Systems Interconnection - Conformance test-
ing methodology and framework - Part 1: General concepts.

[B17] ISO/IEC 9646-7:1995, Information technology - Open Systems Interconnection - Conformance test-
ing methodology and framework - Part 7. Implementation conformance statements.

[B18] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, Boca Raton:
CRC Press, 1997.

[B19] FIPS Pub 113, Computer Data Authentication, Federal Information Processing Standards Publication
113, US Department of Commerce/N.I.S.T., May 30, 1985. Available from http://csrc.nist.gov/.

[B20] R. Housley, D. Whiting, N. Ferguson, Counter with CBC-MAC (CCM), submitted to N.I.S.T., June 3,
2002. Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[B21] J. Jonsson, On the Security of CTR + CBC-MAC, in Proceedings of Selected Areas in Cryptography
– SAC 2002, K. Nyberg, H. Heys, Eds., Lecture Notes in Computer Science, Vol. 2595, pp. 76-93, Berlin:
Springer, 2002.

[B22] J. Jonsson, On the Security of CTR + CBC-MAC, NIST Mode of Operation – Additional CCM
Documentation. Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[B23] P. Rogaway, D. Wagner, A Critique of CCM, IACR ePrint Archive 2003-070, April 13, 2003.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 27

http://csrc.nist.gov/
http://csrc.nist.gov/
http://standards.ieee.org/guides/style/
http://csrc.nist.gov/
http://csrc.nist.gov/encryption/modes/proposedmodes/
http://csrc.nist.gov/encryption/modes/proposedmodes/

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
28 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Chapter 1 Application Layer Specification

1.1 General description

The ZigBee stack architecture includes a number of layered components including the IEEE 802.15.4 2003
Medium Access Control (MAC) layer and Physical (PHY) layer and well as the ZigBee Network (NWK)
layer. Each of these provide applications with its own set of services and capabilities. The portion of the
stack covered by this document is roughly that labeled Application (APL) Layer in Figure 1.

As shown, the ZigBee application layer consists of the APS sub-layer, the ZDO (containing the ZDO
management plane), and the manufacturer-defined application objects. The responsibilities of the APS sub-
layer include maintaining tables for binding, which is the ability to match two devices together based on
their services and their needs, and forwarding messages between bound devices. The responsibilities of the
ZDO include defining the role of the device within the network (e.g., ZigBee coordinator or end device),
discovering devices on the network and determining which application services they provide, initiating and/
or responding to binding requests and establishing a secure relationship between network devices.

1.1.1 Application support sub-layer

The application support sub-layer (APS) provides an interface between the network layer (NWK) and the
application layer (APL) through a general set of services that are used by both the ZDO and the
manufacturer-defined application objects. The services are provided by two entities: the APS data entity
(APSDE) through the APSDE service access point (APSDE-SAP) and the APS management entity
(APSME) through the APSME service access point (APSME-SAP). The APSDE provides the data
transmission service for the transport of application PDUs between two or more devices located on the same
network. The APSME provides services for discovery and binding of devices and maintains a database of
managed objects, known as the APS information base (AIB).

1.1.2 Application framework

The application framework in ZigBee is the environment in which application objects are hosted on ZigBee
devices. Inside the application framework, the application objects send and receive data through the
APSDE-SAP. Control and management of the application objects is performed through the ZDO public
interfaces (see clause 1.5).

The data service, provided by APSDE-SAP, includes request, confirm, response and indication primitives
for data transfer. The request primitive supports data transfers between peer application object entities. The
confirm primitive reports the results of a request primitive call. The indication primitive is used to indicate
the transfer of data from the APS to the destination application object entity.

Up to 240 distinct application objects can be defined, each interfacing on an endpoint indexed from 1 to 240.
Two additional endpoints are defined for APSDE-SAP usage: endpoint 0 is reserved for the data interface to
the ZDO and endpoint 255 is reserved for the data interface function to broadcast data to all application
objects. Endpoints 241-254 are reserved for future use.4

Using these services offered by the APSDE-SAP, the application framework provides an application object
two data services: a key value pair service and a generic message service. Each service will be discussed in
the following sub-clauses.

4CCB Comment #227
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 29

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.1.2.1 Key value pair service

The key value pair (KVP) service allows attributes, defined in the application objects, to be manipulated by
employing a state variable approach with get, get response, set and event transactions. The latter two
transactions can be sent with a request for response, resulting in the corresponding set response and event
response transactions, respectively. Additionally, KVP uses tagged data structures using compressed XML.
Together, this solution provides an elegant command/control mechanism for small footprint devices with
extensibility to enable gateways to expand to full XML.

The KVP service frame structure is described in sub-clause 1.3.5.

1.1.2.2 Message service

Many application areas targeted by ZigBee are addressed by proprietary protocols that do not map well to
KVP. Additionally, some overhead is assumed in KVP since the state variable approach assumes support for
any of the get, set or event actions requiring devices to maintain storage for state variables.

To address these cases, the generic message (MSG) service is supported. The MSG service type is
transported via the same mechanisms used by KVP. The difference is that MSG does not assume any content
in the APS data frame leaving that field free form for the profile developer to define.

The MSG service frame structure is described in sub-clause 1.3.4.5.2.

1.1.3 Addressing

1.1.3.1 Node addressing

In Figure 2, there are two nodes, each containing a single radio. One node contains two switches and the
other contains 4 lamps.
30 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 2 Multiple subunits in a single node

A node contains one or more device descriptions and has a single IEEE 802.15.4 radio. In Figure 2, the
individual parts of the nodes (the switches and lamps) are subunits containing one device description in each
subunit. Each node is given an address when it joins the ZigBee network.

1.1.3.2 Endpoint addressing

In Figure 2, it is required that switch 1 should control lamps 1, 2 and 3, while switch 2 should control only
lamp 4. However, as the only addressable component is the radio, it is not possible to identify or address the
individual subunits, so it would not be possible for switch 2 to turn on lamp 4 only.

ZigBee provides another level of sub-addressing, which is used in conjunction with the mechanisms of
IEEE802.15.4. An endpoint number can be used to identify individual switches and lamps. For instance, in
the example above, switch 1 could use endpoint 3, while switch 2 could use endpoint 21. Similarly, the
lamps will each have their own endpoints. Endpoint 0 is reserved for device management and is used to
address the descriptors in the node. Each identifiable subunit in a node (such as the switches and lamps) is
assigned its own specific endpoint in the range 1-240.

Physical devices are described in terms of the data attributes that they contain. For instance, a thermostat
might contain an output attribute “temperature” which represents the current temperature of a room. A
furnace controller may take this attribute as an input and control the furnace according to the temperature
value received from the thermostat. These two physical devices, including their attributes, would be
described in the relevant device descriptions for those devices.

The simple room thermostat described has temperature-sensing circuitry, which can be queried by the
external furnace controller. It advertises its service on an endpoint and the service is described in the simple
description implemented on that endpoint.

A more complex version of the thermostat may also have an optional “heartbeat” report timer, which causes
the device to report current room temperature after a set period. In this example, the ReportTime attribute

Radio

Switch 1

Switch 2

Radio Lamps
1 2 3 4
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 31

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
specifies when reports are to be sent and writing a suitable time value to this attribute sets the frequency of
these temperature reports. This implementation would advertise its services (in a list of cluster identifiers)
on a different endpoint.

In order to allow product differentiation in the marketplace, manufacturers may add clusters containing extra
attributes of their own in the context of one or more private profiles. These manufacturer-specific clusters do
not form part of this or any other ZigBee specification and interoperability is not guaranteed for these
clusters. Such services would be advertised on different endpoints from those described above.

1.1.4 Application communication fundamentals

1.1.4.1 Profiles

Profiles are an agreement on messages, message formats and processing actions that enable applications
residing on separate devices to send commands, request data and process commands/requests to create an
interoperable, distributed application. For instance, a thermostat on one node communicates with a furnace
on another node. Together, they cooperatively form a heating application profile. Profiles are developed by
ZigBee vendors to address solutions to specific technology needs.

Profiles are simultaneously a means to unify interoperable technical solutions within the ZigBee standard, as
well as to focus usability efforts within a given marketing area. For example, it is expected that vendors of
lighting equipment will want to provide ZigBee profiles that interoperate with several varieties of lighting
types or controller types. Additional information on profiles is provided in clause 1.2 of this document.

1.1.4.2 Clusters

Clusters are identified by a cluster identifier, which is associated with data flowing out of, or into, the
device. Cluster identifiers are unique within the scope of a particular profile. Binding decisions are taken by
matching an output cluster identifier to an input cluster identifier, assuming both are within the same profile.
In the thermostat example above, binding takes place on temperature, between a device with a temperature
cluster identifier as output and a device with a temperature cluster identifier as input. The binding table
contains the 8-bit identifier for temperature along with the address of the source and destination devices.

1.1.5 Discovery

1.1.5.1 Device discovery

Device discovery is the process whereby a ZigBee device can discover other ZigBee devices by initiating
queries that are broadcast or unicast addressed. There are two forms of device discovery requests: IEEE
address requests and NWK address requests. The IEEE address request is unicast and assumes the NWK
address is known. The NWK address request is broadcast and carries the known IEEE address as data
payload.

Responses to the broadcast or unicast device discovery messages vary by logical device type as follows:

— ZigBee end devices: respond to the device discovery query by sending their IEEE or NWK address
(depending on the request).

— ZigBee coordinator device: respond to the query by sending their IEEE or NWK addresses and the
IEEE or NWK addresses of all devices that are associated with the ZigBee coordinator (depending
on the request).

— ZigBee router devices: respond to the query by sending their IEEE or NWK addresses and the IEEE
or NWK addresses of all devices that are associated with the ZigBee router (depending on the
request).
32 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
A description of the procedure details, primitive calls, and applicable parameters is given in clause 1.4.

1.1.5.2 Service discovery

Service discovery is the process whereby services available on endpoints at the receiving device are
discovered by external devices. Service discovery can be accomplished by issuing a query for each endpoint
on a given device or by using a match service feature (either broadcast or unicast). Service discovery utilizes
the complex, user, node or power descriptors plus the simple descriptor further addressed by the endpoint
(for the connected application object).

The service discovery process in ZigBee is key to interfacing devices within the network. Through specific
requests for descriptors on specified nodes, broadcast requests for service matching and the ability to ask a
device which endpoints support application objects, a range of options are available for commissioning tools
and applications. See clause 1.4 for details on service discovery.

1.1.6 Binding

In ZigBee, there is an application level concept using cluster identifiers (and the attributes contained in
them) on the individual endpoints in different nodes. This is referred to as binding – the creation of logical
links between complementary application devices and endpoints. In the example of sub-clause 1.1.3.2, a
binding could be made between thermostat and the furnace controller. In Figure 2, switch 1 is bound with
lamps 1-3, while switch 2 is bound with lamp 4 only.

The information about which cluster is bound between nodes is stored in a binding table. This is described
fully in sub-clause 1.1.6 and is illustrated in Figure 3.

Figure 3 ZigBee binding and binding table

The use of a list of three entries in the binding table for switch 1 allows it to control three lamps, which could
also be in separate nodes (with their own ZigBee radios). It is also possible for one lamp to be controlled by
several switches: in this case there would be entries for each switch, all linked to the same lamp.

Radio
Z1

Switch 1
EP3

Switch 2
EP21

Radio
Z2

Lamps
 1 2 3 4
 EP5 EP7 EP8 EP17

Binding Table
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 33

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Binding is always performed after a communications link has been established. Once a link has been
established, the implementation decides whether a new node should be part of the network. This will depend
on the security in operation for the application and how it is implemented. Binding is only allowed if the
implemented security on all devices allows this (see Chapter 3).

The binding table is implemented in the ZigBee coordinator. This is because it needs to be available all the
time the network is operative and it is most probable that the ZigBee coordinator has a mains supply. Some
applications may need a duplicate of the binding table to be available in the event that the device storing the
table fails. Backup of the binding table and any other key ZigBee coordinator data is outside the scope of
ZigBee version 1.0 and the responsibility of application software.

The details of the creation of binding links is covered in the ZigBee device profile (see clause 1.4).

1.1.7 Messaging

1.1.7.1 Direct addressing

Once devices have been associated, commands can be sent from one device to another. A command is sent
to an application object at the destination address (radio address plus its endpoint). Details of the commands
can be found in sub-clause 1.3.5. Note that binding is not a pre-requisite for using direct addressing.

Direct addressing assumes device discovery and service discovery have identified a particular device and
endpoint, which supply a complementary service to the requestor. Specifically, direct addressing defines a
means of directing messages to the device by including its full address and endpoint information.

1.1.7.2 Indirect addressing

Use of direct addressing requires the controlling device to have knowledge of the address, endpoint, cluster
identifier and attribute identifier of the target device that it wishes to communicate with and to have this
information committed to a binding table on the ZigBee coordinator prior to the creation of an indirectly
addressed message between the device pair. A full IEEE 802.15.4 address amounts to 10 octets (PAN
identifier plus 64-bit IEEE address) and a further octet is required for the endpoint. Extremely simple
devices, such as battery-powered switches, may not want the overhead of storing this information, nor the
software for acquiring this information. For these devices, indirect addressing will be more appropriate.

When a source device wishes to send a command to a destination using indirect addressing, instead of
including the address of the destination device (which it does not know and has not stored), it omits the
address and specifies indirect addressing via the APSDE-SAP. The included source address, source endpoint
and cluster identifier in the indirect addressed message are translated via the binding table to those of the
destination device(s) and the messages are relayed to each indicated destination.5

Where a cluster contains several attributes, the cluster identifier is used for addressing and the attribute
identifier is used in the command itself to identify a particular attribute within the cluster. For further
information, see sub-clause 1.3.4.5.1. Attributes are not used in the indirect addressing mechanism and are
treated as a part of the data payload. The applications, however, can parse and utilize the attributes as
defined within their profile.

1.1.7.3 Broadcast addressing

An application may broadcast messages to all endpoints on a given destination device. This form of
broadcast addressing is called application broadcast. The destination address shall be the 16-bit network
broadcast address and the broadcast flag shall be set in the APS frame control field. The source shall include
the cluster identifier, profile identifier and source endpoint fields in the APS frame (see sub-clause 1.2.5).

5CCB Comment #171, 214
34 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.1.8 ZigBee device objects

The ZigBee device objects (ZDO), represents a base class of functionality that provides an interface between
the application objects, the device profile and the APS. The ZDO is located between the application
framework and the application support sub-layer. It satisfies common requirements of all applications
operating in a ZigBee protocol stack. The ZDO is responsible for the following:

— Initializing the application support sub-layer (APS), the network layer (NWK), the security services
specification (SSS).

— Assembling configuration information from the end applications to determine and implement dis-
covery, security management, network management, and binding management.

The ZDO presents public interfaces to the application objects in the application framework layer for control
of device and network functions by the application objects. The ZDO interfaces to the lower portions of the
ZigBee protocol stack, on endpoint 0, through the APSDE-SAP for data and through the APSME-SAP for
control messages. The public interface provides address management of the device, discovery, binding, and
security functions within the application framework layer of the ZigBee protocol stack. These services are
described in the following sub-clauses. The ZDO is fully described in clause 1.5.

1.1.8.1 Discovery management

Discovery management is provided to the application objects whereby, when queried, the IEEE address of
the requested device shall be returned (if the device is a ZigBee end device), along with the device addresses
of all associated devices (if the device is a ZigBee coordinator or router). This is referred to as device
discovery, and is used for the discovery of ZigBee devices.

In addition to device discovery, service discovery is also provided to determine what services are offered on
each endpoint, defined in a device, by the respective application objects. A device can discover active
endpoints on individual devices or all devices and a device can discover specific services that match a given
criteria (profile identifiers and cluster identifiers).

1.1.8.2 Binding management

Binding management is provided to the application objects in order to bind application objects on ZigBee
devices to each other for clear and concise connections through all layers of the protocol stack and though
the various connections provided by the ZigBee network nodes. Binding tables are constructed and
populated according to the binding calls and results. End device bind, bind and unbind commands between
devices is supported via the ZigBee device profile.

1.1.8.3 Security management

Security management is provided to the application objects for enabling or disabling the security portion of
the system. If enabled, key management is performed for master keys, network keys, and the means to
establish a link key. Primitives are defined in Chapter 3 to permit key establishment, key transport and
authentication.

1.2 The ZigBee application support (APS) sub-layer

1.2.1 Scope

This clause specifies the portion of the application layer providing the service specification and interface to
both the manufacturer-defined application objects and the ZigBee device objects. The specification includes
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 35

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
a data service and methods for discovery and binding, as well as a description of the application support sub-
layer frame format and frame type specifications.

1.2.2 Purpose

The purpose of this clause is to define the set of requirements for the ZigBee application support (APS) sub-
layer protocol. These requirements are based on both the driver functionality necessary to enable correct
operation of the ZigBee network layer and the functionality required by the manufacturer-defined
application objects. This specification shall provide a solution for all the requirements defined in the ZigBee
Network Working Group Requirements Definition document [B4] including a fully specified primitive
interface.

1.2.3 Application support (APS) sub-layer overview

The application support sub-layer provides the interface between the network layer and the application layer
through a general set of services for use by both the ZigBee device object (ZDO) and the manufacturer-
defined application objects. These services are offered via two entities: the data service and the management
service. The APS data entity (APSDE) provides the data transmission service via its associated SAP, the
APSDE-SAP. The APS management entity (APSME) provides the management service via its associated
SAP, the APSME-SAP, and maintains a database of managed objects known as the APS information base
(AIB).

1.2.3.1 Application support sub-layer data entity (APSDE)

The APSDE shall provide a data service to the network layer and both the ZDO and the application objects
to enable the transport of application PDUs between two or more devices. The devices themselves must be
located on the same network.

The APSDE will provide the following services:

— Generation of the Application level PDU (APDU). The APSDE shall take an application PDU and
generate an APS PDU by adding the appropriate protocol overhead.

— Binding. This is the ability to match two devices together based on their services and their needs.
Once two devices are bound, the APSDE shall be able to transfer a message received from one
bound device over to the second device.

1.2.3.2 Application support sub-layer management entity (APSME)

The APSME shall provide a management service to allow an application to interact with the stack.

The APSME shall provide the ability to match two devices together based on their services and their needs.
This service is called the binding service and the APSME shall be able to construct and maintain a table to
store this information.

In addition, the APSME will provide the following services:

— AIB Management. The ability to get and set attributes in the device’s AIB.

— Security. The ability to set up authentic relationships with other devices through the use of secure
keys.
36 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4 Service specification

The APS sub-layer provides an interface between a next higher layer entity (NHLE) and the NWK layer.
The APS sub-layer conceptually includes a management entity called the APS sub-layer management entity
(APSME). This entity provides the service interfaces through which sub-layer management functions may
be invoked. The APSME is also responsible for maintaining a database of managed objects pertaining to the
APS sub-layer. This database is referred to as the APS sub-layer information base (AIB).

Figure 4 depicts the components and interfaces of the APS sub-layer.

The APS sub-layer provides two services, accessed through two service access points (SAPs). These are the
APS data service, accessed through the APS sub-layer data entity SAP (APSDE-SAP), and the APS
management service, accessed though the APS sub-layer management entity SAP (APSME-SAP). These
two services provide the interface between the NHLE and the NWK layer, via the NLDE-SAP and NLME-
SAP interfaces (see clause 2.3). In addition to these external interfaces, there is also an implicit interface
between the APSME and the APSDE that allows the APSME to use the APS data service.

Figure 4 The APS sub-layer reference model

1.2.4.1 APS data service

The APS sub-layer data entity SAP (APSDE-SAP) supports the transport of application protocol data units
between peer application entities. Table 1 lists the primitives supported by the APSDE-SAP. Each of these
primitives will be discussed in the following sub-clauses.

1.2.4.1.1 APSDE-DATA.request

This primitive requests the transfer of a NHLE PDU (ASDU) from the local NHLE to a single peer NHLE
entity.

Table 1 APSDE-SAP primitives
APSDE-SAP primitive Request Confirm Indication

APSDE-DATA 1.2.4.1.1 1.2.4.1.2 1.2.4.1.3

APS
IB

APSME
APSDE

APSDE-SAP APSME-SAP

NLDE-SAP NLME-SAP

Next Higher Layer Entity

NWK Layer Entity
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 37

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.1.1.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 2 specifies the parameters for the APSDE-DATA.request primitive.

APSDE-DATA.request (
DstAddrMode,
DstAddress,
DstEndpoint,
ProfileId,
ClusterId,
SrcEndpoint,
asduLength,
asdu,
TxOptions,
DiscoverRoute,
RadiusCounter
)

Table 2 APSDE-DATA.request parameters
Name Type Valid range Description

DstAddrMode Integer 0x00 – 0xff

The addressing mode for the destination
address used in this primitive and of the
APDU to be transferred. This parameter
can take one of the non-reserved values
from the following list:

0x00 = DstAddress and DstEndpoint not
present.

0x01 = 16 bit short address for DstAd-
dress and DstEndpoint present.

0x02 = 64 bit extended address for
DstAddress and DstEndpoint present.

0x03 – 0xff = reserved.

DstAddress Device
address

As specified by the DstAd-
drMode parameter.

The individual device address of the
entity to which the ASDU is being trans-
ferred.

DstEndpoint Integer 0x00 – 0xff The individual endpoint of the entity to
which the ASDU is being transferred.

ProfileId Integer 0x0000 – 0xffffa The identifier of the profile for which this
frame is intended.b

ClusterId Integer 0x00 – 0xff

The identifier of the object to use in the
binding operation if the frame is to be
sent using indirect addressing. If indirect
addressing is not being used, this
parameter is ignored.

SrcEndpoint Integer 0x00 – 0xfe The individual endpoint of the entity from
which the ASDU is being transferred.

asduLength Integer c The number of octets comprising the
ASDU to be transferred.
38 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.1.1.2 When generated

This primitive is generated by a local NHLE whenever a data PDU (ASDU) is to be transferred to a peer
NHLE.

1.2.4.1.1.3 Effect on receipt

On receipt of this primitive the APS sub-layer entity begins the transmission of the supplied ASDU.

If the DstAddrMode parameter is set to 0x00, the DstAddress and DstEndpoint parameters are ignored and
the value of the DstEndpoint parameter is not placed in the resulting APDU; this option allows indirect
addressing to be used. If the DstAddrMode parameter is set to 0x01, the DstAddress parameter contains a
16-bit short address and the DstEndpoint parameters are placed in the resulting APDU. If the DstAddrMode
parameter is set to 0x02, the DstAddress parameter contains an extended, 64-bit IEEE address and the
DstEndpoint parameters are placed in the resulting APDU.

Asdu Set of octets - The set of octets comprising the ASDU
to be transferred.

TxOptions Bitmap
0000 0xxx

(Where x can be 0 or 1)

The transmission options for the ASDU
to be transferred. These are a bitwise
OR of one or more of the following:

0x01 = Security enabled transmission.

0x02 = Use NWK key.

0x04 = Acknowledged transmission.

DiscoverRoute Integer 0x00-0x02

The DiscoverRoute parameter supplies
control information from the application
layer to the network layer regarding
actions to be taken in route discovery.
The possible values are:

0x00 = suppress route discovery (use
existing routing information for this
request).

0x01 = enable route discovery (perform
route discovery if there is not already an
existing route for this request).

0x02 = force route discovery (explicitly
request route discovery to occur before
routing this request).

The DiscoverRoute parameter has a
value corresponding to the NLDE-
DATA.request (see Chapter 2)d.

RadiusCounter Unsigned
Integer 0x00-0xff

The distance, in hops, that a broadcast
frame will be allowed to travel through
the network.

aCCB Comment #168
bCCB Comment #208
cCCB Comment #336
dCCB Comment #256

Table 2 APSDE-DATA.request parameters
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 39

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The DiscoverRoute parameter is set by the application based on requested handling of route discovery at the
Network Layer. The application may employ APS Acknowledgement or application-level message
responses to determine whether messages are received reliably at the destination. Based on metrics managed
within the application, the DiscoverRoute parameter may be used to request route discovery operations at
the Network Layer to improve reliable delivery. If NWK broadcast messaging is employed (the DstAddress
is set to 0xffff), the application can specify the RadiusCounter (0x00 targets all devices that are part of the
network, a value of 0x01-0xff sets the radius of the broadcast message as measured from the source)6

If the APDU is to be transmitted using direct addressing (a destination address is present), the APSDE
transmits the constructed frame by issuing the NLDE-DATA.request primitive to the NWK layer. On receipt
of the NLDE-DATA.confirm primitive, the APSDE issues the APSDE-DATA.confirm primitive (see sub-
clause 1.2.4.1.2) with a status equal to that received from the NWK layer.

If the APDU is to be transmitted using indirect addressing (indirect addressing value specified in the
delivery mode sub-field / a destination address is not present) and this primitive was received by the APSDE
of the ZigBee coordinator or router, a search is made in the binding table for devices bound to this device
with the endpoint information specified in the SrcEndpoint parameter. If no bound devices are found, the
APSDE issues the APSDE-DATA.confirm primitive with a status of NO_BOUND_DEVICE. If one or more
bound devices were found, the APSDE constructs the ASDU with the destination address and endpoint
information of the bound device and transmits the frame by issuing the NLDE-DATA.request primitive to
the NWK layer. On receipt of the corresponding NLDE-DATA.confirm, the APSDE constructs and
transmits the APDU for the next bound device, as described above; until no more bound devices remain. On
receipt of the initial request, the APSDE issues the APSDE-DATA.confirm primitive with a status of
SUCCESS to the originator indicating that the message will be reflected to each bound device indicated in
the binding table.7

If the APDU is to be transmitted using indirect addressing and a non-ZigBee coordinator or ZigBee router
device received this primitive, the APSDE constructs the ASDU, without a destination endpoint field, and
issues the NLDE-DATA.request primitive to the NWK layer. On receipt of the NLDE-DATA.confirm
primitive, the APSDE issues the APSDE-DATA.confirm primitive with a status equal to that received from
the NWK layer.

1.2.4.1.2 APSDE-DATA.confirm

If the TxOptions parameter specifies that secured transmission is required, the ASL sub-layer shall use the
security service provider (see sub-clause 3.2.4) to secure the ASDU. If the security processing fails, the
APSDE shall issue the APSDE-DATA.confirm primitive with a status of SECURITY_FAIL.APSDE-
DATA.confirm

This primitive reports the results of a request to transfer a data PDU (ASDU) from a local NHLE to a single
peer NHLE.

6CCB Comment #256
7CCB Comment #173, 214, 254
40 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.1.2.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 3 specifies the parameters for the APSDE-DATA.confirm primitive.

1.2.4.1.2.2 When generated

This primitive is generated by the local APS sub-layer entity in response to an APSDE-DATA.request
primitive. This primitive returns a status of either SUCCESS, indicating that the request to transmit was
successful, or an error code of NO_BOUND_DEVICE or SECURITY_FAIL or any status values returned
from the NLDE-DATA.confirm primitive. The reasons for these status values are fully described in the next
section.

APSDE-DATA.confirm (
DstAddrMode,
DstAddress,
DstEndpoint,
SrcEndpoint,
Status
)

Table 3 APSDE-DATA.confirm parameters
Name Type Valid range Description

DstAddrMode Integer 0x00 – 0xff

The addressing mode for the destina-
tion address used in this primitive and
of the APDU to be transferred. This
parameter can take one of the non-
reserved values from the following list:

0x00 = DstAddress and DstEndpoint
not present.

0x01 = 16 bit short address for DstAd-
dress and DstEndpoint present.

0x02 = 64 bit extended address for
DstAddress and DstEndpoint present.

0x03 – 0xff = reserved.

DstAddress Device
address

As specified by the DstAd-
drMode parameter.

The individual device address of the
entity to which the ASDU is being
transferred.

DstEndpoint Integer 0x00 – 0xff The individual endpoint of the entity to
which the ASDU is being transferred.

SrcEndpoint Integer 0x00 – 0xfe
The individual endpoint of the entity
from which the ASDU is being trans-
ferred.

Status Enumeration

SUCCESS,
NO_BOUND_DEVICE,
SECURITY_FAIL or any

status values returned from
the NLDE-DATA.confirm

primitive.

The status of the corresponding
request.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 41

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.1.2.3 Effect on receipt

On receipt of this primitive the next higher layer of the initiating device is notified of the result of its request
to transmit. If the transmission attempt was successful, the status parameter will be set to SUCCESS.
Otherwise, the status parameter will indicate the error.

1.2.4.1.3 APSDE-DATA.indication

This primitive indicates the transfer of a data PDU (ASDU) from the APS sub-layer to the local application
entity.

1.2.4.1.3.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 4 specifies the parameters for the APSDE-DATA.indication primitive.

APSDE-DATA.indication (
DstEndpoint,
SrcAddrMode,
SrcAddress,
SrcEndpoint,
ProfileId,a
ClusterId,
asduLength,
asdu,
WasBroadcast,
SecurityStatus
)

aCCB Comment #208

Table 4 APSDE-DATA.indication parameters
Name Type Valid range Description

DstEndpoint Integer 0x00 – 0xff The target endpoint on the local entity to
which the ASDU is being transferred.

SrcAddrMode Integer 0x00 – 0xff

The addressing mode for the source
address used in this primitive and of the
APDU to be transferred. This parameter
can take one of the non-reserved values
from the following list:

0x00 = SrcAddress and SrcEndpoint not
present.

0x01 = 16 bit short address for SrcAd-
dress and SrcEndpoint present.

0x02 = 64 bit extended address for
SrcAddress and SrcEndpoint present.

0x03 – 0xff = reserved.

SrcAddress Device
address

As specified by the SrcAd-
drMode parameter.

The individual device address of the
entity from which the ASDU is being
transferred.

SrcEndpoint Integer 0x00 – 0xfe The source endpoint from which the
ASDU is being transferred.
42 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.1.3.2 When generated

This primitive is generated by the APS sub-layer and issued to the next higher layer on receipt of an
appropriately addressed data frame from the local NWK layer entity. If the frame control field of the ASDU
header indicates that the frame is secured, then security processing shall be done as specified in sub-
clause 3.2.4.

1.2.4.1.3.3 Effect on receipt

On receipt of this primitive the next higher layer is notified of the arrival of data at the device.

1.2.4.2 APS management service

The APS management entity SAP (APSME-SAP) supports the transport of management commands
between the next higher layer and the APSME. Table 5 summarizes the primitives supported by the APSME
through the APSME-SAP interface. See the following sub-clauses for more details on the individual
primitives.

ProfileId Integer 0x0000 - 0xffff The identifier of the profile from which
this frame originated.a

ClusterId Integer 0x00-0xff The identifier of the received object.

asduLength Integer b The number of octets comprising the
ASDU being indicated by the APSDE.

asdu Set of octets - The set of octets comprising the ASDU
being indicated by the APSDE.

WasBroadcast Boolean TRUE or FALSE TRUE if the transmission was a broad-
cast, FALSE otherwise.

SecurityStatus Enumeration
UNSECURED,

SECURED_NWK_KEY,
SECURED_LINK_KEY

UNSECURED if the ASDU was received
without any security.

SECURED_NWK_KEY if the received.

ASDU was secured with the NWK key.

SECURED_LINK_KEY if the ASDU was
secured with a link key.

aCCB Comment #208
bCCB Comment #336

Table 5 Summary of the primitives accessed through the APSME-SAP
Name Request Indication Response Confirm

APSME-BIND 1.2.4.3.1 1.2.4.3.2

APSME-GET 1.2.4.4.1 1.2.4.4.2

APSME-SET 1.2.4.4.3 1.2.4.4.4

APSME-UNBIND 1.2.4.3.3 1.2.4.3.4

Table 4 APSDE-DATA.indication parameters
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 43

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.3 Binding Primitives

This set of primitives defines how the next higher layer of a device can add (commit) a binding record to its
local binding table or remove a binding record from its local binding table.8

1.2.4.3.1 APSME-BIND.request

This primitive allows the next higher layer to request to bind two devices together if issued on a ZigBee
coordinator or on the device indicated by the SrcAddr of the request.9

1.2.4.3.1.1 Semantics of the service primitive

The semantics of this primitive are as follows:

Table 6 specifies the parameters for the APSME-BIND.request primitive.

1.2.4.3.1.2 When generated

This primitive is generated by the next higher layer and issued to the APS sub-layer in order to instigate a
binding operation on a ZigBee coordinator or on the device indicated by the SrcAddr of the request.10

1.2.4.3.1.3 Effect on receipt

If the APS on a ZigBee coordinator or the device indicated by the SrcAddr of the request receives this
primitive from the NHLE, the APSME attempts to create the specified entry directly in its binding table. If
the entry could be created, the APSME issues the APSME-BIND.confirm primitive with the Status

8CCB Comment #172
9CCB Comment #173

APSME-BIND.request (
SrcAddr,
SrcEndpoint,
ClusterId,
DstAddr,
DstEndpoint
)

Table 6 APSME-BIND.request parameters
Name Type Valid range Description

SrcAddr IEEE address A valid 64-bit IEEE
address

The source IEEE address for the
binding entry.

SrcEndpoint Integer 0x01 – 0xff The source endpoint for the binding
entry.

ClusterId
Integer 0x00 – 0xff

The identifier of the cluster on the
source device that is to be bound to
the destination device.

DstAddr IEEE address A valid 64-bit IEEE
address

The destination IEEE address for
the binding entry.

DstEndpoint Integer 0x01 – 0xff The destination endpoint for the
binding entry.

10CCB Comment #173
44 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
parameter set to SUCCESS. If the entry could not be created due to a lack of capacity in the binding table,
the APSME issues the APSME-BIND.confirm primitive with the Status parameter set to TABLE_FULL.11

1.2.4.3.2 APSME-BIND.confirm

This primitive allows the next higher layer to be notified of the results of its request to bind two devices
directly or by proxy.

1.2.4.3.2.1 Semantics of the service primitive

The semantics of this primitive are as follows:

Table 7 specifies the parameters for the APSME-BIND.confirm primitive.

1.2.4.3.2.2 When generated

This primitive is generated by the APSME and issued to its NHLE in response to an APSME-BIND.request
primitive. If the request was successful, the Status parameter will indicate a successful bind request.
Otherwise, the status parameter indicates an error code of ILLEGAL_DEVICE, ILLEGAL_REQUEST or
TABLE_FULL.

11CCB Comment #173, 264

APSME-BIND.confirm (
Status,
SrcAddr,
SrcEndpoint,
ClusterId,
DstAddr,
DstEndpoint
)

Table 7 APSME-BIND.confirm parameters
Name Type Valid range Description

Status Enumeration
SUCCESS, ILLEGAL_DEVICE,

ILLEGAL_REQUEST, TABLE_FULL,
NOT_SUPPORTED

The results of the binding request.

SrcAddr IEEE address A valid 64-bit IEEE address The source IEEE address for the
binding entry.

SrcEndpoint Integer 0x01 – 0xff The source endpoint for the binding
entry.

ClusterId Integer 0x00 – 0xff
The identifier of the cluster on the
source device that is to be bound to
the destination device.

DstAddr IEEE address A valid 64-bit IEEE address The destination IEEE address for
the binding entry.

DstEndpoint Integer 0x01 – 0xff The destination endpoint for the
binding entry.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 45

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.3.2.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its bind request. If the bind
request was successful, the Status parameter is set to SUCCESS. Otherwise, the Status parameter indicates
the error.

1.2.4.3.3 APSME-UNBIND.request

This primitive allows the next higher layer on a ZigBee coordinator or on the device indicated by the
SrcAddr of the request to request the unbinding of two devices.12

1.2.4.3.3.1 Semantics of the service primitive

The semantics of this primitive are as follows:

Table 8 specifies the parameters for the APSME-UNBIND.request primitive.

1.2.4.3.3.2 When generated

This primitive is generated by the next higher layer and issued to the APS sub-layer in order to instigate an
unbind operation on a ZigBee coordinator or on the device indicated by the SrcAddr of the request.13

1.2.4.3.3.3 Effect on receipt

On receipt of this primitive by a device that is not currently joined to a network, the APSME issues the
APSME-UNBIND.confirm primitive with the Status parameter set to ILLEGAL_REQUEST.

12CCB Comment #173

APSME-UNBIND.request (
SrcAddr,
SrcEndpoint,
ClusterId,
DstAddr,
DstEndpoint
)

Table 8 APSME-UNBIND.request parameters
Name Type Valid range Description

SrcAddr IEEE address A valid 64-bit IEEE
address

The source IEEE address for the
binding entry.

SrcEndpoint Integer 0x01 – 0xff The source endpoint for the binding
entry.

ClusterId Integer 0x00 – 0xff
The identifier of the cluster on the
source device that is bound to the
destination device.

DstAddr IEEE address A valid 64-bit IEEE
address

The destination IEEE address for
the binding entry.

DstEndpoint Integer 0x01 – 0xff The destination endpoint for the
binding entry.

13CCB Comment #173
46 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
If the APS on a ZigBee coordinator or the device indicated by the SrcAddr of the request receives this
primitive from the NHLE, the APSME searches for the specified entry in its binding table. If the entry
exists, the APSME removes the entry and issues the APSME-UNBIND.confirm (see sub-clause 1.2.4.3.4)
primitive with the Status parameter set to SUCCESS. If the entry could not be found, the APSME issues the
APSME-UNBIND.confirm primitive with the Status parameter set to INVALID_BINDING. If the devices
do not exist on the network, the APSME issues the APSME-BIND.confirm primitive with the Status
parameter set to ILLEGAL_DEVICE.14

1.2.4.3.4 APSME-UNBIND.confirm

This primitive allows the next higher layer to be notified of the results of its request to unbind two devices
directly or by proxy.

1.2.4.3.4.1 Semantics of the service primitive

The semantics of this primitive are as follows:

Table 9 specifies the parameters for the APSME-UNBIND.confirm primitive.

1.2.4.3.4.2 When generated

This primitive is generated by the APSME and issued to its NHLE in response to an APSME-
UNBIND.request primitive. If the request was successful, the Status parameter will indicate a successful

14CCB Comment #173

APSME-UNBIND.confirm (
Status,
SrcAddr,
SrcEndpoint,
ClusterId,
DstAddr,
DstEndpoint
)

Table 9 APSME-UNBIND.confirm parameters
Name Type Valid range Description

Status Enumeration
SUCCESS, ILLEGAL_DEVICE,

ILLEGAL_REQUEST,
INVALID_BINDING

The results of the unbind request.

SrcAddr IEEE address A valid 64-bit IEEE address The source IEEE address for the
binding entry.

SrcEndpoint Integer 0x01 – 0xff The source endpoint for the binding
entry.

ClusterId Integer 0x00 – 0xff
The identifier of the cluster on the
source device that is bound to the
destination device.

DstAddr IEEE address A valid 64-bit IEEE address The destination IEEE address for
the binding entry.

DstEndpoint Integer 0x01 – 0xff The destination endpoint for the
binding entry.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 47

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
unbind request. Otherwise, the status parameter indicates an error code of ILLEGAL_DEVICE,
ILLEGAL_REQUEST, or INVALID_BINDING.

1.2.4.3.4.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its unbind request. If the unbind
request was successful, the Status parameter is set to SUCCESS. Otherwise, the Status parameter indicates
the error.

1.2.4.4 Information base maintenance

This set of primitives defines how the next higher layer of a device can read and write attributes in the AIB.

1.2.4.4.1 APSME-GET.request

This primitive allows the next higher layer to read the value of an attribute from the AIB.

1.2.4.4.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 10 specifies the parameters for this primitive.

1.2.4.4.1.2 When generated

This primitive is generated by the next higher layer and issued to its APSME in order to read an attribute
from the AIB.

1.2.4.4.1.3 Effect on receipt

On receipt of this primitive, the APSME attempts to retrieve the requested AIB attribute from its database. If
the identifier of the AIB attribute is not found in the database, the APSME issues the APSME-GET.confirm
primitive with a status of UNSUPPORTED_ATTRIBUTE.

If the requested AIB attribute is successfully retrieved, the APSME issues the APSME-GET.confirm
primitive with a status of SUCCESS such that it contains the AIB attribute identifier and value.

1.2.4.4.2 APSME-GET.confirm

This primitive reports the results of an attempt to read the value of an attribute from the AIB.

APSME-GET.request (
AIBAttribute
)

Table 10 APSME-GET.request parameters
Name Type Valid Range Description

AIBAttribute Integer See Table 17 The identifier of the AIB attribute to read.
48 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.4.4.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 11 specifies the parameters for this primitive.

1.2.4.4.2.2 When generated

This primitive is generated by the APSME and issued to its next higher layer in response to an APSME-
GET.request primitive. This primitive returns a status of SUCCESS, indicating that the request to read an
AIB attribute was successful, or an error code of UNSUPPORTED_ATTRIBUTE. The reasons for these
status values are fully described in sub-clause 1.2.4.4.1.3.

1.2.4.4.2.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to read an AIB
attribute. If the request to read an AIB attribute was successful, the Status parameter will be set to
SUCCESS. Otherwise, the status parameter indicates the error.

1.2.4.4.3 APSME-SET.request

This primitive allows the next higher layer to write the value of an attribute into the AIB.

1.2.4.4.3.1 Semantics of the service primitive

The semantics of this primitive is as follows:

APSME-GET.confirm (
Status,
AIBAttribute,
AIBAttributeValue
)

Table 11 APSME-GET.confirm parameters
Name Type Valid Range Description

Status Enumeration
SUCCESS or

UNSUPPORTED_A
TTRIBUTE

The results of the request to read an AIB
attribute value.

AIBAttribute Integer See Table 17. The identifier of the AIB attribute that was
read.

AIBAttributeValue Various Attribute Specific
(see Table 17).

The value of the AIB attribute that was
read.

APSME-SET.request (
AIBAttribute,
AIBAttributeValue
)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 49

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 12 specifies the parameters for this primitive.

1.2.4.4.3.2 When generated

This primitive is to be generated by the next higher layer and issued to its APSME in order to write the value
of an attribute in the AIB.

1.2.4.4.3.3 Effect on receipt

On receipt of this primitive the APSME attempts to write the given value to the indicated AIB attribute in its
database. If the AIBAttribute parameter specifies an attribute that is not found in the database, the APSME
issues the APSME-SET.confirm primitive with a status of UNSUPPORTED_ATTRIBUTE. If the
AIBAttributeValue parameter specifies a value that is out of the valid range for the given attribute, the
APSME issues the APSME-SET.confirm primitive with a status of INVALID_PARAMETER.

If the requested AIB attribute is successfully written, the APSME issues the APSME-SET.confirm primitive
with a status of SUCCESS.

1.2.4.4.4 APSME-SET.confirm

This primitive reports the results of an attempt to write a value to an AIB attribute.

1.2.4.4.4.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 13 specifies the parameters for this primitive.

1.2.4.4.4.2 When generated

This primitive is generated by the APSME and issued to its next higher layer in response to an APSME-
SET.request primitive. This primitive returns a status of either SUCCESS, indicating that the requested

Table 12 APSME-SET.request parameters
Name Type Valid Range Description

AIBAttribute Integer See Table 17. The identifier of the AIB attribute to be writ-
ten.

AIBAttributeValue Various Attribute Specific
(see Table 17).

The value of the AIB attribute that should
be written.

APSME-SET.confirm (
Status,
AIBAttribute
)

Table 13 APSME-SET.confirm parameters
Name Type Valid Range Description

Status Enumeration
SUCCESS,

INVALID_PARAMETER or
UNSUPPORTED_ATTRIBUTE

The result of the request to write
the AIB Attribute.

AIBAttribute Integer See Table 17. The identifier of the AIB attribute
that was written.
50 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
value was written to the indicated AIB attribute, or an error code of INVALID_PARAMETER or
UNSUPPORTED_ATTRIBUTE. The reasons for these status values are fully described in sub-
clause 1.2.4.4.3.3.

1.2.4.4.4.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to write the value of
a AIB attribute. If the requested value was written to the indicated AIB attribute, the Status parameter will be
set to SUCCESS. Otherwise, the Status parameter indicates the error.

1.2.5 Frame formats

This sub-clause specifies the format of the APS frame (APDU). Each APS frame consists of the following
basic components:

— An APS header, which comprises frame control and addressing information.

— An APS payload, of variable length, which contains information specific to the frame type.

The frames in the APS sub-layer are described as a sequence of fields in a specific order. All frame formats
in this sub-clause are depicted in the order in which they are transmitted by the NWK layer, from left to
right, where the leftmost bit is transmitted first in time. Bits within each field are numbered from 0 (leftmost
and least significant) to k-1 (rightmost and most significant), where the length of the field is k bits. Fields
that are longer than a single octet are sent to the NWK layer in the order from the octet containing the lowest
numbered bits to the octet containing the highest numbered bits.

1.2.5.1 General APDU frame format

The APS frame format is composed of an APS header and an APS payload. The fields of the APS header
appear in a fixed order, however, the addressing fields may not be included in all frames. The general APS
frame shall be formatted as illustrated in Figure 5.

Figure 5 General APS frame format

1.2.5.1.1 Frame control Field

The frame control field is 8-bits in length and contains information defining the frame type, addressing
fields and other control flags. The frame control field shall be formatted as illustrated in Figure 6.

Figure 6 Format of the frame control field

Octets: 1 0/1 0/1 0/2 0/1 Variable

Frame
control

Destination end-
point

Cluster
Identifier

Profile
Identifier Source endpoint

Frame payload
Addressing fields

APS header APS payload

Bits: 0-1 2-3 4 5 6 7

Frame type Delivery
mode

Indirect
address
modea

aCCB Comment #210

Security Ack. request Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 51

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.5.1.1.1 Frame type sub-field

The frame type sub-field is two bits in length and shall be set to one of the non-reserved values listed in
Table 14.

1.2.5.1.1.2 Delivery mode sub-field

The delivery mode sub-field is two bits in length and shall be set to one of the non-reserved values from
Table 15.

If the value is 0b01 then indirect addressing is in use and either the destination or source endpoint shall be
omitted, depending on the value of the indirect address mode sub-field. If the value is 0b10 then the message
is a broadcast. In this case the message will go to all devices and all endpoints.15

1.2.5.1.1.3 Indirect address mode sub-field

The indirect address mode sub-field is one bit in length and specifies whether the source or destination
endpoint fields are present in the frame when the delivery mode sub-field is set to indicate indirect
addressing. If this sub-field is set to 1, the destination endpoint field shall be omitted from the frame,
indicating an indirect transmission to the ZigBee coordinator. If this sub-field is set to 0, the source endpoint
field shall be omitted from the frame, indicating an indirect transmission from the ZigBee coordinator. If the
delivery mode sub-field of the frame control field does not indicate indirect addressing, the indirect address
mode sub-field shall be ignored.16

1.2.5.1.1.4 Security sub-field

The Security Services Provider (see Chapter 3) manages the security sub-field.

Table 14 Values of the frame type sub-field
Frame type value

b1 b0
Frame type name

00 Data

01 Command

10 Acknowledgement

11 Reserved

Table 15 Values of the delivery mode sub-field
Delivery mode value

b3 b2
Delivery mode name

00 Normal unicast delivery

01 Indirect addressing

10 Broadcast

11 Reserved

15CCB Comment #165. 210
16CCB Comment #210
52 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.5.1.1.5 Acknowledgement request sub-field

The acknowledgement request sub-field is one bit in length and specifies whether the current transmission
requires an acknowledgement frame to be sent be the recipient on receipt of the frame. If this sub-field is set
to 1, the recipient shall construct and send an acknowledgement frame back to the originator after
determining that the frame is valid. If this sub-field is set to 0, the recipient shall not send an
acknowledgement frame back to the originator after determining that the frame is valid.

1.2.5.1.2 Destination endpoint field

The destination endpoint field is 8-bits in length and specifies the endpoint of the final recipient of the
frame. A destination endpoint value of 0x00 addresses the frame to the ZigBee device object (ZDO),
resident in each device. A destination endpoint value of 0x01-0xf0 addresses the frame to an application
operating on that endpoint. A destination endpoint value of 0xff addresses the frame to all active endpoints.
All other endpoints (0xf1-0xfe) are reserved.

1.2.5.1.3 Cluster identifier field

The cluster identifier field is 8-bits in length and specifies the identifier of the cluster that is to be used in the
binding operation on the ZigBee coordinator or on the device indicated by the SrcAddr of the request. The
frame type sub-field of the frame control field specifies whether the cluster identifier field is present or not.
It will be for data frames, but not for command frames.17

1.2.5.1.4 Profile identifier field

The profile identifier is 2 octets in length and specifies the ZigBee profile identifier for which the frame is
intended and shall be used during the filtering of messages at each device that takes delivery of the frame.
This field shall be present only for data or acknowledgement frames.18

1.2.5.1.5 Source endpoint field

The source endpoint field is 8-bits in length and specifies the endpoint of the initial originator of the frame.
A source endpoint value of 0x00 indicates that the frame originated from the ZigBee device object (ZDO)
resident in each device. A source endpoint value of 0x01-0xf0 indicates that the frame originated from an
application operating on that endpoint. All other endpoints (0xf1-0xfe) are reserved.

If the delivery mode sub-field of the frame control field indicates a delivery mode of indirect addressing and
the indirect address mode sub-field is set to 0, this field shall not be included in the frame19

1.2.5.1.6 Frame payload field

The frame payload field has a variable length and contains information specific to individual frame types.

1.2.5.2 Format of individual frame types

There are three defined frame types: data, APS command and acknowledgement. Each of these frame types
is discussed in the following sub-clauses.20

17CCB Comment #173
18CCB Comment #186 208
19CCB Comment #165, 210
20CCB Comment #230
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 53

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.5.2.1 Data frame format

The data frame shall be formatted as illustrated in Figure 7.

Figure 7 Data frame format

The order of the fields of the data frame shall conform to the order of the general APS frame as illustrated in
Figure 3.21

1.2.5.2.1.1 Data frame APS header field

The APS header field for a data frame shall contain the frame control, cluster identifier, profile identifier and
source endpoint fields. The destination endpoint field shall be included in a data frame according to the
value of the delivery mode sub-field of the frame control field.22

In the frame control field, the frame type sub-field shall contain the value that indicates a data frame, as
shown in Table 14. The source endpoint present sub-field shall be set to 1. All other sub-fields shall be set
appropriately according to the intended use of the data frame.

1.2.5.2.1.2 Data payload field

For an outgoing data frame, the data payload field shall contain the sequence of octets that the next higher
layer has requested the APS data service to transmit. For an incoming data frame, the data payload field shall
contain the sequence of octets that has been received by the APS data service and that is to be reflected to the
destination devices or delivered to the next higher layer if the coordinator is one of the destinations.

1.2.5.2.2 APS command frame format

The APS command frame shall be formatted as illustrated in Figure 8.

Figure 8 APS command frame format

The order of the fields of the APS command frame shall conform to the order of the general APS frame as
illustrated in Figure 5.

Octets: 1 0/1 1 2a

aCCB Comment #186, 208

0/b1

bCCB Comment #188

Variable

Frame control Destination end-
point

Cluster
identifier

Profile
identifier

Source
endpoint Data payload

APS header APS payload

21CCB Comment #186, 208
22ibid

Octets: 1 1 Variable

Frame control APS command
identifier

APS command
payload

APS header APS payload
54 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.5.2.2.1 APS command frame APS header field

The APS header field for an APS command frame shall contain the frame control and an APS Payload. The
APS Payload portion of the APS Command Frame shall contain the APS Command Identifier followed by
the APS Command Payload.

In the frame control field, the frame type sub-field shall contain the value that indicates an APS command
frame, as shown in Table 14. The APS Command Payload shall be set appropriately according to the
intended use of the APS command frame.

1.2.5.2.2.2 APS command identifier field

The APS command identifier field identifies the APS command being used.

1.2.5.2.2.3 APS command payload field

The APS command payload field of an APS command frame shall contain the APS command itself.

1.2.5.2.3 Acknowledgement frame format

The acknowledgement frame shall be formatted as illustrated in Figure 9.

Figure 9 Acknowledgement frame format

The order of the fields of the acknowledgement frame shall conform to the order of the general APS frame
as illustrated in Figure 5.23

1.2.5.2.3.1 Acknowledgement frame APS header field

The APS header field for an acknowledgement frame shall contain the frame control, cluster identifier and
profile identifier fields. If the delivery mode indicates direct addressing both the source and destination
endpoint fields shall be included in an acknowledgement frame. If the delivery mode indicates indirect
addressing the source and destination endpoint fields shall be included in an acknowledgement frame
according to the value of the indirect address mode sub-field of the frame control field.

In the frame control field, the frame type sub-field shall contain the value that indicates an
acknowledgement frame, as shown in Table 14. All other sub-fielsds shall be set appropriately according to
the intended use of the acknowledgement frame.

Where present, the source endpoint field shall reflect the value in the destination endpoint field of the frame
that is being acknowledged. Similarly, where present, the destination endpoint field shall reflect the value in
the source endpoint field of the frame that is being acknowledged.24

Octets: 1 0/1 1 2 0/a1

aCCb Comment #165

Frame control Destination
endpoint Cluster Id Profile identi-

fierb

bCCB Comment #186, 208

Source
endpoint

APS header

23CCB Comment #186, 208
24CCB Comment #165, 186, 208
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 55

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.6 Command frames

 This specification defines no command frames. Refer to sub-clause 3.5.9 for a thorough description of the
APS command frames and primitives related to security.

1.2.7 Constants and PIB attributes

1.2.7.1 APS Constants

The constants that define the characteristics of the APS sub-layer are presented in Table 16.

Table 16 APS sub-layer constants
Constant Description Value

apscMaxAddrMapEntries

The maximum number of Address Map
entries.

1 (minimum value)

Implementation-specific
(maximum value)

apscMaxDescriptorSize The maximum number of octets con-
tained in a non-complex descriptor. 64

apscMaxDiscoverySize
The maximum number of octets that can
be returned through the discovery pro-
cess.

64

apscMaxFrameOverhead
The maximum number of octets added by
the APS sub-layer to its payload.

6 (without security)

20 (with security)

apscMaxFrameRetries The maximum number of retries allowed
after a transmission failure. 3

apscAckWaitDuration

The maximum number of seconds to wait
for an acknowledgement to a transmitted
frame.

0.05 * (2*nwkcMaxDepth) +
(security encrypt/decrypt delay),
where the (security encrypt/
decrypt delay) = 0.1

(assume 0.05 per encrypt or
decrypt cycle)a

aCCB Comment #166, #366
56 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.7.2 APS Information Base

The APS information base comprises the attributes required to manage the APS layer of a device. The
attribtues of the AIB are listed in Table 17. The AIB also comprises of some additional attributes that are
required to manage the security service provider. These attributes are listed in sub-clause 3.5.10.

1.2.8 Functional description

1.2.8.1 Binding

The APS may maintain a binding table, which allows ZigBee devices to establish a designated destination
for frames from a given source endpoint and with a given cluster ID. This table is employed by the indirect
addressing mechanism.

1.2.8.1.1 Binding table implementation

A ZigBee coordinator or a device designated by as and containing a binding table shall be able to support a
binding table of implementation specific length. The binding table shall implement the following mapping:

(as, es, cs) = {(ad1, ed1), (ad2, ed2) … (adn, edn)}25

Where:

Table 17 APS IB attributes
Attribute Identifier Type Range Description Default

apsAddressMap 0xc0a

aCCB Comment #150

Set Variable

The current set of 64 bit
IEEE to 16 bit NWK
address maps (see
Table 18).

Null set

apsBindingTableb

bCCB Comment #248

0xc1 Set Variable

The current set of binding
table entries in the device
(see sub-
clause 1.2.8.1.1).

Null set

Table 18 Address Map

Entry Number 64 bit IEEE
address

16 bit NWK
address

0x00 - apscMaxAddrMap-
Entries

0x00000000 –
0xffffffff

0x0000 –
0xffff

25CCB Comment #173

as = the address of the device as the source of the binding link,

es = the endpoint identifier of the device as the source of the binding link,
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 57

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.8.1.2 Binding

The APSME-BIND.request or APSME-UNBIND.request primitive executed on the ZigBee coordinator on
the device designated by the SrcAddr initiates the procedure for creating or removing a binding link. Only
those devices that are ZigBee coordinator capable and currently operating as the ZigBee coordinator or are
the device indicated by the SrcAddr in the request shall initiate this procedure. If this procedure is initiated
on any other device, the APSME shall terminate the procedure and notify the NHLE of the illegal request.
This is achieved by issuing the APSME-BIND.confirm or APSME-UNBIND.confirm primitive with the
Status parameter set to ILLEGAL_REQUEST.

When this procedure is initiated, the APSME of a ZigBee coordinator or the device designated by SrcAddr
shall first extract the address and endpoint for both the source and destination of the binding link. With this
information, the APSME shall either create a new entry or remove the corresponding entry from its binding
table, depending on whether the bind or unbind procedure, respectively, was initiated.

If a bind operation was requested, the APSME shall create a new entry in the binding table. The ZigBee
coordinator or device designated by the SrcAddr shall only create a new entry in the binding table if it has
the capacity to do so. If capacity is not available, it shall terminate the procedure and notify the NHLE of the
unavailable capacity. This is achieved by issuing the APSME-BIND.confirm primitive with the Status
parameter set to TABLE_FULL.26

If an unbind operation was requested, the APSME shall search the binding table for an existing entry that
matches the information contained in the initiation request. If an entry was not found, the APSME shall
terminate the procedure and notify the NHLE of the invalid binding. This is achieved by issuing the
APSME-UNBIND.confirm primitive with the Status parameter set to INVALID_BINDING. If an entry was
found, the APSME shall remove the entry in the binding table.

If the binding link is successfully created or removed, the APSME shall notify the NHLE of the results of
the direct binding attempt and the success of the procedure. This is achieved by issuing the APSME-
BIND.confirm primitive with the binding results and the status parameter set to SUCCESS.

The procedure for a successful direct binding is illustrated in the MSC shown in Figure 10.

cs = the cluster identifier used in the binding link,

adi = the ith address of the device as the destination of the binding link,

edi = the ith endpoint identifier of the device as the destination of the binding link

26CCB Comment #173
58 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 10 Direct binding on a ZigBee coordinator or SrcAddr device27

1.2.8.2 Transmission, reception and acknowledgement

This sub-clause describes the fundamental procedures for transmission, reception and acknowledgement

1.2.8.2.1 Transmission

Only those devices that are currently part of a network shall send frames from the APS sub-layer. If any
other device receives a request to transmit a frame it shall discard the frame and notify the instigating layer
of the error. An APSDE-DATA.confirm primitive with a status of CHANNEL_ACCESS_FAILURE
indicates that the attempt at transmission of the frame was unsuccessful due to the channel being busy.

All frames handled by or generated within the APS sub-layer shall be constructed according to the general
frame format specified in 6.1 and transmitted using the NWK layer data service28

Transmissions may be either direct or indirect. Direct transmissions shall include both destination and
source endpoint fields. In this case, the delivery mode sub-field of the frame control field shall be set to
either 0x00 (Normal Unicast) or 0x02 (Broadcast).

The APS layer of the device originating an indirect transmission where the binding table entry is stored at
the ZigBee coordinator shall direct the transmission to the ZigBee coordinator, which shall handle the task
of message reflection.

Indirect transmissions (i.e. those in which the delivery mode sub-field is set to 0b01) shall include only
either the source endpoint field or the destination endpoint field, depending on the direction of transmission
with respect to the ZigBee coordinator. If the indirect transmission is directed to the ZigBee coordinator, the
indirect address mode sub-field shall be set to 1 and the destination endpoint field shall be omitted from the
frame. Conversely, if the indirect transmission is directed from the ZigBee coordinator after message
reflection, the indirect address mode sub-field shall be set to 0 and the source endpoint field shall be omitted
from the frame.

For all devices where the binding table is stored on the source device, the APS layer of the source device
originating the transmission shall employ direct transmission to the destination addresses indicated by the
corresponding binding table entries. In this case, the delivery mode sub-field of the frame control field shall
be set to 0x00.29

27ibid
28CCB Comment #208

APSME-
(UN)BIND.request

APSME-
(UN)BIND.confirm

Create a new entry or
remove an existing entry

in the binding table

ZigBee coord. or
SrcAddr APL

ZigBee coord or
SrcAddr. APS

ZigBee coord or
SrcAddr. NWK
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 59

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The destination endpoint field, if present, shall contain the endpoint of the intended recipient of the APDU.
The source endpoint field, if present, shall contain the endpoint of the originator of the APDU.

If security is required, then the frame shall be processed as described in clause 3.5.

When the frame is constructed and ready for transmission, it shall be passed to the NWK data service with a
suitable destination and source address. An APDU transmission is initiated by issuing the NLDE-
DATA.request primitive to the NWK layer and the results of the transmission returned via the NLDE-
DATA.confirm primitive.

1.2.8.2.2 Reception and rejection

The APS sub-layer shall be able to filter frames arriving via the NWK layer data service and only present the
frames that are of interest to the NHLE.

If the APSDE receives a secured frame, it shall process the frame as described in clause 3.5 to remove the
security.

If the APSDE receives a frame containing both destination and source endpoints, it shall be assumed to be a
direct transmission. In this case, the APSDE shall pass it directly to the NHLE.

If the APSDE of the ZigBee coordinator receives a frame containing only the source endpoint with the
delivery mode sub-field of the frame control field set to the indirect addressing value (0x01) it shall be
assumed to be an indirect transmission. If the device is not a ZigBee coordinator, the frame shall be
discarded if the destination endpoint is not present and the delivery mode sub-field of the frame control field
is set to the indirect addressing value (0x01).

If the APSDE of a ZigBee coordinator receives an indirect transmission, it shall search its binding table for
an entry that matches the source address communicated from the NWK layer, the cluster identifier included
in the received frame and the source endpoint included in the frame. If a match is not found, the frame shall
be discarded. If a match is found, the APSDE shall build an APDU for each destination endpoint contained
in the matching entry in the binding table. The APSDE shall then transmit each frame using the NWK data
service.30

If the APSDE of a device receives a transmission, it shall pass it directly to the NHLE, unless it needs to be
reflected.

1.2.8.2.3 Use of acknowledgements

A data or APS command frame shall be sent with its acknowledgement request sub-field set appropriately
for the frame. An acknowledgement frame shall always be sent with the acknowledgement request sub-field
set to 0. Similarly, any frame that is broadcast shall be sent with its acknowledgement request sub-field set to
0.

1.2.8.2.3.1 No acknowledgement

A frame that is received by its intended recipient with its acknowledgement request (AR) sub-field set to 0
shall not be acknowledged. The originating device shall assume that the transmission of the frame was
successful. Figure 11 shows the scenario for transmitting a single frame of data from an originator to a
recipient without requiring an acknowledgement. In this case, the originator transmits the data frame with
the AR sub-field equal to 0.

29CCB Comment #173, 210
30CCB Comment #210
60 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 11 Successful data transmission without an acknowledgement

1.2.8.2.3.2 Acknowledgement

A frame that is received by its intended recipient with its acknowledgement request (AR) sub-field set to 1
shall be acknowledged. If the intended recipient correctly receives the frame, it shall generate and send an
acknowledgement frame to the originator of the frame that is being acknowledged.

If the original transmission used indirect addressing, then the ZigBee coordinator shall send an
acknowledgement to the originator, and then for each reflected message shall indicate to the recipient that it
requires an acknowledgement by transmitting the data frame with the acknowledgement request sub-field of
the frame control field set to 1.31

The transmission of an acknowledgement frame shall commence when the APS sub-layer determines that
the frame is valid.

Figure 12 shows the scenario for transmitting a single frame of data from an originator to a recipient with an
acknowledgement. In this case, the originator indicates to the recipient that it requires an acknowledgement
by transmitting the data frame with the AR sub-field set to 1.

Figure 12 Successful data transmission with an acknowledgement

31CCB Comment #215

Originator
next higher

layer
Originator

APS
Recipient

APS

Recipient
next higher

layer

APSDE-DATA.request (AR=0)
Data (AR=0)

APSDE-DATA.indication APSDE-DATA.confirm

Originator
next higher

layer
Originator

APS
Recipient

APS

Recipient
next higher

layer

APSDE-DATA.request (AR=1)
Data (AR=1)

APSDE-DATA.indication

APSDE-DATA.confirm

Acknowldgement
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 61

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.2.8.2.4 Retransmissions

A device that sends a frame with its acknowledgement request sub-field set to 0 shall assume that the
transmission was successfully received and shall hence not perform the retransmission procedure.

A device that sends a frame with its acknowledgement request sub-field set to 1 shall wait for at most
apscAckWaitDuration seconds for the corresponding acknowledgement frame to be received.

If an acknowledgement frame is received within apscAckWaitDuration seconds containing the same cluster
identifier and has a source endpoint equal to the destination endpoint to which the original frame was
transmitted, the transmission shall be considered successful and no further action shall be taken by the
device. If an acknowledgement is not received within apscAckWaitDuration seconds or an
acknowledgement is received within apscAckWaitDuration seconds but contains an unexpected cluster
identifier or has a source endpoint that is not equal to the destination endpoint to which the original frame
was transmitted, the device shall conclude that the single transmission attempt has failed.

If a single transmission attempt has failed, the device shall repeat the process of transmitting the frame and
waiting for the acknowledgement, up to a maximum of apscMaxFrameRetries times. If an
acknowledgement is still not received after apscMaxFrameRetries retransmissions, the APS sub-layer shall
assume the transmission has failed and notify the next higher layer of the failure.

1.3 The ZigBee application framework

1.3.1 Creating a ZigBee profile

The key to communicating between devices on a ZigBee network is agreement on a profile.

An example of a profile would be home control lighting. This initial ZigBee profile permits a series of
(initially) six device types to exchange control messages to form a wireless home automation application.
These devices are architected to exchange well known messages (using the KVP service type) to effect
control such as turning a lamp on or off, sending a light sensor measurement to a lighting controller or
sending an alert message if an occupancy sensor detects movement.

Another example of a profile is the device profile that defines common actions between ZigBee devices. To
illustrate, wireless networks rely on the ability for autonomous devices to join a network and discover other
devices and services on devices within the network. Device and service discovery are features supported
within the device profile using the MSG service type.

1.3.1.1 Getting a profile identifier from the ZigBee Alliance

ZigBee defines profiles in generally three separate classes: private, published and public. The exact
definition and criteria for these classes are an administrative issue within the ZigBee Alliance and outside
the scope of this document. For the purposes of this technical specification, the only criterion is for profile
identifiers to be unique. To that end, every profile effort must start with a request to the ZigBee Alliance for
allocation of a profile identifier. Once the profile identifier is obtained, that profile identifier permits the
profile designer to define the following:

— Device descriptions

— Cluster identifiers

— Service types (KVP or MSG)

The application of profile identifiers to market space is a key criterion for issuance of a profile identifier
from the ZigBee Alliance. The profile needs to cover a broad enough range of devices to permit
62 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
interoperability to occur between devices without being overly broad and resulting in a shortage of cluster
identifiers to describe their interfaces. Conversely, the profile cannot be defined to be too narrow resulting in
many devices described by individual profile identifiers resulting in a waste of the profile identifier
addressing space and interoperability issues in describing how the devices are interfaced. Policy groups
within the ZigBee Alliance will establish criteria on how profiles are to be defined and to help requestors
tailor their profile identifier requests.

1.3.1.2 Defining device descriptions and clusters

The profile identifier is the main enumeration feature within the ZigBee protocol. Each unique profile
identifier defines an associated enumeration of device descriptions and cluster identifiers. For example, for
profile identifier “1”, there exists a pool of device descriptions described by a 16-bit value (meaning there
are 65,536 possible device descriptions within each profile) and a pool of cluster identifiers described by an
8-bit value (meaning there are 256 possible cluster identifiers within each profile). For the KVP service type,
each cluster identifier also supports a pool of attributes described by a 16-bit value (meaning, each profile
identifier has 256 cluster identifiers and each of those cluster identifiers contains up to 65,536 attributes). It
is the responsibility of the profile developer to define and allocate device descriptions, cluster identifiers and
attributes within their allocated profile identifier. Note that the definition of device descriptions, cluster
identifiers and attribute identifiers must be undertaken with care to ensure efficient creation of simple
descriptors and simplified processing when exchanging messages.

Device descriptions and cluster identifiers must be accompanied by knowledge of the profile identifier to be
processed. Prior to any messages being directed to a device, it is assumed by the ZigBee protocol that
service discovery has been employed to determine profile support on devices and endpoints. Likewise, the
binding process assumes similar service discovery and profile matching has occurred since the resulting
match is distilled to source address, source endpoint, cluster identifier, destination address and destination
endpoint.

1.3.1.3 Deploying the profile on endpoints

A single ZigBee device may contain support for many profiles, provide for subsets of various cluster
identifiers defined within those profiles and may support multiple device descriptions. This capability is
defined using a hierarchy of addressing within the device as follows:

— Device – the entire device is supported by a single radio with a unique IEEE and NWK address.

— Endpoints – this is an 8-bit field that describes different applications that are supported by a single
radio. Endpoint 0x00 is used to address the device profile, which each ZigBee device must employ,
endpoint 0xff is used to address all active endpoints (the broadcast endpoint) and endpoints 0xf1-
0xfe are reserved. Consequently, a single physical ZigBee radio can support up to 240 applications
on endpoints 0x01-0xf0.

It is an application decision as to how to deploy applications on a device endpoint and which endpoints to
advertise. The only requirement is that simple descriptors be created for each endpoint and those descriptors
made available for service discovery.

1.3.1.4 Enabling service discovery

Once a device is created to support specific profiles and made consistent with cluster identifier usage for
device descriptions within those profiles, the applications can be deployed. To do this, each application is
assigned to individual endpoints and each described using simple descriptors. It is via the simple descriptors
and other service discovery mechanisms described in the ZigBee device profile that service discovery is
enabled, binding of devices is supported and application messaging between complementary devices
facilitated.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 63

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
One important point is that service discovery is made on the basis of profile identifier, input cluster identifier
list and output cluster identifier list (device description is notably missing). The device description is simply
a convention for specifying mandatory and optional cluster identifier support within devices of that type for
the indicated profile. Additionally, it is expected that the device description enumeration would be employed
within PDAs or other assisted binding devices to provide external descriptions of device capabilities.

1.3.1.5 Mixing standard and proprietary profiles

As an example, a ZigBee device could be created with a single endpoint application written for a standard,
published ZigBee profile identifier “XX”. If a manufacturer wanted to deploy a ZigBee device supporting
the standard profile “XX” and also provide vendor specific extensions, these extensions would be advertised
on a separate endpoint. Devices that support the standard profile identifier “XX” but not manufactured with
the vendor extensions, would only advertise support for the single profile identifier “XX” and could not
respond to or create messages using the vendor extensions.

1.3.1.6 Enabling backward compatibility

In the previous example, a device is created using a standard, published ZigBee profile identifier “XX”
which contains the initial version of the standard profile. If the ZigBee Alliance were to update this standard
profile to create new features and additions, the revisions would be incorporated into a new standard profile
with a new profile identifier (say “XY”). Devices manufactured with just profile identifier “XX” would be
backward compatible with newer devices manufactured later by having the newer devices advertise support
for both profile identifier “XX” and profile identifier “XY”. In this manner, the newer device may
communicate with older devices using profile identifier “XX”, however, also communicate with newer
devices using profile identifier “XY” from within the same application. The service discovery feature within
ZigBee enables devices on the network to determine the level of support.

1.3.2 Standard data type formats

ZigBee devices, such as thermostats, lamps, etc, are defined in terms of the attributes they contain, which
can be written, read or reported using the set, get and event commands using the KVP service type or
combined into application specific messages via the MSG service type. This section describes the data types
and formats used for these attributes. Note that the individual device descriptions show valid values, ranges,
and units for the attributes they represent.

ZigBee defines the standard data types listed in Table 19 and described in the following sub-clauses. In a
KVP command frame, the attribute data type field (see sub-clause 1.3.4.5.1.2) shall contain the appropriate
value of the data type identifier as listed in Table 19 that represents the data type of the attribute being
referred to.

Table 19 ZigBee standard data types
Data type identifier

b3b2b1b0
Data type Length of data (octets)

0000 No data 0

0001 Unsigned 8-bit integer 1

0010 Signed 8-bit integer 1

0011 Unsigned 16-bit integer 2

0100 Signed 16-bit integer 2

0101 – 1010 Reserved -

1011 Semi-precision 2
64 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.2.1 No data type

The no data type is a special type to represent an attribute with no associated data.

1.3.2.2 Unsigned 8-bit integer

This is an unsigned 8-bit representation. The range is 0 - 255.

1.3.2.3 Signed 8-bit integer

This is an 8-bit twos complement representation. The range is –128 to +127.

1.3.2.4 Unsigned 16-bit integer

This is an unsigned 16-bit number. The range is 0 - 65535 and the minimum resolution is fixed at 1-bit.

1.3.2.5 Signed 16-bit integer

This is a 16-bit twos complement number. The range is – 32768 to + 32767 and the minimum resolution is
fixed at 1-bit.

1.3.2.6 Semi-precision number

Some values, such as light level, have a very wide range. In this case, if the ambient light level is 1 Lux, the
eye is very sensitive to an increase of light level by 1 Lux. However, if the ambient level is 100 Lux, an
increase of 1 Lux is not noticeable. These values are best represented using the ZigBee semi-precision
number, which allows the resolution to track the value being represented.

The ZigBee semi-precision number format is based on the IEEE 754 standard for binary floating-point
arithmetic. This number format should be used very sparingly, when absolutely necessary, keeping in mind
the code and processing required supporting it.

The value is calculated as:

Value = -1Sign * (Hidden + Mantissa/1024) * 2 (Exponent-15)

Figure 13 – Format of the ZigBee semi-precision number

Note: The transmission order for the format in Figure 13 is bit 0 first.

1100 Absolute time 4

1101 Relative time 4

1110 Character string Defined in first octet

1111 Octet string Defined in first octet

Sign Exponent Hidden Mantissa

S E4 E3 E2 E1 E0 H . M9 M8 M7 M6 M5 M4 M3 M2 M1 M0

bit 15 10 9 0

Table 19 ZigBee standard data types
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 65

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
For normalized numbers (>2-14), the hidden bit = 1 and the resolution is constant at 11 bits (1 in 2048).

For un-normalized numbers, the hidden bit = 0. Note that this does not maintain 11-bit resolution and that
the resolution becomes coarser as the number gets smaller.

The hidden bit is not sent over the link. It shall have the value ‘1’ (i.e. normalized) in order to be classified as
a ZigBee semi-precision number.

The sign bit is set to 0 for positive values, 1 for negative.

The exponent is 5 bits. The actual exponent of 2 is calculated as (exponent – 15).

Certain values are reserved for specific purposes:

— Not a Number: this is used for undefined values (e.g. at switch-on and before initialization) and is
indicated by an exponent of 31 with a non-zero mantissa.

— Infinity: this is indicated by an exponent of 31 and a zero mantissa. The sign bit indicates whether
this represents + infinity or – infinity, the figure of 0x7c00 representing + ∞ and 0xfc00 representing
- ∞.

— Zero: this is indicated by both a zero exponent and zero mantissa. The sign bit indicates whether this
is + or – zero, the value 0x0000 representing +zero and 0x8000 representing –zero.

— Un-normalised numbers: numbers <2-14 are indicated by a value of 0 for the exponent. The hidden
bit is set to zero.

The maximum value represented by the mantissa is 0x3ff / 1024. The largest number that can be represented
is therefore:

-1Sign * (1 +1023/1024) * 2 (30 -15) = ± 1.9990234 * 32768 = ± 65504

Certain applications may choose to scale this value to allow representation of larger values (with a
correspondingly more coarse resolution). For details, see the relevant device descriptions.

For example, a value of +2 is represented by +2(16-15) * 1.0 = 0x4000, while a value of –2 is represented by
0xc000.

Similarly, a value of +0.625 is represented by +2(17-15) * 1.625 = 0x4680, while –0.625 is represented by
0xc680.

1.3.2.7 Absolute time

This is an unsigned 32-bit integer representation for absolute time. Absolute time is measured in seconds
from midnight, 1st January 2000.

1.3.2.8 Relative time

This is an unsigned 32-bit integer representation for relative time. Relative time is measured in milliseconds.
66 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.2.9 Character string

The character string data type contains data octets encoding characters according to the language and
character set field of the complex descriptor. The character string data type shall be formatted as illustrated
in Table 13.

Figure 13 Format of the character string type

The character count sub-field is one octet in length and specifies the number of characters, encoded
according to the language and character set field of the complex descriptor (see sub-clause 1.3.3.7.1),
contained in the character data sub-field.

The character data sub-field is e*n octets in length, where e is the size of the character, as specified by the
language and character set field of the complex descriptor, and n is the value of the character count sub-field.
This sub-field contains the encoded characters that comprise the desired character string.

1.3.2.10 Octet string

The octet string data type contains data in an application-defined format, not defined in this specification.
The octet string data type shall be formatted as illustrated in Figure 14.

Figure 14 Format of the octet string type

The octet count sub-field is one octet in length and specifies the number of octets contained in the freeform
data sub-field.

The octet data sub-field is n octets in length, where n is the value of the octet count sub-field. This sub-field
contains the application-defined data.

1.3.3 ZigBee descriptors

ZigBee devices describe themselves using descriptor data structures. The actual data contained in these
descriptors is defined in the individual device descriptions. There are five descriptors: node, node power,
simple, complex and user, shown in Table 20.

Octets: 1 Variable

Character count Character data

Octets: 1 Variable

Octet count Octet data

Table 20 ZigBee descriptors
Descriptor name Status Description

Node M Type and capabilities of the node

Node power M Node power characteristics

Simple M Device descriptions contained in node

Complex O Further information about the device descriptions

User O User-definable descriptor
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 67

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.3.1 Transmission of descriptors

The node, node power, simple and user descriptors shall be transmitted in the order that they appear in their
respective tables, i.e. the field at the top of the table is transmitted first and the field at the bottom of the table
is transmitted last. Each individual field shall follow the transmission order specified in “Transmission
order” on page 20.

The complex descriptor shall be formatted and transmitted as illustrated in Figure 15.

Figure 15 Format of the complex descriptor

Each field included in the complex descriptor shall be formatted as illustrated in Figure 16.

Figure 16 Format of an individual complex descriptor field

1.3.3.1.1 Field count field

The field count field is one octet in length and specifies the number of fields included in the descriptor, each
formatted as illustrated in Figure 16.

1.3.3.1.1.1 Compressed XML tag field

The compressed XML tag field is one octet in length and specifies the XML tag for the current field. The
compressed XML tags for the complex descriptor are listed in Table 32.

1.3.3.1.1.2 Field data field

The field data field has a variable length and contains the information specific to the current field, as
indicated by the compressed XML tag field.

1.3.3.2 Discovery via descriptors

Descriptor information is queried in the ZDO management entity device and service discovery using the
ZigBee device profile request primitive addressed to endpoint 0. For details of the discovery operation, see
sub-clause 1.1.5. Information is returned via the ZigBee device profile indication primitive.

The node and node power descriptors apply to the complete node. The other descriptors must be specified
for each endpoint defined in the node. If a node contains multiple subunits, these will be on separate
endpoints and the specific descriptors for these endpoints are read by including the relevant endpoint
number in the ZigBee device profile primitive.

Octets: 1 Variable … Variable

Field count Field 1 … Field n

Octets: 1 Variable

Compressed
XML tag Field data
68 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.3.3 Composite devices

A ZigBee node may contain a number of separate subunits, each of which has its own simple, complex or
user descriptors. The mechanism for discovering this is described in ZigBee device profile service discovery
section.

1.3.3.4 Node descriptor

The node descriptor contains information about the capabilities of the ZigBee node and is mandatory for
each node. There shall be only one node descriptor in a node.

The fields of the node descriptor are shown in Table 21 in their order of transmission.

1.3.3.4.1 Logical type field

The logical type field of the node descriptor is three bits in length and specifies the device type of the ZigBee
node. The logical type field shall be set to one of the non-reserved values listed in Table 22.

1.3.3.4.2 APS flags field

The APS flags field of the node descriptor is three bits in length and specifies the application support sub-
layer capabilities of the node.

This field is currently not supported and shall be set to zero.

Table 21 Fields of the node descriptor
Field name Length (bits)

Logical type 3

Reserved 5

APS flags 3

Frequency band 5

MAC capability flags 8

Manufacturer code 16

Maximum buffer size 8

Maximum transfer size 16

Table 22 Values of the logical type field
Logical type value

b2b1b0
Description

000 ZigBee coordinator

001 ZigBee router

010 ZigBee end device

011-111 Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 69

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.3.4.3 Frequency band field

The frequency band field of the node descriptor is five bits in length and specifies the frequency bands that
are supported by the underlying IEEE 802.15.4 radio utilized by the node. For each frequency band
supported by the underlying IEEE 802.15.4 radio, the corresponding bit of the frequency band field, as listed
in Table 23, shall be set to 1. All other bits shall be set to 0.

1.3.3.4.4 MAC capability flags field

The MAC capability flags field is eight bits in length and specifies the node capabilities, as required by the
IEEE 802.15.4 MAC sub-layer [B1]. The MAC capability flags field shall be formatted as illustrated in
Figure 17.

Figure 17 Format of the MAC capability flags field

The alternate PAN coordinator sub-field is one bit in length and shall be set to 1 if this node is capable of
becoming a PAN coordinator. Otherwise the alternative PAN coordinator sub-field shall be set to 0.

The device type sub-field is one bit in length and shall be set to 1 if this node is a full function device (FFD).
Otherwise the device type sub-field shall be set to 0, indicating a reduced function device (RFD).

The power source sub-field is one bit in length and shall be set to 1 if the current power source is mains
power. Otherwise the power source sub-field shall be set to 0. This information is derived from the node
current power source field of the node power descriptor.

The receiver on when idle sub-field is one bit in length and shall be set to 1 if the device does not disable its
receiver to conserve power during idle periods. Otherwise the receiver on when idle sub-field shall be set to
0 (see also sub-clause 1.3.3.5.)

The security capability sub-field is one bit in length and shall be set to 1 if the device is capable of sending
and receiving frames secured using the security suite specified in [B1]. Otherwise the security capability
sub-field shall be set to 0.

1.3.3.4.5 Manufacturer code field

The manufacturer code field of the node descriptor is sixteen bits in length and specifies a manufacturer
code that is allocated by the ZigBee Alliance, relating the manufacturer to the device.

Table 23 Values of the frequency band field
Frequency band
field bit number

Supported frequency
band

0 868 – 868.6 MHz

1 Reserved

2 902 – 928 MHz

3 2400 – 2483.5 MHz

4 Reserved

Bits: 0 1 2 3 4-5 6 7

Alternate
PAN coordi-

nator
Device type Power

source
Receiver on
when idle Reserved Security

capability Reserved
70 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.3.4.6 Maximum buffer size field

The maximum buffer size field of the node descriptor is eight bits in length, with a valid range of 0x00-0x7f,
and specifies the maximum size, in octets, of the application support sub-layer data unit (ASDU) for this
node. This is the maximum size of data or commands passed to or from the application by the application
support sub-layer, before any fragmentation or re-assembly (fragmentation is not currently supported).

This field can be used as a high level indication for network management.

1.3.3.4.7 Maximum transfer size field

The maximum transfer size field of the node descriptor is sixteen bits in length, with a valid range of
0x0000-0x7fff, and specifies the maximum size, in octets, that can be transferred to or from this node in one
single message transfer. This value can exceed the value of the node maximum buffer size field (see sub-
clause 1.3.3.4.6).

This field is currently not supported and shall be set to zero.

1.3.3.5 Node power descriptor

The node power descriptor gives a dynamic indication of the power status of the node and is mandatory for
each node. There shall be only one node power descriptor in a node.

The fields of the node power descriptor are shown in Table 24 in the order of their transmission.

1.3.3.5.1 Current power mode field

The current power mode field of the node power descriptor is four bits in length and specifies the current
sleep/power-saving mode of the node. The current power mode field shall be set to one of the non-reserved
values listed in Table 25.

Table 24 Fields of the node power descriptor
Field name Length (bits)

Current power mode 4

Available power sources 4

Current power source 4

Current power source level 4

Table 25 Values of the current power mode field
Current power mode value

b3b2b1b0
Description

0000 Receiver synchronized with the receiver on when idle sub-field of
the node descriptor.

0001 Receiver comes on periodically as defined by the node power
descriptor.

0010 Receiver comes on when stimulated, e.g. by a user pressing a but-
ton.

0011-1111 Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 71

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.3.5.2 Available power sources field

The available power sources field of the node power descriptor is four bits in length and specifies the power
sources available on this node. For each power source supported on this node, the corresponding bit of the
available power sources field, as listed in Table 26, shall be set to 1. All other bits shall be set to 0.

1.3.3.5.3 Current power source field

The current power source field of the node power descriptor is four bits in length and specifies the current
power source being utilized by the node. For the current power source selected, the corresponding bit of the
current power source field, as listed in Table 27, shall be set to 1. All other bits shall be set to 0.

1.3.3.5.4 Current power source level field

The current power source level field of the node power descriptor is four bits in length and specifies the level
of charge of the power source. The current power source level field shall be set to one of the non-reserved
values listed in Table 28.

Table 26 Values of the available power sources field
Available power sources

field bit number Supported power source

0 Constant (mains) power

1 Rechargeable battery

2 Disposable battery

3 Reserved

Table 27 Values of the current power sources field
Current power source

field bit number Current power source

0 Constant (mains) power

1 Rechargeable battery

2 Disposable battery

3 Reserved

Table 28 Values of the current power source level field
Current power source

level field b3b2b1b0
Charge level

0000 Critical

0100 33%

1000 66%

1100 100%

All other values Reserved
72 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.3.6 Simple descriptor

The simple descriptor contains information specific to each endpoint contained in this node. The simple
descriptor is mandatory for each endpoint present in the node.

The fields of the simple descriptor are shown in Table 29 in their order of transmission. As this descriptor
needs to be transmitted over air, the overall length of the simple descriptor shall be less than or equal to
maxCommandSize.

1.3.3.6.1 Endpoint field

The endpoint field of the simple descriptor is eight bits in length and specifies the endpoint within the node
to which this description refers. Applications shall only use endpoints 1-240.

1.3.3.6.2 Application profile identifier field

The application profile identifier field of the simple descriptor is sixteen bits in length and specifies the
profile that is supported on this endpoint. Profile identifiers shall be obtained from the ZigBee Alliance.

1.3.3.6.3 Application device identifier field

The application device identifier field of the simple descriptor is sixteen bits in length and specifies the
device description supported on this endpoint. Device description identifiers shall be obtained from the
ZigBee Alliance.

Table 29 Fields of the simple descriptor
Field name Length (bits)

Endpoint 8

Application profile identifier 16

Application device identifier 16

Application device version 4

Application flags 4

Application input cluster count 8

Application input cluster list 8*i (where i is the value of the application
input cluster count)

Application output cluster count 8

Application output cluster list 8*o (where o is the value of the applica-
tion input cluster count)
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 73

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.3.6.4 Application device version field

The application device version field of the simple descriptor is four bits in length and specifies the version of
the device description supported on this endpoint. The application device version field shall be set to one of
the non-reserved values listed in Table 30.

1.3.3.6.5 Application flags field

The application flags field of the simple descriptor is four bits in length and specifies application specific
flags. For each feature supported by the application on this endpoint, the corresponding bit of the application
flags field, as listed in Table 31, shall be set to 1. All other bits shall be set to 0.

1.3.3.6.6 Application input cluster count field

The application input cluster count field of the simple descriptor is eight bits in length and specifies the
number of input clusters, supported on this endpoint, that will appear in the application input cluster list
field. If the value of this field is zero, the application input cluster list field shall not be included.

1.3.3.6.7 Application input cluster list

The application input cluster list of the simple descriptor is 8*i bits in length, where i is the value of the
application input cluster count field, and specifies the list of input clusters supported on this endpoint, used
during the binding procedure.

The application input cluster list field shall be included only if the value of the application input cluster
count field is greater than zero.

1.3.3.6.8 Application output cluster count field

The application output cluster count field of the simple descriptor is eight bits in length and specifies the
number of output clusters, supported on this endpoint, that will appear in the application output cluster list
field. If the value of this field is zero, the application output cluster list field shall not be included.

1.3.3.6.9 Application output cluster list

The application output cluster list of the simple descriptor is 8*o bits in length, where o is the value of the
application output cluster count field, and specifies the list of output clusters supported on this endpoint,
used during the binding procedure.

Table 30 Values of the application device version field
Application device version value

b3b2b1b0
Description

0000 Version 1.0

0001–1111 Reserved

Table 31 Values of the application flags field
Application flags
field bit number Supported feature

0 Complex descriptor available

1 User descriptor available

2-3 Reserved
74 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The application output cluster list field shall be included only if the value of the application output cluster
count field is greater than zero.

1.3.3.7 Complex Descriptor

The complex descriptor contains extended information for each of the device descriptions contained in this
node. The use of the complex descriptor is optional.

Due to the extended and complex nature of the data in this descriptor it is presented in XML form using
compressed XML tags. Each field of the descriptor, shown in Table 32, can therefore be transmitted in any
order. As this descriptor needs to be transmitted over air, the overall length of the complex descriptor shall
be less than or equal to maxCommandSize.

1.3.3.7.1 Language and character set field

The language and character set field is three octets in length and specifies the language and character set
used by the character strings in the complex descriptor. The format of the language and character set field is
illustrated in Figure 18.

Figure 18 Format of the language and character set field

The ISO 639-1 language code sub-field is two octets in length and specifies the language used for character
strings, as defined in [B5].

Table 32 Fields of the complex descriptor

Field name XML tag
Compressed XML tag

value b3b2b1b0
Data type

Reserved - 0000 -

Language and character set <languageChar> 0001 See sub-
clause 1.3.3.7.1.

Manufacturer name <manufacturerName> 0010 Character string

Model name <modelName> 0011 Character string

Serial number <serialNumber> 0100 Character string

Device URL <deviceURL> 0101 Character string

Icon <icon> 0110 Undefined

Icon URL <iconURL> 0111 Character string

Reserved - 1000 – 1111 -

Octets: 2 1

ISO 639-1 language code Character set
identifier
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 75

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The character set identifier sub-field is one octet in length and specifies the encoding used by the characters
in the character set. This sub-field shall be set to one of the non-reserved values listed in Table 33.

If the language and character sets have not been specified, the language shall default to English (language
code = “EN”) and the character set to ISO 646.

1.3.3.7.2 Manufacturer name field

The manufacturer name field has a variable length and contains a character string representing the name of
the manufacturer of the device.

1.3.3.7.3 Model name field

The model name field has a variable length and contains a character string representing the name of the
manufacturers model of the device.

1.3.3.7.4 Serial number field

The serial number field has a variable length and contains a character string representing the manufacturers
serial number of the device.

1.3.3.7.5 Device URL field

The device URL field has a variable length and contains a character string representing the URL through
which more information relating to the device can be obtained.

1.3.3.7.6 Icon field

The icon field has a variable length and contains the data for an icon that can represent the device on a
computer, gateway or PDA. The format of the icon data is not specified in this document.

1.3.3.7.7 Icon URL field

The icon URL field has a variable length and contains a character string representing the URL through
which the icon for the device can be obtained.

1.3.3.8 User descriptor

The user descriptor contains information that allows the user to identify the device using a user-friendly
character string, such as “Bedroom TV” or “Stairs light”. The use of the user descriptor is optional. This
descriptor contains a single field, which uses the character string data type (see sub-clause 1.3.2.9), and shall
contain a maximum of 16 characters.

Table 33 Values of the character set identifier sub-field
Character set

identifier value
Bits per

character Description

0x00 8
ISO 646, ASCII character set. Each character is fitted into
the least significant 7 bits of an octet with the most signifi-
cant bit set to zero (see also [B6]).

0x01 – 0xff - Reserved
76 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The fields of the user descriptor are shown in Table 34 in the order of their transmission.

1.3.4 AF frame formats

The general AF frame format is illustrated in Figure 19.

Figure 19 Format of the general application framework command frame

The format of each transaction i field, where 1 ≤ i ≤ n, is illustrated in Figure 20. Each transaction contains a
transaction header and a transaction payload, the latter composed of frame type-specific data.

Figure 20 Format of a transaction field

1.3.4.1 Transaction count field

The transaction count field is four bits in length and specifies the number of transactions, n, appearing in the
general frame, each contiguously following the frame type field.

1.3.4.2 Frame type field

The frame type field is four bits in length and specifies the service type used by each of the following
transactions. This field shall be set to one of the non-reserved values listed in Table 35.

Table 34 Fields of the user descriptor
Field name Length (octets)

User description 16

Bits: 4 4 Variable Variable Variable

Transaction
count Frame type Transaction 1 … Transaction n

Bits: 8 Variable

Transaction
sequence
number

Transaction
data

Transaction
header

Transaction
payload

Table 35 Values of the frame type field
Frame type value

b3b2b1b0
Description

0000 Reserved

0001 Key value pair (KVP)

0010 Message (MSG)

0011 – 1111 Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 77

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.4.3 Transaction sequence number field

The transaction sequence number field is eight bits in length and specifies an identification number for the
transaction so that a response command frame can be related to the request frame. The application object
itself shall maintain an 8-bit counter that is copied into this field and incremented by one for each command
sent. When a value of 0xff is reached, the next command shall re-start the counter with a value of 0x00.

If a device sends a KVP command requesting an acknowledgement, the target device shall respond with the
relevant response command and include the transaction sequence number contained in the original request
command. Similarly, this field can be used to implement acknowledged MSG commands in the same way.

The transaction sequence number field can be used by a controlling device, which may have issued multiple
commands, so that it can match the incoming responses to the relevant command.

1.3.4.4 Transaction data field

The transaction data field has a variable length and contains the data for the individual transaction. The
format and length of this field is dependent on the value of the frame type field and contains either a KVP
frame (see sub-clause 1.3.4.5.1) or a MSG frame (see sub-clause 1.3.4.5.2).

1.3.4.5 Format of individual frame types

There are two defined frame types: key value pair (KVP) and message (MSG). Each of these frame types is
discussed in the following sub-clauses.

1.3.4.5.1 Key value pair (KVP) frame format

The KVP frame type enables an application to manipulate attributes, defined by the application profile.
Attributes have a designator (the key) and an associated value, which can be set or requested using the
commands specified in sub-clause 1.3.5.

Commands are sent and received using the APS APSDE-DATA.request and APSDE-DATA.indication
primitives, through the ASDU data field, as described in sub-clause 1.2.4.1.

Commands can be sent (or received) directly to (or from) an attribute in a target using direct addressing, or
via the binding table, in a ZigBee coordinator, using indirect addressing. The APS cluster identifier shall
match the cluster that contains the attribute being manipulated. The APS security suite shall indicate which
security suite is required for the outgoing command.

The use of this interface changes according to the addressing method in use. More details can be found in
clause 1.2.

The KVP command frame shall be formatted as illustrated in Figure 21.

Figure 21 Format of the general KVP command frame

1.3.4.5.1.1 Command type identifier field

The command type identifier field is four bits in length and specifies the type of the command. This field
shall be set to one of the non-reserved values listed in Table 36. Note that for messages sent indirectly via the
ZigBee coordinator, only the set and event command types are permitted.32

Bits: 4 4 16 0/8 Variable

Command
type identifier

Attribute data
type

Attribute iden-
tifier Error code Attribute data
78 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
.

1.3.4.5.1.2 Attribute data type field

The attribute data type field is four bits in length and specifies the type of the data in the attribute data field.
This field shall be set to one of the non-reserved values listed in Table 19. The length of the attribute data
field is either implied directly from the type or specified in the first octet of the attribute data field.

For more details of the available data types, see sub-clause 1.3.2.

1.3.4.5.1.3 Attribute identifier field

The attribute identifier field is sixteen bits in length and specifies the attribute within the target device on
which the command is to operate. The value of this field is defined in the relevant device description.

1.3.4.5.1.4 Error code field

The error code field is eight bits in length and specifies the status of a transaction. This field, included only
in response commands, shall be set to one of the non-reserved values listed in Table 37.

32CCB Comment #232

Table 36 Values of the command type identifier field
Command type
identifier value

b3b2b1b0
Description Sub-clause

0000 Reserved -

0001 Set 1.3.5.3

0010 Event 1.3.5.5

0011 Reserved -

0100 Get with acknowledgement 1.3.5.1

0101 Set with acknowledgement 1.3.5.3

0110 Event with acknowledgement 1.3.5.5

0111 Reserved -

1000 Get response 1.3.5.2

1001 Set response 1.3.5.4

1010 Event response 1.3.5.6

1011 – 1111 Reserved -

Table 37 Values of the error code field
Error code value Description

0x00 Success

0x01 Invalid endpoint

0x02 Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 79

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Note that other errors, such as invalid security suite or cluster identifier are signaled by the APS directly. For
further details, see clause 1.2.

1.3.4.5.1.5 Attribute data field

The attribute data field has a variable length and contains information specific to the attribute referenced in
the attribute identifier field. This field is dependent on the particular command, the data type of the attribute
and the device description.

If not defined directly by the data type of the attribute being referred to, the length of this field shall be such
that the length of the entire command frame is less than or equal to maxCommandSize, unless both source
and destination support fragmentation.

For details, see the individual commands in the following sections.

1.3.4.5.2 MSG frame format

The MSG frame type enables an application profile to work with free form frame formats, defined by the
application profile itself. This allows applications, which do not easily fit into the KVP structure, the
flexibility to define commands, which better suit its needs.

MSG frames are sent using the APS APSDE-DATA.request primitive and received via the APSDE
DATA.indication primitive as described in sub-clause 1.2.4.1.

The application object uses device descriptions to define the service type, and hence the frame type which
supports the service, for each cluster. For MSG frames, the device description is also responsible for
defining the usage of the message.

An MSG transaction frame shall be formatted as illustrated in Figure 22.

Figure 22 Format of the MSG transaction frame

The MSG transaction frame does not implicitly support application level acknowledgements or command
aggregation but is instead of free form frame for transporting data for messages defined in an application
profile.

0x03 Unsupported attribute

0x04 Invalid command type

0x05 Invalid attribute data length

0x06 Invalid attribute data

0x07 – 0x0f Reserved

0x10-0xff Application defined error

Bits: 8 Variable

Transaction
length

Transaction
data

Table 37 Values of the error code field
80 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.4.5.2.1 Transaction length field

The transaction length field is eight bits in length and specifies the number of octets contained in the
following transaction data field.

1.3.4.5.2.2 Transaction data field

The transaction data field has a variable length, which shall be less than or equal to maxCommandSize,
unless both source and destination support fragmentation, and contains message specific information,
defined in a particular application profile.

1.3.5 KVP command frames

The following KVP commands are supported:

— Set, set with acknowledgement and get with acknowledgement commands for manipulating attribute
values.

— Set response and get response command replies initiated by the reception of the set with acknowl-
edgement and get with acknowledgement commands, respectively.

— Event and event with acknowledgement commands for informing another device that the value of an
attribute has changed value.

— Event response command reply initiated by the reception of the event with acknowledgement com-
mand.

— Aggregations of the above commands for attributes within the same cluster. Aggregation is not cur-
rently supported.

The command format uses compressed XML (extensible markup language) based on WBXML (WAP
Binary XML). In this compressed format, textual tags are compressed into a single octet tokenized format.
Using the schemas in Annex F, the compressed XML can be inflated to a full textual XML description for
use in other systems. It is not expected that uncompressed XML is sent over the ZigBee radio link in normal
operation.

The set and event commands can be sent with an optional application level acknowledgement, allowing the
originator to confirm that a command was actually received by the recipient. There is no get command
available without an acknowledgement since the transaction naturally requires a response. Note that for
messages sent indirectly via the ZigBee coordinator, only the set and event command types are permitted.33

1.3.5.1 Get with acknowledgement command frame

The get with acknowledgement command frame shall be formatted as illustrated in Figure 23.

Figure 23 Format of the get with acknowledgement command frame

33CCB Comment #232

Bits: 8 4 4 16

Transaction
sequence
number

Command
type identifier

Attribute data
type

Attribute iden-
tifier

Transaction
header Transaction payload
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 81

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.5.1.1 When generated

The get with acknowledgement command frame is generated when a device wishes to read an attribute value
from another device.

The transaction sequence number shall be set to the next value of the sequence number maintained by the
application. The command type identifier field shall be set to 0100 (binary). The attribute data type shall be
set to the type of the attribute being requested. The attribute identifier field shall contain the identifier of the
attribute being requested.

1.3.5.1.2 Effect on receipt

On receipt of the get with acknowledgement command frame, the recipient device shall determine whether it
defines the requested attribute. If not, the recipient device shall generate and send a get response command
frame back to the originator with the error code field set to an appropriate value that indicates the error. If the
attribute is defined, the recipient device shall generate and send a get response command frame back to the
recipient with the requested attribute data.

1.3.5.2 Get response command frame

The get response command frame shall be formatted as illustrated in Figure 24.

Figure 24 Format of the get response command frame

1.3.5.2.1 When generated

The get response command frame is generated in response to the reception of a get with acknowledgement
command frame.

The transaction sequence number shall be set to value of the transaction sequence number sent with the get
with acknowledgement command frame. The command type identifier field shall be set to 1000 (binary).
The attribute data type shall be set to the type of the attribute being requested. The attribute identifier field
shall contain the identifier of the attribute being requested.

If the requested attribute was defined and the get with acknowledgement command frame contained no
errors, the error code field shall contain 0x00, indicating a successful request. Otherwise, the error code field
shall be set to one of the non-reserved values listed in Table 37.

The attribute data field shall contain the value of the attribute requested in the attribute identifier field and
shall be a whole number of octets in the specified data type format. If the length of this field is not defined
directly by the data type of the attribute being referred to, the first octet shall contain the length, in octets, of
the rest of the data (see also Table 19). The actual meaning of the data is specified in the relevant device
description.

Bits: 8 4 4 16 8 Variable

Transaction
sequence
number

Command
type identifier

Attribute data
type

Attribute
identifier Error code Attribute data

Transaction
header Transaction payload
82 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.5.2.2 Effect on receipt

On receipt of the get response command frame, the originator is notified of the success of their request to
read the value of an attribute. If the error code field contains 0x00, the transaction was successful and the
attribute value can be used. If the error code field does not contain the value 0x00, the transaction was
unsuccessful.

1.3.5.3 Set/set with acknowledgement command frame

The set and set with acknowledgement command frames shall be formatted as illustrated in Figure 25.

Figure 25 Format of the set/set with acknowledgement command frame

1.3.5.3.1 When generated

The set and set with acknowledgement command frames are generated when a device wishes to write an
attribute value to another device. The set with acknowledgement command frame is used when a response is
required from the recipient.

The transaction sequence number shall be set to the next value of the sequence number maintained by the
application. The command type identifier field shall be set to 0001 or 0101 (binary), for the set or set with
acknowledgement command frames, respectively. The attribute data type shall be set to the type of the
attribute being written. The attribute identifier field shall contain the identifier of the attribute being written.

The attribute data field shall contain the value to write to the attribute requested in the attribute identifier
field and shall be a whole number of octets in the specified data format. If the length of this field is not
defined directly by the data type of the attribute being referred to, the first octet shall contain the length, in
octets, of the rest of the data (see also Table 19). The actual meaning of the data is specified in the relevant
device description.

1.3.5.3.2 Effect on receipt

On receipt of the set command frame, the recipient device shall determine whether it defines the requested
attribute. If not, the recipient device shall ignore the command. If the attribute is defined, the recipient
device shall write the data in the attribute data field to the attribute specified in the attribute identifier field.

On receipt of the set with acknowledgement command frame, the recipient device shall determine whether it
defines the requested attribute. If not, the recipient device shall generate and send a set response command
frame back to the originator with the error code field set to an appropriate value that indicates the error. If the
attribute is defined, the recipient device shall write the data in the attribute data field to the attribute
specified in the attribute identifier field. It shall then generate and send a set response command frame back
to the recipient with a suitable error code.

Bits: 8 4 4 16 Variable

Transaction
sequence
number

Command
type identifier

Attribute data
type

Attribute
identifier Attribute data

Transaction
header Transaction payload
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 83

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.5.4 Set response command frame

The set response command frame shall be formatted as illustrated in Figure 26.

Figure 26 Format of the set response command frame

1.3.5.4.1 When generated

The set response command frame is generated in response to the reception of a set with acknowledgement
command frame.

The transaction sequence number shall be set to value of the transaction sequence number sent with the set
with acknowledgement command frame. The command type identifier field shall be set to 1001 (binary).
The attribute data type shall be set to the type of the attribute that was written. The attribute identifier field
shall contain the identifier of the attribute that was written.

If the requested attribute was defined and the set with acknowledgement command frame contained no
errors, the error code field shall contain 0x00, indicating a successful request. Otherwise, the error code field
shall be set to one of the non-reserved values listed in Table 37.

1.3.5.4.2 Effect on receipt

On receipt of the set response command frame, the originator is notified of the success of their request to
write the value of an attribute. If the error code field contains 0x00, the transaction was successful and the
attribute value was written. If the error code field does not contain the value 0x00, the transaction was
unsuccessful.

1.3.5.5 Event/event with acknowledgement

The event and event with acknowledgement command frames shall be formatted as illustrated in Figure 27.

Figure 27 Format of the event/event with acknowledgement command frame

1.3.5.5.1 When generated

The event and event with acknowledgement command frames are generated when a device wishes to inform
another device that the value of an attribute has changed. The event with acknowledgement command frame
is used when a response is required from the recipient.

Bits: 8 4 4 16 8

Transaction
sequence
number

Command
type identifier

Attribute data
type

Attribute
identifier Error code

Transaction
header Transaction payload

Bits: 8 4 4 16 Variable

Transaction
sequence
number

Command
type identifier

Attribute data
type

Attribute
identifier Attribute data

Transaction
header Transaction payload
84 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The transaction sequence number shall be set to the next value of the sequence number maintained by the
application. The command type identifier field shall be set to 0010 or 0110 (binary), for the event or event
with acknowledgement command frames, respectively. The attribute data type shall be set to the type of the
attribute that has changed. The attribute identifier field shall contain the identifier of the attribute that has
changed.

The attribute data field shall contain the changed value of the attribute specified in the attribute identifier
field and shall be a whole number of octets in the specified data format. If the length of this field is not
defined directly by the data type of the attribute being referred to, the first octet shall contain the length, in
octets, of the rest of the data (see also Table 19). The actual meaning of the data is specified in the relevant
device description.

1.3.5.5.2 Effect on receipt

On receipt of the event command frame, the recipient device is notified of the new value of the attribute
specified in the attribute identifier field.

On receipt of the event with acknowledgement command frame, the recipient device is notified of the new
value of the attribute specified in the attribute identifier field. It shall then generate and send an event
response command frame back to the recipient with a suitable error code.

1.3.5.6 Event response command frame

The event response command frame shall be formatted as illustrated in Figure 28

Figure 28 Format of the event response command frame

1.3.5.6.1 When generated

The event response command frame is generated in response to the reception of an event with
acknowledgement command frame.

The transaction sequence number shall be set to value of the transaction sequence number sent with the
event with acknowledgement command frame. The command type identifier field shall be set to 1010
(binary). The attribute data type shall be set to the type of the attribute whose change was notified. The
attribute identifier field shall contain the identifier of the attribute whose change was notified.

If the event with acknowledgement command frame contained no errors, the error code field shall contain
0x00, indicating a successful notification. Otherwise, the error code field shall contain one of the non-
reserved values listed in Table 37.

1.3.5.6.2 Effect on receipt

On receipt of the event response command frame, the originator is notified of the success of their
notification of the change in the value of an attribute. If the error code field contains 0x00, the transaction
was successful. If the error code field does not contain the value 0x00, the transaction was unsuccessful.

Bits: 8 4 4 16 8

Transaction
sequence
number

Command
type identifier

Attribute data
type

Attribute
identifier Error code

Transaction
header Transaction payload
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 85

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.3.6 Functional description

1.3.6.1 Aggregate transactions

The general application framework frame format allows the grouping individual transactions together in the
same frame. Such a grouping of transactions is referred to as aggregation.

Only those transactions that share the same service type (i.e. KVP or MSG) and cluster identifier shall be
aggregated and the combined aggregate frame shall not exceed the maximum permitted size.34

On receipt of an aggregated set of KVP transactions, the recipient shall process each transaction in turn and,
for those transactions requiring a response, compile an aggregated set of response transactions and send
them back to the originator.

The recipient shall ensure that this set of aggregated response transactions will fit within the size restrictions
of an APS frame. If this is not possible, the recipient shall send the aggregated responses split over several
frames, with each frame containing as many aggregated responses as will fit within the size restrictions of a
single APS frame.35

1.3.6.2 Reception and rejection

The application framework shall be able to filter frames arriving via the APS sub-layer data service and only
present the frames that are of interest to the applications implemented on each active endpoint.

The application framework receives data from the APS sub-layer via the APSDE-DATA.indication primitive
and is targeted at a specific endpoint (DstEndpoint parameter) and a specific profile (ProfileId parameter).

If the application framework receives a frame for an inactive endpoint, the frame shall be discarded.
Otherwise, the application framework shall determine whether the specified profile identifier matches the
identifier of the profile implemented on the specified endpoint. If the profile identifier does not match, the
application framework shall reject the frame. Otherwise, the application framework shall pass the payload of
the received frame to the application implemented on the specified endpoint.36

1.4 The ZigBee device profile

1.4.1 Scope

This ZigBee Application Layer Specification describes how general ZigBee device features such as Binding,
Device Discovery and Service Discovery are implemented within ZigBee Device Objects. The ZigBee
Device Profile operates like any ZigBee profile by defining Device Descriptions and Clusters. Unlike
application specific profiles, the Device Descriptions and Clusters within the ZigBee Device Profile define
capabilities supported in all ZigBee devices. As with any profile document, this document details the
mandatory and/or optional clusters.

1.4.2 Device Profile overview

The Device Profile supports four key inter-device communication functions within the ZigBee protocol:

— Device and Service Discovery

34CCB Comment #234
35CCB Comment #170
36CCB Comment #208
86 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— End Device Bind Request Processing

— Bind and Unbind Command Processing

— Network Management

1.4.2.1 Device and service discovery overview

The following capabilities exist for device and service discovery:

— Device Discovery – Provides the ability for a device to determine the identity of other devices on the
PAN. Device Discovery is supported for both the 64 bit IEEE address and the 16 bit Network
address. Device Discovery messages can be used in one of two ways:

— Broadcast addressed – All devices on the network shall respond according to the Logical
Device Type and match criteria. ZigBee End Devices shall respond with just their address. Zig-
Bee Coordinators and ZigBee Routers with associated devices shall respond with their address
as the first entry followed by the addresses of their associated devices depending on the type of
request. The responding devices shall employ APS acknowledged service on the unicast
responses.

— Unicast addressed – Only the specified device responds. ZigBee End Devices shall respond
with just their address. ZigBee Coordinator or Routers shall reply with their address and the
addresses of each of their associated devices

For ZigBee Version 1.0, Device Discovery is a distributed operation where individual devices or their
immediate parent devices respond to discovery requests. To enable future upgrades to a centralized or
agent based discovery method, a "device address of interest" field has been added and the broadcast
addressed discovery commands may be optionally unicast for ZigBee releases after Version 1.0.37

— Service Discovery – Provides the ability for a device to determine services offered by other devices
on the PAN.

— Service Discovery messages can be used in one of two ways:

— Broadcast addressed –Due to the volume of information that could be returned, only the
individual device shall respond which match criteria established in the request unless that
device is a ZigBee Coordinator or ZigBee Router with sleeping associated device. In that
case, the ZigBee Coordinator or ZigBee Router shall cache the Service Discovery infor-
mation for the sleeping associated devices and respond on their behalf if the sleeping
device matches criteria in the request. The responding devices shall also employ APS
acknowledged service on the unicast responses.

— Unicast addressed – Only the specified device shall respond. In the case of a ZigBee Coor-
dinator or ZigBee Router, these devices shall cache the Service Discovery information for
sleeping associated devices and respond on their behalf.

— Service Discovery is supported with the following query types:

— Active Endpoint – This command permits an enquiring device to determine the active
endpoints. An active endpoint is one with an application supporting a single profile,
described by a Simple Descriptor. The command may be broadcast or unicast addressed.

— Match Simple Descriptor – This command permits enquiring devices to supply a Profile
ID and, optionally, lists of input and/or output Cluster IDs and ask for a return of the iden-
tity of an endpoint on the destination device which match the supplied criteria. This com-
mand may be broadcast or unicast addressed. For broadcast addressed requests, the
responding device shall employ APS acknowledged service on the unicast responses.

37CCB Comment #171
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 87

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Simple Descriptor – This commands permits an enquiring device to return the Simple
Descriptor for the supplied endpoint. This command shall be unicast addressed.

— Node Descriptor - This commands permits an enquiring device to return the Node
Descriptor from the specified device. This command shall be unicast addressed.

— Power Descriptor - This commands permits an enquiring device to return the Power
Descriptor from the specified device. This command shall be unicast addressed.

— Complex Descriptor – This optional command permits an enquiring device to return the
Complex Descriptor from the specified device. This command shall be unicast addressed.

— User Descriptor - This optional command permits an enquiring device to return the User
Descriptor from the specified device. This command shall be unicast addressed.

For ZigBee Version 1.0, Service Discovery is a distributed operation where individual devices or their
immediate parent devices respond to discovery requests. To enable future upgrades to a centralized or
agent based discovery method, a "device address of interest" field has been added and the broadcast
addressed discovery commands may be optionally unicast for ZigBee releases after Version 1.0.38

1.4.2.2 End device bind overview

The following capabilities exist for end device bind:

— End Device Bind

— Provides the ability for an application to support “simple binding” where user intervention is
employed to identify command/control device pairs. Typical usage would be where a user is
asked to push buttons on two devices for installation purposes.

— Provides the ability for an application to support a simplified method of binding where user
intervention is employed to identify command/control device pairs. Typical usage would be
where a user is asked to push buttons on two devices for installation purposes. Using this mech-
anism a second time allows the user to remove the binding table entry39

1.4.2.3 Bind and unbind overview

The following capabilities exist for directly configuring binding table entries:40

— Bind

— Provides the ability for creation of a Binding Table entry that map control messages to their
intended destination.

— Unbind

— Provides the ability to remove Binding Table entries.

1.4.2.4 Network management overview

The following capabilities exist for network management:

Network management:

— Provides the ability to retrieve management information from the devices including:

— Network discovery results

38CCB Comment #171
39CCB Comment #123, 236
40CCB Comment #236
88 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Link quality to neighbor nodes

— Routing table contents

— Binding table contents

— Provides the ability to set management information controls including:

— Network disassociate

1.4.2.5 Device Descriptions for the Device Profile

The ZigBee Device Profile utilizes a single Device Description. Each cluster specified as Mandatory shall
be present in all ZigBee devices. The response behavior to some messages is logical device type specific.
The support for Optional clusters is not dependent on the logical device type.

1.4.2.6 Service Type usage

The ZigBee Device Profile shall employ the Message (MSG) Service Type. See clause 1.3 for details.

1.4.2.7 Configuration and roles

The Device Profile assumes a client/server topology. A device making Device Discovery, Service
Discovery, Binding or Network Management requests does so via a client role. A device which services
these requests and responds does so via a server role. The client and server roles are non-exclusive in that a
given device may supply both client and server roles.

The Device Profile describes devices in one of two configurations:

— Client – A client issues requests via Device Profile messages. Based on processing of those requests
at the server, the client receives responses to the issued requests

— Server – A server is the target of requests via Device Profile messages processes those requests and
issues responses.

1.4.2.8 Cluster ID format within the Device Profile

The following Cluster ID format shall be used within the Device Profile:

Figure 29 Cluster ID Format for the Device Profile

1.4.3 Client services

The Device Profile Client Services supports the transport of device and service discovery requests, end
device binding requests, bind requests unbind requests and network management requests from client to
server. Additionally, Client Services support receipt of responses to these requests from the server.

bits: 0 - 6 7

Message Number
Request/Response Bit

Request = 0
Response = 1
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 89

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.1 Device and Service Discovery client services

Table 381 lists the primitives supported by Device Profile Device and Service Discovery Client Services.
Each of these primitives will be discussed in the following sub-clauses.

1.4.3.1.1 NWK_addr_req

1.4.3.1.1.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 38 Device and Service Discovery Client Services primitives
Device and Service

Discovery
Client Services

Client
Transmission

Server
Processing

NWK_addr_req O M

IEEE_addr_req O M

Node_Desc_req O M

Power_Desc_req O M

Simple_Desc_req O M

Active_EP_req O M

Match_Desc_req O M

Complex_Desc_req O Oa

aMust minimally return a status of NOT_SUPPORTED

User_Desc_req O Ob

bibid

Discovery_Register_req O Oc

cIbid

End_Device_annce O O

User_Desc_setd

dCCB Comment #176

O Oe

eMust minimally return a status of NOT_SUPPORTED

ClusterID=0x00 NWK_addr_req (
IEEEAddr
RequestType
StartIndex
)

90 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 39 specifies the parameters for the NWK_addr_req primitive.

1.4.3.1.1.2 When generated

The NWK_addr_req is generated from Local Device devices wishing to inquire as to the 16 bit address of
the Remote Device based on its known IEEE address. The destination addressing on this primitive shall be
broadcast.

For future upgrade ability, the destination addressing may be permitted to be unicast. This would permit
directing the message to a well-known destination that supports centralized or agent-based device discovery.

1.4.3.1.1.3 Effect on receipt

Upon receipt, a Remote Device shall compare the IEEEAddr to its local IEEE address. If there is no match,
the request shall be discarded and no response generated. If a match is detected between the contained
IEEEAddr and the Remote Device's IEEE address, the RequestType shall be used to create a response. If the
RequestType is one of the reserved values, a status of INV_REQUESTTYPE shall be returned. If the
RequestType is Single device response or Extended response, the Remote Device shall create a unicast
message to the Local Device and include the Remote Device's 16-bit NWK address as the source address
along with the matched IEEE Address in the response payload. If the RequestType was Single device
response, the response message shall be sent with a SUCCESS status. Otherwise, if the RequestType was
Extended response and the Remote Device is either the ZigBee coordinator or router with associated
devices, the Remote Device shall first include the matched IEEE Address and NWK Address in the message
payload and shall also supply a list of all 16 bit NWK addresses, starting with the entry StartIndex and
continuing with whole entries until the maximum APS packet length is reached, for its associated devices
along with a status of SUCCESS.41

Table 39 NWK_addr_req parameters
Name Type Valid range Description

IEEEAddr IEEE
Address A valid 64-bit IEEE address The IEEE address to be matched by the

Remote Device

RequestType

Integer 0x00-0xff

Request type for this command:

0x00 – Single device response

0x01 – Extended response

0x02-0xff – reserved

StartIndex

Integer 0x00-0xff

If the Request type for this command is
Extended response, the StartIndex pro-
vides the starting index for the requested
elements of the associated devices list.

41CCB Comment #171
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 91

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.1.2 IEEE_addr_req

1.4.3.1.2.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 40 specifies the parameters for the IEEE_addr_req primitive.

1.4.3.1.2.2 When generated

The IEEE_addr_req is generated from Local Device devices wishing to inquire as to the 64 bit IEEE address
of the Remote Device based on their known 16 bit address. The destination addressing on this primitive shall
be unicast.

1.4.3.1.2.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the IEEE_addr_req
and include the Remote Device's 64-bit IEEE address as the first field within the IEEE_addr_rsp payload.
Additionally, if the RequestType indicates an Extended Response and the Remote Device is the ZigBee
coordinator or router with associated devices, the Remote Device shall first include its own 64-bit IEEE
address and then shall also supply a list of all 16 bit IEEE addresses for its associated devices, starting with
the entry StartIndex and continuing with whole entries until the maximum APS packet length is reached,
with a status of SUCCESS.42

For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding device discovery
information and the NWKAddrOfInterest could be specified as a query parameter.

ClusterID=0x01 IEEE_addr_req (
NWKAddrOfInterest
RequestType
StartIndex
)

Table 40 IEEE_addr_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address that is used for IEEE

address mapping.

RequestType

Integer 0x00-0xff

Request type for this command:

0x00 – Single device response.

0x01 – Extended response.

0x02-0xff – reserved.

StartIndex

Integer 0x00-0xff

If the Request type for this command
is Extended response, the StartIndex
provides the starting index for the
requested elements of the associated
devices list.

42Ibid
92 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.1.3 Node_Desc_req

1.4.3.1.3.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 41 specifies the parameters for the Node_Desc_req primitive.

1.4.3.1.3.2 When generated

The Node_Desc_req is generated from Local Devices wishing to inquire as to the Node Descriptor of the
Remote Device. The destination addressing on this primitive can be unicast only.

1.4.3.1.3.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the Node_Desc_req
and include the Remote Device’s Node Descriptor (see clause 1.4).

For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding discovery information
and the NWKAddrOfInterest could be specified as a query parameter.

1.4.3.1.4 Power_Desc_req

1.4.3.1.4.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 42 specifies the parameters for the Power_Desc_req primitive.

1.4.3.1.4.2 When generated

The Power_Desc_req is generated from Local Devices wishing to inquire as to the Power Descriptor of the
Remote Device. The destination addressing on this primitive can be unicast only.

ClusterID=0x02 Node_Desc_req (
NWKAddrOfInterest
)

Table 41 Node_Desc_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

ClusterID=0x03 Power_Desc_req (
NWKAddrOfInterest
)

Table 42 Power_Desc_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 93

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.1.4.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the
Power_Desc_req and include the Remote Device’s Power Descriptor (see clause 1.4).

For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding discovery information
and the NWKAddrOfInterest could be specified as a query parameter.

1.4.3.1.5 Simple_Desc_req

1.4.3.1.5.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 43 specifies the parameters for the Simple_Desc_req primitive.

1.4.3.1.5.2 When generated

The Simple_Desc_Desc_req is generated from Local Devices wishing to acquire the Simple Descriptor on
the Remote Device corresponding to the supplied endpoint. The destination addressing on this primitive can
be unicast only.

1.4.3.1.5.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the
Simple_Desc_req and include the Remote Device’s Simple Descriptor corresponding to the supplied
endpoint (see clause 1.4).

For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding discovery information
and the NWKAddrOfInterest could be specified as a query parameter.

1.4.3.1.6 Active_EP_req

1.4.3.1.6.1 Semantics of the service primitive

This semantics of this primitive are as follows:

ClusterID=0x04 Simple_Desc_req (
NWKAddrOfInterest
endpoint
)

Table 43 Simple_Desc_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

endpoint 8 bits 1-240 The endpoint on the destination.

ClusterID=0x05 Active_EP_req (
NWKAddrOfInterest
)

94 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 44 specifies the parameters for the Active_EP_req primitive.

1.4.3.1.6.2 When generated

The Active_EP_req is generated from Local Devices wishing to acquire the list of endpoints on the Remote
Device with Simple Descriptors. The destination addressing on this primitive can be unicast only.

1.4.3.1.6.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the Active_EP_req
and include the Remote Device’s list of active endpoints.

For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding discovery information
and the NWKAddrOfInterest could be specified as a query parameter.

1.4.3.1.7 Match_Desc_req

1.4.3.1.7.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 45 specifies the parameters for the Match_Desc_req primitive.

Table 44 Active_EP_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

ClusterID=0x06 Match_Desc_req (
NWKAddrOfInterest
ProfileID,
NumInClusters
InClusterList
NumOutClusters
OutClusterList
)

Table 45 Match_Desc_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device Address 16 bit NWK address NWK address for the request.

ProfileID Integer 0x0000-0xffff Profile ID to be matched at the desti-
nation.

NumInClusters
Integer 0x00-0xff

The number of Input Clusters pro-
vided for matching within the InClus-
terList.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 95

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.1.7.2 When generated

The Match_Desc_req is generated from Local Devices wishing to find Remote Devices supporting the
match criteria, identified by responses citing the Remote Device address, endpoint supplying the match. The
destination addressing on this primitive can be broadcast or unicast.

1.4.3.1.7.3 Effect on receipt

Upon receipt, a Remote Device shall evaluate the Simple Descriptors on all active endpoints for a match. A
match shall be detected if the ProfileID matches and any of the elements of InClusterList or OutClusterList
match corresponding elements of the active endpoint Simple Descriptor AppInClusterList or
AppOutClusterList (see clause 1.4). Note that the NumInClusters and NumOutClusters fields can be set to 0
(zero) and the InClusterList and OutClusterList omitted whereby the match shall be entirely performed on
ProfileID. If a match is detected, the Remote Device shall create a unicast message to the Local Device
citing the Local Device address, endpoint the match was detected. The elements of InClusterList and
OutClusterList are the desired list of clusters to be matched from the Local Device. The Local Device shall
provide its input cluster information as OutClusterList and shall provide its output cluster information as
InClusterList.

For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding discovery information
and the NWKAddrOfInterest could be specified as a query parameter.

1.4.3.1.8 Complex_Desc_req

1.4.3.1.8.1 Semantics of the service primitive

This semantics of this primitive are as follows:

InClusterList

1 byte *
NumInClusters

List of Input ClusterIDs to be used for
matching. The InClusterList is the
desired list to be matched by the
Remote Device (the elements of the
InClusterList are the supported out-
put clusters of the Local Device)

NumOutClusters
Integer 0x00-0xff

The number of Output Clusters pro-
vided for matching within OutCluster-
List.

OutClusterList

1 byte *
NumOutClusters

List of Output ClusterIDs to be used
for matching. The OutClusterList is
the desired list to be matched by the
Remote Device (the elements of the
OutClusterList are the supported
input clusters of the Local Device)

ClusterID=0x10 Complex_Desc_req (
NWKAddrOfInterest
)

Table 45 Match_Desc_req parameters
96 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 46 specifies the parameters for the Complex_Desc_req primitive.

1.4.3.1.8.2 When generated

The Complex_Desc_req is generated from Local Devices wishing to acquire the Complex Descriptor on the
Remote Device. The destination addressing on this primitive can be unicast only.

1.4.3.1.8.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the
Complex_Desc_req and include the Remote Device’s Complex Descriptor (if this optional descriptor is
supported on the Remote Device). If the Remote Device does not support the Complex Descriptor, a status
of NOT_SUPPORTED shall be returned.

For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding discovery information
and the NWKAddrOfInterest could be specified as a query parameter.

1.4.3.1.9 User_Desc_req

1.4.3.1.9.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 47 specifies the parameters for the User_Desc_req primitive.

1.4.3.1.9.2 When generated

The User_Desc_req is generated from Local Devices wishing to acquire the User Descriptor on the Remote
Device. The destination addressing on this primitive can be unicast only.

1.4.3.1.9.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the User_Desc_req
and include the Remote Device’s Complex Descriptor (if this optional descriptor is supported on the Remote
Device). If the Remote Device does not support the User Descriptor, a status of NOT_SUPPORTED shall be
returned.

Table 46 Complex_Desc_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

ClusterID=0x11 User_Desc_req (
NWKAddrOfInterest
)

Table 47 User_Desc_req parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 97

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
For ZigBee Version 1.0, the destination address and the NWKAddrofInterest shall be the same. For future
upgrade ability, the destination address could be specified as a known address holding discovery information
and the NWKAddrOfInterest could be specified as a query parameter.

1.4.3.1.10 Discovery_Register_req

1.4.3.1.10.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 48specifies the parameters for the Discovery_Register_req primitive.

1.4.3.1.10.2 When generated

The Discovery_Register_req is provided as a post Version 1.0 feature to enable devices on the network to
notify the ZigBee Coordinator that the device wishes to register its discovery information. The destination
addressing on this primitive can be unicast only and the destination address shall be that of the ZigBee
Coordinator.

1.4.3.1.10.3 Effect on receipt

Upon receipt, the Remote Device (ZigBee Coordinator) shall create a unicast message to the source
indicated by the Discovery_Register_req and include the status of the request. If the ZigBee Coordinator
does not support the Discovery_Register_req, a status of NOT_SUPPORTED shall be returned.
Additionally, if the Discovery_Register_req is supported, the Remote Device (ZigBee Coordinator) is
expected to utilize the Device and Service Discovery commands described in this document to upload the
discovery information from the Local Device. Future discovery requests could then be directed to the
ZigBee Coordinator which will be able to describe device and service information for the Local Device.

1.4.3.1.11 End_Device_annce

1.4.3.1.11.1 Semantics of the service primitive

This semantics of this primitive are as follows:

ClusterID=0x12 Discovery_Register_req (
NWKAddr
IEEEAddr
)

Table 48 Discovery_Register_req parameters
Name Type Valid range Description

NWKAddr Device
Address 16 bit NWK address NWK address for the Local Device.

IEEEAddr Device
Address 64 bit IEEE address IEEE address for the Local Device.

ClusterID=0x13 End_Device_annce (
NWKAddr
IEEEAddr
)

98 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 49 specifies the parameters for the End_Device_annce primitive.

1.4.3.1.11.2 When generated

The End_Device_annce is provided to enable ZigBee end devices on the network to notify the ZigBee
coordinator that the end device has joined or re-joined the network, identifying the end devices 64 bit IEEE
address and new 16 bit NWK address. The destination addressing on this primitive is broadcast.43

1.4.3.1.11.3 Effect on receipt

Upon receipt, the Remote Device (ZigBee coordinator or source device for the binding operation) shall
utilize the IEEEAddr in the message for a match with any binding table entries held in the Remote Device. If
a match is detected, the Remote Device shall update its APS Information Block Address Map with the
updated NWKAddr corresponding to the IEEEAddr received. 44

1.4.3.1.12 User_Desc_set

1.4.3.1.12.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 50 specifies the parameters for the User_Desc_req primitive.

1.4.3.1.12.2 When generated

The User_Desc_set command is generated from a local device wishing to configure the user descriptor on a
remote device. This command shall only use unicast destination addressing.

Table 49 End_Device_annce parameters
Name Type Valid range Description

NWKAddr Device
Address 16 bit NWK address NWK address for the Local Device.

IEEEAddr Device
Address 64 bit IEEE address IEEE address for the Local Device.

43CCB Comment #169
44Ibid

ClusterID=0x14 User_Desc_set (
NWKAddrOfInterest,
UserDescription
)

Table 50 User_Desc_set parameters
Name Type Valid range Description

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

UserDescription ASCII char-
acter string 16 characters The user description to configure.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 99

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.1.12.3 Effect on receipt

On receipt of this command, the remote device shall configure the user descriptor with the supplied data.
The results of this command shall be communicated back to the local device through the User_Desc_conf
command.

If this command is not supported or if a user descriptor does not exist, the return status provided with the
User_Desc_conf command shall be set to NOT_SUPPORTED. If a user descriptor exists, the remote device
shall configure it with the data supplied in the UserDescription field of the User_Desc_set command and the
return status provided with the User_Desc_conf command shall be set to SUCCESS.45

1.4.3.2 End Device Bind, Bind and Unbind client services

Table 51 lists the primitives supported by Device Profile End Device Bind, Bind and Unbind Client
Services. Each of these primitives will be discussed in the following sub-clauses.

1.4.3.2.1 End_Device_Bind_req

1.4.3.2.1.1 Semantics of the service primitive

This semantics of this primitive are as follows:

45CCB Comment #176

Table 51 End Device Bind, Bind and Unbind Client Services primitives
End Device Bind,
Bind and Unbind
Client Services

Client
Transmission

Server
Processing

End_Device_Bind_req O Oa

a Shall minimally respond with a status of NOT_SUPPORTED

Bind_req O Ob

b Shall minimally respond with a status of NOT_SUPPORTED

Unbind_req O Oc

c Shall minimally respond with a status of NOT_SUPPORTED

ClusterID=0x20 End_Device_Bind_req (
LocalCoordinator
BindingTargeta
Endpoint
ProfileID
NumInClusters
InClusterList
NumOutClusters
OutClusterList
)

aCCB Comment #171
100 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 52 specifies the parameters for the End_Device_Bind_req primitive.

1.4.3.2.1.2 When generated

The End_Device_Bind_req is generated from Local Device devices wishing to perform End Device Bind
with a Remote Device. The End_Device_Bind_req is generated, typically based on some user action like a
button press. The destination addressing on this primitive shall be unicast and the destination address shall
be that of the ZigBee Coordinator.

1.4.3.2.1.3 Effect on receipt

The ZigBee Coordinator shall retain the End_Device_Bind_req for a pre-configured timeout duration
awaiting a second End_Device_Bind_req. If the second request does not appear within the timeout period,
the ZigBee Coordinator shall generate a TIMEOUT status and return it with the End_Device_Bind_rsp to
the originating Local Device. Assuming the second End_Device_Bind_req is received within the timeout
period, it shall be matched with the first request on the basis of the ProfileID, InClusterList and
OutClusterList.

If no match of the ProfileID is detected or if the ProfileID matches but none of the InClusterList or
OutClusterList elements match, a status of NO_MATCH shall be supplied to both Local Devices via

Table 52 End_Device_Bind_req parameters
Name Type Valid range Description

BindingTarget

Device Address 16 bit address

The address of the target for the
binding. This can be either the ZigBee
coordinator or the device itself if it is a
router.a

aCCB Comment #171

Endpoint 8 bits 1-240 The endpoint on the generating
device.b

bCCB Comment #211

ProfileID

Integer 0x0000-0xffff

ProfileID which is to be matched
between two End_Device_Bind_req
received at the ZigBee Coordinator
within the timeout value pre-configured
in the ZigBee Coordinator.

NumInClusters
Integer 0x00-0xff

The number of Input Clusters provided
for end device binding within the
InClusterList.

InClusterList

1 byte *
NumInClusters

List of Input ClusterIDs to be used for
matching. The InClusterList is the
desired list to be matched by the
Remote Device (the elements of the
InClusterList are the supported output
clusters of the Local Device).

NumOutClusters
Integer 0x00-0xff

The number of Output Clusters pro-
vided for matching within OutCluster-
List.

OutClusterList

1 byte *
NumOutClusters

List of Output ClusterIDs to be used for
matching. The OutClusterList is the
desired list to be matched by the
Remote Device (the elements of the
InClusterList are the supported output
clusters of the Remote Device).
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 101

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
End_Device_Bind_rsp to each device. If a match of Profile ID and at least one input or output clusterID is
detected, an End_Device_Bind_rsp with status SUCCESS shall be issued to each Local Device which
generated the End_Device_Bind_req.

The ZigBee coordinator shall then determine the 64-bit IEEE address of each local device. If these addresses
are not known, the ZigBee coordinator shall determine them by using the IEEE_Addr_req command and
corresponding IEEE_Addr_rsp command.

In order to facilitate a toggle action the ZigBee Coordinator shall then issue an Unbind_req command to the
BindingTarget, specifying any one of the matched ClusterID values. If the returned status value is
NO_ENTRY then the ZigBee Coordinator shall issue a Bind_req command for each matched ClusterID
value. Otherwise the ZigBee Coordinator shall conclude that the binding records are instead to be removed
and shall issue an Unbind_req command for any further matched ClusterID values.

The initial Unbind_req and any subsequent Bind_reqs or Unbind_reqs, containing the matched clusters,
shall be directed to the BindingTarget, specified in the first End_Device_Bind_req command, and
constructed as follows. The SrcAddress and DstAddress fields shall contain the 64-bit IEEE addresses
derived, as described above, from the network addresses of the originators of the first and second
End_Device_Bind_req commands, respectively. Similarly, the SrcEndp and DstEndp fields shall contain the
endpoints contained in the first and second End_Device_Bind_req commands, respectively.46

1.4.3.2.2 Bind_req

1.4.3.2.2.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 53 specifies the parameters for the Bind_req primitive.

46CCB Comment #171, 233, 236

ClusterID=0x21 Bind_req (
SrcAddress,
SrcEndp,
ClusterID,
DstAddress,
DstEndp
)

Table 53 Bind_req parameters
Name Type Valid range Description

SrcAddress IEEE
Address A valid 64-bit IEEE address The IEEE address for the source.

SrcEndp Integer 0x01-0xf0 The source endpoint for the binding
entry.

ClusterID
Integer 0x00-0xff

The identifier of the cluster on the
source device that is bound to the des-
tination.

DstAddress IEEE
Address A valid 64-bit IEEE address The IEEE address for the destination.

DstEndp Integer 0x01-0xf0 The destination endpoint for the bind-
ing entry.
102 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.2.2.2 When generated

The Bind_req is generated from Local Device devices wishing to create a Binding Table entry for the source
and destination addresses contained as parameters. The destination addressing on this primitive shall be
unicast only and the destination address must be that of the ZigBee Coordinator or to the SrcAddress itself.
The Binding Manager is optionally supported on the source device (unless that device is also the ZigBee
Coordinator) so that device shall issue a NOT_SUPPORTED status to the Bind_req if not supported.

1.4.3.2.2.3 Effect on receipt

Upon receipt, a Remote Device (ZigBee Coordinator or the device designated by SrcAddress) shall create a
Binding Table entry based on the parameters supplied in the Bind_req if the Binding Manager is supported.
The Remote Device shall then respond with SUCCESS if the entry has been created by the Binding
Manager, else the Remote Device shall respond with NOT_SUPPORTED.

1.4.3.2.3 Unbind_req

1.4.3.2.3.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 54 specifies the parameters for the Unbind_req primitive.

1.4.3.2.3.2 When generated

The Unbind_req is generated from Local Device devices wishing to remove a Binding Table entry for the
source and destination addresses contained as parameters. The destination addressing on this primitive shall
be unicast only and the destination address must be that of the ZigBee Coordinator or the SrcAddress.

ClusterID=0x22 Unbind_req (
SrcAddress,
SrcEndp,
ClusterID,
DstAddress,
DstEndp
)

Table 54 Unbind_req parameters
Name Type Valid range Description

SrcAddress IEEE
Address A valid 64-bit IEEE address The IEEE address for the source.

SrcEndp Integer 0x01-0xf0 The source endpoint for the binding
entry.

ClusterID
Integer 0x00-0xff

The identifier of the cluster on the
source device that is bound to the des-
tination.

DstAddress IEEE
Address A valid 64-bit IEEE address The IEEE address for the destination.

DstEndp Integer 0x01-0xf0 The destination endpoint for the bind-
ing entry.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 103

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.2.3.3 Effect on receipt

The Remote Device shall evaluate whether this request is supported. If the request is not supported, a Status
of NOT_SUPPORTED shall be returned. If the request is supported, the Remote Device (ZigBee
Coordinator or the SrcAddress) shall remove a Binding Table entry based on the parameters supplied in the
Unbind_req. If the SrcAddress is specified and the Binding Manager is unsupported on that remote device,
a status of NOT_SUPPORTED shall be returned. If a Binding Table entry for the SrvAddress, SrcEndp,
ClusterID, DstAddress, DstEndp contained as parameters does not exist, the Remote Device shall respond
with NO_ENTRY. Otherwise, the Remote Device shall delete the indicated Binding Table entry and respond
with SUCCESS.

1.4.3.3 Network Management Client Services

Table 55 lists the primitives supported by Device Profile Network Management Client Services. Each of
these primitives will be discussed in the following sub-clauses.

1.4.3.3.1 Mgmt_NWK_Disc_req

1.4.3.3.1.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 55 Network Management Client Services primitives

Network Management
Client Services

Client
Transmission

Server
Processing

Mgmt_NWK_Disc_req O Oa

a Shall minimally respond with a status of NOT_SUPPORTED

Mgmt_Lqi_req O Ob

b Shall minimally respond with a status of NOT_SUPPORTED

Mgmt_Rtg_req O Oc

c Shall minimally respond with a status of NOT_SUPPORTED

Mgmt_Bind_req O Od

d Shall minimally respond with a status of NOT_SUPPORTED

Mgmt_Leave_req O Oe

e Shall minimally respond with a status of NOT_SUPPORTED

Mgmt_Direct_Join_req O Of

f Shall minimally respond with a status of NOT_SUPPORTED

ClusterID=0x30 Mgmt_NWK_Disc_req (
ScanChannels
ScanDuration
StartIndexa

)

aCCB Comment #243
104 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 56 specifies the parameters for the Mgmt_NWK_Disc_req primitive.

1.4.3.3.1.2 When generated

The Mgmt_NWK_Disc_req is generated from Local Device devices requesting that the Remote Device
execute a Scan to report back networks in the vicinity of the Local Device. The destination addressing on
this primitive shall be unicast.

1.4.3.3.1.3 Effect on receipt

The Remote Device shall execute an NLME-NETWORK-DISCOVERY.request using the ScanChannels
and ScanDuration parameters supplied with the Mgmt_NWK_Disc_req command. The results of the Scan
shall be reported back to the Local Device via the Mgmt_NWK_Disc_rsp command.

If this command is not supported in the Remote Device, the return status provided with the
Mgmt_NWK_Disc_rsp shall be NOT_SUPPORTED. If the scan was successful, the Mgmt_NWK_Disc_rsp
command shall contain a status of SUCCESS and the results of the scan shall be reported, beginning with
the StartIndex element of the NetworkList. If the scan was unsuccessful, the Mgmt_NWK_Disc_rsp
command shall contain the error code reported in the NLME-NETWORK-DISCOVERY.confirm
primitive.47

1.4.3.3.2 Mgmt_Lqi_req

1.4.3.3.2.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 56 Mgmt_NWK_Disc_req parameters
Name Type Valid range Description

ScanChannels
Bitmap 32 bit field

See sub-clause 2.3.2.1 for details on
NLME-NETWORK-DISCOV-
ERY.request ScanChannels parameter.

ScanDuration

Integer 0x00-0x0e

A value used to calculate the length of
time to spend scanning each channel.
The time spent scanning each channel
is (aBaseSuperframeDuration * (2n +
1)) symbols, where n is the value of the
ScanDuration parameter. For more
information on MAC sub-layer scanning
(see [B1]).a

aCCB Comment #243

StartIndex

Integer 0x00-0xff

Starting index within the resulting
NLME-NETWORK-DISCOVERY.con-
firm NetworkList to begin reporting for
the Mgmt_NWK_Disc_rsp.

47CCB Comment ##237, 243

ClusterID=0x31 Mgmt_Lqi_req (
StartIndex
)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 105

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 57 specifies the parameters for the Mgmt_Lqi_req primitive.

1.4.3.3.2.2 When generated

The Mgmt_Lqi_req is generated from Local Device devices wishing to obtain a neighbor list for the Remote
Device along with associated LQI values to each neighbor. The destination addressing on this primitive shall
be unicast only and the destination address must be that of a ZigBee Coordinator or ZigBee Router.

1.4.3.3.2.3 Effect on receipt

Upon receipt, a Remote Device (ZigBee Router or ZigBee Coordinator) shall retrieve the entries of the
neighbor table and associated LQI values via the NLME-GET.request primitive (for the nwkNeighborTable
attribute) and report the resulting neighbor table (obtained via the NLME-GET.confirm primitive) via the
Mgmt_Lqi_rsp command.

If this command is not supported in the Remote Device, the return status provided with the Mgmt_Lqi_rsp
shall be NOT_SUPPORTED. If the neighbor table was obtained successfully, the Mgmt_Lqi_rsp command
shall contain a status of SUCCESS and the neighbor table shall be reported, beginning with the element in
the list enumerated as StartIndex. If the neighbor table was not obtained successfully, the Mgmt_Lqi_rsp
command shall contain the error code reported in the NLME-GET.confirm primitive.48

1.4.3.3.3 Mgmt_Rtg_req

1.4.3.3.3.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 58 specifies the parameters for the Mgmt_Rtg_req primitive.

1.4.3.3.3.2 When generated

The Mgmt_Rtg_req is generated from Local Device devices wishing to retrieve the contents of the Routing
Table from the Remote Device. The destination addressing on this primitive shall be unicast only and the
destination address must be that of the ZigBee Router or ZigBee Coordinator.

Table 57 Mgmt_Lqi_req parameters
Name Type Valid range Description

StartIndex Integer 0x00-0xff Starting Index for the requested ele-
ments of the Neighbor Table.

48CCB Comment #237, 247

ClusterID=0x32 Mgmt_Rtg_req (
StartIndex
)

Table 58 Mgmt_Rtg_req parameters
Name Type Valid range Description

StartIndex Integer 0x00-0xff Starting Index for the requested ele-
ments of the Routing Table.
106 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.3.3.3 Effect on receipt

Upon receipt, a Remote Device (ZigBee Coordinator or ZigBee Router) shall retrieve the entries of the
routing table from the NWK layer via the NLME-GET.request primitive (for the nwkRouteTable attribute)
and report the resulting routing table (obtained via the NLME-GET.confirm primitive) via the
Mgmt_Rtg_rsp command.

If the Remote Device does not support this optional management request, it shall return a Status of
NOT_SUPPORTED. If the routing table was obtained successfully, the Mgmt_Rtg_req command shall
contain a status of SUCCESS and the routing table shall be reported, beginning with the element in the list
enumerated as StartIndex. If the routing table was not obtained successfully, the Mgmt_Rtg_rsp command
shall contain the error code reported in the NLME-GET.confirm primitive.49

1.4.3.3.4 Mgmt_Bind_req

1.4.3.3.4.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 59 specifies the parameters for the Mgmt_Bind_req primitive.

1.4.3.3.4.2 When generated

The Mgmt_Bind_req is generated from Local Device devices wishing to retrieve the contents of the Binding
Table from the Remote Device. The destination addressing on this primitive shall be unicast only and the
destination address must be that of the ZigBee Router or ZigBee Coordinator.

1.4.3.3.4.3 Effect on receipt

Upon receipt, a Remote Device (ZigBee Coordinator or ZigBee Router) shall retrieve the entries of the
binding table from the APS sub-layer via the APSME-GET.request primitive (for the apsBindingTable
attribute) and report the resulting binding table (obtained via the APSME-GET.confirm primitive) via the
Mgmt_Bind_rsp command.

If the Remote Device does not support this optional management request, it shall return a status of
NOT_SUPPORTED. If the binding table was obtained successfully, the Mgmt_Bind_rsp command shall
contain a status of SUCCESS and the binding table shall be reported, beginning with the element in the list
enumerated as StartIndex. If the binding table was not obtained successfully, the Mgmt_Bind_rsp command
shall contain the error code reported in the APSME-GET.confirm primitive.50

49CCB Comment #224, 237

ClusterID=0x33 Mgmt_Bind_req (
StartIndex
)

Table 59 Mgmt_Bind_req parameters
Name Type Valid range Description

StartIndex Integer 0x00-0xff Starting Index for the requested ele-
ments of the Binding Table.

50CCB Comment #237, 248
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 107

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.3.3.5 Mgmt_Leave_req

1.4.3.3.5.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 60 specifies the parameters for the Mgmt_Leave_req primitive.

1.4.3.3.5.2 When generated

The Mgmt_Leave_req is generated from Local Device devices requesting that a Remote Device leave the
network or to request that another device leave the network. The Mgmt_Leave_req is generated by a
management application which directs the request to a Remote Device where the NLME-LEAVE.request is
to be executed using the parameter supplied by Mgmt_Leave_req.

1.4.3.3.5.3 Effect on receipt

Upon receipt, the remote device shall issue the NLME-LEAVE.request primitive using the DeviceAddress
parameter supplied with the Mgmt_Leave_req command. The results of the leave attempt shall be reported
back to the local device via the Mgmt_Leave_rsp command.

If the remote device does not support this optional management request, it shall return a status of
NOT_SUPPORTED. If the leave attempt was executed successfully, the Mgmt_Leave_rsp command shall
contain a status of SUCCESS. If the leave attempt was not executed successfully, the Mgmt_Leave_rsp
command shall contain the error code reported in the NLME-LEAVE.confirm primitive.51

1.4.3.3.6 Mgmt_Direct_Join_req

1.4.3.3.6.1 Semantics of the service primitive

This semantics of this primitive are as follows:

ClusterID=0x34 Mgmt_Leave_req (
DeviceAddress
)

Table 60 Mgmt_Leave_req parameters
Name Type Valid range Description

DeviceAddress Device
Address

An extended 64 bit, IEEE
address

 See sub-clause 2.3.8.1 for details on
the DeviceAddress parameter within
NLME-LEAVE.request.

51CCB Comment #237

ClusterID=0x35 Mgmt_Direct_Join_req (
DeviceAddress
CapabilityInformationa

)

aCCB Comment #241, 249
108 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

a

Table 61 specifies the parameters for the Mgmt_Direct_Join_req primitive.

1.4.3.3.6.2 When generated

The Mgmt_Direct_Join_req is generated from Local Device devices requesting that a Remote Device permit
a device designated by DeviceAddress to join the network directly. The Mgmt_Direct_Join_req is generated
by a management application which directs the request to a Remote Device where the NLME-DIRECT-
JOIN.request is to be executed using the parameter supplied by Mgmt_Direct_Join_req. 52

1.4.3.3.6.3 Effect on receipt

Upon receipt, the remote device shall issue the NLME-DIRECT-JOIN.request primitive using the
DeviceAddress and CapabilityInformation parameters supplied with the Mgmt_Direct_Join_req command.
The results of the direct join attempt shall be reported back to the local device via the
Mgmt_Direct_Join_rsp command.

If the remote device does not support this optional management request, it shall return a status of
NOT_SUPPORTED. If the direct join attempt was executed successfully, the Mgmt_Direct_Join_rsp
command shall contain a status of SUCCESS. If the direct join attempt was not executed successfully, the
Mgmt_Direct_Join_rsp command shall contain the error code reported in the NLME-DIRECT-
JOIN.confirm primitive.53

1.4.4 Server services

The Device Profile Server Services supports the processing of device and service discovery requests, end
device bind requests, bind requests, unbind requests and network management requests. Additionally, Server
Services support transmission of these responses back to the requesting device. Table 6 lists the primitives
supported by Device Profile Server Services.

1.4.4.1 Device and Service Discovery Server Services

Table 62 lists the primitives supported by Device Profile Device and Service Discovery Server Services.
Each of these primitives will be discussed in the following sub-clauses.

Table 61 Mgmt_Direct_Join_req parameters
Name Type Valid range Description

DeviceAddress
Device Address An extended 64 bit, IEEE

address

 See sub-clause 2.3.6.1 for details on
the DeviceAddress parameter within
NLME-JOIN.request.

CapabilityInformation Bitmap See Figure 32. The operating capabilities of the device
being directly joined.a

CCB Comment #241, 249

52CCB Comment #249
53CCB Comment #237, 241, 249

Table 62 Device and Service Discovery Server Services primitives
Device and Service

Discovery
Server Services

Server
Processing

NWK_addr_rsp M

IEEE_addr_rsp M
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 109

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.1 NWK_addr_rsp

1.4.4.1.1.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 63 specifies the parameters for the NWK_addr_rsp primitive.

Node_Desc_rsp M

Power_Desc_rsp M

Simple_Desc_rsp M

Active_EP_rsp M

Match_Desc_rsp M

Complex_Desc_rsp Oa

User_Desc_rsp Ob

Discovery_Register_rsp Oc

User_Desc_confd Oe

a Must minimally respond with a status of NOT_SUPPORTED
b Must minimally respond with a status of NOT_SUPPORTED
c Must minimally respond with a status of NOT_SUPPORTED
dCCB Comment #169, 176
eMust minimally respond with a status of NOT_SUPPORTED

ClusterID=0x80 NWK_addr_rsp (
Status
IEEEAddrRemoteDev
NWKAddrRemoteDev
NumAssocDev
StartIndex
NWKAddrAssocDevList
)

Table 63 NWK_addr_rsp parameters
Name Type Valid range Description

Status

Integer
SUCCESS,

 INV_REQUESTTYPE or
DEVICE_NOT_FOUND

Valid status shall be one of the follow-
ing:

SUCCESS = 0x00.

INV_REQUESTTYPE = 0x01.

DEVICE_NOT_FOUND = 0x02.

Reserved = 0x03-0xff.

The status of the NWK_addr_req
command.a

IEEEAddrRemoteDev Device
Address

An extended 64 bit, IEEE
address

64 bit address for the Remote Device.

Table 62 Device and Service Discovery Server Services primitives
110 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.1.2 When generated

The NWK_addr_rsp is generated from Remote Device devices receiving a broadcast NWK_addr_req who
detect a match of the IEEEAddr parameter with their own IEEE address. The destination addressing on the
response primitive is unicast.

1.4.4.1.1.3 Effect on receipt

Upon receipt, a Remote Device shall attempt to match the IEEEAddr in the NWK_addr_req with the
Remote Device's IEEE address. If no match exists, the request shall be discarded and no response message
processing performed. If a match is detected, the Remote Device shall create a unicast message to the source
indicated by the NWK_addr_req. Included in the NWK_addr_rsp payload is the IEEE address that matched
from the NWK_addr_req and the NWK address of the Remote Device. Additionally, if the Remote Device is
the ZigBee coordinator or router with associated devices, the Remote Device shall supply a count of its
associated devices along with a list of all 16 bit NWK addresses for its associated devices.54

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future unicast forms of the NWK_addr_req primitive.

NWKAddrRemoteDev Device
Address A 16 bit, NWK address 16 bit address for the Remote Device.

NumAssocDev

Integer 0x00-0xff

Count of the number of associated
devices to the Remote Device and
the number of 16 bit short addresses
to follow. NumAssocDev shall be 0 if
there are no associated devices to
Remote Device and the StartIndex
and NWKAddrAssocDevList shall be
null in this case.

StartIndex Integer 0x00-0xff Starting index into the list of associ-
ated devices for this report.

NWKAddrAssocDevList

Device
Address List

List of 16 bit short
addresses, each with

range 0x0000-ffff,
NumAssocDev in length

A list of 16 bit addresses, one corre-
sponding to each associated device
to the Remote Device. The count of
the 16 bit addresses in NWKAddrAs-
socDevList is supplied in NumAs-
socDev.

aCCB Comment #223

54CCB Comment #171

Table 63 NWK_addr_rsp parameters
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 111

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.2 IEEE_addr_rsp

1.4.4.1.2.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 64 specifies the parameters for the IEEE_addr_rsp primitive.

ClusterID=0x81 IEEE_addr_rsp (
Status
IEEEAddrRemoteDev
NWKAddrRemoteDev
NumAssocDev
StartIndex
NWKAddrAssocDevList
)

Table 64 IEEE_addr_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS,
 INV_REQUESTTYPE or
DEVICE_NOT_FOUND

The status of the IEEE_addr_req
command.a

aCCB Comment #223

IEEEAddrRemoteDev Device
Address

An extended 64 bit, IEEE
address

64 bit address for the Remote
Device.

NWKAddrRemoteDev Device
Address A 16 bit, NWK address 16 bit address for the Remote

Device.

NumAssocDev

Integer 0x00-0xff

Count of the number of associated
devices to the Remote Device and
the number of 16 bit short addresses
to follow. NumAssocDev shall be 0 if
the RequestType in the request is
Extended Response and there are
no associated devices to Remote
Device and the NWKAddrAssocDev-
List shall be null in this case.

If the RequestType in the request is
for a Single Device Response, this
field and the ones following shall be
NULL.

StartIndex Integer 0x00-0xff Starting index into the list of associ-
ated devices for this report.

NWKAddrAssocDevList

Device
Address List

List of 16 bit short
addresses, each with

range 0x0000-ffff,
NumAssocDev in length

A list of 16 bit addresses, one corre-
sponding to each associated device
to Remote Device. The count of the
16 bit addresses in NWKAddrAs-
socDevList is supplied in NumAs-
socDev. This field shall be NULL if
the NumAssocDev is 0 or NULL.
112 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.2.2 When generated

The IEEE_addr_rsp is generated from Remote Devices in response to the unicast IEEE_addr_req inquiring
as to the 64 bit IEEE address of the Remote Device. The destination addressing on this response primitive
shall be unicast.

1.4.4.1.2.3 Effect on receipt

Upon receipt, a Remote Device shall create a unicast message to the source indicated by the IEEE_addr_req
and report its IEEE address as the first entry in the response payload. Additionally, if the RequestType is
Extended Response and the Remote Device is the ZigBee coordinator or router with associated devices, the
Remote Device shall first include its own 64 bit IEEE address and then shall also supply a count of its
associated devices along with a list of all 16 bit addresses for its associated devices beginning with
StartIndex. If the RequestType is Extended Response and the Remote Device has no associated devices, the
NumAssocDev field shall be 0 and the StartIndex plus NWKAddrAssocDevList shall be NULL. If the
RequestType is Single Device Response, the NumAssocDev and NKWAddrAssocDevList shall both be
NULL.55

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the IEEE_addr_req primitive.

1.4.4.1.3 Node_Desc_rsp

1.4.4.1.3.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 65 specifies the parameters for the Node_Desc_rsp primitive.

1.4.4.1.3.2 When generated

The Node_Desc_rsp is generated by the Remote Device in response to a Node_Desc_req directed to the
Remote Device. A Status of SUCCESS is supplied with the response.

55CCB Comment #171

ClusterID=0x82 Node_Desc_rsp (
Status
NWKAddrOfInterest
NodeDescriptor
)

Table 65 Node_Desc_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
DEVICE_NOT_FOUND

The status of the Node_Desc_req
command.a

aCCB Comment #223

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

NodeDescriptor Node
Descriptor

See the Node Descriptor format in sub-
clause 1.3.3.4.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 113

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.3.3 Effect on receipt

The Node_Desc_req requests retrieval of the Remote Device’s Node Descriptor. The Remote Device shall
formulate a Node_Desc_rsp with a Status of SUCCESS, including the Remote Device’s Node Descriptor
and transmit the Node_Desc_rsp to the Local Device.

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the primitive.

1.4.4.1.4 Power_Desc_rsp

1.4.4.1.4.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 66 specifies the parameters for the Power_Desc_rsp primitive.

1.4.4.1.4.2 When generated

The Power_Desc_rsp is generated by the Remote Device in response to a Power_Desc_req directed to the
Remote Device. A Status of SUCCESS is supplied with the response.

1.4.4.1.4.3 Effect on receipt

The Power_Desc_req requests retrieval of the Remote Device’s Node Power Descriptor. The Remote Device
shall formulate a Power_Desc_rsp with a Status of SUCCESS, including the Remote Device’s Node Power
Descriptor and transmit the Power_Desc_rsp to the Local Device.

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the primitive.

ClusterID=0x83 Power_Desc_rsp (
Status
NWKAddrOfInterest
PowerDescriptor
)

Table 66 Power_Desc_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
DEVICE_NOT_FOUND

The status of the Power_Desc_req
command.a

aCCB Comment #223

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

PowerDescriptor Power
Descriptor

See the Node Power Descriptor format
in sub-clause 1.3.3.5.
114 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.5 Simple_Desc_rsp

1.4.4.1.5.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 67 specifies the parameters for the Simple_Desc_rsp primitive.

1.4.4.1.5.2 When generated

The Simple_Desc_rsp is generated in response to a Simple_Desc_req. The request contains an endpoint for
which the Simple Descriptor is requested.

1.4.4.1.5.3 Effect on receipt

When the Simple_Desc_req is presented, the endpoint is checked for valid range and then the endpoint
parameter is checked with the list of Simple Descriptors in the Remote Device associated with active
endpoints. If an endpoint value of 0 (zero) or greater than 240 is detected, the Status is set to INVALID_EP,
the SimpleDescriptor field is set NULL and the Simple_Desc_rsp is supplied back to the requestor. If the
endpoint field is valid but the endpoint field is not described by a Simple Descriptor on the Remote Device,
the Status is set to NOT_ACTIVE, and the Simple Descriptor set to NULL and the response supplied. Else,
the Status is set to SUCCESS, and the Simple Descriptor associated with the indicated endpoint is supplied
in the response.

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the primitive.

ClusterID=0x84 Simple_Desc_rsp (
Status
NWKAddrOfInterest
Length
SimpleDescriptor
)

Table 67 Simple_Desc_rsp parameters
Name Type Valid range Description

Status

Integer

SUCCESS,
INVALID_EP,

NOT_ACTIVE or
DEVICE_NOT_FOUND

The status of the Simple_Desc_req
command.a

aCCB Comment #223

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

Length Integer 0x00-0xff Length in bytes of the Simple Descrip-
tor to follow.

SimpleDescriptor

Simple
Descriptor

See the Simple Descriptor format in
sub-clause 1.3.3.6.

This field shall be NULL if a Status of
INVALID_EP or NOT_ACTIVE is sup-
plied.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 115

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.6 Active_EP_rsp

1.4.4.1.6.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 68 specifies the parameters for the Active_EP_rsp primitive.

1.4.4.1.6.2 When generated

The Active_EP_rsp is generated in response to an Active_EP_req.

1.4.4.1.6.3 Effect on receipt

Upon receipt of the Active_EP_req, the Remote Device shall determine all endpoints supporting a Simple
Descriptor within the Remote Device and shall provide the count within ActiveEPCount and shall supply the
list of active endpoints as a string of bytes of length ActiveEPCount. A Status of SUCCESS is supplied
along with the response parameters and returned in the Active_EP_rsp.

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the primitive.

1.4.4.1.7 Match_Desc_rsp

1.4.4.1.7.1 Semantics of the service primitive

This semantics of this primitive are as follows:

ClusterID=0x85 Active_EP_rsp (
Status
NWKAddrOfInterest
ActiveEPCount
ActiveEPList
)

Table 68 Active_EP_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
DEVICE_NOT_FOUND

The status of the Active_EP_req
command.a

aCCB Comment #223

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

ActiveEPCount Integer 0x00-0xff The count of active endpoints on the
Remote Device.

ActiveEPList List of bytes each of which represents
an 8 bit endpoint.

ClusterID=0x86 Match_Desc_rsp (
Status
NWKAddrOfInterest
MatchLength
MatchList
)

116 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 69 specifies the parameters for the Match_Desc_rsp primitive.

1.4.4.1.7.2 When generated

The Match_Desc_rsp is generated when a Remote Device has received a Match_Desc_req and has verified a
match of the ProfileID parameter and any of the elements of the InClusterList or OutClusterList with any
Simple Descriptor held on the Remote Device.

1.4.4.1.7.3 Effect on receipt

When the Match_Desc_req is received, the Remote Device shall attempt to match the ProfileID,
InClusterList or OutClusterList with all Simple Descriptors on the Remote Device. The ProfileID must
match exactly, however, a match shall still be noted if any of the InClusterList or OutClusterList elements
match. If no match is detected, the Match_Desc_req shall be discarded and no response provided. If a match
is detected, the Remote Device shall create a response to the Local Device providing the count and list of
endpoints along with a status of SUCCESS.

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the primitive.

1.4.4.1.8 Complex_Desc_rsp

1.4.4.1.8.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 69 Match_Desc_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
DEVICE_NOT_FOUND

The status of the Match_Desc_req
command.a

aCCB Comment #223

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

MatchLength Integer 0x00-0xff The count of endpoints on the Remote
Device that match the request criteria.

MatchList List of bytes each of which represents
an 8 bit endpoint.

ClusterID=0x90 Complex_Desc_rsp (
Status
NWKAddrOfInterest
Length
ComplexDescriptor
)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 117

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 70 specifies the parameters for the Complex_Desc_rsp primitive.

1.4.4.1.8.2 When generated

The Complex_Desc_rsp is generated by devices receiving the Complex_Desc_req and who support the
optional Complex Descriptor (see sub-clause 1.3.3.7).

1.4.4.1.8.3 Effect on receipt

Upon receipt of the Complex_Desc_rsp, the Remote Device determines if the Complex Descriptor is
supported. If the Complex Descriptor is not supported on the Remote Device, a Status of
NOT_SUPPORTED is returned with the Complex_Desc_rsp. If the Complex Descriptor is supported, the
Remote Device shall determine the Length of the Complex Descriptor in bytes and store that in the Length
parameter of the response. The contents of the Complex Descriptor shall be included in the
ComplexDescriptor parameter, a Status of SUCCESS applied and the Complex_Desc_rsp returned to the
requesting Local Device.

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the primitive.

1.4.4.1.9 User_Desc_rsp

1.4.4.1.9.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 70 Complex_Desc_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
NOT_SUPPORTED

The status of the Complex_Desc_req
command.a

aCCB Comment #223

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

Length

Integer 0x00-0xff

Length of the Complex Descriptor in
bytes.

This field shall be omitted if the Status
is NOT_SUPPORTED.

ComplexDescriptor

Complex
Descriptor

See the Complex Descriptor format in
sub-clause 1.3.3.7.

This field shall be NULL if the Status is
NOT_SUPPORTED.

ClusterID=0x91 User_Desc_rsp (
Status
NWKAddrOfInterest
Length
UserDescriptor
)

118 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 71 specifies the parameters for the User_Desc_rsp primitive.

1.4.4.1.9.2 When generated

The User_Desc_rsp is generated by devices receiving the User_Desc_req and who support the optional User
Descriptor (see sub-clause 1.3.3.8).

1.4.4.1.9.3 Effect on receipt

Upon receipt of the User_Desc_rsp, the Remote Device determines if the User Descriptor is supported. If the
User Descriptor is not supported on the Remote Device, a Status of NOT_SUPPORTED is returned with the
User_Desc_rsp. If the User Descriptor is supported, the Remote Device shall determine the Length of the
User Descriptor in bytes and store that in the Length parameter of the response. The contents of the User
Descriptor shall be included in the UserDescriptor parameter, a Status of SUCCESS applied and the
User_Desc_rsp returned to the requesting Local Device.

The DEVICE_NOT_FOUND status shall be treated as reserved for Version 1.0 and is to be used only with
future forms of the primitive.

1.4.4.1.10 Discovery_Register_rsp

1.4.4.1.10.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 72 specifies the parameters for the Discovery_Register_rsp primitive.

Table 71 User_Desc_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
NOT_SUPPORTED

The status of the User_Desc_req
command.a

aCCB Comment #223

NWKAddrOfInterest Device
Address 16 bit NWK address NWK address for the request.

Length

Integer 0x00-0xff

Length of the User Descriptor in bytes.

This field shall be omitted if the Status
is NOT_SUPPORTED.

UserDescriptor

User
Descriptor

See the User Descriptor format in sub-
clause 1.3.3.8.

This field shall be NULL if the Status is
NOT_SUPPORTED.

ClusterID=0x92 Discovery_Register_rsp (
Status
)

Table 72 Discovery_Register_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
NOT_SUPPORTED

The status of the
Discovery_Register_req command.a
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 119

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.1.10.2 When generated

The Discovery_Register_rsp is generated by devices receiving the Discovery_Register_req and who support
the optional post Version 1.0 discovery registration procedure.

1.4.4.1.10.3 Effect on receipt

Upon receipt of the Discovery_Register_rsp, the Remote Device determines if discovery registration is
supported. For Version 1.0, a status of NOT_SUPPORTED shall be returned.56

1.4.4.1.11 User_Desc_conf

1.4.4.1.11.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 73 specifies the parameters for the User_Desc_conf primitive.

1.4.4.1.11.2 When generated

The User_Desc_conf command is generated in response to a User_Desc_conf command. If this command is
not supported or a user description does not exist, a status of NOT_SUPPORTED shall be returned.
Otherwise, the Remote Device shall configure the user descriptor and return a status of SUCCESS.

1.4.4.1.11.3 Effect on receipt

The local device is notified of the results of its attempt to configure the user descriptor on a remote device.57

aCCB Comment #223

56CCB Comment #169

ClusterID=0x94 User_Desc_conf (
Status
)

Table 73 User_Desc_conf parameters
Name Type Valid range Description

Status
Integer

SUCCESS or
NOT_SUPPORTED

The status of the User_Desc_set
command.

57CCB Comment #176
120 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.2 End Device Bind, Bind and Unbind server services

Table 74 lists the primitives supported by Device Profile End Device Bind, Bind and Unbind Server
Services. Each of these primitives will be discussed in the following sub-clauses.

1.4.4.2.1 End_Device_Bind_rsp

1.4.4.2.1.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 75 specifies the parameters for the End_Device_Bind_rsp primitive.

1.4.4.2.1.2 When generated

The End_Device_Bind_rsp is generated by the ZigBee Coordinator in response to an End_Device_Bind_req
and contains the status of the request. A Status of NOT_SUPPORTED indicates that the request was directed
to a device which was not the ZigBee Coordinator or that the ZigBee Coordinator does not support End
Device Binding. Else, End_Device_Bind_req processing is performed as described below including
transmission of the End_Device_Bind_rsp.

1.4.4.2.1.3 Effect on receipt

When an End_Device_Bind_req is received, determination is made if a Status of NOT_SUPPORTED is
warranted as indicated in the previous section. Assuming this device is the ZigBee Coordinator, if this is the
first End_Device_Bind_req submitted for evaluation, it shall be stored and a timer started which expires at a
pre-configured timeout value. This timeout values shall be a configurable item on the ZigBee Coordinator. If

Table 74 End Device Bind, Bind and Unbind Server Services primitives
End Device Bind,
Bind and Unbind
Server Services

Server
Processing

End_Device_Bind_rsp Oa

a Must minimally respond with a status of NOT_SUPPORTED

Bind_rsp Ob

b Must minimally respond with a status of NOT_SUPPORTED

Unbind_rsp Oc

c Must minimally respond with a status of NOT_SUPPORTED

ClusterID=0xA0 End_Device_Bind_rsp (
Status
)

Table 75 End_Device_Bind_rsp parameters
Name Type Valid range Description

Status

Integer

SUCCESS,
NOT_SUPPORTED,

TIMEOUT or
NO_MATCH

The status of the End_Device_Bind_req
command.a

aCCB Comment #223
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 121

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
the timer expires before a second End_Device_Bind_req is received, a Status of TIMEOUT is returned.
Else, if a second End_Device_Bind_req is received within the timeout window, the two
End_Device_Bind_req's are compared for a match. A Status of NO_MATCH indicates that two
End_Device_Bind_req were evaluated for a match but either the ProfileID parameters did not match or the
ProfileID parameter matched but there was no match of any element of the InClusterList or OutClusterList.
A Status of SUCCESS means that a match was detected and that a resulting Bind_req has been directed to
the parent device of the Local Device supplying the End_Device_Bind_req which supplied matched
elements of the OutClusterList.58

1.4.4.2.2 Bind_rsp

1.4.4.2.2.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 76 specifies the parameters for the Bind_rsp primitive.

1.4.4.2.2.2 When generated

The Bind_rsp is generated in response to a Bind_req. If the Bind_req is processed and the Binding Table
entry committed on the Remote Device, a Status of SUCCESS is returned. If the Remote Device is not the
ZigBee Coordinator or the SrcAddress, a Status of NOT_SUPPORTED is returned. If the Remote Device is
the ZigBee Coordinator or SrcAddress but does not have Binding Table resources for the request, a Status of
TABLE_FULL is returned.

1.4.4.2.2.3 Effect on receipt

Upon receipt, error checking is performed on the request as described in the previous section. Assuming the
Status is SUCCESS, the parameters from the Bind_req are entered into the Binding Table at the Remote
Device via the APSME-BIND.request primitive.

58CCB Comment 3171

ClusterID=0xA1 Bind_rsp (
Status
)

Table 76 Bind_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS,
NOT_SUPPORTED or

TABLE_FULL

The status of the Bind_req command.a

aCCB Comment #223
122 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.2.3 Unbind_rsp

1.4.4.2.3.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 77 specifies the parameters for the Unbind_req primitive.

1.4.4.2.3.2 When generated

The Unbind_rsp is generated in response to an Unbind_req. If the Unbind_req is processed and the
corresponding Binding Table entry is removed from the Remote Device, a Status of SUCCESS is returned.
If the Remote Device is not the ZigBee Coordinator or the SrcAddress, a Status of NOT_SUPPORTED is
returned. If the Remote Device is the ZigBee Coordinator or SrcAddress but does not have a Binding Table
entry corresponding to the parameters received in the request, a Status of NO_ENTRY is returned.

1.4.4.2.3.3 Effect on receipt

Upon receipt, error checking is performed on the request as described in the previous section. Assuming the
Status is SUCCESS, the parameters from the Unbind_req are used to find the corresponding entry to remove
from the Binding Table at the Remote Device via the APSME-UNBIND.request primitive.

1.4.4.3 Network Management server services

Table 78 lists the primitives supported by Device Profile Network Management Server Services. Each of
these primitives will be discussed in the following sub-clauses.

ClusterID=0xA2 Unbind_rsp (
Status
)

Table 77 Unbind_rsp parameters
Name Type Valid range Description

Status
Integer

SUCCESS,
NOT_SUPPORTED or

TABLE_FULL

The status of the Bind_req command.a

aCCB Comment #223

Table 78 Network Management Server Services primitives

Network Management
Server Services

Server
Processing

Mgmt_NWK_Disc_rsp Oa

a Must minimally respond with a status of NOT_SUPPORTED

Mgmt_Lqi_rsp Ob

b Must minimally respond with a status of NOT_SUPPORTED

Mgmt_Rtg_rsp Oc

Mgmt_Bind_rsp Od

Mgmt_Leave_rsp Oe

Mgmt_Direct_Join_rsp Of
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 123

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.3.1 Mgmt_NWK_Disc_rsp

1.4.4.3.1.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 79 specifies the parameters for the Mgmt_NWK_Disc_rsp primitive.

c Must minimally respond with a status of NOT_SUPPORTED
d Must minimally respond with a status of NOT_SUPPORTED
e Must minimally respond with a status of NOT_SUPPORTED
f Must minimally respond with a status of NOT_SUPPORTED

ClusterID=0xB0 Mgmt_NWK_Disc_rsp (
Status
NetworkCount
StartIndex
NetworkListCount
NetworkList
)

Table 79 Mgmt_NWK_Disc_rsp parameters
Name Type Valid range Description

Status

Integer

NOT_SUPPORTED or any
status code returned from

the
 NLME-NETWORK-DIS-

COVERY.request primitive.

The status of the Mgmt_NWK_Disc_req
command.a

aCCB Comment #223, 237

NetworkCount
Integer 0x00-0xff

The total number of networks reported
by the NLME-NETWORK-DISCOV-
ERY.confirm.

StartIndex

Integer 0x00-0xff

The starting point in the NetworkList
from the NLME-NETWORK-DISCOV-
ERY.confirm where reporting begins for
this response.

NetworkListCount Integer 0x00-0xff The number of network list descriptors
reported within this response.

NetworkList

List of Net-
work Descrip-

tors

The list shall contain the
number of elements given
by the NetworkListCount

parameter.

A list of descriptors, one for each of the
networks discovered by the NLME-NET-
WORK-DISCOVERY primitive. The list
returned by NLME-NETWORK-DIS-
COVERY.confirm shall be used for refer-
ence and this response shall begin with
the StartIndex element and continue for
NetworkListCount which shall be defined
to ensure that the resultant MSDU will
be no greater than aMaxMACFrameSize
octets in size (see [B1]).b

bCCB Comment #366
124 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.3.1.2 When generated

The Mgmt_NWK_Disc_rsp is generated in response to an Mgmt_NWK_Disc_req. If this management
command is not supported, a status of NOT_SUPPORTED shall be returned and all parameter fields after
the Status field shall be omitted. Otherwise, the Remote Device shall implement the following processing:

"Perform an NLME-NETWORK-DISCOVERY.request using the ScanChannels parameter
supplied with the Mgmt_NWK_Disc_req.

"Upon receipt of the NLME-NETWORK-DISCOVERY.confirm, report the NetworkList results,
starting with the StartIndex element, via the Mgmt_NWK_Disc_rsp. Include the NetworkCount parameter
from the NLME-NETWORK-DISCOVERY.confirm as the same parameter within Mgmt_NWK_Disc_rsp.

"Include as many NetworkList elements as possible while ensuring that the resulting MSDU will
no greater than aMaxMACFrameSize octets in size59. Report the number of included NetworkList entries
within NetworkListCount.60

1.4.4.3.1.3 Effect on receipt

The local device is notified of the results of its attempt to perform a remote network discovery.61

1.4.4.3.2 Mgmt_Lqi_rsp

1.4.4.3.2.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 81 specifies the parameters for the Mgmt_Lqi_rsp primitive.

59CCB COmment #366
60CCB Comment #237, 250
61CCB Comment #250

ClusterID=0xB1 Mgmt_Lqi_rsp (
Status
NeighborTableEntries
StartIndex
NeighborTableListCount
NeighborTableList
)

Table 80 Mgmt_Lqi_rsp parameters
Name Type Valid range Description

Status

Integer

NOT_SUPPORTED or any
status code returned from
the NLME-GET.confirm

primitive

The status of the Mgmt_Lqi_req
command.a

NeighborTableEntries Integer 0x00-0xff Total number of Neighbor Table
entries within the Remote Device.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 125

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
StartIndex
Integer 0x00-0xff

Starting index within the Neighbor
Table to begin reporting for the
NeighborTableList.

NeighborTableListCount Integer 0x00-0xff Number of Neighbor Table entries
included within NeighborTableList.

NeighborTableList

List of Neigh-
bor Descrip-

tors

The list shall contain the
number elements given by

the NeighborTableList-
Count

A list of descriptors, beginning with
the StartIndex element and
continuing for
NeighborTableListCount, of the
elements in the Remote Device's
Neighbor Table including the device
address and associated LQI (see
Table 81 for details).b

aCCB Comment #223
bCCB Comment #237, 239

Table 81 NeighborTableList record format
Name Type Valid range Description

PAN Id Integer 0x0000-0x3fff The 16-bit PAN identifier of the
neighboring device.

Extended address Integer An extended 64-bit, IEEE
address

64-bit IEEE address that is unique
to every device.

Network address Network
address Network address The 16-bit network address of the

neighboring device.

Device type

Integer 0x00-0x03

The type of the neighbor device:

0x00 = ZigBee coordinator.

0x01 = ZigBee router.

0x02 = ZigBee end device.

RxOnWhenIdle

Boolean TRUE or FALSE

Indicates if neighbor's receiver is
enabled during idle portions of the
CAPa:

TRUE = Receiver is off.

FALSE = Receiver is on.

Relationship

Relationship 0x00-0x03

The relationship between the
neighbor and the current device:

0x00=neighbor is the parent.

0x01 = neighbor is a child.

0x02 = neighbor is a sibling.

0x03 = None of the above.

Table 80 Mgmt_Lqi_rsp parameters
126 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.3.2.2 When generated

The Mgmt_Lqi_rsp is generated in response to an Mgmt_Lqi_req. If this management command is not
supported, a status of NOT_SUPPORTED shall be returned and all parameter fields after the Status field
shall be omitted. Otherwise, the Remote Device shall implement the following processing.

Upon receipt of and after support for the Mgmt_Lqi_req has been verified, the Remote Device shall perform
an NLME-GET.request (for the nwkNeighborTable attribute) and process the resulting neighbor table
(obtained via the NLME-GET.confirm primitive) to create the Mgmt_Lqi_rsp command. If
nwkNeighborTable was successfully obtained but one or more of the fields required in the
NeighborTableList record (see Table 81) are not supported (as they are optional), the Mgmt_Lqi_rsp shall
return a status of NOT_SUPPORTED and all parameter fields after the Status field shall be omitted.
Otherwise, the Mgmt_Lqi_rsp command shall contain the same status that was contained in the NLME-
GET.confirm primitive and if this was not SUCCESS, all parameter fields after the status field shall be
omitted.

From the nwkNeighborTable attribute, the neighbor table shall be accessed, starting with the index specified
by StartIndex, shall be moved to the NeighborTableList field of the Mgmt_Lqi_rsp command. The entries
reported from the neighbor table shall be those, starting with StartIndex and including whole
NeighborTableList records (see Table 81) until the limit on MSDU size, i.e. aMaxMACFrameSize (see
[B1])62, is reached. Within the Mgmt_Lqi_Rsp command, the NeighborTableEntries field shall represent the
total number of Neighbor Table entries in the Remote Device. The parameter NeighborTableListCount shall
be the number of entries reported in the NeighborTableList field of the Mgmt_Lqi_rsp command.63

1.4.4.3.2.3 Effect on receipt

The local device is notified of the results of its attempt to obtain the neighbor table.64

Depth

Integer 0x00-nwkcMaxDepth

The tree depth of the neighbor
device. A value of 0x00 indicates
that the device is the ZigBee coor-
dinator for the network.

Permit joining

Boolean TRUE or FALSE

An indication of whether the neigh-
bor device is accepting join
requests:

TRUE = neighbor is accepting join
requests.

FALSE = neighbor is not accepting
join requests.

LQI

Integer 0x00-0xff

The estimated link quality for RF
transmissions from this device. See
[B1] for discussion of how this is
calculated.b

aCCB Comment 138
bCCB Comment #239

62CCB Comment #366
63CCB Comment #239, 247, 250
64CCB Comment #250

Table 81 NeighborTableList record format
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 127

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.3.3 Mgmt_Rtg_rsp

1.4.4.3.3.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 82 specifies the parameters for the Mgmt_Rtg_rsp primitive.

Table 83 RoutingTableList record format

ClusterID=0xB2 Mgmt_Rtg_rsp (
Status
RoutingTableEntries
StartIndex
RoutingTableListCount
RoutingTableList
)

Table 82 Mgmt_Rtg_rsp parameters
Name Type Valid range Description

Status

Integer

NOT_SUPPORTED or any
status code returned from
the NLME-GET.confirm

primitive

The status of the Mgmt_Rtg_req
command.a

aCCB Comment #223

RoutingTableEntries Integer 0x00-0xff Total number of Routing Table
entries within the Remote Device.

StartIndex
Integer 0x00-0xff

Starting index within the Routing
Table to begin reporting for the Rout-
ingTableList.

RoutingTableListCount Integer 0x00-0xff Number of Routing Table entries
included within RoutingTableList.

RoutingTableList

List of Rout-
ing Descrip-

tors

The list shall contain the
number elements given by
the RoutingTableListCount

A list of descriptors, beginning with
the StartIndex element and
continuing for
RoutingTableListCount, of the
elements in the Remote Device's
Routing Table (see the Table 83 for
details).b

bCCB Comment #237, 239

Name Type Valid range Description

Destination address 2 bytes The 16-bit network address
of this route.

Destination address.

Status

3 bits The status of the route.

0x0=ACTIVE.

0x1=DISCOVERY_UNDERWAY.

0x2=DISCOVERY_FAILED.

0x3=INACTIVE.

0x4-0x7=RESERVED.
128 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.3.3.2 When generated

The Mgmt_Rtg_rsp is generated in response to an Mgmt_Rtg_req. If this management command is not
supported, a status of NOT_SUPPORTED shall be returned and all parameter fields after the Status field
shall be omitted. Otherwise, the Remote Device shall implement the following processing.

Upon receipt of and after support for the Mgmt_Rtg_req has been verified, the Remote Device shall perform
an NLME-GET.request (for the nwkRouteTable attribute) and process the resulting NLME-GET.confirm
(containing the nwkRouteTable attribute) to create the Mgmt_Rtg_rsp command. The Mgmt_Rtg_rsp
command shall contain the same status that was contained in the NLME-GET.confirm primitive and if this
was not SUCCESS, all parameter fields after the status field shall be omitted.

From the nwkRouteTable attribute, the routing table shall be accessed, starting with the index specified by
StartIndex, and moved to the RoutingTableList field of the Mgmt_Rtg_rsp command. The entries reported
from the routing table shall be those, starting with StartIndex and including whole RoutingTableList records
(see Table 82) until MSDU size limit, i.e aMaxMACFrameSize (see [B1])65, is reached. Within the
Mgmt_Rtg_Rsp command, the RoutingTableEntries field shall represent the total number of Routing Table
entries in the Remote Device. The RoutingTableListCount field shall be the number of entries reported in the
RoutingTableList field of the Mgmt_Rtg_req command.66

1.4.4.3.3.3 Effect on receipt

The local device is notified of the results of its attempt to obtain the routing table.67

1.4.4.3.4 Mgmt_Bind_rsp

1.4.4.3.4.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Next-hop address
2 bytes

The 16-bit network address
of the next hop on the way

to the destination.

Next-hop address.a

aCCB Comment #239

65CCB Comment #366
66CCB Comment #224, 237, 239, 250
67CCB Comment #250

ClusterID=0xB3 Mgmt_Bind_rsp (
Status
BindingTableEntries
StartIndex
BindingTableListCount
BindingTableList
)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 129

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 84 specifies the parameters for the Mgmt_Bind_rsp primitive.

Table 85 BindingTableList record format

1.4.4.3.4.2 When generated

The Mgmt_Bind_rsp is generated in response to a Mgmt_Bind_req. If this management command is not
supported, a status of NOT_SUPPORTED shall be returned and all parameter fields after the Status field
shall be omitted. Otherwise, the Remote Device shall implement the following processing.

Upon receipt of and after support for the Mgmt_Bind_req has been verified, the Remote Device shall
perform an APSME-GET.request (for the apsBindingTable attribute) and process the resulting APSME-
GET.confirm (containing the apsBindingTable attribute) to create the Mgmt_Bind_rsp command. The

Table 84 Mgmt_Bind_rsp parameters
Name Type Valid range Description

Status Integer

NOT_SUPPORTED or any
status code returned from
the APSME-GET.confirm

primitive

The status of the Mgmt_Bind_req
command.a

aCCB Comment #223

BindingTableEntries Integer 0x00-0xff Total number of Binding Table
entries within the Remote Device.

StartIndex Integer 0x00-0xff
Starting index within the Binding
Table to begin reporting for the Bind-
ingTableList.

BindingTableListCount Integer 0x00-0xff Number of Binding Table entries
included within BindingTableList.

BindingTableList
List of Bind-
ing Descrip-

tors

The list shall contain the
number elements given by
the BindingTableListCount

A list of descriptors, beginning with
the StartIndex element and
continuing for
BindingTableListCount, of the
elements in the Remote Device's
Binding Table (see Table 85 for
details).b

bCCB Comment #237, 239

Name Type Valid range Description

SrcAddr IEEE address A valid 64-bit IEEE address The source IEEE address for the
binding entry.

SrcEndpoint Integer 0x01 - 0xff The source endpoint for the binding
entry.

ClusterId
Integer 0x00 - 0xff

The identifier of the cluster on the
source device that is bound to the
destination device.

DstAddr IEEE address A valid 64-bit IEEE address The destination IEEE address for the
binding entry.

DstEndpoint Integer 0x01 - 0xff The destination endpoint for the bind-
ing entry.a

aCCB Comment #239
130 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Mgmt_Bind_rsp command shall contain the same status that was contained in the APSME-GET.confirm
primitive and if this was not SUCCESS, all parameter fields after the status field shall be omitted.

From the apsBindingTable attribute, the binding table shall be accessed, starting with the index specified by
StartIndex, and moved to the BindingTableList field of the Mgmt_Bind_rsp command. The entries reported
from the binding table shall be those, starting with StartIndex and including whole BindingTableList records
(see Table 85) until the MSDU size limit, i.e. aMaxMACFrameSize (see [B1])68, is reached. Within the
Mgmt_Bind_Rsp command, the BindingTableEntries field shall represent the total number of Binding Table
entries in the Remote Device. The BindingTableListCount field shall be the number of entries reported in the
BindingTableList field of the Mgmt_Bind_req command.69

1.4.4.3.4.3 Effect on receipt

The local device is notified of the results of its attempt to obtain the binding table.70

1.4.4.3.5 Mgmt_Leave_rsp

1.4.4.3.5.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 86 specifies the parameters for the Mgmt_Leave_rsp primitive.

1.4.4.3.5.2 When generated

The Mgmt_Leave_rsp is generated in response to a Mgmt_Leave_req. If this management command is not
supported, a status of NOT_SUPPORTED shall be returned. Otherwise, the Remote Device shall implement
the following processing.

Upon receipt of and after support for the Mgmt_Leave_req has been verified, the Remote Device shall
execute the NLME-LEAVE.request to disassociate from the currently associated network. The
Mgmt_Leave_rsp shall contain the same status that was contained in the NLME-LEAVE.confirm primitive.

Once a device has disassociated, it shall execute pre-programmed logic to perform NLME-NETWORK-
DISCOVERY and NLME-JOIN to join/re-join a network.71

68CCB Comment #366
69CCB Comment #237, 239, 248, 250
70CCB Comment #250

ClusterID=0xB4 Mgmt_Leave_rsp (
Status
)

Table 86 Mgmt_Leave_rsp parameters
Name Type Valid range Description

Status Integer

NOT_SUPPORTED or any
status code returned from
the NLME-LEAVE.confirm

primitive

The status of the Mgmt_Leave_req
command.a

aCCB Comment #223, 237

71CCB Comment #237, 250
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 131

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.4.4.3.5.3 Effect on receipt

The local device is notified of the results of its attempt to cause a remote device to leave the network.72

1.4.4.3.6 Mgmt_Direct_Join_rsp

1.4.4.3.6.1 Semantics of the service primitive

This semantics of this primitive are as follows:

Table 87 specifies the parameters for the Mgmt_Direct_Join_rsp primitive.

1.4.4.3.6.2 When generated

The Mgmt_Direct_Join_rsp is generated in response to a Mgmt_Direct_Join_req. If this management
command is not supported, a status of NOT_SUPPORTED shall be returned. Otherwise, the Remote Device
shall implement the following processing.

Upon receipt of and after support for the Mgmt_Direct_Join_req has been verified, the Remote Device shall
execute the NLME-DIRECT-JOIN.request to directly associate the DeviceAddress contained in the
Mgmt_Direct_Join_req to the network. The Mgmt_Direct_Join_rsp shall contain the same status that was
contained in the NLME-DIRECT-JOIN.confirm primitive.73

1.4.4.3.6.3 Effect on receipt

Upon receipt and after support for the Mgmt_Direct_Join_req has been verified, the Remote Device shall
execute the NLME-JOIN.request using the JoinDirectly parameter set to TRUE to directly associate the
DeviceAddress contained in the Mgmt_Direct_Join_req to the network.

1.4.5 ZDP enumeration description

This sub-clause explains the meaning of the enumerations used in the ZDP. Table 88 shows a description of
the ZDP enumeration values.74

72CCB Comment #250

ClusterID=0xB5 Mgmt_Direct_Join_rspa

aCCB Comment #209

(
Status
)

Table 87 Mgmt_Direct_Join_rsp parameters
Name Type Valid range Description

Status Integer

NOT_SUPPORTED or any
status code returned from

the NLME-DIRECT-
JOIN.confirm primitive

The status of the Mgmt_Direct_Join_req
command.a

aCCB Comment #223, 237

73CCB Comment #237, 250
74CCB Comment #223
132 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 88 ZDP enumerations description

1.4.6 Conformance

When conformance to this Profile is claimed, all capabilities indicated mandatory for this Profile shall be
supported in the specified manner (process mandatory). This also applies to optional and conditional
capabilities, for which support is indicated, and subject to verification as part of the ZigBee certification
program.

1.5 The ZigBee device objects (ZDO)

1.5.1 Scope

This document describes the concepts, structures and primitives needed to implement a ZigBee Device
Objects application on top of a ZigBee Application Support Sub-layer (Reference [1]) and ZigBee Network
Layer (Chapter 2).

ZigBee Device Objects is an application which employs network and application support layer primitives to
implement ZigBee End Devices, ZigBee Routers and ZigBee Coordinators in Release 0.75 of the ZigBee
protocol.

Enumeration Value Description

SUCCESS 0x00 The requested operation or transmission was completed
successfully.

- 0x01-0x7f Reserved

INV_REQUESTTYPE 0x80 The supplied request type was invalid.

DEVICE_NOT_FOUND 0x81 Reserved

INVALID_EP 0x82 The supplied endpoint was equal to 0x00 or between
0xf1and 0xff.

NOT_ACTIVE 0x83 The requested endpoint is not described by a simple
descriptor.

NOT_SUPPORTED 0x84 The requested optional feature is not supported on the
target device.

TIMEOUT 0x85 A timeout has occurred with the requested operation.

NO_MATCH 0x86 The end device bind request was unsuccessful due to a
failure to match any suitable clusters.

TABLE_FULL 0x87 The bind request was unsuccessful due to the coordina-
tor or source device not having sufficient resources.

NO_ENTRY
0x88

The unbind request was unsuccessful due to the coordi-
nator or source device not having an entry in its binding
table to unbind.

- 0x89-0xff Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 133

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.2 Device Object Descriptions
— The ZigBee Device Objects are an application solution residing within the Application Layer (APL)

and above the Application Support Sub-layer (APS) in the ZigBee stack architecture as illustrated in
Figure 1

. The ZigBee Device Objects are responsible for the following functions:

— Initializing the Application Support Sublayer (APS), Network Layer (NWK), Security Service Pro-
vider (SSP) and any other ZigBee device layer other than the end applications residing over End-
points 1-240.

— Assembling configuration information from the end applications to determine and implement the
functions described in the following sub-clauses.

1.5.2.1 Device and Service Discovery

This function shall support device and service discovery within a single PAN. Additionally, for ZigBee
Coordinator, ZigBee Router and ZigBee End Device types, this function shall perform the following:

— For ZigBee End Devices which intend to sleep as indicated by :Config_Node_Power, Device and
Service Discovery shall manage upload and storage of the NWK Address, IEEE Address, Active
Endpoints, Simple Descriptors, Node Descriptor and Power Descriptor onto the associated ZigBee
Coordinator or ZigBee Router to permit device and service discovery operations on these sleeping
devices .

— For the ZigBee Coordinator and ZigBee Routers, this function shall respond to discovery requests on
behalf of their associated sleeping ZigBee End Devices.

— For all ZigBee devices, Device and Service Discovery shall support device and service discovery
requests from other devices and permit generation of requests from their local Application Objects.
The following discovery features shall be supported:

— Device Discovery

— Based on a unicast inquiry of a ZigBee Coordinator or ZigBee Router’s IEEE address, the
IEEE Address of the requested device plus, optionally, the NWK Addresses of all associ-
ated devices shall be returned.

— Based on a unicast inquiry of a ZigBee End Device’s IEEE address, the IEEE Address of
the requested device shall be returned.

— Based on a broadcast inquiry of a ZigBee Coordinator or ZigBee Router’s NWK Address
with a supplied IEEE Address, the NWK Address of the requested device plus, optionally,
the NWK Addresses of all associated devices shall be returned.

— Based on a broadcast inquiry of a ZigBee End Device’s NWK Address with a supplied
IEEE Address, the NWK Address of the requested device shall be returned. The respond-
ing device shall employ APS acknowledged service for the unicast response to the broad-
cast inquiry.

— Service Discovery - Based on the following inputs, the corresponding responses shall be sup-
plied:

— NWK address plus Active Endpoint query type – Specified device shall return the end-
point number of all applications residing in that device.

— NWK address or broadcast address plus Service Match including Profile ID and, option-
ally, Input and Output Clusters – Specified device matches Profile ID with all active end-
points to determine a match. If no input or output clusters are specified, the endpoints that
match the request are returned. If input and/or output clusters are provided in the request,
134 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
those are matched as well and any matches are provided in the response with the list of
endpoints on the device providing the match. The responding device shall employ APS
acknowledged service for the unicast response to the broadcast inquiry.

— NWK address plus Node Descriptor or Power Descriptor query type – Specified device
shall return the Node or Power Descriptor for the device.

— NWK address, Endpoint Number plus Simple Descriptor query type – Specified address
shall return the Simple Descriptor associated with that Endpoint for the device.

— Optionally, NWK address plus Complex or User Descriptor query type – If supported,
specified address shall return the Complex or User Descriptor for the device

1.5.2.2 Security Manager

This function determines whether security is enabled or disabled and, if enabled, shall perform the
following:

— Establish Key

— Transport Key

— Authentication

The Security Manager function addresses the Security Services Specification (Reference [5]). Security
Management, implemented by APSME primitive calls by ZDO, performs the following:

— Contacts the Trust Center (assumed to be located on the ZigBee Coordinator) to obtain the Master
Key between this device and the Trust Center (step is omitted if this device is the ZigBee Coordina-
tor or the Master Key with the Trust Center has been pre-configured). This step employs the Trans-
port Key primitive.

— Establishes a Link Key with the Trust Center. This step employs the APSME-Establish-Key primi-
tive.

— Obtains the NWK Key from the Trust Center using secured communication with the Trust Center.
This step employs the APSME-Transport-Key primitive.

— Establishes Link Keys and master keys, as required, with specific devices in the network identified
as messaging destinations. These steps employ the APSME-Key and APSME-Establish-Key primi-
tives.

— Informs the trust center of any devices that join the network using the APSME-Device-Update prim-
itives. This function is only performed if the device is a ZigBee router.

1.5.2.3 Network Manager

This function shall implement the ZigBee Coordinator, ZigBee Router or ZigBee End Device logical device
types according to configuration settings established either via a programmed application or during
installation. If the device type is a ZigBee Router or ZigBee End Device, this function shall provide the
ability to select an existing PAN to join and implement orphaning procedures which permit the device to re-
associate with the same ZigBee Coordinator or ZigBee Router if network communication is lost. If the
device type is a ZigBee Coordinator or ZigBee Router, this function shall provide the ability to select an
unused channel for creation of a new PAN. Note that is possible to deploy a network without a device pre-
designated as ZigBee Coordinator where the first Full Function Device (FFD) activated device assumes the
role of ZigBee Coordinator. The following description covers processing addressed by Network
Management:

— Permits specification of a channel list for network scan procedures. Default is to specify use of all
channels in the selected band of operation.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 135

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Manages network scan procedures to determine neighboring networks and the identity of their Zig-
Bee coordinators and routers.75

— Permits selection of a channel to start a PAN (ZigBee Coordinator) or selection of an existing PAN to
join (ZigBee Router or ZigBee End Device).

— Supports orphaning procedures to rejoin the network.

— Supports direct join and join by proxy features provided by the Network Layer. For ZigBee Coordi-
nators and ZigBee Routers, a local version of direct join shall be supported to enable the device to
join via orphaning procedures.

— May support Management Entities that permit external network management.

1.5.2.4 Binding Manager

The Binding Manager performs the following:

— Establishes resource size for the Binding Table. The size of this resource is determined via a pro-
grammed application or via a configuration parameter defined during installation.

— Processes bind requests for adding or deleting entries from the APS binding table.

— Supports Bind and Unbind commands from external applications such as those that may be hosted on
a PDA to support assisted binding. Bind and Unbind commands shall be supported via the ZigBee
Device Profile (Reference [6]).

— For the ZigBee Coordinator, supports the End Device Bind that permits binding on the basis of but-
ton presses or other manual means.

1.5.2.5 Node Manager

For ZigBee Coordinators and ZigBee Routers, the Node Management function performs the following:

— Permits remote management commands to perform network discovery.

— Provides remote management commands to retrieve the routing table.

— Provides remote management commands to retrieve the binding table.

— Provides a remote management command to have the device leave the network or to direct that
another device leave the network.

— Provides a remote management command to retrieve the LQI for neighbors of the remote device.

1.5.3 Layer Interface Description

Unlike other device descriptors for applications residing above Endpoints 1-240, the ZigBee Device Objects
(ZDO) interface to the APS via the APSME-SAP and to NWK via the NLME-SAP in addition to the
APSDE-SAP. ZDO communicates over Endpoint 0 using the APSDE-SAP via Profiles like all other
applications. The Profile used by ZDO is the ZigBee Device Profile (Reference [6]).

75CCB Comment #171
136 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.4 System Usage

Mandatory Attributes

Mandatory

Device and Service
Discovery Object

NWK_addr_req
IEEE_addr_req

Node_Desc_req
Power_Desc_req
Simple_Desc_req

Active_EP_req
Match_Desc_req

Optional Attributes

NWK_addr_rsp
IEEE_addr_rsp
Node_Desc_rsp
Active_EP_rsp
Match_Desc_rsp
Power_Desc_rsp

Complex_Desc_rsp
Complex_Desc_req

User_Desc_rsp
User_Desc_req

Simple_Desc_rsp

Discovery_Register_rsp
Discovery_Register_req

User_Desc_conf

End_Device_annce
User_Desc_set

Optional Attributes

Mandatory Attributes

Optional

Binding Manager Object

End_Device_Bind_req
End_Device_Bind_rsp

Bind_req
Bind_rsp

Unbind_req
Unbind_rsp
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 137

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Optional Attributes

Mandatory Attributes

Mandator

Network Manager Object

NLME-LEAVE.request

NLME-JOIN.request

NLME-LEAVE.confirm

NLME-GET.request
NLME-GET.confirm

NLME-SET.request
NLME-SET.confirm

NLME-NETWORK-
FORMATION.re uest

NLME-NETWORK-
FORMATION.confirm

NLME-JOIN.confirm

NLME-SYNC.request
NLME-SYNC.indication

NLME-NETWORK-
DISCOVERY.request

NLME-JOIN.indication

NLME-NETWORK-
DISCOVERY.confirm

NLME-LEAVE.indication

NLME-PERMIT-
JOINING.re uest

NLME-PERMIT-
JOINING.confirm

NLME-RESET.request
NLME-RESET.confirm

NLME-DIRECT-
JOIN.re ues

NLME-DIRECT-
JOIN.confirm

NLME-START-
ROUTER.request

NLME-START-
ROUTER.confirm

Optional Attributes

O tional
Node Manager Object

Mgmt_NWK_Disc_req
Mgmt_NWK_Disc_rsp

Mgmt_Lqi_req
Mgmt_Lqi_rsp

Mgmt_Rtg_req
Mgmt_Rtg_rsp

Mgmt_Bind_req
Mgmt_Bind_rsp

Mgmt_Leave_req
Mgmt_Leave_rsp

Mgmt_Direct_Join_req
Mgmt_Direct_Join_rsp
138 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 30 ZigBee Device Object details

Mandatory Attributes

Optional

Security Manager Object

APSME-REMOVE-
DEVICE.re

APSME-REMOVE-
DEVICE.ind

APSME-KEY.req
APSME-KEY.ind

APSME-DEVICE-
UPDATE.re

APSME-DEVICE-
UPDATE.ind

APSME-AUTHEN
TICATE.rs

APSME-
UTHENTICATE.ind

APSME-AUTHEN
TICATE.re

APSME-
UTHENTICATE.cnf

APSME-TRANS
PORT-KEYre

APSME-TRANSPORT-
KEY.ind

APSME-ESTAB
LISH-KEYre

APSME-ESTABLISH-
KEY.cnf

APSME-ESTAB
LISH-KEY.rs

APSME-ESTABLISH-
KEY.ind

Configuration Attributes

:Config_Node_Descriptor

Mandatory

Optional

:Config_Max_Bind

:Config_Power_Descriptor

:Config_NWK_Mode_and_Params
:Config_Simple_Descriptors

:Config_Complex_Descriptor
:Config_User_Descriptor

:Config_Master_Key
:Config_NWK_Join_Direct_Addrs

:Config_Max_Assoc
:Config_EndDev_Bind_Timeout
:Config_Permit_Join_Duration
:Config_Nwk_Security_Level
:Config_Nwk_Secure_All_Frames

:Config_NWK_Time_btwn_Scans
:Config_NWK_Scan_Attempts

:Config_NWK_Leave_removeChildren
:Config_NWK_BroadcastDeliveryTime
:Config_NWK_TransactionPersistenceTime
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 139

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

:

1.5.5 Object Definition and Behavior

1.5.5.1 Object Overview

ZigBee Device Objects contains five Objects:

— Device and Service Discovery

— Network Manager

— Binding Manager

— Security Manager

— Node Manager
Table 89 ZigBee Device Objects

1.5.5.2 Optional and Mandatory Objects and Attributes

Objects listed as Mandatory shall be present on all ZigBee devices. However, for certain ZigBee logical
types, Objects listed as Optional for all ZigBee devices may be Mandatory in specific logical device types.
For example, the NWK_Formation_req within the Network_Manager object is in a Mandatory object and is
an Optional attribute, though the attribute is required for ZigBee Coordinator logical device types. The
introduction section of each Device Object section will detail the support requirements for Objects and
Attributes by logical device type.

1.5.5.3 Security key usage

ZigBee Device Objects may employ security for packets created by ZigBee Device Profile primitives. These
application packets using APSDE on Endpoint 0 shall utilize the Network Key, as opposed to individual
Link Keys.

Public and Private Methods

Object Description

Name Status

Device_and_Service_Discovery M
Handles device and service discovery.

:Network_Manager M
Handles network activities such as network discovery, leaving/joining
a network, resetting a network connection and creating a network.

:Binding_Manager O
Handles end device binding, binding and unbinding activities.

:Security_Manager O
Handles security services such as key loading, key establishment,
key transport and authentication.

:Node_Manager O
Handles management functions.
140 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Methods that are accessible to any endpoint application on the device are called public methods. Private
methods are only accessible to the Device Application on endpoint 0 and not to the end applications (which
run on endpoints 1 through 240).

1.5.5.4 State Machine Functional Descriptions

1.5.5.4.1 ZigBee Coordinator

1.5.5.4.1.1 Initialization

Provision shall be made within the implementation to supply a single copy of desired network configuration
parameters (:Config_NWK_Mode_and_Params) to the Network Object of ZigBee Device Objects.
Additionally, provision shall be made to provide configuration elements to describe the Node Descriptor,
Power Descriptor, Simple Descriptor for each active endpoint and application plus the list of active
endpoints. These configuration shall be embodied in :Config_Node_Descriptor, :Config_Power_Descriptor
and :Config_Simple_Descriptors.

If supported, provision shall be made to supply configuration elements for the Complex Descriptor, User
Descriptor, the maximum number of bind entries and the master key. These elements shall be embodied in
:Config_Complex_Descriptor, :Config_User_Descriptor, :Config_Max_Bind and :Config_Master_Key.

The device application shall use NLME-NETWORK-DISCOVERY.request with the ChannelList portion of
:Config_NWK_Mode_and_Params to scan the specified channels. The resulting NLME-NETWORK-
DISCOVERY.confirm shall supply a NetworkList detailing active PANs within that range. The device
application shall compare the ChannelList to the NetworkList and select an unused channel. Specification of
the algorithm for selection of the unused channel shall be left to the implementer. Once the unused channel
is identified, the device application shall set the nwkSecurityLevel and nwkSecureAllFrames NIB attributes
according to the values contained in the corresponding :Config attributes. It shall then employ the NLME-
NETWORK-FORMATION.request using the parameters specified within
:Config_NWK_Mode_and_Params to establish a PAN on that channel. The device application shall check
the return status via the NLME-NETWORK-FORMATION.confirm to verify successful creation of the
PAN. The :Config_Permit_Join_Duration shall be set according to the default parameter value supplied
using the NLME-PERMIT-JOINING.request. Additionally, the nwkNetworkBroadcastDeliveryTime and
nwkTransactionPersistenceTime Network Information Block parameters shall be set with
:Config_NWK_BroadcastDeliveryTime and :Config_NWK_TransactionPersistenceTime respectively (see
Chapter 2).

Provision shall be made to ensure APS primitive calls from the end applications over EP 1 through EP 240
return appropriate error status values prior to completion of the Initialization state by ZigBee Device Objects
and transition to the normal operating state.76

1.5.5.4.1.2 Normal operating state

In this state, the ZigBee coordinator shall allow other devices to join the network based on the configuration
items :Config_Permit_Join_Duration and :Config_Max_Assoc. When a new device joins the network, the
device application shall be informed via the NLME-JOIN.indication. Should the device be admitted to the
PAN, the ZigBee coordinator shall indicate this via the NLME-JOIN.confirm with success status.

The ZigBee coordinator shall respond to any device discovery or service discovery operations requested of
its own device or any of its sleeping associated devices using the attributes described in Sections 5.4 of this
document. The device application shall also ensure that the number of binding entries does not exceed the
:Config_Max_Bind attribute.

76CCB Comment #169, 196, 252, 269
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 141

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The ZigBee coordinator shall support the NLME-PERMIT-JOINING.request and NLME-PERMIT-
JOINING.confirm to permit application control of network join processing.

The ZigBee coordinator shall support the NLME-LEAVE.request and NLME-LEAVE.indication employing
the :Config_NWK_Leave_removeChildren attribute where appropriate to permit removal of associated
devices under application control. Conditions that lead to removal of associated devices may include lack of
security credentials, removal of the device via a privileged application or detection of exception.

The ZigBee coordinator shall maintain a list of currently associated devices and facilitate support of orphan
scan processing to enable previously associated devices to rejoin the network. The ZigBee coordinator shall
support the ability for devices to be directly included in the network via the NLME-DIRECT-JOIN.request
and NLME-DIRECT-JOIN.confirm. This feature shall permit lists of ZigBee IEEE addresses to be provided
to the ZigBee coordinator and for those addresses to be included as previously associated devices. It shall be
possible for ZigBee devices with those addresses to directly join the network via orphaning procedures
rather than associating directly.

The ZigBee coordinator shall process End_Device_Bind_req from ZigBee Routers and ZigBee End
Devices. Upon receipt of an End_Device_Bind_req, the ZigBee Coordinator shall use the
:Config_EndDev_Bind_Timeout value in the attribute and await a second End_Device_Bind_req. Should
the second indication arrive within the timeout period, the ZigBee coordinator shall match the Profile ID in
the two indications. If the Profile IDs in the two indications do not match, an appropriate error status is
returned to each device via End_Device_Bind_rsp. Should the Profile IDs match, the ZigBee Coordinator
shall match the AppInClusterLists and AppOutClusterLists in the two indications. Cluster IDs in the
AppInClusterList of the first indication which match Cluster IDs in the AppOutClusterList of the second
indication shall be saved in a list for inclusion in the End_Dev_Bind_rsp.

The ZigBee coordinator shall process End_Device_annce messages from ZigBee End Devices. Upon receipt
of an End_Device_annce, the ZigBee coordinator shall check all internal tables holding 64 bit IEEE
addresses for devices within the PAN for a match with the address supplied in the End_Device_annce
message. At minimum, the Binding Table and Trust Center tables shall be checked. If a match is detected,
the ZigBee coordinator shall update its APS Information Block address map entries corresponding to the
matched 64 bit IEEE address to reflect the updated 16 bit NWK address contained in the
End_Device_annce.77

1.5.5.4.1.3 Trust center operation

The Zigbee coordinator shall also function as the trust center when security is enabled on the network.

The trust center is notified of new devices on the network via the APSME-DEVICE-UPDATE.indication.
The trust center can either choose to allow the device to remain on the network or force it out of the network
using the APSME-REMOVE-DEVICE.req. This choice is made using a network access control policy that
is beyond the scope of this specification.

If the trust center decides to allow the device to remain in the network, it shall establish a master key with
that device using APSME-TRANSPORT-KEY.req, unless the master key is already available to both the
device and trust center using out-of-band mechanisms.Upon exchange of the master key, the trust center
shall use APSME-ESTABLISH-KEY.req to set up a link key with the device and shall respond to request for
link key establishment using the APSME-ESTABLISH-KEY.rsp.

The trust center shall then provide the device with the NWK key using APSME-TRANSPORT-KEY.req. It
shall also provide the NWK key upon receiving a request from the device via the APSME-KEY.indication.

The trust center shall support the establishment of link keys between any two devices by providing them
with a common master key. Upon receipt of a APSME-KEY.indication requesting an application master key,

77CCB Comment #107, 169, 196
142 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
the trust center shall create a master key and transport it to both devices using the APSME-TRANSPORT-
KEY.req.

The trust center shall periodically update the NWK key according to a policy whose details are beyond the
scope of this specification. All devices on the network shall be updated with the new NWK key using the
APSME-TRANSPORT-KEY.req

1.5.5.4.2 ZigBee Router

1.5.5.4.2.1 Initialization

Provision shall be made within the implementation to supply a single copy of desired network configuration
parameters (:Config_NWK_Mode_and_Params) to the Network Object of ZigBee Device Objects.

If supported, provision shall be made to supply configuration elements for the Complex Descriptor, User
Descriptor, the maximum number of bind entries and the master key. These elements shall be embodied in
:Config_Complex_Descriptor, :Config_User_Descriptor, :Config_Max_Bind and :Config_Master_Key.

The device application shall use NLME-NETWORK-DISCOVERY.request with the ChannelList portion of
:Config_NWK_Mode_and_Params then use the NLME-NETWORK-DISCOVERY.request attribute to scan
the specified channels. The resulting NLME-NETWORK-DISCOVERY.confirm shall supply a NetworkList
detailing active PANs within that range. The NLME-NETWORK-DISCOVERY.request procedure shall be
implemented :Config_NWK_Scan_Attempts, each separated in time by :Config_NWK_Time_btwn_Scans.
The purpose of repeating the NLME-NETWORK-DISCOVERY.request is to provide a more accurate
neighbor list and associated link quality indications to the NWK layer. The device application shall compare
the ChannelList to the NetworkList and select an existing PAN to join. Specification of the algorithm for
selection of the PAN shall be left to the profile description and may include use of the PAN ID, operational
mode of the network, identity of the ZigBee Router or Coordinator identified on the PAN, depth of the
ZigBee Router on the PAN from the ZigBee Coordinator for the PAN, capacity of the ZigBee Router or
Coordinator or the routing cost (these parameters are supplied by the NLME-NETWORK-
DISCOVERY.confirm). Once the PAN to join is identified, the device application shall employ the NLME-
JOIN.request to join the PAN on that channel. The device application shall check the return status via the
NLME-JOIN.confirm to verify association to the selected ZigBee Router or ZigBee Coordinator on that
PAN. The :Config_Permit_Join_Duration shall be set according to the default parameter value supplied
using NLME-PERMIT-JOINING.request. The router shall support the NLME-START-ROUTER.request
and NLME-START-ROUTER.confirm to begin operations as a router within the PAN it has joined.
Additionally, the nwkNetworkBroadcastDeliveryTime and nwkTransactionPersistenceTime Network
Information Block parameters shall be set with :Config_NWK_BroadcastDeliveryTime and
:Config_NWK_TransactionPersistenceTime respectively (see Chapter 2).78

Provision shall be made to ensure APS primitive calls from the end applications over EP 1 through EP 240
return appropriate error status values prior to completion of the Initialization state by ZigBee Device Objects
and transition to the normal operating state.

If the network has security enabled, the device shall wait for the trust center to supply it with a master key
via the APSME-TRANSPORT-KEY.ind and then respond to a request from the trust center to establish a
link key using the APSME-ESTABLISH-KEY.rsp. The device shall then wait for the trust center to provide
it with a NWK key using APSME-TRANSPORT-KEY.ind. Upon successful accquisition of the NWK key,

the device is authenticated and can start functioning as a router in the network.

The device application shall set the nwkSecurityLevel and nwkSecureAllFrames NIB attributes to the values
used in the network and then start functioning as a router using NLME-START-ROUTER.req

78CCB Comment #169, 194, 196, 252, 269
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 143

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.5.4.2.2 Normal operating state

In this state, the ZigBee router shall allow other devices to join the network based on the configuration items
:Config_Permit_Join_Duration and :Config_Max_Assoc. When a new device joins the network, the device
application shall be informed via the NLME-JOIN.indication attribute. Should the device be admitted to the
PAN, the ZigBee router shall indicate this via the NLME-JOIN.confirm with success status. If security is
enabled on the network, the device application shall inform the trust center via the APSME-DEVICE-
UPDATE.req.

The ZigBee router shall respond to any device discovery or service discovery operations requested of its
own device or any of its sleeping associated devices using the attributes described in Sections 5.4 of this
document. The device application shall also ensure that the number of binding entries does not exceed the
:Config_Max_Bind attribute.

If security is supported, the ZigBee router shall support the :Config_Master_Key and shall employ the
Master Key in key establishment procedures for Link Keys. Upon presentation of a remote destination
address requiring secure communications, the ZigBee router shall support APSME-KEY.req to establish a
master key with the remote device and APSME-ESTABLISH-KEY.request to present the request to the
destination and shall support APSME-KEY-ESTABLISH.confirm and APSME-KEY-ESTABLISH.response
to complete the key establishment of the Link Key. The ZigBee router shall provide the ability to store Link
Keys for known destinations requiring secure communications and shall manage key storage for addition or
deletion of Link Keys. The ZigBee router shall support APSME-TRANSPORT-KEY.ind to receive keys
from the trust center. The ZigBee router shall request the trust center to update its NWK key via the
APSME-KEY.req

The ZigBee router shall support the NLME-PERMIT-JOINING.request and NLME-PERMIT-
JOINING.confirm to permit application control of network join processing.

The ZigBee router shall support the NLME-LEAVE.request and NLME-LEAVE.confirm employing the
:Config_NWK_Leave_removeChildren attribute where appropriate to permit removal of associated devices
under application control. Conditions that lead to removal of associated devices may include lack of security
credentials, removal of the device via a privileged application or detection of exception.

The ZigBee router shall process End_Device_annce messages from ZigBee End Devices. Upon receipt of an
End_Device_annce, the ZigBee router shall check all internal tables holding 64 bit IEEE addresses for
devices within the PAN for a match with the address supplied in the End_Device_annce message. At
minimum, any Binding Table entries held by the ZigBee router shall be checked. If a match is detected, the
ZigBee router shall update its APS Information Block address map entries corresponding to the matched 64
bit IEEE address to reflect the updated 16 bit NWK address contained in the End_Device_annce.

The ZigBee router shall maintain a list of currently associated devices and facilitate support of orphan scan
processing to enable previously associated devices to rejoin the network.79

1.5.5.4.3 ZigBee End Device

1.5.5.4.3.1 Initialization

Provision shall be made within the implementation to supply a single copy of desired network configuration
parameters (:Config_NWK_Mode_and_Params) to the Network Object of ZigBee Device Objects.

If supported, provision shall be made to supply configuration elements for the Complex Descriptor, User
Descriptor, the maximum number of bind entries and the master key. These elements shall be embodied in
:Config_Complex_Descriptor, :Config_User_Descriptor, :Config_Max_Bind and :Config_Master_Key.

79CCB Comment #169, 196
144 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The device application shall use NLME-NETWORK-DISCOVERY.request with the ChannelList portion of
:Config_NWK_Mode_and_Params then use the NLME-NETWORK-DISCOVERY.request attribute to scan
the specified channels. The resulting NLME-NETWORK-DISCOVERY.confirm shall supply a NetworkList
detailing active PANs within that range. The NLME-NETWORK-DISCOVERY.request procedure shall be
implemented :Config_NWK_Scan_Attempts, each separated in time by :Config_NWK_Time_btwn_Scans.
The purpose of repeating the NLME-NETWORK-DISCOVERY.request is to provide a more accurate
neighbor list and associated link quality indications to the NWK layer. The device application shall compare
the ChannelList to the NetworkList and select an existing PAN to join. Specification of the algorithm for
selection of the PAN shall be left to the profile descriptions and may include use of the PAN ID, operational
mode of the network, identity of the ZigBee Router or Coordinator identified on the PAN, depth of the
ZigBee Router on the PAN from the ZigBee Coordinator for the PAN, capacity of the ZigBee Router or
Coordinator or the routing cost (these parameters are supplied by the NLME-NETWORK-
DISCOVERY.confirm). Once the PAN to join is identified, the device application shall employ the NLME-
JOIN.request to join the PAN on that channel. The device application shall check the return status via the
NLME-JOIN.confirm to verify association to the selected ZigBee Router or ZigBee Coordinator on that
PAN.

Once the End Device has successfully joined a network, the device shall issue an End_Device_annce
providing its 64 bit IEEE address and 16 bit NWK address.

Provision shall be made to ensure APS primitive calls from the end applications over EP 1 through EP 240
return appropriate error status values prior to completion of the Initialization state by ZigBee Device Objects
and transition to the normal operating state.

If the network has security enabled, the device shall wait for the trust center to supply it with a master key
via the APSME-TRANSPORT-KEY.ind and then respond to a request from the trust center to establish a
link key using the APSME-ESTABLISH-KEY.rsp. The device shall then wait for the trust center to provide
it with a NWK key using APSME-TRANSPORT-KEY.ind. Upon succesful acquisition of the NWK key, the
device is joined and authenticated.80

1.5.5.4.3.2 Normal operating state

The ZigBee end device shall respond to any device discovery or service discovery operations requested of
its own device using the attributes described in Sections 5.4 of this document.

If security is enabled, the ZigBee end device shall support the :Config_Master_Key and shall employ the
Master Key in key establishment procedures for Link Keys. Upon presentation of a remote destination
address requiring secure communications, the ZigBee end device shall support APSME-KEY.req to
establish a master key with the remote device and support APSME-ESTABLISH-KEY.request to present the
request to the destination and shall support APSME-ESTABLISH-KEY.confirm and APSME-ESTABLISH-
KEY.response to complete the key establishment of the Link Key. The ZigBee end device shall provide the
ability to store Link Keys for known destinations requiring secure communications and shall manage key
storage for addition or deletion of Link Keys. The ZigBee end device shall support APSME-TRANSPORT-
KEY.ind to receive keys from the trust center. The ZigBee end device shall request the trust center to update
its NWK key via the APSME-KEY.req

The ZigBee End Device shall process End_Device_annce messages from other ZigBee End Devices. Upon
receipt of an End_Device_annce, the ZigBee End Device shall check all internal tables holding 64 bit IEEE
addresses for devices within the PAN for a match with the address supplied in the End_Device_annce
message. At minimum, any Binding Table entries held by the ZigBee End Device shall be checked. If a
match is detected, the ZigBee End Device shall update its APS Information Block address map entries
corresponding to the matched 64 bit IEEE address to reflect the updated 16 bit NWK address contained in
the End_Device_annce.81

80CCB Comment #169, 196
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 145

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.5.5 Device and Service Discovery

The Device and Service Discovery function supports:

— Device Discovery

— Service Discovery

Device Management performs the above functions with the ZigBee Device Profile (Reference [6]).

1.5.5.5.1 Optional and Mandatory Attributes within Device and Service Discovery

All of the request attributes within the Device and Service Discovery Object are optional for all ZigBee
logical device types. The responses listed as mandatory are mandatory for all ZigBee logical device types
and the responses listed as optional are optional for all ZigBee logical device types. See clause 1.4 for a
description of any of these attributes.

81CCB Comment #169, 196

Table 90 Device and Service Discovery Attributes
Attribute M/O Type

NWK_addr_req O Public

NWK_addr_rsp M Public

IEEE_addr_req O Public

IEEE_addr_rsp M Public

Node_Desc_req O Public

Node_Desc_rsp M Public

Power_Desc_req O Public

Power_Desc_rsp M Public

Simple_Desc_req O Public

Simple_Desc_rsp M Public

Active_EP_req O Public

Active_EP_rsp M Public

Match_Desc_req O Public

Match_Desc_rsp M Public

Complex_Desc_req O Public

Complex_Desc_rsp O Public

User_Desc_req O Public

User_Desc_rsp O Public

Discovery_Register_r
eq O Public

Discovery_Register_r
sp O Public
146 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.5.6 Security Manager

The security manager determines whether security is enabled or disabled and, if enabled, shall perform the
following:

— Establish Key

— Transport Key

— Authentication

1.5.5.6.1 Optional and Mandatory Attributes within Security Manager

The Security Manager itself is an optional object for all ZigBee Device Types. If the Security Manager is
present, all requests and responses are mandatory for all ZigBee device types. If the Security Manager is not
present, none of the attributes in the Security Manager are present for any ZigBee logical device type. See
Chapter 3 for a description of any of the primitives listed in Table 91.

End_Device_annce O Public

End_Device_annce_r
sp O Public

User_Desc_set O Public

User_Desc_conf O Publica

aCCB Comment #169, 176

Table 91 Security Manager Attributes
Attribute M/O Type

APSME-ESTABLISH-
KEY.request

M Public

APSME-ESTABLISH-
KEY.response

M Public

APSME-TRANSPORT-
KEY.request

M Public

APSME-TRANSPORT-
KEY.response

M Public

APSME-AUTHENTI-
CATE.request

M Public

APSME-AUTHENTI-
CATE.response

M Public

APSME-DEVICE-
UPDATE.request

M Private

APSME-REMOVE-
DEVICE.request

M Private

APSME-KEY.request M Private

Table 90 Device and Service Discovery Attributes
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 147

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.5.7 Binding Manager

The Binding Management function supports:

— End Device Binding

— Bind and Unbind

Binding Management performs the above functions with ZigBee Device Profile commands plus APSME-
SAP primitives to commit/remove binding table entries once the indication arrives on the Zigbee
coordinator or router, supporting the binding table. 82

1.5.5.7.1 Optional and Mandatory Attributes within Binding Manager

The Binding Manager is an optional object for all ZigBee Device Types.

 If the Binding Manager is present, all requests are optional for all ZigBee logical device types. Additionally,
responses shall be supported on the ZigBee Coordinator or responses shall be supported on ZigBee Routers
and ZigBee End Devices which correspond to the source address for the binding table entries held on those
devices.83

If the Binding Manager is not present, all requests and all responses for all ZigBee logical device types shall
not be supported.

1.5.5.8 Network Manager

The Network Management function supports:

— Network Discovery

— Network Formation

— Permit/Disable Associations

— Association and Disassociation

82CCB Comment #171
83CCB Comment #213

Table 92 Binding Manager Attributes
Attribute Method M/O Type

End_Device_Bind_req See clause 1.4. O Public

End_Device_Bind_rsp See clause 1.4. O Public

Bind_req See clause 1.4. O Public

Bind_rsp See clause 1.4. O Public

Unbind_req See clause 1.4. O Public

Unbind_rsp See clause 1.4. O Public

APSME-BIND.request See clause 1.2. O Private

APSME-BIND.confirm See clause 1.2. O Private

APSME-UNBIND.request See clause 1.2. O Private

APSME-UNBIND.confirm See clause 1.2. O Private
148 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Route Discovery

— Network Reset

— Radio Receiver State Enable/Disable

— Get and Set of Network Management Information Block Data

Network Management performs the above functions with NLME-SAP primitives (see Chapter 2).

1.5.5.8.1 Optional and Mandatory Attributes within Network Manager

The Network Manager is a mandatory object for all ZigBee Device Types.

 The Network Discovery, Get and Set attributes (both requests and confirms) are mandatory for all ZigBee
logical device types.

If the ZigBee logical device type is ZigBee Coordinator, the NWK Formation request and confirm, the
NWK Leave request, NWK Leave indication, NWK Leave confirm, NWK Join indication, NWK Permit
Joining request, NWK Permit Joining confirm, NWK Direct Join request, NWK Direct Join confirm plus the
NWK Permit Joining request and NWK Permit Joining confirm shall be supported. The NWK Join request,
NWK Join response, NWK Leave request and NWK Leave confirm shall not be supported.

If the ZigBee logical device type is ZigBee Router, the NWK Formation request and confirm shall not be
supported. Additionally, the NWK Start Router request, NWK Start Router confirm, NWK Join request,
NWK Join confirm, NWK Join indication, NWK Leave request, NWK Leave confirm, NWK Leave
indication, NWK Direct Join request, NWK Direct Join confirm, NWK Permit Joining request and NWK
Permit Joining confirm shall be supported.

If the ZigBee logical device type is ZigBee End Device, the NWK Formation request and confirm plus the
NWK Start Router request and confirm shall not be supported. Additionally, the NWK Join indication,
NWK Leave indication and NWK Permit Joining request shall not be supported. The NWK Join request,
NWK Join confirm, NWK Leave request, NWK Leave confirm shall be supported.

For all ZigBee logical devices types, the NWK Sync request, indication and confirm plus NWK Reset
request and confirm shall be optional.84 See Chapter 2 for a description of any of the primitives listed in
Table 93.

84CCB Comment #196

Table 93 Network Manager Attributes
Attribute M/O Type

NLME-GET.request M Private
NLME-GET.confirm M Private
NLME-SET.request M Private
NLME-SET.confirm M Private
NLME-NETWORK-
DISCOVERY.request

M Public

NLME-NETWORK-
DISCOVERY.confirm

M Public

NLME-NETWORK-
FORMATION.request

O Private

NLME-NETWORK-
FORMATION.confirm

O Private
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 149

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.5.9 Node Manager

The node manager supports the ability to request and respond to management functions. These management
functions only provide visibility to external devices regarding the operating state of the device receiving the
request.

1.5.5.9.1 Optional and Mandatory Attributes within Node Manager

The Node Manager is an optional object for all ZigBee Device Types. All request and response attributes
within Node Manager are also optional if the Node Manager object is present. See clause 1.4 for a
description of these attributes.

NLME-JOIN.request O Private
NLME-JOIN.confirm O Private
NLME-DIRECT-
JOIN.request

O Public

NLME-DIRECT-
JOIN.confirm

O Publica

NLME_LEAVE.request O Private
NLME-LEAVE.confirm O Private
NLME-RESET.request O Private
NLME-RESET.confirm O Private
NLME-SYNC.request O Public
NLME-SYNC.indication O Publicb

NLME-SYNC.confirm O Public
aCCB Comment #196
bIbid

Table 94 Node manager attributes
Attribute M/O Type

Mgmt_NWK_Disc_req O Public

Mgmt_NWK_Disc_rsp O Public

Mgmt_Lqi_req O Public

Mgmt_Lqi_rsp O Public

Mgmt_Rtg_req O Public

Mgmt_Rtg_rsp O Public

Mgmt_Bind_req O Public

Mgmt_Bind_rsp O Public

Mgmt_Leave_req O Public

Table 93 Network Manager Attributes
150 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.6 Configuration Attributes

This attribute is used to represent the minimum mandatory and/or optional attributes used as configuration
attributes for a device.

Mgmt_Leave_rsp O Public

Mgmt_Direct_Join_req O Public

Mgmt_Direct_Join_rsp O Public

Table 95 Configuration Attributes

Attribute M/O Type

:Config_Node_Descriptor M Public

:Config_Power_Descriptor M Public

:Config_Simple_Descriptors M Public

:Config_NWK_Mode_and_Params M Public

:Config_NWK_Scan_Attempts M Private

:Config_NWK_Time_btwn_Scans M Private

:Config_Complex_Descriptor O Public

:Config_User_Descriptor O Public

:Config_Max_Bind O Private

:Config_Master_Key O Private

:Config_EndDev_Bind_Timeout O Private

:Config_Permit_Join_Duration O Public

:Config_NWK_Security_Level O Private

:Config_NWK_Secure_All_Frames O Private

Table 94 Node manager attributes
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 151

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1.5.6.1 Configuration Attribute Definitions

:Config_NWK_Leave_removeChildre
n

O Privatea

:Config_NWK_BroadcastDeliveryTim
e

O Privateb

:Config_NWK_TransactionPersistenc
eTime

O Privatec

aCCB Comment #107
bCCB Comment #269
cCCB Comment #252

Attribute Description When updated

:Config_Node_Descriptor Contents of the Node
Descriptor for this
device (see sub-
clause 1.3.3.4).

The :Config_Node_Descriptor is
either created when the application
is first loaded or initialized with a
commissioning tool prior to when
the device begins operations in the
network. It is used for service dis-
covery to describe node features to
external inquiring devices.

:Config_Power_Descriptor Contents of the
Power Descriptor for
this device (see sub-
clause 1.3.3.5).

The :Config_Power_Descriptor is
either created when the application
is first loaded or initialized with a
commissioning tool prior to when
the device begins operations in the
network. It is used for service dis-
covery to describe node power fea-
tures to external inquiring devices.

:Config_Simple_Descriptors Contents of the Sim-
ple Descriptor(s) for
each active endpoint
for this device (see
sub-clause 1.3.3.6).

The :Config_Simple_Descriptors
are created when the application is
first loaded and are treated as
“read-only”. The Simple Descriptor
are used for service discovery to
describe interfacing features to
external inquiring devices.

Table 95 Configuration Attributes
152 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
:Config_NWK_Mode_and_Params Consists of the fol-
lowing fields:
 Channel List – The
list of channels to be
scanned when using
NLME-NETWORK-
DISCOVERY.

 Protocol Version –
Used in NLME-NET-
WORK-FORMA-
TION and NLME-
JOIN (Chapter 2).

 Stack Profile – Used
in NLME-NET-
WORK-FORMA-
TION and NLME-
JOIN (Chapter 2).

 Beacon Order –
Used in NLME-NET-
WORK-FORMA-
TION (Chapter 2).

Superframe Order –
Used in NLME-
NETORK-FORMA-
TION (Chapter 2).

BatteryLifeExten-
sion – TRUE or
FALSE (sub-
clause 2.3.3)

Security Setting –
Used in NLME-NET-
WORK-FORMA-
TION (sub-
clause 2.3.3)

The :Config_Node_Descriptor con-
tains a field describing this devices
Logical Device Type. That informa-
tion plus the specific logic
employed in this devices ZDO per-
mits the device application to use
the parameters in
:Config_NWK_Mode_and_Params
to form or join a network consistent
with the applications supported on
the device.

:Config_NWK_Scan_Attempts Integer value repre-
senting the number
of scan attempts to
make before the
NWK layer decides
which ZigBee coordi-
nator or router to
associate with (see
sub-clause 1.5.5.4).a

This attribute has
default value of 5
and valid values
between 1 and 255.

The :Config_NWK_Scan_Attempts
is employed within ZDO to call the
NLME-NETWORK-DISCOV-
ERY.request primitive the indi-
cated number of times (for routers
and end devices).
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 153

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
:Config_NWK_Time_btwn_Scans Integer value repre-
senting the time
duration (in seconds)
between each NWK
discovery attempt
described by
:Config_NWK_Scan
_Attempts (see sub-
clause 1.5.5.4).

This attrubue has a
default value of 1
(second) and valid
values between 1
and 255 (seconds).

The
:Config_NWK_Time_btwn_Scans
is employed within ZDO to provide
a time duration between the NLME-
NETWORK-DISCOVERY.request
attempts.

:Config_Complex_Descriptor Contents of the
(optional) Complex
Descriptor for this
device (see sub-
clause 1.3.3.7).

The :Config_Complex_Descriptor
is either created when the applica-
tion is first loaded or initialized with
a commissioning tool prior to when
the device begins operations in the
network. It is used for service dis-
covery to describe extended device
features for external inquiring
devices.

:Config_User_Descriptor Contents of the
(optional) User
Descriptor for this
device (see sub-
clause 1.3.3.8).

The :Config_User_Descriptor is
either created when the application
is first loaded or initialized with a
commissioning tool prior to when
the device begins operations in the
network. It is used for service dis-
covery to provide a descriptive
character string for this device to
external inquiring devices.

:Config_Max_Bind A constant which
describes the maxi-
mum number of
binding entries per-
mitted if this device
is a ZigBee Coordi-
nator or ZigBee
Router.

The :Config_Max_Bind is a maxi-
mum number of supported Binding
Table entries for this device.

:Config_Master_Key Master Key used if
security is enabled
for this device (see
Chapter 3).

The :Config_Master_Key is either
present when the application is first
loaded or initialized with a commis-
sioning tool prior to when the
device begins operations in the
network. It is used for security
operations on the device if security
is supported and enabled.

:Config_EndDev_Bind_Timeout Timeout value in
seconds employed in
End Device Binding
(see sub-
clause 1.4.3.2).

The
:Config_EndDev_Bind_Timeout is
employed only on ZigBee Coordi-
nators and used to determine
whether end device bind requests
have been received within the time-
out window.
154 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
:Config_Permit_Join_Duration Permit Join Duration
value set by the
NLME-PERMIT-
JOINING.request
primitive (see Chap-
ter 2).

The default value for
:Config_Permit_Join_Duration is
0x00, however, this value can be
established differently according to
the needs of the profile.

:Config_NWK_Security_Level Security level of the
network (see Chap-
ter 2).

This attribute is used only on the
trust center and is used to set the
level of security on the network.

:Config_NWK_Secure_All_Frames If all network frames
should be secured
(see Chapter 2).

This attribute is used only on the
trust center and is used to deter-
mine if network layer security shall
be applied to all frames in the net-
work.

:Config_NWK_Leave_removeChildr
en

Sets the policy as to
whether child
devices are to be
removed if the
device is asked to
leave the network via
NLME-LEAVE (see
Chapter 2).

The policy for setting this parame-
ter is found in the Stack Profile
employed.b

:Config_NWK_BroadcastDeliveryTi
me

See Table 132. The value for this configuration
attribute is established in the Stack
Profile.c

:Config_NWK_TransactionPersiste
nceTime

See Table 132.

This attribute is man-
datory for the ZigBee
coordinator and Zig-
Bee routers and not
used for ZigBee End
Devices.

The value for this configuration
attribute is established in the Stack
Profile.d

aCCB Comment #171
bCCB Comment #107
cCCB Comment #269
dCCB Comment #252
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 155

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
156 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 157

 Application Layer Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 158

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Chapter 2 Network Specification

2.1 NWK layer status values

Network (NWK) layer confirmation primitives often include a parameter that reports on the status of the
request to which the confirmation applies. Values for NWK layer status parameters appear in Table 96.

Table 96 NWK layer status values
Name Value Description

SUCCESS 0x00 A request has been executed successfully.

INVALID_PARAMETER 0xc1 An invalid or out-of-range parameter has been passed to a
primitive from the next higher layer.

INVALID_REQUEST
0xc2

The next higher layer has issued a request that is invalid
or cannot be executed given the current state of the NWK
layer.

NOT_PERMITTED 0xc3 An NLME-JOIN.request has been disallowed.

STARTUP_FAILURE 0xc4 An NLME-NETWORK-FORMATION.request has failed to
start a network.

ALREADY_PRESENT

0xc5

A device with the address supplied to the NLME-DIRECT-
JOIN.request is already present in the neighbor table of
the device on which the NLME-DIRECT-JOIN.request was
issued.

SYNC_FAILURE 0xc6 Used to indicate that an NLME-SYNC.request has failed
at the MAC layer.

TABLE_FULL 0xc7 An NLME-JOIN-DIRECTLY.request has failed because
there is no more room in the neighbor table.

UNKNOWN_DEVICE
0xc8

An NLME-LEAVE.request has failed because the device
addressed in the parameter list is not in the neighbor table
of the issuing device.

UNSUPPORTED_ATTRIBUTE 0xc9 An NLME-GET.request or NLME-SET.request has been
issued with an unknown attribute identifier.

NO_NETWORKS 0xca An NLME-JOIN.request has been issued in an environ-
ment where no networks are detectable.a

aCCB Comment #105

LEAVE_UNCONFIRMED 0xcb A device failed to confirm its departure from the network.b

MAX_FRM_CNTR
0xcc

Security processing has been attempted on an outgoing
frame, and has failed because the frame counter has
reached its maximum value.c

NO_KEY
0xcd

Security processing has been attempted on an outgoing
frame, and has failed because no key was available with
which to process it.d

BAD_CCM_OUTPUT
0xce

Security processing has been attempted on an outgoing
frame, and has failed because security engine produced
erroneous output.e
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 159

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.2 General description

2.2.1 Network (NWK) layer overview

The network layer is required to provide functionality to ensure correct operation of the IEEE 802.15.4-2003
MAC sub-layer and to provide a suitable service interface to the application layer. To interface with the
application layer, the network layer conceptually includes two service entities that provide the necessary
functionality. These service entities are the data service and the management service. The NWK layer data
entity (NLDE) provides the data transmission service via its associated SAP, the NLDE-SAP, and the NWK
layer management entity (NLME) provides the management service via its associated SAP, the NLME-
SAP. The NLME utilizes the NLDE to achieve some of its management tasks and it also maintains a
database of managed objects known as the network information base (NIB).

2.2.1.1 Network layer data entity (NLDE)

The NLDE shall provide a data service to allow an application to transport application protocol data units
(APDU) between two or more devices. The devices themselves must be located on the same network.

The NLDE will provide the following services:

— Generation of the Network level PDU (NPDU). The NLDE shall be capable of generating an NPDU
from an application support sub-layer PDU through the addition of an appropriate protocol header.

— Topology specific routing. The NLDE shall be able to transmit an NPDU to an appropriate device
that is either the final destination of the communication or the next step towards the final destination
in the communication chain.

2.2.1.2 Network layer management entity (NLME)

The NLME shall provide a management service to allow an application to interact with the stack.

The NLME shall provide the following services:

— Configuring a new device. The ability to sufficiently configure the stack for operation as required.
Configuration options include beginning operation as a ZigBee coordinator or joining an existing net-
work.

— Starting a network. The ability to establish a new network.

— Joining and leaving a network. The ability to join or leave a network as well as the ability for a Zig-
Bee coordinator or ZigBee router to request that a device leave the network.

— Addressing. The ability of ZigBee coordinators and routers to assign addresses to devices joining the
network.

— Neighbor discovery. The ability to discover, record and report information pertaining to the one-hop
neighbors of a device

— Route discovery. The ability to discover and record paths through the network whereby messages
may be efficiently routed.

— Reception control. The ability for a device to control when the receiver is activated and for how long,
enabling MAC sub-layer synchronization or direct reception.

bCCB Comment #107
cCCB Comment #159
dIbid
eIbid
160 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3 Service specification

Figure 31 depicts the components and interfaces of the NWK layer.

The NWK layer provides two services, accessed through two service access points (SAPs). These are the
NWK data service, accessed through the NWK layer data entity SAP (NLDE-SAP) and the NWK
management service, access though the NWK layer management entity SAP (NLME-SAP). These two
services provide the interface between the application and the MAC sub-layer, via the MCPS-SAP and
MLME-SAP interfaces (see [B1]). In addition to these external interfaces, there is also an implicit interface
between the NLME and the NLDE that allows the NLME to use the NWK data service.

Figure 31 The NWK layer reference model

2.3.1 NWK data service

The NWK layer data entity SAP (NLDE-SAP) supports the transport of application protocol data units
(APDUs) between peer application entities. Table 97 lists the primitives supported by the NLDE-SAP. Each
of these primitives will be discussed in the following sub-clauses.

2.3.1.1 NLDE-DATA.request

This primitive requests the transfer of a data PDU (NSDU) from the local APS sub-layer entity to a single or
multiple peer APS sub-layer entities.

Table 97 NLDE-SAP Primitives
NLDE-SAP primitive Request Confirm Indication

NLDE-DATA 2.3.1.1 2.3.1.2 2.3.1.3

NWK

IB

NLME

NLDE

Next Higher Layer Entity

NLME-SAP NLDE-SAP

MAC Sub-Layer Entity

MCPS-SAP MLME-SAP
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 161

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.1.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 98 specifies the parameters for the NLDE-DATA.request primitive.

NLDE-DATA.request (
DstAddr,
NsduLength,
Nsdu,
NsduHandle,
Radiusa,
DiscoverRoute,
SecurityEnable
)

aCCB Comment #125

Table 98 NLDE-DATA.request parameters
Name Type Valid range Description

DstAddr Network
address

0x0000 – 0xffff The network address of the entity or entities
to which the NSDU is being transferred.

NsduLength Integer < aMaxMACFrameSize -
nwkcMinHeaderOver-
heada

aCCB Comment #366

The number of octets comprising the NSDU
to be transferred.

Nsdu Set of
octets

- The set of octets comprising the NSDU to be
transferred.

NsduHandle Integer 0x00 – 0xff The handle associated with the NSDU to be
transmitted by the NWK layer entity.

Radiusb

bCCB Comment #125

Unsigned
integer

0x00—0xff The distance, in hops, that a frame will
be allowed to travel through the net-
work.c

cIbid

DiscoverRoute Integer 0x00-0x02 The DiscoverRoute parameter may be used
to control route discovery operations for the
transit of this frame (see sub-clause 2.7.3.4).

0x00 = suppress route discovery

0x01 = enable route discovery

0x02 = force route discoveryd

dCCB Comment #256

SecurityEnable Boolean TRUE or FALSE The SecurityEnable parameter may be used
to enable NWK layer security processing for
the current frame. If the security level speci-
fied in the NIB is 0, meaning no security, then
this parameter will be ignored. Otherwise, a
value of TRUE denotes that the security pro-
cessing specified by the security level will be
applied and a value of FALSE denotes that
no security processing will be applied.
162 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.1.1.2 When generated

This primitive is generated by a local APS sub-layer entity whenever a data PDU (NSDU) is to be
transferred to a peer APS sub-layer entity.

2.3.1.1.3 Effect on receipt

On receipt of this primitive on a device that is not currently associated, the NWK layer will issue an NLDE-
DATA.confirm primitive with a status of INVALID_REQUEST.

On receipt of this primitive, the NLDE first constructs an NPDU in order to transmit the supplied NSDU. If,
during processing, the NLDE issues the NLDE-DATA.confirm primitive prior to transmission of the
NSDU, all further processing is aborted. In constructing the new NPDU, the destination address field of the
NWK header will be set to the value provided in the DstAddr parameter and the source address field will
have the value of the macShortAddress attribute in the MAC PIB. The discover route sub-field of frame
control field of the NWK header will be set to the value provided in the DiscoverRoute parameter. If a value
has been supplied for the Radius parameter, that will be placed in the radius field of the NWK header. If a
value is not supplied, then the radius field of the NWK header will be set to twice the value of the
nwkMaxDepth attribute of the NWK IB. The NWK layer will generate a sequence number for the frame as
described in sub-clause 2.7.2.1. The sequence number value shall be inserted into the sequence number field
of the NWK header of the frame.85 Once the NPDU is constructed, the NSDU is routed using the procedure
outline in Figure 57 and described in sub-clause 2.7.3.3. When the routing procedure specifies that the
NSDU is to be transmitted, this is accomplished by issuing the MCPS-DATA.request primitive with both
the SrcAddrMode and DstAddrMode parameters set to 0x02 indicating the use of 16-bit network addresses.
The SrcPANId and DstPANId parameters should be set to the current value of macPANId from the MAC
PIB. The SrcAddr parameter will be set to the value of macShortAddr from the MAC PIB. The value of the
DstAddr parameter is the next hop address determined by the routing procedure. The TxOptions parameter
should always be non-zero when bitwise ANDed with the value 0x01, denoting that acknowledged
transmission is required. On receipt of the MCPS-DATA.confirm primitive, the NLDE issues the NLDE-
DATA.confirm primitive with a status equal to that received from the MAC sub-layer.

If the network-wide security level specified in the NIB has a non-zero value and the SecurityEnable
parameter has a value of TRUE then NWK layer security processing will be applied to the frame before
transmission as described in clause 3.4. Otherwise no security processing will be performed at the NWK
layer for this frame. If security processing is done and it fails for any reason, then the frame is discarded and
the NLDE issues the NLDE-DATA.confirm primitive with a status parameter value equal to that returned by
the security suite.

2.3.1.2 NLDE-DATA.confirm

This primitive reports the results of a request to transfer a data PDU (NSDU) from a local APS sub-layer
entity to a single peer APS sub-layer entity.

2.3.1.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

85CCB Comment #101, 109, 125, 111, 256

NLDE-DATA.confirm (
NsduHandle,
Status
)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 163

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 99 specifies the parameters for the NLDE-DATA.confirm primitive.

2.3.1.2.2 When generated

This primitive is generated by the local NLDE in response to the reception of an NLDE-DATA.request
primitive.

The Status field will reflect the status of the corresponding request, as described in sub-clause 2.3.1.1.3.

2.3.1.2.3 Effect on receipt

On receipt of this primitive the APS sub-layer of the initiating device is notified of the result of its request to
transmit. If the transmission attempt was successful, the status parameter will be set to SUCCESS.
Otherwise, the status parameter will indicate the error.

2.3.1.3 NLDE-DATA.indication

This primitive indicates the transfer of a data PDU (NSDU) from the NWK layer to the local APS sub-layer
entity.

2.3.1.3.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 99 NLDE-DATA.confirm parameters
Name Type Valid range Description

NsduHandle Integer 0x00 – 0xff The handle associated with the NSDU
being confirmed.

Status Status

INVALID_REQUEST,
MAX_FRM_COUNTER,

NO_KEY,
BAD_CCM_OUTPUTa or any
status values returned from
security suite or the MCPS-
DATA.confirm primitive (see

[B1]).
aCCB Comment #159

The status of the corresponding
request.

NLDE-DATA.indication (
SrcAddress,
NsduLength,
Nsdu,
LinkQuality
}

164 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 100 specifies the parameters for the NLDE-DATA.indication primitive.

2.3.1.3.2 When generated

This primitive is generated by the NLDE and issued to the APS sub-layer on receipt of an appropriately
addressed data frame from the local MAC sub-layer entity.

2.3.1.3.3 Effect on receipt

On receipt of this primitive the APS sub-layer is notified of the arrival of data at the device.

2.3.1.3.4 NWK management service

The NWK layer management entity SAP (NLME-SAP) allows the transport of management commands
between the next higher layer and the NLME. Table 101 summarizes the primitives supported by the NLME
through the NLME-SAP interface. See the following sub-clauses for more details on the individual
primitives.

Table 100 NLDE-DATA.indication parameters
Name Type Valid range Description

SrcAddress 16-bit Device
address

Any valid device address
except the broadcast
address.

The individual device address
from which the NSDU origi-
nated.

NsduLength Integer
< aMaxMACFrameSize -

nwkcMinHeaderOverheada

aCCB Comment #336

The number of octets compris-
ing the NSDU being indicated.

Nsdu Set of octets - The set of octets comprising the
NSDU being indicated.

LinkQuality Integer 0x00 – 0xff

The link quality indication deliv-
ered by the MAC on receipt of
this frame as a parameter of the
MCPS-DATA.indication primti-
tive (see [B1]).

Table 101 Summary of the primitives accessed through the NLME-SAP
Name Request Indication Response Confirm

NLME-NETWORK-DISCOVERY 2.3.2.1 2.3.2.2

NLME-NETWORK-FORMATION 2.3.2.2 2.3.3.2

NLME-PERMIT-JOINING 2.3.6.1 2.3.6.2 2.3.6.3

NLME-START-ROUTER 2.3.5.1 2.3.5.2

NLME-JOIN 2.3.6.1 2.3.6.2 2.3.6.3

NLME-DIRECT-JOIN 2.3.7.1 2.3.7.2

NLME-LEAVE 2.3.8.1 2.3.8.2 2.3.8.3

NLME-RESET 2.3.9.1 2.3.9.2
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 165

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.2 Network discovery

The NWK layer management entity SAP (NLME-SAP) supports the discovery of operating networks. The
primitives employed in network discovery are the NLME-NETWORK-DISCOVERY primitives.

2.3.2.1 NLME-NETWORK-DISCOVERY.request

This primitive allows the next higher layer to request that the NWK layer discover networks currently
operating within the POS.

2.3.2.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

NLME-SYNC 2.3.10.1 2.3.10.2

NLME-GET 2.3.11.1 2.3.11.2

NLME-SET 2.3.11.3 2.3.11.4

NLME-NETWORK-DISCOVERY.request {
ScanChannels,
ScanDuration
}

Table 101 Summary of the primitives accessed through the NLME-SAP
166 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 102 specifies the parameters for the NLME-NETWORK-DISCOVERY.request primitive.

2.3.2.1.2 When generated

This primitive is generated by the next higher layer of a ZigBee device and issued to its NLME to request the
discovery of networks operating within the device’s personal operating space (POS).

2.3.2.1.3 Effect on receipt

On receipt of this primitive, the NWK will attempt to discover networks operating within the device’s POS
by scanning over the channels specified in the ScanChannels argument for the period specified in the
ScanDuration parameter.

If the device is an IEEE 802.15.4-2003 FFD [B1], then it will perform an active scan. If it is an RFD, it will
perform an active scan provided that the device implements active scan. Otherwise it will perform a passive
scan using the MLME-SCAN.request primitive. On receipt of the MLME-SCAN.confirm primitive the
device’s neighbor table (see sub-clause 2.7.1.3.4) is updated to reflect the information returned by the scan
and a network descriptor list is assembled and the NLME issues the NLME-NETWORK-
DISCOVERY.confirm primitive containing the information about the discovered networks and with a
Status parameter value equal to that returned with the MLME-SCAN.confirm.

2.3.2.2 NLME-NETWORK-DISCOVERY.confirm

This primitive reports the results of a network discovery operation.

2.3.2.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 102 NLME-NETWORK-DISCOVERY.request parameters
Name Type Valid range Description

ScanChannels Bitmap 32 bit field

The five most significant bits (b27,...,
b31) are reserved. The 27 least signifi-
cant bits (b0, b1,... b26) indicate which
channels are to be scanned (1 = scan,
0 = do not scan) for each of the 27 valid
channels (see [B1]).

ScanDuration Integer 0x00-0x0e

A value used to calculate the length of
time to spend scanning each channel.
The time spent scanning each channel
is (aBaseSuperframeDuration * (2n +
1)) symbols, where n is the value of the
ScanDuration parameter. For more
information on MAC sub-layer scanning
see [B1].

NLME-NETWORK-DISCOVERY.confirm {
NetworkCount,
NetworkDescriptor,
Status
}

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 167

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 103 describes the arguments of the NLME-NETWORK-DISCOVERY.confirm primitive.

Table 104 gives a detailed account of the contents of a network descriptor from the NetworkDescriptor
parameter.

Table 103 NLME-NETWORK-DISCOVERY.confirm parameters
Name Type Valid range Description

NetworkCount Integer 0x00—0xff Gives the number of networks dis-
covered by the search.

NetworkDescriptor
List of net-

work
descriptors

The list contains the number of
elements given by the Network-

Count parameter.

A list of descriptors, one for each of
the networks discovered. Table 104
gives a detailed account of the con-
tents of each item.

Status Status
Any Status value returned with
the MLME-SCAN.confirm primi-

tive.

See [B1].

Table 104 Network descriptor information fieldsa

aCCB Comment #267

Name Type Valid range Description

PanID Integer 0x0000—0x3fff

The 16-bit PAN identifier of the dis-
covered network. The 2 highest-order
bits of this parameter are reserved
and shall be set to 0.

LogicalChannel Integer
Selected from the available logi-
cal channels supported by the
PHY (see [B1]).

The current logical channel occupied
by the network.

StackProfile Integer 0x00 – 0x0f
A ZigBee stack profile identifier indi-
cating the stack profile in use in the
discovered network.

ZigBeeVersion Integer 0x00 – 0x0f The version of the ZigBee protocol in
use in the discovered network.

BeaconOrder Integer 0x00-0x0f

This specifies how often the MAC
sub-layer beacon is to be transmitted
by a given device on the network. For
a discussion of MAC sub-layer bea-
con order see [B1].

SuperframeOrder Integer 0x00-0x0f

For beacon-oriented networks, i.e.
beacon order < 15, this specifies the
length of the active period of the
superframe. For a discussion of MAC
sub-layer superframe order see [B1].

PermitJoining Boolean TRUE or FALSE

A value of TRUE indicates that at
least one ZigBee router on the net-
work currently permits joining, i.e. its
NWK has been issued an NLME-
PERMIT-JOINING primitive and the
time limit, if given, has not yet expired.
168 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.2.2.2 When generated

This primitive is generated by the NLME and issued to its next higher layer on completion of the discovery
task initiated by an NLME-NETWORK-DISCOVERY.request primitive.

2.3.2.2.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of a network search.

2.3.3 Network formation

This set of primitives defines how the next higher layer of a device can initialize itself as the ZigBee
coordinator of a new network and subsequently make changes to its superframe configuration86.

2.3.3.1 NLME-NETWORK-FORMATION.request

This primitive allows the next higher layer to request that the device start a new ZigBee network with itself
as the coordinator and subsequently, to make changes to its superframe configuration87.

2.3.3.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 105 specifies the parameters for the NLME-NETWORK-FORMATION.request primitive.

86CCB Comment #137
87Ibid

NLME-NETWORK-FORMATION.request (
ScanChannels,
ScanDuration,
BeaconOrder,
SuperframeOrder,
PANId,
BatteryLifeExtension
)

Table 105 NLME-NETWORK-FORMATION.request parameters
Name Type Valid range Description

ScanChannels Bitmap 32 bit field

The five most significant bits (b27,...,
b31) are reserved. The 27 least signifi-
cant bits (b0, b1,... b26) indicate which
channels are to be scanned in prepa-
ration for starting a network (1=scan,
0=do not scan) for each of the 27 valid
channels (see [B1]).

ScanDuration Integer 0x00-0x0e

A value used to calculate the length of
time to spend scanning each channel.
The time spent scanning each channel
is (aBaseSuperframeDuration * (2n +
1)) symbols, where n is the value of
the ScanDuration parameter [B1].

BeaconOrder Integer 0x00—0x0f The beacon order of the network that
the higher layers wish to form.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 169

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.3.1.2 When generated

This primitive is generated by the next higher layer of a ZigBee coordinator-capable device and issued to its
NLME to request the initialization of itself as the ZigBee coordinator of a new network and subsequently, to
make changes to its superframe configuration88.

2.3.3.1.3 Effect on receipt

On receipt of this primitive by a device that is not capable of being a ZigBee coordinator or else already
initialized as the ZigBee coordinator89 of a network, the NLME issues the NLME-NETWORK-
FORMATION.confirm primitive with the Status parameter set to INVALID_REQUEST

If the device is to be initialized as a ZigBee coordinator, the NLME requests that the MAC sub-layer first
perform an energy detection scan and then an active scan on the specified set of channels. To do this, the
NLME issues the MLME-SCAN.request primitive to the MAC sub-layer with the ScanType parameter set
to indicate an energy detection scan and then issues the primitive again with the ScanType parameter set to
indicate an active scan. After the completion of the active scan, on receipt of the MLME-SCAN.confirm
primitive from the MAC sub-layer, the NLME selects a suitable channel. If the next higher layer has
specified the PANId parameter, then the NWK layer confirms that the given PAN identifier does not conflict
with the PAN identifier of an already established network on the chosen channel. If a conflict is discovered,
then another channel will be chosen from the specified set, if possible. If no channel can be chosen such that
the given PAN identifier does not conflict with another network on that channel, then the NWK layer issues
the NLME-NETWORK-FORMATION.confirm primitive with a status of STARTUP_FAILURE. If the
PANId parameter has not been specified, then the NWK layer will pick a PAN identifier that does not
conflict with that of any network known to be operating on the chosen channel. Once a suitable channel and
PAN identifier are found, the NLME will choose 0x0000 as the 16-bit short MAC address and inform the
MAC sub-layer. To do this the NLME issues the MLME-SET.request primitive to the MAC sub-layer to set
the MAC PIB attribute macShortAddress. If no suitable channel or PAN identifier can be found, the NLME
issues the NLME-NETWORK-FORMATION.confirm primitive with the Status parameter set to
STARTUP_FAILURE.

SuperframeOrder Integer 0x00—0x0f The superframe order of the network
that the higher layers wish to form.

PANId Integer
0x0000—0x3fff

or NULL

An optional PAN identifier that may be
supplied if higher layers wish to
establish this network with a
predetermined identifier. If PANId is
not specified, i.e. a NULL value is
given, then the NWK layer will choose
a PAN ID. The 2 highest-order bits of
this parameter are reserved and shall
be set to 0.

BatteryLifeExtension Boolean TRUE or FALSE

If this value is TRUE, the NLME will
request that the ZigBee coordinator is
started supporting battery life exten-
sion mode. If this value is FALSE, the
NLME will request that the ZigBee
coordinator is started without support-
ing battery life extension mode.

88CCB Comment #137
89Ibid

Table 105 NLME-NETWORK-FORMATION.request parameters
170 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
To initialize a new superframe configuration or modify an existing one90, the NLME issues the MLME-
START.request primitive to the MAC sub-layer. The PANCoordinator parameter of the MLME-
START.request primitive is set to TRUE91. The BeaconOrder and SuperframeOrder given to the MLME-
START.request primitive will be the same as those given to the NLME-NETWORK-FORMATION.request.
The CoordRealignment parameter in the MLME-START.request primitive is set to FALSE if the primitive
is issued to initialize a new superframe. The CoordRealignment parameter is set to TRUE if the primitive is
issued to change any of the PAN configuration attributes.92 On receipt of the associated MLME-
START.confirm primitive, the NLME issues the NLME-NETWORK-FORMATION.confirm primitive to
the next higher layer with the status returned from the MLME-START.confirm primitive.

2.3.3.2 NLME-NETWORK-FORMATION.confirm

This primitive reports the results of the request to initialize a ZigBee coordinator in a network.

2.3.3.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 106 specifies the parameters for the NLME-NETWORK-FORMATION.confirm primitive.

2.3.3.2.2 When generated

This primitive is generated by the NLME and issued to its next higher layer in response to an NLME-
NETWORK-FORMATION.request primitive. This primitive returns a status value of
INVALID_REQUEST, STARTUP_FAILURE or any status value returned from the MLME-
START.confirm primitive. Conditions under which these values may be returned are described above in
sub-clause 2.3.3.1.3.

2.3.3.2.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to initialize the
device as a ZigBee coordinator or request a change to the superframe configuration93. If the NLME has been
successful, the status parameter will be set to SUCCESS. Otherwise, the status parameter indicates the error.

90CCB Comment #137
91Ibid
92CCB Comment #102, 137

NLME-NETWORK-FORMATION.confirm (
Status
)

Table 106 NLME-NETWORK-FORMATION.confirm parameters
Name Type Valid range Description

Status Status

INVALID_REQUEST,
STARTUP_FAILURE

or any status value returned
from the MLME-START.con-

firm primitive.

The result of the attempt to initialize
a ZigBee coordinator or request a
change to the superframe configu-
rationa.

aCCB Comment #137

93CCB Comment #137
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 171

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.4 Allowing devices to join

This primitive defines how the next higher layer of a ZigBee coordinator or router can request that devices
be permitted to join its network.

2.3.4.1 NLME-PERMIT-JOINING.request

This primitive allows the next higher layer of a ZigBee coordinator or router to set its MAC sub-layer
association permit flag for a fixed period during which it may accept devices onto its network.

2.3.4.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 107 specifies the parameters for the NLME-PERMIT-JOINING.request primitive.

2.3.4.1.2 When generated

This primitive is generated by the next higher layer of a ZigBee coordinator or router and issued to its
NLME whenever it is desired to allow devices to join its network.

2.3.4.1.3 Effect on receipt

It is only permissible that the next higher layer of a ZigBee coordinator or router issue this primitive. On
receipt of this primitive by the NWK layer of a ZigBee end device, the NLME-PERMIT-JOINING.confirm
primitive returns a status of INVALID_REQUEST.

On receipt of this primitive with the PermitDuration parameter set 0x00, the NLME sets the MAC PIB
attribute, macAssociationPermit, to FALSE by issuing the MLME-SET.request primitive to the MAC sub-
layer. Once the MLME-SET.confirm primitive is received, the NLME issues the NLME-PERMIT-
JOINING.confirm primitive with a status equal to that received from the MAC sub-layer.

On receipt of this primitive with the PermitDuration parameter set to 0xff, the NLME sets the MAC PIB
attribute, macAssociationPermit, to TRUE by issuing the MLME-SET.request primitive to the MAC sub-
layer. Once the MLME-SET.confirm primitive is received, the NLME issues the NLME-PERMIT-
JOINING.confirm primitive with a status equal to that received from the MAC sub-layer.

On receipt of this primitive with the PermitDuration parameter set to any value other than 0x00 or 0xff, the
NLME sets the MAC PIB attribute, macAssociationPermit, to TRUE as described above. Following the
receipt of the MLME-SET.confirm primitive, the NLME starts a timer to expire after PermitDuration
seconds. Once the timer is set, the NLME issues the NLME-PERMIT-JOINING.confirm primitive with a

NLME-PERMIT-JOINING.request (
PermitDuration
)

Table 107 NLME-PERMIT-JOINING.request parameters
Name Type Valid range Description

PermitDuration Integer 0x00 – 0xff

The length of time in seconds during
which the ZigBee coordinator or router
will allow associations. The values
0x00 and 0xff indicate that permission
is disabled or enabled, respectively,
without a specified time limit.
172 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
status equal to that received by the MAC sub-layer. On expiration of the timer, the NLME sets
macAssociationPermit to FALSE by issuing the MLME-SET.request primitive.

Every NLME-PERMIT-JOINING.request primitive issued by the next higher layer supersedes all previous
requests.

2.3.4.2 NLME-PERMIT-JOINING.confirm

This primitive allows the next higher layer of a ZigBee coordinator or router to be notified of the results of
its request to permit the acceptance of devices onto the network.

2.3.4.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 108 specifies the parameters for the NLME-PERMIT-JOINING.confirm primitive.

2.3.4.2.2 When generated

This primitive is generated by the initiating NLME of a ZigBee coordinator or router and issued to its next
higher layer in response to an NLME-PERMIT-JOINING.request. The status parameter either indicates the
status received from the MAC sub-layer or an error code of INVALID_REQUEST. The reasons for these
status values are described in sub-clause 2.3.4.1.

2.3.4.2.3 Effect on receipt

On receipt of this primitive, the next higher layer of the initiating device is notified of the results of its
request to permit devices to join the network.

2.3.5 Begin as a router

This set of primitives allows a ZigBee router that is newly joined to a network to setup its superframe
configuration. It may also be used by a ZigBee router94 to reconfigure its superframe.

2.3.5.1 NLME-START-ROUTER.request

This primitive allows the next higher layer of a ZigBee router to initialize or change its superframe
configuration.95

NLME-PERMIT-JOINING.confirm (
Status
)

Table 108 NLME-PERMIT-JOINING.confirm parameters
Name Type Valid range Description

Status Status

INVALID_REQUEST
or any status returned

from the MLME-SET.con-
firm primitive (see [B1]).

The status of the corresponding
request.

94CCB Comment #137
95Ibid
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 173

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.5.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 109 specifies the parameters for NLME-START-ROUTER.request.

2.3.5.1.2 When generated

This primitive is generated by the next higher layer of a new device and issued to its NLME to request the
initialization of itself as a ZigBee router. It may also be issued to the NLME of a device that is already
operating as a ZigBee router96 to adjust the configuration of its superframe.

2.3.5.1.3 Effect on receipt

On receipt of this primitive by a device that is not already joined to a ZigBee network as a router, the NLME
issues the NLME-START-ROUTER.confirm primitive with the Status parameter set to
INVALID_REQUEST.

To initialize a new superframe configuration or to reconfigure an already existing one, the NLME issues the
MLME-START.request primitive to the MAC sub-layer. The CoordRealignment parameter in the MLME-
START.request primitive is set to FALSE if the primitive is issued to initialize a new superframe. The
CoordRealignment parameter is set to TRUE if the primitive is issued to change any of the PAN
configuration attributes.

On receipt of the associated MLME-START.confirm primitive, the NLME issues the NLME-START-
ROUTER.confirm primitive to the next higher layer with the status returned from the MLME-
START.confirm primitive. If, and only if, the status returned from the MLME-START.confirm primitive is
SUCCESS, the device may then begin to engage in the activities expected of a ZigBee router including the
routing of data frames, route discovery, route repair and the accepting of requests to join the network from
other devices. Otherwise the device is expressly forbidden to engage in these activities.97

NLME-START-ROUTER.request (
BeaconOrder,
SuperframeOrder,
BatteryLifeExtension
)

Table 109 NLME-START-ROUTER.request parameters
Name Type Valid range Description

BeaconOrder Integer 0x00—0x0f The beacon order of the network that
the higher layers wish to form.

SuperframeOrder Integer 0x00—0x0f The superframe order of the network
that the higher layers wish to form.

BatteryLifeExtension Boolean TRUE or FALSE

If this value is TRUE, the NLME will
request that the ZigBee routera is
started supporting battery life exten-
sion mode. If this value is FALSE, the
NLME will request that the ZigBee
routerb is started without supporting
battery life extension mode.

aCCB Comment #137
bIbid

96CCB Comment #137
174 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.5.2 NLME-START-ROUTER.confirm

This primitive reports the results of the request to initialize or change the superframe configuration of a
ZigBee router.98

2.3.5.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 110 specifies the parameters for NLME-START-ROUTER.confirm.

2.3.5.2.2 When generated

This primitive is generated by the NLME and issued to its next higher layer in response to an NLME-
START-ROUTER.request primitive. This primitive returns a status value of INVALID_REQUEST or any
status value returned from the MLME-START.confirm primitive. Conditions under which these values may
be returned are described above in sub-clause 2.3.5.1.3.

2.3.5.2.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to initialize or change
the superframe configuration of a ZigBee router99. If the NLME has been successful, the status parameter
will be set to SUCCESS. Otherwise, the status parameter indicates the error.

2.3.6 Joining a network

This set of primitives defines how the next higher layer of a device can:

— request to join a network through association.

— request to join a network directly.

— request to re-join a network if orphaned.

2.3.6.1 NLME-JOIN.request

This primitive allows the next higher layer to request to join a network either through association or directly
or to re-join a network if orphaned.

97CCB Comment #193
98CCB Comment #137

NLME-START-ROUTER.confirm (
Status
)

Table 110 NLME-START-ROUTER.confirm parameters
Name Type Valid range Description

Status Status

INVALID_REQUEST
or any status value returned
from the MLME-START.con-

firm primitive.

The result of the attempt to initialize a
ZigBee routera.

aCCB Comment #137

99CCB Ibid
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 175

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.6.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 111 specifies the parameters for the NLME-JOIN.request primitive.

NLME-JOIN.request (
PANId,
JoinAsRouter,
RejoinNetwork,
ScanChannels,
ScanDuration,
PowerSource,
RxOnWhenIdle,
MACSecurity
)

Table 111 NLME-JOIN.request parameters
Name Type Valid range Description

PANId Integer 0x0000—0x3fff

The PAN identifier of the network to
attempt to join or re-join. The 2 high-
est-order bits of this parameter are
reserved and shall be set to 0

JoinAsRouter Boolean TRUE or FALSE

The parameter is TRUE if the device is
attempting to join the network in the
capacity of a ZigBee router. It is
FALSE otherwise.
The parameter is valid in requests to
join through association and ignored in
requests to join directly or to re-join
through orphaning.

RejoinNetwork Boolean TRUE or FALSE

The parameter is TRUE if the device is
joining directly or rejoining the network
using the orphaning procedure.
The parameter is FALSE if the device
is requesting to join a network through
association.

ScanChannels Bitmap 32 bit field

The five most significant bits (b27,...,
b31) are reserved. The 27 least signifi-
cant bits (b0, b1,... b26) indicate which
channels are to be scanned (1=scan,
0=do not scan) for each of the 27 valid
channels (see [B1]).
This parameter is ignored for requests
to join through association.

ScanDuration Integer 0x00-0x0e

A value used to calculate the length of
time to spend scanning each channel.
The time spent scanning each channel
is (aBaseSuperframeDuration * (2n +
1)) symbols, where n is the value of
the ScanDuration parameter [B1].
176 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.6.1.2 When generated

The next higher layer of a device generates this primitive to request to join a new network using the MAC
sub-layer association procedure, to join a new network directly using the MAC sub-layer orphaning
procedure or to locate and re-join a network after being orphaned.

2.3.6.1.3 Effect on receipt

On receipt of this primitive by a device that is currently joined to a network, the NLME issues an NLME-
JOIN-confirm primitive with the status parameter set to INVALID_REQUEST.

On receipt of this primitive by a device that is not currently joined to a network, the device attempts to join
the network specified by the PANId parameter.

PowerSource Integer 0x00 – 0x01

This parameter becomes a part of the
CapabilityInformation parameter
passed to the MLME-ASSOCI-
ATE.request primitive that is gener-
ated as the result of a successful
executing of a NWK join. The values
are:

0x01 = Mains-powered device.

0x00 = other power source. (see
[B1]).

RxOnWhenIdle Integer 0x00 – 0x01

This parameter indicates whether the
device can be expected to receive
packets over the air during idle por-
tions of the CAPa. The values are:

0x01 = The receiver is enabled when
the device is idle.

0x00 = The receiver may be disabled
when the device is idle.

RxOnWhenIdle shall have a value of
0x01 for ZigBee coordinators and Zig-
Bee routers operating in a non-bea-
con-oriented network.

MACSecurity Integer 0x00 – 0x01

This parameter becomes a part of the
CapabilityInformation parameter
passed to the MLME-ASSOCI-
ATE.request primitive that is gener-
ated as the result of a successful
executing of a NWK join. The values
are:

0x01 = MAC security enabled.

0x00 = MAC security disabled (see
[B1]).

aCCB Comment #138

Table 111 NLME-JOIN.request parameters
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 177

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
If the RejoinNetwork parameter is FALSE, the NLME issues an MLME-ASSOCIATE.request with its
CoordAddress parameter set to the address of a router in its neighbor table for which following conditions
are true:

1) The router belongs to the network identified by the PANId parameter.
2) The router is open to join requests.
3) The link quality for frames received from this device is such that a link cost of at most 3 is pro-

duced when calculated as described in sub-clause 2.7.3.1.

If a device exists in the neighbor table for which these conditions are true, the LogicalChannel parameter of
the MLME-ASSOCIATE.request primitive is set to that found in the neighbor table entry corresponding to
the coordinator address of the potential parent. The bit-fields of the CapabilityInformation parameter shall
have the values shown in Table 112 and the capability information assembled here shall be stored as the
value of the nwkCapabilityInformation NIB attribute (see Table 132). If more than one device meets the
requirements outlined above then the joining device shall select the parent with the smallest tree depth.

Table 112 CapabilityInformation bit-fields
Bit Name Description

0 Alternate PAN coordi-
nator

This field will always have a value of 0
in implementations of this specifica-
tion.

1 Device type

This field will have a value of 1 if the
joining device is a ZigBee router and
the JoinAsRouter parametera has a
value of TRUE. It will have a value of 0
if the device is a ZigBee end device or
else a router-capable device that is
joining as an end device.

2 Power source

This field shall be set to the value of
lowest-order bit of the PowerSource
parameter passed to the NLME-JOIN-
request primitive. The values are:

0x01 = Mains-powered device.

0x00 = other power source.

3 Receiver on when idle

This field shall be set to the value of
the lowest-order bit of the RxOn-
WhenIdle parameter passed to the
NLME-JOIN.request primitive.

0x01 = The receiver is enabled when
the device is idle.

0x00 = The receiver may be disabled
when the device is idle.
178 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
If no device exists in the neighbor table for which the conditions are true, then the NWK layer will issue an
NLME-JOIN.confirm with the Status parameter set to NOT_PERMITTED. Otherwise, the NLME issues the
NLME-JOIN.confirm with the Status parameter set to the status parameter value returned from the MLME-
ASSOCIATE.confirm primitive.

If the RejoinNetwork parameter is FALSE and the JoinAsRouter parameter is set to TRUE, the device will
function as a ZigBee router in the network. If the JoinAsRouter parameter is FALSE, then it will join as an
end device and not participate in routing.

If a device that is not joined to a network receives this primitive and the RejoinNetwork parameter is equal
to TRUE, then it issues an MLME-SCAN.request with the ScanType parameter set to indicate an orphan
scan and the scan duration set to the value provided by the ScanDuration parameter. Upon receipt of the
MLME-SCAN.confirm primitive, the NLME issues the NLME-JOIN.confirm with the Status parameter set
to NO_NETWORKS, if the device was unable to find a network to join, or else to the status parameter value
returned from by scan.100

2.3.6.2 NLME-JOIN.indication

This primitive allows the next higher layer of a ZigBee coordinator or ZigBee router to be notified when a
new device has successfully joined its network by association.

2.3.6.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

4 – 5 Reserved
This field will always have a value of 0
in implementations of this specifica-
tion.

6 Security capability

This field shall be set to the value of
lowest-order bit of the MACSecurity
parameter passed to the NLME-JOIN-
request primitive. The values are:

0x01 = MAC security enabled.

0x00 = MAC security disabled.

7 Allocate address

This field will always have a value of 1
in implementations of this specifica-
tion, indicating that the joining device
must be issued a 16-bit short address.

aCCB Comment #118

100CCB Comment #105

NLME-JOIN.indication (
ShortAddress,
ExtendedAddress,
CapabilityInformation
SecureJoina

)

aCCB Comment #203

Table 112 CapabilityInformation bit-fields
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 179

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 113 specifies the parameters for the NLME-JOIN.indication primitive.

2.3.6.2.2 When generated

This primitive is generated by the NLME of a ZigBee coordinator or router and issued to its next higher
layer on successfully adding a new device to the network using the MAC association procedure. An
association attempt initiates this primitive following the reception by the NLME of the MLME-
ASSOCIATE.indication primitive, the subsequent acceptance of the new device as a network member and
the issuance of the MLME-ASSOCIATION.response primitive.

2.3.6.2.3 Effect on receipt

On receipt of this primitive, the next higher layer of a ZigBee coordinator or ZigBee router is notified that a
new device has joined its network.

2.3.6.3 NLME-JOIN.confirm

This primitive allows the next higher layer to be notified of the results of its request to join a network.

2.3.6.3.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 113 NLME-JOIN.indication parameters
Name Type Valid range Description

ShortAddress Network
address 0x0000 – 0xffff The network address of an entity that

has been added to the network.

ExtendedAddress 64-bit IEEE
address Any 64-bit, IEEE address. The 64-bit IEEE address of an entity

that has been added to the network.

CapabilityInformation Bitmap See [B1]. Specifies the operational capabilities
of the joining device.

SecureJoin Boolean TRUE or FALSE

This parameter will be TRUE if the
underlying MAC association was per-
formed in a secure manner and
FALSE otherwise.a

aCCB Comment #203

NLME-JOIN.confirm (
PANId,
Status
)

180 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 114 specifies the parameters for the NLME-JOIN.confirm primitive.

2.3.6.3.2 When generated

This primitive is generated by the initiating NLME and issued to its next higher layer in response to an
NLME-JOIN.request primitive. If the request was successful, the status parameter indicates a successful join
attempt. Otherwise, the status parameter indicates an error code of INVALID_REQUEST,
NOT_PERMITTED, NO_NETWORKS101 or any status value returned from either the MLME-
ASSOCIATE.confirm primitive or the MLME-SCAN.confirm primitive. The reasons for these status values
are fully described in sub-clause 2.3.6.1.3.

2.3.6.3.3 Effect on receipt

On receipt of this primitive, the next higher layer of the initiating device is notified of the results of its
request to join a network using the MAC sub-layer association procedure, to join directly using the MAC
sub-layer orphaning procedure or to re-join a network once it has been orphaned.

2.3.7 Joining a device directly to a network

This set of primitives defines how the next higher layer of a ZigBee coordinator or router can request to
directly join another device to its network.

2.3.7.1 NLME-DIRECT-JOIN.request

This primitive allows the next higher layer of a ZigBee coordinator or router to request to directly join
another device to its network.

Table 114 NLME-JOIN.confirm parameters
Name Type Valid range Description

PANId Integer 0x0000—0x3fff

The PAN identifier from the NLME-
JOIN.request to which this is a confir-
mation. The 2 highest-order bits of
this parameter are reserved and
should be set to 0.

Status Status

INVALID_REQUEST,
NOT_PERMITTED,
NO_NETWORKSa

or any status value returned
from the MLME-ASSOCI-

ATE.confirm primitive or the
MLME-SCAN.confirm primi-

tive.

aCCB Comment #105

The status of the corresponding
request.

101CCB Comment #105
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 181

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.7.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 115 specifies the parameters for the NLME-DIRECT-JOIN.request primitive.

Figure 32 illustrates the formatting of the CapabilityInformation parameter.

Figure 32 Capability Information parameter format

2.3.7.1.2 When generated

The next higher layer of a ZigBee coordinator or router generates this primitive to add a new device directly
to its network. This process is completed without any over the air transmissions.

2.3.7.1.3 Effect on receipt

On receipt of this primitive, the NLME will attempt to add the device specified by the DeviceAddress
parameter to its neighbor table. The CapabilityInformation parameter will contain a description of the device
being joined. The alternate PAN coordinator bit is set to 0 in devices implementing this specification. The
device type bit is set to 1 if the device is a ZigBee router or to 0 if it is an end device. The power source bit is
set to 1 if the device is receiving power from the alternating current mains or to 0 otherwise. The receiver on
when idle bit is set to 1 if the device does not disable its receiver during idle periods or to 0 otherwise. The
security capability bit is set to 1 if the device is capable of secure operation or to 0 otherwise.

If the NLME successfully adds the device to its neighbor table, the NLME issues the NLME-DIRECT-
JOIN.confirm primitive with a status of SUCCESS. If the NLME finds that the requested device is already
present in its neighbor tables, the NLME issues the NLME-DIRECT-JOIN.confirm primitive with a status
of ALREADY_PRESENT. If no capacity is available to add a new device to the device list, the NLME
issues the NLME-DIRECT-JOIN.confirm primitive with a status of TABLE_FULL.

2.3.7.2 NLME-DIRECT-JOIN.confirm

This primitive allows the next higher layer of a ZigBee coordinator or router to be notified of the results of
its request to directly join another device to its network.

NLME-DIRECT-JOIN.request (
DeviceAddress,
CapabilityInformation
)

Table 115 NLME-DIRECT-JOIN.request parameters
Name Type Valid range Description

DeviceAddress 64-bit IEEE
address Any 64-bit, IEEE address. The IEEE address of the device to be

directly joined.

CapabilityInformation Bitmap See Table 112. The operating capabilities of the
device being directly joined.

bits: 0 1 2 3 4-5 6 7

Alternate
PAN coordi-

nator

Device
type

Power
source

Receiver on
when idle Reserved Security

capability Reserved
182 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.7.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 116 specifies the parameters for the NLME-DIRECT-JOIN.confirm primitive.

2.3.7.2.2 When generated

This primitive is generated by the initiating NLME and issued to its next higher layer in response to an
NLME-DIRECT-JOIN.request primitive. If the request was successful, the status parameter indicates a
successful join attempt. Otherwise, the status parameter indicates an error code of ALREADY_PRESENT
or TABLE_FULL. The reasons for these status values are fully described in sub-clause 2.3.7.1.3.

2.3.7.2.3 Effect on receipt

On receipt of this primitive, the next higher layer of the initiating device is notified of the results of its
request to directly join another device to a network.

2.3.8 Leaving a network

This set of primitives defines how the next higher layer of a device can request to leave or request that
another device leaves a network. This set of primitives also defines how the next higher layer of a ZigBee
coordinator device can be notified of a successful attempt by a device to leave its network.

2.3.8.1 NLME-LEAVE.request

This primitive allows the next higher layer to request that it or another device leaves the network.

2.3.8.1.1 Semantics of the service primitive

This semantics of this primitive is as follows:

NLME-DIRECT-JOIN.confirm (
DeviceAddress,
Status
)

Table 116 NLME-DIRECT-JOIN.confirm parameters
Name Type Valid range Description

DeviceAddress 64-bit IEEE
address Any 64-bit, IEEE address The 64-bit IEEE address in the

request to which this is a confirmation.

Status Status
SUCCESS,

ALREADY_PRESENT,
TABLE_FULL

The status of the corresponding
request.

NLME-LEAVE.request (
DeviceAddress
RemoveChildrena

MACSecurityEnableb

)

aCCB Comment #107
bCCB Comment #297
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 183

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 117 specifies the parameters for the NLME-LEAVE.request primitive.

2.3.8.1.2 When generated

The next higher layer of a device generates this primitive to request to leave the network. The next higher
layer of a ZigBee coordinator or router may also generate this primitive to remove a device from the
network.

2.3.8.1.3 Effect on receipt

On receipt of this primitive by the NLME of a device that is not currently joined to a network, the NLME
issues the NLME-LEAVE.confirm primitive with a status of INVALID_REQUEST.

On receipt of this primitive by the NLME of a device that is currently joined to a network, with the
DeviceAddress parameter equal to NULL and the RemoveChildren parameter equal to FALSE, the NLME
will remove the device itself from the network using the procedure described in sub-clause 2.7.1.7.1.
Following this, the NLME will clear its routing table and issue an MLME-RESET.request primitive to the
MAC sub-layer. If the NLME receives an MLME-RESET.confirm primitive with the Status parameter set to
anything other than SUCCESS, the NLME may choose to re-issue the reset request. The NLME will also set
the relationship field of the neighbor table entry corresponding to its former parent to 0x03, indicating no

Table 117 NLME-LEAVE.request parameters
Name Type Valid range Description

DeviceAddress Device
address Any 64-bit, IEEE address

The 64-bit IEEE address of the entity to
be removed from the network or NULL if
the device removes itself from the net-
work.

RemoveChildren Boolean TRUE or FALSE

This parameter has a value of TRUE if
the device being asked to leave the net-
work is also being asked to remove its
child devices, if any. Otherwise it has a
value of FALSE.a

aCCB Comment #107

MACSecurityEnable Boolean TRUE or FALSE

If, as a result of the receipt of an NLME-
LEAVE.request primitive, the NWK layer
opts to issue an MLME-DISASSOCI-
ATE.request primitive to the MAC layer
as described in sub-clause 2.7.1.7.1,
this parameter allows higher-layer con-
trol of the MAC layer SecurityEnable
parameter (see [B1]). In effect, this
parameter act as an override for the
SecurityEnable parameter of the MAC
layer primitive. If the NWK layer, as
implemented, would normally request
that security be applied to the outgoing
disassociation notification command
frame then a TRUE value for this param-
eter allows the required security pro-
cessing to go forward and a FALSE
value suppresses it. If the NWK layer, as
implemented, would not normally
request security processing for the out-
going disassociate notification com-
mand frame then the value of this
parameter is ignored.b

bCCB Comment #297
184 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
relationship. If the NLME-LEAVE.request primitive is received with the DeviceAddress parameter equal to
NULL and the RemoveChildren parameter equal to TRUE, then the NLME will attempt to remove the
device's children, as described in sub-clause 2.7.1.7.2, before removing itself. Each time the removal of a
child is completed, the NLME will issue the NLME-LEAVE.confirm with the DeviceAddress parameter
equal to the 64-bit IEEE address of the device just removed and the Status parameter equal to SUCCESS if
the removal was successful, or LEAVE_UNCONFIRMED if the removal failed for any reason. It will also
set the relationship field of the corresponding neighbor table entry to 0x03, indicating no relationship. After
attempting to remove all of its children, the NLME will remove the device itself as described above.102

On receipt of this primitive by a ZigBee coordinator or ZigBee router and with the DeviceAddress parameter
not equal to NULL, the NLME determines whether the specified device exists in its neighbor tables. If the
requested device does not exist, the NLME issues the NLME-LEAVE.confirm primitive with a status of
UNKNOWN_DEVICE. If the requested device exists, the NLME will attempt to remove it from the
network using the procedure described in sub-clause 2.7.1.7.2. If the RemoveChildren parameter is equal to
TRUE then the device will be requested to remove its children as well. Following the removal, the NLME
will issue the NLME-LEAVE.confirm primitive with the DeviceAddress equal to the 64-bit IEEE address of
the removed device and the Status parameter equal to SUCCESS if the removal was successful and
LEAVE_UNCONFIRMED otherwise. Then the relationship field for the neighbor table entry corresponding
to the removed device will then be set to 0x03, indicating no relationship.103

2.3.8.2 NLME-LEAVE.indication

This primitive allows the next higher layer of a ZigBee device to be notified if that device has been removed
from the network by its parent. It also allows the next higher layer on a ZigBee router or ZigBee coordinator
to be informed if one of its associated devices has left the network by disassociation.

2.3.8.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 118 specifies the parameters for the NLME-LEAVE.indication primitive.

2.3.8.2.2 When generated

This primitive is generated by the NLME of a ZigBee coordinator or ZigBee router and issued to its next
higher layer on the successful exit of one of that device’s associated children from the network. It is also
generated by the NLME of a ZigBee router or end device and issued to its next higher layer to indicate that
it has been successfully removed from the network by its associated router or ZigBee coordinator.104

102CCB Comment #107
103CCB Comment #107

NLME-LEAVE.indication (
DeviceAddress
)

Table 118 NLME-LEAVE.indication parameters
Name Type Valid range Description

DeviceAddress 64-bit IEEE
address Any 64-bit, IEEE address

The 64-bit IEEE address of an entity
that has removed itself from the
network or NULL in the case that the
device issuing the primitive has been
removed from the network by its par-
ent.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 185

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.8.2.3 Effect on receipt

On receipt of this primitive, the next higher layer of a ZigBee coordinator or ZigBee router is notified that a
device that was formerly associated with it has left the network. The primitive can also indicate that the next
higher layer of a ZigBee router or end device is informed that it has been removed from the network by its
associated ZigBee router or ZigBee coordinator.

2.3.8.3 NLME-LEAVE.confirm

This primitive allows the next higher layer to be notified of the results of its request for itself or another
device to leave the network.

2.3.8.3.1 Semantics of the service primitive

The semantics of this primitive is as follows:

Table 119 specifies the parameters for the NLME-LEAVE.confirm primitive.

2.3.8.3.2 When generated

This primitive is generated by the initiating NLME and issued to its next higher layer in response to an
NLME-LEAVE.request primitive. If the request was successful, the status parameter indicates a successful
leave attempt. Otherwise, the status parameter indicates an error code of INVALID_REQUEST,
UNKNOWN_DEVICE or LEAVE_UNCONFIRMED105. The reasons for these status values are fully
described in sub-clause 2.3.8.1.3.

2.3.8.3.3 Effect on receipt

On receipt of this primitive, the next higher layer of the initiating device is notified of the results of its
request for itself or another device to leave the network.

2.3.9 Resetting a device

This set of primitives defines how the next higher layer of a device can request that the NWK layer is reset.

104Ibid

NLME-LEAVE.confirm (
DeviceAddress,
Status
)

Table 119 NLME-LEAVE.confirm parameters
Name Type Valid range Description

DeviceAddress 64-bit IEEE
address Any 64-bit, IEEE address.

The 64-bit IEEE address in the
request to which this is a confirma-
tion or null if the device requested to
remove itself from the network.

Status Status
SUCCESS,

INVALID_REQUEST,
UNKNOWN_DEVICE or

LEAVE_UNCONFIRMED.a

aCCB Comment #107

The status of the corresponding
request.

105CCB Comment #107
186 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.9.1 NLME-RESET.request

This primitive allows the next higher layer to request that the NWK layer performs a reset operation.

2.3.9.1.1 Semantics of the service primitive

The semantics of this primitive is as follows:

This primitive has no parameters.

2.3.9.1.2 When generated

This primitive is generated by the next higher layer and issued to its NLME to request the reset of the NWK
layer to its initial condition.

2.3.9.1.3 Effect on receipt

On receipt of this primitive, the NLME issues the MLME-RESET.request primitive to the MAC sub-layer
with the SetDefaultPIB parameter set to TRUE. On receipt of the corresponding MLME-RESET.confirm
primitive, the NWK layer resets itself by clearing all internal variables and route discovery table entries and
by setting all NIB attributes to their default values. Once the NWK layer is reset, the NLME issues the
NLME-RESET.confirm with the Status parameter set to SUCCESS if the MAC sub-layer was successfully
reset or DISABLE_TRX_FAILURE otherwise.

If this primitive is issued to the NLME of a device that is currently joined to a network, any required leave
attempts using the NLME-LEAVE.request primitive should be made a-priori at the discretion of the next
higher layer.

2.3.9.2 NLME-RESET.confirm

This primitive allows the next higher layer to be notified of the results of its request to reset the NWK layer.

2.3.9.2.1 Semantics of the service primitive

The semantics for this primitive are as follows:

Table 120 specifies the parameters for this primitive.

NLME-RESET.request (
)

NLME-RESET.confirm (
Status
)

Table 120 NLME-RESET.confirm parameters
Name Type Valid range Description

Status Status

Any status value
returned from the

MLME-RESET.confirm
primitive (see [B1]).

The result of the reset operation.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 187

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.9.2.2 When generated

This primitive is generated by the NLME and issued to its next higher layer in response to an NLME-
RESET.request primitive. If the request was successful, the status parameter indicates a successful reset
attempt. Otherwise, the status parameter indicates an error code of DISABLE_TRX_FAILURE. The reasons
for these status values are fully described in sub-clause 2.3.9.1.3.

2.3.9.2.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to reset the NWK
layer.

2.3.9.3 Network layer reset message sequence chart

Figure 33 illustrates the sequence of messages necessary for resetting the NWK layer.

Figure 33 Message sequence chart for resetting the network layer

2.3.10 Receiver synchronization

This set of primitives defines how the next higher layer of a device can synchronize with a ZigBee
coordinator or router and extract pending data from it.

2.3.10.1 NLME-SYNC.request

This primitive allows the next higher layer to synchronize or extract data from its ZigBee coordinator or
router.

NLME-
RESET.reques MLME-

RESET.reques

MLME-RESET.confirm
(SUCCESS)

NLME-RESET.confirm
(SUCCESS)

Device

APL

Device

NWK

Device

MAC

Clear internal
variables, empty

routing table, reset

NIB
188 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.10.1.1 Semantics of the Service Primitive

The semantics of this primitive is as follows:

Table 121 specifies the parameters for this primitive.

2.3.10.1.2 When generated

This primitive is generated whenever the next higher layer wishes to achieve synchronization or check for
pending data at its ZigBee coordinator or router.

2.3.10.1.3 Effect on receipt

If the TRACK parameter is set to FALSE and the device is operating on a non-beacon enabled network, the
NLME issues the MLME-POLL.request primitive to the MAC sub-layer. On receipt of the corresponding
MLME-POLL.confirm primitive, the NLME issues the NLME-SYNC.confirm primitive with the Status
parameter set SUCCESS if the MAC primitive was successful, or SYNC_FAILURE otherwise.

If the TRACK parameter is set to FALSE and the device is operating on a beacon enabled network, the
NLME first sets the macAutoRequest PIB attribute in the MAC sub-layer to TRUE by issuing the MLME-
SET.request primitive. It then issues the MLME-SYNC.request primitive with the TrackBeacon parameter
set to FALSE. The NLME then issues the NLME-SYNC.confirm primitive with the Status parameter set to
SUCCESS.

If the TRACK parameter is set to TRUE and the device is operating on a non-beacon enabled network, the
NLME will issue the NLME-SYNC.confirm primitive with a status parameter set to
INVALID_PARAMETER.

If the TRACK parameter is set to TRUE and the device is operating on a beacon enabled network, the
NLME first sets the macAutoRequest PIB attribute in the MAC sub-layer to TRUE by issuing the MLME-
SET.request primitive. It then issues the MLME-SYNC.request primitive with the TrackBeacon parameter
set to TRUE. The NLME then issues the NLME-SYNC.confirm primitive with the Status parameter set to
SUCCESS.

2.3.10.2 NLME-SYNC.indication

This primitive allows the next higher layer to be notified of the loss of synchronization at the MAC sub-
layer.

2.3.10.2.1 Semantics of the service primitive

The semantics of this primitive is as follows:

NLME-SYNC.request (
Track
)

Table 121 NLME-SYNC.request parameters
Name Type Valid Range Description

Track Boolean TRUE or FALSE Whether the synchronization should be
maintained for future beacons or not.

NLME-SYNC.indication (
)

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 189

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
This primitive has no parameters.

2.3.10.2.2 When generated

This primitive is generated following a loss of synchronization notification from the MAC sub-layer via the
MLME-SYNC-LOSS.indication primitive with a LossReason of BEACON_LOST. This follows a prior
NLME-SYNC.request primitive being issued to the NLME.

2.3.10.2.3 Effect on receipt

The next higher layer is notified of the loss of synchronization with the beacon.

2.3.10.3 NLME-SYNC.confirm

This primitive allows the next higher layer to be notified of the results of its request to synchronize or extract
data from its ZigBee coordinator or router.

2.3.10.3.1 Semantics of the Service Primitive

The semantics of this primitive is as follows:

Table 122 specifies the parameters for this primitive.

2.3.10.3.2 When generated

This primitive is generated by the initiating NLME and issued to its next higher layer in response to an
NLME-SYNC.request primitive. If the request was successful, the status parameter indicates a successful
state change attempt. Otherwise, the status parameter indicates an error code of SYNC_FAILURE. The
reasons for these status values are fully described in sub-clause 2.3.10.1.3.

2.3.10.3.3 Effect on receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to synchronize or
extract data from its ZigBee coordinator or router. If the NLME has been successful, the Status parameter
will be set to SUCCESS. Otherwise, the Status parameter indicates the error.

2.3.10.4 Message sequence charts for synchronizing with a coordinator

Figure 34 and Figure 35 illustrate the sequence of messages necessary for a device to successfully
synchronize with a ZigBee coordinator. Figure 34 illustrates the case for a non-beaconing network, and
Figure 35 illustrates the case for a beaconing network.

NLME-SYNC.confirm (
Status
)

Table 122 NLME-SYNC.confirm parameters
Name Type Valid Range Description

Status Status

SUCCESS,
SYNC_FAILURE,

INVALID_PARAMET
ER

The result of the request to synchronize
with the ZigBee coordinator or router.
190 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 34 Message sequence chart for synchronizing in a non-beaconing network

Figure 35 Message sequence chart for synchronizing in a beacon-enabled network

NLME-SYNC.request
(TRACK=FALSE)

MLME-
POLL.request

MLME-POLL.confirm
(SUCCESS)

NLME-SYNC.confirm
(SUCCESS)

Device

APL

Device

NWK

Device

MAC

NLME-
SYNC.request MLME-

SET.request

MLME-SET.confirm
(SUCCESS)

NLME-SYNC.confirm
(SUCCESS)

Device
APL

Device
NWK

Device
MAC

Set
macAutoRequest to

TRUE

MLME-
SYNC.request
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 191

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.11 Information base maintenance

This set of primitives defines how the next higher layer of a device can read and write attributes in the NIB.

2.3.11.1 NLME-GET.request

This primitive allows the next higher layer to read the value of an attribute from the NIB.

2.3.11.1.1 Semantics of the Service Primitive

The semantics of this primitive is as follows:

Table 123 specifies the parameters for this primitive.

2.3.11.1.2 When Generated

This primitive is generated by the next higher layer and issued to its NLME in order to read an attribute from
the NIB.

2.3.11.1.3 Effect on Receipt

On receipt of this primitive, the NLME attempts to retrieve the requested NIB attribute from its database. If
the identifier of the NIB attribute is not found in the database, the NLME issues the NLME-GET.confirm
primitive with a status of UNSUPPORTED_ATTRIBUTE.

If the requested NIB attribute is successfully retrieved, the NLME issues the NLME-GET.confirm primitive
with a status of SUCCESS and the NIB attribute identifier and value.

2.3.11.2 NLME-GET.confirm

This primitive reports the results of an attempt to read the value of an attribute from the NIB.

2.3.11.2.1 Semantics of the Service Primitive

The semantics of this primitive is as follows:

NLME-GET.request (
NIBAttribute
)

Table 123 NLME-GET.request parameters
Name Type Valid Range Description

NIBAttribute Integer See Table 132 The identifier of the NIB attribute to read.

NLME-GET.confirm (
Status,
NIBAttribute,
NIBAttributeLength,
NIBAttributeValue
)

192 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 124 specifies the parameters for this primitive.

2.3.11.2.2 When Generated

This primitive is generated by the NLME and issued to its next higher layer in response to an NLME-
GET.request primitive. This primitive returns a status of SUCCESS, indicating that the request to read a
NIB attribute was successful, or an error code of UNSUPPORTED_ATTRIBUTE. The reasons for these
status values are fully described in sub-clause 2.3.11.1.3.

2.3.11.2.3 Effect on Receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to read a NIB
attribute. If the request to read a NIB attribute was successful, the Status parameter will be set to SUCCESS.
Otherwise, the status parameter indicates the error.

2.3.11.3 NLME-SET.request

This primitive allows the next higher layer to write the value of an attribute into the NIB.

2.3.11.3.1 Semantics of the Service Primitive

The semantics of this primitive is as follows:

Table 125 specifies the parameters for this primitive.

Table 124 NLME-GET.confirm parameters
Name Type Valid Range Description

Status Enumeration
SUCCESS or

UNSUPPORTED_A
TTRIBUTE

The results of the request to read a NIB
attribute value.

NIBAttribute Integer See Table 132 The identifier of the NIB attribute that was
read.

NIBAttributeLength Integer 0x0000 – 0xffff The length, in octets, of the attribute value
being returned.

NIBAttributeValue Various Attribute Specific
(see Table 132)

The value of the NIB attribute that was
read.

NLME-SET.request (
NIBAttribute,
NIBAttributeLength,
NIBAttributeValue
)

Table 125 NLME-SET.request parameters
Name Type Valid Range Description

NIBAttribute Integer See Table 132 The identifier of the NIB attribute to be writ-
ten.

NIBAttribute-
Length Integer 0x0000 – 0xffff The length, in octets, of the attribute value

being set.

NIBAttributeValue Various Attribute Specific
(see Table 132)

The value of the NIB attribute that should
be written.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 193

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.3.11.3.2 When Generated

This primitive is to be generated by the next higher layer and issued to its NLME in order to write the value
of an attribute in the NIB.

2.3.11.3.3 Effect on Receipt

On receipt of this primitive the NLME attempts to write the given value to the indicated NIB attribute in its
database. If the NIBAttribute parameter specifies an attribute that is not found in the database, the NLME
issues the NLME-SET.confirm primitive with a status of UNSUPPORTED_ATTRIBUTE. If the
NIBAttributeValue parameter specifies a value that is out of the valid range for the given attribute, the
NLME issues the NLME-SET.confirm primitive with a status of INVALID_PARAMETER.

If the requested NIB attribute is successfully written, the NLME issues the NLME-SET.confirm primitive
with a status of SUCCESS.

2.3.11.4 NLME-SET.confirm

This primitive reports the results of an attempt to write a value to a NIB attribute.

2.3.11.4.1 Semantics of the Service Primitive

The semantics of this primitive is as follows:

Table 126 specifies the parameters for this primitive.

2.3.11.4.2 When Generated

This primitive is generated by the NLME and issued to its next higher layer in response to an NLME-
SET.request primitive. This primitive returns a status of either SUCCESS, indicating that the requested
value was written to the indicated NIB attribute, or an error code of INVALID_PARAMETER or
UNSUPPORTED_ATTRIBUTE. The reasons for these status values are fully described in sub-
clause 2.3.11.3.3.

2.3.11.4.3 Effect on Receipt

On receipt of this primitive, the next higher layer is notified of the results of its request to write the value of
a NIB attribute. If the requested value was written to the indicated NIB attribute, the Status parameter will be
set to SUCCESS. Otherwise, the Status parameter indicates the error.

NLME-SET.confirm (
Status,
NIBAttribute
)

Table 126 NLME-SET.confirm parameters
Name Type Valid Range Description

Status Enumeration
SUCCESS,

INVALID_PARAMETER or
UNSUPPORTED_ATTRIBUTE

The result of the request to write
the NIB Attribute.

NIBAttribute Integer See Table 132 The identifier of the NIB attribute
that was written.
194 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.4 Frame formats

This sub-clause specifies the format of the NWK frame (NPDU). Each NWK frame consists of the
following basic components:

— A NWK header, which comprises frame control, addressing and sequencing information.

— A NWK payload, of variable length, which contains information specific to the frame type.

The frames in the NWK layer are described as a sequence of fields in a specific order. All frame formats in
this sub-clause are depicted in the order in which they are transmitted by the MAC sub-layer, from left to
right, where the leftmost bit is transmitted first in time. Bits within each field are numbered from 0 (leftmost
and least significant) to k-1 (rightmost and most significant), where the length of the field is k bits. Fields
that are longer than a single octet are sent to the MAC sub-layer in the order from the octet containing the
lowest numbered bits to the octet containing the highest numbered bits.

2.4.1 General NPDU frame format

The NWK frame format is composed of a NWK header and a NWK payload. The fields of the NWK header
appear in a fixed order, however, the addressing and sequencing fields may not be included in all frames.
The general NWK frame shall be formatted as illustrated in Figure 36.

Figure 36 General NWK frame format

2.4.1.1 Frame control Field

The frame control field is 16-bits in length and contains information defining the frame type, addressing and
sequencing fields and other control flags. The frame control field shall be formatted as illustrated in
Figure 37.

Figure 37 Frame control field

Octets: 2 2 2 1 1 Variable

Frame Con-
trol

Destination
Address

Source
Address Radiusa

aCCB Comment #125

Sequence
Numberb

bCCB Comment #111

Frame Payload

Routing Fields

NWK Header NWK Payload

Bits: 0-1 2-5 6-7a

aCCB Comment #56

8 9 10-15

Frame type Protocol version Discover route Reserved Security Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 195

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.4.1.1.1 Frame type sub-field

The frame type sub-field is two bits in length and shall be set to one of the non-reserved values listed in
Table 127.

2.4.1.1.2 Protocol version sub-field

The protocol version sub-field is four bits in length and shall be set to a number reflecting the ZigBee NWK
protocol version in use. The protocol version in use on a particular device shall be made available as the
value of the NWK constant nwkcProtocolVersion, and shall have the value of 0x01 for all implementations
based on this specification draft version.

2.4.1.1.3 Discover route sub-field

The DiscoverRoute parameter may be used to control route discovery operations for the transit of this frame
(see sub-clause 2.7.3.4).106.

2.4.1.1.4 Security sub-field

The security sub-field shall have a value of 1 if and only if the frame is to have NWK security operations
enabled. If security for this frame is implemented at another layer or disabled entirely, it shall have a value
of 0.

2.4.1.2 Destination address field

The destination address field shall always be present. It shall be 2 octets in length and shall hold the 16-bit
network address of the destination device or the broadcast address (0xffff). Note that the network address of
a device shall always be the same as its IEEE 802.15.4-2003 MAC short address.

Table 127 Values of the frame type sub-field
Frame type value

b1 b0
Frame type name

00 Data

01 NWK command

10 – 11 Reserved

Table 128 Values of the discover route sub-fielda

aCCB Comment #256

Discover route field value
b7 b6

Field meaning

0x00 Suppress route discovery

0x01 Enable route discovery

0x02 Force route discovery

0x03 Reserved

106CCB Comment #256
196 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.4.1.3 Source address field

The source address field shall always be present. It will always be 2 octets in length and shall hold the
network address of the source device of the frame. Note that the network address of a device shall always be
the same as its IEEE 802.15.4-2003 MAC short address.

2.4.1.4 Radius field107

The radius field shall always be present. It will be one octet in length and specifies the range of a radius
transmission. The field shall be decremented by 1 by each receiving device.108

2.4.1.5 Sequence number field109

The sequence number field is present in every frame and is 1 octet in length. The sequence number value
will be incremented by 1 with each new transmitted frame and the values of the source address field and the
sequence number field of a frame, taken as a pair, may be used to uniquely identify a frame within the
constraints imposed by the sequence number's 1-octet range. For more detail on the use of the sequence
number field see sub-clause 2.7.2.110

2.4.1.6 Frame payload field

The frame payload field has a variable length and contains information specific to individual frame types.

2.4.2 Format of individual frame types

There are two defined NWK frame types: data and NWK command. Each of these frame types is discussed
in the following sub-clauses.

2.4.2.1 Data frame format

The data frame shall be formatted as illustrated in Figure 38.

Figure 38 Data frame format

The order of the fields of the data frame shall conform to the order of the general NWK frame format as
illustrated in Figure 36.

2.4.2.1.1 Data frame NWK header field

The NWK header field of a data frame shall contain the frame control field and an appropriate combination
of routing fields as required.

In the frame control field, the frame type sub-field shall contain the value that indicates a data frame, as
shown in Table 127. All other sub-fields shall be set according to the intended use of the data frame.

107CCB Comment #125
108Ibid
109CCB Comment #111
110CCB Comment #111, 113, 114

Octets: 2 See Figure 36 Variable

Frame control Routing fields Data payload

NWK header NWK payload
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 197

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The routing fields shall contain an appropriate combination of address and broadcast fields, depending on
the settings in the frame control field (see Figure 37).

2.4.2.1.2 Data payload field

The data payload field of a data frame shall contain the sequence of octets, which the next higher layer has
requested the NWK layer to transmit.

2.4.2.2 NWK command frame format

The NWK command frame shall be formatted as illustrated in Figure 39.

Figure 39 NWK command frame format

The order of the fields of the NWK command frame shall conform to the order of the general NWK frame as
illustrated in Figure 36.

2.4.2.2.1 NWK command frame NWK header field

The NWK header field of a NWK command frame shall contain the frame control field and an appropriate
combination of routing fields as required.

In the frame control field, the frame type sub-field shall contain the value that indicates a NWK command
frame, as shown in Table 127. All other sub-fields shall be set according to the intended use of the NWK
command frame.

The routing fields shall contain an appropriate combination of address and broadcast fields, depending on
the settings in the frame control field.

2.4.2.2.2 NWK command identifier field

The NWK command identifier field indicates the NWK command being used. This field shall be set to one
of the non-reserved values listed in Table 129.

2.4.2.2.3 NWK command payload field

The NWK command payload field of a NWK command frame shall contain the NWK command itself.

2.5 Command frames

The command frames defined by the NWK layer are listed in Table 129. The following sub-clauses detail
how the NLME shall construct the individual commands for transmission.

Octets: 2 See Figure 36 1 Variable

Frame control Routing fields NWK command
identifier

NWK command
payload

NWK header NWK payload

Table 129 NWK command frames

Command frame identifier Command name Reference

0x01 Route request 2.5.1
198 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.5.1 Route request command

The route request command allows a device to request that other devices within radio range engage in a
search for a particular destination device and establish state within the network that will allow messages to
be routed to that destination more easily and economically in the future. The payload of a route request
command shall be formatted as illustrated in Figure 40.

Figure 40 Route request command frame format

2.5.1.1 MAC data service requirements

In order to transmit this command using the MAC data service, specified in [B1], the following information
shall be included in the MAC frame header.

The destination PAN identifier shall be set to the PAN identifier of the device sending the route request
command. The destination address must be set to the broadcast address of 0xffff.

The source MAC address and PAN identifier shall be set to the address and PAN identifier of the device
sending the route request command, which may or may not be the device from which the command
originated.

The frame control field shall be set to specify that the frame is a MAC data frame with MAC security
disabled, since any secured frame originating from the NWK layer shall use NWK layer security. Because
the frame is broadcast, no acknowledgment request shall be specified. The addressing mode and intra-PAN
flags shall be set to support the addressing fields described here.

2.5.1.2 NWK header fields

In order to send the route request command frame, the source address field in the NWK header shall be set to
the address of the originating device.

The destination address in the NWK header shall be set to the broadcast address.

0x02 Route reply 2.5.2

0x03 Route Error 2.5.3

0x04a Leave 2.5.4

0x00, 0x05b—0xff Reserved —

aCCB Comment #107
bIbid

Octets: 1 1 1 2 1

Command
frame identifier

(see
Table 129)

Command
options

Route
request
identifier

Destination
address Path cost

NWK payload

Table 129 NWK command frames
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 199

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.5.1.3 NWK payload fields

The NWK frame payload contains a command identifier field, a command options field, the route request
identifier field, the address of the intended destination, and an up-to-date summation of the path cost.

The command frame identify shall contain the value indicating a route request command frame.

2.5.1.3.1 Command options field

The format of the 8-bit command options field is shown in Figure 41.

Figure 41 Route request command options field

The route repair sub-field is a single-bit field. It shall have a value of 1 if and only if the route request
command frame is being generated as part of a route repair operation for mesh network topology (see sub-
clause 2.7.3.5.1).

2.5.1.3.2 Route request identifier

The route request identifier is an 8-bit sequence number for route requests and is incremented by one every
time the NWK layer on a particular device issues a route request.

2.5.1.3.3 Destination address

The destination address shall be 2 octets in length and represents the intended destination of the route
request command frame.

2.5.1.3.4 Path cost

The path cost field is 8 bits in length and is used to accumulate routing cost information as a route request
command frame moves through the network (see sub-clause 2.7.3.4.2).

2.5.2 Route reply command

The route reply command allows the specified destination device of a route request command to inform the
originator of the route request that the request has been received. It also allows ZigBee routers along the path
taken by the route request to establish state information that will enable frames sent from the source device
to the destination device to travel more efficiently. The payload of the route reply command shall be
formatted as illustrated in Figure 42.

Figure 42 Route reply command format

Bit: 0—6 7

Reserved Route repair

Octets: 1 1 1 2 2 1

Command
frame identifier

(see
Table 129)

Command
options

Route
request
identifier

Originator
address

Responder
address Path cost

NWK payload
200 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.5.2.1 MAC data service requirements

In order to transmit this command using the MAC data service, specified in [B1], the following information
shall be included in the MAC frame header.

The destination MAC address and PAN identifier shall be set to the network address and PAN identifier,
respectively, of the first hop in the path back to the originator of the corresponding route request command
frame. The destination PAN identifier shall be the same as the PAN identifier of the originator.

The source MAC address and PAN identifier shall be set to the address and PAN identifier of the device
sending the route reply command, which may or may not be the device from which the command originated.

The frame control field shall be set to specify that the frame is a MAC data frame with MAC security
disabled, since any secured frame originating from the NWK layer shall use NWK layer security. The
transmission options shall be set to require acknowledgment. The addressing mode and intra-PAN flags
shall be set to support the addressing fields described here.

2.5.2.2 NWK header fields

In order for this route reply to reach its destination and for the route discovery process to complete correctly,
the following information must be provided.

The frame type subfield of the NWK frame control field should be set to indicate that this frame is a NWK
layer command frame.

The destination address field in the NWK header shall be set to the network address of the first hop in the
path back to the originator of the corresponding route request.

The source address in the NWK header shall be set to the NWK 16-bit network address of the device that is
transmitting the frame.

2.5.2.3 NWK payload fields

The NWK frame payload contains a command identifier field, a command options field, the route request
identifier, originator and responder addresses and an up-to-date summation of the path cost.

The command frame identifier shall contain the value indicating a route reply command frame.

2.5.2.3.1 Command options field

The format of the 8-bit command options field is shown in Figure 43.

Figure 43 Route reply command options field

The route repair sub-field is a single-bit field. It shall have a value of 1 if and only if the route request
command frame is being generated as part of a route repair operation for mesh network topology (see sub-
clause 2.7.3.5.1).

2.5.2.3.2 Route request identifier

The request identifier field shall be set to the request identifier value from the corresponding route request
command frame.

Bit: 0—6 7

Reserved Route repair
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 201

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.5.2.3.3 Originator address

The originator address field shall be 2 octets in length and shall contain the 16-bit network address of the
originator of the route request command frame to which this frame is a reply.

2.5.2.3.4 Responder address

The responder address field shall be 2 octets in length and shall contain the 16-bit network address of the
device for whom the route is being discovered. The value in this field shall always be the same as the value
in the destination address field of the corresponding route request command frame.111

2.5.2.3.5 Path cost

The path cost field is used to sum link cost as the route reply command frame transits the network (see sub-
clause 2.7.3.4.3).

2.5.3 Route error command

A device uses the route error command when it is unable to forward a data frame. The command notifies the
source device of the data frame about the failure in forwarding the frame. The payload of a route error
command shall be formatted as illustrated in Figure 44.

Figure 44 Route error command frame format

2.5.3.1 MAC data service requirements

In order to transmit this command using the MAC data service, specified in [B1], the following information
shall be provided.

The destination MAC address and PAN identifier shall be set to the address and PAN identifier,
respectively, of the first hop in the path back to the source of the data frame that encountered a forwarding
failure.

The source MAC address and PAN identifier shall be set to the address and PAN identifier of the device
sending the route error command.

The frame control field shall be set to specify that the frame is a MAC data frame with MAC security
disabled, since any secured frame originating from the NWK layer shall use NWK layer security. The
implementer shall determine whether an acknowledgment shall be requested. The addressing mode and
intra-PAN flags shall be set to support the addressing fields described here.

2.5.3.2 NWK header fields

In order to send the route error command frame, the destination address field in the NWK header shall be set
to the same value as the source address field of the data frame that encountered a forwarding failure.

111CCB Comment #132

Octets: 1 1 2

Command
frame identifier

(see
Table 129)

Error code Destination
address
202 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The source address in the NWK header shall be set to the address of the device sending the route error
command.

2.5.3.3 Error code

The error code shall be set to one of the non-reserved values shown in Table 130.

2.5.3.4 Destination address

The destination address is 2 octets in length and shall contain the destination address from the data frame
that encountered the forwarding failure.

2.5.4 Leave command

The leave command is used by the NLME to inform the parent and children of a device that it is leaving the
network or else to request that a device leave the network. The payload of the leave command shall be
formatted as shown in Figure 45

Figure 45 Leave command frame format

2.5.4.1 MAC data service requirement

In order to transmit this command using the MAC data service, specified in [B1], the following information
shall be provided.

The destination MAC address and PAN identifier shall be set to the address and PAN identifier,
respectively, of the neighbor device to which the frame is being sent.

The source MAC address and PAN identifier shall be set to the address and PAN identifier of the device
sending the leave command.

The frame control field shall be set to specify that the frame is a MAC data frame with MAC security
disabled, since any secured frame originating from the NWK layer shall use NWK layer security.
Acknowledgment shall be requested. The addressing mode and intra-PAN flags shall be set to support the
addressing fields described here.

Table 130 Error codes for route error command frame
Value Error code

0x00 No route available

0x01 Tree link failure

0x02 Non-tree link failure

0x03 Low battery level

0x04 No routing capacity

0x05 -- 0xff Reserved

Octets: 1 1

Command
frame identifier

(see
Table 129)

Command
options
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 203

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.5.4.2 NWK header fields

In order to send the leave command frame, the destination address field in the NWK header shall be set to
the network address of the neighbor to which the frame is being sent. The source address in the NWK header
shall be set to the address of the device sending the leave command. The radius field in the NWK header
shall be set to 1.

2.5.4.3 Command options

The format of the 8-bit command options field is shown in figure 17.

Figure 46 Leave command options field

2.5.4.3.1 Request/indication sub-field

The request/indication sub-field is a single bit field located at bit 6. If the value of this sub-field is 1 then the
leave command frame is a request for another device to leave the network. If the value of this sub-field is 0
then the leave command frame is an indication that the sending device plans to leave the network.

2.5.4.3.2 Remove children sub-field

The remove children sub-field is a single bit field located at bit 7. If this sub-field has a value of 1 then the
children of the device that is leaving the network will also be removed.112

2.6 Constants and NIB attributes

2.6.1 NWK constants

The constants that define the characteristics of the NWK layer are presented in Table 131.

Bit: 0—5 6 7

Reserved Request/indication Remove children

112CCB Comment #107

Table 131 NWK layer constants
Constant Description Value

nwkcCoordinatorCapable

A Boolean flag indicating whether the
device is capable of becoming the ZigBee
coordinator. A value of 0x00 indicates that
the device is not capable of becoming a
coordinator while a value of 0x01 indi-
cates that the device is capable of
becoming a coordinator.

Set at build time.

nwkcDefaultSecurityLevel The default security level to be used (see
Chapter 3) ENC-MIC-64

nwkcDiscoveryRetryLimit The maximum number of times a route
discovery will be retried. 0x03

nwkcMaxDepth
The maximum depth (minimum number of
logical hops from the ZigBee coordinator)
a device can have.

 0x0fa
204 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
nwkcMinHeaderOverhead The minimum number of octets added by
the NWK layer to a NSDU. 0x08b

nwkcProtocolVersion The version of the ZigBee NWK protocol
in the device. 0x01

nwkcRepairThreshold
Maximum number of allowed communica-
tion errors after which the route repair
mechanism is initiated.

0x03

nwkcRouteDiscoveryTime Time duration in milliseconds until a route
discovery expires. 0x2710

nwkcMaxBroadcastJitter The maximum broadcast jitter time mea-
sured in milliseconds. 0x40

nwkcInitialRREQRetries
The number of times the first broadcast
transmission of a route request command
frame is retried.

0x03

nwkcRREQRetries

The number of times the broadcast trans-
mission of a route request command
frame is retried on relay by an intermedi-
ate ZigBee router or ZigBee coordinator.

0x02

nwkcRREQRetryInterval
The number of milliseconds between
retries of a broadcast route request com-
mand frame.

0xfe

nwkcMinRREQJitter
The minimum jitter, in 2 millisecond slots,
for broadcast retransmission of a route
request command frame.

0x01

nwkcMaxRREQJitter
The maximum jitter, in 2 millisecond slots,
for broadcast retransmission of a route
request command frame.

0x40

aCCB Comment #229
bCCB Comment #366

Table 131 NWK layer constants
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 205

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.6.2 NWK information base

The NWK information base (NIB) comprises the attributes required to manage the NWK layer of a device.
Each of these attributes can be read or written using the NLME-GET.request and NLME-SET.request
primitives, respectively. The attributes of the NIB are presented in Table 132.

Table 132 NWK IB attributesa

Attribute Id Type Range Description Default

nwkSequenceNumber 0x81 Integer 0x00-0xff

A sequence number
used to identify outgoing
frames (see sub-
clause 2.7.2)b

Random
value from
within the

range.

nwkPassiveAckTimeout 0x82 Integer 0x00-0x0a

The maximum time
duration in seconds
allowed for the parent
and all child devices to
retransmit a broadcast
message (passive
acknowledgment time-
out).

0x03

nwkMaxBroadcastRetries 0x83 Integer 0x00-0x5

The maximum number
of retries allowed after a
broadcast transmission
failure.

0x03

nwkMaxChildren 0x84 Integer 0x00 – 0xff

The number of children
a device is allowed to
have on its current net-
work.

0x07

nwkMaxDepth 0x85 Integer 0x01- nwkc-
MaxDepth

The depth a device can
have. 0x05

nwkMaxRouters 0x86 Integer 0x01-0xff

The number of routers
any one device is
allowed to have as chil-
dren.

This value is determined
by the ZigBee coordina-
tor for all devices in the
network.

0x05

nwkNeighborTable 0x87 Set Variable
The current set of neigh-
bor table entries in the
device (see Table 133).

Null set

nwkNetworkBroadcastDeliv-
eryTime 0x88 Integer

(nwkPassiveAck-
Timeout * nwk-

BroadcastRetries
) – 0xff

Time duration in sec-
onds that a broadcast
message needs to
encompass the entire
network.

nwkPas-
siveAck-
Timeout *
nwkBroad-

castRe-
tries
206 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
nwkReportConstantCost 0x89 Integer 0x00-0x01

If this is set to zero, the
NWK layer shall calcu-
late link cost from all
neighbor nodes using
the LQI values reported
by the MAC layer. Oth-
erwise it shall report a
constant value

0x00

nwkRouteDiscoveryRetries-
Permitted 0cx8a Integer 0x00-x03

The number of retries
allowed after an unsuc-
cessful route request.

nwkcDis-
coveryRe-

tryLimit

nwkRouteTable 0x8b Set Variable
The current set of rout-
ing table entries in the
device (see Table 135).

Null set

nwkSymLink 0x8e Boolean TRUE or FALSE

The current route sym-
metry setting:

TRUE means that
routes are considers to
be comprised of sym-
metric links. Backward
and forward routes are
created during one route
discovery and they are
identical.

FALSE indicates that
routes are not consider
to be comprised of sym-
metric links. Only the
forward route is stored
during route discovery

FALSE

nwkCapabilityInformation 0x8f Bit vec-
tor See Table 112

This field shall contain
the capability device
capability information
established at network
joining time.

0x00

nwkUseTreeAddrAlloc 0x90 Boolean TRUE or FALSE

A flag that determines
whether the NWK layer
should use the default
distributed address allo-
cation scheme or allow
the next higher layer to
define a block of
addresses for the NWK
layer to allocate to its
children:

TRUE = use distributed
address allocation.

FALSE = allow the next
higher layer to define
address allocation.

TRUE

Table 132 NWK IB attributesa
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 207

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
nwkUseTreeRouting 0x91 Boolean TRUE or FALSE

A flag that determines
whether the NWK layer
should assume the abil-
ity to use hierarchical
routing:

TRUE = assume the
ability to use hierarchical
routing.

FALSE = never use hier-
archical routing.

TRUE

nwkNextAddress 0x92 Integer 0x0000 - 0xfffd

The next network
address that will be
assigned to a device
requesting association.
This value shall be
incremented by nwkAd-
dressIncrement every
time an address is
assigned.

0x0000

nwkAvailableAddresses 0x93 Integer 0x0000 - 0xfffd

The size of remaining
block of addresses to be
assigned. This value will
be decremented by 1
every time an address is
assigned. When this
attribute has a value of
0, no more associations
may be accepted.

0x0000

nwkAddressIncrement 0x94 Integer 0x0000 - 0xfffd

The amount by which
nwkNextAddress is
incremented each time
an address is assigned.

0x0001

nwkTransactionPersisten-
ceTime 0x95 Integer 0x0000-0xffff

The maximum time (in
superframe periods) that
a transaction is stored
by a coordinator and
indicated in its beacon.
This attribute reflects the
value of the MAC PIB
attribute macTransac-
tionPersistenceTime
(see [B1]) and any
changes made by the
higher layer will be
reflected in the MAC PIB
attribute value as well.

0x01f4d

aCCB Comment #120
bCCB Comment #111
cCCB Comment #115
dCCB Comment #252

Table 132 NWK IB attributesa
208 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.7 Functional description

2.7.1 Network and device maintenance

All ZigBee devices shall provide the following functionality:

— Join a network.

— Leave a network.

Both ZigBee coordinators and routers shall provide the following additional functionality:

— Permit devices to join the network using the following:

— Association indications from the MAC.

— Explicit join requests from the application.

— Permit devices to leave the network using the following:

— Disassociation indications from the MAC.

— Explicit leave requests from the application.

— Participate in assignment of logical network addresses.

— Maintain a list of neighboring devices.

ZigBee coordinators shall provide functionality to establish a new network.

2.7.1.1 Establishing a new network

The procedure to establish a new network is initiated through the use of the NLME-NETWORK-
FORMATION.request primitive. Only devices that are ZigBee coordinator capable and not currently joined
to a network shall attempt to establish a new network. If this procedure is initiated on any other device, the
NLME shall terminate the procedure and notify the next higher layer of the illegal request. This is achieved
by issuing the NLME-NETWORK-FORMATION.confirm primitive with the Status parameter set to
INVALID_REQUEST.

When this procedure is initiated, the NLME shall first request that the MAC sub-layer perform an energy
detection scan over either a specified set of channels or, by default, the complete set of available channels, as
dictated by the PHY layer [B1], to search for possible interferers. A channel scan is initiated by issuing the
MLME-SCAN.request primitive, with the ScanType parameter set to energy detection scan, to the MAC
sub-layer and the results are communicated back via the MLME-SCAN.confirm primitive.

On receipt of the results from a successful energy detection scan, the NLME shall order the channels
according to increasing energy measurement and discard those channels whose energy levels are beyond an
acceptable level. The choice of an acceptable energy level is left to the implementation. The NLME shall
then perform an active scan, by issuing the MLME-SCAN.request primitive with a ScanType parameter set
to active scan and ChannelList set to the list of acceptable channels to search for other ZigBee devices. To
determine the best channel on which to establish a new network, the NLME shall review the list of returned
PAN descriptors and find the first channel with the lowest number of existing networks, favoring a channel
with no detected networks.

If no suitable channel is found, the NLME shall terminate the procedure and notify the next higher layer of
the startup failure. This is achieved by issuing the NLME-NETWORK-FORMATION.confirm primitive
with the Status parameter set to STARTUP_FAILURE.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 209

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
If a suitable channel is found, the NLME shall select a PAN identifier for the new network. To do this, check
if the optional PANId parameter was specified in the NLME-NETWORK-FORMATION.request was
specified. If present and there is no conflict with existing PANIds this value will become the new network’s
PANId. Otherwise the device shall choose a random PAN identifier such that it is not the broadcast PAN
identifier (0xffff) and it is unique amongst the networks found on the selected channel. Additionally, the
PAN identifier shall be less than or equal to 0x3fff as the two most significant bits of the 16-bit PAN
identifier are reserved for future use. Once the NLME makes its choice, it shall set the macPANID attribute
in the MAC sub-layer to this value by issuing the MLME-SET.request primitive.

If no unique PAN identifier can be chosen, the NLME shall terminate the procedure and notify the next
higher layer of the startup failure by issuing the NLME-NETWORK-FORMATION.confirm primitive with
the Status parameter set to STARTUP_FAILURE.

Once a PAN identifier is selected, the NLME shall select a 16-bit network address equal to 0x0000 and set
the macShortAddress PIB attribute in the MAC sub-layer so that it is equal to the selected network address.

Once a network address is selected, the NLME shall begin operation of the new PAN by issuing the MLME-
START.request primitive to the MAC sub-layer. The parameters of the MLME-START.request primitive
shall be set according to those passed in the NLME-NETWORK-FORMATION.request, the results of the
channel scan, and the chosen PAN identifier. The status of the PAN startup is communicated back via the
MLME-START.confirm primitive.

On receipt of the status of the PAN startup, the NLME shall inform the next higher layer of the status of its
request to initialize the ZigBee coordinator. This is achieved by issuing the NLME-NETWORK-
FORMATION.confirm primitive with the Status parameter set to that returned in the MLME-
START.confirm from the MAC sub-layer.

The procedure to successfully start a new network is illustrated in the message sequence chart (MSC) shown
in Figure 47.
210 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 47 Establishing a new network

2.7.1.2 Permitting devices to join a network

The procedure for permitting devices to join a network is initiated through the NLME-PERMIT-
JOINING.request primitive. Only devices that re either the ZigBee coordinator or a ZigBee router shall
attempt to permit devices to join the network. If this procedure is initiated on any other device, the NLME
shall terminate the procedure.

When this procedure is initiated with the PermitDuration parameter set to 0x00, the NLME shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to FALSE. A MAC sub-layer attribute setting is
initiated by issuing the MLME-SET.request primitive.

When this procedure is initiated with the PermitDuration parameter set to a value between 0x01 and 0xfe,
the NLME shall set the macAssociationPermit PIB attribute in the MAC sub-layer to TRUE. The NLME
shall then start a timer to expire after the specified duration. On expiry of this timer, the NLME shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to FALSE.

When this procedure is initiated with the PermitDuration parameter set to 0xff, the NLME shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to TRUE for an unlimited amount of time, unless
another NLME-PERMIT-JOINING.request primitive is issued.

NLME-NETWORK-
FORMATION.request

MLME-
SCAN.request

MLME-
SCAN.confirm

NLME-NETWORK-
FORMATION.confirm

MLME-
START.request

MLME-
START.confirm

Perform energy
detection scan

Select channel, PAN ID
and logical address MLME-

SET.request

MLME-
SET.confirm

ZigBee Coord.
APL

ZigBee Coord.
NWK

ZigBee Coord.
MAC

MLME-
SCAN.request

MLME-
SCAN.confirm

Perform active scan
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 211

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The procedure for permitting devices to join a network is illustrated in the MSC shown in Figure 48.

Figure 48 Permitting devices to join a network

2.7.1.3 Joining a network

A parent-child relationship is formed when a device having membership in the network allows a new device
to join. The new device becomes the child, while the first device becomes the parent. A child can be added
to a network in the following two ways: the child can join the network using the MAC layer association
procedure or the child can be added to the network directly by a previously designated parent device.

2.7.1.3.1 Joining a network through association

This sub-clause specifies the procedure a device (child) shall follow to join a network, as well as the
procedure a ZigBee coordinator or router (parent) shall follow upon receipt of a join request. Any device
may accept a join request from a new device so long as it has the necessary physical capabilities and the
available network address space. Only a ZigBee coordinator or a router is physically capable of accepting a
join request, while an end device is not.

2.7.1.3.1.1 Child procedure

The procedure for joining a network using the MAC layer association procedure shall be initiated by issuing
the NLME-NETWORK-DISCOVERY.request primitive with the ScanChannels parameter set to indicate
which channels are to be scanned for networks and the ScanDuration parameter set to indicate the length of
time to be spent scanning each channel. Upon receipt of this primitive, the NWK layer shall issue an
MLME-SCAN.request primitive asking the MAC sub-layer to perform a passive or113 active scan.

Every beacon frame received during the scan having a non-zero length payload shall cause the MLME-
BEACON-NOTIFY.indication primitive to be issued from the MAC sub-layer of the scanning device to its
NLME. This primitive includes information such as the addressing information of the beaconing device,
whether it is permitting association and the beacon payload (see [B1] for the complete list of parameters).
The NLME of the scanning device shall check the protocol ID field in the beacon payload and verify that it
matches the ZigBee protocol identifier. If not, the beacon is ignored. Othewise, the device shall copy the

113CCB Comment #117

NLME-
PERMIT-JOINING.reques MLME-

SET.reques

MLME-
SET.confirm

MLME-
SET.reques

MLME-
SET.confirm

Duration to permit
joining

Device

APL

Device

NWK

Device

MAC

NLME-
PERMIT-JOINING.confirm
212 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
relevant information from each received beacon (see Figure 63 for the structure of the beacon payload) into
its neighbor table (see Table 133 for the contents of a neighbor table entry).

Once the MAC sub-layer signals the completion of the scan by issuing the MLME-SCAN.confirm primitive
to the NLME, the NWK layer shall issue the NLME-NETWORK-DISCOVERY.confirm primitive
containing a description of each network that was heard. Every network description contains the ZigBee
version, stack profile, PAN ID, logical channel114, and information on whether it is permitting joining (see
Table 104).

Upon receipt of the NLME-NETWORK-DISCOVERY.confirm primitive, the next higher layer is informed
of the networks present in the neighborhood. The next higher layer may choose to redo the network
discovery to discover more networks or for other reasons. If not, it shall choose a network to join from the
discovered networks. It shall then issue the NLME-JOIN.request with the PANId parameter set to the PAN
identifier of the desired network, the RejoinNetwork parameter set to FALSE and the JoinAsRouter
parameter set to indicate whether the device wants to join as a routing device.

Only those devices that are not already joined to a network shall initiate the join procedure. If any other
device initiates this procedure, the NLME shall terminate the procedure and notify the next higher layer of
the illegal request by issuing the NLME-JOIN.confirm primitive with the Status parameter set to
INVALID_REQUEST.

For a device that is not already joined to a network, the NLME-JOIN.request primitive shall cause the NWK
layer to search its neighbor table for a suitable parent device. A suitable parent device shall have the desired
PAN ID and shall be permitting association and shall have a link cost (see sub-clause 2.7.3.1 for details on
link cost) of at most 3. It shall also have the potential parent field set to one, if that field is present in the
neighbor table entry.

If the neighbor table contains no devices that are suitable parents, the NLME shall respond with an NLME-
JOIN-CONFIRM with a status parameter of NOT_PERMITTED. If the neighbor table has more than one
device that could be a suitable parent, the device which is at a minimum depth from the ZigBee coordinator
shall be chosen. If more than device has a minimum depth, the implementation is free to choose from among
them.

Once a suitable parent is identified, the NLME shall issue an MLME-ASSOCIATE.request primitive to the
MAC sub-layer. The addressing parameters in the MLME-ASSOCIATE.request primitive (see Chapter 1)
shall be set to contain the addressing information for the device chosen from the neighbor table. The status
of the association is communicated back to the NLME via the MLME-ASSOCIATE.confirm primitive.

If the attempt to join was unsuccessful, the NWK layer shall receive an MLME-ASSOCIATE.confirm
primitive from the MAC sub-layer with the status parameter indicating the error. If the status parameter
indicates a refusal to permit joining on the part of the neighboring device (i.e., PAN at capacity or PAN
access denied), then the device attempting to join should set the Potential parent bit to zero in the
corresponding neighbor table entry to indicate a failed join attempt. Setting the Potential parent bit to zero
ensures that the NWK layer shall not issue another request to associate to the same neighboring device. The
Potential parent bit should be set to one for every entry in the neighbor table each time an MLME-
SCAN.request primitive is issued.

A join request may also be unsuccessful, if the potential parent is not allowing new routers to associate (e.g.
the max number of routers, nwkMaxRouters may already have associated with the device) and the joining
device has set the JoinAsRouter parameter to TRUE. In this case the NLME-JOIN.confirm primitive will
indicate a status of NOT_PERMITTED. In this case the child device’s application may wish to attempt to
join again but as an end device by issuing another NLME-JOIN.request with the JoinAsRouter parameter set
to FALSE.

114CCB Comment #267
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 213

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
If the attempt to join was unsuccessful, the NLME shall attempt to find another suitable parent from the
neighbor table. If no such device could be found, the NLME shall issue the NLME-JOIN.confirm primitive
with the Status parameter set to the value returned in the MLME-ASSOCIATE.confirm primitive.

If the attempt to join was unsuccessful and there is a second neighboring device that could be a suitable
parent, the NWK layer shall initiate the MAC sub-layer association procedure with the second device. The
NWK layer shall repeat this procedure until it either joins the PAN successfully or exhausts its options to
join the PAN.

If the device cannot successfully join the PAN specified by the next higher layer, the NLME shall terminate
the procedure by issuing the NLME-JOIN.confirm primitive with the Status parameter set to the value
returned in the last received MLME-ASSOCIATE.confirm primitive. In this case, the device shall not
receive a valid logical address and shall not be permitted to transmit on the network.

If the attempt to join was successful, the MLME-ASSOCIATE.confirm primitive received by the NWK
layer shall contain a 16-bit logical address unique to that network that the child can use in future
transmissions. The NWK layer shall then set the Relationship field in the corresponding neighbor table entry
to indicate that the neighbor is its parent. By this time, the parent shall have each added the new device to its
neighbor table.

If the device is attempting to join a secure network and it is a router it will need to wait until its parent has
authenticated it before transmitting beacons. The device shall therefore, wait for an NLME-START-
ROUTER.request primitive to be issued from the next higher layer. Upon receipt of this primitive the
NLME shall issue an MLME-START.request primitive as described below if it is a router. If the NLME-
START.ROUTER.request primitive is issued on an end device, the NWK layer shall issue an NLME-
START-ROUTER.confirm primitive with the status value set to INVALID_REQUEST.

Once the device has successfully joined the network and the next higher layer has issued a NLME-START-
ROUTER.request, if it is a router, the NWK layer shall issue the MLME-START.request primitive to its
MAC sub-layer to setup its superframe configuration and begin transmitting beacon frames, if applicable.
Beacon frames are only transmitted if the BeaconOrder parameter is not equal to fifteen [B1]. The PANId,
LogicalChannel, BeaconOrder and SuperframeOrder parameters shall be set equal to the corresponding
values held in the neighbor table entry for its parent. The PANCoordinator and CoordRealignment
parameters shall both be set to FALSE. Upon receipt of the MLME-START.confirm primitive, the NWK
layer shall issue an NLME-START-ROUTER.confirm primitive with the same status value.
214 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 49 Procedure for joining a network through association

2.7.1.3.1.2 Parent procedure

The procedure for a ZigBee coordinator or router to join a device to its network using the MAC sub-layer
association procedure is initiated by the MLME-ASSOCIATE.indication primitive arriving from the MAC
sub-layer. Only those devices that are either a ZigBee coordinator or a ZigBee router and that are permitting
devices to join the network shall initiate this procedure. If this procedure is initiated on any other device, the
NLME shall terminate the procedure.

When this procedure is initiated, the NLME of a potential parent shall first determine whether the device
wishing to join already exists on its network. To do this, the NLME shall search its neighbor table in order to
determine whether a matching 64-bit, extended address can be found. If a match is found, the NLME shall
obtain the corresponding 16-bit network address and issue an association response to the MAC sub-layer. If

.

.

.

Child
APL

NLME-
JOIN.reques

Child
NWK

Child
MAC

MLME-
SCAN.reques

MLME-
SCAN.confirm

NLME-
JOIN.confirm

MLME-
ASSOCIATE.reques

MLME-
ASSOCIATE.confirm

Perform active or passive sca

Select suitable PAN

Association procedure

NLME-NETWORK-

DISCOVERY.reques

NLME-NETWORK-
DISCOVERY.confirm

MLME-BEACON-

NOTIFY.indication

MLME-BEACON-
NOTIFY.indication

NLME-
START-ROUTER.reques MLME-

START.reques

Authentication procedur

MLME-
START.confirm NLME-

START-ROUTER.confirm
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 215

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
a match is not found, the NLME shall, if possible, allocate a 16-bit network address for the new device that
is unique to that network. A finite address space is allocated to every potential parent device, and a device
may disallow a join request once this address space is exhausted. The ZigBee coordinator determines the
amount of address space given. See sub-clause 2.7.1.4 and sub-clause 2.7.1.5115 for an explanation of the
address assignment mechanism.

If the potential parent has exhausted its allocated address space, the NLME shall terminate the procedure
and indicate the fact in the subsequent MLME-ASSOCIATE.response primitive to the MAC sub-layer. The
Status parameter of this primitive shall indicate that the PAN is at capacity. This status value uses MAC sub-
layer terminology and only indicates that the potential parent does not have the capacity to accept any more
children. It is possible in a multihop network that other potential parents still having sufficient address space
exist within the same network.

If the request to join is granted, the NLME of the parent shall create a new entry for the child in its neighbor
table using the supplied device information and indicate a successful association in the subsequent MLME-
ASSOCIATE.response primitive to the MAC sub-layer. The status of the response transmission to the child
is communicated back to the network layer via the MLME-COMM-STATUS.indication primitive.

If the transmission was unsuccessful (the MLME-COMM-STATUS.indication primitive contained a Status
parameter not equal to SUCCESS), the NLME shall terminate the procedure. If the transmission was
successful, the NLME shall notify the next higher layer that a child has just joined the network by issuing
the NLME-JOIN.indication primitive.

The procedure for successfully joining a device to the network is illustrated in the MSC shown in Figure 50
– Procedure for handling a join request.

Figure 50 Procedure for handling a join request

2.7.1.3.2 Joining a network directly

This sub-clause specifies how a child can be directly added to a network by a previously designated parent
device (ZigBee coordinator or router). In this case, the parent device is preconfigured with the 64-bit address

115CCB Comment #122

Check extended address and
assign logical address

MLME-
ASSOCIATE.response

MLME-
ASSOCIATE.indication

NLME-
JOIN.indication

MLME-
COMM-STATUS.indication

Parent
APL

Parent
NWK

Parent
MAC
216 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
of the child device. The following text describes how this prior address knowledge shall be used to establish
the parent-child relationship.

The procedure for a ZigBee coordinator or router to directly join a device to its network is initiated by
issuing the NLME-DIRECT-JOIN.request primitive with the DeviceAddress parameter set to the address of
the device to be joined to the network. Only those devices that are either a ZigBee coordinator or a ZigBee
router shall initiate this procedure. If this procedure is initiated on any other device, the NLME shall
terminate the procedure and notify the next higher layer of the illegal request by issuing the NLME-
DIRECT-JOIN.confirm primitive with the Status parameter set to INVALID_REQUEST.

When this procedure is initiated, the NLME of the parent shall first determine whether the specified device
already exists on its network. To do this, the NLME shall search its neighbor table in order to determine
whether a matching 64-bit, extended address can be found. If a match is found, the NLME shall terminate
the procedure and notify the next higher layer that the device is already present in the device list by issuing
the NLME-DIRECT-JOIN.confirm primitive with the Status parameter set to ALREADY_PRESENT.

If a match is not found, the NLME shall, if possible, allocate a 16-bit network address for the new device,
which is unique to that network. A finite address space is allocated to every potential parent device, and the
potential parent shall only create a new entry for the device in its neighbor table if it has the capacity to do
so. If capacity is not available, the NLME shall terminate the procedure and notify the next higher layer of
the unavailable capacity by issuing the NLME-DIRECT-JOIN.confirm primitive with the Status parameter
set to TABLE_FULL. If capacity is available, the NLME shall inform the next higher layer that the device
has joined the network by issuing the NLME-DIRECT-JOIN.confirm primitive with the Status parameter
set to SUCCESS.

The ZigBee coordinator determines the amount of address space given to every potential parent device. See
sub-clause 2.7.1.4 and sub-clause 2.7.1.5116 for an explanation of the address assignment mechanism.

Once the parent has added the child to its network, it is still necessary for the child to make contact with the
parent to complete the establishment of the parent-child relationship. The child shall fulfill this requirement
by initiating the orphaning procedure, which is described in sub-clause 2.7.1.3.

The procedure a parent shall follow to successfully join a device to the network directly is illustrated in the
MSC shown in Figure 51. This procedure does not require any over-the-air transmissions.

Figure 51 Joining a device to a network directly

116CCB Comment #122

NLME-DIRECT-
JOIN.confirm

Parent

APL

Parent

 NWK

Parent

 MAC

Check extended address and
assign logical address

JOIN.request(DeviceAddress)
NLME-DIRECT-
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 217

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.7.1.3.3 Joining or re-joining a network through orphaning

This sub-clause specifies how the orphaning procedure can be initiated by a device that has been directly
joined to a network (joining through orphaning) or by a device that was previously joined to a network but
has lost contact with its parent (re-joining through orphaning).

A device that has been added to a network directly shall initiate the orphan procedure in order to complete
the establishment of its relationship with its parent. The application on the device will determine whether to
initiate this procedure and, if so, will notify the network layer upon power up.

A device that was previously joined to a network has the option of initiating the orphan procedure if its
NLME repeatedly receives communications failure notifications from its MAC sub-layer.

2.7.1.3.3.1 Child procedure

The joining through orphaning procedure is initiated by a child device through the NLME-JOIN.request
primitive with RejoinNetwork parameter set to TRUE.

When this procedure is initiated, the NLME shall first request that the MAC sub-layer perform an orphan
scan over the complete set of available channels, as dictated by the PHY layer [B1]. An orphan scan is
initiated by issuing the MLME-SCAN.request primitive to the MAC sub-layer, and the result is
communicated back to the NLME via the MLME-SCAN.confirm primitive.

If the orphan scan was successful (the child has found its parent), the NLME shall inform the next higher
layer of the success of its request to join or re-join the network by issuing the NLME-JOIN.confirm
primitive with the Status parameter set to SUCCESS.

If the orphan scan was unsuccessful (the parent has not been found), the NLME shall terminate the
procedure and notify the next higher layer that no networks were found. This is achieved by issuing the
NLME-JOIN.confirm primitive with the Status parameter set to NO_NETWORKS.

The procedure for a child to successfully join or re-join a network through orphaning is illustrated in the
MSC shown in Figure 52.

Figure 52 Child procedure for joining or re-joining a network through orphaning

2.7.1.3.3.2 Parent procedure

A device is notified of the presence of an orphaned device when it receives the MLME-ORPHAN.indication
primitive from the MAC sub-layer. Only those devices that are either a ZigBee coordinator or a ZigBee

Child

APL
Child

NWK
Child

MAC

MLME-
SCAN.confirm NLME-

JOIN.confirm

Perform orphan scan

NLME-
JOIN.request(True)

MLME-
SCAN.request
218 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
router (a device with parental capabilities) shall initiate this procedure. If this procedure is initiated on any
other device, the NLME shall terminate the procedure.

When this procedure is initiated, the NLME shall first determine whether the orphaned device is its child.
This is accomplished by comparing the extended address of the orphaned device with the addresses of its
children, as recorded in its neighbor table. If a match is found (the orphaned device is its child), the NLME
shall obtain the corresponding 16-bit network address and include it in its subsequent orphan response to the
MAC sub-layer. The orphan response to the MAC sub-layer is initiated by issuing the MLME-
ORPHAN.response primitive, and the status of the transmission is communicated back to the NLME via the
MLME-COMM-STATUS.indication primitive.

If an address match is not found (the orphaned device is not its child), the NLME shall indicate the fact in its
subsequent orphan response to the MAC sub-layer.

The procedure for a parent to join or re-join its orphaned child to the network is illustrated in the MSC
shown in Figure 53.

Figure 53 Parent procedure for joining or re-joining a device to its network through
orphaning

2.7.1.3.4 Neighbor tables

The neighbor table of a device shall contain information on every device within transmission range up to
some implementation-dependent limit. The information in stored in the neighbor table is used for a variety
of purposes, however, not all fields described in this subsection are required for the operation of a ZigBee
device. Each entry in the table shall contain the following information about a neighboring device:

— PAN identifier

— Extended address if device is parent or child

— Network address

— Device type

— Relationship

MLME-
ORPHAN.response

MLME-
ORPHAN.indication

MLME-
COMM-STATUS.indication

Search for address in
device table

Parent
APL

Parent
NWK

Parent
MAC
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 219

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The following are not required but implementers may wish to include the following information in each
neighbor table. Additionally, it should be noted that implementers may wish to record additional information
in the neighbor table and the following list is not intended to exclude this possibility.

— RxOnWhenIdle

— Extended address (any neighbor)

— Beacon Order

— Depth

— Permit joining

— Transmit Failure

— Potential parent

— Average LQI

— Logical Channel

— Incoming beacon frame timestamp

— Beacon transmission time offset

A table entry shall be updated every time a device receives any frame from the corresponding neighbor. The
contents of a neighbor table entry are shown in Table 133.

Table 133 Neighbor table entry format
Field name Field type Valid range Description

PAN Id Integer 0x0000—0x3fff

The 16-bit PAN identifier of the
neighboring device.

This field shall be present in
every neighbor table entry.

Extended address Integer An extended 64-bit, IEEE
address

64-bit IEEE address that is
unique to every device.

This field shall be present if the
neighbor is a parent or child of
the device

Network address Network address 0x0000—0xffff

The 16-bit network address of
the neighboring device.
This field shall be present in
every neighbor table entry.

Device type Integer 0x00—0x02

The type of the neighbor
device.:

0x00 = ZigBee coordinator

0x01 = ZigBee router

0x02 = ZigBee end device

This field shall be present in
every neighbor table entry.
220 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
RxOnWhenIdle Boolean TRUE or FALSE

Indicates if neighbor’s receiver
is enabled during idle portions
of the CAPa:

TRUE = Receiver is off

FALSE = Receiver is on

This field should be present for
entries that record the parent or
children of a ZigBee router or
ZigBee coordinator.

Relationship Integer 0x00—0x03

The relationship between the
neighbor and the current
device:

0x00=neighbor is the parent

0x01=neighbor is a child

0x02=neighbor is a sibling

0x03=None of the above.

This field shall be present in
every neighbor table entry.

Depth Integer 0x00—nwkcMaxDepth

The tree depth of the neighbor
device. A value of 0x00 indi-
cates that the device is the Zig-
Bee coordinator for the
network.

This field is optional.

Beacon order Integer 0x00—0x0f

This specifies how often the
beacon is to be transmitted. For
a definition and discussion of
beacon order see [B1].

This field is optional.

Permit joining Boolean TRUE or FALSE

An indication of whether the
neighbor device is accepting
join requests.
TRUE = neighbor is accepting
join requests
FALSE = neighbor is not
accepting join requests

This field is optional.

Transmit Failure Integer 0x00—0xff

A value indicating if previous
transmissions to the device
were successful or not. Higher
values indicate more failures.

This field is optional.

Table 133 Neighbor table entry format
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 221

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
2.7.1.4 Distributed117 address assignment mechanism

By default, i.e. when the NIB attribute nwkUseTreeAddrAlloc has a value of TRUE118, network addresses
are assigned using a distributed addressing scheme that is designed to provide every potential parent with a
finite sub-block of network addresses. These addresses are unique within a particular network and are given
by a parent to its children. The ZigBee coordinator determines the maximum number of children that any
device within its network is allowed. Of these children, a maximum of nwkMaxRouters can be router-
capable devices while the rest shall be reserved for end devices. Every device has an associated depth, which
indicates the minimum number of hops a transmitted frame must travel, using only parent-child links, to

Potential parent Integer 0x00—0x01

An indication of whether the
neighbor has been ruled out as
a potential parent due to a
failed join attempt:

0x00 indicates that the neigh-
bor is not a potential parent

0x01 indicates that the neigh-
bor is a potential parent.

This field is optional.

LQI Integer 0x00—0xff

The estimated link quality for
RF transmissions from this
device. See sub-clause 2.7.3.1
for discussion of how this is cal-
culated.

This field is optional.

Logical channel Integer
Selected from the available logi-
cal channels supported by the

PHY

The logical channel on which
the neighbor is operating.

This field is optional.

Incoming beacon
timestamp Integer 0x000000-0xffffff

The time, in symbols, at which
the last beacon frame was
received from the neighbor.
This value is equal to the times-
tamp taken when the beacon
frame was received, as
described in [B1].

Beacon transmis-
sion time offset Integer 0x000000-0xffffff

The transmission time differ-
ence, in symbols, between the
neighbor’s beacon and its par-
ent’s beacon. This difference
may be subtracted from the
corresponding incoming bea-
con timestamp to calculate the
beacon transmission time of the
neighbor’s parent.

aCCB Comment #138

117CCB Comment #122
118Ibid

Table 133 Neighbor table entry format
222 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
reach the ZigBee coordinator. The ZigBee coordinator itself has a depth of zero, while its children have a
depth of one. Multihop networks have a maximum depth that is greater than one. The ZigBee coordinator
also determines the maximum depth of the network.

Given values for the maximum number of children a parent may have, nwkMaxChildren (Cm), the
maximum depth in the network, nwkMaxDepth (Lm), and the maximum number of routers a parent may
have as children, nwkMaxRouters (Rm), we may compute the function, , essentially the size of
the address sub-block being distributed by each parent at that depth to its router-capable child devices for a
given network depth, , as follows:119

If a device has a value of zero, then it shall not be capable of accepting children and shall be
treated as a ZigBee end device for purposes of this discussion. The NLME of the device shall set the
macAssociationPermit PIB attribute in the MAC sub-layer to FALSE by issuing the MLME-SET.request
primitive and shall respond to future NLME-PERMIT-JOINING.request primitive with a PermitDuration of
equal or greater than 0x01 with a NLME-PERMIT-JOINING.confirm primitive with a Status parameter of
INVALID_REQUEST and shall terminate the permit joining procedure.

A parent device that has a value greater than zero shall accept child devices and shall assign
addresses to them differently depending on whether the child device is router-capable or not.

Network addresses shall be assigned to router-capable child devices using the value of as an
offset. A parent assigns an address that is one greater than its own to its first router-capable child device.
Subsequently assigned addresses to router-capable child devices are separated from each other by

. A maximum of nwkMaxRouters of such addresses shall be assigned.

Network addresses shall be assigned to end devices in a sequential manner with the nth address, , given
by the following equation:

Where and represents the address of the parent.

The values for an example network having nwkMaxChildren=4, nwkMaxRouters=4 and
nwkMaxDepth=3 are calculated and listed in Table 134. Figure 54 illustrates the example network.

119CCB Comment #100 resulted in a change to this formula.The original was:

 Cskip(d)

d

Cskip(d) = 1+ Cm − Rm − Cm ⋅ RmLm−d −1

1− Rm

−
⋅−−+

=−−⋅+
= −−

otherwise ,1
1

1Rm if),1(1
)(1

Rm
RmCmRmCm

dLmCm
dCskip dLm

 Cskip(d)

 Cskip(d)

 Cskip(d)

 Cskip(d)

An

 An = Aparent + Cskip(d) ⋅ Rm + n

1≤ n ≤ (Cm − Rm) Aparent

 Cskip(d)
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 223

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 54 Address assignment in an example network

Because an address sub-block cannot be shared between devices, it is possible that one parent exhausts its
list of addresses while a second parent has addresses that go unused. A parent having no available addresses
shall not permit a new device to join the network. In this situation, the new device shall find another parent.
If no other parent is available within transmission range of the new device, the device shall be unable to join
the network unless it is physically moved or there is some other change.

2.7.1.5 Higher-layer address assignment mechanism

When the NIB attribute nwkUseTreeAddrAlloc has a value of FALSE, an alternate addressing scheme is
used where the block of addresses to be assigned by a device is set by the next higher layer using the NIB
attributes nwkNextAddress, nwkAvailableAddresses and nwkAddressIncrement. In this scheme, when a
device has nwkAvailableAddresses equal to 0 it shall be incapable of accepting association requests. The
NLME of such a device shall set the macAssociationPermit PIB attribute in the MAC sub-layer to FALSE
by issuing the MLME-SET.request primitive and shall respond to future NLME-PERMIT-JOINING.request
primitives with a PermitDuration of equal to or greater than 0x01 with a NLME-PERMIT-
JOINING.confirm primitive with a Status parameter of INVALID_REQUEST and shall terminate the

Table 134 Example addressing offset values for each given depth within the network
Depth in the network, d Offset value, Cskip(d)

0 21

1 5

2 1

3 0
224 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
permit joining procedure. If the device has nwkAvailableAddresses greater than 0, it shall accept association
requests by setting the macAssociationPermit PIB attribute in the MAC sub-layer to TRUE and by issuing
the MLME-SET.request primitive and it shall respond to future NLME-PERMIT-JOINING.request
primitives with a PermitDuration of equal to or greater than 0x01 with a Status parameter of SUCCESS.
While a device is accepting associations it shall use the value of nwkNextAddress as the address to be
assigned to the next device that successfully associates. After a successful association, the value of
nwkNextAddress shall be incremented by the value of nwkAddressIncrement and the value of
nwkAvailableAddresses shall be decremented by 1.

2.7.1.6 Installation and addressing

It should be clear that nwkMaxDepth roughly determines the “distance” in network terms from the root of
the tree to the farthest end device. In principal nwkMaxDepth also determines the overall network diameter.
In particular, for an ideal network layout where the ZigBee coordinator is located in the center of the
network, as in Figure 54, the network diameter should be 2 * nwkMaxDepth. In practice, application-driven
placement decisions and order of deployment may lead to a smaller diameter. In this case, nwkMaxDepth
provides a lower bound on the network diameter while the 2* nwkMaxDepth provides the upper bound.

Finally, due to the fact that the tree is not dynamically balanced in ZigBee 1.0, the possibility exists that
certain installation scenarios, such as long lines of devices, may exhaust the address capacity of the network
long before the real capacity is reached.

2.7.1.7 Leaving a network

This sub-clause specifies two methods for removing a child from a network that both use the MAC layer
disassociation procedure. The first is initiated by a child as a request to its parent, while the second is
initiated by a parent as a request to its child.

2.7.1.7.1 Method for a child to initiate its own removal from a network

This sub-clause describes how a device can initiate its own removal from the network in response to the
receipt of an NLME-LEAVE.request primitive from the next higher layer or in response to the receipt of a
leave command frame from its parent with the request/indication sub-field of the command options field of
the command frame payload set to 1.

When this procedure is initiated, the NLME shall transmit a leave request command frame to each of its
children, if any. If the procedure was initiated from the next higher layer and the RemoveChildren parameter
of the NLME-LEAVE.request that initiated the procedure is equal to FALSE then the remove children sub-
field of the command options field in the command frame payload of each outgoing frame shall be set to 0.
If the RemoveChildren parameter has a value of TRUE the remove children sub-field shall be set to 1. If the
procedure was initiated by the receipt of a leave command frame then the remove children sub-field of each
outgoing command frame's payload should match that of the received frame. If removal of children is called
for, and the device has children, the NLME shall attempt to remove each of the device's children in turn
using the procedure described in sub-clause 2.7.1.7.2. The NLME shall then transmit a leave command
frame to the device's parent, using the MCPS-DATA.request primitive of the MAC sub-layer, with the
request/indication sub-field of the command options field of the command frame payload set to 0. If removal
of children was not called for then the remove children sub-field of the command options field in the
command frame payload shall be set to 0. If removal of children was called for the remove children sub-field
of the command options field in the command frame payload shall be set to 1 if the device has no children or
else if the device has children and all of the device's children were successfully removed and to 0 otherwise.
The NLME may then issue the MLME-DISASSOCIATE.request primitive to the MAC sub-layer with the
DeviceAddress parameter equal to the address of the device's parent and the DisassociateReason parameter
equal to 0x02. On receipt of the MLME-DISASSOCIATE.confirm primitive, the NLME shall issue the
NLME-LEAVE.confirm primitive to the next higher layer with the DeviceAddress parameter equal to 0.
The Status parameter of the NLME-LEAVE.confirm primitive shall have a value of SUCCESS if:
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 225

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1) The status returned by the initial MCPS-DATA.confirm above has a value of SUCCESS, and
2) If the NLME attempts to remove the children of the device in turn, then each of the children is

successfully removed, and
3) The status returned by the MLME.DISASSOCIATE.confirm primitive, if any, is also SUC-

CESS.

Otherwise it shall have a value of LEAVE_UNCONFIRMED.

When the NLME of any device receives one of the leave command frames issued by the leaving device as
described above, it must check its relationship to the sender. If the device receiving the leave command
frame is the parent of the leaving device then it shall check the value of the remove children sub-field of the
command options field in the command frame payload. If this sub-field has a value of 1 then the parent may
be able to reuse the 16-bit network address previously in use by the leaving device. If the remove children
sub-field has a value of 0 then the parent shall not reuse the 16-bit network address of the leaving device. In
either case, it shall set the relationship field of its neighbor table entry corresponding to the leaving device to
0x03 indicating no relationship. If the device receiving a leave command frame is a child of the leaving
device then it shall check the value of the request/indication sub-field of the command options field in the
command frame header. If this sub-field has a value of 1, the NLME shall execute the procedure outlined in
this sub-clause. If the request/indication sub-field has a value of 0, the NLME shall issue a
NLME.LEAVE.indication primitive to the next higher layer with the DeviceAddress set to the 64-bit
address of the sender of the leave command frame.120

2.7.1.7.2 Method for a parent to force a child to leave its network

This sub-clause specifies how a parent can force a child to leave its network employing the leave command
frame and MAC sub-layer disassociation.

The procedure for a parent to remove a child from its network is initiated by issuing the NLME-
LEAVE.request primitive with the DeviceAddress parameter set to the address of the device to be removed
from the network. Only those devices that are either a ZigBee coordinator or a ZigBee router shall initiate
this procedure. If this procedure is initiated on any other device, the NLME shall terminate the procedure
and notify the next higher layer of the illegal request by issuing the NLME-LEAVE.confirm primitive with
the Status parameter set to INVALID_REQUEST.

When this procedure is initiated by the next higher layer the NLME shall first determine whether the
specified device already exists on its network. To do this, the NLME shall search its neighbor table in order
to determine whether a matching extended address can be found. If a match is not found, the NLME shall
terminate the procedure and inform the next higher layer of the unknown device by issuing the NLME-
LEAVE.confirm primitive with the Status parameter set to UNKNOWN_DEVICE. The NLME shall then
transmit a leave command frame to the child device, using the MCPS-DATA.request primitive of the MAC
sub-layer, with the request/indication sub-field of the command options field of the command frame payload
set to 1. If the recursive removal of children is called for, then the remove children sub-field of the outgoing
leave command payload will have a value of 1. Otherwise it will have a value of 0. After issuing the leave
command frame the NLME shall wait for a time-out period that is equal to:

to receive a leave command frame from the MAC, via the MCPS-DATA.indication, where the source
address of the frame is that of the child being asked to leave the network the request/indication subfield of

120CCB Comment #107

• isit if),(
for callednot ischildren of removal if ,

dCskiptenceTimetionPersisnwkTransac
tenceTimetionPersisnwkTransac
226 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
the command options field of the command frame payload has a value of 0. It may also wait for the receipt
of an MLME-DISSSOCIATE.indication from the leaving device. At this point it shall issue the NLME-
LEAVE.confirm primitive with the DeviceAddress parameter set to the 64-bit IEEE address of the leaving
device. The Status parameter shall have a value of SUCCESS if:

1) The status value returned by the MLME-DATA.confirm resulting from the transmission of the
leave command frame was SUCCESS, and

2) The leave command frame issued by the device's was received before the time-out, and
3) The recursive removal of children was not called for, or else recursive removal of children was

called for and the remove children subfield of the command options field of the command
frame payload of the received leave command frame above had a value of 1.

Otherwise it shall have a value of LEAVE_UNCONFIRMED.

Child devices receiving the leave command frame will execute the procedure described in sub-
clause 2.7.1.7.1.121

121CCB Comment #107
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 227

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 55 Sequence diagrams for NLME-LEAVE.request, various scenarios122

122CCB Comment #107
228 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 56 Leave command, various scenarios123

2.7.1.8 Changing the ZigBee coordinator configuration

If the next higher layer of a ZigBee coordinator device wishes to change the configuration of the network, it
shall request that the MAC sub-layer instigate the changes in its PIB. The ZigBee coordinator configuration
is composed of the following items:

— Whether the device wishes to be the ZigBee coordinator.

123CCB Comment #107
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 229

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— The beacon order of the MAC super-frame.

— The super-frame order of the MAC super-frame.

— Whether battery life extension mode is to be used.

A change to the ZigBee coordinator configuration is initiated by issuing the NLME-NETWORK-
FORMATION.request primitive to the NLME. The status of the attempt is communicated back via the
NLME-NETWORK-FORMATION.confirm primitive.124

The impact of such changes imposed on the MAC sub-layer is out of the scope of this specification. For
more details on these changes see [B1].

2.7.1.9 Resetting a device

The NWK layer of a device shall be reset immediately following power-up, before a join attempt by
association and after a leave attempt by disassociation. A reset is initiated by issuing the NLME-
RESET.request primitive to the NLME and the status of the attempt is communicated back via the NLME-
RESET.confirm primitive. The reset process shall clear the routing table entries of the device. Some devices
may store NWK layer quantities in non-volatile memory and restore them after a reset. However, a device
shall discard its network address after the reset. Such a device shall look for an association and get a network
address from its coordinator. The new network address may be different from its old network address. In
such a case, any device that is communicating with the device that has been reset must rediscover the device
using higher-layer protocols and procedures that are out of scope for this specification.

2.7.2 Transmission and reception

2.7.2.1 Transmission

Only those devices that are currently associated shall send data frames from the NWK layer. If a device that
is not associated receives a request to transmit a frame, it shall discard the frame and notify the higher layer
of the error by issuing an NLDE-DATA.confirm primitive with a status of INVALID_REQUEST.

All frames handled by or generated within the NWK layer shall be constructed according to the general
frame format specified in Figure 36 and transmitted using the MAC sub-layer data service.

In addition to source address and destination address fields, all NWK layer transmissions shall include a
radius field and a sequence number field. For data frames originating at a higher layer, the value of the
radius field may be supplied using the Radius parameter of the NLDE-DATA.request primitive. If a value is
not supplied, then the radius field of the NWK header shall be set to twice the value of the nwkMaxDepth
attribute of the NWK IB (see clause 2.6). The NWK layer on every device shall maintain a sequence number
that is initialized with a random value. The sequence number shall be incremented by one, each time the
NWK layer constructs a new NWK frame, either as a result of a request from the next higher layer to
transmit a new NWK data frame or when it needs to construct a new NWK layer command frame. After
being incremented the value of the sequence number shall be inserted into the sequence number field of the
frame's NWK header125. Once an NPDU is complete, if security is required for the frame, it shall be passed
to the security service provider for subsequent processing according to the specified security suite (see sub-
clause 3.2.3). Security processing is not required if the SecurityEnable parameter of the NDLE-
DATA.request is EQUAL to FALSE or if the NWK security level as specified in nwkSecurityLevel is equal
to 0. In this case the security sub-field of the frame control field shall always be set to 0. On successful
completion of the secure processing, the security suite returns the frame to the NWK layer for transmission.
The processed frame will have the correct auxiliary header attached. If security processing of the frame fails

124CCB Comment #137
125CCB Comment #111, 125
230 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
and the frame was a data frame then the higher layer will be informed via the NDLE-DATA.confirm
primitive’s status. If security processing of the frame fails and the frame is a network command frame then it
is discarded and no further processing shall take place

When the frame is constructed and ready for transmission, it shall be passed to the MAC data service. An
NPDU transmission is initiated by issuing the MCPS-DATA.request primitive to the MAC sub-layer and the
results of the transmission returned via the MCPS-DATA.confirm primitive.

2.7.2.2 Reception and rejection

In order to receive data, a device must enable its receiver. The next higher layer may initiate reception using
the NLME-SYNC.request primitive. On a beacon-enabled network, receipt of this primitive by the NWK
layer will cause a device to synchronize with its parent’s next beacon and, optionally, to track future
beacons. The NWK layer shall accomplish this by issuing an MLME-SYNC.request to the MAC sub-layer.
On a non-beacon-enabled network the NLME-SYNC.request will cause the NWK layer to poll the device’s
parent using the MLME-POLL.request primitive.

On a non-beacon-enabled network, the NWK layer on a ZigBee coordinator or ZigBee router shall ensure, to
the maximum extent feasible, that the receiver is enabled whenever the device is not transmitting. On a
beacon-enabled network, the NWK layer should ensure that the receiver is enabled when the device is not
transmitting during the active period of its own superframe and of its parent’s superframe. The NWK layer
may use the macRxOnWhenIdle attribute of the MAC PIB for this purpose.

Once the receiver is enabled, the NWK layer will begin to receive frames via the MAC data service. On
receipt of each frame, the Radius field of the NWK header shall be decremented by 1. If, as a result of being
decremented, this value falls to 0 then the frame shall not, under any circumstances, be retransmitted,
although it may be passed to the next higher layer or otherwise processed by the NWK layer as outlined
elsewhere in this specification.126 Data frames for which the destination address matches the device’s
network address shall be passed to the next higher layer. Broadcast data frames shall also be passed to the
next higher layer. Broadcast data frames shall also be relayed according to the procedure outlined in sub-
clause 2.7.5. If the receiving device is a ZigBee coordinator or an operating ZigBee router, i.e. a router that
has already invoked the NLME-START-ROUTER.request primitive, then it may relay data frames for
which the destination address does not match the device's network address according to the procedures
outlined in sub-clause 2.7.3.3. Under all other circumstances, data frames shall be discarded immediately.
The procedure for handling route request frames is outlined in sub-clause 2.7.3.4.2. The procedure for
handling route reply command frames for which the destination address matches the device's network
address is outlined in sub-clause 2.7.3.4.3. Route reply command frames for which the destination address
does not match the device's network address shall be discarded immediately. Route error command frames
shall be handled in the same manner as data frames.127

The NWK layer shall indicate the receipt of a data frame to the next higher layer using the NLDE-
DATA.indication primitive.

On receipt of a frame, the NLDE shall check the value of the security sub-field of the frame control field. If
this value is non-zero, the NLDE shall pass the frame to the security service provider (see sub-clause 3.2.3)
for subsequent processing according to the specified security suite.

2.7.3 Routing

ZigBee coordinators and routers shall provide the following functionality:

— Relay DATA frames on behalf of higher layers.

126CCB Comment #125
127CCB Comment #134
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 231

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Relay DATA frames on behalf of other ZigBee routers.

— Participate in route discovery in order to establish routes for subsequent DATA frames.

— Participate in route discovery on behalf of end devices.

— Participate in end-to-end route repair.

— Participate in local route repair.

— Employ the ZigBee path cost metric as specified in route discovery and route repair.

ZigBee coordinators or routers may provide the following functionality:

— Maintain routing tables in order to remember best available routes.

— Initiate route discovery on behalf of higher layers.

— Initiate route discovery on behalf of other ZigBee routers.

— Initiate end-to-end route repair.

— Initiate local route repair on behalf of other ZigBee routers.

2.7.3.1 Routing cost

The ZigBee routing algorithm uses a path cost metric for route comparison during route discovery and
maintenance. In order to compute this metric, a cost, known as the link cost, is associated with each link in
the path and link cost values are summed to produce the cost for the path as a whole.

More formally, if we define a path of length as an ordered set of devices and a link,
, as a sub-path of length 2, then the path cost

where each of the values is referred to as a link cost. The link cost for a link is a

function with values in the interval defined as:128

where is defined as the probability of packet delivery on the link .

128CCB Comment #133 mandates a change in value for this formula. The previous value was:

P L D1,D2...DL[]
Di,Di+1[]

C{P} = C [Di,Di+1]{ }
i=1

L−1

∑

C Di,Di+1[]{ } C{l} l

 0...7[]

C l{ }=

7,

min 7,
1

pl

=
4

1round,7min

,7

}{

lp
lC

pl l
232 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Thus, implementers may report a constant value of 7 for link cost or they may report a value that reflects the
probability pl of reception - specifically, the reciprocal of that probability – which should, in turn, reflect129

the number of expected attempts required to get a packet through on that link each time it is used. A device
that offers both options may be forced to report a constant link cost by setting the value of the NIB attribute
nwkReportConstantCost to TRUE.

The question that remains, however, is how pl is to be estimated or measured. This is primarily an
implementation issue and implementers are free to apply their ingenuity. pl may be estimated over time by
actually counting received beacon and data frames, observing the appropriate sequence numbers to detect
lost frames, and this is generally regarded as the most accurate measure of reception probability. However,
the most straightforward method, available to all, is to form estimates based on an average over the per-
frame LQI value provided by the IEEE 802.15.4-2003 MAC and PHY. Even if some other method is used,
the initial cost estimates shall be based on average LQI. A table-driven function may be used to map average
LQI values onto C{l} values. It is strongly recommended that implementers check their tables against data
derived from tests on production hardware, as inaccurate costs will hamper the ability of the ZigBee routing
algorithm to operate130

2.7.3.2 Routing tables

A ZigBee router or ZigBee coordinator may maintain a routing table. The information that shall be stored in
a ZigBee routing table is shown in Table 135. A ZigBee router or ZigBee coordinator may also reserve a
number of routing table entries to be used only for route repair and only in case all other routing capacity has
been exhausted. The aging and retirement of routing table entries in order to reclaim table space from entries
that are no longer in use, while it is a recommended practice, is out of scope of this specification.131.

Table 136 enumerates the values for the route status field.

129CCB Comment #133
130CCB Comment #133

Table 135 Routing table
Field Name Size Description

Destination address 2 bytes The 16-bit network address of this route.

Status 3 bits The status of the route. See Table 136 below for values.

Next-hop address 2 bytes The 16-bit network address of the next hop on the way to
the destination.

131CCB Comment #255

Table 136 Route status values
Numeric Value Status

0x0 ACTIVE

0x1 DISCOVERY_UNDERWAY

0x2 DISCOVERY_FAILED

0x3 INACTIVE

0x4 – 0x7 Reserved
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 233

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
In the text below that describes the routing algorithm the term “routing table capacity” is used to describe the
situation in which a device has the ability to use its routing table to establish a route to a particular
destination device. A device is said to have routing table capacity if:

— It is a ZigBee coordinator or ZigBee router.

— It maintains a routing table.

— It has a free routing table entry or it already has a routing table entry corresponding to the destination.

— The device is attempting route repair and it has reserved some entries for this purpose as described
above.

If a ZigBee router or ZigBee coordinator maintains a routing table it shall also maintain a route discovery
table containing the information shown in Table 137. Routing table entries are long-lived and persistent,
while route discovery table entries last only as long as the duration of a single route discovery operation and
may be reused.

A device is said to have “route discovery table capacity” if:

— It maintains a route discovery table.

— It has a free entry in its route discovery table.

If a device has both routing table capacity and route discovery table capacity then it may be said the have
“routing capacity”.

2.7.3.3 Upon receipt of a data frame

On receipt of a data frame the NWK layer routes it according to the following procedure, which is also
outlined in Figure 57.

If a data frame is received by the NWK layer from its next higher layer and the destination address is equal
to the broadcast address, the NWK layer shall broadcast the frame according to the procedures described in
sub-clause 2.7.5.

Table 137 Route discovery table
Field Name Size Description

Route request ID 1 byte A sequence number for a route request command frame that is
incremented each time a device initiates a route request.

Source address 2 bytes The 16-bit network address of the route request’s initiator.

Sender address 2 bytes

The 16-bit network address of the device that has sent the most
recent lowest cost route request command frame corresponding
to this entry’s Route request identifier and Source address. This
field is used to determine the path that an eventual route reply
command frame should follow.

Forward Cost 1 byte The accumulated path cost from source of the route request to
the current device.

Residual cost 1 byte The accumulated path cost from the current device to the desti-
nation device.

Expiration time 2 bytes
A countdown timer indicating the number of milliseconds until
route discovery expires. The initial value is nwkcRouteDiscovery-
Time.
234 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
If the receiving device is a ZigBee router or ZigBee coordinator and the destination of the frame is a ZigBee
end device which is also the child of the receiving device then the frame shall be routed directly to the
destination using the MCPS132-DATA.request primitive as described in sub-clause 2.7.2.1 and setting the
next hop destination address equal to the final destination address.

A device that has routing capacity shall examine the discover route sub-field of the NWK header frame
control field, If the discover route sub-field has a value of 0x02 then the device shall initiate route discovery
immediately as described below in sub-clause 2.7.3.4.1. If the discover route sub-field does not have a value
of 0x02, the device shall check its routing table for an entry corresponding to the destination of the frame. If
there is such an entry, and if the value of the route status field for that entry is ACTIVE, then the device shall
relay the frame using the MCPS-DATA.request primitive. When relaying a data frame, the SrcAddrMode
and DstAddrMode parameters of the MCPS-DATA.request primitive shall both have a value of 0x02,
indicating 16-bit addressing. The SrcPANId and DstPANId parameters shall both have the value provided
by the macPANId attribute of the MAC PIB for the relaying device. The SrcAddr parameter will be set to
the value of macShortAddress from the MAC PIB of the relaying device, and the DstAddr parameter shall
be the value provided by the next-hop address field of the routing table entry corresponding to the
destination. The TxOptions parameter should always be non-zero when bitwise ANDed with the value 0x01,
indicating acknowledged transmission. If the device has a routing table entry corresponding to the
destination of the frame but the value of the route status field for that entry is DISCOVERY_UNDERWAY,
then the frame shall be treated as though route discovery has been initiated for this frame, as described
below in sub-clause 2.7.3.4.1. The frame may optionally be buffered pending route discovery or else routed
along the tree using hierarchical routing, provided that the NIB attribute nwkUseTreeRouting has a value of
TRUE. If the frame is routed along the tree, the discover route sub-field of the NWK header frame control
field shall be set to 0x00. If the device has a routing table entry corresponding to the destination of the frame
but value of the route status field for that entry has a value of DISCOVERY_FAILED or INACTIVE, the
device may route the frame along the tree using hierarchical routing, again provided that the NIB attribute
nwkUseTreeRouting has a value of TRUE. If the device does not have a routing table entry for the
destination, it shall examine the discover route sub-field of the NWK header frame control field. If the
discover route sub-field has a value of 0x01 then the device shall initiate route discovery as described below
in sub-clause 2.7.3.4.1. If the discover route sub-field has a value of 0 and the NIB attribute
nwkUseTreeRouting has a value of TRUE then the device shall route along the tree using hierarchical
routing. If the discover route sub-field has a value of 0, the NIB attribute nwkUseTreeRouting has a value of
FALSE and there is no routing table corresponding to the destination of the frame, the frame shall be
discarded and the NLDE shall issue the NLDE-DATA.confirm primitive with a Status value of
INVALID_REQUEST.133

A device without routing capacity shall route along the tree using hierarchical routing, again provided that
the value of the NIB attribute nwkUseTreeRouting is TRUE.134

For hierarchical routing, if the destination is a descendant of the device, the device shall route the frame to
the appropriate child. If the destination is a child, and it is also and end device, delivery of the frame can fail
due to the macRxOnWhenIdle state of the child device. In the case when the child has macRxOnWhenIdle set
to FALSE, indirect transmission as described in [B1] may be used be used to deliver the frame. If the
destination is not a descendant, the device shall route the frame to its parent.

Trivially every other device in the network is a descendant of the ZigBee coordinator and no device in the
network is the descendant of any ZigBee end device. For a ZigBee router with address at depth , if
the following logical expression is true, then a destination device with address is a descendant:

132CCB Comment #119
133CCB Comment #129, 258, 122
134CCB Comment #129

An d
D

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 235

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
.

For a definition of , see sub-clause 2.7.1.4.

If it is determined that the destination is a descendant of the receiving device, the address of the next
hop device is given by:

for ZigBee end devices, where , and135

otherwise.

If a data frame is received by the NWK layer from the MAC sub-layer and the destination address is equal to
the broadcast address, the NWK layer shall first re-broadcast the frame and then send it to its next higher
layer for processing. If the data frame is received by the MAC and is not to be broadcast, the NWK layer
shall determine whether the destination address is equal to its own logical address. If so, the NWK layer
shall send the frame to its next higher layer for processing. Otherwise the device is an intermediate device.
In this case, the device shall follow the same procedure outlined above for the case of receiving a unicast
frame from the next higher layer.

135CCB Comment #228 specifies a modified formula here. The original was:

A < D < A + Cskip(d −1)

 Cskip(d)

N

N = D

D > A + Rm × Cskip(d)

A +1+ D − A +1
Cskip(d)

 × Cskip(d)

())(
)(
11 dCskip

dCskip
ADAN ×

 +−
++=
236 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 57 Basic routing algorithm

2.7.3.4 Route discovery

Route discovery is the procedure whereby network devices cooperate to find and establish routes through
the NWK and is always performed with regard to a particular source and destination device.

2.7.3.4.1 Initiation of route discovery

The route discovery procedure shall be initiated by the NWK layer on receipt of an NLDE-DATA.request
primitive from a higher layer with the DiscoverRoute parameter set to 0x02, or on receipt of an NLDE-
DATA.request primitive from a higher layer with the DiscoverRoute parameter set to 0x01for which there is
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 237

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
no routing table entry corresponding to the DstAddr parameter, or on receipt of a frame from the MAC sub-
layer for which the value of the destination address field in the NWK header is not that of the current device
or the broadcast address and in which either the discover route sub-field of the frame control field has a
value of 0x02 or the discover route sub-field of the frame control field has a value of 0x01 and there is no
routing table entry corresponding to the value of the destination address field of the NWK header. In either
case, if the device does not have routing capacity and the NIB attribute nwkUseTreeRouting has a value of
TRUE, the data frame in question shall be routed along the tree using hierarchical routing. If the device does
not have routing capacity and the NIB attribute nwkUseTreeRouting has a value of FALSE, then the frame
shall be discarded.136

If the device has no existing routing table entry for the destination it shall establish a routing table entry with
status equal to DISCOVERY_UNDERWAY. If the device has an existing routing table entry corresponding
to the destination address with status equal to ACTIVE, then that entry shall be used and the status field of
that entry shall remain ACTIVE. If it has an existing routing table entry with some other status value than
ACTIVE then that entry shall be used and the status of that entry shall be set to
DISCOVERY_UNDERWAY. The device shall also establish the corresponding route discovery table entry
if one does not already exist.137

Each device issuing a route request command frame shall maintain a counter used to generate route request
identifiers. When a new route request command frame is created the route request counter is incremented
and the value is stored in the device’s route discovery table in the Route request identifier field. Other fields
in the routing table and route discovery table are set as described in sub-clause 2.7.3.2. The route request
timer in the route discovery table shall be set to expire in nwkcRouteDiscoveryTime milliseconds when the
timer expires, the device shall delete the route request entry from the route discovery table. When this
happens, the routing table entry corresponding to the destination address shall also be deleted if its Status
field still has a value of DISCOVERY_UNDERWAY and there are no other entries with the same
destination field value in the route discovery table138.

The NWK layer may choose to buffer the received frame pending route discovery or else, if the NIB
attribute nwkUseTreeRouting has a value of TRUE, set139 the discover route sub-field of the frame control
field in the NWK header to 0 and forward the data frame along the tree.

Once the device creates the route discovery table and routing table entries, the route request command frame
shall be created with the payload depicted in Figure 41. The individual fields are populated as follows. The
command frame identifier field shall be set to indicate the command frame is a route request, see Figure 129.
The Route request identifier field shall be set to the value stored in the route discovery table entry. The
destination address field shall be set to the 16-bit network address of the device for which the route is to be
discovered. The path cost field shall be set to 0. Once created the route request command frame is ready for
broadcast and is passed to the MAC sub-layer using the MCPS-DATA.request primitive.

When broadcasting a route request command frame at the initiation of route discovery, the NWK layer shall
retry the broadcast nwkcInitialRREQRetries times after the initial broadcast, resulting in a maximum of
nwkcInitialRREQRetries + 1 transmission. The retries will be separated by a time interval of
nwkcRREQRetryInterval milliseconds.

2.7.3.4.2 Upon receipt of a route request command frame

Upon receipt of a route request command frame the device shall determine if it has routing capacity.

If the device does not have routing capacity, it shall check if the frame was received along a valid path. A
path is valid if the frame was received from one of the device’s child devices and the source device is a

136CCB Comment #122, 256
137CCB Comment #136, #260
138CCB Comment #260
139CCB Comment #122
238 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
descendant of that child device or if the frame was received from the device’s parent device and the source
device is not a descendant of the device. If the route request command frame was not received along a valid
path, it shall be discarded. Otherwise the device shall check if it is the intended destination. It shall also
check if the destination of the command frame is one of its end-device children by comparing the destination
address field of the route request command frame payload with the address of each of its end-device
children, if any. If either the device or one of its end-device children is the destination of the route request
command frame, it shall reply with a route reply command frame. When replying to a route request with a
route reply command frame, the device shall construct a frame with the frame type field set to 0x01. The
route reply’s source address shall be set to the 16-bit network address of the device creating the route reply
and the destination address shall be set to the calculated next hop address, considering the originator of the
route request as a destination. The link cost from the next hop device to the current device shall be computed
as described in sub-clause 2.7.3.1 and inserted into the path cost field of the route reply command frame.
The route reply command frame shall be unicast to the next hop device by issuing an MCPS-DATA.request
primitive. If the device is not the destination of the route request command frame, the device shall compute
the link cost from the previous device that transmitted the frame, as described in sub-clause 2.7.3.1. This
value shall be added to the path cost value stored in the route request command frame. The route request
command frame shall then be unicast towards the destination using the MCPS-DATA.request service
primitive. The next hop for this unicast transmission is determined in the same manner as if the frame were a
data frame addressed to the device identified by the destination address field in the payload.

If the device does have routing capacity (see Figure 58), it shall check if it is the destination of the command
frame by comparing the destination address field of the route request command frame payload with its own
address. It shall also check if the destination of the command frame is one of its end-device children by
comparing the destination address field of the route request command frame payload with the address of
each of its end-device children, if any. If either the device or one of its end-device children is the destination
of the route request command frame, the device shall determine if a route discovery table (see Table 137)
entry exists with the same route request identifier and source address field. If no such entry exits then one
shall be created. When creating the route discovery table entry, the fields are set to the corresponding values
in the route request command frame. The only exception is the forward cost field, which is determined by
using the previous sender of the command frame to compute the link cost as described in sub-clause 2.7.3.1
and adding it to the path cost contained the route request command frame. The result of the above
calculation is stored in the forward cost field of the newly created route discovery table entry. If the
nwkSymLink attribute is set to true, the device shall also create a routing table entry with the destination
address field set to the source address of the route request command frame and the next hop field set to the
address of the previous device that transmitted the command frame. The status field shall be set to ACTIVE.
The device shall then issue a route reply command frame to the source of the route request command frame.
In the case where the device already has a route discovery table entry for the source address and route
request identifier pair, the device shall determine if the path cost in the route request command frame is less
than the forward cost stored in the route discovery table entry. The comparison is made by first computing
the link cost from the previous device that sent this frame as described in sub-clause 2.7.3.1 and adding it to
the path cost value in the route request command frame. If this value is greater than the value in the route
discovery table entry then the frame shall be dropped and no further processing is required. Otherwise the
forward cost and sender address fields in the route discovery table are updated with the new cost and the
previous device address from the route request command frame. If the nwkSymLink attribute is set to true,
the device shall also create a routing table entry with the destination address field set to the source address of
the route request command frame and the next hop field set to the address of the previous device that
transmitted the command frame. The status field shall be set to ACTIVE. The device shall then respond with
a route reply command frame. In either of the above cases, if the device is responding on behalf of one of its
end-device children, the responder address in the route reply command frame payload shall be set equal to
the address of the end device child and not of the responding device.

When a device with routing capacity is not the destination of the received route request command frame, it
shall determine if a route discovery table entry (see Table 137) exists with the same route request identifier
and source address field. If no such entry exits then one shall be created. The route request timer shall be set
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 239

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
to expire in nwkcRouteDiscoveryTime milliseconds. If a routing table entry corresponding to the destination
exists and its status is not ACTIVE, the status shall be set to DISCOVERY_UNDERWAY.140 If no such
entry exists, it shall be created and its status set to DISCOVERY_UNDERWAY. If the nwkSymLink
attribute is set to true, the device shall also create a routing table entry with the destination address field set
to the source address of the route request command frame and the next hop field set to the address of the
previous device that transmitted the command frame. The status field shall be set to ACTIVE. When the
route request timer expires, the device deletes the route request entry from the route discovery table. When
this happens, the routing table entry corresponding to the destination address shall also be deleted if its status
field has a value of DISCOVERY_UNDERWAY and there are no other entries in the route discovery table
created as a result of a route discovery for that destination address.141 If an entry in the route discovery table
already exists then the path cost in the route request command frame shall be compared to the forward cost
value in the route discovery table entry. The comparison is made by computing the link cost from the
previous device, as described in sub-clause 2.7.3.1, and adding it to the path cost value in the route request
command frame. If this path cost is greater, the route request command frame is dropped and no further
processing is required. Otherwise the forward cost and sender address fields in the route discovery table are
updated with the new cost and the previous device address from the route request command frame.
Additionally, the path cost field in the route request command frame shall be updated with the cost
computed for comparison purposes. If the nwkSymLink attribute is set to true, the device shall also update
any routing table entry with the destination address field set to the source address of the route request
command frame and the next hop field set to the address of the previous device that transmitted the
command frame. The status field shall be set to ACTIVE. The device shall then rebroadcast the route request
command frame using the MCPS-DATA.request primitive.

When rebroadcasting a route request command frame, the NWK layer shall delay retransmission by a
random jitter amount calculated using the formula:

where is a random function on the interval . The units of this jitter amount are
milliseconds. Implementers may adjust the jitter amount so that route request command frames arriving with
large path cost are delayed more than frames arriving with lower path cost. The NWK layer shall retry the
broadcast nwkcRREQRetries times after the original relay resulting in a maximum of nwkcRREQRetries + 1
relays per relay attempt. Implementers may choose to discard route request command frames awaiting
retransmission in the case that a frame with the same source and route request identifier arrives with a lower
path cost than the one awaiting retransmission.

The device shall also set the status field of the routing table entry corresponding to the destination address
field in the payload to DISCOVERY_UNDERWAY. If no such entry exists, it shall be created.

When replying to a route request with a route reply command frame, a device that has a route discovery
table entry corresponding to the source address and route request identifier of the route request shall
construct a command frame with the frame type field set to 0x01. The source address field of the network
header shall be set to the 16-bit network address of the current device and the destination address field shall
be set to the the value of the sender address field from the corresponding route discovery table entry. The
device constructing the route reply shall populate the payload fields in the following manner. The NWK
command identifier shall be set to route reply. The route request identifier field shall be set to the same value
found in the route request identifier field of the route request command frame. The originator address field
shall be set to the source address in the network header of route request command frame. Using the sender
address field from the route discovery table entry corresponding to the source address in the network header
of route request command frame, the device shall compute the link cost as described in sub-clause 2.7.3.1.
This link cost shall be entered in the path cost field. The route reply command frame is then unicast to the

140CCB Comment #260
141Ibid

 2 × R[nwkcMinRREQJitter,nwkcMaxRREQJitter]

R[a,b] [a,b]
240 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
destination by using MCPS-DATA.request primitive and the sender address obtained from the route
discovery table as the next hop.

Figure 58 Receipt of route request

2.7.3.4.3 Upon receipt of route reply command frame

On receipt of a route reply command frame, a device performs the procedure outlined in Figure 59.

If the receiving device has no routing capacity and its NIB attribute nwkUseTreeRouting has a value of
TRUE, it shall forward the route reply using tree routing. If the receiving device has no routing capacity and
its NIB attribute nwkUseTreeRouting has a value of FALSE, it shall discard the command frame.142 Before
forwarding the route reply command frame the device shall update the path cost field in the payload by
computing the link cost from the next hop device to itself as described in sub-clause 2.7.3.1 and adding this
to the value in the route reply path cost field.

If the receiving device has routing capacity, it shall check whether it is the destination of the route reply
command frame by comparing the contents of the originator address field of the command frame payload
with its own address. If so, it shall search its route discovery table for an entry corresponding to the route
request identifier in the route reply command frame payload. If there is no such entry, the route reply
command frame shall be discarded and route reply processing shall be terminated. If a route discovery table

142CCB Comment #122

RREQ received Routing capacity?

Reply with RREP

Valid path?

Am I the

destination?
Unicast RREQ

No

Yes

Yes

No

Discard RREQ No

Am I the

destination?

Yes
Existing route

discovery table

entry?

Create table entries

Respond with RREP

No

Yes

Forward RREQ

No

Am I the

destination or is

one of my end-

devices?

RREQ has lower

path cost than

tables?

Yes

Update tables and

respond with RREP

Yes

Discard RREQ

No

RREQ has lower

path cost than

tables?

No

No

Yes

Update tables and

forward RREQ

Yes
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 241

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
entry exists, the device shall search its routing table for an entry corresponding to the responder address in
the route reply command frame. If there is no such routing table entry the route reply command frame shall
be discarded and, if a route discovery table entry corresponding to the route request identifier in the route
reply command frame exists, it shall also be removed, and route reply processing shall be terminated. If a
routing table entry and a route discovery table entry exist and if the status field of the routing table entry is
set to DISCOVERY_UNDERWAY, it shall be changed to active and the next hop field in the routing table
shall be set to the previous device that forwarded the route reply command frame. The residual cost field in
the route discovery table entry shall be set to the path cost field in the route reply payload.

If the status field was already set to ACTIVE, the device shall compare the path cost in the route reply
command frame to the residual cost recorded in the route discovery table entry, and update the residual cost
field and next hop field in the routing table entry if the cost in the route reply command frame is smaller. If
the path cost in the route reply is not smaller, the route reply shall be discarded and no further processing
shall take place.

If the device receiving the route reply is not the destination, the device shall find the route discovery table
entry corresponding to the originator address and route request identifier in the route reply command frame
payload. If no such route discovery table entry exists, the route reply command frame shall be discarded. If a
route discovery table entry exists, the path cost value in the route reply command frame and the residual cost
field in the route discovery table entry shall be compared. If the route discovery table entry value is less than
the route reply value, the route reply command frame shall be discarded. Otherwise, the device shall find the
routing table entry corresponding to the responder address in the route reply command frame. It is an error
here if the route discovery table entry exists and there is no corresponding routing table entry, and the route
reply command frame should be discarded. The routing table entry shall be updated by replacing the next
hop field with the address of the previous device that forwarded the route reply command frame. The route
discovery table entry shall also be updated by replacing the residual cost field with the value in the route
reply command frame.

After updating its own route entry, the device shall forward the route reply to the destination. Before
forwarding the route reply, the path cost value shall be updated. The sender shall find the next hop to the
route reply’s destination by searching its route discovery table for the entry matching the route request
identifier and the source address and extracting the sender address. It shall use this next hop address to
compute the link cost as described in sub-clause 2.7.3.1. This cost shall be added to the path cost field in the
route reply. The destination address in the command frame network header shall be set to the next hop
address and the frame shall be unicast to the next hop device using the MCPS-DATA.request primitive.The
DstAddr parameter of the MCPS-DATA.request primitive shall be set to the next-hop address from the route
discovery table.143

143CCB Comment #131
242 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 59 Receipt of route reply

2.7.3.5 Route maintenance

A device NWK layer shall maintain a failure counter for each neighbor to which it has an outgoing link, i.e.
to which it has been required to send data frames. If the value of the outgoing link failure counter ever
exceeds nwkcRepairThreshold then the device shall initiate route repair as described in the following
paragraphs. Implementers may choose a simple failure-counting scheme to generate this failure counter
value or they may use a more accurate time-windowed scheme. Note that it is important not to initiate repair
too frequently since repair operations may flood the network and cause other traffic disruptions. The
procedure for retiring links and ceasing to keep track of their failure counter is out of the scope of this
specification.

2.7.3.5.1 Route repair for mesh network topology

When a link or a device fails in mesh network topology, the upstream device shall initiate route repair. If the
upstream device is unable to initiate route repair due to a lack of routing capacity or some other limitation,
the device shall issue a route error command frame back to the source device with the error code indicating
the reason for the failure (see Table 130).

If the upstream device is able to initiate route repair, it shall do so by broadcasting a route request command
frame with the source address set to its own address and the destination address set to the destination address
of the frame that failed in transmission. The route request command frame shall have the route repair sub-
field in the command options field of the command frame payload set to 1 indicating route repair.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 243

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
While a device is performing route repair for a particular destination, a device shall not forward frames to
that destination. Any frames that it has pending for that destination at the time route repair is initiated and
any frames for that destination that arrive before the completion of route repair shall either be buffered until
the completion of route repair or discarded depending on the capabilities of the device.144

On receipt of a route request command frame a routing node shall perform the procedure outlined in sub-
clause 2.7.3.4.2. If the routing node is the destination of the route request command frame or the destination
is one of its end-device children, it shall reply with a route reply command frame. The route reply command
frame shall have the route repair sub-field in the command options field of the command frame payload set
to 1 indicating route repair.

If a route reply command frame does not arrive at the upstream device within nwkcRouteDiscoveryTime
milliseconds, the upstream device shall send a route error command frame to the source device. If the
upstream device does receive a route reply within the designated time, it will forward any data that it may
have buffered pending the repair to the destination.

If the source device receiving a route error command frame does not have routing capacity and its NIB
attribute nwkUseTreeRouting has a value of TRUE145, it shall construct a route request command frame as
described in sub-clause 2.7.3.4.1 and unicast the command frame towards its destination along the tree using
hierarchical routing. If the source device does have routing capacity, it shall initiate normal route discovery
as described in sub-clause 2.7.3.4.1.

If an end device that is also an RFD is unable to transmit messages to its parent, the end device shall initiate
the orphaning procedure, as described in [B1]. If the orphaning procedure is successful and the end device
re-establishes communications with its parent, the end device shall resume operation on the network as
before. If the orphaning procedure fails, the end device shall attempt to re-join the network through a new
parent. In this case the new parent shall issue the end device a new 16-bit network address. If the end device
is unable to locate a new parent because there is no other device in its neighborhood with the capacity to
accept an additional child device, the end device will not be able to re-join the network. In this case, user
intervention may be necessary to enable the end device to re-join.

2.7.3.5.2 Route repair for tree network topology

When a downstream device loses synchronization with its parent beacon, indicated by the MAC sub-layer
through the MLME-SYNC-LOSS.indication primitive, or is unable to transmit a message to its parent, the
device may either initiate the orphaning procedure to search for its parent or the association procedure to
find a new parent.[B1] If either the orphaning procedure fails or the device associates with a new upstream
device, the downstream device will receive a new 16-bit network address from its new parent and resume
operation on the network. This allows the network to continue operating in a true tree configuration.

Before a device attempts to re-join the network and receive a new 16-bit network address, the device shall
use the MAC sub-layer disassociation procedure to disassociate all of its children. If the device is unable to
reach one or more of its children, it shall consider the child(ren) disassociated from the network and remove
the 16-bit addresses of the children from its neighbor table. The device shall then re-join the network and
begin operation with its new address.

Similarly if a disassociated child has its own children, it shall disassociate them from the network before
attempting re-association. If the child is able to re-associate either through a new parent or through its
original parent, the child shall receive a new 16-bit network address and begin operation on the network
using the new address.

144CCB Comment #124
145CCB Comment #122
244 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Optionally, if the implementer chooses not to seek a new 16-bit network address, the network will be
partitioned by a link failure. The remaining portions of the partitioned network would then operate
separately.

If an upstream device is unable to transmit a message to one of its children it may drop the message and send
a route error command frame to the originating device to indicate that the message has not been delivered.

2.7.4 Scheduling beacon transmissions

Beacon scheduling is necessary in a multihop topology to prevent the beacon frames of one device from
colliding with either the beacon frames or data transmissions of its neighboring devices. Beacon scheduling
is necessary when implementing a tree topology but not a mesh topology, as beaconing is not permitted in
ZigBee mesh networks.

2.7.4.1 Scheduling method

The ZigBee coordinator shall determine the beacon order and superframe order for every device in the
network (see [B1] for more information on these attributes). Because one purpose of multihop beaconing
networks is to allow routing nodes the opportunity to sleep in order to conserve power, the beacon order
shall be set much larger than the superframe order. Setting the attributes in this manner makes it possible to
schedule the active portion of the superframes of every device in any neighborhood such that they are non-
overlapping in time. In other words, time is divided into approximately (macBeaconInterval/
macSuperframeDuration) non-overlapping time slots, and the active portion of the superframe of every
device in the network shall occupy one of these non-overlapping time slots. An example of the resulting
frame structure for a single beaconing device is shown in Figure 60.

Figure 60 Typical frame structure for a beaconing device

The beacon frame of a device shall be transmitted at the start of its non-overlapping time slot, and the
transmit time shall be measured relative to the beacon transmit time of the parent device. This time offset
shall be included in the beacon payload of every device in a multihop beaconing network (see sub-
clause 2.7.6 for a complete list of beacon payload parameters). Therefore a device receiving a beacon frame
shall know the beacon transmission time of both the neighboring device and the parent of the neighboring
device, since the transmission time of the parent may be calculated by subtracting the time offset from the
timestamp of the beacon frame. The receiving device shall store both the local timestamp of the beacon
frame and the offset included in the beacon payload in its neighbor table. The purpose of having a device
know when the parent of its neighbor is active is to maintain the integrity of the parent-child communication
link by alleviating the hidden node problem. In other words, a device will never transmit at the same time as
the parent of its neighbor.

Communication in a tree network shall be accomplished using the parent-child links to route along the tree.
Since every child tracks the beacon of its parent, transmissions from a parent to its child shall be completed
using the indirect transmission technique. Transmissions from a child to its parent shall be completed during
the CAP of the parent. Details for the communication procedures can be found in [B1].

Beacon Interval

Inactive Period

Superframe Duration

Beacon CAP
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 245

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
A new device wishing to join the network shall follow the procedure outlined in sub-clause 2.3.6. In the
process of joining the network, the new device shall build its neighbor table based on the information
collected during the MAC scan procedure. Using this information, the new device shall choose an
appropriate time for its beacon transmission and CAP (the active portion of its superframe structure) such
that the active portion of its superframe structure does not overlap with that of any neighbor or of the parent
of any neighbor. If there is no available non-overlapping time slot in the neighborhood, the device shall not
transmit beacons and shall operate on the network as an end device. If a non-overlapping time slot is
available, the time offset between the beacon frames of the parent and of the new device shall be chosen and
included in the beacon payload of the new device. Any algorithm for selecting the beacon transmission time
that avoids beacon transmission during the active portion of the superframes of its neighbors and their
parents may be employed, as interoperability will be ensured.

To counteract drift, the new device shall track the beacon of its parent and adjust its own beacon
transmission time such that the time offset between the two remains constant. Therefore the beacon frames
of every device in the network are essentially synchronized with those of the ZigBee coordinator. Figure 61
illustrates the relationship between the active superframe portions of a parent and its child.

Figure 61 Parent-child superframe positioning relationship

The density of devices that can be supported in the network is inversely proportional to the ratio of the
superframe order to the beacon order. The smaller the ratio, the longer the inactive period of each device and
the more devices that can transmit beacon frames in the same neighborhood. It is recommended that a tree
network utilize a superframe order of 0, which gives a superframe duration of 15.36 ms, and a beacon order
of between 6 and 10, which gives a beacon interval between 0.98304s and 15.72864s. Using these
superframe and beacon order values, a typical duty cycle for devices in the network will be between ~2%
and ~0.1%.

2.7.4.2 MAC enhancement

In order to employ the beacon scheduling algorithm just described, it is necessary to implement the
following enhancement to the IEEE Std 802.15.4-2003146 MAC sub-layer.

146CCB Comment #265

Beacon Tracking

Beacon
Tx Offset
246 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
A new parameter, StartTime, shall be added to the MLME-START.request primitive to specify the time to
begin transmitting beacons. The new format of the primitive is as follows:

The StartTime parameter is fully described in Table 138, and the description of all other parameters can be
found in [B1].

2.7.5 Broadcast communication

This sub-clause specifies how a broadcast transmission is accomplished within a ZigBee network. This
mechanism is used to broadcast all network layer data frames147. Any device within a network may initiate
a broadcast transmission intended for all other devices that are part of the same network. A broadcast
transmission is initiated by the local APS sub-layer entity through the use of the NLDE-DATA.request
primitive by setting the DstAddr parameter to 0xffff.148

To transmit a broadcast MSDU, the NWK layer issues an MCPS-DATA.request primitive to the MAC sub-
layer with the DstAddrMode parameter set to 0x02 (16-bit network address) and the DstAddr parameter set
to 0xffff, which is the broadcast network address. The PANId parameter shall be set to the PANId of the
ZigBee network. This specification does not support broadcasting across multiple networks. Broadcast
transmissions shall not use the MAC sub-layer acknowledgement; instead a passive acknowledgement
mechanism is used in the case of non-beacon-enabled ZigBee networks. Passive acknowledgement means
that every device keeps track if its neighboring devices have successfully relayed the broadcast

MLME-START.request (
PANID,
LogicalChannel,
BeaconOrder,
SuperframeOrder,
PANCoordinator,
BatteryLifeExtention,
CoordRealignment,
SecurityEnable,
StartTimea

)

aCCB Comment #265

Table 138 Start time for beacon transmissions
Name Type Valid range Description

StartTime Integer 0x000000-0xffffff

The time at which to begin transmitting
beacons. If the device issuing the primi-
tive is the PAN coordinator, this param-
eter is ignored and beacon
transmissions will begin immediately.
Otherwise, this parameter specifies the
time relative to the received beacon of
the device with which it is associated.

The parameter is specified in symbols
and is rounded to a backoff slot bound-
ary. The precision of this value is a min-
imum of 20 bits, with the lowest 4 bits
being the least significant.a

aCCB Comment #265

147CCB Comment #201
148CCB Comment #125
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 247

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
transmission. The MAC sub-layer acknowledgement is disabled by setting the acknowledged transmission
flag of the TxOptions parameter to FALSE. All other flags of the TxOptions parameter shall be set based on
the network configuration.

. Each device shall keep a record of any new broadcast transaction that is either initiated locally or received
from a neighboring device. This record is called the broadcast transaction record (BTR) and shall contain at
least the sequence number and the source address of the broadcast frame. The broadcast transaction records
are stored in the broadcast transaction table (BTT).149

When a device receives a broadcast frame from a neighboring device, it shall compare the Sequence
number150 and the source address of the broadcast frame with the records in its BTT. If the device has a
BTR of this particular broadcast frame in its BTT, it shall update the BTR to mark the neighboring device as
having relayed the broadcast frame. It shall then drop the frame. If no record is found, it shall create a new
BTR in its BTT and shall mark the neighboring device as having relayed the broadcast. The NWK layer
shall then indicate to the higher layer that a new broadcast frame has been received. If the radius151 field
value is greater than 0 it shall retransmit the frame. Otherwise it shall drop the frame. Before the
retransmission, it shall wait for a random time period called broadcast jitter. This time period shall be
bounded by the value of the nwkcMaxBroadcastJitter attribute.

If, on receipt of a broadcast frame, the NWK layer finds that the BTT is full and contains no expired entries,
then the frame should be ignored. In this situation the frame should not be retransmitted, nor should it be
passed up to the next higher layer.152

A device, operating in a non-beacon-enabled ZigBee network, shall retransmit a previous broadcast frame if
any of its neighboring devices have not relayed the broadcast frame within nwkPassiveAckTimeout seconds.
In this case a device shall retransmit a broadcast frame for at most nwkMaxBroadcastRetries times.

A device should change the status of a BTT entry after nwkNetworkBroadcastDeliveryTime seconds have
elapsed since its creation. The entry should change status to expired and thus the entry can be overwritten if
required when a new broadcast is received.153

When a ZigBee router that has the macRxOnWhenIdle MAC PIB attribute set to FALSE receives a
broadcast transmission, it shall use a different procedure for retransmission than the one outlined above. It
shall retransmit the frame without delay to each of its neighbors individually, using a MAC layer unicast, i.e.
with the DstAddr parameter of the MCPS-DATA.request primitive set to the address of the receiving device
and not to the broadcast address. Similarly, a router with the macRxOnWhenIdle MAC PIB attribute set to
TRUE, which has one or more neighbors with the macRxOnWhenIdle MAC PIB parameter set to FALSE,
shall retransmit the broadcast frame to each of these neighbors in turn as a MAC layer unicast in addition to
performing the more general broadcast procedure spelled out in the previous paragraphs. Indirect
transmission, as described in [B1], may be employed to ensure that these unicasts reach their destination.

Every ZigBee router shall have the ability to buffer at least 1 frame at the NWK layer in order to facilitate
retransmission of broadcasts.

Figure 62 shows a broadcast transaction between a device and two neighboring devices.

149CCB Comment #111
150Ibid
151Ibid
152CCB Comment #108, 110
153CCB Comment #110
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 248

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 62 Broadcast transaction message sequence chart

2.7.6 NWK information in the MAC beacons

This sub-clause specifies how the NWK layer uses the beacon payload of a MAC sub-layer beacon frame to
convey NWK layer-specific information to neighboring devices.

When the association permit subfield of the superframe specification field of the beacon frame of the device,
as defined in [B1], is set to 1 indicating that association is permitted, then the beacon payload shall contain
the information shown in Table 139. This enables the NWK layer to provide additional information to new
devices that are performing network discovery and allows these new devices to more efficiently select a
network and particular neighbor to join. Refer to sub-clause 2.7.1.3.1.1 for a detailed description of the
network discovery procedure. This information is not required to be in the beacon payload when the

Neighbor 1
NWK

Device
NWK

Neigbor 2
NWK

Broadcast Transmission

Add new BTR
Mark neighbor 1 as having

relayed the message

Random
broadcast

delay

Broadcast Transmission

Mark device as having
relayed the message

Add new BTR
Mark device as having
relayed the message

Random
broadcast

delay

Broadcast Transmission

Ignore
broadcast

Broadcast
retry timer

Mark neighbor 2 as having
relayed the message
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 249

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
association permit subfield of the superframe specification field of the beacon frame of the device is set to 0
indicating that association is not permitted.

The NWK layer of the ZigBee coordinator shall update the beacon payload immediately following network
formation. All other ZigBee devices shall update it immediately after the association is completed and
anytime the network configuration (any of the parameters specified in Table 106) changes.

Table 139 NWK layer information fieldsa

aCCB Comment #129

Name Type Valid range Description

Protocol ID Integer 0x00 – 0xff

This field identifies the network
layer protocols in use and, for pur-
poses of this specification shall
always be set to 0, indicating the
ZigBee protocols. The value 0xff
shall also be reserved for future
use by the ZigBee alliance.

Stack profile Integer 0x00 – 0x0f A ZigBee stack profile identifier.

nwkcProtocolVersion Integer 0x00 – 0x0f The version of the ZigBee proto-
col.

Router capacityb

bIbid

Boolean TRUE or FALSE

This value is set to TRUE if this
device is capable to accept join
requests from router-capable
devices and is set to FALSE oth-
erwise.

Device depth Integer 0x00 – nwkMaxDepthc

cCCB Comment #229

The tree depth of this device. A
value of 0x00 indicates that this
device is the ZigBee coordinator
for the network.

Endd device capacity

dCCB Comment #129

Boolean TRUE or FALSE

This value is set to TRUE if the
device is capable of accepting
join requests from end devices
seeking to join the network and
is set to FALSE otherwise.e

eIbid

TxOffset Integer 0x000000 – 0xffffff

This value indicates the difference
in time, measured in symbols,
between the beacon transmission
time of the device and the beacon
transmission time of its parent.
This offset may be subtracted
from the beacon transmission time
of the device to calculate the bea-
con transmission time of the par-
ent.

This parameter is only included
when implementing a multihop
beaconing network.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 250

Network Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The beacon payload is written into the MAC sub-layer PIB using the MLME-SET.request primitive. The
macBeaconPayloadLength attribute is set to the length of the beacon payload, and the byte sequence
representing the beacon payload is written into the macBeaconPayload attribute. The formatting of the byte
sequence representing the beacon payload is shown in Figure 63.

Figure 63 Format of the MAC sub-layer beacon payload

2.7.7 Persistent data

Devices operating in the field may be reset manually or programmatically by maintenance personnel, or may
be reset accidentally for any number of reasons, including localized or network-wide power failures, battery
replacement during the course of normal maintenance, impact and so on. At a minimum, the following
information must be preserved across resets in order to maintain an operating network:

— The device's PAN ID.

— The device's 16-bit network address.

— The 64-bit IEEE address and 16-bit network address of each associated child.

— The stack profile in use.

— The values of nwkNextAddress and nwkAvailableAddresses NIB attributes, if the alternative address-
ing is in use.

— The device's tree depth, if the distributed addressing scheme is in use.

The method by which these data are made to persist is beyond the scope of this specification.154

Bits: 0-7 8-11 12-15 16-17 18 19a-22

aCCB Comment #229

23 24-47

Protocol
ID

Stack
profile

nwkcProtocol-
Version Reservedb

bCCB Comment #129

 Router
capacityc

cIbid

Device
depth

Endd
device

capacity

dIbid

Tx Offset
(optional)

154CCB Comment #183
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 251

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
252 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Chapter 3 Security Services Specification

3.1 Document Organization

The remaining portions of this document specify in greater detail the various security services available
within the ZigBee stack. Basic definitions and references are given in clause 3.2. A general description of
the security services is given in sub-clause 3.2.1. In this clause, the overall security architecture is discussed;
basic security services provided by each layer of this architecture are introduced. Clauses 3.2.2, 3.2.3, and
3.2.4 give the ZigBee Alliance’s security specifications for the Medium Access Control (MAC) layer, the
Network (NWK) layer, and the Application Support Sub-layer (APS) layer, respectively. These clauses
introduce the security mechanisms, give the primitives, and define any frame formats used for security
purposes. Clause 3.6 describes security elements common to the MAC, NWK, and APS layers. Clause 3.7
provides a basic functional description of the available security features. Finally, annexes provide technical
details and test vectors needed to implement and test the cryptographic mechanisms and protocols used by
the MAC, NWK, and APS layers.

3.2 General Description

Security services provided for ZigBee include methods for key establishment, key transport, frame
protection, and device management. These services form the building blocks for implementing security
policies within a ZigBee device. Specifications for the security services and a functional description of how
these services shall be used are given in this document.

3.2.1 Security Architecture and Design

In this clause, the security architecture is described. Where applicable, this architecture complements and
makes use of the security services that are already present in the 802.15.4 security specification.

3.2.1.1 Security Assumptions

The level of security provided by the ZigBee security architecture depends on the safekeeping of the
symmetric keys, on the protection mechanisms employed, and on the proper implementation of the
cryptographic mechanisms and associated security policies involved. Trust in the security architecture
ultimately reduces to trust in the secure initialization and installation of keying material and to trust in the
secure processing and storage of keying material. In the case of indirect addressing, it is assumed that the
binding manager is trusted.

Implementations of security protocols, such as key establishment, are assumed to properly execute the
complete protocol and do not leave out any steps hereof. Random number generators are assumed to operate
as expected. Furthermore, it is assumed that secret keys do not become available outside the device in an
unsecured way. That is, a device will not intentionally or inadvertently transmit its keying material to other
devices, unless the keying material is protected, such as during key-transport. An exception to this
assumption occurs when a device that has not been preconfigured joins the network. In this case, a single
key may be sent unprotected, thus resulting in a brief moment of vulnerability.

The following caveat in these assumptions applies: due to the low-cost nature of ad hoc network devices,
one cannot generally assume the availability of tamper-resistant hardware. Hence, physical access to a
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 253

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
device may yield access to secret keying material and other privileged information and access to the security
software and hardware.

Due to cost constraints, ZigBee has to assume that different applications using the same radio are not
logically separated (e.g., by using a firewall). In addition, from the perspective of a given device, it is even
not possible (barring certification) to verify whether cryptographic separation between different applications
on another device, or even between different layers of the communication stack hereof, is indeed properly
implemented. Hence, one has to assume that separate applications using the same radio trust each other (i.e.,
there is no cryptographic task separation). In addition, lower layers (e.g., APS, NWK, or MAC) are fully
accessible by any of the applications. These assumptions lead to an open trust model for a device: different
layers of the communication stack and all applications running on a single device trust each other.

In summary: the provided security services cryptographically protect the interfaces between different
devices only; separation of the interfaces between different stack layers on the same device is arranged non-
cryptographically, via proper design of security service access points.

3.2.1.2 Security Design Choices

The open trust model (as described in sub-clause 3.2.1.1) on a device has far-reaching consequences. It
allows re-use of the same keying material among different layers on the same device and it allows end-to-
end security to be realized on a device-to-device basis rather than between pairs of particular layers (or even
pairs of applications) on two communicating devices.

Another consideration is whether one is concerned with the ability of malevolent network devices to use the
network to transport frames across the network without permission.

These observations lead to the following architectural design choices.

First, the principle that “the layer that originates a frame is responsible for initially securing it” is
established. For example, if a MAC layer disassociate frame needs protection, MAC layer security shall be
used. Likewise, if a NWK command frame needs protection, NWK layer security shall be used.

Second, if protection from theft of service is required (i.e., malevolent network devices), NWK layer
security shall be used for all frames except those communicated between a router and a newly joined device
(until the newly joined device received the Network key). Thus, only a device that has joined the network
and successfully received the Network key will be able to have its messages communicated more than one
hop across the network.

Third, due to the open trust model, security can be based on the reuse of keys by each layer. For example, the
active Network key shall be used to secure APS layer broadcast frames, NWK layer frames, or MAC layer
commands. Reuse of keys helps reduce storage costs.

Fourth, end-to-end security is enabled such as to make it possible that only source and destination devices
have access to their shared key. This limits the trust requirement to those devices whose information is at
stake. Additionally, this ensures that routing of messages between devices can be realized independent of
trust considerations (thus, facilitating considerable separation of concern).

Fifth, to simplify interoperability of devices, the security level used by all devices in a given network and by
all layers of a device shall be the same. In particular, the security level indicated in the PIB and NIB shall be
the same. If an application needs more security than is provided by a given network, it shall form its own
separate network with a higher security level.

There are several policy decisions which any real implementation must address correctly. Application
profiles should include these policies:

— Handling error conditions arising from securing and unsecuring packets. Some error conditions may
indicate loss of synchronization of security material, or may indicate ongoing attacks.
254 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Detecting and handling loss of counter synchronization and counter overflow.

— Detecting and handling loss of key synchronization.

— Expiration and periodic update of keys, if desired.

3.2.1.3 Security Keys

Security amongst a network of ZigBee devices is based on ‘link’ keys and a “network” key. Unicast
communication between APL peer entities is secured by means of a 128-bit link key shared by two devices,
while broadcast communications are secured by means of a 128-bit Network key shared amongst all devices
in the network. The intended recipient is always aware of the exact security arrangement (i.e., the recipient
knows whether a frame is protected with a link or a Network key).

A device shall acquire link keys either via key-transport, key-establishment, or pre-installation (e.g., factory
installation). A device shall acquire a Network key via key-transport or pre-installation (e.g., factory
installation). The key-establishment technique for acquiring a link key (see sub-clause 3.2.4.1) is based on a
'master' key. A device shall acquire a master key (for purposes of establishing corresponding link keys) via
key-transport or pre-installation (e.g., factory installation). Ultimately, security between devices depends on
the secure initialization and installation of these keys.

In a secured network there are a variety of security services available. Prudence dictates that one would like
to avoid re-use of keys across different security services, which may cause security leaks due to unwanted
interactions. As such, these different services use a key derived from a one-way function using the link key
(as specified in sub-clause 3.6.3). The use of uncorrelated keys ensures the logical separation of executions
of different security protocols. he key-load key is used to protect transported master keys; the key-transport
key is used to protect other transported keys.

The Network key may be used by the MAC, NWK, and APL layers of ZigBee. As such, the same Network
key and associated outgoing and incoming frame counters shall be available to all of these layers. The link
and master keys may be used only by the APS sub-layer. As such, the link and master keys shall be available
only to the APL layer.

3.2.1.4 ZigBee Security Architecture

ZigBee applications communicate using the IEEE 802.15.4 wireless standard [B1], which specifies two
layers, the Physical (PHY) and Medium Access Control (MAC) layers. ZigBee builds on these layers a
Network (NWK) layer and an Application (APL) layer. The PHY layer provides the basic communication
capabilities of the physical radio. The MAC layer provides services to enable reliable, single-hop
communication links between devices. The ZigBee NWK layer provides routing and multi-hop functions
needed for creating different network topologies (e.g., star, tree, and mesh structures). The APL layer
includes an Application Support (APS) sublayer, the ZigBee Device Object (ZDO), and applications. The
ZDO is responsible for overall device management. The APS layer provides a foundation for servicing the
ZDO and ZigBee applications.

The architecture includes security mechanisms at three layers of the protocol stack. The MAC, NWK, and
APS layers are responsible for the secure transport of their respective frames. Furthermore, the APS
sublayer provides services for the establishment, and maintenance of security relationships. The ZigBee
Device Object (ZDO) manages the security policies and the security configuration of a device. Figure 1
shows a complete view of the ZigBee protocol stack. The security mechanisms provided by the APS and
NWK layers are described in this version of the specification, as is the processing of secure MAC frames.

3.2.2 MAC Layer Security

When a frame originating at the MAC layer needs to be secured, ZigBee shall use MAC layer security as
specified by the 802.15.4 specification [B1] and augmented by clause 3.3. A security corrigendum
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 255

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
proposal [B3] is being developed to augment the MAC layer specification and include the security elements
needed by ZigBee. Specifically, at least one of ZigBee’s security needs is the ability to protect incoming and
outgoing frames using the security levels based on CCM* (see sub-clause 3.6.2.1, and Table 169 for a
description of ZigBee security levels). CCM* is a minor modification of CCM specified in Clause 7 and
Annex B of the 802.15.4 MAC layer specification [B1]. CCM* includes all of the features of CCM and
additionally offers encryption-only and integrity-only capabilities. These extra capabilities simplify security
by eliminating the need for CTR and CBC-MAC modes. Also, unlike other MAC layer security modes
which require a different key for every security level, the use of CCM* enables the use of a single key for all
CCM* security levels. With the use of CCM* throughout the ZigBee stack, the MAC, NWK, and APS
layers can reuse the same key.

The MAC layer is responsible for its own security processing, but the upper layers shall determine which
security level to use. For ZigBee, MAC layer frames requiring security processing shall be processed using
the security material from the macDefaultSecurityMaterial or the macACLEntryDescriptorSet attributes of
the MAC PIB. The upper layer (e.g., APL) shall set macDefaultSecurityMaterial to coincide with the active
Network key and counters from the NWK layer and shall set macACLEntryDescriptorSet to coincide with
any link keys from the APS layer that are shared with neighboring devices (e.g., a parent and child). The
security suite shall be CCM* and the upper layers shall set the security level to coincide with the
nwkSecurityLevel attribute in the NIB. For ZigBee, MAC layer link keys shall be preferred, but if not
available, the default key (i.e., macDefaultSecurityMaterial) shall be used. Figure 64 shows an example of
the security fields that may be included in an outgoing frame with security applied at the MAC level.

Figure 64 ZigBee frame with security at the MAC level

3.2.3 NWK Layer Security

When a frame originating at the NWK layer needs to be secured or when a frame originates at a higher layer
and the nwkSecureAllFrames attribute in the NIB is TRUE, ZigBee shall use the frame protection
mechanism specified in sub-clause 3.4.1 of this specification, unless the SecurityEnable parameter of the
NLDE-DATA.request primitive is FALSE, explicitly prohibiting security155. Like the MAC layer, the
NWK layer's frame protection mechanism shall make use of the Advanced Encryption Standard (AES) [B8]
and use CCM* as specified in Annex A. The security level applied to a NWK frame shall be given by the
nwkSecurityLevel attribute in the NIB. Upper layers manage NWK layer security by setting up active and
alternate Network keys and by determining which security level to use.

One responsibility of the NWK layer is to route messages over multi-hop links. As part of this responsibility,
the NWK layer will broadcast route request messages and process received route reply messages. Route
request messages are simultaneously broadcast to nearby devices and route reply messages originate from
nearby devices. If the appropriate link key is available, the NWK layer shall use the link key to secure
outgoing NWK frames. If the appropriate link key is not available, in order to secure messages against
outsiders the NWK layer shall use its active Network key to secure outgoing NWK frames and either its
active or an alternate Network key to secure incoming NWK frames. In this scenario, the frame format

155CCB Comment #148

Encrypted MAC Payload MIC Auxiliary
HDR

MAC
HDR

PHY
HDR SYNC

Application of security suite adds auxiliary security
information, and may add an integrity code

When integrity protection is employed, the entire MAC frame is protected
256 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
explicitly indicates the key used to protect the frame, thus intended recipients can deduce which key to use
for processing an incoming frame and also determine if the message is readable by all network devices,
rather than just by itself.

Figure 65 shows an example of the security fields that may be included in a NWK frame.

Figure 65 ZigBee frame with security on the NWK level

All of the above NWK frame is integrity-protected

Application of security suite adds auxiliary header

and also an integrity code

Encrypted NWK Payload MIC
Auxiliary

HDR

MAC

HDR

PHY

HDR
SYNC

NWK

HDR
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 257

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.2.4 APL Layer Security

When a frame originating at the APL layer needs to be secured, the APS sublayer shall handle security. The
APS layer's frame protection mechanism is specified in sub-clause 3.5.1 of this specification. The APS layer
allows frame security to be based on link keys or the Network key. Figure 66 shows an example of the
security fields that may be included in an APL frame. Another security responsibility of the APS layer is to
provide applications and the ZDO with key establishment, key transport, and device management services.

Figure 66 ZigBee frame with security on the APS level

3.2.4.1 Key Establishment

The APS sublayer's key establishment services provide the mechanism by which a ZigBee device may
derive a shared secret key, the so-called link key (see sub-clause 3.2.1.3) with another ZigBee device. Key
establishment involves two entities, an initiator device and a responder device, and is prefaced by a trust-
provisioning step. Trust information (e.g., a master key) provides a starting point for establishing a link key
and can be provisioned in-band or out-band. Once trust information is provisioned, a key-establishment
protocol involves three conceptual steps: the exchange of ephemeral data, the use of this ephemeral data to
derive the link key, and the confirmation that this link key was correctly computed.

In the Symmetric-Key Key Establishment (SKKE) protocol, an initiator device establishes a link key with a
responder device using a master key. This master key, for example, may be pre-installed during
manufacturing, may be installed by a trust center (e.g., from the initiator, the responder, or a third party
device acting as a trust center), or may be based on user-entered data (e.g., PIN, password, or key). The
secrecy and authenticity of the master key needs to be upheld in order to maintain a trust foundation.

3.2.4.2 Transport Key

The transport-key service provides secured and unsecured means to transport a key to another device or
other devices. The secured transport-key command provides a means to transport a master, link, Network
key from a key source (e.g., trust center) to other devices. The unsecured transport-key command provides a
means for loading a device with an initial key. This command does not cryptographically protect the key
being loaded. In this case, the security of the transported key can be realized by non-cryptographic means,
e.g., by communicating the command via an out-of-band channel.

3.2.4.3 Update Device

The update-device service provides a secure means for a device (e.g., a router) to inform a second device
(e.g., a trust center) that a third device has had a change of status that must be updated (e.g., the device
joined or left the network). This is the mechanism by which the trust center maintains an accurate list of
active network devices.

All of the above APS frame is integrity-protected

Encrypted APS Payload MIC
Auxiliary

HDR

MAC

HDR

Application of security suite adds auxiliary header

and also an integrity code

PHY

HDR
SYNC

NWK

HDR

APS

HDR
258 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.2.4.4 Remove Device

The remove device service provides a secure means by which a device (e.g., a trust center) may inform
another device (e.g., a router) that one of its children should be removed from the network. This may be
employed, for example, to remove a device from the network that has not satisfied the trust center’s security
requirements for network devices.

3.2.4.5 Request Key

The request-key service provides a secure means for a device to request the current Network key, or an end-
to-end application master key, from another device (e.g., its trust center).

3.2.4.6 Switch Key

The switch-key service provides a secure means for a device (e.g., a trust center) to inform another device
that it should switch to a different active Network key.

3.2.5 Trust Center Role

For security purposes, ZigBee defines the role of trust center. The trust center is the device trusted by
devices within a network to distribute keys for the purpose of network and end-to-end application
configuration management. All members of the network shall recognize exactly one trust center, and there
shall be exactly one trust center in each secure network.

In high-security, commercial applications (see sub-clause 3.7.2.1) a device can be preloaded with the trust
center address and initial master key (e.g., via an unspecified mechanism). Alternatively, if the application
can tolerate a moment of vulnerability, the master key can be sent via an in-band unsecured key transport. If
not preloaded, a device’s trust center defaults to the PAN coordinator or a device designated by the PAN
coordinator.

In low-security, residential applications (see sub-clause 3.7.2.2) a device securely communicates with its
trust center using the Network key, which can be preconfigured or sent via an in-band unsecured key
transport.

The functions performed by the trust center can be subdivided into three sub-roles: trust manager, network
manager, and configuration manager. A device trusts its trust manager to identify the device(s) that take on
the role of its network and configuration manager. A network manager is responsible for the network and
distributes and maintains the Network key to devices it manages. A configuration manager is responsible for
binding two applications and enabling end-to-end security between devices it manages (e.g., by distributing
master keys or link keys). To simplify trust management, these three sub-roles are contained within a single
device – the trust center.

For purposes of trust management, a device shall accept an initial master or Network key originating from
its trust center via unsecured key transport. For purposes of network management, a device shall accept an
initial Network key and updated Network keys only from its trust center (i.e., network manager). For
purpose of configuration, a device shall accept master keys or link keys for the purpose of establishing end-
to-end security between two devices only from its trust center (i.e., configuration manager). Aside from the
initial master key, additional link, master, and Network keys shall only be accepted if they originate from a
device’s trust center via secured key transport.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 259

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.3 MAC Layer Security

The MAC layer is responsible for the processing steps needed to securely transmit outgoing MAC frames
and securely receive incoming MAC frames. Upper layers control the security processing operations, by
setting up the appropriate keys and frame counters and establishing which security level to use.

3.3.1 Frame Security

The detailed steps involved in security processing of outgoing and incoming MAC frames are described in
sub-clause 3.3.1.1 and sub-clause 3.3.1.2, respectively.

3.3.1.1 Security Processing of Outgoing Frames

If the MAC layer has a frame, consisting of a header MacHeader and payload Payload, that needs security
protection it shall apply security as follows:

1. Obtain the security material (as specified in sub-clause 3.3.2), including the key, outgoing frame
counter FrameCount, key sequence count SeqCount, and security level identifier (as specified in
Table 169) from the MAC PIB using the following procedure. If the outgoing frame counter has as its
value the 4-octet representation of the integer 232-1 or any of this security material cannot be
determined, then security processing shall fail and no further security processing shall be done on this
frame.

a) First, an attempt shall be made to retrieve the security material and security level identifier associ-
ated with the destination address of the outgoing frame from the macACLEntryDescriptorSet
attribute in the MAC PIB.

b) If the first attempt fails, then security material shall be obtained by using the macDefaultSecurity-
Material attribute from the MAC PIB and the security level identifier shall be obtained from the
MacDefaultSecuritySuite attribute from the MAC PIB.

2. The Security Control Field SecField is the 1-octet field formatted as in sub-clause 3.6.1.1, with the
following settings:

a) The security level subfield shall be set to the security level obtained in Step 1 above;

b) The key identifier subfield shall be set to the 2-bit field '00';

c) The extended nonce subfield shall be set to the 1-bit field '0';

d) The reserved bits shall be set to the 2-bit field '00'.156

3. Execute the CCM* mode encryption and authentication operation, as specified in Annex A, with the
following instantiations:

a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 1;

c) The nonce N shall be the 13-octet string constructed using the local device’s 64-bit extended
address, SecField from Step 1157, and FrameCount from step 1 (see Figure 72 from [B1]);

d) If the security level requires encryption, the octet string a shall be the string MacHeader and the
octet string m shall be the string Payload. Otherwise, the octet string a shall be the string Mac-
Header || Payload and the octet string m shall be a string of length zero. Note that ZigBee interprets
[B1] to mean that frame counters are authenticated.158

156CCB Comment #195
157Ibid
158CCB Comment #180
260 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
4. If the CCM* mode invoked in step 3159 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame.

5. Let c be the output from step 4160 above. If the security level requires encryption, the secured outgoing
frame shall be MacHeader || FrameCount || SeqCount || c, otherwise the secured outgoing frame shall be
MacHeader || FrameCount || SeqCount || Payload || c.

6. If the secured outgoing frame size is greater than aMaxPHYPacketSize (from [B1]), security processing
shall fail and no further security processing shall be done on this frame.

7. The outgoing frame counter from step 1 shall be incremented by one and stored in the location from
which the security material was obtained in step 1 (i.e., either the macDefaultSecurityMaterial attribute
or the MacDefaultSecuritySuite attribute).

3.3.1.2 Security Processing of Incoming Frames

If the MAC layer receives a secured frame (consisting of a header MacHeader, frame count
ReceivedFrameCount, sequence count ReceivedSeqCount, and payload SecuredPayload) it shall perform
security processing as follows:

1. If ReceivedFrameCount has as value the 4-octet representation of the integer 232-1, security processing
shall fail and no further security processing shall be done on this frame.

2. Obtain the security material (as specified in sub-clause 3.3.2), including the key, optional external frame
counter FrameCount, optional key sequence count SeqCount, and security level identifier (as specified
in Table 169) from the MAC PIB using the following procedure. If the security material cannot be
obtained or if SeqCount exists and does not match ReceivedSeqCount, security processing shall fail and
no further security processing shall be done on this frame.

a) First, an attempt shall be made to retrieve the security material and security level identifier associ-
ated with the source address of the incoming frame from the macACLEntryDescriptorSet attribute
in the MAC PIB.

b) If the first attempt fails, then security material shall be obtained by using the macDefaultSecurity-
Material attribute from the MAC PIB and the security level identifier shall be obtained from the
MacDefaultSecuritySuite attribute from the MAC PIB.

3. If FrameCount exists and if ReceivedFrameCount is less than FrameCount, security processing shall
fail and no further security processing shall be done on this frame.

4. The Security Control Field SecField is the 1-octet field formatted as in Clause 7.1.1, Figure 18, with the
following settings:

a) The security level subfield shall be set to the security level from the MACPIB (as specified in Table
29);

b) The key identifier subfield shall be set to the 2-bit field '00';

c) The extended nonce subfield shall be set to the 1-bit field '0';

d) The reserved bits shall be set to the 2-bit field '00'.161

5. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3,
with the following instantiations:

a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 2;

159CCB Comment #195
160Ibid
161Ibid
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 261

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
c) The nonce N shall be the 13-octet string constructed using the 64-bit extended sender address,
SecField from Step 4162, and ReceivedFrameCount from step 1 (see Figure 72 from [B1]);The
nonce N shall be formatted according to the endianness convention used in this specification (the
octet containing the lowest numbered bits first to the octet containing the higher numbered bits).163

d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2
is an M-octet string. If this operation fails, security processing shall fail and no further security pro-
cessing shall be done on this frame;

e) If the security level requires encryption, the octet string a shall be the string MacHeader || Received-
FrameCount || ReceivedSeqCount and the octet string c shall be the string SecuredPayload. Other-
wise, the octet string a shall be the string MacHeader || ReceivedFrameCount || ReceivedSeqCount
|| Payload1 and the octet string c shall be the string Payload2.

6. Return the results of the CCM* operation:

a) If the CCM* mode invoked in step 5164 outputs ‘invalid’, security processing shall fail and no fur-
ther security processing shall be done on this frame;

b) Let m be the output of step 5165 above. If the security level requires encryption, set the octet string
UnsecuredMacFrame to the string a || m. Otherwise, set the octet string UnsecuredMacFrame to
the string a;

7. If the optional FrameCount (obtained in step 2) exists, set it to ReceivedFrameCount and update MAC
PIB. UnsecuredMacFrame now represents the unsecured received MAC layer frame.

3.3.2 Security-Related MAC PIB Attributes

The security-related MAC PIB attributes shall be those as defined in Table 72 of [B1]. The security material
used for CCM* mode shall the same as given for CCM mode in Figure 70 of [B1].

For the macDefaultSecurityMaterial attribute from the MAC PIB, the upper layer shall set the symmetric
key, outgoing frame counter, and optional external key sequence counter equal to the corresponding
elements of the network security material descriptor in the nwkSecurityMaterialSet of the NIB referenced by
the nwkActiveKeySeqNumber attribute of the NIB. The optional external frame counter shall not be used and
the optional external key sequence counter shall correspond to the sequence number of the Network key.

For the macACLEntryDescriptorSet attribute from the MAC PIB, the upper layer shall set the symmetric
key, and outgoing frame counter equal to the corresponding elements of the Network key-pair descriptor in
the apsDeviceKeyPairSet of the AIB. The optional external frame counter shall be set to the incoming frame
counter, The key sequence counter shall be set to 0x00, and the optional external key sequence counter shall
not be used.

3.4 NWK Layer Security

The NWK layer is responsible for the processing steps needed to securely transmit outgoing frames and
securely receive incoming frames. Upper layers control the security processing operations, by setting up the
appropriate keys and frame counters and establishing which security level to use. The formatting of all
frames and fields in this specification are depicted in the order in which they are transmitted by the NWK
layer, from left to right, where the leftmost bit is transmitted first in time. Bits within each field are
numbered from 0 (leftmost and least significant) to k-1 (rightmost and most significant), where the length of

162CCB Comment #195
163CCB Comment #98
164CCB Comment #195
165Ibid
262 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
the field is k bits. Fields that are longer than a single octet are sent to the next layer in the order from the
octet containing the lowest numbered bits to the octet containing the highest numbered bits.166

3.4.1 Frame Security

The detailed steps involved in security processing of outgoing and incoming NWK frames are described in
sub-clause 3.4.1.1 and sub-clause 3.4.1.2, respectively.

3.4.1.1 Security Processing of Outgoing Frames

If the NWK layer has a frame, consisting of a header NwkHeader and payload Payload, that needs security
protection and nwkSecurityLevel > 0, it shall apply security as follows:

1. Obtain the nwkActiveKeySeqNumber from the NIB and use it to retrieve the active Network key key,
outgoing frame counter OutgoingFrameCounter, and key sequence number KeySeqNumber from the
nwkSecurityMaterialSet attribute in the NIB. Obtain the security level from the nwkSecurityLevel
attribute from the NIB. If the outgoing frame counter has as its value the 4-octet representation of the
integer 232-1, or if the key cannot be obtained, security processing shall fail and no further security
processing shall be done on this frame.

2. Construct auxiliary header AuxiliaryHeader (see sub-clause 3.6.1):

a) The security control field shall be set as follows:

1) The security level sub-field shall be the security level obtained from step 1.
2) The key identifier sub-field shall be set to ‘01’ (i.e., the Network key).
3) The extended nonce sub-field shall be set to 1.

b) The source address field shall be set to the 64-bit extended address of the local device.

c) The frame counter field shall be set to the outgoing frame counter from step 1.

d) The key sequence number field shall be set to the sequence number from step 1.

3. Execute the CCM* mode encryption and authentication operation, as specified in Annex A, with the
following instantiations:

a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 1;

c) The nonce N shall be the 13-octet string constructed using the security control field from step 2a, the
frame counter field from step 2c, and the source address field from step 2b (see sub-clause 3.6.2.2);

d) If the security level requires encryption, the octet string a shall be the string NwkHeader || Auxiliar-
yHeader and the octet string m shall be the string Payload. Otherwise, the octet string a shall be the
string NwkHeader || AuxiliaryHeader || Payload and the octet string m shall be a string of length
zero.

4. If the CCM* mode invoked in step 3 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame.

5. Let c be the output from step 3 above. If the security level requires encryption, the secured outgoing
frame shall be NwkHeader || AuxiliaryHeader || c, otherwise the secured outgoing frame shall be
NwkHeader || AuxiliaryHeader || Payload || c.

6. If the secured outgoing frame size is greater than aMaxMACFrameSize (see [B1]), security processing
shall fail and no further security processing shall be done on this frame.

7. The outgoing frame counter from step 1 shall be incremented by one and stored in the
OutgoingFrameCounter element of the network security material descriptor referenced by the

166CCB Comment #98
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 263

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
nwkActiveKeySeqNumber in the NIB (i.e., the outgoing frame counter value associated with the key
used to protect the frame is updated).

8. Over-write the security level subfield of the security control field by the 3-bit all-zero string '000'.167

3.4.1.2 Security Processing of Incoming Frames

If the NWK layer receives a secured frame (consisting of a header NwkHeader, auxiliary header
AuxiliaryHeader, and payload SecuredPayload) as indicated by the security sub-field of the NWK header
frame control field it shall perform security processing as follows:

1. Determine the security level from the nwkSecurityLevel attribute from the NIB. Over-write the 3-bit
security level subfield of the security control field of the AuxillaryHeader with this value. Determine
the sequence number SequenceNumber, sender address SenderAddress, and received frame count
ReceivedFrameCount from the auxiliary header AuxiliaryHeader (see sub-clause 3.6.1). If
ReceivedFrameCounter has as value the 4-octet representation of the integer 232-1, security processing
shall fail and no further security processing shall be done on this frame.168

2. Obtain the appropriate security material (consisting of the key and other attributes) by matching
SequenceNumber to the sequence number of any key in the nwkSecurityMaterialSet attribute in the
NIB. If the security material cannot be obtained, security processing shall fail and no further security
processing shall be done on this frame. If the sequence number of the received frame belongs to a newer
entry in the nwkSecurityMaterialSet, and the source address of the packet is the trust center, then the
nwkActiveKeySeqNumber shall be set to received sequence number.169

3. If there is an incoming frame count FrameCount corresponding to SenderAddress from the security
material obtained in step 2 and if ReceivedFrameCount is less than FrameCount, security processing
shall fail and no further security processing shall be done on this frame.

4. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3,
with the following instantiations:

a) The parameter M shall obtained from Table 169 corresponding to the security level from step 1;

b) The bit string Key shall be the key obtained from step 2;

c) The nonce N shall be the 13-octet string constructed using the security control, the frame counter,
and the source address fields from AuxiliaryHeader (see sub-clause 3.6.2.2). Note that the security
level subfield of the security control field has been overwritten in step 1 and now contains the value
determined from the nwkSecurityLevel attribute from the NIB.170

d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2
is an M-octet string. If this operation fails, security processing shall fail and no further security pro-
cessing shall be done on this frame;

e) If the security level requires encryption, the octet string a shall be the string NwkHeader || Auxiliar-
yHeader and the octet string c shall be the string SecuredPayload. Otherwise, the octet string a
shall be the string NwkHeader || AuxiliaryHeader || Payload1 and the octet string c shall be the
string Payload2.

5. Return the results of the CCM* operation:

a) If the CCM* mode invoked in step 4 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame;

167CCB Comment #245
168Ibid
169CCB Comment #144
170CCB Comment #245
264 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
b) Let m be the output of step 4 above. If the security level requires encryption, set the octet string
UnsecuredNwkFrame to the string a || m. Otherwise, set the octet string UnsecuredNwkFrame to
the string a;

6. Set FrameCount to (ReceivedFrameCount + 1)171 and store both FrameCount and SenderAddress in
the NIB. UnsecuredNwkFrame now represents the unsecured received network frame and security
processing shall succeed. So as to never cause the storage of the frame count and address information to
exceed the available memory, the memory allocated for incoming frame counters needed for NWK
layer security shall be bounded by M*N, where M and N represent the cardinality of
nwkSecurityMaterialSet and nwkNeighborTable in the NIB, respectively.

3.4.2 Secured NPDU Frame

The NWK layer frame format from [B3] consists of a NWK header and NWK payload field. The NWK
header consists of frame control and routing fields. When security is applied to an NPDU frame, the security
bit in the NWK frame control field shall be set to 1 to indicate the presence of the auxiliary frame header.
The format for the auxiliary frame header is given in sub-clause 3.6.1. The format of a secured NWK layer
frame is shown in Figure 67. The auxiliary frame header is situated between the NWK header and payload
fields.

3.4.3 Security-Related NIB Attributes

The NWK PIB contains attributes that are required to manage security for the NWK layer. Each of these
attributes can be read and written using the NLME-GET.request and NLME-SET.request primitives,
respectively. The security-related attributes contained in the NWK PIB are presented in Table 140 through
Table 142.

171CCB Comment #160

Figure 67 Secured NWK layer frame format
Octets: Variable 14 Variable

Original NWK
Header

([B3], Clause 7.1)

Auxiliary
frame header

Encrypted
Payload Encrypted Message Integrity Code (MIC)

Secure frame payload = Output of CCM*

Full NWK header Secured NWK payload

Table 140 NIB security attributes
Attribute Identifier Type Range Description Default

nwkSecurityLevel 0xa0a Octet 0x00-07

The security level for outgo-
ing and incoming NWK
frames. The allowable secu-
rity level identifiers are pre-
sented in Table 169.

0x06

nwkSecurity-Mate-
rialSet 0xa1b

A set of 0, 1, or
2 network
security mate-
rial descrip-
tors. See
Table 141.

Variable

Set of network security
material descriptors capa-
ble of maintaining an active
and alternate Network key. -
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 265

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
nwkActiveKey-
SeqNumber 0xa2c Octet 0x00-

0xFF

The sequence number of
the active Network key in
nwkSecurityMaterialSet.

0x00

nwkAllFresh 0xa3d Boolean TRUE |
FALSE

Indicates whether incoming
NWK frames must be all
checked for freshness when
the memory for incoming
frame counts is exceeded.

TRUE

nwkSecureAll-
Framese 0xa5 Boolean TRUE |

FALSE

This indicates if security
shall be applied to incoming
and outgoing NWK frames.
If set to 0x01 security pro-
cessing shall be applied to
all incoming and outgoing
frames except data frames
destined for the current
device that have the security
sub-field of the frame control
field set to 0. If this attribute
has a value of 0x01 the
NWK layer shall not relay
frames that have the secu-
rity sub-field of the frame
control field set to 0. The
SecurityEnable parameter
of the NLDE-DATA.request
primitive shall override the
setting of this attribute.

TRUE

aCCB Comment #151
bIbid
cIbid
dIbid
eIbid

Table 141 Elements of the network security material descriptor
Name Type Range Description Default

KeySeqNumber Octet 0x00-0xFF

A sequence number assigned to a
Network key by the trust center and

used to distinguish Network keys
for purposes of key updates, and

incoming frame security operations.

00

OutgoingFrame-
Counter

Ordered set
of 4 octets

0x00000000-
0xFFFFFFFF

Outgoing frame counter used for
outgoing frames. 0x00000000

IncomingFrame-
CounterSet

Set of incom-
ing frame
counter

descriptor
values. See
Table 142.

Variable
Set of incoming frame counter val-

ues and corresponding device
addresses.

Null set

Key Ordered set
of 16 octets - The actual value of the key. -

Table 140 NIB security attributes
266 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5 APS Layer Security

The APS layer is responsible for the processing steps needed to securely transmit outgoing frames, securely
receive incoming frames, and securely establish and manage cryptographic keys. Upper layers control the
management of cryptographic keys by issuing primitives to the APS layer. Table 143 lists the primitives
available for key management and maintenance. Upper layers also determine which security level to use
when protecting outgoing frames. The formatting of all frames and fields in this specification are depicted in
the order in which they are transmitted by the NWK layer, from left to right, where the leftmost bit is
transmitted first in time. Bits within each field are numbered from 0 (leftmost and least significant) to k-1
(rightmost and most significant), where the length of the field is k bits. Fields that are longer than a single
octet are sent to the next layer in the order from the octet containing the lowest numbered bits to the octet
containing the highest numbered bits.172

Table 142 Elements of the incoming frame counter descriptor
Name Type Range Description Default

SenderAddress Device
address

Any valid 64-bit
address

Extended device address. Device specific

IncomingFrame-
Counter

Ordered set of
4 octets

0x00000000-
0xFFFFFFFF

Incoming frame counter
used for incoming frames. 0x00000000

Table 143 The APS layer security primitives
APSME

Security Primitives Request Confirm Indication Response Description

APSME-ESTABLISH-
KEY 3.5.2.1 3.5.2.2 3.5.2.3 3.5.2.4

Establish link key with
another ZigBee device
using the SKKE method.

APSME-TRANS-
PORT-KEY 3.5.3.1 - 3.5.3.2 -

Transport security mate-
rial from one device to
another.

APSME-
UPDATE-DEVICE 3.5.4.1 - 3.5.4.2 -

Notifies the trust center
when a new device joined
or an existing device left
the network.

APSME-
REMOVE-DEVICE 3.5.5.1 - 3.5.5.2 -

Used by the trust center to
notify a router that one of
the router’s child devices
should be removed from
the network.

APSME-REQUEST-
KEY 3.5.6.1 - 3.5.6.2 -

Used by a device to
request that the trust cen-
ter send an application
master key or current Net-
work key.

APSME-
SWITCH-KEY 3.5.7.1 - 3.5.7.2 -

Used by the trust center to
tell a device to switch to a
new Network key.

172CCB Comment #98
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 267

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.1 Frame Security

The detailed steps involved in security processing of outgoing and incoming APS frames are described in
sub-clause 3.5.1.1 and sub-clause 3.5.1.2, respectively.

3.5.1.1 Security Processing of Outgoing Frames

If the APS layer has a frame, consisting of a header ApsHeader and payload Payload, that needs security
protection and nwkSecurityLevel > 0, it shall apply security as follows:

1. Obtain the security material and key identifier KeyIdentifier using the following procedure. If security
material or key identifier cannot be determined, then security processing shall fail and no further
security processing shall be done on this frame.

a) If the frame is a result of a APSDE-DATA.request primitive:

i) If the useNwkKeyFlag parameter is TRUE, then security material shall be obtained by
using the nwkActiveKeySeqNumber from the NIB to retrieve the active Network key, out-
going frame counter, and sequence number from the nwkSecurityMaterialSet attribute in
the NIB. KeyIdentifier shall be set to ‘01’ (i.e., the Network key).

ii) Otherwise, the security material associated with the destination address of the outgoing
frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB. KeyIdentifier
shall be set to ‘00’ (i.e., a data key). Note, if the frame is being transmitted using indirect
addressing, the destination address shall be the address of the binding manager.

b) If the frame is a result of an APS command:

i) First, an attempt shall be made to retrieve the security material associated with the destina-
tion address of the outgoing frame from the apsDeviceKeyPairSet attribute in the AIB. For
all cases, except transport-key commands, KeyIdentifier shall be set to ‘00’(i.e., a data
key). For the case of transport-key commands, KeyIdentifier shall be set to ‘02’ (i.e., the
key-transport key) when transporting a Network key and shall be set to ‘03’ (i.e., the key-
load key) when transporting an application link key, application master key, or trust center
master key. See sub-clause 3.6.3 for a description of the key-transport and key-load keys.

ii) If the first attempt fails, then security material shall be obtained by using the nwkAc-
tiveKeySeqNumber from the NIB to retrieve the active Network key, outgoing frame
counter, and sequence number from the nwkSecurityMaterialSet attribute in the NIB. Key-
Identifier shall be set to ‘01’ (i.e., the Network key).

2. If the key identifier is equal to 01 (i.e. network key), the APS layer shall first verify that the NWK layer
is not also applying security. If the NWK layer is applying security, then the APS layer shall not apply
any security. The APS layer can determine that the NWK layer is applying security by verifying that the
value of the nwkSecureAllFrames attribute of the NIB has a value of TRUE and the nwkSecurityLevel
NIB attribute has a non-zero value.173

3. Extract the outgoing frame counter (and, if KeyIdentifier is 01, the key sequence number) from the
security material obtained from step 1. If the outgoing frame counter has as its value the 4-octet
representation of the integer 232-1, or if the key cannot be obtained, security processing shall fail and no
further security processing shall be done on this frame.

4. Obtain the security level from the nwkSecurityLevel attribute from the NIB. If the frame is a result of an
APS command, the security level shall be forced to 7 (ENC-MIC-128).

5. Construct auxiliary header AuxiliaryHeader (see sub-clause 3.6.1):

a) The security control field shall be set as follows:

i) The security level sub-field shall be the security level obtained from step 3.

173CCB Comment #145
268 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
ii) The key identifier sub-field shall be set to KeyIdentifier.
iii) The extended nonce sub-field shall be set to 0.

b) The frame counter field shall be set to the outgoing frame counter from step 2.

c) If KeyIdentifier is 1, the key sequence number field shall be present and set to the key sequence
number from step 2. Otherwise, the key sequence number field shall not be present.

6. Execute the CCM* mode encryption and authentication operation, as specified in Annex A.2, with the
following instantiations:

a) The parameter M shall obtained from Table 169 corresponding to the security level from step 3;

b) The bit string Key shall be the key obtained from step 1;

c) The nonce N shall be the 13-octet string constructed using the security control and frame counter
fields from step 4 and the 64-bit extended address of the local device (see sub-clause 3.6.2.2);

d) If the security level requires encryption, the octet string a shall be the string ApsHeader || Auxiliary-
Header and the octet string m shall be the string Payload. Otherwise, the octet string a shall be the
string ApsHeader || AuxiliaryHeader || Payload and the octet string m shall be a string of length
zero.

7. If the CCM* mode invoked in step 3 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame.

8. Let c be the output from step 3 above. If the security level requires encryption, the secured outgoing
frame shall be ApsHeader || AuxiliaryHeader || c, otherwise the secured outgoing frame shall be
ApsHeader || AuxiliaryHeader || Payload || c.

9. If the secured outgoing frame size will result in the MSDU being greater than aMaxMACFrameSize
octets174 (see [B1]), security processing shall fail and no further security processing shall be done on
this frame.

10. The outgoing frame counter from step 1 shall be incremented and stored in the appropriate location(s)
of the NIB, AIB, and MAC PIB corresponding to the key that was used to protect the outgoing frame.

11. Over-write the security level subfield of the security control field by the 3-bit all-zero string '000'.175

3.5.1.2 Security Processing of Incoming Frames

If the APS layer receives a secured frame (consisting of a header ApsHeader, auxiliary header
AuxiliaryHeader, and payload SecuredPayload) as indicated by the security sub-field of the APS header
frame control field it shall perform security processing as follows:

1. Determine the sequence number SequenceNumber, key identifier KeyIdentifier, and received frame
counter value ReceivedFrameCounter from the auxiliary header AuxiliaryHeader. If
ReceivedFrameCounter is the 4-octet representation of the integer 232-1, security processing shall fail
and no further security processing shall be done on this frame.176

2. Determine the source address SourceAddress from the address-map table in the AIB, using the source
address in the APS frame as the index. If the source address is incomplete or unavailable, security
processing shall fail and no further security processing shall be done on this frame. If the delivery-mode
sub-field of the frame control field of ApsHeader has a value of 1 (i.e., indirect addressing), the source
address shall be the address of the binding manager, as described in the APS specification [B7].

3. Obtain the appropriate security material in the following manner. If the security material cannot be
obtained, security processing shall fail and no further security processing shall be done on this frame.

174CCB Comment #366
175CCB Comment #245
176Ibid
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 269

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
a) If KeyIdentifier is ‘00’ (i.e., data key), the security material associated with the SourceAddress of the
incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB.

b) If KeyIdentifier is ‘01’ (i.e., Network key), the security material shall be obtained by matching
SequenceNumber to the sequence number to the sequence number of any key in the nwkSecurity-
MaterialSet attribute in the NIB. If the sequence number of the received frame belongs to a newer
entry in the nwkSecurityMaterialSet, then the nwkActiveKeySeqNumber may be set to the received
sequence number. If the security material associated with the SourceAddress of the incoming frame
can be obtained from the attribute in the AIB, then security processing shall fail and no further
security processing shall be done on this frame.177

c) If KeyIdentifier is ‘02’ (i.e., key-transport key), the security material associated with the SourceAd-
dress of the incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB
and the key for this operation shall be derived from the security material as specified in sub-clause
3.6.3 for the key-transport key.

d) If KeyIdentifier is ‘03’ (i.e., key-load key), the security material associated with the SourceAddress
of the incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB and the
key for this operation shall be derived from the security material as specified in sub-clause 3.6.3 for
the key-load key.

4. If there is an incoming frame count FrameCount corresponding to SourceAddress from the security
material obtained in step 3 and if ReceivedFrameCount is less than FrameCount, security processing
shall fail and no further security processing shall be done on this frame.

5. Determine the security level SecLevel as follows. If the frame type subfield of the frame control field of
ApsHeader indicates an APS data frame, then SecLevel shall be set to the nwkSecurityLevel attribute in
the NIB. Otherwise SecLevel shall be set to 7 (ENC-MIC-128). Overwrite the security level subfield of
the security control field in the AuxillaryHeader with the value of SecLevel.178

6. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3,
with the following instantiations:

a) The parameter M shall obtained from Table 169 corresponding to the security level from step 5;

b) The bit string Key shall be the key obtained from step 3;

c) The nonce N shall be the 13-octet string constructed using the security control and frame counter
fields from AuxiliaryHeader, and SourceAddress from step 2 (see sub-clause 3.6.2.2);

d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2
is an M-octet string. If this operation fails, security processing shall fail and no further security pro-
cessing shall be done on this frame;

e) If the security level requires encryption, the octet string a shall be the string ApsHeader || Auxiliary-
Header and the octet string c shall be the string SecuredPayload. Otherwise, the octet string a shall
be the string ApsHeader || AuxiliaryHeader || Payload1 and the octet string c shall be the string
Payload2.

7. Return the results of the CCM* operation:

a) If the CCM* mode invoked in step 4 outputs ‘invalid’, security processing shall fail and no further
security processing shall be done on this frame;

b) Let m be the output of step 4 above. If the security level requires encryption, set the octet string
UnsecuredApsFrame to the string a || m. Otherwise, set the octet string UnsecuredApsFrame to the
string a;

177CCB Comment #146
178CCB Comment #245
270 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

8. Set FrameCount to (ReceivedFrameCount + 1)179 and store both FrameCount and SourceAddress in
the appropriate security material as obtained in step 3. If storing this frame count and address
information will cause the memory allocation for this type of information to be exceeded and the
nwkAllFresh attribute in the NIB is TRUE, then security processing shall fail and no further security
processing shall be done on this frame; otherwise security processing shall succeed.

3.5.2 Key-Establishment Services

The APSME provides services that allow two devices to mutually establish a link key. Initial trust
information (e.g., a master key) must be installed in each device prior to running the key establishment
protocol (see sub-clause 3.5.3 for mechanisms to provision initial trust information).

3.5.2.1 APSME-ESTABLISH-KEY.request

The APSME-ESTABLISH-KEY.request primitive is used for initiating a key-establishment protocol. This
primitive can be used when there is a need to securely communicate with another device. One device will act
as an initiator device and another device will act as the responder. The initiator shall start the key-
establishment protocol by issuing the APSME-ESTABLISH-KEY.request with parameters indicating the
address of the responder device and which key-establishment protocol to use (i.e., SKKE direct or indirect).

3.5.2.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 144 specifies the parameters for the APSME-ESTABLISH-KEY.request primitive.

179CCB Comment #160

APSME-ESTABLISH-KEY.request {
ResponderAddress,
UseParent,
ResponderParentAddress,
KeyEstablishmentMethod
}

Table 144 APSME-ESTABLISH-KEY.request parameters
Parameter Name Type Valid Range Description

Responder-Address Device
Address

Any valid
64-bit

address

The extended 64-bit address of the responder
device.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 271

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.2.1.2 When generated

A higher layer on an initiator device shall generate this primitive when it requires a link key to be established
with a responder device. If the initiator device wishes to use the responder’s parent as a liaison (for NWK
security purposes), it shall set the UseParent parameter to TRUE and shall set the ResponderParentAddress
parameter to the 64-bit extended address of the responder’s parent.

3.5.2.1.3 Effect on receipt

The receipt of an APSME-ESTABLISH-KEY.request primitive, with the KeyEstablishmentMethod
parameter equal to SKKE, shall cause the APSME to execute the SKKE protocol, described in sub-clause
3.5.2.6. The local APSME shall act as the initiator of this protocol, the APSME indicated by the
ResponderAddress parameter shall act as the responder of this protocol, and the UseParent parameter will
control whether the messages are sent indirectly via the responder’s parent device given by the
ResponderParentAddress parameter.

3.5.2.2 APSME-ESTABLISH-KEY.confirm

This primitive is issued to the ZDO upon completion or failure of a key-establishment protocol.

3.5.2.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 145 specifies the parameters of the APSME-ESTABLISH-KEY.confirm primitive. Table 149 gives a
description of some codes that can be returned in the Status parameter of this primitive. In addition to these
codes, if when sending one of the protocol messages, an NLDE-DATA.confirm primitive with a Status

UseParent Boolean TRUE |
FALSE

This parameter indicates if the responder’s
parent shall be used to forward messages
between the initiator and responder devices:

TRUE: Use parent.

FALSE: Do not use parent.

Responder-ParentAd-
dress

Device
Address

Any valid
64-bit

address

If the UseParent is TRUE, then Responder-
ParentAddress parameter shall contain the
extended 64-bit address of the responder’s
parent device. Otherwise, this parameter is not
used and need not be set.

KeyEstablishment-
Method Integer 0x00 - 0x03

The requested key-establishment method shall
be one of the following:

0x00 = SKKE method.

0x01-0x03: reserved.

APSME-ESTABLISH-KEY.confirm {
Address,
Status
}

Table 144 APSME-ESTABLISH-KEY.request parameters
272 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
parameter set to a value other than SUCCESS is issued, the Status parameter of the APSME-ESTABLISH-
KEY.confirm primitive shall be set to that received from the NWK layer.

3.5.2.2.2 When generated

The APSME in both the responder and initiator devices shall issue this primitive to the ZDO upon
completion of a key-establishment protocol.

3.5.2.2.3 Effect on receipt

If key establishment is successful, the AIB of the initiator and responder shall be updated with the new link
key and the initiator shall be able to securely communicate with the responder. If the key establishment was
not successful, then the AIB shall not be changed.

3.5.2.3 APSME-ESTABLISH-KEY.indication

The APSME in the responder shall issue this primitive to its ZDO when it receives an initial key-
establishment message (e.g., an SKKE-1 frame) from an initiator.

3.5.2.3.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 146 specifies the parameters of the APSME-ESTABLISH-KEY.indication primitive.

Table 145 APSME-ESTABLISH-KEY.confirm parameters
Name Type Valid Range Description

Address Device
Address Any valid 64-bit address

The extended 64-bit address of the device
with which the key-establishment protocol
was executed.

Status Enumeration

Value given by Table 149 or
any status value returned
from the NLDE-DATA.con-

firm primitive.

This parameter indicates the final status of
the key-establishment protocol.

APSME-ESTABLISH-KEY.indication {
InitiatorAddress,
KeyEstablishmentMethod
}

Table 146 APSME-ESTABLISH-KEY.indication parameters
Name Type Valid Range Description

InitiatorAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the initiator
device.

KeyEstablishmentMethod Integer 0x00 - 0x03

The requested key-establishment method
shall be one of the following:

0x00 = SKKE method.

0x01-0x03: reserved.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 273

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.2.3.2 When generated

The APSME in the responder device shall issue this primitive to the ZDO when a request to start a key-
establishment protocol (e.g., an SKKE-1 frame) is received from an initiator and a master key associated
with the initiator device is present in the AIB.

3.5.2.3.3 Effect on receipt

Upon receiving the APSME-ESTABLISH-KEY.indication primitive, the ZDO may use the
KeyEstablishmentMethod and InitiatorAddress parameters to determine whether to establish a key with the
initiator. The ZDO shall respond using the APSME-ESTABLISH-KEY.response primitive.

3.5.2.4 APSME-ESTABLISH-KEY.response

The ZDO of the responder device shall use the APSME-ESTABLISH-KEY.response primitive to respond to
an APSME-ESTABLISH-KEY.indication primitive. The ZDO determines whether to continue with the key
establishment or halt it. This decision is indicated in the Accept parameter of the APSME-ESTABLISH-
KEY.response primitive.

3.5.2.4.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 147 specifies the parameters of the APSME-ESTABLISH-KEY.response primitive

3.5.2.4.2 When generated

The APSME-ESTABLISH-KEY.response primitive shall be generated by the ZDO and provided to the
APSME following a request from an initiator device to start a key-establishment protocol (i.e., after receipt
of an APSME-ESTABLISH-KEY.indication). This primitive provides the responder's ZDO with an
opportunity to determine whether to accept or reject a request to establish a key with a given initiator.

3.5.2.4.3 Effect on receipt

If the Accept parameter is TRUE, then the APSME of the responder will attempt to execute the key
establishment protocol indicated by the KeyEstablishmentMethod parameter. If KeyEstablishmentMethod is
equal to SKKE, the APSME shall execute the SKKE protocol, described in sub-clause 3.5.2.6. The local

APSME-ESTABLISH-KEY.response {
InitiatorAddress,
Accept
}

Table 147 APSME-ESTABLISH-KEY.response parameters .
Name Type Valid Range Description

InitiatorAddress Device
Address

Any valid
64-bit address

The extended 64-bit address of the device that
initiated key establishment.

Accept Boolean TRUE |
FALSE

This parameter indicates the response to an ini-
tiator's request to execute a key-establishment
protocol. The response shall be either:

TRUE = Accept.

FALSE = Reject.
274 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
APSME shall act as the responder of this protocol and the APSME indicated by the InitiatorAddress
parameter shall act as the initiator of this protocol.

If the Accept parameter is FALSE, the local APSME shall halt and erase all intermediate data pertaining to
the pending key-establishment protocol.

3.5.2.5 Data Service Message Sequence Chart

Figure 68 illustrates the sequence of primitives necessary for a successful key establishment between two
devices.

Figure 68 Sequence chart for successful APSME-ESTABLISH-KEY primitives

3.5.2.6 The SKKE Protocol

The APSME on the initiator and responder execute the symmetric-key key-agreement scheme instantiated in
B.2.1 and specified in B.7. The shared key, as specified in B.7 prerequisite step 2, shall be the master key
shared between the initiator and responder devices as obtained from the appropriate master key element in
the DeviceKeyPairSet attribute in the AIB. The messages sent during the scheme specified in B.7 shall be
assigned to the frame names given in Table 148. The formats for these SKKE frames are given in sub-clause
3.5.9.1. The initiator device is responsible for sending the SKKE-1 and SKKE-3 frames and the responder
device is responsible for sending the SKKE-2 and SKKE-4 frames. Additionally, if the UseParent parameter
to the APSME-ESTABLISH-KEY.request primitive is TRUE, the responder device’s parent (as indicated
by the ResponderParentAddress parameter to the APSME-ESTABLISH-KEY.request primitive) shall act as
a liaison and forward messages between the initiator and responder devices.

During the key-establishment scheme, if the responder or initiator device detects any error condition listed
in Table 149, the scheme shall be aborted and the local APSME shall issue the APSME-ESTABLISH-
KEY.confirm primitive with the Status parameter set as indicated in Table 149. If no error conditions occur
(i.e., the key-agreement scheme outputs 'valid'), then the initiator and responder shall consider the derived
key (i.e., KeyData) as their newly shared link key. Both the initiator and responder shall update or add this
link key to their AIB, set the corresponding incoming and outgoing frame counts to zero, and issue the
APSME-ESTABLISH-KEY.confirm primitive with the Status parameter set to SUCCESS.

Table 148 Mapping of frame names to symmetric-key key agreement scheme messages
Frame
Name Description Reference

SKKE-1 Sent by initiator during action step 1. (B.7.1) 3.5.2.6.2

5. APSME-ESTABLISH-KEY.confirm

2. APSME-ESTABLISH-KEY.indication

3. APSME-ESTABLISH-KEY.response

Initiator

Device
Responder

Device

ZDO APSME APSME

1. APSME-ESTABLISH-KEY.request

4. APSME-ESTABLISH-KEY.confirm

ZDO

SKKE

Protocol
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 275

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.2.6.1 Generating and sending the initial SKKE-1 frame

The SKKE protocol begins with the initiator device sending an SKKE-1 frame. The SKKE-1 command
frame shall be constructed as specified in sub-clause 3.5.9.1.

If the UseParent parameter to the APSME-ESTABLISH-KEY.request primitive is FALSE, the initiator
device shall begin the protocol by sending this SKKE-1 frame directly to the responder device (as indicated
by the ResponderAddress parameter to the APSME-ESTABLISH-KEY.request primitive). Otherwise, the
initiator device shall begin the protocol by sending this SKKE-1 frame to the responder device’s parent (as
indicated by the ResponderParentAddress parameter to the APSME-ESTABLISH-KEY.request primitive).
The SKKE-1 frame shall be sent using the NLDE-DATA.request primitive with NWK layer security set to
the default NWK layer security level.

3.5.2.6.2 On receipt of the SKKE-1 frame

If the responder address field of the SKKE-1 frame does not equal the local device address, the APSME
shall perform the following steps:

SKKE-2 Sent by responder during action step 2. (B.7.2) 3.5.2.6.3

SKKE-3 Sent by initiator during action step 11. (B.7.1) 3.5.2.6.4

SKKE-4 Sent by responder during action step 8. (B.7.2) 3.5.2.6.5

Table 149 Mapping of symmetric-key key agreement error conditions to status codes
Status Description Status Code Value

No errors occur SUCCESS 0x00

An invalid parameter was input to one of the key establish-
ment primitives. INVALID_PARAMETER 0x01

No master key is available NO_MASTER_KEY 0x02

Challenge is invalid:
Initiator during action step 4. (B.7.1)
Responder during action step 1. (B.7.2)

INVALID_CHALLENGE 0x03

SKG outputs invalid:
Initiator during action step 5. (B.7.1)
Responder during action step 3. (B.7.2)

INVALID_SKG 0x04

MAC transformation outputs invalid:
Initiator during action step 11. (B.7.1)
Responder during action step 7. (B.7.2)

INVALID_MAC 0x05

Tag checking transformation outputs invalid:
Initiator during action step 9. (B.7.1)
Responder during action step 10. (B.7.2)

INVALID_KEY 0x06

Either the initiator or responder waits for an expected incom-
ing message for time greater than the apsSecurityTimeOut-
Period attribute of the AIB.

TIMEOUT 0x07

Either the initiator or responder receives an SKKE frame out
of order. BAD_FRAME 0x08

Table 148 Mapping of frame names to symmetric-key key agreement scheme messages
276 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1. If the device given by the responder address field is not a child of the local device, the SKKE-1 frame
shall be discarded.

2. Otherwise, the APSME of the local device shall send the SKKE-1 frame to the responder device using
the NLDE-DATA.request primitive, with the DestAddr parameter set to the 16-bit address
corresponding to the 64-bit address in the responder address field of the SKKE-1 frame, the
DiscoverRoute parameter set to 0x01180, and the SecurityEnable parameter set to FALSE.

3. Otherwise, the APSME shall perform the following steps:

4. If the device does not have a master key corresponding to the initiator address field, the SKKE-1
frame shall be discarded and the APSME-ESTABLISH-KEY.confirm primitive shall be issued with the
Status parameter set to NO_MASTER_KEY (see Table 149). The APSME should halt processing for
this SKKE protocol.

5. Otherwise, the APSME shall issue an APSME-ESTABLISH-KEY.indication primitive with the
InitiatorAddress parameter set to the initiator address field of the SKKE-1 frame and the
KeyEstablishmentMethod parameter set to 0 (i.e., the SKKE protocol).

6. After issuing the APSME-ESTABLISH-KEY.indication primitive, and upon receipt of the
corresponding APSME-ESTABLISH-KEY.response primitive, the APSME shall evaluate the
InitiatorAddress and Accept parameters of the received APSME-ESTABLISH-KEY.response
primitive. If the InitiatorAddress parameter is set to the initiator address of the SKKE-1 frame and the
Accept parameter set to FALSE, the APSME shall halt the SKKE protocol and discard the SKKE-1
frame.

7. Otherwise, it shall construct an SKKE-2 frame as specified in sub-clause 3.5.9.1. If the source of the
SKKE-1 frame indicates the same device as the initiator address field of the SKKE-1 frame, the device
shall send this SKKE-2 frame directly to the initiator device using the NLDE-DATA.request primitive,
with the DestAddr parameter set to the source of the SKKE-1 frame, the DiscoverRoute parameter set to
0x01181, and the SecurityEnable parameter set to TRUE. Otherwise, the device shall send the SKKE-2
frame to its parent using the NLDE-DATA.request primitive, with the DiscoverRoute parameter set to
182, and the SecurityEnable parameter set to FALSE.

3.5.2.6.3 On receipt of the SKKE-2 frame

If the initiator address field of the SKKE-2 frame does not equal the local device address, the APSME shall
perform the following steps:

1. If the device given by the responder address field is not a child of the local device, the SKKE-2 frame
shall be discarded.

2. Otherwise, the device shall send the SKKE-2 to the initiator device using the NLDE-DATA.request
primitive with NWK layer set to the default level.

Otherwise, the device shall construct an SKKE-3 frame as specified in sub-clause 3.5.9.1. If the source of
the SKKE-2 frame is the same as the responder address field of the SKKE-2 frame, the device shall send this
SKKE-3 frame directly to the responder device. Otherwise, the device shall send the SKKE-3 frame to the
responder’s parent. The SKKE-3 frame shall be sent using the NLDE-DATA.request primitive with NWK
layer security set to the default NWK layer security level.

180CCB Comment #256
181Ibid
182Ibid
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 277

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.2.6.4 On receipt of the SKKE-3 frame

If the responder address field of the SKKE-3 frame does not equal the local device address, the APSME
shall perform the following steps:

1. If the device given by the responder address field is not a child of the local device, the SKKE-3 frame
shall be discarded.

2. Otherwise, the device shall send the SKKE-3 to the responder device using the NLDE-DATA.request
primitive with NWK layer security disabled.

Otherwise, the device shall process the SKKE-3 data field and if the protocol was not a success it shall issue
an APSME-ESTABLISH-KEY.confirm primitive with the Address parameter set to the initiator’s address
and the Status parameter set appropriately.

If, from the device’s perspective, the protocol was a success, the device shall construct an SKKE-4 frame as
specified in sub-clause 3.5.9.1. If the source of the SKKE-3 frame is the same as the initiator address field of
the SKKE-3 frame, the device shall send this SKKE-4 frame directly to the initiator device using the NLDE-
DATA.request primitive with NWK layer security set to the default level. Otherwise, the device shall send
the SKKE-4 frame to its parent using the NLDE-DATA.request primitive with NWK layer security
disabled. Finally, the device shall issue an APSME-ESTABLISH-KEY.confirm primitive with the Address
parameter set the initiator’s address and the Status parameter set to success.

3.5.2.6.5 On receipt of the SKKE-4 frame

If the initiator address field of the SKKE-4 frame does not equal the local device address, the APSME shall
perform the following steps:

1. If the device given by the responder address field is not a child of the local device, the SKKE-4 frame
shall be discarded.

2. Otherwise, the APSME of the local device shall send the SKKE-4 to the initiator device using the
NLDE-DATA.request primitive with NWK layer set to the default level.

Otherwise, the APSME shall process the SKKE-4 frame and issue an APSME-ESTABLISH-KEY.confirm
primitive with the Address parameter set the responder’s address and the Status parameter set appropriately.

3.5.3 Transport-Key Services

The APSME provides services that allow an initiator to transport keying material to a responder. The
different types of keying material that can be transported are shown in Table 151.

3.5.3.1 APSME-TRANSPORT-KEY.request

The APSME-TRANSPORT-KEY.request primitive is used for transporting a key to another device.

3.5.3.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

APSME-TRANSPORT-KEY.request {
DestAddress,
KeyType,
TransportKeyData
}

278 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Table 150 specifies the parameters for the APSME-TRANSPORT-KEY.request primitive.

Table 150 APSME-TRANSPORT-KEY.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
address

Any valid
64-bit address

The extended 64-bit address of the destination
device.

KeyType Integer 0x00 – 0x03 Identifies the type of key material that should
be transported. See Table 151.

TransportKeyData Variable Variable

The key being transported along with identifi-
cation and usage parameters. The type of this
parameter depends on the KeyType parameter
as follows:

KeyType = 0x00 see Table 152

KeyType = 0x01 see Table 153

KeyType = 0x02 see Table 154

KeyType = 0x03 see Table 154

Table 151 KeyType parameter of the transport-key primitive
Enumeration Value Description

Trust-center master key 0x00 Indicates the key is a master key which is used to set up link keys
between the trust center and another device.

Network key 0x01 Indicates the key is a Network key.

Application master key 0x02 Indicates the key is a master key which is used to set up link keys
between two devices.

Application link key 0x03 Indicates the key is a link key which is used as a basis of security
between two devices.

Table 152 TransportKeyData parameter for a trust-center master key
Parameter Name Type Valid Range Description

ParentAddress Device
address

Any valid
64-bit address

The extended 64-bit address of the parent of the
destination device given by the DestAddress
parameter.

TrustCenter-Master-
Key

Set of 16
octets Variable The trust center master key.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 279

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.3.1.2 When generated

The ZDO on an initiator device shall generate this primitive when it requires a key to be transported to a
responder device.

3.5.3.1.3 Effect on receipt

The receipt of an APSME-TRANSPORT-KEY.request primitive shall cause the APSME to create a
transport-key command packet (see sub-clause 3.5.9.2)

If the KeyType parameter is 0x00 (i.e., trust center master key), the key descriptor field of the transport-key
command shall be set as follows. The key sub-field shall be set to the Key sub-parameter of the
TransportKeyData parameter, the destination address sub-field shall be set to the DestinationAddress
parameter, and the source address sub-field shall be set to the local device address. This command frame
shall be security protected as specified in sub-clause 3.5.1.1 and then, if security processing succeeds, sent to

Table 153 TransportKeyData parameter for a Network key
Parameter Name Type Valid Range Description

KeySeqNumber Octet 0x00-0xFF

A sequence number assigned to a Network key by
the trust center and used to distinguish Network
keys for purposes of key updates, and incoming
frame security operations.

NetworkKey Set of 16
octets Variable The Network key.

UseParent Boolean TRUE | FALSE

This parameter indicates if the destination device’s
parent shall be used to forward the key to the des-
tination device:

TRUE: Use parent

FALSE: Do not use parent

ParentAddress Device
address

Any valid 64-bit
address

If the UseParent is TRUE, then ParentAddress
parameter shall contain the extended 64-bit
address of the destination device’s parent device.
Otherwise, this parameter is not used and need not
be set.

Table 154 TransportKeyData parameter for an application master or link key
Parameter Name Type Valid Range Description

PartnerAddress Device
address

Any valid 64-bit
address

The extended 64-bit address of the device that was
also sent this master key.

Initiator Boolean TRUE | FALSE

This parameter indicates if the destination device of
this master key requested it:

TRUE: If the destination requested the key.

FALSE: otherwise.

Key Set of 16
octets Variable The master or link key (as indicated by the Key-

Type parameter).
280 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
the device specified by the ParentAddress sub-parameter of the TransportKeyData parameter by issuing a
NLDE-DATA.request primitive.

If the KeyType parameter is 0x01 (i.e., Network key), the key descriptor field of the transport-key command
shall be set as follows. The key sub-field shall be set to the Key sub-parameter of the TransportKeyData
parameter, the sequence number sub-field shall be set to the KeySeqNumber sub-parameter of the
TransportKeyData parameter, the destination address sub-field shall be set to the DestinationAddress
parameter, and the source address sub-field shall be set to the local device address. This command frame
shall be security protected as specified in sub-clause 3.5.1.1 and then, if security processing succeeds, sent to
the device specified by the ParentAddress sub-parameter of the TransportKeyData parameter (if the
UseParent sub-parameter of the TransportKeyData parameter is TRUE183) or the DestinationAddress
parameter (if the UseParent sub-parameter of the TransportKeyData parameter is FALSE184) by issuing a
NLDE-DATA.request primitive.

If the KeyType parameter is 0x02 or 0x03 (i.e., an application master or link key), the key descriptor field of
the transport-key command shall be set as follows. The key sub-field shall be set to the Key sub-parameter of
the TransportKeyData parameter, the partner address sub-field shall be set to the PartnerAddress sub-
parameter of the TransportKeyData parameter, and the initiator sub-field shall be set 1 (if the Initiator sub-
parameter of the TransportKeyData parameter is TRUE) or 0 (if the Initiator sub-parameter of the
TransportKeyData parameter is FALSE). This command frame shall be security protected as specified in
sub-clause 3.5.1.1 and then, if security processing succeeds, sent to the device specified by the
DestinationAddress parameter by issuing a NLDE-DATA.request primitive.

3.5.3.2 APSME-TRANSPORT-KEY.indication

The APSME-TRANSPORT-KEY.indication primitive is used to inform the ZDO of the receipt of keying
material.

3.5.3.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 155 specifies the parameters of the APSME-TRANSPORT-KEY.indication primitive.

183CCB Comment #141
184Ibid

APSME-TRANSPORT-KEY.indication {
SrcAddress,
KeyType,
TransportKeyData
}

Table 155 APSME-TRANSPORT-KEY.indication parameters
Name Type Valid Range Description
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 281

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.3.2.2 When generated

The APSME shall generate this primitive when it receives a transport-key command that is successfully
decrypted and authenticated, as specified in sub-clause 3.5.1.2, that has the key type field set to 2 or 3 (i.e.,
application link or master key).

Alternatively, the APSME shall generate this primitive when it receives a transport-key command that is
successfully decrypted and authenticated, as specified in sub-clause 3.5.1.2, that has the key type field set to
0 or 1 (i.e., a trust center master key or Network key) and the destination address sub-field of the key
descriptor field is equal to the local address.

3.5.3.2.3 Effect on receipt

Upon receipt of this primitive, the ZDO is informed of the receipt of the keying material.

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that is the
original source of the transported key.

KeyType Octet 0x00 – 0x03 Identifies the type of key material that was be trans-
ported. See Table 151.

TransportKeyData Variable Variable

The key that was transported along with identifica-
tion and usage parameters. The type of this parame-
ter depends on the KeyType parameter as follows:

KeyType = 0x00 see Table 156.

KeyType = 0x01 see Table 157.

KeyType = 0x02 see Table 154.

KeyType = 0x03 see Table 154.

Table 156 TransportKeyData parameter for a trust-center master key
Parameter Name Type Valid Range Description

TrustCenter-Master-
Key

Set of 16
octets Variable The trust center master key.

Table 157 TransportKeyData parameter for a Network key
Parameter Name Type Valid Range Description

KeySeqNumber Octet 0x00-0xFF

A sequence number assigned to a Network key by
the trust center and used to distinguish Network
keys for purposes of key updates, and incoming
frame security operations.

NetworkKey Set of 16
octets Variable The Network key.

Table 155 APSME-TRANSPORT-KEY.indication parameters
282 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.3.3 Upon Receipt of a Transport-Key Command

Upon receipt of a transport-key command, the APSME shall execute security processing as specified in sub-
clause 3.5.1.2 and then check the key type sub-field.

If the key type field is set to 2 or 3 (i.e., application link or master key), the APSME shall issue the APSME-
TRANSPORT-KEY.indication185 primitive with the SrcAddress parameter set to the source of the key-
transport command (as indicated by the NLDE-DATA.indication SrcAddress parameter), the KeyType
parameter set to the key type field. The TransportKeyData parameter shall be set as follows: the Key sub-
parameter shall be set to the key field, PartnerAddress sub-parameter shall be set to the partner address field,
the Initiator parameter shall be set to TRUE if the initiator field is 1, otherwise 0.

If the key type field is set to 0 or 1 (i.e., trust center master key or NWK key186) and the destination address
field is equal to the local address, the APSME shall issue the APSME-TRANSPORT-KEY.indication187

primitive. The SrcAddress parameter set to the source address field of the key-transport command, the
KeyType parameter set to the key type field. The TransportKeyData parameter shall be set as follows: the
Key sub-parameter shall be set to the key field and, in the case of a Network key (i.e., the key type field is set
to 1), the KeySeqNumber sub-parameter shall be set to the sequence number field.

If the key type field is set to 0 or 1 (i.e., trust center master key or NWK key188) and the destination address
field is not equal to the local address, the APSME shall send the command to the address indicated by the
destination address field by issuing the NLDE-DATA.request primitive with security disabled.

Upon receipt of an unsecured transport-key command, the APSME shall check the key type sub-field. If the
key type field is set to 0 (i.e., a trust center master key), the destination address field is equal to the local
address, and the device does not have a trust center master key and address (i.e., the apsTrustCenterAddress
in the AIB), then the APSME shall issue the APSME-TRANSPORT-KEY.indication primitive. Also, if the
key type field is set to 1 (i.e., Network key), the destination address field is equal to the local address, and
the device does not have a Network key, then the APSME shall issue the APSME-TRANSPORT-
KEY.indication primitive. If an APSME-TRANSPORT-KEY.indication primitive is issued, the SrcAddress
parameter shall be set to the source address field of the key-transport command, and the KeyType parameter
shall be set to the key type field. The TransportKeyData parameter shall be set as follows: the Key sub-
parameter shall be set to the key field and, in the case of a Network key (i.e., the key type field is set to 1),
the KeySeqNumber sub-parameter shall be set to the sequence number field.189

3.5.4 Update-Device Services

The APSME provides services that allow a device (e.g., a router) to inform another device (e.g., a trust
center) that a third device has changed its status (e.g., joined or left the network).

3.5.4.1 APSME-UPDATE-DEVICE.request

The ZDO shall issue this primitive when it wants to inform a device (e.g., a trust center) that another device
has a status that needs to be updated (e.g., the device joined or left the network).

185CCB Comment #163
186CCB Comment #162
187CCB Comment #163
188CCB Comment #162
189CCB Comment #161
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 283

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.4.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 158 specifies the parameters for the APSME- UPDATE-DEVICE.request primitive.

3.5.4.1.2 When generated

The ZDO (e.g., on a router or coordinator) shall initiate the APSME-UPDATE-DEVICE.request primitive
when it wants to send updated device information to another device (e.g., the trust center).

3.5.4.1.3 Effect on receipt

Upon receipt of the APSME-UPDATE-DEVICE.request primitive the device shall first create an update-
device command frame (see sub-clause 3.5.9.4). The device address field of this command frame shall be set
to the DeviceAddress parameter and the status field shall be set according to the Status parameter and the
device short address field shall be set to the DeviceShortAddress parameter190. This command frame shall
be security protected as specified in sub-clause 3.5.1.1 and then, if security processing succeeds, sent to the
device specified by the DestAddress parameter by issuing a NLDE-DATA.request primitive.

3.5.4.2 APSME-UPDATE-DEVICE.indication

The APSME shall issue this primitive to inform the ZDO that it received an update-device command frame.

APSME-UPDATE-DEVICE.request {
DestAddress,
DeviceAddress,
Status,
DeviceShortAddress
}

Table 158 APSME-UPDATE-DEVICE.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
shall be sent the update information.

DeviceAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
whose status is being updated.

Status Integer 0x00 – 0x08

Indicates the updated status of the device
given by the DeviceAddress parameter.

0x00: device secured join.

0x01: device unsecured join.

0x02: device left.

0x03-0x08 reserved.

DeviceShortAddress Network
address 0x0000 - 0xffff The 16-bit network address of the device

whose status is being updated.a

aCCB Comment

190CCB Comment #142
284 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

aC
3.5.4.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 159 specifies the parameters for the APSME-UPDATE-DEVICE.indication primitive.

3.5.4.2.2 When generated

The APSME shall generate this primitive when it receives an update-device command frame that is
successfully decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.4.2.3 Effect on receipt

Upon receipt of the APSME-UPDATE-DEVICE.indication primitive the ZDO will be informed that the
device referenced by the DeviceAddress parameter has undergone a status update according to the Status
parameter.

3.5.5 Remove Device Services

The APSME provides services that allow a device (e.g., a trust center) to inform another device (e.g., a
router) that one of its children should be removed from the network.

APSME-UPDATE-DEVICE.indication {
SrcAddress,
DeviceAddress,
Status,
DeviceShortAddress
}

Table 159 APSME-UPDATE-DEVICE.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
originating the update-device command.

DeviceAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
whose status is being updated.

Status Octet 0x00 – 0xFF

Indicates the updated status of the device
given by the DeviceAddress parameter.

0x00: device secured join.

0x01: device unsecured join.

0x02: device left.

0x03-0xFF reserved.

DeviceShortAddress Network
address 0x0000 - 0xffff The 16-bit network address of the device

whose status is being updated.a

CB Comment #142
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 285

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.5.5.1 APSME-REMOVE-DEVICE.request

The ZDO of a device (e.g., a trust center) shall issue this primitive when it wants to request that a parent
device (e.g., a router) remove one of its children from the network. For example, a trust center can use this
primitive to remove a child device that fails to authenticate properly.

3.5.5.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 160 specifies the parameters for the APSME-REMOVE-DEVICE.request primitive.

3.5.5.1.2 When generated

The ZDO (e.g., on a trust) shall initiate the APSME-REMOVE-DEVICE.request primitive when it wants to
request that a parent device (specified by the ParentAddress parameter) remove one of its child devices (as
specified by the ChildAddress parameter).

3.5.5.1.3 Effect on receipt

Upon receipt of the APSME-REMOVE-DEVICE.request primitive the device shall first create a remove-
device command frame (see sub-clause 3.5.9.4). The child address field of this command frame shall be set
to the ChildAddress parameter. This command frame shall be security protected as specified in sub-clause
3.5.1.1 and then, if security processing succeeds, sent to the device specified by the ParentAddress
parameter by issuing a NLDE-DATA.request primitive.

3.5.5.2 APSME-REMOVE-DEVICE.indication

The APSME shall issue this primitive to inform the ZDO that it received a remove-device command frame.

3.5.5.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

APSME-REMOVE-DEVICE.request {
ParentAddress,
ChildAddress
}

Table 160 APSME- REMOVE-DEVICE.request parameters
Parameter Name Type Valid Range Description

ParentAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
is the parent of the child device that is
requested to be removed.

ChildAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the child
device that is requested to be removed.

APSME-REMOVE-DEVICE.indication {
SrcAddress,
ChildAddress
}

286 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Table 161 specifies the parameters for the APSME-REMOVE-DEVICE.indication primitive.

3.5.5.2.2 When generated

The APSME shall generate this primitive when it receives a remove-device command frame that is
successfully decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.5.2.3 Effect on receipt

Upon receipt of the APSME-REMOVE-DEVICE.indication primitive the ZDO shall be informed that the
device referenced by the SrcAddress parameter is requesting that the child device referenced by the
ChildAddress parameter be removed from the network.

3.5.6 Request Key Services

The APSME provides services that allow a device to request the current Network key or a master key from
another device (e.g., its trust center).

3.5.6.1 APSME-REQUEST-KEY.request

This primitive allows the ZDO to request either the current Network key or a new end-to-end application
master key.

3.5.6.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 162 specifies the parameters for the APSME-REQUEST-KEY.request primitive.

Table 161 APSME-REMOVE-DEVICE.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device
requesting that a child device be removed.

ChildAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the child
device that is requested to be removed.

APSME-REQUEST-KEY.request {
DestAddress,
KeyType,
PartnerAddress
}

Table 162 APSME-REQUEST-KEY.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device to
which the request-key command should be
sent.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 287

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.6.1.2 When generated

The ZDO of a device shall generate the APSME-REQUEST-KEY.request primitive when it requires either
the current Network key or a new end-to-end application master key.

3.5.6.1.3 Effect on receipt

Upon receipt of the APSME-REQUEST-KEY.request primitive the device shall first create a request-key
command frame (see sub-clause 3.5.9.6). The key type field of this command frame shall be set to the same
value as the KeyType parameter. If the KeyType parameter is 0x02 (i.e., an application key), then the partner
address field of this command frame shall be the PartnerAddress parameter. Otherwise, the partner address
field of this command frame shall not be present.

This command frame shall be security protected as specified in sub-clause 3.5.1.1 and then, if security
processing succeeds, sent to the device specified by the DestAddress parameter by issuing a NLDE-
DATA.request primitive.

3.5.6.2 APSME-REQUEST-KEY.indication

The APSME shall issue this primitive to inform the ZDO that it received a request-key command frame.

3.5.6.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 163 specifies the parameters for the APSME-REQUEST-KEY.indication primitive.

KeyType Octet 0x00-0xFF

The type of key being requested:
0x01 = Network key
0x02 = Application key
0x00 and 0x03-0xFF = Reserved

PartnerAddress Device
Address

Any valid 64-bit
address

In the case that KeyType parameter indicates
an application key, this parameter shall indi-
cate an extended 64-bit address of a device
that shall receive the same key as the device
requesting the key.

APSME-REQUEST-KEY.indication {
SrcAddress,
KeyType,
PartnerAddress
}

Table 163 APSME-REQUEST-KEY.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
sent the request-key command.

Table 162 APSME-REQUEST-KEY.request parameters
288 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.6.2.2 When generated

The APSME shall generate this primitive when it receives a request-key command frame that is successfully
decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.6.2.3 Effect on receipt

Upon receipt of the APSME-REQUEST-KEY.indication primitive the ZDO shall be informed that the
device referenced by the SrcAddress parameter is requesting a key. The type of key being requested shall be
indicated by the KeyType parameter and if the KeyType parameter is 0x02 (i.e., an application key), the
PartnerAddress parameter shall indicate a partner device that shall receive the same key as the device
requesting the key (i.e., the device indicated by the SrcAddress parameter).

3.5.7 Switch Key Services

The APSME provides services that allow a device (e.g., a trust center) to inform another device that it
should switch to a new active Network key.

3.5.7.1 APSME-SWITCH-KEY.request

This primitive allows a device (e.g., the trust center) to request that another device switch to a new active
Network key.

3.5.7.1.1 Semantics of the service primitive

This primitive shall provide the following interface:

Table 164 specifies the parameters for the APSME-SWITCH-KEY.request primitive.

KeyType Octet 0x00-0xFF

The type of key being requested:
0x01 = Network key
0x02 = Application key
0x00 and 0x03-0xFF = Reserved

PartnerAddress Device
Address

Any valid 64-bit
address

In the case that KeyType parameter indicates
an application key, this parameter shall indi-
cate an extended 64-bit address of a device
that shall receive the same key as the device
requesting the key.

APSME-SWITCH-KEY.request {
DestAddress,
KeySeqNumber
}

Table 164 APSME-SWITCH-KEY.request parameters
Parameter Name Type Valid Range Description

DestAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device to
which the switch-key command is sent.

KeySeqNumber Octet 0x00-0xFF
A sequence number assigned to a Network
key by the trust center and used to distinguish
Network keys.

Table 163 APSME-REQUEST-KEY.indication parameters
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 289

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.7.1.2 When generated

The ZDO of a device (e.g., the trust center) shall generate the APSME-SWITCH-KEY.request primitive
when it wants to inform a device to switch to a new active Network key.

3.5.7.1.3 Effect on receipt

Upon receipt of the APSME-SWITCH-KEY.request primitive the device shall first create a switch-key
command frame (see sub-clause 3.5.9.7). The sequence number field of this command frame shall be set to
the same value as the KeySeqNumber parameter.

This command frame shall be security protected as specified in sub-clause 3.5.1.1 and then, if security
processing succeeds, sent to the device specified by the DestAddress parameter by issuing a NLDE-
DATA.request primitive.

3.5.7.2 APSME-SWITCH-KEY.indication

The APSME shall issue this primitive to inform the ZDO that it received a switch-key command frame.

3.5.7.2.1 Semantics of the service primitive

This primitive shall provide the following interface:

ATable 165 specifies the parameters for the APSME-SWITCH-KEY.indication primitive.

3.5.7.2.2 When generated

The APSME shall generate this primitive when it receives a switch-key command frame that is successfully
decrypted and authenticated, as specified in sub-clause 3.5.1.2.

3.5.7.2.3 Effect on receipt

Upon receipt of the APSME-SWITCH-KEY.indication primitive the ZDO shall be informed that the device
referenced by the SrcAddress parameter is requesting that the Network key referenced by the
KeySeqNumber parameter become the new active Network key.

APSME-SWITCH-KEY.indication {
SrcAddress,
KeySeqNumber
}

Table 165 APSME-SWITCH-KEY.indication parameters
Parameter Name Type Valid Range Description

SrcAddress Device
Address

Any valid 64-bit
address

The extended 64-bit address of the device that
sent the switch-key command.

KeySeqNumber Octet 0x00-0xFF
A sequence number assigned to a Network key
by the trust center and used to distinguish Net-
work keys.
290 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.8 Secured APDU Frame

The APS layer frame format from [B7] consists of APS header and APS payload fields. The APS header
consists of frame control and addressing fields. When security is applied to an APDU frame, the security bit
in the APS frame control field shall be set to 1 to indicate the presence of the auxiliary frame header. The
format for the auxiliary frame header is given in sub-clause 3.6.1. The format of a secured APS layer frame
is shown in Table 69. The auxiliary frame header is situated between the APS header and payload fields.

3.5.9 Command Frames

The APS layer command frame formats are given in this clause.

Command identifier values are shown in Table 166)191.

3.5.9.1 Key-Establishment Commands

The APS command frames used during key establishment is specified in this clause. The optional fields of
the APS header portion of the general APS frame format shall not be present.

Figure 69 Secured APS layer frame format
Octets: variable 5 or 6 Variable

Original APS Header
([B7], Clause 7.1)

Auxiliary
frame

header

Encrypted Payload Encrypted Message
Integrity Code (MIC)

Secure frame payload = Output of CCM*

Full APS header Secured APS payload

Table 166 Command identifier values
Command identifier Value

APS_CMD_SKKE_1 0X01

APS_CMD_SKKE_2 0X02

APS_CMD_SKKE_3 0X02

APS_CMD_SKKE_4 0X04

APS_CMD_TRANSPORT_KEY 0X05

APS_CMD_UPDATE_DEVICE 0X06

APS_CMD_REMOVE_DEVICE 0X07

APS_CMD_REQUEST_KEY 0X08

APS_CMD_SWITCH_KEY 0X09

191CCB Comment #205
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 291

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The generic SKKE command frame shall be formatted as illustrated in Table 70.

3.5.9.1.1 Command identifier field

The command identifier field shall indicate the APS command type. For SKKE frames, the command
identifier shall indicate either an SKKE-1, SKKE-2, SKKE-3, or SKKE-4 frame, depending on the frame
type (see Table 166)192.

3.5.9.1.2 Initiator address field

The initiator address field shall be the 64-bit extended address of the device that acts as the initiator in the
key-establishment protocol.

3.5.9.1.3 Responder address field

The responder address field shall be the 64-bit extended address of the device that acts as the responder in
the key-establishment protocol.

3.5.9.1.4 Data field

The content of the data field depends on the command identifier field (i.e., SKKE-1, SKKE-2, SKKE-3, or
SKKE-4). The following clauses describe the content of the data field for each command type.

3.5.9.1.4.1 SKKE-1 frame

The data field shall be the octet representation of the challenge QEU generated by the initiator during action
step 1. of clause B.7.1.

3.5.9.1.4.2 SKKE-2 frame

The data field shall be the octet representation of the challenge QEV generated by the responder during
action step 2. of clause B.7.2.

3.5.9.1.4.3 SKKE-3 frame

The data field shall be the octet representation of the string MacTag2 generated by the initiator during action
step 11. of clause B.7.1.

3.5.9.1.4.4 SKKE-4 frame

The data field shall be the octet representation of the string MacTag1 generated by the responder during
action step 7. of clause B.7.2.

Figure 70 Generic SKKE frame command format
Octets: 1 1 8 8 16

Frame control Command
identifier

Initiator
Address

Responder
Address Data

APS Header Payload

192Ibid
292 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.9.2 Transport-Key Commands

The transport-key command frame shall be formatted as illustrated in Table 71. The optional fields of the
APS header portion of the general APS frame format shall not be present.

3.5.9.3 Command identifier field

This field is 8-bits in length shall be set to indicate that this is a transport-key command frame (see
Table 166)193.

3.5.9.3.1 Key type field

This field is 8-bits in length and describes the type of key being transported. The different types of keys are
enumerated in Table 151.

3.5.9.3.2 Key descriptor field

This field is variable in length and shall contain the actual (unprotected) value of the transported key along
with any relevant identification and usage parameters. The information in this field depends on the type of
key being transported (as indicated by the key type field – see sub-clause 3.5.9.3.1) and shall be set to one of
the formats described in the following subsections.

3.5.9.3.2.1 Trust center master key descriptor field

If the key type field is set to 0, the key descriptor field shall be formatted as shown in Table 72.

The key sub-field shall contain the master key that should be used to set up link keys with the trust center.

The destination address sub-field shall contain the address of the device which should use this master key.

The source address sub-field shall contain the address of the device (e.g., the trust center) which originally
sent this master key.

Figure 71 Transport-key command frame
Octets: 1 1 1 variable

Frame control APS command
identifier Key Type Key descriptor

APS Header Payload

193CCB Comment #205

Figure 72 Trust center master key descriptor field in transport-key command
Octets: 16 8 8

Key Destination address Source address
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 293

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.9.3.2.2 Network key descriptor field

If the key type field is set to 1, this field shall be formatted as shown in Table 73.

The key sub-field shall contain a Network key.

The sequence number sub-field shall contain the sequence number associated with this Network key.

The destination address sub-field shall contain the address of the device which should use this Network key.

The source address field sub-shall contain the address of the device (e.g., the trust center) which originally
sent this Network key.

3.5.9.3.2.3 Application master and link key descriptor field

If the key type field is set to 2 or 3, this field shall be formatted as shown in Table 74.

The key sub-field shall contain a master or link key that is shared with the device identified in the partner
address field.

The partner address sub-field shall contain the address of the other device that was sent this link or master
key.

The initiator flag sub-field shall be set to 1 if the device receiving this packet requested this key. Otherwise,
this sub-field shall be set to 0.

3.5.9.4 Update-Device Commands

The APS command frame used for device updates is specified in this clause. The optional fields of the APS
header portion of the general APS frame format shall not be present.

The update-device command frame shall be formatted as illustrated in Table 75.

3.5.9.4.1 Command identifier field

The command identifier field shall indicate the APS command type update-device (see Table 166)194.

Figure 73 Network key descriptor field in transport-key command
Octets: 16 1 8 8

Key Sequence number Destination address Source address

Figure 74 Application master key descriptor in transport-key command
Octets: 16 8 1

Key Partner address Initiator flag

Figure 75 Update-device command frame format
Octets: 1 1 8 2 1

Frame control Command identifier Device Address Device short
addressa

aCCB Comment #142

Status

APS Header Payload
294 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.9.4.2 Device address field

The device address field shall be the 64-bit extended address of the device whose status is being updated.

3.5.9.4.3 Device short address field

The device short address field shall be the 16-bit network address of the device whose status is being
updated.195

3.5.9.4.4 Status field

The status field shall be assigned a value as described for the Status parameter in Table 149.196

3.5.9.5 Remove Device Commands

The APS command frame used for removing a device is specified in this clause. The optional fields of the
APS header portion of the general APS frame format shall not be present.

The remove-device command frame shall be formatted as illustrated in Table 76.

3.5.9.5.1 Command identifier field

The command identifier field shall indicate the APS command type remove-device (see Table 166)197.

3.5.9.5.2 Child address field

The child address field shall be the 64-bit extended address of the device that is requested to be removed
from the network.

3.5.9.6 Request-Key Commands

The APS command frame used by a device for requesting a key is specified in this clause. The optional
fields of the APS header portion of the general APS frame format shall not be present.

The request-key command frame shall be formatted as illustrated in Figure 77

194CCB Comment #205
195CCB Comment #142
196CCB Comment #140

Figure 76 Remove-device command frame format
Octets: 1 1 8

Frame control Command identifier Child address

APS Header Payload

197CCB Comment #205

Figure 77 Request-key command frame format

Octets: 1 1 1 0/8a

aCCB Comment #143

Frame control Command identifier Key type Partner address

APS Header Payload
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 295

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.5.9.6.1 Command identifier field

The command identifier field shall indicate the APS command type request-key (see Table 166)198.

3.5.9.6.2 Key type field

The key type field shall be set to 1 when the Network key is being requested and shall be set to 2 when an
application key is being requested.

3.5.9.6.3 Partner address field

When the key type field is 2 (i.e., an application key), the partner address field shall contain the extended 64-
bit address of the partner device that shall be sent the key. Both the partner device and the device originating
the request-key command will be sent the key.

When the key-type field is 1 (i.e., Network key), the partner address field will not be present.

3.5.9.7 Switch-Key Commands

The APS command frame used by a device for requesting a key is specified in this clause. The optional
fields of the APS header portion of the general APS frame format shall not be present.

The switch-key command frame shall be formatted as illustrated in Table 78.

3.5.9.7.1 Command identifier field

The command identifier field shall indicate the APS command type switch-key (see Table 166)199.

3.5.9.7.2 Sequence number field

The sequence number field shall contain the sequence number identifying the Network key to make active.

3.5.10 Security-Related AIB Attributes

The AIB contains attributes that are required to manage security for the APS layer. Each of these attributes
can be read or written using the APSME-GET.request and APSME-SET.request primitives, respectively.
The security-related attributes contained in the APS PIB are presented in Table 167 and Table 168.

198Ibid

Figure 78 Switch-key command frame format
Octets: 1 1 1

Frame control Command identifier Sequence number

APS Header Payload

199CCB Comment #205

Table 167 AIB security attributes
Attribute Identifier Type Range Description Default

apsDeviceKeyPairSet 0xaaa

Set of Key-
Pair Descrip-
tor entries.

See
Table 168

Variable

A set of key-pair
descriptors containing
master and link key
pairs shared with other
devices.

-

296 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.6 Common Security Elements

This clause describes security-related features that are used in more than one ZigBee layer. The NWK and
APS layers shall use the auxiliary header as specified in sub-clause 3.6.1. The MAC, NWK, and APS layers
shall use the security parameters specified in sub-clause 3.6.2. The formatting of all frames and fields in this
specification are depicted in the order in which they are transmitted by the NWK layer, from left to right,
where the leftmost bit is transmitted first in time. Bits within each field are numbered from 0 (leftmost and
least significant) to k-1 (rightmost and most significant), where the length of the field is k bits. Fields that are
longer than a single octet are sent to the next layer in the order from the octet containing the lowest
numbered bits to the octet containing the highest numbered bits.200

apsTrustCenterAddress 0xabb Device
address

Any valid
64-bit

address

Identifies the address
of the device’s trust
center

-

apsSecurityTime-OutPe-
riod 0xacc Integer 0x0000-

0xFFFF

The period of time a
device will wait for an
expected security pro-
tocol frame (in milli-
seconds).

1000

aCCB Comment #150
bIbid
cIbid

Table 168 Elements of the key-pair descriptor
Name Type Range Description Default

DeviceAddress Device
address

Any valid 64-bit
address

Identifies the address of the entity with
which this key-pair is shared.

-

MasterKey Set of 16
octets

- The actual value of the master key. -

LinkKey Set of 16
octets

- The actual value of the link key. -

OutgoingFrame-
Counter

Set of 4
octets

0x00000000-
0xFFFFFFFF

Unique identifier of the key originating
with the device indicated by KeySr-
cAddress.

0x00000000

IncomingFrame-
Counter

Set of 4
octets

0x00000000-
0xFFFFFFFF

Incoming frame counter value corre-
sponding to DeviceAddress.

0x00000000

200CCB Comment #98

Table 167 AIB security attributes
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 297

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.6.1 Auxiliary Frame Header Format

The auxiliary frame header, as illustrated by Table 79, shall include a security control field and a frame
counter field, and may include a sender address field and key sequence number field.

3.6.1.1 Security Control Field

The security control field shall consist of a security level, a key identifier, and an extended nonce sub-field
and shall be formatted as shown in Table 80.

3.6.1.1.1 Security level sub-field

The security level identifier indicates how an outgoing frame is to be secured, respectively, how an
incoming frame purportedly has been secured: it indicates whether or not the payload is encrypted and to
what extent data authenticity over the frame is provided, as reflected by the length of the message integrity
code (MIC). The bit-length of the MIC may take the values 0, 32, 64 or 128 and determines the probability
that a random guess of the MIC would be correct. The security properties of the security levels are listed in
Table 169.

Figure 79 Auxiliary frame header format
Octets: 1 4 0/8 0/1

Security control Frame Counter Source Address Key Sequence Number

Figure 80 Security control field format
Bit: 0-2 3-4 5 6-7

Security level Key identifier Extended Nonce Reserved

Table 169 Security levels available to the MAC, NWK, and APS layers

Security
level

identifier

Security
Level Sub-

Field
(Table 80)

Security
Attributes

Data
Encryption

Frame Integrity
 (length M of MIC,

in number of
octets)

0x00 ‘000’ None OFF NO (M = 0)

0x01 ‘001’ MIC-32 OFF YES (M=4)

0x02 ‘010’ MIC-64 OFF YES (M=8)

0x03 ‘011’ MIC-128 OFF YES (M=16)

0x04 ‘100’ ENC ON NO (M = 0)

0x05 ‘101’ ENC-MIC-32 ON YES (M=4)

0x06 ‘110’ ENC-MIC-64 ON YES (M=8)

0x07 ‘111’ ENC-MIC-128 ON YES (M=16)
298 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.6.1.1.2 Key identifier sub-field

The key identifier sub-field consists of two bits that are used to identify the key used to protect the frame.
The encoding for the key identifier sub-field shall be as listed in Table 170.

3.6.1.1.3 Extended nonce sub-field

The extended nonce sub-field shall be set to 1 if the sender address field of the auxiliary header is present.
Otherwise, it shall be set to 0.

3.6.1.2 Source Address Field

The source address field shall only be present when the extended nonce sub-field of the security control field
is 1. When present, the source address field shall indicate the extended 64-bit address of the device
responsible for securing the frame.

3.6.1.3 Counter Field

The counter field is used to provide for frame freshness and to prevent processing of duplicate frames.

3.6.1.4 Key Sequence Number Field

The key sequence number field shall only be present when the key identifier sub-field of the security control
field is 1 (i.e., the Network key). When present, the key sequence number field shall indicate the key
sequence number of the Network key used to secure the frame.

3.6.2 Security Parameters

This clause specifies the parameters used for the CCM* security operations.

3.6.2.1 CCM* Mode of Operation and Parameters

Applying security to a MAC, NWK, or APS frame on a particular security level corresponds to a particular
instantiation of the AES-CCM* mode of operation as specified in section B.1.2. The AES-CCM* mode of
operation is an extension of the AES-CCM mode that is used in the 802.15.4-2003 MAC specification and
provides capabilities for authentication, encryption, or both.

The nonce shall be formatted as specified in sub-clause 3.6.2.2.

Table 169 gives the relationship between the security level subfield of the security control field (Table 80),
the security level identifier, and the CCM* encryption/authentication properties used for these operations.

Table 170 Encoding for the key identifier sub-field

Key Identifier
Key Identifier Sub-Field

(Table 80)
Description

0x00 ‘00’ A link key.

0x01 ‘01’ A Network key.

0x02 ‘10’ A key-transport key.

0x03 ‘11’ A key-load key.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 299

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.6.2.2 CCM* Nonce

The nonce input used for the CCM* encryption and authentication transformation and for the CCM*
decryption and authentication checking transformation consists of data explicitly included in the frame and
data that both devices can independently obtain. Figure 81 specifies the order and length of the subfields of
the CCM* nonce. The nonce's security control and frame counter fields shall be the same as the auxiliary
header’s security control and frame counter fields (as defined in sub-clause 3.6.1) of the frame being
processed. The nonce’s source address field shall be set to the extended 64-bit MAC address of the device
originating security protection of the frame. When the extended nonce sub-field of the auxiliary header’s
security control field is 1, the extended 64-bit MAC address of the device originating security protection of
the frame shall correspond to the auxiliary header’s source address field (as defined in sub-clause 3.6.1) of
the frame being processed.

3.6.3 Cryptographic Key Hierarchy

The link key established between two (or more) devices via one of the key-establishment schemes specified
in sub-clause 3.5.2 (or transport-key commands specified in sub-clause 3.5.3) is used to determine related
secret keys, including data keys, key-transport keys, and key-load keys. These keys are determined as
follows:

1. Key-Transport Key. This key is the outcome of executing the specialized keyed hash function specified
in clause B.1.5 under the link key with as input string the 1-octet string ‘0x00’.

2. Key-Load Key. This key is the outcome of executing the specialized keyed hash function specified in
clause B.1.5 under the link key with as input string the 1-octet string ‘0x02’.

3. Data Key. This key is equal to the link key.

All keys derived from the link key shall share the associated frame counters. Also, all layers of ZigBee shall
share the Network key and associated outgoing and incoming frame counters.

3.6.4 Implementation Guidelines (Informative)

This clause provides general guidelines that should be followed to ensure a secure implementation.

3.6.4.1 Random Number Generator

A ZigBee device implementing the key-establishment (i.e., see sub-clause 3.2.4.1) security service may
need a strong method of random number generation. For example, when link keys are pre-installed (e.g., in
the factory), a random number may not be needed.

In all cases that require random numbers, it is critical that the random numbers are not predictable or have
enough entropy, so an attacker will not be able determine them by exhaustive search. The general
recommendation is that the random number generation shall meet the random number tests specified in
FIPS140-2 [B12]. There are methods for generation of random numbers:

1. Base the random number on random clocks and counters within the ZigBee hardware

2. Base the random number on random external events

3. Seed each ZigBee device with a good random number from an external source during production. This
random number can then used as a seed to generate additional random numbers.

Figure 81 CCM* nonce
Octets: 8 4 1

Source address Frame counter Security control
300 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
A combination of these methods can be used. Since the random number generation is likely integrated into
the ZigBee IC, its design and hence the ultimate viability of any encryption/security scheme is left up to the
IC manufacturers.

3.6.4.2 Security Implementation

It is very important security be well implemented and tested so that no “bugs” exist that an attacker can use
to his advantage. It is also desirable that the security implementation does not need to be re-certified for
every application. Security services should be implemented and tested by security experts and should not be
re-implemented or modified for different applications.

3.6.4.3 Conformance

Conformance shall be defined by the profile inheriting from this specification. Correct implementation of
selected cryptographic protocols should be verified as part of the ZigBee certification process. This
verification shall include known value tests: an implementation must show that given particular parameters,
it will correctly compute the corresponding results.

3.7 Functional Description

This subclause provides detailed descriptions of how the security services shall be used in a ZigBee
network. A description of the ZigBee coordinator’s security initialization responsibilities is given in sub-
clause 3.7.1. A brief description of the trust center application is given in sub-clause 3.7.2. Detailed security
procedures are given in sub-clause 3.7.3.

3.7.1 ZigBee Coordinator

The coordinator shall configure the security level of the network by setting the NwkSecurityLevel attribute in
the NWK layer PIB table. If the NwkSecurityLevel attribute is set to zero, the network will be unsecured,
otherwise it will be secured.

The coordinator shall configure the address of the trust center by setting the AIB attribute
apsTrustCenterAddress. The default value of this address is the coordinator’s address itself, otherwise, the
coordinator may designate an alternate trust center.

3.7.2 Trust Center Application

The trust center application runs on a device trusted by devices within a ZigBee network to distribute keys
for the purpose of network and end-to-end application configuration management. The trust center shall be
configured to operate in either commercial or residential mode and may be used to help establish end-to-end
application keys either by sending out link keys directly (i.e., key-escrow capability) or by sending out
master keys.

3.7.2.1 Commercial Mode

The commercial mode of the trust center is designed for high-security commercial applications. In this
mode, the trust center shall maintain a list of devices, master keys, link keys, and Network keys that it needs
to control and enforce the policies of Network key updates and network admittance. In this mode, the
memory required for the trust center grows with the number of devices in the network and the nwkAllFresh
attribute in the NIB shall be set to TRUE.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 301

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.7.2.2 Residential Mode

The residential mode of the trust center is designed for low-security residential applications. In this mode,
the trust center may maintain a list of devices, master keys, or link keys with all the devices in the network;
however, it shall maintain the Network key and controls policies of network admittance. In this mode, the
memory required for the trust center does not grow with the number of devices in the network and the
nwkAllFresh attribute in the NIB shall be set to FALSE.

3.7.3 Security Procedures

This subclause gives message sequence charts for joining a secured network, authenticating a newly joined
device, updating the Network key, recovering the Network key, establishing end-to-end application keys,
and leaving a secured network.

3.7.3.1 Joining a Secured Network

Figure 82 shows an example message sequence chart ensuing from when a joiner device communicates with
a router device to join a secured network.

Figure 82 Example of joining a secured network

Router Joiner

MAC NWK ZDO MAC NWK ZDO

NLME-PERMIT-JOINING.request

MLME-SET.request(macAssociationPermit = TRUE)

NLME-NETWORK-DISCOVERY.request

MLME-SCAN.request

Beacon request command (unsecured)

Beacon (unsecured)
MLME-SCAN.confirm

NLME-NETWORK-DISCOVERY.confirm

NLME-JOIN.request

MLME-ASSOCIATE.request

Association request command

NLME-JOIN.indication

MLME-ASSOCIATE.indication

MLME-ASSOCIATE.response

Association response command

MLME-ASSOCIATE.confirm

NLME-JOIN.confirm

MLME-START.request (only if B is a router)

Joined (unauthenticated)

NLME-START-ROUTER.request (only if B is a router)

Successful Authenticate Routine (see 8.3.2)

Joined (authenticated)
302 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
The joiner device may begin the join procedure by issuing an NLME-NETWORK-DISCOVERY.request
primitive. This primitive will invoke an MLME-SCAN.request primitive which may cause the transmission
of an unsecured beacon request frame (depending on whether the scan is an active or passive scan).

The joiner device receives beacons from nearby routers and the NWK layer will issue an NLME-
NETWORK-DISCOVERY.confirm primitive. The NetworkList parameter of this primitive will indicate all
of the nearby PANs along with their nwkSecurityLevel and nwkSecureAllFrames nwkSecureAllFrames
attributes. In Figure 82, the shown router device has already been placed in a state such that its beacons have
the “association permit” sub-field set to “1” (permit association).

The joiner device shall decide which PAN to join (e.g., based on the security attributes received in NLME-
NETWORK-DISCOVERY.confirm primitive) and shall issue the NLME-JOIN.request primitive to join
that PAN. If the joiner already has a Network key for this PAN, the SecurityEnable parameter for the
NLME-JOIN.request primitive shall be set to TRUE; otherwise it shall be set to FALSE. As shown in
Figure 82, the NLME-JOIN.request primitive causes an association request command to be sent to the
router.

Upon receipt of the association request command, the router shall issue an MLME-ASSOCIATE.indication
primitive with the SecurityUse parameter set to TRUE or FALSE, according to whether the association
request command was secured or not. Next, the NWK layer will issue an NLME-JOIN.indication primitive
to the router’s ZDO. The router shall now know the joiner device’s address and whether the Network key
was used to secure the association request command. The router will also issue an MLME-
ASSOCIATE.response primitive with the SecurityEnable parameter set to TRUE or FALSE, according to
whether the association request command was secured or not, respectively. This primitive will cause an
association response command to be sent to the joiner.

Upon receipt of the association response command, the joiner shall issue the NLME-JOIN.confirm primitive
The joiner is now declared “joined, but unauthenticated” to the network. The authentication routine (see sub-
clause 3.7.3.2) shall follow.

If the joiner is not a router, it is declared “joined and authenticated” immediately following the successful
completion of the authentication routine.

If the joiner is a router, it is declared “joined and authenticated” only after the successful completion of the
authentication routine followed by the initiation of routing operations. Routing operations shall be initiated
by the joiner’s ZDO issuing the NLME-START.request201 primitive to cause the MLME-START.request
primitive to be sent to the MAC layer of the joiner.

If the router refuses the joiner, its association response frame shall contain the association status field set to
a value other than “0x00”, and, after this parameter reaches the ZDO of the joiner in the NLME-
JOIN.confirm primitive, the joiner shall not begin the authentication routine.

3.7.3.2 Authentication

Once a device joins a secured network and is declared “joined but unauthenticated”, it must be authenticated
as specified in this sub-clause.

3.7.3.2.1 Router operation

If the router is not the trust center, it shall begin the authentication procedure immediately after receipt of the
NLME-JOIN.indication202 primitive by issuing an APSME-UPDATE-DEVICE.request primitive with the
DestAddress parameter set to the apsTrustCenterAddress in the AIB and the DeviceAddress parameter set to
the address of the newly joined device. The Status parameter of this primitive shall be set to 0x00 (i.e.,

201CCB Comment #216
202CCB Comment #217
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 303

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
secured join) if the newly joined device secured the associate request command. Otherwise, the Status
parameter shall be set to 0x01 (i.e., unsecured join).

If the router is the trust center, it shall begin the authentication procedure by simply operating as a trust
center.

3.7.3.2.2 Trust center operation

The trust center role in the authentication procedure shall be activated upon receipt of an incoming update-
device command or immediately after receipt of the NLME-JOIN.indication203 primitive (in the case where
the router is the trust center). The trust center behaves differently depending on at least five factors:

— Whether the trust center decides to allow the new device to join the network (e.g., the trust center is
in a mode that allows new devices to join).

— Whether the trust center is operating in residential or commercial mode (see sub-clause 3.7.2.1 and
sub-clause 3.7.2.2, respectively).

— If in residential mode, whether the device is joining unsecured or secured (i.e., as indicated by the
Status sub-field of the update-device command).

— If in commercial mode, whether the trust center has a master key corresponding to the newly joined
device.

— The nwkSecureAllFrames parameter of the NIB.

If, at any time during the authentication procedure, the trust center decides not to allow the new device to
join the network (e.g., a policy decision or a failed key-establishment protocol), it shall take actions to
remove the device from the network. If the trust center is not the router of the newly joined device, it shall
remove the device from the network by issuing the APSME-REMOVE-DEVICE.request primitive with the
ParentAddress parameter set to the address of the router originating the update-device command and the
ChildAddress parameter set to the address of the joined (but unauthenticated) device. If the trust center is the
router of the newly joined device, it shall remove the device from the network by issuing the NLME-
LEAVE.request primitive with the DeviceAddress parameter set to the address of the joined (but
unauthenticated) device.

3.7.3.2.2.1 Residential mode

After being activated for the authentication procedure the trust center shall send the device the active
Network key by issuing the APSME-TRANSPORT-KEY.request primitive with the DestAddress parameter
set to the address of the newly joined device, and the KeyType parameter to 0x01 (i.e., Network key).

If the joining device already has the Network key (i.e., the Status sub-field of the update-device command is
0x00), the TransportKeyData sub-parameters shall be set as follows: the KeySeqNumber sub-parameter
shall be set to 0, the NetworkKey sub-parameter shall be set to all zeros, and the UseParent sub-parameter
shall be set to FALSE.

Otherwise, the KeySeqNumber sub-parameter shall be set to the sequence count value for this Network key,
the NetworkKey sub-parameter shall be set to Network key. The UseParent sub-parameter shall be set to
FALSE if the trust center is the router; otherwise, the UseParent sub-parameter shall be set to TRUE and the
ParentAddress sub-parameter shall be set to the address of the router originating the update-device
command.

In the case of a joining device that is not preconfigured with a Network key, the issuance of this transport-
key primitive will cause the Network key to be sent unsecured from the router to the newly joined device—

203CCB Comment #218
304 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
security is assumed to be present here via non-cryptographic means, such as only sending this key once, at
low power, immediately after external input to both router and joiner, etc.

3.7.3.2.2.2 Commercial mode

After being activated for the authentication procedure, the trust center operation in commercial mode
depends on if the device joining the network is preconfigured with a trust center master key.

If the trust center does not already share a master key with the newly joined device, it shall send the device a
master key by issuing the APSME-TRANSPORT-KEY.request primitive with the DestAddress parameter
set to the address of the newly joined device, and the KeyType parameter to 0x00 (i.e., trust center master
key). The TransportKeyData sub-parameters shall be set as follows: the TrustCenterMasterKey sub-
parameter shall be set to trust center master key, and the ParentAddress sub-parameter shall set to the
address of the local device if the trust center is the router; otherwise, the ParentAddress sub-parameter shall
set to the address of the router originating the update-device command. The issuance of this primitive will
cause the master key to be sent unsecured from the router to the newly joined device—security is assumed to
be present here via non-cryptographic means, such as only sending this key once, at low power, immediately
after external input to both router and joiner, etc.

The trust center shall initiate the establishment of a link key by issuing the APSME-ESTABLISH-
KEY.request primitive with the ResponderAddress parameter set to the address of the newly joined device
and the KeyEstablishmentMethod set to 0x00 (i.e., SKKE). Additionally, if the nwkSecureAllFrames
parameter of the NIB is FALSE or the trust center is the router, the UseParent parameter shall be set to
FALSE; otherwise, the UseParent parameter shall be set to TRUE and the ResponderParentAddress
parameter shall be set to the address of the router originating the update-device command.

Upon receipt of the corresponding APSME-ESTABLISH-KEY.confirm primitive with Status equal to 0x00
(i.e., success), the trust center shall send the new device the Network key by issuing the APSME-
TRANSPORT-KEY.request primitive with the DestAddress parameter set to the address of the newly joined
device, and the KeyType parameter to 0x01 (i.e., Network key). The TransportKeyData sub-parameters shall
be set as follows. The KeySeqNumber sub-parameter shall be set to the sequence count value for this
Network key, the NetworkKey sub-parameter shall be set to Network key, and the UseParent sub-parameter
shall be set to FALSE.

3.7.3.2.3 Joining device operation

After successfully associating to a secured network, the joining device shall participate in the authentication
procedure described in this sub-clause. Following a successful authentication procedure, the joining device
shall set the nwkSecurityLevel and nwkSecureAllFrames attributes in the NIB to the values indicated in the
beacon from the router.

A joined and authenticated device in a secured network with nwkSecureAllFrames equal to TRUE shall
always apply NWK layer security to outgoing (incoming) frames unless the frame is destined for (originated
from) a newly joined but unauthenticated child. No such restrictions exist if nwkSecureAllFrames is equal to
FALSE.

The joining device’s participation in the authentication procedure depends on the state of the device. There
are three possible initial states to consider:

— Preconfigured with a Network key (i.e., residential mode)

— Preconfigured with a trust center master key and address (i.e., commercial mode)

— Not preconfigured (i.e., undetermined mode – either residential or commercial mode)

In a secured network, if the device does not become authenticated within a preconfigured amount of time, it
shall leave the network.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 305

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.7.3.2.3.1 Preconfigured Network key

If the joining device was preconfigured with just a Network key (and the association was successful), it shall
set the outgoing frame counter for this key to zero, and empty the incoming frame counter set for this key,
and wait to receive a dummy (all zero) Network key from the trust center. Upon receipt of the APSME-
TRANSPORT-KEY.indication primitive with the KeyType parameter set to 0x01 (i.e., the Network key),
the joining device shall set the apsTrustCenterAddress attribute in its AIB to the SrcAddress parameter of
the APSME-TRANSPORT-KEY.indication primitive. The joining device is now considered authenticated
and shall enter the normal operating state for residential mode.

3.7.3.2.3.2 Preconfigured trust center key

If the joining device is preconfigured with a trust center master key and address (i.e., the
apsTrustCenterAddress attribute in the AIB) it shall wait to establish a link key and receive a Network key
from the trust center. Therefore, upon receipt of the APSME-ESTABLISH-KEY.indication primitive with
the InitiatorAddress parameter set to the trust center’s address and the KeyEstablishmentMethod parameter
set to SKKE, the joining device shall respond with the APSME-ESTABLISH-KEY.response primitive with
the InitiatorAddress parameter set to the trust center’s address and the Accept parameter set to TRUE. After
receipt of the APSME-ESTABLISH-KEY.confirm primitive with the Address parameter set to the trust
center’s address and the Status parameter set to 0x00 (i.e., success), the joining device shall expect to receive
the Network key. Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with
SourceAddress parameter set to the trust center’s address, the KeyType parameter set to 0x01 (i.e., the
Network key), the joining device shall use the data in the TransportKeyData parameter for configuring the
Network key. The joining device is now considered authenticated and shall enter the normal operating state
for commercial mode.

3.7.3.2.3.3 Not preconfigured

If the joining device is not preconfigured with a Network key nor a trust center master key and address (i.e.,
the apsTrustCenterAddress attribute in the AIB) it shall wait to receive either an unsecured trust center
master key or a Network key. Implementers should note that transmission of an unsecured key represents a
security risk and that if security is a concern, keys should be preconfigured – preferable via an out-of-band
mechanism.

Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x01 (i.e., the Network key), the joining device shall make the data in the TransportKeyData parameter its
active Network key and shall set the apsTrustCenterAddress attribute in its AIB to the SrcAddress parameter
of the APSME-TRANSPORT-KEY.indication primitive. The joining device is now considered
authenticated and shall enter the normal operating state for residential mode.

Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x00 (i.e., the trust center master key), the joining device shall make its trust center master key the data in
the TransportKeyData parameter and the apsTrustCenterAddress attribute in its AIB the SrcAddress
parameter. Next, upon receipt of the APSME-ESTABLISH-KEY.indication primitive with the
InitiatorAddress parameter set to the trust center’s address and the KeyEstablishmentMethod parameter set
to SKKE, the joining device shall respond with the APSME-ESTABLISH-KEY.response primitive with the
InitiatorAddress parameter set to the trust center’s address and the Accept parameter set to TRUE. After
receipt of the APSME-ESTABLISH-KEY.confirm primitive with the Address parameter set to the trust
center’s address and the Status parameter set to 0x00 (i.e., success), the joining device shall expect to receive
the Network key. Upon receipt of the APSME-TRANSPORT-KEY.indication primitive with
SourceAddress parameter set to the trust center’s address, the KeyType parameter set to 0x01 (i.e., the
Network key), the joining device shall use the data in the TransportKeyData parameter for configuring the
Network key. The joining device is now considered authenticated and shall enter the normal operating state
for commercial mode.
306 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.7.3.2.4 Message sequence charts

Figure 83 and Figure 84 give example message sequence charts for the authentication procedure when the
router and trust center are separate devices operating in residential or commercial mode, respectively.

In Figure 83, the update-device and transport-key commands communicated between the trust center and the
router shall be secured at the APS layer based on the Network key and, if the nwkSecureAllFrames NIB
attribute is TRUE, also secured at the NWK layer with the Network key. The transport-key command sent
from the router to joiner shall not be secured.

Figure 83 Example residential-mode authentication procedure

In Figure 84, the update-device and transport-key commands communicated between the trust center and the
router shall be secured at the APS layer based on the trust center link key and, if the nwkSecureAllFrames
NIB attribute is TRUE, also secured at the NWK layer with the Network key. The transport-key command
sent from the router to joiner shall not be secured. The SKKE commands shall be sent using the router as a
liaison when the nwkSecureAllFrames NIB attribute is TRUE, such that SKKE commands between the trust
center and router shall be secured at the NWK layer with the Network key and commands between the router
and joiner shall not be secured. Otherwise, the SKKE commands shall be unsecured between the trust center
and joiner. The final transport-key communicated between the trust center and the joiner shall be secured at
the APS layer based on the trust center link key and, if the nwkSecureAllFrames NIB attribute is TRUE, also
secured at the NWK layer with the Network key.

Joiner Router Trust Center

Update-Device Command

Joined (unauthenticated)

Joined (authenticated)

Secured Transport-Key Command(NWK key)
1

Unsecured Transport-Key Command(NWK key)
1

Note:

1. The trust center sends a dummy all-zero NWK key if the joiner securely joined using a preconfigured network key.

Decision to accept

new device
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 307

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 84 Example commercial-mode authentication procedure

3.7.3.3 Network Key Update

The trust center and network device shall follow the procedures described in this sub-clause when updating
the Network key.

3.7.3.3.1 Trust center operation

When operating in residential mode, the trust center shall never update the network. This is a tradeoff to
limit implementation complexity, at the cost of reduced security.

When operating in commercial mode, the trust center shall maintain a list of all devices in the network. To
update the Network key, the trust center shall first send the new Network key to each device on this list and
then ask each device to switch to this new key. The new Network key shall be sent to a device on the list by
issuing the APSME-TRANSPORT-KEY.request primitive with the DestAddress parameter set to the
address of the device on the list and the KeyType parameter set to 0x01 (i.e., Network key). The
TransportKeyData sub-parameters shall be set as follows. The KeySeqNumber sub-parameter shall be set to
the sequence count value for this Network key, the NetworkKey sub-parameter shall be set to the Network
key, and the UseParent sub-parameter shall be set to FALSE. If the sequence count for the previously
distributed Network key is represented as N, then the sequence count for this new Network key shall be
(N+1) mod 256. The trust center shall ask a device to switch to this new key by issuing the APSME-
SWITCH-KEY.request primitive with the DestAddress parameter set to the address of the device on the list
and the KeySeqNumber parameter set to the sequence count value for the updated Network key.

3.7.3.3.2 Network device operation

When in normal operating state for residential mode (i.e., a trust center master key is not present), a device
shall not accept an updated Network key. Thus, in this mode, transport-key or a switch-key commands with
the KeyType parameter set to 0x01 (i.e., Network key) shall be ignored.

Joiner Router Trust Center

Update-Device Command

Joined (unauthenticated)

Joined (authenticated)

Secured Transport-Key Command (Master key)
1

Unsecured Transport-Key Command (Master key)
1

Secured Transport-Key Command(NWK key)

SKKE-1 Command

SKKE-2 Command

SKKE-3 Command

SKKE-4 Command

See

Note 2

Notes:
1. The trust center does not send a master key if it already shares one with the joiner device (i.e., the pre-configured situation)

2. SKKE commands shall be sent using the router as a liaison when the nwkSecureAllFrame NIB attribute is TRUE (i.e., these

commands will be secured between the trust center and router at the NWK layer, but not between the router and joiner).

Decision to accept

new device
308 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
When in the normal operating state for commercial mode (i.e., a trust center master key is present) and upon
receipt of a APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to 0x01 (i.e.,
Network key), a device shall accept the TransportKeyData parameters as a Network key only if the
SrcAddress parameter is the same as the trust center’s address (as maintained in the apsTrustCenterAddress
attribute of the AIB). If accepted and if the device is capable of storing an alternate Network key, the key
and sequence number data contained in the TransportKeyData parameter shall replace the alternate Network
key. Otherwise, the key and sequence number data contained in the TransportKeyData parameter shall
replace the active Network key.

When in the normal operating state for commercial mode (i.e., a trust center master key is present) and upon
receipt of a APSME-SWITCH-KEY.indication primitive, a device shall switch its active Network key to the
one designated by the KeySeqNumber parameter only if the SrcAddress parameter is the same as the trust
center’s address (as maintained in the apsTrustCenterAddress attribute of the AIB).

3.7.3.3.3 Message sequence chart

An example of a successful Network key-update procedure for two devices is shown in Figure 85. In this
example, the trust center sends the Network key with sequence number N to devices 1 and 2. In this
example, device 1 is an FD capable of storing two Network keys, an active and alternate, and device 2 is an
RFD that can store only a single Network key. Upon receipt of the transport-key command, device 1
replaces its alternate Network key with the new Network key; however device 2 must replace its active
Network key with the new key. Next, upon receipt of the switch-key command, device 1 makes the new
Network key the active Network key; however device 2 has just one active Network key, so it ignores this
command.

Figure 85 Example Network key-update procedure

3.7.3.4 Network Key Recovery

A network device and trust center shall follow the procedures described in this sub-clause when recovering
the Network key.

3.7.3.4.1 Network device operation

When in the normal operating state for residential mode (i.e., a trust center master key is not present), a
device shall not generate a request for an updated Network key.

When in the normal operating state for commercial mode (i.e., a trust center master key is present) a network
device shall request the current Network key by issuing the APSME-REQUEST-KEY.request primitive

Device 2 Device 1 Trust Center

Transport-Key Command(NWK key, N)

Replace alternate network

key with network key N.

Transport-Key Command(NWK key, N)

Switch-Key Command(N)

Switch-Key Command(N)

Replace active network

key with network key N.

Make network key N the

active network key.

Ignore command.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 309

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
with the DestAddress parameter204 set to the trust center’s address (as maintained in the
apsTrustCenterAddress attribute of the AIB), the KeyType parameter set to 0x01 (i.e., Network key), and the
PartnerAddress parameter set to 0.

3.7.3.4.2 Trust Center operation

When operating in residential mode, the trust center shall ignore the receipt of APSME-REQUEST-
KEY.indication primitives with the KeyType parameter set to 0x01205 (i.e., Network key).

When operating in commercial mode and receipt of APSME-REQUEST-KEY.indication primitives with the
KeyType parameter set to 0x01 (i.e., Network key), the trust center shall determine whether the device
indicated by the SrcAddress parameter is present on its list of all device on the network. If the device is
present on this list, the trust center shall issue the APSME-TRANSPORT-KEY.request primitive with the
DestAddress parameter set to the address of the device requesting the key and the KeyType parameter set to
0x01 (i.e., Network key). The TransportKeyData sub-parameters shall be set as follows. The
KeySeqNumber sub-parameter shall be set to the sequence count value for this Network key, the
NetworkKey sub-parameter shall be set to the Network key, and the UseParent sub-parameter shall be set to
FALSE. Next, the trust center shall ask a device to switch to this new key by issuing the APSME-SWITCH-
KEY.request primitive with the DestAddress parameter set to the address of the device that requested the
key and the KeySeqNumber parameter set to the sequence count value for the updated Network key.

3.7.3.4.3 Message sequence chart

An example of a successful Network key-recovery procedure is shown in Figure 86. In this example, the
network device requests the current Network key from the trust center. The trust center responds with
current key and then tells the device to switch to this key.

Figure 86 Example Network key-recovery procedure

3.7.3.5 End-to-End Application Key Establishment

An initiator device, a trust center, and a responder device shall follow the procedures described in this sub-
clause when establishing a link key for purposes of end-to-end application security between initiator and
responder devices.

3.7.3.5.1 Device operation

The initiator device shall begin the procedure to establish a link key with a responder device by issuing the
APSME-REQUEST-KEY.request primitive. The DstDevice parameter shall be set to the address of its trust

204CCB Comment #219
205CCB Comment #220

Device A Trust Center

Request-Key Command(NWK key)

Switch-Key Command(N)

Replace alternate network

key with network key N.

Make network key N the

active network key.

Make sure device A is

part of the network.
Transport-Key Command(NWK key, N)
310 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
center, the KeyType parameter shall be set to 0x02 (i.e., application key), and the PartnerAddress parameter
shall be set to the address of the responder device.

3.7.3.5.1.1 Upon receipt of link key

Upon receipt of an APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x03 (i.e., application link key), a device may accept the TransportKeyData parameters as a link key with
the device indicated by the PartnerAddress parameter only if the SrcAddress parameter is the same as the
apsTrustCenterAddress attribute of the AIB. If accepted, the DeviceKeyPairSet attribute in AIB table will be
updated. A key-pair descriptor in the AIB shall be created (or updated if already present), for the device
indicated by the PartnerAddress parameter, by setting the DeviceAddress element to the PartnerAddress
parameter, the LinkKey element to the link key from the TransportKeyData parameter, and the
OutgoingFrameCounter and IncomingFrameCounter elements to 0.

3.7.3.5.1.2 Upon receipt of a master key

Upon receipt of an APSME-TRANSPORT-KEY.indication primitive with the KeyType parameter set to
0x02 (i.e., application master key), a device may accept the TransportKeyData parameters as a master key
with the device indicated by the PartnerAddress sub-parameter only if the SrcAddress parameter is the same
as the apsTrustCenterAddress attribute of the AIB. If accepted, the DeviceKeyPairSet attribute in AIB table
will be updated. A key-pair descriptor shall be created (or updated if already present), for the device
indicated by the PartnerAddress parameter, by setting the DeviceAddress element to the PartnerAddress
parameter, the MasterKey element to the master key from the TransportKeyData parameter, and the
OutgoingFrameCounter and IncomingFrameCounter elements to 0.

Next, if the Initiator sub-parameter of the TransportKeyData parameter of the APSME-TRANSPORT-
KEY.indication primitive was TRUE, the device shall issue the APSME-ESTABLISH-KEY.request
primitive. The ResponderAddress206 parameter shall be set to the PartnerAddress sub-parameter of the
TransportKeyData parameter, the UseParent parameter shall be set to FALSE, and the
KeyEstablishmentMethod shall be set to 0x00 (i.e., SKKE).

Upon receipt of the APSME-ESTABLISH-KEY.indication primitive, the responder device shall be
informed that the initiator device wishes to establish a link key. If the responder decides to establish a link
key, it shall issue the APSME-ESTABLISH-KEY.response207 primitive with the InitiatorAddress
parameter set to the address of the initiator and the Accept parameter set to TRUE. Otherwise, it shall set the
Accept parameter set to FALSE.

If the responder decided to set up a key with the initiator, the SKKE protocol will ensue and the APSME-
ESTABLISH-KEY.confirm primitive will be issued to both the responder and initiator.

3.7.3.5.2 Trust center operation

Upon receipt of APSME-REQUEST-KEY.indication primitives with the KeyType parameter set to 0x02
(i.e., application key), the trust center behavior depends on if it has been configured to send out application
link keys or master keys.

The trust center shall issue two APSME-TRANSPORT-KEY.request primitives. If configured to send out
application link keys the KeyType parameter shall be set to 0x03 (i.e., application link key); otherwise, the
KeyType parameter shall be set to 0x02 (i.e., application master key). The first primitive shall have the
DestAddress parameter set to the address of the device requesting the key. The TransportKeyData sub-
parameters shall be set as follows: the PartnerAddress sub-parameter shall be set to the PartnerAddress sub-
parameter of the APSME-REQUEST-KEY.indication primitive’s TransportKeyData parameter, the

206CCB Comment #221
207CCB Comment #222
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 311

Initiator sub-parameter shall be set to TRUE, and the Key sub-parameter shall be set to a new key K (a
master or link key). The second primitive shall have the DestAddress parameter set to the PartnerAddress
sub-parameter of the APSME-REQUEST-KEY.indication primitive’s TransportKeyData parameter. The
TransportKeyData sub-parameters shall be set as follows: the PartnerAddress sub-parameter shall be set to
the address of the device requesting the key, the Initiator sub-parameter shall be set to FALSE, and the Key
sub-parameter shall be set to K.

3.7.3.5.3 Message sequence chart

An example message sequence chart of the end-to-end application key establishment procedure is shown in
Figure 87. The procedure begins with the transmission of the request-key command from the initiator to the
trust center. Next, the trust center starts a time-out timer. For the duration of this timer (i.e., until it expires),
the trust center shall discard any new request-key commands for this pair of devices unless they are from the
initiator.

The trust center shall now send transport-key commands containing the application link or master key to the
initiator and responder devices. Only the initiator’s transport-key command will have the Initiator field set
to 1 (i.e., TRUE), so if a master key was sent, only the initiator device will begin the key-establishment
protocol by sending the SKKE-1 command. If the responder decides to accept establishing a key with the
initiator, the SKKE protocol will progress via the exchange of the SKKE-2, SKKE-3, and SKKE-4
commands. Upon completion (or time-out), the status of the protocol is reported to the ZDO’s of the initiator
and responder devices. If successful, the initiator and responder will now share a link key and secure
communications will be possible.

Figure 87 Example end-to-end application key establishment procedure

Responder Trust Center Initiator

Request-Key Command(key, responder address)

Learn address of responder via discovery

or other means (e.g., preloaded)

Transport-Key Command(key, Initiator=TRUE,

PartnerAddress = Responder’s address)

Start a timer and send a link or master key to initiator and responder. The

trust center shall discard new request-key commands for this pair of

devices, unless they are from the initiator, until after the timer expires.

Transport-Key Command(key, Initiator=FALSE,

PartnerAddress = Initiator’s address)

Stores key and, if a master key,

initiates key establishment

Decides whether

to the store key

SKKE-1 Command

SKKE-2 Command

SKKE-3 Command

SKKE-4 Command

Responder decides whether to run

key-establishment protocol

Status of SKKE reported to ZDO Status of SKKE reported to ZDO

Security Services Specification

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3.7.3.6 Network Leave

A device, its router, and the trust center shall follow the procedures described in this sub-clause when the
device is to leave the network.

3.7.3.6.1 Trust center operation

If a trust center wants a device to leave and if the trust center is not the router for that device, the trust center
shall send issue the APSME-REMOVE-DEVICE.request primitive, with the ParentAddress parameter set to
the router’s address and the ChildAddress parameter set to the address of the device it wishes to leave the
network.

The trust center will also be informed of devices that leave the network. Upon receipt of an APSME-
UPDATE-DEVICE.indication primitive with the Status parameter set to 0x02 (i.e., device left), the
DeviceAddress parameter shall indicate the address of the device that left the network and the SrcAddress
parameter shall indicate the address of parent of this device. If operating in commercial mode, the trust
center shall delete the leaving device from its list of network devices.

3.7.3.6.2 Router operation

Routers are responsible for receiving remove-device commands and for sending update-device commands.

Upon receipt of an APSME-REMOVE-DEVICE.indication primitive, if the SrcAddress parameter is equal
to the apsTrustCenterAddress attribute of the AIB, a router shall issue an NLME-LEAVE.request primitive
with the DeviceAddress parameter the same as the DeviceAddress parameter of the APSME-REMOVE-
DEVICE.indication primitive. The router shall ignore REMOVE-DEVICE.indication primitives with the
SrcAddress parameter not equal to the apsTrustCenterAddress attribute of the AIB.

Upon receipt of an NLME-LEAVE.indication primitive with the DeviceAddress parameter set to one of its
children, a router that is not also the trust center shall issue an APSME-UPDATE-DEVICE.request
primitive with, the DstAddress parameter set to the address of the trust center, the Status parameter set to
0x02 (i.e., device left), and the DeviceAddress parameter set to the DeviceAddress parameter of the NLME-
LEAVE.indication primitive. If the router is the trust center, it should simply operate as the trust center and
shall not issue the APSME-UPDATE-DEVICE.request primitive (see sub-clause 3.7.3.6.1).

3.7.3.6.3 Leaving device operation

Devices are responsible for receiving and sending disassociation notification commands.

In a secured ZigBee network, disassociation notification commands shall be secured with the Network key
and sent with security enabled at the level indicated by the nwkSecurityLevel attribute in the NIB.

In a secured ZigBee network, disassociation notification commands shall be received and processed only if
secured with the Network key and received with security enabled at the level indicated by the
nwkSecurityLevel attribute in the NIB.

3.7.3.6.4 Message sequence charts

Figure 88 shows an example message sequence chart in which a trust center asks a router to remove one of
its children from the network. If a trust center wants a device to leave and if the trust center is not the router
for that device, the trust center shall send the router a remove-device command with the address of the
device it wishes to leave the network. In a secure network, the remove-device command shall be secured
with a link key if present; otherwise shall be secured with the Network key. Upon receipt of the remove-
device command, a router shall send a disassociation notification command to the device to leave the
network.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 313

ZigBee Specification

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 88 Example remove-device procedure

Figure 89 shows an example message sequence chart whereby a device notifies its router that it is
disassociating from the network. In this example, the device sends a disassociation notification command
(secured with the Network key) to its router. The router then sends a device-update command to the trust
center. In a secured network, the device-update command must be secured with the link key, if present, or
the Network key.

Figure 89 Example device-leave procedure

Device Router Trust Center

Remove-Device Command
1

Disassociation Notification Command
2

Note:
1. If a trust center wants a device to leave and if the trust center is not the router for that device, the trust center shall send the router

a remove-device command with the address of the device it wishes to leave the network.

2. A router shall send a disassociation command to cause one of its children to leave the network.

Device Router Trust Center

Update-Device Command
2

Disassociation Notification Command
1

Note:
1. A device leaving the network shall send a disassociation command to its router.

2. Upon receipt of a valid disassociation command, a router shall send an update-device command to the trust center to inform it

that a device has left the network.
314 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex A CCM* Mode of Operation
CCM* is a generic combined encryption and authentication block cipher mode. CCM* is only defined for
use with block ciphers with a 128-bit block size, such as AES-128 [B8]. The CCM* ideas can easily be
extended to other block sizes, but this will require further definitions.

The CCM* mode coincides with the original CCM mode specification [B20] for messages that require
authentication and, possibly, encryption, but does also offer support for messages that require only
encryption. As with the CCM mode, the CCM* mode requires only one key. The security proof for the CCM
mode [B21], [B22] carries over to the CCM* mode described here. The design of the CCM* mode takes into
account the results of [B23], thus allowing it to be securely used in implementation environments for which
the use of variable-length authentication tags, rather than fixed-length authentication tags only, is beneficial.

Prerequisites: The following are the prerequisites for the operation of the generic CCM* mode:

1. A block-cipher encryption function E shall have been chosen, with a 128-bit block size. The length in
bits of the keys used by the chosen encryption function is denoted by keylen.

2. A fixed representation of octets as binary strings shall have been chosen (e.g., most-significant-bit first
order or least-significant-bit-first order).

3. The length L of the message length field, in octets, shall have been chosen. Valid values for L are the
integers 2, 3,..., 8 (the value L=1 is reserved).

4. The length M of the authentication field, in octets, shall have been chosen. Valid values for M are the
integers 0, 4, 6, 8, 10, 12, 14, and 16. (The value M=0 corresponds to disabling authenticity, since then
the authentication field is the empty string.)

A.1 Notation and representation

Throughout this specification, the representation of integers as octet strings shall be fixed. All integers shall
be represented as octet strings in most-significant-octet first order. This representation conforms to the
conventions in Section 4.3 of ANSI X9.63-2001 [B7].

A.2 CCM* mode encryption and authentication transformation

The CCM* mode forward transformation involves the execution, in order, of an input transformation
(A.2.1), an authentication transformation (A.2.2), and encryption transformation (A.2.3).

Input: The CCM* mode forward transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to
this key is restricted to the entity itself and its intended key sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.

3. An octet string m of length l(m) octets, where 0 ≤ l(m) < 28L.

4. An octet string a of length l(a) octets, where 0 ≤ l(a) < 264.

The nonce N shall encode the potential values for M such that one can uniquely determine from N the
actually used value of M. The exact format of the nonce N is outside the scope of this specification and shall
be determined and fixed by the actual implementation environment of the CCM* mode.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 315

ZigBee Specification, Annex A

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Note: The exact format of the nonce N is left to the application, to allow simplified hardware and software
implementations in particular settings. Actual implementations of the CCM* mode may restrict the values of
M that are allowed throughout the life-cycle of the encryption key Key to a strict subset of those allowed in
the generic CCM* mode. If so, the format of the nonce N shall be such that one can uniquely determine from
N the actually used value of M in that particular subset. In particular, if M is fixed and the value M=0 is not
allowed, then there are no restrictions on N, in which case the CCM* mode reduces to the CCM mode.

A.2.1 Input transformation

This step involves the transformation of the input strings a and m to the strings AuthData and
PlainTextData, to be used by the authentication transformation and the encryption transformation,
respectively.

This step involves the following steps, in order:

1. Form the octet string representation L(a) of the length l(a) of the octet string a, as follows:

a) If l(a)=0, then L(a) is the empty string.

b) If 0 < l(a) < 216-28, then L(a) is the 2-octets encoding of l(a).

c) If 216-28 ≤ l(a) < 232, then L(a) is the right-concatenation of the octet 0xff, the octet 0xfe, and the 4-
octets encoding of l(a).

d) If 232 ≤ l(a) < 264, then L(a) is the right-concatenation of the octet 0xff, the octet 0xff, and the 8-
octets encoding of l(a).

2. Right-concatenate the octet string L(a) with the octet string a itself. Note that the resulting string
contains l(a) and a encoded in a reversible manner.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest
non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by
16.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest
non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by
16.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = AddAuthData || PlaintextData. (1)

A.2.2 Authentication transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field consisting of the 1-bit Reserved field, the 1-bit Adata field, and the 3-bit
representations of the integers M and L, as follows:

Flags = Reserved || Adata || M || L. (2)

Here, the 1-bit Reserved field is reserved for future expansions and shall be set to ‘0’. The 1-bit Adata
field is set to ‘0’ if l(a)=0, and set to ‘1’ if l(a)>0. The L field is the 3-bit representation of the integer L-
1, in most-significant-bit-first order. The M field is the 3-bit representation of the integer (M-2)/2 if
M>0 and of the integer 0 if M=0, in most-significant-bit-first order.

2. Form the 16-octet B0 field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field
N, and the L-octet representation of the length field l(m), as follows:

B0 = Flags || Nonce N || l(m).
316 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

CCM* Mode of Operation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
3. Parse the message AuthData as B1 || B2 || ... ||Bt, where each message block Bi is a 16-octet string.

The CBC-MAC value Xt+1 is defined by

X0 := 0128; Xi+1 := E(Key, Xi ⊕ Bi) for i=0, ... , t. (3)

Here, E(K, x) is the cipher-text that results from encryption of the plaintext x using the established
block-cipher encryption function E with key Key; the string 0128 is the 16-octet all-zero bit string.

The authentication tag T is the result of omitting all but the leftmost M octets of the CBC-MAC value
Xn+1 thus computed.

A.2.3 Encryption transformation

The data PlaintextData that was established in sub-clause A.2.1 (step 4) and the authentication tag T that
was established in sub-clause A.2.2 (step 3) shall be encrypted using the encryption transformation as
follows:

1. Form the 1-octet Flags field consisting of two 1-bit Reserved fields, and the 3-bit representations of the
integers 0 and L, as follows:

Flags = Reserved || Reserved || 0 || L. (4)

Here, the two 1-bit Reserved fields are reserved for future expansions and shall be set to ‘0’. The L field
is the 3-bit representation of the integer L-1, in most-significant-bit-first order. The ‘0’ field is the 3-bit
representation of the integer 0, in most-significant-bit-first order.

Define the 16-octet Ai field consisting of the 1-octet Flags field defined above, the 15-L octet nonce
field N, and the L-octet representation of the integer i, as follows:

Ai = Flags || Nonce N || Counter i, for i=0, 1, 2, … (5)

Note that this definition ensures that all the Ai fields are distinct from the B0 fields that are actually used,
as those have a Flags field with a non-zero encoding of M in the positions where all Ai fields have an
all-zero encoding of the integer 0 (see sub-clause A.2.2, step 2).

Parse the message PlaintextData as M1 || ... ||Mt, where each message block Mi is a 16-octet string.

The ciphertext blocks C1, ... , Ct are defined by

Ci := E(Key, Ai) ⊕ Mi for i=1, 2, ... , t. (6)

The string Ciphertext is the result of omitting all but the leftmost l(m) octets of the string C1 || ... || Ct.

Define the 16-octet encryption block S0 by

S0:= E(Key, A0). (7)

2. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M
octets of S0 and the authentication tag T.

Output: If any of the above operations has failed, then output ‘invalid’. Otherwise, output the right-
concatenation of the encrypted message Ciphertext and the encrypted authentication tag U.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 317

ZigBee Specification, Annex A

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
A.3 CCM* mode decryption and authentication checking transformation

Input: The CCM* inverse transformation takes as inputs:

1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to
this key is restricted to the entity itself and its intended key-sharing group member(s).

2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.

3. An octet string c of length l(c) octets, where 0 ≤ l(c)-M < 28L.

4. An octet string a of length l(a) octets, where 0 ≤ l(a) < 264.

A.3.1 Decryption transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string. If this operation fails,
output ‘invalid’ and stop. U is the purported encrypted authentication tag. Note that the leftmost string
C has length l(c)-M octets.

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-
negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

3. Use the encryption transformation in sub-clause A.2.3, with as inputs the data CipherTextData and the
tag U.

4. Parse the output string resulting from applying this transformation as m || T, where the right-most string
T is an M-octet string. T is the purported authentication tag. Note that the leftmost string m has length
l(c)-M octets.

A.3.2 Authentication checking transformation

The authentication checking transformation involves the following steps:

1. Form the message AuthData using the input transformation in sub-clause A.2.1, with as inputs the
string a and the octet string m that was established in sub-clause A.3.1 (step 4).

2. Use the authentication transformation in sub-clause A.2.2, with as input the message AuthData.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established
in sub-clause A.3.1 (step 4). If MACTag=T, output ‘valid’; otherwise, output ‘invalid’ and stop.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the octet string m.
Otherwise, accept the octet string m and accept one of the key sharing group member(s) as the source of
m.

A.4 Restrictions

All implementations shall limit the total amount of data that is encrypted with a single key. The CCM*
encryption transformation shall invoke not more than 261 block-cipher encryption function operations in
total, both for the CBC-MAC and for the CTR encryption operations.

At CCM* decryption, one shall verify the (truncated) CBC-MAC before releasing any information, such as,
e.g., plaintext. If the CBC-MAC verification fails, only the fact that the CBC-MAC verification failed shall
be exposed; all other information shall be destroyed.
318 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex B Security Building Blocks
This annex specifies the cryptographic primitives and mechanisms that are used to implement the security
protocols in this standard.

B.1 Symmetric-key cryptographic building blocks

The following symmetric-key cryptographic primitives and data elements are defined for use with all
security-processing operations specified in this standard.

B.1.1 Block-cipher

The block-cipher used in this specification shall be the Advanced Encryption Standard AES-128, as
specified in FIPS Pub 197 [B8]. This block-cipher has a key size keylen that is equal to the block size, in
bits, i.e., keylen=128.

B.1.2 Mode of operation

The block-cipher mode of operation used in this specification shall be the CCM* mode of operation, as
specified in Annex A, with the following instantiations:

1. Each entity shall use the block-cipher E as specified in sub-clause B.1.1;

2. All octets shall be represented as specified in section "Preface";

3. The parameter L shall have the integer value 2;

4. The parameter M shall have one of the following integer values: 0, 4, 8, or 16.

B.1.3 Cryptographic hash function

The cryptographic hash function used in this specification shall be the block-cipher based cryptographic
hash function specified in clause B.6, with the following instantiations:

1. Each entity shall use the block-cipher E as specified in section sub-clause B.1.1;

2. All integers and octets shall be represented as specified in section "Preface".

The Matyas-Meyer-Oseas hash function (specified in clause B.6) has a message digest size hashlen that is
equal to the block size, in bits, of the established block-cipher.

B.1.4 Keyed hash function for message authentication

The keyed hash message authentication code (HMAC) used in this specification shall be HMAC, as
specified in the FIPS Pub 198 [B9], with the following instantiations:

1. Each entity shall use the cryptographic hash H function as specified in sub-clause B.1.3;

2. The block size B shall have the integer value 16 (this block size specifies the length of the data integrity
key, in bytes, that is used by the keyed hash function, i.e., it uses a 128-bit data integrity key);

3. The output size HMAClen of the HMAC function shall have the same integer value as the message
digest parameter hashlen as specified in sub-clause B.1.3.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 319

ZigBee Specification, Annex B

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.1.5 Specialized keyed hash function for message authentication

The specialized208 keyed hash message authentication code used in this specification shall be the keyed hash
message authentication code, as specified in sub-clause B.1.4.

B.1.6 Challenge domain parameters

The challenge domain parameters used in the specification shall be as specified in sub-clause B.3.1, with the
following instantiation: (minchallengelen, maxchallengelen)=(128,128).

All challenges shall be validated using the challenge validation primitive as specified in clause B.4.

B.2 Key Agreement Schemes

B.2.1 Symmetric-key key agreement scheme

The symmetric-key key agreement protocols in this standard shall use the full symmetric-key with key
confirmation scheme as specified in clause B.7, with the following instantiations:

1. Each entity shall be identified as specified in "Preface";

2. Each entity shall use the HMAC-scheme as specified in sub-clause B.1.4;

3. Each entity shall use the specialized HMAC-scheme as specified in sub-clause B.1.5;

4. Each entity shall use the cryptographic hash function as specified in sub-clause B.1.3.,

5. The parameter keydatalen shall have the same integer value as the key size parameter keylen as
specified in sub-clause B.1.1;

6. The parameter SharedData shall be the empty string; parameter shareddatalen shall have the integer
value 0;

7. The optional parameters Text1 and Text2 as specified in sub-clause B.7.1 and sub-clause B.7.2 shall
both be the empty string.

8. Each entity shall use the challenge domain parameters as specified in sub-clause B.1.6.

9. All octets shall be represented as specified in section "Preface".

B.3 Challenge Domain Parameter Generation and Validation

This section specifies the primitives that shall be used to generate and validate challenge domain parameters.

Challenge domain parameters impose constraints on the length(s) of bit challenges a scheme expects. As
such, this determine a bound on the entropy of challenges and, thereby, on the security of the cryptographic
schemes in which these challenges are used. In most schemes, the challenge domain parameters will be such
that only challenges of a fixed length will be accepted (e.g., 128-bit challenges). However, one may define
the challenge domain parameters such that challenges of varying length might be accepted. The latter is
useful in contexts where entities that wish to engage in cryptographic schemes might have a bad random

208This refers to a MAC scheme where the MAC function has the additional property that it is also pre-image and collision resistant for
parties knowing the key (see also Remark 9.8 of [B18]). Such MAC functions allow key derivation in contexts where unilateral key
control is undesirable.
320 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
number generator on-board. Allowing both entities that engage in a scheme to contribute sufficiently long
inputs enables each of these to contribute sufficient entropy to the scheme at hand.

In this standard, challenge domain parameters will be shared by a number of entities using a scheme of the
standard. The challenge domain parameters may be public; the security of the system does not rely on these
parameters being secret.

B.3.1 Challenge Domain Parameter Generation

Challenge domain parameters shall be generated using the following routine.

Input: This routine does not take any input.

Actions: The following actions are taken:

1. Choose two nonnegative integers minchallengelen and maxchallengelen, such that minchallengelen ≤
maxchallengelen.

Output: Challenge domain parameters D=(minchallengelen, maxchallengelen).

B.3.2 Challenge Domain Parameter Verification

Challenge domain parameters shall be verified using the following routine.

Input: Purported set of challenge domain parameters D=(minchallengelen, maxchallengelen).

Actions: The following checks are made:

1. Check that minchallengelen and maxchallengelen are nonnegative integers.

2. Check that minchallengelen ≤ maxchallengelen.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the challenge domain
parameters. Otherwise, output ‘valid’ and accept the challenge domain parameters.

B.4 Challenge Validation Primitive

Challenge validation refers to the process of checking the length properties of a challenge. It is used to check
whether a challenge to be used by a scheme in the standard has sufficient length (e.g., messages that are too
short are discarded, due to insufficient entropy).

The challenge validation primitive is used in clause B.7.

Input: The input of the validation transformation is a valid set of challenge domain parameters
D=(minchallengelen, maxchallengelen), together with the bit string Challenge.

Actions: The following actions are taken:

1. Compute the bit-length challengelen of the bit string Challenge.

2. Verify that challengelen ∈ [minchallengelen, maxchallengelen]. (That is, verify that the challenge has
an appropriate length.)

Output: If the above verification fails, then output ‘invalid’ and reject the challenge. Otherwise, output
‘valid’ and accept the challenge.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 321

ZigBee Specification, Annex B

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.5 Secret Key Generation (SKG) Primitive

This section specifies the SKG primitive that shall be used by the symmetric-key key agreement schemes
specified in this standard.

This primitive derives a shared secret value from a challenge owned by an entity U1 and a challenge owned
by an entity U2 when all the challenges share the same challenge domain parameters. If the two entities both
correctly execute this primitive with corresponding challenges as inputs, the same shared secret value will
be produced.

The shared secret value shall be calculated as follows:

Prerequisites: The following are the prerequisites for the use of the SKG primitive:

1. Each entity shall be bound to a unique identifier (e.g., distinguished names). All identifiers shall be bit
strings of the same length entlen bits. Entity U1’s identifier will be denoted by the bit string U1. Entity
U2’s identifier will be denoted by the bit string U2.

2. A specialized209 MAC scheme shall have been chosen, with tagging transformation as specified in
Section 5.7.1 of ANSI X9.63-2001 [B7]. The length in bits of the keys used by the specialized MAC
scheme is denoted by mackeylen.

Input: The SKG primitive takes as input:

1. A bit string MACKey of length mackeylen bits to be used as the key of the established specialized MAC
scheme.

2. A bit string QEU1 owned by U1.

3. A bit string QEU2 owned by U2.

Actions: The following actions are taken:

1. Form the bit string consisting of U1’s identifier, U2’s identifier, the bit string QEU1 corresponding to
U1’s challenge, and the bit string QEU2 corresponding to QEU2’s challenge:

MacData = U1 || U2 || QEU1 || QEU2. (8)

2. Calculate the tag MacTag for MacData under the key MacKey using the tagging transformation of the
established specialized MAC scheme:

MacTag = MACMacKey(MacData). (9)

3. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop.

4. Set Z=MacTag.

Output: The bit string Z as the shared secret value.

209This refers to a MAC scheme where the MAC function has the additional property that it is also pre-
image and collision resistant for parties knowing the key (see also Remark 9.8 of [B18]). Such MAC
functions allow key derivation in contexts where unilateral key control is undesirable.
322 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.6 Block-Cipher-Based Cryptographic Hash Function

This section specifies the Matyas-Meyer-Oseas hash function, a cryptographic hash function based on
block-ciphers. We define this hash function for block-ciphers with a key size that is equal to the block size,
such as AES-128, and with a particular choice for the fixed initialization vector IV (we take IV=0). For a
more general definition of the Matyas-Meyer-Oseas hash function, we refer to Section 9.4.1 of [B18].

Prerequisites: The following are the prerequisites for the operation of Matyas-Meyer-Oseas hash function:

1. A block-cipher encryption function E shall have been chosen, with a key size that is equal to the block
size. The Matyas-Meyer-Oseas hash function has a message digest size that is equal to the block size of
the established encryption function. It operates on bit strings of length less than 2n, where n is the block
size, in octets, of the established block-cipher.

2. A fixed representation of integers as binary strings or octet strings shall have been chosen.

Input: The input to the Matyas-Meyer-Oseas hash function is as follows:

1. A bit string M of length l bits, where 0≤ l < 2n.

Actions: The hash value shall be derived as follows:

1. Pad the message M according to the following method:

a) Right-concatenate to the message M the binary consisting of the bit ‘1’ followed by k ‘0’ bits, where
k is the smallest non-negative solution to the equation

l+1+k ≡ 7n (mod 8n). (10)

b) Form the padded message M’ by right-concatenating to the resulting string the n-bit string that is
equal to the binary representation of the integer l.

2. Parse the padded message M’ as M1 || M2|| … || Mt where each message block Mi is an n-octet string.

3. The output Hasht is defined by

Hash0 =08n; Hashj =E(Hashj-1, Mj) ⊕ Mj for j=1,…,t. (11)

Here, E(K, x) is the ciphertext that results from encryption of the plaintext x, using the established
block-cipher encryption function E with key K; the string 08n is the n-octet all-zero bit string.

Output: The bit string Hasht as the hash value.

Note that the cryptographic hash function operates on bit strength of length less than 2n bits, where n is the
block size (or key size) of the established block cipher, in bytes. For example, the Matyas-Meyer-Oseas hash
function with AES-128 operates on bit strings of length less than 216 bits. It is assumed that all hash function
calls are on bit strings of length less than 2n bits. Any scheme attempting to call the hash function on a bit
string exceeding 2n bits shall output ‘invalid’ and stop.

B.7 Symmetric-Key Authenticated Key Agreement Scheme

This section specifies the full symmetric-key key agreement with key confirmation scheme. A MAC scheme
is used to provide key confirmation.

Figure 90 illustrates the messaging involved in the use of the full symmetric-key key agreement with key
confirmation scheme.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 323

ZigBee Specification, Annex B

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Figure 90 Symmetric-Key Authenticated Key Agreement Scheme

The scheme is ‘asymmetric’ so two transformations are specified. U uses the transformation specified in
sub-clause B.7.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation
specified in sub-clause B.7.2 to agree on keying data with U if V is the protocol’s responder.

The essential difference between the role of the initiator and the role of the responder is merely that the
initiator sends the first pass of the exchange.

If U executes the initiator transformation, and V executes the responder transformation with the shared
secret keying material as input, then U and V will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s challenge domain parameters D=(minchallengelen,
maxchallengelen).

2. Each entity shall have access to a bit string Key of length keylen bits to be used as the key. Each party
shall have evidence that access to this key is restricted to the entity itself and the other entity involved in
the symmetric-key authenticated key agreement scheme.

3. Each entity shall be bound to a unique identifier (e.g., distinguished names). All identifiers shall be bit
strings of the same length entlen bits. Entity U’s identifier will be denoted by the bit string U. Entity V’s
identifier will be denoted by the bit string V.

4. Each entity shall have decided which MAC scheme to use as specified in Section 5.7 of ANSI X9.63-
2001 [B7]. The length in bits of the keys used by the chosen MAC scheme is denoted by mackeylen.

5. A cryptographic hash function shall have been chosen for use with the key derivation function.

6. A specialized210 MAC scheme shall have been chosen for use with the secret key generation primitive
with tagging transformation as specified in Section 5.7.1 of ANSI X9.63-2001 [B7]. The length in bits
of the keys used by the specialized MAC scheme is denoted by keylen.

7. A fixed representation of octets as binary strings shall have been chosen. (e.g., most-significant-bit-first
order or least-significant-bit-first order).

210This refers to a MAC function with the additional property that it is also pre-image and collision resistant for parties knowing the
key (see also Remark 9.8 of [B18]. Specialized MAC functions allow key derivation in contexts where unilateral key control is undesir-
able.

QEV, MACMacKey(0216 || V || U || QEV || QEU || [Text1]), [Text1]

MACMacKey(0316 || U || V || QEU || QEV || [Text2]), [Text2]

U V

Key

QEU
324 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
B.7.1 Initiator Transformation

U shall execute the following transformation to agree on keying data with V if U is the protocol’s initiator. U
shall obtain an authentic copy of V’s identifier and an authentic copy of the static secret key Key shared with
V.

Input: The input to the initiator transformation is:

1. An integer keydatalen that is the length in bits of the keying data to be generated.

2. (Optional) A bit string SharedData of length shareddatalen bits that consists of some data shared by U
and V.

3. (Optional) A bit string Text2 that consists of some additional data to be provided from U to V.

Ingredients: The initiator transformation employs the challenge generation primitive in Section 5.3 of
ANSI X9.63-2001 [B7], the challenge validation primitive in sub-clause B.3.2, the SKG primitive in sub-
clause B.5, the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7], and one of the MAC
schemes in Section 5.7 of ANSI X9.63-2001 [B7].

Actions: Keying data shall be derived as follows:

1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEU for the challenge domain parameters D. Send QEU to V.

2. Then receive from V a challenge QEV’ purportedly owned by V. If this value is not received, output
‘invalid’ and stop.

3. Receive from V an optional bit string Text1, and a purported tag MacTag1’. If these values are not
received, output ‘invalid’ and stop.

4. Verify that QEV’ is a valid challenge for the challenge domain parameters D as specified in section sub-
clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

5. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU
owned by U and Q2=QEV’ owned by V, using as key the shared key Key. If the SKG primitive outputs
‘invalid’, output ‘invalid’ and stop.

6. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the established hash
function to derive keying data KKeyData of length mackeylen+keydatalen bits from the shared secret
value Z and the shared data [SharedData].

7. Parse the leftmost mackeylen bits of KKeyData as a MAC key MacKey and the remaining bits as keying
data KeyData.

8. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV’, the bit
string QEU, and if present Text1:

MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]. (12)

9. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking
transformation of the appropriate MAC scheme specified in Section 5.7.2 of ANSI X9.63-2001 [B7]. If
the tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop.

10. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU
corresponding to U’s challenge, the bit string QEV’ corresponding to V’s challenge, and optionally a bit
string Text2:

MacData2 = 0316 || U || V || QEU || QEV’ || [Text2]. (13)
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 325

ZigBee Specification, Annex B

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
11. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7.1 of ANSI X9.63-2001 [B7]:

MacTag2 = MACMacKey(MacData2). (14)

12. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and, if present,
Text2 to V.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the bit strings KeyData
and Text1. Otherwise, output ‘valid’, accept the bit string KeyData as the keying data of length keydatalen
bits shared with V and accept V as the source of the bit string Text1 (if present).

B.7.2 Responder Transformation

V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder.
V shall obtain an authentic copy of U’s identifier and an authentic copy of the static secret key Key shared
with U.

Input: The input to the responder transformation is:

1. A challenge QEU’ purportedly owned by U.

2. An integer keydatalen that is the length in bits of the keying data to be generated.

3. (Optional) A bit string SharedData of length shareddatalen bits that consists of some data shared by U
and V.

4. (Optional) A bit string Text1 that consists of some additional data to be provided from V to U.

Ingredients: The responder transformation employs the challenge generation primitive in Section 5.3 of
ANSI X9.63-2001 [B7], the challenge validation primitive in sub-clause B.3.2, the SKG primitive in
clause B.5, the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7], and one of the MAC
schemes in Section 5.7 of ANSI X9.63-2001 [B7].

Actions: Keying data shall be derived as follows:

1. Verify that QEU’ is a valid challenge for the challenge domain parameters D as specified in sub-
clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEV for the challenge domain parameters D. Send to U the challenge QEV.

3. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU’
owned by U and Q2=QEV owned by V, using as key the shared key Key. If the SKG primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the established hash
function to derive keying data KKeyData of length mackeylen+keydatalen bits from the shared secret
value Z and the shared data [SharedData].

5. Parse the leftmost mackeylen bits of KKeyData as a MAC key MacKey and the remaining bits as keying
data KeyData.

6. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV, the bit
string QEU’, and, optionally, a bit string Text1:

MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]. (15)
326 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

Security Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7 of ANSI X9.63-2001 [B7]:

MacTag1 = MACMacKey(MacData1). (16)

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U, if present the bit
string Text1, and MacTag1.

8. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not
received, output ‘invalid’ and stop.

9. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU’
corresponding to U’s purported challenge, the bit string QEV corresponding to V’s challenge, and the
bit string Text2 (if present):

MacData2 = 0316 || U || V || QEU’ || QEV || [Text2]. (17)

10. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking
transformation of the appropriate MAC scheme specified in Section 5.7 ANSI X9.63-2001 [B7]. If the
tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the bit strings KeyData
and Text2. Otherwise, output ‘valid’, accept the bit string KeyData as the keying data of length keydatalen
bits shared with U and accept U as the source of the bit string Text2 (if present).
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 327

ZigBee Specification, Annex B

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
328 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex C Test Vectors for Cryptographic Building
Blocks
This annex provides sample test vectors for the ZigBee community, aimed at assisting in building
interoperable security implementations. The sample test vectors are provided as is, pending independent
validation.

C.1 Data Conversions

For test vectors, see Appendix J1 of ANSI X9.63-2001 [B7].

C.2 AES Block Cipher

This annex provides sample test vectors for the block-cipher specified in sub-clause B.1.1.

For test vectors, see FIPS Pub 197 [B8].

C.3 CCM* Mode Encryption and Authentication Transformation

This annex provides sample test vectors for the mode of operation as specified in sub-clause B.1.2.

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.

Input: The inputs to the mode of operation are:

1. The key Key of size keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF. (18)

2. The nonce N of 15-L=13 octets to be used:

Nonce = A0 A1 A2 A3 A4 A5 A6 A7 || 03 02 01 00 || 06. (19)

3. The octet string m of length l(m)=23 octets to be used:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E. (20)

4. The octet string a of length l(a)=8 octets to be used:

a = 00 01 02 03 04 05 06 07. (21)

C.3.1 Input Transformation

This step involves the transformation of the input strings a and m to the strings AuthData and
PlainTextData, to be used by the authentication transformation and the encryption transformation,
respectively.

1. Form the octet string representation L(a) of the length l(a) of the octet string a:
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 329

ZigBee Specification, Annex C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
L(a) = 00 08.

2. Right-concatenate the octet string L(a) and the octet string a itself:

L(a) || a = 00 08 || 00 01 02 03 04 05 06 07.

3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest
non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by
16:

AddAuthData = 00 08 || 00 01 02 03 04 05 06 07 || 00 00 00 00 00 00.

4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest
non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by
16:

PlaintextData = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 ||

18 19 1A 1B 1C 1D 1E || 00 00 00 00 00 00 00 00 00.

5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = 00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 ||

08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

C.3.2 Authentication Transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 59.

2. Form the 16-octet B0 field as follows:

B0 = 59 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 17.

3. Parse the message AuthData as B1 || B2 ||B3, where each message block Bi is a 16-octet string.

4. The CBC-MAC value X4 is computed as follows:

The authentication tag T is the result of omitting all but the leftmost M=8 octets of the CBC-MAC value X4:

T = B9 D7 89 67 04 BC FA 20.

i Bi Xi

0 59 A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 00 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1 00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 F7 74 D1 6E A7 2D C0 B3 E4 5E 36 CA 8F 24 3B 1A

2 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 90 2E 72 58 AE 5A 4B 5D 85 7A 25 19 F3 C7 3A B3

3 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00 5A B2 C8 6E 3E DA 23 D2 7C 49 7D DF 49 BB B4 09

4 æ B9 D7 89 67 04 BC FA 20 B2 10 36 74 45 F9 83 D6
330 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

Test Vectors for Cryptographic Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.3.3 Encryption Transformation

The data PlaintextData shall be encrypted using the encryption transformation as follows:

1. Form the 1-octet Flags field as follows:

Flags = 01.

2. Define the 16-octet Ai field as follows:

3. Parse the message PlaintextData as M1 ||M2, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, C2 are computed as follows:

5. The string Ciphertext is the result of omitting all but the leftmost l(m)=23 octets of the string C1 ||C2:

CipherText = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8.

6. Define the 16-octet encryption block S0 by

S0 = E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.

7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M=8
octets of S0 and the authentication tag T:

U = 0A 89 5C C1 D8 FF 94 69.

Output: the right-concatenation c of the encrypted message Ciphertext and the encrypted authentication tag
U:

c = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||

 0A 89 5C C1 D8 FF 94 69.

C.4 CCM* Mode Decryption and Authentication Checking Transformation

This annex provides sample test vectors for the inverse of the mode of operation as specified in sub-clause
B.1.2.

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

1. The parameter M shall have the integer value 8.

i Ai

0 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

1 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

2 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

i AES(Key,Ai) Ci = AES(Key,Ai) ⊕ Mi

1 12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10

2 CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17 D4 66 4E CA D8 54 A8 35 46 21 46 03 AA C6 2A 17
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 331

ZigBee Specification, Annex C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Input: The inputs to the inverse mode of operation are:

1. The key Key of size keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2. The nonce N of 15-L=13 octets to be used:

Nonce = A0 A1 A2 A3 A4 A5 A6 A7 || 03 02 01 00 || 06.

3. The octet string c of length l(c)=31 octets to be used:

c = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||
 0A 89 5C C1 D8 FF 94 69.

4. The octet string a of length l(a)=8 octets to be used:

a = 00 01 02 03 04 05 06 07.

C.4.1 Decryption Transformation

The decryption transformation involves the following steps, in order:

1. Parse the message c as C ||U, where the right-most string U is an M-octet string:

C = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8;

U = 0A 89 5C C1 D8 FF 94 69.

2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non-
negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

CipherTextData = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 ||
 D4 66 4E CA D8 54 A8 || 00 00 00 00 00 00 00 00.

3. Form the 1-octet Flags field as follows:

Flags = 01.

4. Define the 16-octet Ai field as follows:

5. Parse the message CiphertextData as C1 ||C2, where each message block Ci is a 16-octet string.

6. The ciphertext blocks P1, P2 are computed as follows:

i Ai

0 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

1 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

2 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

i AES(Key,Ai) Pi= AES(Key,Ai) ⊕ Ci

1 12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

2 CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00
332 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

Test Vectors for Cryptographic Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
7. The octet string m is the result of omitting all but the leftmost l(m)=23 octets of the string P1 || P2:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 || 18 19 1A 1B 1C 1D 1E.

8. Define the 16-octet encryption block S0 by

S0 = E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.

9. The purported authentication tag T is the result of XOR-ing the string consisting of the leftmost M=8
octets of S0 and the octet string U:

T = B9 D7 89 67 04 BC FA 20.

C.4.2 Authentication Checking Transformation

The authentication checking transformation involves the following steps:

1. Form the message AuthData using the input transformation in sub-clause C.3.1, with as inputs the string
a and the octet string m that was established in sub-clause C.4.1(step 7.):

AuthData = 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 ||
 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

2. Use the authentication transformation in sub-clause C.3.2, with as input the message AuthData to
compute the authentication tag MACTag:

MACTag = B9 D7 89 67 04 BC FA 20.

3. Compare the output tag MACTag resulting from this transformation with the tag T that was established
in sub-clause C.4.1(step 9.):

T = B9 D7 89 67 04 BC FA 20 = MACTag.

Output: Since MACTag=T, output ‘valid’ and accept the octet string m and accept one of the key sharing
group member(s) as the source of m.

C.5 Cryptographic Hash Function

This annex provides sample test vectors for the cryptographic hash function specified in clause C.5.

C.5.1 Test Vector Set 1

Input: The input to the cryptographic hash function is as follows:

1. The bit string M of length l=8 bits to be used:

M=C0.

Actions: The hash value shall be derived as follows:

1. Pad the message M by right-concatenating to M the bit ‘1’ followed by the smallest non-negative
number of ‘0’ bits, such that the resulting string has length 14 (mod 16) octets:

C0 || 80 00 00 00 00 00 00 00 00 00 00 00 00.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 333

ZigBee Specification, Annex C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

i

0

1 CF

2

2. Form the padded message M’ by right-concatenating to the resulting string the 16-bit string that is equal
to the binary representation of the integer l.

M’ = C0 || 80 00 00 00 00 00 00 00 00 00 00 00 00 || 00 08.

3. Parse the padded message M’ as M1, where each message block Mi is a 16-octet string.

4. The hash value Hash1 is computed as follows:

Output: the 16-octet string Hash = Hash1 = AE 3A 10 2A 28 D4 3E E0 D4 A0 9E 22 78 8B 20 6C.

C.5.2 Test Vector Set 2

Input: The input to the cryptographic hash function is as follows:

5. The bit string M of length l=128 bits to be used:

M=C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

Actions: The hash value shall be derived as follows:

1. Pad the message M by right-concatenating to M the bit ‘1’ followed by the smallest non-negative
number of ‘0’ bits, such that the resulting string has length 14 (mod 16) octets:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF ||
80 00 00 00 00 00 00 00 00 00 00 00 00 00.

2. Form the padded message M’ by right-concatenating to the resulting string the 16-bit string that is equal
to the binary representation of the integer l.

M’ = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF ||
80 00 00 00 00 00 00 00 00 00 00 00 00 00 || 00 80.

3. Parse the padded message M’ as M1 || M2, where each message block Mi is a 16-octet string.

4. The hash value Hash2 is computed as follows:

Output: the 16-octet string Hash = Hash2 = A7 97 7E 88 BC 0B 61 E8 21 08 27 10 9A 22 8F 2D.

i Hashi Mi

0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 æ

1 AE 3A 10 2A 28 D4 3E E0 D4 A0 9E 22 78 8B 20 6C C0 80 00 00 00 00 00 00 00 00 00 00 00 00 00 08

Hashi Mi

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 æ

84 EE 75 E5 4F 9A 52 0F 0B 30 9C 35 29 1F 83 4F C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE

A7 97 7E 88 BC 0B 61 E8 21 08 27 10 9A 22 8F 2D 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08
334 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

Test Vectors for Cryptographic Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.6 Keyed Hash Function for Message Authentication

This annex provides sample test vectors for the keyed hash function for message authentication as specified
in clause C.6.

C.6.1 Test Vector Set 1

Input: The input to the keyed hash function is as follows:

1. The key Key of size keylen=128 bits to be used:

Key = 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F.

2. The bit string M of length l=8 bits to be used:

M=C0.

Actions: The keyed hash value shall be derived as follows:

1. Create the 16-octet string ipad (inner pad) as follows:

ipad = 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36.

2. Form the inner key Key1 by XOR-ing the bit string Key and the octet string ipad:

Key1 = Key ⊕ ipad = 76 77 74 75 72 73 70 71 7E 7F 7C 7D 7A 7B 78 79.

3. Form the padded message M1 by right-concatenating the bit string Key1 with the bit string M:

M1 = Key1 || M = 76 77 74 75 72 73 70 71 7E 7F 7C 7D 7A 7B 78 79 || C0.

4. Compute the hash value Hash1 of the bit string M1:

Hash1 = 3C 3D 53 75 29 A7 A9 A0 3F 66 9D CD 88 6C B5 2C.

5. Create the 16-octet string opad (outer pad) as follows:

opad = 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C.

6. Form the outer key Key2 by XOR-ing the bit string Key and the octet string opad:

Key2 = Key ⊕ opad = 1C 1D 1E 1F 18 19 1A 1B 14 15 16 17 10 11 12 13.

7. Form the padded message M2 by right-concatenating the bit string Key2 with the bit string Hash1:

M2 = Key2 || Hash1 =1C 1D 1E 1F 18 19 1A 1B 14 15 16 17 10 11 12 13 ||
3C 3D 53 75 29 A7 A9 A0 3F 66 9D CD 88 6C B5 2C.

8. Compute the hash value Hash2 of the bit string M2:

Hash2 = 45 12 80 7B F9 4C B3 40 0F 0E 2C 25 FB 76 E9 99.

Output: the 16-octet string HMAC = Hash2 = 45 12 80 7B F9 4C B3 40 0F 0E 2C 25 FB 76 E9 99.

C.6.2 Test Vector Set 2

Input: The input to the keyed hash function is as follows:
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 335

ZigBee Specification, Annex C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
1. The key Key of size keylen=256 bits to be used:

Key = 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F ||
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F.

2. The bit string M of length l=128 bits to be used:

M = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

Actions: The keyed hash value shall be derived as follows:

1. Compute the hash value Key0 of the bit string Key:

Key0 = 22 F4 0C BE 15 66 AC CF EB 77 77 E1 C4 A9 BB 43.

2. Create the 16-octet string ipad (inner pad) as follows:

ipad = 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36.

3. Form the inner key Key1 by XOR-ing the bit key Key0 and the octet string ipad:

Key1 = Key0 ⊕ ipad = 14 C2 3A 88 23 50 9A F9 DD 41 41 D7 F2 9F 8D 75.

4. Form the padded message M1 by right-concatenating the bit string Key1 with the bit string M:

M1 = Key1 || M = 14 C2 3A 88 23 50 9A F9 DD 41 41 D7 F2 9F 8D 75 ||
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

5. Compute the hash value Hash1 of the bit string M1:

Hash1 = 42 65 BE 29 74 55 8C A2 7B 77 85 AC 73 F2 22 10.

6. Create the 16-octet string opad (outer pad) as follows:

opad = 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C.

7. Form the outer key Key2 by XOR-ing the bit string Key0 and the octet string opad:

Key2 = Key0 ⊕ opad = 7E A8 50 E2 49 3A F0 93 B7 2B 2B BD 98 F5 E7 1F.

8. Form the padded message M2 by right-concatenating the bit string Key2 with the bit string Hash1:

M2 = Key2 || Hash1 = 7E A8 50 E2 49 3A F0 93 B7 2B 2B BD 98 F5 E7 1F ||
42 65 BE 29 74 55 8C A2 7B 77 85 AC 73 F2 22 10.

9. Compute the hash value Hash2 of the bit string M2:

Hash2 = A3 B0 07 99 84 BF 15 57 F7 4A 0D 63 87 E0 A1 1A.

Output: the 16-octet string HMAC = Hash2 = A3 B0 07 99 84 BF 15 57 F7 4A 0D 63 87 E0 A1 1A.

C.7 Specialized Keyed Hash Function for Message Authentication

This annex provides sample test vectors for the specialized keyed hash function for message authentication
as specified in clause C.7.

For test vectors, see clause C.6.
336 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

Test Vectors for Cryptographic Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
C.8 Symmetric-Key Key Agreement Scheme

This annex provides sample test vectors for the symmetric-key key agreement scheme as specified in clause
C.8.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. The unique identifiers of the entities U and V to be used:

U’s identifier: U=55 73 65 72 20 55 0D 0A;

V’s identifier: V=55 73 65 72 20 56 0D 0A.

2. The key Key of length keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

3. The optional parameter SharedData of length shareddatalen=48 bits to be used:

SharedData = D0 D1 D2 D3 D4 D5.

C.8.1 Initiator Transformation

U obtains an authentic copy of V’s identifier and an authentic copy of the static secret key Key shared with
V.

Input: The input to the initiator transformation is:

1. The length keydatalen in bits of the keying data to be generated: keydatalen=128.

2. The optional bit string Text2 to be used is not present, i.e., Text2 = ε (the empty string).

Actions: U derives keying data as follows:

1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEU for the challenge domain parameters D. Send QEU to V.
QEU = 9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

2. Then receive from V a challenge QEV’ purportedly owned by V. If this value is not received, output
‘invalid’ and stop.
QEV’ = BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

3. Receive from V an optional bit string Text1, and a purported tag MacTag1’. If these values are not
received, output ‘invalid’ and stop.
Text1 = ε (the empty string);

MacTag1’ = E6 C3 DE 1F E8 63 15 B9 E6 A0 2B 44 FF 63 D8 D0.

4. Verify that QEV’ is a valid challenge for the challenge domain parameters D as specified in sub-clause
B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

5. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU
owned by U and Q2=QEV’ owned by V, using as key the shared key Key. If the SKG primitive outputs
‘invalid’, output ‘invalid’ and stop.

a) Form the bit string MACData = U || V || QEU || QEV’:
MACData = 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||

9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 337

ZigBee Specification, Annex C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
b) Calculate the MACTag for MACData under the key Key using the tagging transformation of the
HMAC-Matyas-Meyer-Oseas MAC scheme:
MACTag=MACKey(MACData)= 78 7C DE F6 80 13 12 CD 41 1B CD 62 14

91 F8 6D.

c) Set Z=MACTag:
Z = 78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8 6D.

6. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the Matyas-Meyer-
Oseas hash function to derive keying data KKeyData of length 256 bits from the shared secret value Z
and the shared data SharedData:

a) The hash values Hash1, Hash2 are computed as follows:

b) Set KKeyData=Hash1 || Hash2:
KKeyData = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50 ||

 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

7. Parse the leftmost 128 bits of KKeyData as a MAC key MacKey and the remaining bits as keying data
KeyData.

MacKey = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50;

KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

8. Form the bit string MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]:

MacData1 = 02 || 55 73 65 72 20 56 0D 0A || 55 73 65 72 20 55 0D 0A ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53 ||
9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

9. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking
transformation specified in Section 5.7.2 of ANSI X9.63-2001 [B7]. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

a) Calculate MacTag1=MACMacKe y (MacData1) = E6 C3 DE 1F E8 63 15 B9 E6 A0 2B 44 FF 63 D8
D0.

b) Verify that MacTag1=MacTag1’.

10. Form the bit string MacData2 = 0316 || U || V || QEU || QEV’ || [Text2]:

MacData2 = 03 || 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||
9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

11. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation
specified in Section 5.7.1 of ANSI X9.63-2001 [B7] with the HMAC-Matyas-Meyer-Oseas MAC
scheme:

MacTag2 = MACMacKey (MacData2) = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3 6D. (22)

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and, if present,
Text2 to V.

i Hashi=H(Xi) Xi

1 E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD
E9 A1 50

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 01 || D0 D1 D2 D3 D4 D5

2 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5
6E A3 7F

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 02 || D0 D1 D2 D3 D4 D5
338 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

Test Vectors for Cryptographic Building Blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Output: output ‘valid’ and accept the 128-bit string KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E
A3 7F as the keying data shared with V.

C.8.2 Responder Transformation

V obtains an authentic copy of U’s identifier and an authentic copy of the static secret key Key shared with
U.

Input: The input to the responder transformation is:

1. A challenge QEU’ purportedly owned by U.
QEU’ = 9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

2. The length keydatalen in bits of the keying data to be generated: keydatalen=128.

3. The optional bit string Text1 to be used is not present, i.e., Text1 = ε (the empty string).

Actions: V derives keying data as follows:

1. Verify that QEU’ is a valid challenge for the challenge domain parameters D as specified in sub-clause
B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.

2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge
QEV for the challenge domain parameters D. Send to U the challenge QEV.
QEV = BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

3. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU’
owned by U and Q2=QEV owned by V, using as key the shared key SharedKey. If the SKG primitive
outputs ‘invalid’, output ‘invalid’ and stop.

a) Form the bit string MACData=U || V || QEU’ || QEV:
MACData= 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||

9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

b) Calculate the MACTag for MACData under the key Key using the tagging transformation of the
HMAC-Matyas-Meyer-Oseas MAC scheme:
MACTag = MACKey (MACData) = 78 7C DE F6 80 13 12 CD 41 1B CD 62 14

91 F8 6D.

c) Set Z=MACTag:
Z = 78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8 6D.

4. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the Matyas-Meyer-
Oseas hash function to derive keying data KKeyData of length 256 bits from the shared secret value Z
and the shared data SharedData:

a) The hash values Hash1, Hash2 are computed as follows:

b) Set KKeyData=Hash1 || Hash2:

i Hashi=H(Xi) Xi

1 E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9
A1 50

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 01 || D0 D1 D2 D3 D4 D5

2 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E
A3 7F

78 7C DE F6 80 13 12 CD 41 1B CD 62 14 91 F8
6D || 00 00 00 02 || D0 D1 D2 D3 D4 D5
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 339

ZigBee Specification, Annex C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
KKeyData = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50 ||
 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

5. Parse the leftmost 128 bits of KKeyData as a MAC key MacKey and the remaining bits as keying data
KeyData.

MacKey = E4 D4 5F 76 2A 36 B7 99 F9 5E C2 C6 FD E9 A1 50;

KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E A3 7F.

6. Form the bit string MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]:

MacData1 = 02 || 55 73 65 72 20 56 0D 0A || 55 73 65 72 20 55 0D 0A ||
BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53 ||
9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96.

7. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation
specified in Section 5.7 of ANSI X9.63-2001 [B7] with the HMAC-Matyas-Meyer-Oseas MAC
scheme:
MacTag1 = MACMacKey(MacData1)= E6 C3 DE 1F E8 63 15 B9 E6 A0 2B 44

 63 D8 D0.

8. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U, if present the bit
string Text1, and MacTag1.

9. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not
received, output ‘invalid’ and stop.

Text2 = ε (the empty string);

MacTag2’ = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3 6D.

10. Form the bit string MacData2 = 0316 || U || V || QEU’ || QEV || [Text2]:

MacData2 = 03 || 55 73 65 72 20 55 0D 0A || 55 73 65 72 20 56 0D 0A ||
 9E 3F 0C 19 05 4B 05 44 D5 A7 17 62 0A F2 7D 96 ||
 BF 14 DF 94 94 39 D2 CE 24 C9 09 53 B5 72 D6 53.

11. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking
transformation specified in Section 5.7 ANSI X9.63-2001 [B7]. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

a) Calculate MacTag2=MACMacKey (MacData2) = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3
6D.

b) Verify that MacTag2=MacTag2’.

Output: output ‘valid’ and accept the 128-bit string KeyData = 72 57 7D 02 CC E1 39 33 1A BF F4 0B C5 6E
A3 7F as the keying data shared with U.
340 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex D ZigBee Protocol Stack, Settable Values
(Knobs)
This white paper details the settable parameters within the ZigBee protocol stack.

The goal of this document is to list the various settings that need to be chosen so that differing ZigBee
implementations and networks will be able to interoperate. Along with the specific “knobs”/settings a
description and potential “cost” be that volatile or non-volatile memory, network constraints or other costs.

These settings fall into three major categories: Network settings, Application Settings, and Security Settings.
Each will be covered in a separate section.

D.1 Network Settings

The settable parameters for the Network Layer include:

— nwkMaxDepth and nwkMaxChildren

— nwkMaxRouters

— Size of the routing table

— Size of neighbor table

— Size of route discovery table

— Number of reserved routing table entries

— How many packets to buffer pending route discovery

— How many packets to buffer on behalf of end devices

— Routing cost calculation

— nwkSymLink

D.1.1 nwkMaxDepth and nwkMaxChildren

D.1.1.1 Description

The network formation procedure in ZigBee naturally forms trees of association starting with the ZigBee
coordinator. In star mode, of course, the tree is a degenerate one with unit depth but tree and mesh mode
allow for deeper trees. The NWK Information Base (NIB) attribute nwkMaxDepth specifies the maximum
number of allowable levels in a particular tree and the attribute nwkMaxChildren specifies the maximum
number of children that any node in the tree may have. By convention, values for these NIB attributes are
chosen by the ZigBee coordinator at network startup and shared by all devices in the network.

The network diameter, which is the maximum number of hops a packet will have to travel to reach any other
device in the network, is just 2*nwkMaxDepth, while the total address block size, assuming that all the
children are routers, which is given by:

must be less than or equal to the size of the address space. See sub-clause D.1.2 for a discussion of
nwkMaxRouters and of networks containing ZigBee end devices.

1 − nwkMaxChildrenn wkM a xDepth+1

1− nwkMaxChildren
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 341

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.1.2 Cost impact

D.1.1.3 Value range

Network sizes given here assume a total address space of 4K addresses corresponding to a 16-bit address
word with 4 reserved bits and further assume that all devices are ZigBee routers.

D.1.2 NwkMaxRouters

D.1.2.1 Description

The NIB attribute nwkMaxRouters may be used to limit the number of ZigBee routers that a ZigBee router
or ZigBee coordinator may take on as children thereby permitting a degree of control over the ratio of
ZigBee routers to Zigbee end devices. Like nwkMaxDepth and nwkMaxChildren its value is assigned by the
ZigBee coordinator at network startup time and distributed to all other devices in the network.

Cost Item Impact (High/Medium/Low)

Network size. High – As a network grows, the amount of address space that is allocated at
each level is exponential over nwkMaxChildren. Thus a large nwkMaxChil-
dren will rapidly deplete whatever address space is available. Conversely, a
“rangy” network with a large diameter must have a relatively small value for
nwkMaxChildren.

Device cost. The chosen values of nwkMaxChildren and nwkMaxDepth may affect device
cost in two ways.

High – A device must have enough RAM to store a neighbor table entry for
each of its children and its parent. Large values for nwkMaxChildren will
mandate large neighbor tables.
Medium – Network designers may wish to maintain a high ratio of inexpen-
sive end devices to routers in order keep total installation cost low. This, in
turn, mandates a large value for nwkMaxChildren.

NwkMaxDepth 2…7

NwkMaxChildren 1…32

Value Setting Tradeoff

“rangy” network
{nwkMaxChildren = 3, nwkMaxDepth = 7}

Network diameter = 14
Maximum devices in network = 3280
Neighbor table entries per router = 4

Nominal network
{nwkMaxChildren = 15, nwkMaxDepth = 3}

Network diameter = 6
Maximum devices in network = 3616
Neighbor table entries per router = 16

“bushy” network
{nwkMaxChildren = 32, nwkMaxDepth = 2}

Network diameter = 4
Maximum devices in network = 1057
Neighbor table entries per router = 33
342 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.2.2 Cost impact

D.1.2.3 Value range

The values in the following table the effect of varying nwkMaxRouters in what might be considered a
typical home control network – nwkMaxChildren = 20, nwkMaxDepth = 4. In each case, the value for end
devices per router holds for routers in the “middle” of the tree. All leaf nodes may be end devices if so
desired.

The values in the table below are comparable values for wider-ranging network that might be used in
building control {nwkMaxChildren = 22, nwkMaxDepth = 5}.

Cost Item Impact (High/Medium/Low)

Network coverage, Medium – Routers are needed to move traffic around the network. End
devices, by definition, perform no routing. Thus, in order to assure that traf-
fic is able to move around the network and to prevent communications bot-
tlenecks, the largest possible value for nwkMaxRouters should be used.

Total installation cost. High – It is presumed that ZigBee routers will be more expensive than Zig-
Bee end devices. One way to control the total cost of an installation is to
make as many of the devices in a network as possible, end devices.

Power consumption. High – ZigBee routers are generally presumed to be mains-powered
devices. In fact, ZigBee supports beacon-enabled routers and, for some
applications, this may be enough to allow battery-powered routers as well,
but, certainly for the residential and commercial building control application
areas, routers will be mains-powered. End devices, on the other hand, may
be battery powered and so, if the application calls for a device to be battery
powered, it will most likely be an end device.

NwkMaxRouters 1-32

Value Setting Tradeoff

4 Maximum devices in network = 1701
End devices per router = 16

6 Maximum devices in network = 5181
End devices per router = 14

8 Maximum devices in network = 11701
End devices per router = 12
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 343

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.3 Size of routing table

D.1.3.1 Description

ZigBeeevices may set aside storage for routing entries that record the next hop in the multi-hop chain
required to deliver a packet to a particular destination. The minimum required information to be stored in
routing tables, as described in the current version of the specification, is as follows:

In estimating the size of the entries we can a 5-byte entry.

D.1.3.2 Cost impact

D.1.3.3 Value range

Value Setting Tradeoff

4 Maximum devices in network = 7503
End devices per router = 18

6 Maximum devices in network = 34211
End devices per router = 16

7 Maximum devices in network = 61623
End devices per router = 15

Field Name Size Description

Destination address 2 bytes The 16-bit network address of this route.

Status 3 bits The status of the route. See sub-clause D.1.3.3 for values.

Next-hop address 2 bytes The 16-bit network address of the next hop on the way to the des-
tination.

Cost Item Impact (High/Medium/Low)

Device cost. Medium – Every routing table entry adds 5 bytes of RAM to the ZigBee device.

Routing optimality. Low – A small number of routing entries will result in a greater preponderance
of tree routing. The routes chosen in this way may require more hops and
therefore generate more traffic than the tree routes that would be used if
devices had room for them.

Network reliability. Medium – Tree routes have no choice but to use tree links and are therefore
more liable to fail in the case of a flaky or asymmetrical tree link. Mesh routes
should be more robust since they have the opportunity to pick the best avail-
able links and apply LQI measurement to improve their performance over time.

Routing Table Size 0…Unspecified Maximum.
344 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.4 Size of neighbor table

D.1.4.1 Description

The neighbor table is used for keeping track of a device’s neighbors in the network. There are several classes
of neighbor table entry that may be used by implementers for this task.

— Every device must keep track of its children in the tree and its parent. It may want to track the link
quality of packets received from each to support routing cost calculation.

— A device may keep track of neighbors from which it has received or may receive route requests. It
may also track LQI for packets received from each of these neighbors.

— When a device joins (or forms) a network it performs a sequence of scans and the data from these
scans must be stored, at least temporarily, while it evaluates which network to join and so on.

In a practical implementation, the information stored here may be stored in a single table or multiple tables
at the implementer’s discretion. A rough size for each of these types of table entry follows:

Notes that these are minimum numbers. Implementers may choose to store more information about a
device’s neighbors, e.g. a timestamp recording when how recently the device has been heard from.

The discussion here will center on permanent storage only.

D.1.4.2 Cost impact

Value Setting Tradeoff

0 (minimum) 0 bytes of RAM This minimum value may be sufficient for networks where the
placement of routers is flexible enough that the resulting tree routes may be tuned
for optimal performance and the traffic load is low enough that bottlenecks are not
likely to develop near the ZigBee coordinator.

32 (typical) 160 bytes of RAM. This is a number that will probably suffice for Resi-Light-Comm
installations with localized control.

Entry Size in bytes

Parent/Child. 11 bytes without LQI.
12 bytes with LQI.

Routing neighbor. 2 bytes without LQI.
3 bytes with LQI.

Temporary entry during startup and joining. 15 bytes.

Cost Item Impact (High/Medium/Low)

Device cost. Medium – Every neighbor table entry requires a fixed amount of RAM
depending on its type as described above. The number of entries for storing
parents and children is not completely at the discretion of the developer since
it is equal to nwkMaxChildren + 1. An implementer may set aside any number
of 3-byte entries for additional neighbors to be used in routing.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 345

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.4.3 Value range

D.1.5 Size of route discovery table

D.1.5.1 Description

The route discovery table is used to temporarily store information that is needed during route discovery. The
contents of the route discovery table, as excerpted from the most recent version of the specification are:

Minor changes may occur in the definition table during the next few revisions of the specification but it will
stay at roughly this size, i.e. around 10 bytes per entry.

Entries in this table are only valid during route discovery and may be reused.

Neighbor Table Size NwkMaxChildren + 1 entries for children/parent.

[0… Unspecified Maximum] entries for other neighbors.

Value Setting Tradeoff

Sample minimum for nwkMaxChildren = 15 192 bytes of RAM including LQI values.

nwkMaxChildren = 15, 16 additional neighbors 240 bytes of RAM including LQI values.

Field Name Size Description

Route request ID 1 byte A sequence number for a route request command frame that is incre-
mented each time a device initiates a route request.

Source address 2 bytes The 16-bit network address of the route request’s initiator.

Sender address

2 bytes

The 16-bit network address of the node that has sent the most recent low-
est cost route request command frame corresponding to this entry’s Route
request ID and Source address. This field is used to determine the path
that an eventual route reply command frame should follow

Residual Cost 1 byte The accumulated path cost from source of the route request to the current
device

Forward routing
cost 1 byte The accumulated path cost from the current device to the destination

device

Path cost 1 byte The accumulated PCM value

Expiration time 2 bytes A countdown timer indicating the number of milliseconds until route discov-
ery expires. The initial value is nwkcRouteDiscoveryTime.
346 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.5.2 Cost impact

D.1.5.3 Value range

D.1.6 Number of reserved routing table entries

D.1.6.1 Description

A device may set aside some number of routing table entries to be used in the “dire” case where a route is
broken and the device that wants to repair it has no routing capacity to do so. This is most likely to happen
when the link is a parent-child link.

D.1.6.2 Cost impact

D.1.6.3 Value range

Cost Item Impact (High/Medium/Low)

Device cost. Low – Every route discovery table entry takes up about 10 bytes of RAM.

Route Discovery Table Size 1…Unspecified Maximum

Value Setting Tradeoff

1 (minimum) 10 bytes of RAM. The device may only process one route discovery at a time
and some routes will not be discovered.

8 (recommended) 80 bytes of RAM. This is enough to handle 8 route discoveries at once and
should be enough for most networks. More testing should be performed to
fine-tune this number.

Cost Item Impact (High/Medium/Low)

Device cost. Low – As with the standard routing table, every reserved entry takes up
about 5 bytes of RAM.

Network reliability. High – For tree networks and mesh networks containing a large num-
ber of devices with small routing capacity, having a small repair table
may spell the difference between having a portion of the network
become available due to a broken tree link and being able to repair
around that link.

Repair Table Size 0…Unspecified Maximum
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 347

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.7 Buffering pending route discovery

D.1.7.1 Description

An RN+ may choose to buffer a frame pending route discovery or it may relay it directly along the tree and,
preferably after a short delay, initiate route discovery.

D.1.7.2 Cost impact

D.1.7.3 Value range

Value Setting Tradeoff

0 (minimum) With no repair table, a device will not be able to participate in tree repair
and, if one of its forward links breaks, network partition may result.

1 5 bytes of RAM. This is enough to repair a single route across a single
broken link and may be sufficient in some cases.

8 (recommended) 40 bytes of RAM More testing is require to fine tune this number.

Cost Item Impact (High/Medium/Low)

Device cost. High– Each frame buffered may take up
as much as the standard ZigBee pay-
load size (TBD) plus the network
header. This may be on the order of 100
bytes per frame.

Network reliability. Low – Frames relayed in this way stand
a slightly larger chance of being
dropped in transit due to bad tree links
or interference from route discovery traf-
fic.

Number of frames buffered 0…Unspecified Maximum

Value Setting Tradeoff

0 (minimum) With no buffering, all frames are relayed along the tree before route
discovery is initiated.

2 (suggested maximum for 8-bit
implementations)

Most 8-bit processors with a RAM complement of 2-4K will not be able
to afford more than 200 bytes of buffering for this purpose.
348 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.8 Buffering on behalf of end devices

D.1.8.1 Description

A ZigBee coordinator or ZigBee router may choose to buffer broadcast frames on behalf of sleeping end
devices to be transmitted in response to a later data request or a poll request. The alternative is to leave the
responsibility of relaying broadcasts to end devices to the application.

D.1.8.2 Cost impact

D.1.8.3 Value range

D.1.9 Routing cost calculation

D.1.9.1 Description

In order to allow the comparison of possible routes, ZigBee routers are required to add a link cost value to
the path cost field of route request and route reply command frames. Implementers are allowed wide latitude
with regard to the technique for producing this link cost value. They may actual opt out and report a fixed
value (TBD) or they may use instantaneous LQI, an LQI value that has been averaged over time or, in fact,
any other scheme to derive the probability that a packet will be delivered over the link in question. The link
cost, then should be the reciprocal of that probability.

Cost Item Impact (High/Medium/Low)

Device cost. High– Each frame buffered may take up
as much as the standard ZigBee pay-
load size (TBD) plus the network
header. This may be on the order of 100
bytes per frame.

Number of frames buffered 0…Unspecified Maximum

Value Setting Tradeoff

0 (minimum) With no buffering, broadcasts to end
devices must be relayed by the appli-
cation. Another way of saying this is
that routers and coordinators must act
as proxies for sleeping end devices at
the application layer.

2 (suggested maximum for 8-bit implementations) Again, most 8-bit processors with a
RAM complement of 2-4K will not be
able to afford more than 200 bytes of
buffering for this purpose. In this case,
two broadcasts may be held until they
are delivered to all sleeping children.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 349

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.1.9.2 Cost impact

D.1.9.3 Value range

D.1.10 nwkSymLink

D.1.10.1 Description

In most network environments, we can assume that some percentage of the links presented to any given
device in the network will be asymmetrical in the sense that the link quality to be had by communicating in
one direction will differ, often substantially, from the link quality in the other direction. The reasons for this
are unsurprising and have to do with the physical characteristics of the wireless medium as well as with the
characteristics of the devices being employed. In the case where link symmetry can, for the most part, be

Cost Item Impact (High/Medium/Low)

Device cost. Low – A device that calculates link cost
must perform a simple computation for
each packet received and store the
result in the neighbor table entry corre-
sponding to the sender of that packet. It
must also use table-lookup or some
other method to derive a link cost from
that value at route discovery time. The
example table in the specification for
this purpose is 8 bytes long.

Network reliability. High – The primary reason to rate link
quality is that it protects the routing algo-
rithm from choosing unreliable routes
that are shorter over reliable routes that
happen to be longer and it gives the
algorithm a rationale for choosing
between multiple paths of the same
length some of which may be more reli-
able than others.

Calculate link cost YES or NO

Value Setting Tradeoff

Yes A device may rate the quality of a link
and that rating may improve over time
so that routing choices reflect the oper-
ational conditions of the network.

No A device can neither rate link reliability
or improve its rating over time. In a net-
work where all devices use this tech-
nique the probability that flaky,
unreliable and expensive routes will be
chosen is greatly increased.
350 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
assumed, an optimization becomes available whereby the forward and reverse path of a route can be
established at the same time. The nkSymLink NIB attribute determines whether this assumption, and the
resulting optimization are made during route discovery.

D.1.10.2 Cost Impact

D.1.10.3 Value Range

D.2 Application Settings

The settable parameters for the Application Layer include:

Cost Item Impact (High/Medium/Low)

Network traffic load Medium – The traffic load on a network
that is performing route discovery is
substantial. This traffic may cause regu-
lar data traffic in transit at the same time
to be lost. A mitigating factor is that the
bulk of route establishment operations
will happen at network startup or at
times when the network restarts due to
wide-area failures.

Network reliability High – Erroneous assumptions about
link symmetry can have disastrous
results since it may cause the establish-
ment of unviable routes, which may be
impossible to repair since forward and
reverse route discovery will always be
performed together but link quality will
only be measured in the forward direc-
tion.

nwkSymLink TRUE or FALSE

Value Setting Tradeoff

TRUE A device may assume link symmetry
and perform forwards and backwards
route discovery at the same time, at the
risk of establishing unusable routes.

FALSE A device must perform forward and
reverse route discovery separately
thereby loading the network with more
discovery traffic in the case where
routes are needed in both directions
but both routes are much more likely to
be viable in the presence of asymmet-
ric links
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 351

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
— Logical device type

— Stack profile and beacon payload parameters

— Number of active endpoints per device (maximum)

— Discovery information cache size (minimum)

— Binding table size (minimum)

— End to end response messaging

— Acknowledged service in APS

D.2.0.1 Logical device type

D.2.0.2 Description

ZigBee coordinator – Device will scan to find an unused channel and start a new network.

ZigBee router – Device will scan to find an existing network and join as a router

ZigBee end device – Device will scan to find an existing network and join as an end device.

D.2.0.3 Cost impact

D.2.0.4 Value Range

Cost Item Impact (High/Medium/Low)

ZigBee coordinator High – Designating a specific device to be the ZigBee coordinator places
a requirement on system deployment to install a special device in the net-
work capable of starting the network. Additionally, the ZigBee coordinator
must have resources for a binding table and trust center (if security is
used). The amount of resources allocated must match the expected size
of the network it serves (including growth).

ZigBee router High – To provide mesh routing, ZigBee routers must be deployed such
that at least one has connectivity to the ZigBee coordinator and there is
continuous connectivity from router to router to the edge of the network.
This implies a set of installation and deployment requirements tied to logi-
cal device type. Each ZigBee router must contain network routing soft-
ware and some resource allocation for routing tables or tree repair tables.

ZigBee end device Low – Each ZigBee end device may be minimally configured as long as
provisions have been made above for the ZigBee coordinator and routers.

Logical Device Type Coordinator, router or end device
352 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.5 Stack profile and beacon payload parameters

D.2.0.6 Description

This setting is applicable to all ZigBee devices. The application will have some desired network settings
provided as configuration settings to ZDO. These settings will either be used to configure the network to be
created (ZigBee coordinator) or will be used to select a network to join (ZigBee router and end device).
These parameters will be established by the specific needs of the Profile or Profiles supported in the device.
For devices with multiple applications running on different endpoints, there must be agreement on a single
stack profile and set of network settings. The following parameters are settable:

— Stack Profile – Network Specific, Home Controls, Building Automation or Plant Control

— NwkcProtocolVersion – Specifies the ZigBee protocol version. The rules for joining (or not joining)
networks with specific Protocol Versions will be established in later versions of this specification.

— NwkSecurityLevel – Specifies the security level of the network.

Value Setting Tradeoff

ZigBee coordinator Need at least 1

ZigBee router Need to deploy such that entire network spans no more than
nwkMaxDepth

ZigBee end device Need to deploy in such a way that all ZigBee end devices are
serviced by some router out to nwkMaxDepth.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 353

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.7 Cost impact

D.2.0.8 Value Range

Cost Item Impact (High/Medium/Low)

Stack Profile of Network Specific High – For devices employing network
specific stack profiles or wanting to join
networks advertised as network specific,
the device must first join the network to
determine whether parameters not adver-
tised in the beacon payload are operation-
ally acceptable. Parameters such as the
(minimum) size of the neighbor table, (min-
imum) size of the route discovery table,
etc. are key to a fully interoperable net-
work.

NwkcProtocolVersion Low – For now, this is a benign parameter
value. If it is needed in later versions, it
could become a parameter with very high
cost (for example, if v1.1 features are
defined such that they are not compatible
with v1.0).

NwkSecurityLevel High - This parameter has values from 0x0
(security off) to 0x7 (highest security).
Each of the security levels applies to each
of the stack profiles. If application profiles
are written such that they require a specific
security level, then we will end up with
another dimension on the stack profile that
will complicate interoperability.

Stack Profile Network Specific – 0x0
Home Controls – 0x1
Building Automation – 0x2
Plant Control – 0x3

NwkSecurityLevel Security off – 0x0
Security level – 0x1 – 0x7
354 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.9 Number of active endpoints per device (maximum)

D.2.0.10 Description

Each endpoint needs a descriptor/description for use with Service Discovery. These descriptors can be up to
Zigbee network payload size. For any sleeping devices the coordinator must cache these values so it can act
as a proxy for Service Discovery.

Value Setting Tradeoff

Stack Profile Selection of a single stack profile, assum-
ing there are a small number of stack pro-
files, greatly simplifies network selection
and aids in interoperability. If, however,
stack profiles proliferate and are used as
multiple variations on stack parameter set-
tings, then the same interoperability con-
cerns will surface which led to creation of
stack profiles to begin with.

Stack Profile of Network Specific This parameter setting should really only
be selected for closed networks. Use of
this parameter for networks where interop-
erability is desired will result in complex
join procedures where devices must deter-
mine if the network settings can support
their applications.

NwkSecurityLevel Rules must be established on how this
parameter is used. For example, suppose
a Home Controls stack profile specifies
nwkSecurityLevel of 0x3 (vs. 0x4 wanted
by a prospective joining device). The nwk-
SecurityLevel should not be permitted to
become another dimension on the stack
profile (else, the security level should
become a setting WITHIN the stack profile
and not a separate parameter).
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 355

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.11 Cost impact

D.2.0.12 Value Range

D.2.0.13 Discovery Information Cache Size

D.2.0.14 Description

Each device holds the following descriptors:

— Node Descriptor – 6 bytes (mandatory)

— Power Descriptor – 2 bytes (mandatory)

— Simple Descriptor – variable, one per active endpoint/interface (mandatory)

— Complex Descriptor – variable (optional)

— User Descriptor – variable (optional).

For each end device that intends to sleep, the ZigBee coordinator or router it associates to must cache the
above information for the device and respond to service discovery. In addition to the nwkMaxChildren and
nwkMaxRouters parameters, this cache size must be considered when permitting a device to associate.

Cost Item Impact (High/Medium/Low)

Non-volitile memory on end device to store description for
each interface

High – Each endpoint must have a Simple
Descriptor. Worst case, the Simple
Descriptor can be as large as a single Zig-
Bee application packet (64 bytes with
security). With a maximum 240 endpoints/
interfaces * 64 bytes this is a storage
requirement of 15.360 bytes!

Non-volitile or volitile memory on coordinator to be able to
cache descriptors for each “child” device and each interface
on each child

High – Each coordinator/router can have
nwkMaxChildren. If they all wanted to
sleep, they would want their coordinator/
router to cache their service discovery
information. This would include a Node
Descriptor, Power Descriptor for each
device plus as many Simple Descriptors as
each device had for every active endpoint
(see above item – this is a very substantial
number).

Number of endpoints/interfaces per device 1-240

Value Setting Tradeoff

1 (minimum)

2? (typical)

240 (maximum)
356 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.15 Cost impact

D.2.0.16 Value Range

D.2.0.17 Binding Table Size

D.2.0.18 Description

The Binding Table is held by the ZigBee coordinator and contains entries with the following information:

— Source address (64 bits)

— Source endpoint/interface (8 bits)

— Cluster ID (8 bits)

— Destination address (64 bits)

— Destination endpoint/interface (8 bits)

The above information is provided per entry. The number of entries is a function of the number of devices in
the network and the number of expected bindings per device.

Cost Item Impact (High/Medium/Low)

Cache size High – Though nwkMaxChildren may indi-
cate that a given router or coordinator
could support additional children, the size
of the cache available to support sleeping
devices along with the application require-
ments of the sleeping device must be con-
sidered.

Discovery Information cache size

Value Setting Tradeoff

? Need to establish values for this parame-
ter. Currently, there is no indication from a
joining device as to the number and size of
Simple Descriptors they support.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 357

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.19 Cost impact

D.2.0.20 Value Range

D.2.0.21 End to End Response Messaging

D.2.0.22 Description

According to the Application Framework, response messaging is optional. It would appear to be perfectly
legal to define all messaging within a given application as not requiring responses. In fact, given that the
NWK layer is non-guaranteed delivery, it would not be possible to determine if the application was
successfully sending any messages to its intended destination.

Cost Item Impact (High/Medium/Low)

Binding Table Size High – Assume a network of 400 devices,
what assumptions are required to set an
appropriate binding table size? The size is
a function of the devices in the network
and the application needs of those
devices. For example, a sensor application
may use 0 Binding Table entries. A Light-
ing solution may have 1 entry per device.
In some extreme cases (like theatre light-
ing), there may be multiples of Binding
Table entries per device (if a given set of
lights were controlled by multiples of
switches).

Number of pairings the binding coordinator can
hold

Value Setting Tradeoff

0 (minimum) Devices requiring Binding Table support
should not join this type of network.

1 per network device? (typical) It must be known if this type of Binding
Table size can support the needs of the
application on the device joining the net-
work.

? (maximum) For some specialized applications, the
Binding Table size may need to be larger
than 1 per device on the network.
358 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.23 Cost impact

D.2.0.24 Value Range

D.2.0.25 Acknowledged Service in APS

D.2.0.26 Description

An acknowledged service was added to APS. This optional service is required in cases such as replies to
broadcast service or device discovery commands, however, may be employed for other application
messaging under application control.

Cost Item Impact (High/Medium/Low)

End to end messaging on all requests High – Each application would be respon-
sible for creating a timer to ensure that
response messages are received for every
command. A retry mechanism would need
to be instituted for messages that are not
acknowledged along with error handling in
cases where the retry limit is exceeded.

End to end messaging on some requests Medium – The application could utilize
APS level acknowledgement that provides
assurance that messages are being
received at the destination, then use non-
guaranteed delivery for intervening com-
mands. Use of this feature would depend
on the application nature of the commands
being sent and the relative importance on
the destination receiving all commands
reliably (ie. Whether the message is
repeated like a measurement or whether it
is a control command)

End to End Response Messaging

Value Setting Tradeoff

End to end application messaging used at all times Application must implement timeouts and
retries. Application must handle error con-
ditions when retry limits are exceeded.

End to end application messaging is used periodically Application must still implement timeouts
and handle error conditions. Additionally,
application must assume that failures of
application commands/responses are also
occurring and be designed to be immune
from such failure.

End to end application messaging is not used. Application has no feedback that any mes-
sages sent are received at the destination.
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 359

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.2.0.27 Cost impact

D.2.0.28 Value Range

D.3 Security Settings

The settable parameters for the Security Services Provider include:

— Security level

— Master key source

— Always use NWK-layer security

— Number of NWK keys

— Number of application keys

— Number of frame counters used

— SecurityTimeoutPeriod

Cost Item Impact (High/Medium/Low)

Acknowledgements on all APS data requests Medium – Each APS data request would
need to receive an acknowledgement. This
could cause a need to either buffer
requests or to discard data requests within
APS (depends on applications communi-
cation requirements)

Acknowledgements on some APS data requests Low – The only required acknowledge-
ments will be for unicast responses to
broadcast requests (such as for the Device
Profile primitives NWK_addr_req and
Match_Desc_req).

Acknowledgements on APS Data Requests

Value Setting Tradeoff

Acknowledgements used at all times Application must implement timeouts and
retries. Application must handle error con-
ditions when retry limits are exceeded.

Acknowledgements are used only for required actions
(NWK_addr_rsp, Match_Desc_rsp and any other unicast
responses to a broadcast device or service discovery
request).

None.
360 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.3.0.1 Security level

D.3.0.2 Description

The type of security used by the device (if any).

D.3.0.3 Cost impact

D.3.0.4 Value Range

Cost Item Impact (High/Medium/Low)

NVM if security is used

Security level 0x00-0x07

Value Setting Tradeoff

0x00-none No security; no cost of security

0x01-MIC-32 (32-bit Message Integrity Code) Moderate integrity protection; longer
packet length, NVM key storage needed

0x02-MIC-64 (64-bit Message Integrity Code) Strong integrity protection; longer packet
length, NVM key storage needed

0x03-MIC-128 (128-bit Message Integrity Code) Strongest integrity protection; longest
packet length, NVM key storage needed

0x04-ENC (Encryption only) Message privacy; NVM key storage
needed

0x05-ENC-MIC-32 (Encryption and 32-bit Message Integrity
Code)

Encryption with moderate integrity protec-
tion; longer packet length, NVM key stor-
age needed

0x06-ENC-MIC-64 (Encryption and 64-bit Message Integrity
Code)

Encryption with strong integrity protection;
longer packet length, NVM key storage
needed

0x07-ENC-MIC-128 (Encryption and 128-bit Message Integ-
rity Code)

Encryption with strongest integrity protec-
tion; longer packet length, NVM key stor-
age needed
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 361

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.3.0.5 Master key source

D.3.0.6 Description

The master key for the trust center may come from several places; this affects the behavior of the network
device.

D.3.0.7 Cost impact

D.3.0.8 Value Range

D.3.0.9 Always use Network layer security – on or off

D.3.0.10 Description

Network layer security is needed to prevent theft of network service—“freeloading” devices using the
network to route frames between themselves.

Cost Item Impact (High/Medium/Low)

Factory installation High-difficult to control through distribution
chain

User interface High-effects BoM, product design, user
experience

Master key source Factory installation, installed by network trust center, or
entered by user

Value Setting Tradeoff

Factory installation Easy to use by user, as long as network is
as envisioned by factory; difficult to track
through distribution chain, difficult to add
new devices, difficult to deploy in industrial
settings

Installed by trust center Easy to use by user; onus on ZigBee to
minimize algorithm complexity

Entered by user Flexible, responsive to varied network
designs
362 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.3.0.11 Cost impact

D.3.0.12 Value Range

D.3.0.13 Number of NWK Keys

D.3.0.14 Description

The network key is used to secure MAC and NWK-layer frames.

D.3.0.15 Cost impact

D.3.0.16 Value Range

Cost Item Impact (High/Medium/Low)

?

Network layer security ON or OFF

Value Setting Tradeoff

ON No theft of service; longer frames

OFF Shorter frames; possible theft of service

Cost Item Impact (High/Medium/Low)

NVM storage Low

Keys 0, 1, 2
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 363

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.3.0.17 Number of Application Keys

D.3.0.18 Description

Application keys are used to secure end-to-end links.

D.3.0.19 Cost impact

D.3.0.20 Value Range

D.3.0.21 Number of Frame Counters Used

D.3.0.22 Description

A frame counter must be used for each device with which a network node communicates securely.

D.3.0.23 Cost impact

Value Setting Tradeoff

0 No NVM; network not secure

1 Network packets secure; NVM, possible
loss of network function for short period
while key updates

2 Network packets secure, no loss of net-
work function for short period while key
updates; NVM

Cost Item Impact (High/Medium/Low)

NVM storage Medium

Application Keys 0-16?

Value Setting Tradeoff

? The more keys, the more NVM, but the
more flexible and powerful the device.

Cost Item Impact (High/Medium/Low)

NVM storage Medium
364 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee Protocol Stack, Settable Values (Knobs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
D.3.0.24 Value Range

D.3.0.25 Security timeout periods

D.3.0.26 Description

— Maximum length of time either an initiator (e.g., a joining device) or a responder (e.g., a beaconing
device) may wait for an expected incoming SKKE message before generating an error code.

— Maximum length of time either an initiator or a responder may wait for an expected incoming mes-
sage in the entity authentication protocol before generating an error code.

Frame counters--RFD 1

Frame counters--FFD 16

Value Setting Tradeoff

1 Low cost; minimal functionality

16 Can communicate securely with 15 chil-
dren plus parent; more NVM
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 365

ZigBee Specification, Annex D

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
366 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex E ZigBee Stack Profiles
This Annex details the stack profiles for ZigBee protocol stack.

E.1 Stack Profiles

Stack Profiles are a convention on specific ZigBee stack settable values established to provide
interoperability in specified markets. See Annex D for descriptions on the various settings.

The following stack profiles have been identified:

a) Home Controls

b) Building Automation

c) Plant Control

Additionally, a category of stack profile called “Network Specific” is proposed which indicates that no
specific Stack Profile is in use, rather, the stack parameters are defined by the elemental values employed as
stack parameters.

E.2 Stack Profile Definitions

The ZigBee Network (NWK) Specification provides for identification of the Stack Profile within the beacon
payload.

E.3 Home Controls Stack Profile

The Home Controls Stack Profile is intended for use with the Home Controls-Lighting profile and all
profiles written for complementary use with Home Controls-Lighting.

Stack Profile Name Stack Profile Identifier (02130r7)

Network Specific 0x0

Home Controls 0x1

Building Automation 0x2

Plant Control 0x3

Reserved 0x4-0xf
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 367

ZigBee Specification, Annex E

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.3.1 Network Settings

E.3.2 Application Settings

Parameter Name Setting

Beacon Order
Superframe Order

0x0f (no beacon)
0x0f (ignored)

NwkMaxDepth and nwkMaxChildren 5
20

NwkMaxRouters 6

Size of the routing table (minimum) 8

Size of the neighbor table (minimum) ZigBee coordinator: 24
ZigBee router: 25
ZigBee end device: 1

Size of the route discovery table (mini-
mum)

4

Number of reserved routing table entries
(minimum)

8

Number of packets buffered pending route
discovery (minimum)

0

Number of packets buffered on behalf of
end devices (minimum)

1

Routing cost calculation True

NwkSymLink False

Parameter Name Setting

Logical device type ZigBee Coordinator – 1
ZigBee Router – no more than 6 per
coordinator/router to join at the higher
level of the tree
ZigBee End Device – no more than 20
per coordinator/router

Stack profile and beacon payload parame-
ters

Stack profile – 0x1
NwkcProtocolVersion – 0x0
NwkSecurityLevel – 0x5

Number of active endpoints per device
(minimum)

3

Discovery information cache size (mini-
mum, coordinator/routers only, per sleep-
ing child devices)

1036 bytesa
368 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee v1.0 Stack Profiles

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.3.3 Security Settings

E.4 Building Automation Stack Profile

The Building Automation Stack Profile is intended for use with future profiles targeted to
building automation solutions.

E.4.1 Network Settings

Binding table size (minimum, coordinator
only)

100 entries (1900 bytes)b

End to end response messaging (per clus-
ter/attribute per profile)

Agreed to for each cluster in each profile
within Home Controls.

Acknowledged service in APS Agreed to for each cluster in each profile
within Home Controls.

aAssumptions: nwkMaxChildren of 20 minus nwkMaxRouters of 6 (net of 14),
each with: Node Descriptor – 6 bytes, Power Descriptor – 2 bytes, Simple
Descriptor (3 each, max of 10 input/output clusters per), User Descriptor of 12 =
1036 bytes
bAssumptions: Each Binding Table entry is: Source Address (8 bytes)+Source
Endpoint(1 byte)+ClusterID(1 byte)+Dest Address (8 bytes)+Dest Endpoint (1
byte) = 19 bytes

Parameter Name Setting

Security Level 0x5

Master Key Source Entered by user (includes key pad, but-
ton press, low RF “learn mode” or other
user initiated action)

Always use Network layer security – on or
off

ON

Number of NWK Keys 2

Number of Application Keys 0

Number of Frame Counters used 1 for RFD, 20 for FFD

Security timeout periods 50ms * (2*nwkMaxDepth) + (AES
Encrypt/Decrypt times)

Parameter Name Setting

Beacon Order
Superframe Order

0x0f (no beacon)
0x0f (ignored)

NwkMaxDepth and nwkMaxChildren 9 (2nd choice: 7)
6 (2nd choice: 12)
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 369

ZigBee Specification, Annex E

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.4.2 Application Settings

NwkMaxRouters 3 (2nd choice: 4)

Size of the routing table (minimum) 16

Size of the neighbor table (minimum) ZigBee coordinator: 15
ZigBee router: 16
ZigBee end device: 1

Size of the route discovery table (mini-
mum)

8

Number of reserved routing table entries
(minimum)

8

Number of packets buffered pending route
discovery (minimum)

0

Number of packets buffered on behalf of
end devices (minimum)

1

Routing cost calculation True

NwkSymLink False

Parameter Name Setting

Logical device type ZigBee Coordinator – 1
ZigBee Router – no more than 3 per
coordinator/router to join at the higher
level of the tree
ZigBee End Device – no more than 9 per
coordinator/router

Stack profile and beacon payload parame-
ters

Stack profile – 0x2
NwkcProtocolVersion – 0x0
NwkSecurityLevel – 0x6

Number of active endpoints per device
(minimum)

7

Discovery information cache size (mini-
mum, coordinator/routers only, per sleep-
ing child devices)

588 bytes

Binding table size (minimum, coordinator
only)

50 entries (950 bytes)

End to end response messaging (per clus-
ter/attribute per profile)

Agreed to for each cluster in each profile
within Building Automation.

Acknowledged service in APS Agreed to for each cluster in each profile
within Building Automation.
370 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

ZigBee v1.0 Stack Profiles

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.4.3 Security Settings

E.5 Plant Control Stack Profile

Editor’s Note: This section was not reviewed as of Release 1 of the document.

The Plant Control Stack Profile is intended for use with future profiles targeted to plant
control solutions.

E.5.1 Network Settings

Parameter Name Setting

Security Level 0x6

Master Key Source Installed by trust center

Always use Network layer security – on or
off

ON

Number of NWK Keys 2

Number of Application Keys 20

Number of Frame Counters used 1 for RFD, 6 for FFD

Security timeout periods 50ms * (2*nwkMaxDepth) + (AES
Encrypt/Decrypt times)

Parameter Name Setting

Beacon Order
Superframe Order

0x0f (no beacon)
0x0f (ignored)

NwkMaxDepth and nwkMaxChildren 5
22

NwkMaxRouters 7

Size of the routing table (minimum) 16

Size of the neighbor table (minimum) ZigBee coordinator: 30
ZigBee router: 31
ZigBee end device: 1

Size of the route discovery table (mini-
mum)

8

Number of reserved routing
table entries (minimum)

8

Number of packets buffered pending route
discovery (minimum)

0

Copyright © 2005 ZigBee Standards Organization. All rights reserved. 371

ZigBee Specification, Annex E

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
E.5.2 Application Settings

E.5.3 Security Settings

Number of packets buffered on behalf of
end devices (minimum)

3

Routing cost calculation True

NwkSymLink False

Parameter Name Setting

Logical device type ZigBee Coordinator – 1
ZigBee Router – no more than 7 per
coordinator/router to join at the higher
level of the tree
ZigBee End Device – no more than 22
per coordinator/router

Stack profile and beacon payload parame-
ters

Stack profile – 0x3
NwkcProtocolVersion – 0x0
NwkSecurityLevel – 0x7

Number of active endpoints per device
(minimum)

7

Discovery information cache size (mini-
mum, coordinator/routers only, per sleep-
ing child devices)

2940 bytes

Binding table size (minimum, coordinator
only)

100 entries (1900 bytes)

End to end response messaging (per clus-
ter/attribute per profile)

Agreed to for each cluster in each profile
within Plant Control.

Acknowledged service in APS Agreed to for each cluster in each profile
within Plant Control.

Parameter Name Setting

Security Level 0x6

Master Key Source Installed by trust center

Always use Network layer security – on or
off

ON

Number of NWK Keys 2

Number of Application Keys 23

Number of Frame Counters used 1 for RFD, 22 for FFD

Security timeout periods 50ms * (2*nwkMaxDepth) + (AES
Encrypt/Decrypt times)
372 Copyright © 2005 ZigBee Standards Organization. All rights reserved.
This is an unapproved Standards Draft, subject to change.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Annex F KVP XML schemas
This annex contains the XML schemas for the ZigBee ZVP commands.

F.1 XML schema for the get command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF" xmlns="http://www.zigbee.org/v1.0/AF"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="GetCommand">
<xs:annotation>

<xs:documentation>Schema for AF get command</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

F.2 XML schema for the get response command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http://www.zigbee.org/v1.0/AF"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Get_ResponseCommand">
<xs:annotation>

<xs:documentation>Schema for AF get response command</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="ErrorCode" type=" xs:unsignedByte "/>
<xs:element name="AttribData" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 373

ZigBee Specification, Annex F

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.3 XML schema for the set command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="SetCommand">
<xs:annotation>

<xs:documentation>Schema for AF set command</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="AttribData" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

F.4 XML schema for the set response command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Set_ResponseCommand">
<xs:annotation>

<xs:documentation>Schema for AF set response command</xs:docu-
mentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="ErrorCode" type=" xs:unsignedByte "/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>
374 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

KVP XML schemas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.5 XML schema for the event command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="EventCommand">
<xs:annotation>

<xs:documentation>Schema for AF event command</xs:documenta-
tion>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="AttribData" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

F.6 XML schema for the event response command

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.zigbee.org/v1.0/AF “xmlns="http:/
/www.zigbee.org/v1.0/AF" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Event_ResponseCommand">
<xs:annotation>

<xs:documentation>Schema for AF event response command</
xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="AttribDataType" type="xs:unsignedByte"/>
<xs:element name="AttribId" type="xs:unsignedShort"/>
<xs:element name="ErrorCode" type=" xs:unsignedByte "/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 375

ZigBee Specification, Annex F

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.7 Example KVP commands

Consider a lighting profile in which a device description for a lamp defines a cluster with an unsigned 8-bit
attribute called “LampOnOff”, which has an identifier of 0x0000. This attribute can be set to either 0x00, to
represent its off state, or 0xff, to represent its on state. In order for a light switch to turn on the lamp, it would
need to send a command to the lamp device such as the set with acknowledgement command illustrated in
Figure 91.

Figure 91 Example of a set with acknowledgement command frame

As the command was a set with acknowledgement command, the lamp responds with the set response
command illustrated in Figure 92.

Figure 92 Example of a set response command frame

The device description for the lamp also defines another cluster with a character string attribute called
“LampMoreInfo”, which has an identifier of 0x0001. In order for a PDA to set this attribute to the 4-
character ASCII character string “3NSF”, it would need to send a command to the lamp device such as the
set command illustrated in Figure 93.

Figure 93 Example of a KVP set command frame

Note that the character string type requires a character length field (equal to 0x04, in this case) as the first
octet of the attribute data and that no acknowledgement is required with this command.

Bits: 8 4 4 16 8

Transaction
sequence
number

Command
type identifier

b3b2b1b0

Attribute data
type

b3b2b1b0

Attribute
identifier Attribute data

0x42 0101 0001 0x0000 0xff

Bits: 8 4 4 16 8

Transaction
sequence
number

Command
type identifier

b3b2b1b0

Attribute data
type

b3b2b1b0

Attribute
identifier Error code

0x42 1001 0001 0x0000 0x00

Bits: 8 4 4 16 8 4

Transaction
sequence
number

Command
type identifier

b3b2b1b0

Attribute data
type

b3b2b1b0

Attribute
identifier Attribute data

0x56 0001 1110 0x0001 0x04 0x334e5346
376 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

KVP XML schemas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
F.8 Example MSG command

Consider an HVAC profile in which a device description for a cooling fan defines a message to set the fan
speed to a number of settings. To set the fan to its third speed, a remote control device would need to send a
message as illustrated in Figure 94.

Figure 94 Example of an MSG command frame to set the speed of a fan

Consider an agricultural sensor profile in which a device description for a soil moisture sensor defines a
message to configure the relative coordinates of the device using two 16-bit values. To set the coordinates
on the sensor, a configuration device would need to send a message as illustrated in Figure 95.

Figure 95 Example of an MSG command frame to set x and y coordinates of a sensor

Bits: 8 8 8

Transaction
sequence
number

Transaction
length

Transaction
data

0x7d 0x01 0x02

Bits: 8 8 32

Transaction
sequence
number

Transaction
length

Transaction
data

0xe8 0x04 0x02fe3321
Copyright © 2005 ZigBee Standards Organization. All rights reserved. 377

ZigBee Specification, Annex F

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
378 Copyright © 2005 ZigBee Standards Organization. All rights reserved.

	Figures
	Tables
	Figure 1 Outline ZigBee stack architecture
	[B1] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.4-2003, IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Re...
	[B2] IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, IEEE, 1985.
	[B3] Document 03285r0: Suggestions for the Improvement of the IEEE 802.15.4 Standard, July 2003.
	[B4] Document 02055r4: Network Requirements Definition, August 2003.
	[B5] ISO/IEC 639-1:2002 Codes for the representation of names of languages - Part 1: Alpha-2 code.
	[B6] ISO/IEC 646:199 Information technology -- ISO 7-bit coded character set for information interchange.
	[B7] ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography, American Bankers Association, November 20, 2001. Available from http://www.ansi.org.
	[B8] FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Processing Standards Publi cation 197, US Department of Commerce/N.I.S.T, Springfield, Virginia, November 26, 2001. Available from http://csrc.nist.gov/.
	[B9] FIPS Pub 198, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Process ing Standards Publication 198, US Department of Commerce/N.I.S.T., Springfield, Virginia, March 6, 2002. Available from http://csrc.nist.gov/.
	[B10] ISO/IEC 9798-2, Information Technology - Security Techniques - Entity Authentication Mechanisms - Part 2: Mechanisms Using Symmetric Encipherment Algorithms, International Standardization Organiza tion, Geneva, Switzerland, 1994 (first ...
	[B11] NIST Pub 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation - Methods and Techniques, NIST Special Publication 800-38A, 2001 Edition, US Department of Commerce/N.I.S.T., December 2001. Available from http://csrc.nist.gov/.
	[B12] FIPS Pub 140-2, Security requirements for Cryptographic Modules, US Department of Commerce/ N.I.S.T., Springfield, Virginia, June 2001 (supersedes FIPS Pub 140-1). Available from http://csrc.nist.gov/.
	[B13] IEEE Standards Style Manual, published and distributed in May 2000 and revised on September 20, 2001. Available from http://standards.ieee.org/guides/style/.
	[B14] ISO/IEC 7498-1:1994 Information technology - Open systems interconnection - Basic reference model: The basic model.
	[B15] ISO/IEC 10731:1994, Information technology - Open Systems Interconnection - Conventions for the definition of OSI services.
	[B16] ISO/IEC 9646-1:1991, Information technology - Open Systems Interconnection - Conformance test ing methodology and framework - Part 1: General concepts.
	[B17] ISO/IEC 9646-7:1995, Information technology - Open Systems Interconnection - Conformance test ing methodology and framework - Part 7. Implementation conformance statements.
	[B18] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, Boca Raton: CRC Press, 1997.
	[B19] FIPS Pub 113, Computer Data Authentication, Federal Information Processing Standards Publication 113, US Department of Commerce/N.I.S.T., May 30, 1985. Available from http://csrc.nist.gov/.
	[B20] R. Housley, D. Whiting, N. Ferguson, Counter with CBC-MAC (CCM), submitted to N.I.S.T., June 3, 2002. Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.
	[B21] J. Jonsson, On the Security of CTR + CBC-MAC, in Proceedings of Selected Areas in Cryptography - SAC 2002, K. Nyberg, H. Heys, Eds., Lecture Notes in Computer Science, Vol. 2595, pp. 76-93, Berlin: Springer, 2002.
	[B22] J. Jonsson, On the Security of CTR + CBC-MAC, NIST Mode of Operation - Additional CCM Documentation. Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.
	[B23] P. Rogaway, D. Wagner, A Critique of CCM, IACR ePrint Archive 2003-070, April 13, 2003.

	Chapter 1 Application Layer Specification
	1.1 General description
	1.1.1 Application support sub-layer
	1.1.2 Application framework
	1.1.2.1 Key value pair service
	1.1.2.2 Message service
	1.1.3 Addressing
	1.1.3.1 Node addressing
	Figure 2 Multiple subunits in a single node

	1.1.3.2 Endpoint addressing
	1.1.4 Application communication fundamentals
	1.1.4.1 Profiles
	1.1.4.2 Clusters
	1.1.5 Discovery
	1.1.5.1 Device discovery
	1.1.5.2 Service discovery
	1.1.6 Binding
	Figure 3 ZigBee binding and binding table

	1.1.7 Messaging
	1.1.7.1 Direct addressing
	1.1.7.2 Indirect addressing
	1.1.7.3 Broadcast addressing
	1.1.8 ZigBee device objects
	1.1.8.1 Discovery management
	1.1.8.2 Binding management
	1.1.8.3 Security management

	1.2 The ZigBee application support (APS) sub-layer
	1.2.1 Scope
	1.2.2 Purpose
	1.2.3 Application support (APS) sub-layer overview
	1.2.3.1 Application support sub-layer data entity (APSDE)
	1.2.3.2 Application support sub-layer management entity (APSME)
	1.2.4 Service specification
	Figure 4 The APS sub-layer reference model

	1.2.4.1 APS data service
	1.2.4.1.1 APSDE-DATA.request
	1.2.4.1.1.1 Semantics of the service primitive
	1.2.4.1.1.2 When generated
	1.2.4.1.1.3 Effect on receipt

	1.2.4.1.2 APSDE-DATA.confirm
	1.2.4.1.2.1 Semantics of the service primitive
	1.2.4.1.2.2 When generated
	1.2.4.1.2.3 Effect on receipt

	1.2.4.1.3 APSDE-DATA.indication
	1.2.4.1.3.1 Semantics of the service primitive
	1.2.4.1.3.2 When generated
	1.2.4.1.3.3 Effect on receipt

	1.2.4.2 APS management service
	1.2.4.3 Binding Primitives
	1.2.4.3.1 APSME-BIND.request
	1.2.4.3.1.1 Semantics of the service primitive
	1.2.4.3.1.2 When generated
	1.2.4.3.1.3 Effect on receipt

	1.2.4.3.2 APSME-BIND.confirm
	1.2.4.3.2.1 Semantics of the service primitive
	1.2.4.3.2.2 When generated
	1.2.4.3.2.3 Effect on receipt

	1.2.4.3.3 APSME-UNBIND.request
	1.2.4.3.3.1 Semantics of the service primitive
	1.2.4.3.3.2 When generated
	1.2.4.3.3.3 Effect on receipt

	1.2.4.3.4 APSME-UNBIND.confirm
	1.2.4.3.4.1 Semantics of the service primitive
	1.2.4.3.4.2 When generated
	1.2.4.3.4.3 Effect on receipt

	1.2.4.4 Information base maintenance
	1.2.4.4.1 APSME-GET.request
	1.2.4.4.1.1 Semantics of the service primitive
	1.2.4.4.1.2 When generated
	1.2.4.4.1.3 Effect on receipt

	1.2.4.4.2 APSME-GET.confirm
	1.2.4.4.2.1 Semantics of the service primitive
	1.2.4.4.2.2 When generated
	1.2.4.4.2.3 Effect on receipt

	1.2.4.4.3 APSME-SET.request
	1.2.4.4.3.1 Semantics of the service primitive
	1.2.4.4.3.2 When generated
	1.2.4.4.3.3 Effect on receipt

	1.2.4.4.4 APSME-SET.confirm
	1.2.4.4.4.1 Semantics of the service primitive
	1.2.4.4.4.2 When generated
	1.2.4.4.4.3 Effect on receipt

	1.2.5 Frame formats
	1.2.5.1 General APDU frame format
	Figure 5 General APS frame format

	1.2.5.1.1 Frame control Field
	Figure 6 Format of the frame control field
	1.2.5.1.1.1 Frame type sub-field
	1.2.5.1.1.2 Delivery mode sub-field
	1.2.5.1.1.3 Indirect address mode sub-field
	1.2.5.1.1.4 Security sub-field
	1.2.5.1.1.5 Acknowledgement request sub-field

	1.2.5.1.2 Destination endpoint field
	1.2.5.1.3 Cluster identifier field
	1.2.5.1.4 Profile identifier field
	1.2.5.1.5 Source endpoint field
	1.2.5.1.6 Frame payload field
	1.2.5.2 Format of individual frame types
	1.2.5.2.1 Data frame format
	Figure 7 Data frame format
	1.2.5.2.1.1 Data frame APS header field
	1.2.5.2.1.2 Data payload field

	1.2.5.2.2 APS command frame format
	Figure 8 APS command frame format
	1.2.5.2.2.1 APS command frame APS header field
	1.2.5.2.2.2 APS command identifier field
	1.2.5.2.2.3 APS command payload field

	1.2.5.2.3 Acknowledgement frame format
	Figure 9 Acknowledgement frame format
	1.2.5.2.3.1 Acknowledgement frame APS header field

	1.2.6 Command frames
	1.2.7 Constants and PIB attributes
	1.2.7.1 APS Constants
	1.2.7.2 APS Information Base
	1.2.8 Functional description
	1.2.8.1 Binding
	1.2.8.1.1 Binding table implementation
	1.2.8.1.2 Binding
	Figure 10 Direct binding on a ZigBee coordinator or SrcAddr device

	1.2.8.2 Transmission, reception and acknowledgement
	1.2.8.2.1 Transmission
	1.2.8.2.2 Reception and rejection
	1.2.8.2.3 Use of acknowledgements
	1.2.8.2.3.1 No acknowledgement
	Figure 11 Successful data transmission without an acknowledgement

	1.2.8.2.3.2 Acknowledgement
	Figure 12 Successful data transmission with an acknowledgement

	1.2.8.2.4 Retransmissions

	1.3 The ZigBee application framework
	1.3.1 Creating a ZigBee profile
	1.3.1.1 Getting a profile identifier from the ZigBee Alliance
	1.3.1.2 Defining device descriptions and clusters
	1.3.1.3 Deploying the profile on endpoints
	1.3.1.4 Enabling service discovery
	1.3.1.5 Mixing standard and proprietary profiles
	1.3.1.6 Enabling backward compatibility
	1.3.2 Standard data type formats
	1.3.2.1 No data type
	1.3.2.2 Unsigned 8-bit integer
	1.3.2.3 Signed 8-bit integer
	1.3.2.4 Unsigned 16-bit integer
	1.3.2.5 Signed 16-bit integer
	1.3.2.6 Semi-precision number
	Value = -1Sign * (Hidden + Mantissa/1024) * 2 (Exponent-15)
	-1Sign * (1 +1023/1024) * 2 (30 -15) = ± 1.9990234 * 32768 = ± 65504

	1.3.2.7 Absolute time
	1.3.2.8 Relative time
	1.3.2.9 Character string
	Figure 13 Format of the character string type

	1.3.2.10 Octet string
	Figure 14 Format of the octet string type

	1.3.3 ZigBee descriptors
	1.3.3.1 Transmission of descriptors
	Figure 15 Format of the complex descriptor
	Figure 16 Format of an individual complex descriptor field

	1.3.3.1.1 Field count field
	1.3.3.1.1.1 Compressed XML tag field
	1.3.3.1.1.2 Field data field

	1.3.3.2 Discovery via descriptors
	1.3.3.3 Composite devices
	1.3.3.4 Node descriptor
	1.3.3.4.1 Logical type field
	1.3.3.4.2 APS flags field
	1.3.3.4.3 Frequency band field
	1.3.3.4.4 MAC capability flags field
	Figure 17 Format of the MAC capability flags field

	1.3.3.4.5 Manufacturer code field
	1.3.3.4.6 Maximum buffer size field
	1.3.3.4.7 Maximum transfer size field
	1.3.3.5 Node power descriptor
	1.3.3.5.1 Current power mode field
	1.3.3.5.2 Available power sources field
	1.3.3.5.3 Current power source field
	1.3.3.5.4 Current power source level field
	1.3.3.6 Simple descriptor
	1.3.3.6.1 Endpoint field
	1.3.3.6.2 Application profile identifier field
	1.3.3.6.3 Application device identifier field
	1.3.3.6.4 Application device version field
	1.3.3.6.5 Application flags field
	1.3.3.6.6 Application input cluster count field
	1.3.3.6.7 Application input cluster list
	1.3.3.6.8 Application output cluster count field
	1.3.3.6.9 Application output cluster list
	1.3.3.7 Complex Descriptor
	1.3.3.7.1 Language and character set field
	Figure 18 Format of the language and character set field

	1.3.3.7.2 Manufacturer name field
	1.3.3.7.3 Model name field
	1.3.3.7.4 Serial number field
	1.3.3.7.5 Device URL field
	1.3.3.7.6 Icon field
	1.3.3.7.7 Icon URL field
	1.3.3.8 User descriptor
	1.3.4 AF frame formats
	Figure 19 Format of the general application framework command frame
	Figure 20 Format of a transaction field

	1.3.4.1 Transaction count field
	1.3.4.2 Frame type field
	1.3.4.3 Transaction sequence number field
	1.3.4.4 Transaction data field
	1.3.4.5 Format of individual frame types
	1.3.4.5.1 Key value pair (KVP) frame format
	Figure 21 Format of the general KVP command frame
	1.3.4.5.1.1 Command type identifier field
	1.3.4.5.1.2 Attribute data type field
	1.3.4.5.1.3 Attribute identifier field
	1.3.4.5.1.4 Error code field
	1.3.4.5.1.5 Attribute data field

	1.3.4.5.2 MSG frame format
	Figure 22 Format of the MSG transaction frame
	1.3.4.5.2.1 Transaction length field
	1.3.4.5.2.2 Transaction data field

	1.3.5 KVP command frames
	1.3.5.1 Get with acknowledgement command frame
	Figure 23 Format of the get with acknowledgement command frame

	1.3.5.1.1 When generated
	1.3.5.1.2 Effect on receipt
	1.3.5.2 Get response command frame
	Figure 24 Format of the get response command frame

	1.3.5.2.1 When generated
	1.3.5.2.2 Effect on receipt
	1.3.5.3 Set/set with acknowledgement command frame
	Figure 25 Format of the set/set with acknowledgement command frame

	1.3.5.3.1 When generated
	1.3.5.3.2 Effect on receipt
	1.3.5.4 Set response command frame
	Figure 26 Format of the set response command frame

	1.3.5.4.1 When generated
	1.3.5.4.2 Effect on receipt
	1.3.5.5 Event/event with acknowledgement
	Figure 27 Format of the event/event with acknowledgement command frame

	1.3.5.5.1 When generated
	1.3.5.5.2 Effect on receipt
	1.3.5.6 Event response command frame
	Figure 28 Format of the event response command frame

	1.3.5.6.1 When generated
	1.3.5.6.2 Effect on receipt
	1.3.6 Functional description
	1.3.6.1 Aggregate transactions
	1.3.6.2 Reception and rejection

	1.4 The ZigBee device profile
	1.4.1 Scope
	1.4.2 Device Profile overview
	1.4.2.1 Device and service discovery overview
	1.4.2.2 End device bind overview
	1.4.2.3 Bind and unbind overview
	1.4.2.4 Network management overview
	1.4.2.5 Device Descriptions for the Device Profile
	1.4.2.6 Service Type usage
	1.4.2.7 Configuration and roles
	1.4.2.8 Cluster ID format within the Device Profile
	Figure 29 Cluster ID Format for the Device Profile

	1.4.3 Client services
	1.4.3.1 Device and Service Discovery client services
	1.4.3.1.1 NWK_addr_req
	1.4.3.1.1.1 Semantics of the service primitive
	1.4.3.1.1.2 When generated
	1.4.3.1.1.3 Effect on receipt

	1.4.3.1.2 IEEE_addr_req
	1.4.3.1.2.1 Semantics of the service primitive
	1.4.3.1.2.2 When generated
	1.4.3.1.2.3 Effect on receipt

	1.4.3.1.3 Node_Desc_req
	1.4.3.1.3.1 Semantics of the service primitive
	1.4.3.1.3.2 When generated
	1.4.3.1.3.3 Effect on receipt

	1.4.3.1.4 Power_Desc_req
	1.4.3.1.4.1 Semantics of the service primitive
	1.4.3.1.4.2 When generated
	1.4.3.1.4.3 Effect on receipt

	1.4.3.1.5 Simple_Desc_req
	1.4.3.1.5.1 Semantics of the service primitive
	1.4.3.1.5.2 When generated
	1.4.3.1.5.3 Effect on receipt

	1.4.3.1.6 Active_EP_req
	1.4.3.1.6.1 Semantics of the service primitive
	1.4.3.1.6.2 When generated
	1.4.3.1.6.3 Effect on receipt

	1.4.3.1.7 Match_Desc_req
	1.4.3.1.7.1 Semantics of the service primitive
	1.4.3.1.7.2 When generated
	1.4.3.1.7.3 Effect on receipt

	1.4.3.1.8 Complex_Desc_req
	1.4.3.1.8.1 Semantics of the service primitive
	1.4.3.1.8.2 When generated
	1.4.3.1.8.3 Effect on receipt

	1.4.3.1.9 User_Desc_req
	1.4.3.1.9.1 Semantics of the service primitive
	1.4.3.1.9.2 When generated
	1.4.3.1.9.3 Effect on receipt

	1.4.3.1.10 Discovery_Register_req
	1.4.3.1.10.1 Semantics of the service primitive
	1.4.3.1.10.2 When generated
	1.4.3.1.10.3 Effect on receipt

	1.4.3.1.11 End_Device_annce
	1.4.3.1.11.1 Semantics of the service primitive
	1.4.3.1.11.2 When generated
	1.4.3.1.11.3 Effect on receipt

	1.4.3.1.12 User_Desc_set
	1.4.3.1.12.1 Semantics of the service primitive
	1.4.3.1.12.2 When generated
	1.4.3.1.12.3 Effect on receipt

	1.4.3.2 End Device Bind, Bind and Unbind client services
	1.4.3.2.1 End_Device_Bind_req
	1.4.3.2.1.1 Semantics of the service primitive
	1.4.3.2.1.2 When generated
	1.4.3.2.1.3 Effect on receipt

	1.4.3.2.2 Bind_req
	1.4.3.2.2.1 Semantics of the service primitive
	1.4.3.2.2.2 When generated
	1.4.3.2.2.3 Effect on receipt

	1.4.3.2.3 Unbind_req
	1.4.3.2.3.1 Semantics of the service primitive
	1.4.3.2.3.2 When generated
	1.4.3.2.3.3 Effect on receipt

	1.4.3.3 Network Management Client Services
	1.4.3.3.1 Mgmt_NWK_Disc_req
	1.4.3.3.1.1 Semantics of the service primitive
	1.4.3.3.1.2 When generated
	1.4.3.3.1.3 Effect on receipt

	1.4.3.3.2 Mgmt_Lqi_req
	1.4.3.3.2.1 Semantics of the service primitive
	1.4.3.3.2.2 When generated
	1.4.3.3.2.3 Effect on receipt

	1.4.3.3.3 Mgmt_Rtg_req
	1.4.3.3.3.1 Semantics of the service primitive
	1.4.3.3.3.2 When generated
	1.4.3.3.3.3 Effect on receipt

	1.4.3.3.4 Mgmt_Bind_req
	1.4.3.3.4.1 Semantics of the service primitive
	1.4.3.3.4.2 When generated
	1.4.3.3.4.3 Effect on receipt

	1.4.3.3.5 Mgmt_Leave_req
	1.4.3.3.5.1 Semantics of the service primitive
	1.4.3.3.5.2 When generated
	1.4.3.3.5.3 Effect on receipt

	1.4.3.3.6 Mgmt_Direct_Join_req
	1.4.3.3.6.1 Semantics of the service primitive
	1.4.3.3.6.2 When generated
	1.4.3.3.6.3 Effect on receipt

	1.4.4 Server services
	1.4.4.1 Device and Service Discovery Server Services
	1.4.4.1.1 NWK_addr_rsp
	1.4.4.1.1.1 Semantics of the service primitive
	1.4.4.1.1.2 When generated
	1.4.4.1.1.3 Effect on receipt

	1.4.4.1.2 IEEE_addr_rsp
	1.4.4.1.2.1 Semantics of the service primitive
	1.4.4.1.2.2 When generated
	1.4.4.1.2.3 Effect on receipt

	1.4.4.1.3 Node_Desc_rsp
	1.4.4.1.3.1 Semantics of the service primitive
	1.4.4.1.3.2 When generated
	1.4.4.1.3.3 Effect on receipt

	1.4.4.1.4 Power_Desc_rsp
	1.4.4.1.4.1 Semantics of the service primitive
	1.4.4.1.4.2 When generated
	1.4.4.1.4.3 Effect on receipt

	1.4.4.1.5 Simple_Desc_rsp
	1.4.4.1.5.1 Semantics of the service primitive
	1.4.4.1.5.2 When generated
	1.4.4.1.5.3 Effect on receipt

	1.4.4.1.6 Active_EP_rsp
	1.4.4.1.6.1 Semantics of the service primitive
	1.4.4.1.6.2 When generated
	1.4.4.1.6.3 Effect on receipt

	1.4.4.1.7 Match_Desc_rsp
	1.4.4.1.7.1 Semantics of the service primitive
	1.4.4.1.7.2 When generated
	1.4.4.1.7.3 Effect on receipt

	1.4.4.1.8 Complex_Desc_rsp
	1.4.4.1.8.1 Semantics of the service primitive
	1.4.4.1.8.2 When generated
	1.4.4.1.8.3 Effect on receipt

	1.4.4.1.9 User_Desc_rsp
	1.4.4.1.9.1 Semantics of the service primitive
	1.4.4.1.9.2 When generated
	1.4.4.1.9.3 Effect on receipt

	1.4.4.1.10 Discovery_Register_rsp
	1.4.4.1.10.1 Semantics of the service primitive
	1.4.4.1.10.2 When generated
	1.4.4.1.10.3 Effect on receipt

	1.4.4.1.11 User_Desc_conf
	1.4.4.1.11.1 Semantics of the service primitive
	1.4.4.1.11.2 When generated
	1.4.4.1.11.3 Effect on receipt

	1.4.4.2 End Device Bind, Bind and Unbind server services
	1.4.4.2.1 End_Device_Bind_rsp
	1.4.4.2.1.1 Semantics of the service primitive
	1.4.4.2.1.2 When generated
	1.4.4.2.1.3 Effect on receipt

	1.4.4.2.2 Bind_rsp
	1.4.4.2.2.1 Semantics of the service primitive
	1.4.4.2.2.2 When generated
	1.4.4.2.2.3 Effect on receipt

	1.4.4.2.3 Unbind_rsp
	1.4.4.2.3.1 Semantics of the service primitive
	1.4.4.2.3.2 When generated
	1.4.4.2.3.3 Effect on receipt

	1.4.4.3 Network Management server services
	1.4.4.3.1 Mgmt_NWK_Disc_rsp
	1.4.4.3.1.1 Semantics of the service primitive
	1.4.4.3.1.2 When generated
	1.4.4.3.1.3 Effect on receipt

	1.4.4.3.2 Mgmt_Lqi_rsp
	1.4.4.3.2.1 Semantics of the service primitive
	1.4.4.3.2.2 When generated
	1.4.4.3.2.3 Effect on receipt

	1.4.4.3.3 Mgmt_Rtg_rsp
	1.4.4.3.3.1 Semantics of the service primitive
	1.4.4.3.3.2 When generated
	1.4.4.3.3.3 Effect on receipt

	1.4.4.3.4 Mgmt_Bind_rsp
	1.4.4.3.4.1 Semantics of the service primitive
	1.4.4.3.4.2 When generated
	1.4.4.3.4.3 Effect on receipt

	1.4.4.3.5 Mgmt_Leave_rsp
	1.4.4.3.5.1 Semantics of the service primitive
	1.4.4.3.5.2 When generated
	1.4.4.3.5.3 Effect on receipt

	1.4.4.3.6 Mgmt_Direct_Join_rsp
	1.4.4.3.6.1 Semantics of the service primitive
	1.4.4.3.6.2 When generated
	1.4.4.3.6.3 Effect on receipt

	1.4.5 ZDP enumeration description
	1.4.6 Conformance

	1.5 The ZigBee device objects (ZDO)
	1.5.1 Scope
	1.5.2 Device Object Descriptions
	1.5.2.1 Device and Service Discovery
	1.5.2.2 Security Manager
	1.5.2.3 Network Manager
	1.5.2.4 Binding Manager
	1.5.2.5 Node Manager
	1.5.3 Layer Interface Description
	1.5.4 System Usage
	Figure 30 ZigBee Device Object details

	1.5.5 Object Definition and Behavior
	1.5.5.1 Object Overview
	1.5.5.2 Optional and Mandatory Objects and Attributes
	1.5.5.3 Security key usage
	1.5.5.4 State Machine Functional Descriptions
	1.5.5.4.1 ZigBee Coordinator
	1.5.5.4.1.1 Initialization
	1.5.5.4.1.2 Normal operating state
	1.5.5.4.1.3 Trust center operation

	1.5.5.4.2 ZigBee Router
	1.5.5.4.2.1 Initialization
	1.5.5.4.2.2 Normal operating state

	1.5.5.4.3 ZigBee End Device
	1.5.5.4.3.1 Initialization
	1.5.5.4.3.2 Normal operating state

	1.5.5.5 Device and Service Discovery
	1.5.5.5.1 Optional and Mandatory Attributes within Device and Service Discovery
	1.5.5.6 Security Manager
	1.5.5.6.1 Optional and Mandatory Attributes within Security Manager
	1.5.5.7 Binding Manager
	1.5.5.7.1 Optional and Mandatory Attributes within Binding Manager
	1.5.5.8 Network Manager
	1.5.5.8.1 Optional and Mandatory Attributes within Network Manager
	1.5.5.9 Node Manager
	1.5.5.9.1 Optional and Mandatory Attributes within Node Manager
	1.5.6 Configuration Attributes
	1.5.6.1 Configuration Attribute Definitions

	Chapter 2 Network Specification
	2.1 NWK layer status values
	2.2 General description
	2.2.1 Network (NWK) layer overview
	2.2.1.1 Network layer data entity (NLDE)
	2.2.1.2 Network layer management entity (NLME)

	2.3 Service specification
	Figure 31 The NWK layer reference model
	2.3.1 NWK data service
	2.3.1.1 NLDE-DATA.request
	2.3.1.1.1 Semantics of the service primitive
	2.3.1.1.2 When generated
	2.3.1.1.3 Effect on receipt
	2.3.1.2 NLDE-DATA.confirm
	2.3.1.2.1 Semantics of the service primitive
	2.3.1.2.2 When generated
	2.3.1.2.3 Effect on receipt
	2.3.1.3 NLDE-DATA.indication
	2.3.1.3.1 Semantics of the service primitive
	2.3.1.3.2 When generated
	2.3.1.3.3 Effect on receipt
	2.3.1.3.4 NWK management service
	2.3.2 Network discovery
	2.3.2.1 NLME-NETWORK-DISCOVERY.request
	2.3.2.1.1 Semantics of the service primitive
	2.3.2.1.2 When generated
	2.3.2.1.3 Effect on receipt
	2.3.2.2 NLME-NETWORK-DISCOVERY.confirm
	2.3.2.2.1 Semantics of the service primitive
	2.3.2.2.2 When generated
	2.3.2.2.3 Effect on receipt
	2.3.3 Network formation
	2.3.3.1 NLME-NETWORK-FORMATION.request
	2.3.3.1.1 Semantics of the service primitive
	2.3.3.1.2 When generated
	2.3.3.1.3 Effect on receipt
	2.3.3.2 NLME-NETWORK-FORMATION.confirm
	2.3.3.2.1 Semantics of the service primitive
	2.3.3.2.2 When generated
	2.3.3.2.3 Effect on receipt
	2.3.4 Allowing devices to join
	2.3.4.1 NLME-PERMIT-JOINING.request
	2.3.4.1.1 Semantics of the service primitive
	2.3.4.1.2 When generated
	2.3.4.1.3 Effect on receipt
	2.3.4.2 NLME-PERMIT-JOINING.confirm
	2.3.4.2.1 Semantics of the service primitive
	2.3.4.2.2 When generated
	2.3.4.2.3 Effect on receipt
	2.3.5 Begin as a router
	2.3.5.1 NLME-START-ROUTER.request
	2.3.5.1.1 Semantics of the service primitive
	2.3.5.1.2 When generated
	2.3.5.1.3 Effect on receipt
	2.3.5.2 NLME-START-ROUTER.confirm
	2.3.5.2.1 Semantics of the service primitive
	2.3.5.2.2 When generated
	2.3.5.2.3 Effect on receipt
	2.3.6 Joining a network
	2.3.6.1 NLME-JOIN.request
	2.3.6.1.1 Semantics of the service primitive
	2.3.6.1.2 When generated
	2.3.6.1.3 Effect on receipt
	1) The router belongs to the network identified by the PANId parameter.
	2) The router is open to join requests.
	3) The link quality for frames received from this device is such that a link cost of at most 3 is pro duced when calculated as described in sub-clause 2.7.3.1.

	2.3.6.2 NLME-JOIN.indication
	2.3.6.2.1 Semantics of the service primitive
	2.3.6.2.2 When generated
	2.3.6.2.3 Effect on receipt
	2.3.6.3 NLME-JOIN.confirm
	2.3.6.3.1 Semantics of the service primitive
	2.3.6.3.2 When generated
	2.3.6.3.3 Effect on receipt
	2.3.7 Joining a device directly to a network
	2.3.7.1 NLME-DIRECT-JOIN.request
	2.3.7.1.1 Semantics of the service primitive
	Figure 32 Capability Information parameter format

	2.3.7.1.2 When generated
	2.3.7.1.3 Effect on receipt
	2.3.7.2 NLME-DIRECT-JOIN.confirm
	2.3.7.2.1 Semantics of the service primitive
	2.3.7.2.2 When generated
	2.3.7.2.3 Effect on receipt
	2.3.8 Leaving a network
	2.3.8.1 NLME-LEAVE.request
	2.3.8.1.1 Semantics of the service primitive
	2.3.8.1.2 When generated
	2.3.8.1.3 Effect on receipt
	2.3.8.2 NLME-LEAVE.indication
	2.3.8.2.1 Semantics of the service primitive
	2.3.8.2.2 When generated
	2.3.8.2.3 Effect on receipt
	2.3.8.3 NLME-LEAVE.confirm
	2.3.8.3.1 Semantics of the service primitive
	2.3.8.3.2 When generated
	2.3.8.3.3 Effect on receipt
	2.3.9 Resetting a device
	2.3.9.1 NLME-RESET.request
	2.3.9.1.1 Semantics of the service primitive
	2.3.9.1.2 When generated
	2.3.9.1.3 Effect on receipt
	2.3.9.2 NLME-RESET.confirm
	2.3.9.2.1 Semantics of the service primitive
	2.3.9.2.2 When generated
	2.3.9.2.3 Effect on receipt
	2.3.9.3 Network layer reset message sequence chart
	Figure 33 Message sequence chart for resetting the network layer

	2.3.10 Receiver synchronization
	2.3.10.1 NLME-SYNC.request
	2.3.10.1.1 Semantics of the Service Primitive
	2.3.10.1.2 When generated
	2.3.10.1.3 Effect on receipt
	2.3.10.2 NLME-SYNC.indication
	2.3.10.2.1 Semantics of the service primitive
	2.3.10.2.2 When generated
	2.3.10.2.3 Effect on receipt
	2.3.10.3 NLME-SYNC.confirm
	2.3.10.3.1 Semantics of the Service Primitive
	2.3.10.3.2 When generated
	2.3.10.3.3 Effect on receipt
	2.3.10.4 Message sequence charts for synchronizing with a coordinator
	Figure 34 Message sequence chart for synchronizing in a non-beaconing network
	Figure 35 Message sequence chart for synchronizing in a beacon-enabled network

	2.3.11 Information base maintenance
	2.3.11.1 NLME-GET.request
	2.3.11.1.1 Semantics of the Service Primitive
	2.3.11.1.2 When Generated
	2.3.11.1.3 Effect on Receipt
	2.3.11.2 NLME-GET.confirm
	2.3.11.2.1 Semantics of the Service Primitive
	2.3.11.2.2 When Generated
	2.3.11.2.3 Effect on Receipt
	2.3.11.3 NLME-SET.request
	2.3.11.3.1 Semantics of the Service Primitive
	2.3.11.3.2 When Generated
	2.3.11.3.3 Effect on Receipt
	2.3.11.4 NLME-SET.confirm
	2.3.11.4.1 Semantics of the Service Primitive
	2.3.11.4.2 When Generated
	2.3.11.4.3 Effect on Receipt

	2.4 Frame formats
	2.4.1 General NPDU frame format
	Figure 36 General NWK frame format

	2.4.1.1 Frame control Field
	Figure 37 Frame control field

	2.4.1.1.1 Frame type sub-field
	2.4.1.1.2 Protocol version sub-field
	2.4.1.1.3 Discover route sub-field
	2.4.1.1.4 Security sub-field
	2.4.1.2 Destination address field
	2.4.1.3 Source address field
	2.4.1.4 Radius field
	2.4.1.5 Sequence number field
	2.4.1.6 Frame payload field
	2.4.2 Format of individual frame types
	2.4.2.1 Data frame format
	Figure 38 Data frame format

	2.4.2.1.1 Data frame NWK header field
	2.4.2.1.2 Data payload field
	2.4.2.2 NWK command frame format
	Figure 39 NWK command frame format

	2.4.2.2.1 NWK command frame NWK header field
	2.4.2.2.2 NWK command identifier field
	2.4.2.2.3 NWK command payload field

	2.5 Command frames
	2.5.1 Route request command
	Figure 40 Route request command frame format

	2.5.1.1 MAC data service requirements
	2.5.1.2 NWK header fields
	2.5.1.3 NWK payload fields
	2.5.1.3.1 Command options field
	Figure 41 Route request command options field

	2.5.1.3.2 Route request identifier
	2.5.1.3.3 Destination address
	2.5.1.3.4 Path cost
	2.5.2 Route reply command
	Figure 42 Route reply command format

	2.5.2.1 MAC data service requirements
	2.5.2.2 NWK header fields
	2.5.2.3 NWK payload fields
	2.5.2.3.1 Command options field
	Figure 43 Route reply command options field

	2.5.2.3.2 Route request identifier
	2.5.2.3.3 Originator address
	2.5.2.3.4 Responder address
	2.5.2.3.5 Path cost
	2.5.3 Route error command
	Figure 44 Route error command frame format

	2.5.3.1 MAC data service requirements
	2.5.3.2 NWK header fields
	2.5.3.3 Error code
	2.5.3.4 Destination address
	2.5.4 Leave command
	Figure 45 Leave command frame format

	2.5.4.1 MAC data service requirement
	2.5.4.2 NWK header fields
	2.5.4.3 Command options
	Figure 46 Leave command options field

	2.5.4.3.1 Request/indication sub-field
	2.5.4.3.2 Remove children sub-field

	2.6 Constants and NIB attributes
	2.6.1 NWK constants
	2.6.2 NWK information base

	2.7 Functional description
	2.7.1 Network and device maintenance
	2.7.1.1 Establishing a new network
	Figure 47 Establishing a new network

	2.7.1.2 Permitting devices to join a network
	Figure 48 Permitting devices to join a network

	2.7.1.3 Joining a network
	2.7.1.3.1 Joining a network through association
	2.7.1.3.1.1 Child procedure
	Figure 49 Procedure for joining a network through association

	2.7.1.3.1.2 Parent procedure
	Figure 50 Procedure for handling a join request

	2.7.1.3.2 Joining a network directly
	Figure 51 Joining a device to a network directly

	2.7.1.3.3 Joining or re-joining a network through orphaning
	2.7.1.3.3.1 Child procedure
	Figure 52 Child procedure for joining or re-joining a network through orphaning

	2.7.1.3.3.2 Parent procedure
	Figure 53 Parent procedure for joining or re-joining a device to its network through orphaning

	2.7.1.3.4 Neighbor tables
	2.7.1.4 Distributed address assignment mechanism
	Figure 54 Address assignment in an example network

	2.7.1.5 Higher-layer address assignment mechanism
	2.7.1.6 Installation and addressing
	2.7.1.7 Leaving a network
	2.7.1.7.1 Method for a child to initiate its own removal from a network
	1) The status returned by the initial MCPS-DATA.confirm above has a value of SUCCESS, and
	2) If the NLME attempts to remove the children of the device in turn, then each of the children is successfully removed, and
	3) The status returned by the MLME.DISASSOCIATE.confirm primitive, if any, is also SUC CESS.

	2.7.1.7.2 Method for a parent to force a child to leave its network
	1) The status value returned by the MLME-DATA.confirm resulting from the transmission of the leave command frame was SUCCESS, and
	2) The leave command frame issued by the device's was received before the time-out, and
	3) The recursive removal of children was not called for, or else recursive removal of children was called for and the remove children subfield of the command options field of the command frame payload of the received leave command frame above...
	Figure 55 Sequence diagrams for NLME-LEAVE.request, various scenarios
	Figure 56 Leave command, various scenarios

	2.7.1.8 Changing the ZigBee coordinator configuration
	2.7.1.9 Resetting a device
	2.7.2 Transmission and reception
	2.7.2.1 Transmission
	2.7.2.2 Reception and rejection
	2.7.3 Routing
	2.7.3.1 Routing cost
	where each of the values is referred to as a link cost. The link cost for a link is a function with values in the interval defined as: where is defined as the probability of packet delivery on the link .

	2.7.3.2 Routing tables
	2.7.3.3 Upon receipt of a data frame
	.
	Figure 57 Basic routing algorithm

	2.7.3.4 Route discovery
	2.7.3.4.1 Initiation of route discovery
	2.7.3.4.2 Upon receipt of a route request command frame
	Figure 58 Receipt of route request

	2.7.3.4.3 Upon receipt of route reply command frame
	Figure 59 Receipt of route reply

	2.7.3.5 Route maintenance
	2.7.3.5.1 Route repair for mesh network topology
	2.7.3.5.2 Route repair for tree network topology
	2.7.4 Scheduling beacon transmissions
	2.7.4.1 Scheduling method
	Figure 60 Typical frame structure for a beaconing device
	Figure 61 Parent-child superframe positioning relationship

	2.7.4.2 MAC enhancement
	2.7.5 Broadcast communication
	Figure 62 Broadcast transaction message sequence chart

	2.7.6 NWK information in the MAC beacons
	Figure 63 Format of the MAC sub-layer beacon payload

	2.7.7 Persistent data

	Chapter 3 Security Services Specification
	3.1 Document Organization
	3.2 General Description
	3.2.1 Security Architecture and Design
	3.2.1.1 Security Assumptions
	3.2.1.2 Security Design Choices
	3.2.1.3 Security Keys
	3.2.1.4 ZigBee Security Architecture
	3.2.2 MAC Layer Security
	Figure 64 ZigBee frame with security at the MAC level

	3.2.3 NWK Layer Security
	Figure 65 ZigBee frame with security on the NWK level

	3.2.4 APL Layer Security
	Figure 66 ZigBee frame with security on the APS level

	3.2.4.1 Key Establishment
	3.2.4.2 Transport Key
	3.2.4.3 Update Device
	3.2.4.4 Remove Device
	3.2.4.5 Request Key
	3.2.4.6 Switch Key
	3.2.5 Trust Center Role

	3.3 MAC Layer Security
	3.3.1 Frame Security
	3.3.1.1 Security Processing of Outgoing Frames
	1. Obtain the security material (as specified in sub-clause 3.3.2), including the key, outgoing frame counter FrameCount, key sequence count SeqCount, and security level identifier (as specified in Table 169) from the MAC PIB using the follow...
	a) First, an attempt shall be made to retrieve the security material and security level identifier associ ated with the destination address of the outgoing frame from the macACLEntryDescriptorSet attribute in the MAC PIB.
	b) If the first attempt fails, then security material shall be obtained by using the macDefaultSecurity Material attribute from the MAC PIB and the security level identifier shall be obtained from the MacDefaultSecuritySuite attribute from the MAC PIB.

	2. The Security Control Field SecField is the 1-octet field formatted as in sub-clause 3.6.1.1, with the following settings:
	a) The security level subfield shall be set to the security level obtained in Step 1 above;
	b) The key identifier subfield shall be set to the 2-bit field '00';
	c) The extended nonce subfield shall be set to the 1-bit field '0';
	d) The reserved bits shall be set to the 2-bit field '00'.

	3. Execute the CCM* mode encryption and authentication operation, as specified in Annex A, with the following instantiations:
	a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;
	b) The bit string Key shall be the key obtained from step 1;
	c) The nonce N shall be the 13-octet string constructed using the local device’s 64-bit extended address, SecField from Step 1, and FrameCount from step 1 (see Figure 72 from [B1]);
	d) If the security level requires encryption, the octet string a shall be the string MacHeader and the octet string m shall be the string Payload. Otherwise, the octet string a shall be the string Mac Header || Payload and the octet string m ...

	4. If the CCM* mode invoked in step 3 outputs ‘invalid’, security processing shall fail and no further security processing shall be done on this frame.
	5. Let c be the output from step 4 above. If the security level requires encryption, the secured outgoing frame shall be MacHeader || FrameCount || SeqCount || c, otherwise the secured outgoing frame shall be MacHeader || FrameCount || SeqCou...
	6. If the secured outgoing frame size is greater than aMaxPHYPacketSize (from [B1]), security processing shall fail and no further security processing shall be done on this frame.
	7. The outgoing frame counter from step 1 shall be incremented by one and stored in the location from which the security material was obtained in step 1 (i.e., either the macDefaultSecurityMaterial attribute or the MacDefaultSecuritySuite attribute).

	3.3.1.2 Security Processing of Incoming Frames
	1. If ReceivedFrameCount has as value the 4-octet representation of the integer 232-1, security processing shall fail and no further security processing shall be done on this frame.
	2. Obtain the security material (as specified in sub-clause 3.3.2), including the key, optional external frame counter FrameCount, optional key sequence count SeqCount, and security level identifier (as specified in Table 169) from the MAC PI...
	a) First, an attempt shall be made to retrieve the security material and security level identifier associ ated with the source address of the incoming frame from the macACLEntryDescriptorSet attribute in the MAC PIB.
	b) If the first attempt fails, then security material shall be obtained by using the macDefaultSecurity Material attribute from the MAC PIB and the security level identifier shall be obtained from the MacDefaultSecuritySuite attribute from the MAC PIB.

	3. If FrameCount exists and if ReceivedFrameCount is less than FrameCount, security processing shall fail and no further security processing shall be done on this frame.
	4. The Security Control Field SecField is the 1-octet field formatted as in Clause 7.1.1, Figure 18, with the following settings:
	a) The security level subfield shall be set to the security level from the MACPIB (as specified in Table 29);
	b) The key identifier subfield shall be set to the 2-bit field '00';
	c) The extended nonce subfield shall be set to the 1-bit field '0';
	d) The reserved bits shall be set to the 2-bit field '00'.

	5. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3, with the following instantiations:
	a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;
	b) The bit string Key shall be the key obtained from step 2;
	c) The nonce N shall be the 13-octet string constructed using the 64-bit extended sender address, SecField from Step 4, and ReceivedFrameCount from step 1 (see Figure 72 from [B1]);The nonce N shall be formatted according to the endianness co...
	d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2 is an M-octet string. If this operation fails, security processing shall fail and no further security pro cessing shall be done on this frame;
	e) If the security level requires encryption, the octet string a shall be the string MacHeader || Received FrameCount || ReceivedSeqCount and the octet string c shall be the string SecuredPayload. Other wise, the octet string a shall be the s...

	6. Return the results of the CCM* operation:
	a) If the CCM* mode invoked in step 5 outputs ‘invalid’, security processing shall fail and no fur ther security processing shall be done on this frame;
	b) Let m be the output of step 5 above. If the security level requires encryption, set the octet string UnsecuredMacFrame to the string a || m. Otherwise, set the octet string UnsecuredMacFrame to the string a;

	7. If the optional FrameCount (obtained in step 2) exists, set it to ReceivedFrameCount and update MAC PIB. UnsecuredMacFrame now represents the unsecured received MAC layer frame.

	3.3.2 Security-Related MAC PIB Attributes

	3.4 NWK Layer Security
	3.4.1 Frame Security
	3.4.1.1 Security Processing of Outgoing Frames
	1. Obtain the nwkActiveKeySeqNumber from the NIB and use it to retrieve the active Network key key, outgoing frame counter OutgoingFrameCounter, and key sequence number KeySeqNumber from the nwkSecurityMaterialSet attribute in the NIB. Obtain...
	2. Construct auxiliary header AuxiliaryHeader (see sub-clause 3.6.1):
	a) The security control field shall be set as follows:
	1) The security level sub-field shall be the security level obtained from step 1.
	2) The key identifier sub-field shall be set to ‘01’ (i.e., the Network key).
	3) The extended nonce sub-field shall be set to 1.

	b) The source address field shall be set to the 64-bit extended address of the local device.
	c) The frame counter field shall be set to the outgoing frame counter from step 1.
	d) The key sequence number field shall be set to the sequence number from step 1.

	3. Execute the CCM* mode encryption and authentication operation, as specified in Annex A, with the following instantiations:
	a) The parameter M shall be obtained from Table 169 corresponding to the security level from step 1;
	b) The bit string Key shall be the key obtained from step 1;
	c) The nonce N shall be the 13-octet string constructed using the security control field from step 2a, the frame counter field from step 2c, and the source address field from step 2b (see sub-clause 3.6.2.2);
	d) If the security level requires encryption, the octet string a shall be the string NwkHeader || Auxiliar yHeader and the octet string m shall be the string Payload. Otherwise, the octet string a shall be the string NwkHeader || AuxiliaryHea...

	4. If the CCM* mode invoked in step 3 outputs ‘invalid’, security processing shall fail and no further security processing shall be done on this frame.
	5. Let c be the output from step 3 above. If the security level requires encryption, the secured outgoing frame shall be NwkHeader || AuxiliaryHeader || c, otherwise the secured outgoing frame shall be NwkHeader || AuxiliaryHeader || Payload || c.
	6. If the secured outgoing frame size is greater than aMaxMACFrameSize (see [B1]), security processing shall fail and no further security processing shall be done on this frame.
	7. The outgoing frame counter from step 1 shall be incremented by one and stored in the OutgoingFrameCounter element of the network security material descriptor referenced by the nwkActiveKeySeqNumber in the NIB (i.e., the outgoing frame coun...
	8. Over-write the security level subfield of the security control field by the 3-bit all-zero string '000'.

	3.4.1.2 Security Processing of Incoming Frames
	1. Determine the security level from the nwkSecurityLevel attribute from the NIB. Over-write the 3-bit security level subfield of the security control field of the AuxillaryHeader with this value. Determine the sequence number SequenceNumber,...
	2. Obtain the appropriate security material (consisting of the key and other attributes) by matching SequenceNumber to the sequence number of any key in the nwkSecurityMaterialSet attribute in the NIB. If the security material cannot be obtai...
	3. If there is an incoming frame count FrameCount corresponding to SenderAddress from the security material obtained in step 2 and if ReceivedFrameCount is less than FrameCount, security processing shall fail and no further security processin...
	4. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3, with the following instantiations:
	a) The parameter M shall obtained from Table 169 corresponding to the security level from step 1;
	b) The bit string Key shall be the key obtained from step 2;
	c) The nonce N shall be the 13-octet string constructed using the security control, the frame counter, and the source address fields from AuxiliaryHeader (see sub-clause 3.6.2.2). Note that the security level subfield of the security control ...
	d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2 is an M-octet string. If this operation fails, security processing shall fail and no further security pro cessing shall be done on this frame;
	e) If the security level requires encryption, the octet string a shall be the string NwkHeader || Auxiliar yHeader and the octet string c shall be the string SecuredPayload. Otherwise, the octet string a shall be the string NwkHeader || Auxil...

	5. Return the results of the CCM* operation:
	a) If the CCM* mode invoked in step 4 outputs ‘invalid’, security processing shall fail and no further security processing shall be done on this frame;
	b) Let m be the output of step 4 above. If the security level requires encryption, set the octet string UnsecuredNwkFrame to the string a || m. Otherwise, set the octet string UnsecuredNwkFrame to the string a;

	6. Set FrameCount to (ReceivedFrameCount + 1) and store both FrameCount and SenderAddress in the NIB. UnsecuredNwkFrame now represents the unsecured received network frame and security processing shall succeed. So as to never cause the storag...

	3.4.2 Secured NPDU Frame
	Figure 67 Secured NWK layer frame format

	3.4.3 Security-Related NIB Attributes

	3.5 APS Layer Security
	3.5.1 Frame Security
	3.5.1.1 Security Processing of Outgoing Frames
	1. Obtain the security material and key identifier KeyIdentifier using the following procedure. If security material or key identifier cannot be determined, then security processing shall fail and no further security processing shall be done ...
	a) If the frame is a result of a APSDE-DATA.request primitive:
	i) If the useNwkKeyFlag parameter is TRUE, then security material shall be obtained by using the nwkActiveKeySeqNumber from the NIB to retrieve the active Network key, out going frame counter, and sequence number from the nwkSecurityMaterialS...
	ii) Otherwise, the security material associated with the destination address of the outgoing frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB. KeyIdentifier shall be set to ‘00’ (i.e., a data key). Note, if the frame ...

	b) If the frame is a result of an APS command:
	i) First, an attempt shall be made to retrieve the security material associated with the destina tion address of the outgoing frame from the apsDeviceKeyPairSet attribute in the AIB. For all cases, except transport-key commands, KeyIdentifier...
	ii) If the first attempt fails, then security material shall be obtained by using the nwkAc tiveKeySeqNumber from the NIB to retrieve the active Network key, outgoing frame counter, and sequence number from the nwkSecurityMaterialSet attribut...

	2. If the key identifier is equal to 01 (i.e. network key), the APS layer shall first verify that the NWK layer is not also applying security. If the NWK layer is applying security, then the APS layer shall not apply any security. The APS lay...
	3. Extract the outgoing frame counter (and, if KeyIdentifier is 01, the key sequence number) from the security material obtained from step 1. If the outgoing frame counter has as its value the 4-octet representation of the integer 232-1, or i...
	4. Obtain the security level from the nwkSecurityLevel attribute from the NIB. If the frame is a result of an APS command, the security level shall be forced to 7 (ENC-MIC-128).
	5. Construct auxiliary header AuxiliaryHeader (see sub-clause 3.6.1):
	a) The security control field shall be set as follows:
	i) The security level sub-field shall be the security level obtained from step 3.
	ii) The key identifier sub-field shall be set to KeyIdentifier.
	iii) The extended nonce sub-field shall be set to 0.

	b) The frame counter field shall be set to the outgoing frame counter from step 2.
	c) If KeyIdentifier is 1, the key sequence number field shall be present and set to the key sequence number from step 2. Otherwise, the key sequence number field shall not be present.

	6. Execute the CCM* mode encryption and authentication operation, as specified in Annex A.2, with the following instantiations:
	a) The parameter M shall obtained from Table 169 corresponding to the security level from step 3;
	b) The bit string Key shall be the key obtained from step 1;
	c) The nonce N shall be the 13-octet string constructed using the security control and frame counter fields from step 4 and the 64-bit extended address of the local device (see sub-clause 3.6.2.2);
	d) If the security level requires encryption, the octet string a shall be the string ApsHeader || Auxiliary Header and the octet string m shall be the string Payload. Otherwise, the octet string a shall be the string ApsHeader || AuxiliaryHea...

	7. If the CCM* mode invoked in step 3 outputs ‘invalid’, security processing shall fail and no further security processing shall be done on this frame.
	8. Let c be the output from step 3 above. If the security level requires encryption, the secured outgoing frame shall be ApsHeader || AuxiliaryHeader || c, otherwise the secured outgoing frame shall be ApsHeader || AuxiliaryHeader || Payload || c.
	9. If the secured outgoing frame size will result in the MSDU being greater than aMaxMACFrameSize octets (see [B1]), security processing shall fail and no further security processing shall be done on this frame.
	10. The outgoing frame counter from step 1 shall be incremented and stored in the appropriate location(s) of the NIB, AIB, and MAC PIB corresponding to the key that was used to protect the outgoing frame.
	11. Over-write the security level subfield of the security control field by the 3-bit all-zero string '000'.

	3.5.1.2 Security Processing of Incoming Frames
	1. Determine the sequence number SequenceNumber, key identifier KeyIdentifier, and received frame counter value ReceivedFrameCounter from the auxiliary header AuxiliaryHeader. If ReceivedFrameCounter is the 4-octet representation of the integ...
	2. Determine the source address SourceAddress from the address-map table in the AIB, using the source address in the APS frame as the index. If the source address is incomplete or unavailable, security processing shall fail and no further sec...
	3. Obtain the appropriate security material in the following manner. If the security material cannot be obtained, security processing shall fail and no further security processing shall be done on this frame.
	a) If KeyIdentifier is ‘00’ (i.e., data key), the security material associated with the SourceAddress of the incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB.
	b) If KeyIdentifier is ‘01’ (i.e., Network key), the security material shall be obtained by matching SequenceNumber to the sequence number to the sequence number of any key in the nwkSecurity MaterialSet attribute in the NIB. If the sequence ...
	c) If KeyIdentifier is ‘02’ (i.e., key-transport key), the security material associated with the SourceAd dress of the incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB and the key for this operation shall be ...
	d) If KeyIdentifier is ‘03’ (i.e., key-load key), the security material associated with the SourceAddress of the incoming frame shall be obtained from the apsDeviceKeyPairSet attribute in the AIB and the key for this operation shall be derive...

	4. If there is an incoming frame count FrameCount corresponding to SourceAddress from the security material obtained in step 3 and if ReceivedFrameCount is less than FrameCount, security processing shall fail and no further security processin...
	5. Determine the security level SecLevel as follows. If the frame type subfield of the frame control field of ApsHeader indicates an APS data frame, then SecLevel shall be set to the nwkSecurityLevel attribute in the NIB. Otherwise SecLevel s...
	6. Execute the CCM* mode decryption and authentication checking operation, as specified in Annex A.3, with the following instantiations:
	a) The parameter M shall obtained from Table 169 corresponding to the security level from step 5;
	b) The bit string Key shall be the key obtained from step 3;
	c) The nonce N shall be the 13-octet string constructed using the security control and frame counter fields from AuxiliaryHeader, and SourceAddress from step 2 (see sub-clause 3.6.2.2);
	d) Parse the octet string SecuredPayload as Payload1 || Payload2, where the right-most string Payload2 is an M-octet string. If this operation fails, security processing shall fail and no further security pro cessing shall be done on this frame;
	e) If the security level requires encryption, the octet string a shall be the string ApsHeader || Auxiliary Header and the octet string c shall be the string SecuredPayload. Otherwise, the octet string a shall be the string ApsHeader || Auxil...

	7. Return the results of the CCM* operation:
	a) If the CCM* mode invoked in step 4 outputs ‘invalid’, security processing shall fail and no further security processing shall be done on this frame;
	b) Let m be the output of step 4 above. If the security level requires encryption, set the octet string UnsecuredApsFrame to the string a || m. Otherwise, set the octet string UnsecuredApsFrame to the string a;

	8. Set FrameCount to (ReceivedFrameCount + 1) and store both FrameCount and SourceAddress in the appropriate security material as obtained in step 3. If storing this frame count and address information will cause the memory allocation for thi...

	3.5.2 Key-Establishment Services
	3.5.2.1 APSME-ESTABLISH-KEY.request
	3.5.2.1.1 Semantics of the service primitive
	3.5.2.1.2 When generated
	3.5.2.1.3 Effect on receipt
	3.5.2.2 APSME-ESTABLISH-KEY.confirm
	3.5.2.2.1 Semantics of the service primitive
	3.5.2.2.2 When generated
	3.5.2.2.3 Effect on receipt
	3.5.2.3 APSME-ESTABLISH-KEY.indication
	3.5.2.3.1 Semantics of the service primitive
	3.5.2.3.2 When generated
	3.5.2.3.3 Effect on receipt
	3.5.2.4 APSME-ESTABLISH-KEY.response
	3.5.2.4.1 Semantics of the service primitive
	3.5.2.4.2 When generated
	3.5.2.4.3 Effect on receipt
	3.5.2.5 Data Service Message Sequence Chart
	Figure 68 Sequence chart for successful APSME-ESTABLISH-KEY primitives

	3.5.2.6 The SKKE Protocol
	3.5.2.6.1 Generating and sending the initial SKKE-1 frame
	3.5.2.6.2 On receipt of the SKKE-1 frame
	1. If the device given by the responder address field is not a child of the local device, the SKKE-1 frame shall be discarded.
	2. Otherwise, the APSME of the local device shall send the SKKE-1 frame to the responder device using the NLDE-DATA.request primitive, with the DestAddr parameter set to the 16-bit address corresponding to the 64-bit address in the responder ...
	3. Otherwise, the APSME shall perform the following steps:
	4. If the device does not have a master key corresponding to the initiator address field, the SKKE-1 frame shall be discarded and the APSME-ESTABLISH-KEY.confirm primitive shall be issued with the Status parameter set to NO_MASTER_KEY (see Ta...
	5. Otherwise, the APSME shall issue an APSME-ESTABLISH-KEY.indication primitive with the InitiatorAddress parameter set to the initiator address field of the SKKE-1 frame and the KeyEstablishmentMethod parameter set to 0 (i.e., the SKKE protocol).
	6. After issuing the APSME-ESTABLISH-KEY.indication primitive, and upon receipt of the corresponding APSME-ESTABLISH-KEY.response primitive, the APSME shall evaluate the InitiatorAddress and Accept parameters of the received APSME-ESTABLISH-K...
	7. Otherwise, it shall construct an SKKE-2 frame as specified in sub-clause 3.5.9.1. If the source of the SKKE-1 frame indicates the same device as the initiator address field of the SKKE-1 frame, the device shall send this SKKE-2 frame direc...

	3.5.2.6.3 On receipt of the SKKE-2 frame
	1. If the device given by the responder address field is not a child of the local device, the SKKE-2 frame shall be discarded.
	2. Otherwise, the device shall send the SKKE-2 to the initiator device using the NLDE-DATA.request primitive with NWK layer set to the default level.

	3.5.2.6.4 On receipt of the SKKE-3 frame
	1. If the device given by the responder address field is not a child of the local device, the SKKE-3 frame shall be discarded.
	2. Otherwise, the device shall send the SKKE-3 to the responder device using the NLDE-DATA.request primitive with NWK layer security disabled.

	3.5.2.6.5 On receipt of the SKKE-4 frame
	1. If the device given by the responder address field is not a child of the local device, the SKKE-4 frame shall be discarded.
	2. Otherwise, the APSME of the local device shall send the SKKE-4 to the initiator device using the NLDE-DATA.request primitive with NWK layer set to the default level.

	3.5.3 Transport-Key Services
	3.5.3.1 APSME-TRANSPORT-KEY.request
	3.5.3.1.1 Semantics of the service primitive
	3.5.3.1.2 When generated
	3.5.3.1.3 Effect on receipt
	3.5.3.2 APSME-TRANSPORT-KEY.indication
	3.5.3.2.1 Semantics of the service primitive
	3.5.3.2.2 When generated
	3.5.3.2.3 Effect on receipt
	3.5.3.3 Upon Receipt of a Transport-Key Command
	3.5.4 Update-Device Services
	3.5.4.1 APSME-UPDATE-DEVICE.request
	3.5.4.1.1 Semantics of the service primitive
	3.5.4.1.2 When generated
	3.5.4.1.3 Effect on receipt
	3.5.4.2 APSME-UPDATE-DEVICE.indication
	3.5.4.2.1 Semantics of the service primitive
	3.5.4.2.2 When generated
	3.5.4.2.3 Effect on receipt
	3.5.5 Remove Device Services
	3.5.5.1 APSME-REMOVE-DEVICE.request
	3.5.5.1.1 Semantics of the service primitive
	3.5.5.1.2 When generated
	3.5.5.1.3 Effect on receipt
	3.5.5.2 APSME-REMOVE-DEVICE.indication
	3.5.5.2.1 Semantics of the service primitive
	3.5.5.2.2 When generated
	3.5.5.2.3 Effect on receipt
	3.5.6 Request Key Services
	3.5.6.1 APSME-REQUEST-KEY.request
	3.5.6.1.1 Semantics of the service primitive
	3.5.6.1.2 When generated
	3.5.6.1.3 Effect on receipt
	3.5.6.2 APSME-REQUEST-KEY.indication
	3.5.6.2.1 Semantics of the service primitive
	3.5.6.2.2 When generated
	3.5.6.2.3 Effect on receipt
	3.5.7 Switch Key Services
	3.5.7.1 APSME-SWITCH-KEY.request
	3.5.7.1.1 Semantics of the service primitive
	3.5.7.1.2 When generated
	3.5.7.1.3 Effect on receipt
	3.5.7.2 APSME-SWITCH-KEY.indication
	3.5.7.2.1 Semantics of the service primitive
	3.5.7.2.2 When generated
	3.5.7.2.3 Effect on receipt
	3.5.8 Secured APDU Frame
	Figure 69 Secured APS layer frame format

	3.5.9 Command Frames
	3.5.9.1 Key-Establishment Commands
	Figure 70 Generic SKKE frame command format

	3.5.9.1.1 Command identifier field
	3.5.9.1.2 Initiator address field
	3.5.9.1.3 Responder address field
	3.5.9.1.4 Data field
	3.5.9.1.4.1 SKKE-1 frame
	3.5.9.1.4.2 SKKE-2 frame
	3.5.9.1.4.3 SKKE-3 frame
	3.5.9.1.4.4 SKKE-4 frame

	3.5.9.2 Transport-Key Commands
	Figure 71 Transport-key command frame

	3.5.9.3 Command identifier field
	3.5.9.3.1 Key type field
	3.5.9.3.2 Key descriptor field
	3.5.9.3.2.1 Trust center master key descriptor field
	Figure 72 Trust center master key descriptor field in transport-key command

	3.5.9.3.2.2 Network key descriptor field
	Figure 73 Network key descriptor field in transport-key command

	3.5.9.3.2.3 Application master and link key descriptor field
	Figure 74 Application master key descriptor in transport-key command

	3.5.9.4 Update-Device Commands
	Figure 75 Update-device command frame format

	3.5.9.4.1 Command identifier field
	3.5.9.4.2 Device address field
	3.5.9.4.3 Device short address field
	3.5.9.4.4 Status field
	3.5.9.5 Remove Device Commands
	Figure 76 Remove-device command frame format

	3.5.9.5.1 Command identifier field
	3.5.9.5.2 Child address field
	3.5.9.6 Request-Key Commands
	Figure 77 Request-key command frame format

	3.5.9.6.1 Command identifier field
	3.5.9.6.2 Key type field
	3.5.9.6.3 Partner address field
	3.5.9.7 Switch-Key Commands
	Figure 78 Switch-key command frame format

	3.5.9.7.1 Command identifier field
	3.5.9.7.2 Sequence number field
	3.5.10 Security-Related AIB Attributes

	3.6 Common Security Elements
	3.6.1 Auxiliary Frame Header Format
	Figure 79 Auxiliary frame header format

	3.6.1.1 Security Control Field
	Figure 80 Security control field format

	3.6.1.1.1 Security level sub-field
	3.6.1.1.2 Key identifier sub-field
	3.6.1.1.3 Extended nonce sub-field
	3.6.1.2 Source Address Field
	3.6.1.3 Counter Field
	3.6.1.4 Key Sequence Number Field
	3.6.2 Security Parameters
	3.6.2.1 CCM* Mode of Operation and Parameters
	3.6.2.2 CCM* Nonce
	Figure 81 CCM* nonce

	3.6.3 Cryptographic Key Hierarchy
	1. Key-Transport Key. This key is the outcome of executing the specialized keyed hash function specified in clause B.1.5 under the link key with as input string the 1-octet string ‘0x00’.
	2. Key-Load Key. This key is the outcome of executing the specialized keyed hash function specified in clause B.1.5 under the link key with as input string the 1-octet string ‘0x02’.
	3. Data Key. This key is equal to the link key.

	3.6.4 Implementation Guidelines (Informative)
	3.6.4.1 Random Number Generator
	1. Base the random number on random clocks and counters within the ZigBee hardware
	2. Base the random number on random external events
	3. Seed each ZigBee device with a good random number from an external source during production. This random number can then used as a seed to generate additional random numbers.

	3.6.4.2 Security Implementation
	3.6.4.3 Conformance

	3.7 Functional Description
	3.7.1 ZigBee Coordinator
	3.7.2 Trust Center Application
	3.7.2.1 Commercial Mode
	3.7.2.2 Residential Mode
	3.7.3 Security Procedures
	3.7.3.1 Joining a Secured Network
	Figure 82 Example of joining a secured network

	3.7.3.2 Authentication
	3.7.3.2.1 Router operation
	3.7.3.2.2 Trust center operation
	3.7.3.2.2.1 Residential mode
	3.7.3.2.2.2 Commercial mode

	3.7.3.2.3 Joining device operation
	3.7.3.2.3.1 Preconfigured Network key
	3.7.3.2.3.2 Preconfigured trust center key
	3.7.3.2.3.3 Not preconfigured

	3.7.3.2.4 Message sequence charts
	Figure 83 Example residential-mode authentication procedure
	Figure 84 Example commercial-mode authentication procedure

	3.7.3.3 Network Key Update
	3.7.3.3.1 Trust center operation
	3.7.3.3.2 Network device operation
	3.7.3.3.3 Message sequence chart
	Figure 85 Example Network key-update procedure

	3.7.3.4 Network Key Recovery
	3.7.3.4.1 Network device operation
	3.7.3.4.2 Trust Center operation
	3.7.3.4.3 Message sequence chart
	Figure 86 Example Network key-recovery procedure

	3.7.3.5 End-to-End Application Key Establishment
	3.7.3.5.1 Device operation
	3.7.3.5.1.1 Upon receipt of link key
	3.7.3.5.1.2 Upon receipt of a master key

	3.7.3.5.2 Trust center operation
	3.7.3.5.3 Message sequence chart
	Figure 87 Example end-to-end application key establishment procedure

	3.7.3.6 Network Leave
	3.7.3.6.1 Trust center operation
	3.7.3.6.2 Router operation
	3.7.3.6.3 Leaving device operation
	3.7.3.6.4 Message sequence charts
	Figure 88 Example remove-device procedure
	Figure 89 Example device-leave procedure

	Annex A CCM* Mode of Operation
	1. A block-cipher encryption function E shall have been chosen, with a 128-bit block size. The length in bits of the keys used by the chosen encryption function is denoted by keylen.
	2. A fixed representation of octets as binary strings shall have been chosen (e.g., most-significant-bit first order or least-significant-bit-first order).
	3. The length L of the message length field, in octets, shall have been chosen. Valid values for L are the integers 2, 3,..., 8 (the value L=1 is reserved).
	4. The length M of the authentication field, in octets, shall have been chosen. Valid values for M are the integers 0, 4, 6, 8, 10, 12, 14, and 16. (The value M=0 corresponds to disabling authenticity, since then the authentication field is t...
	A.1 Notation and representation
	A.2 CCM* mode encryption and authentication transformation
	1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this key is restricted to the entity itself and its intended key sharing group member(s).
	2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.
	3. An octet string m of length l(m) octets, where 0 £ l(m) < 28L.
	4. An octet string a of length l(a) octets, where 0 £ l(a) < 264.
	A.2.1 Input transformation
	1. Form the octet string representation L(a) of the length l(a) of the octet string a, as follows:
	a) If l(a)=0, then L(a) is the empty string.
	b) If 0 < l(a) < 216-28, then L(a) is the 2-octets encoding of l(a).
	c) If 216-28 £ l(a) < 232, then L(a) is the right-concatenation of the octet 0xff, the octet 0xfe, and the 4- octets encoding of l(a).
	d) If 232 £ l(a) < 264, then L(a) is the right-concatenation of the octet 0xff, the octet 0xff, and the 8- octets encoding of l(a).

	2. Right-concatenate the octet string L(a) with the octet string a itself. Note that the resulting string contains l(a) and a encoded in a reversible manner.
	3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.
	4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16.
	5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:
	AuthData = AddAuthData || PlaintextData. (1)

	A.2.2 Authentication transformation
	1. Form the 1-octet Flags field consisting of the 1-bit Reserved field, the 1-bit Adata field, and the 3-bit representations of the integers M and L, as follows:
	Flags = Reserved || Adata || M || L. (2)
	2. Form the 16-octet B0 field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field N, and the L-octet representation of the length field l(m), as follows:
	3. Parse the message AuthData as B1 || B2 || ... ||Bt, where each message block Bi is a 16-octet string.

	X0 := 0128; Xi+1 := E(Key, Xi Å Bi) for i=0, ... , t. (3)

	A.2.3 Encryption transformation
	1. Form the 1-octet Flags field consisting of two 1-bit Reserved fields, and the 3-bit representations of the integers 0 and L, as follows:
	Flags = Reserved || Reserved || 0 || L. (4)
	Ai = Flags || Nonce N || Counter i, for i=0, 1, 2, … (5)
	Ci := E(Key, Ai) Å Mi for i=1, 2, ... , t. (6)
	S0:= E(Key, A0). (7)
	2. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M octets of S0 and the authentication tag T.

	A.3 CCM* mode decryption and authentication checking transformation
	1. A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this key is restricted to the entity itself and its intended key-sharing group member(s).
	2. A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.
	3. An octet string c of length l(c) octets, where 0 £ l(c)-M < 28L.
	4. An octet string a of length l(a) octets, where 0 £ l(a) < 264.
	A.3.1 Decryption transformation
	1. Parse the message c as C ||U, where the right-most string U is an M-octet string. If this operation fails, output ‘invalid’ and stop. U is the purported encrypted authentication tag. Note that the leftmost string C has length l(c)-M octets.
	2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non- negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.
	3. Use the encryption transformation in sub-clause A.2.3, with as inputs the data CipherTextData and the tag U.
	4. Parse the output string resulting from applying this transformation as m || T, where the right-most string T is an M-octet string. T is the purported authentication tag. Note that the leftmost string m has length l(c)-M octets.

	A.3.2 Authentication checking transformation
	1. Form the message AuthData using the input transformation in sub-clause A.2.1, with as inputs the string a and the octet string m that was established in sub-clause A.3.1 (step 4).
	2. Use the authentication transformation in sub-clause A.2.2, with as input the message AuthData.
	3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in sub-clause A.3.1 (step 4). If MACTag=T, output ‘valid’; otherwise, output ‘invalid’ and stop.

	A.4 Restrictions

	Annex B Security Building Blocks
	B.1 Symmetric-key cryptographic building blocks
	B.1.1 Block-cipher
	B.1.2 Mode of operation
	1. Each entity shall use the block-cipher E as specified in sub-clause B.1.1;
	2. All octets shall be represented as specified in section "Preface";
	3. The parameter L shall have the integer value 2;
	4. The parameter M shall have one of the following integer values: 0, 4, 8, or 16.

	B.1.3 Cryptographic hash function
	1. Each entity shall use the block-cipher E as specified in section sub-clause B.1.1;
	2. All integers and octets shall be represented as specified in section "Preface".

	B.1.4 Keyed hash function for message authentication
	1. Each entity shall use the cryptographic hash H function as specified in sub-clause B.1.3;
	2. The block size B shall have the integer value 16 (this block size specifies the length of the data integrity key, in bytes, that is used by the keyed hash function, i.e., it uses a 128-bit data integrity key);
	3. The output size HMAClen of the HMAC function shall have the same integer value as the message digest parameter hashlen as specified in sub-clause B.1.3.

	B.1.5 Specialized keyed hash function for message authentication
	B.1.6 Challenge domain parameters

	B.2 Key Agreement Schemes
	B.2.1 Symmetric-key key agreement scheme
	1. Each entity shall be identified as specified in "Preface";
	2. Each entity shall use the HMAC-scheme as specified in sub-clause B.1.4;
	3. Each entity shall use the specialized HMAC-scheme as specified in sub-clause B.1.5;
	4. Each entity shall use the cryptographic hash function as specified in sub-clause B.1.3.,
	5. The parameter keydatalen shall have the same integer value as the key size parameter keylen as specified in sub-clause B.1.1;
	6. The parameter SharedData shall be the empty string; parameter shareddatalen shall have the integer value 0;
	7. The optional parameters Text1 and Text2 as specified in sub-clause B.7.1 and sub-clause B.7.2 shall both be the empty string.
	8. Each entity shall use the challenge domain parameters as specified in sub-clause B.1.6.
	9. All octets shall be represented as specified in section "Preface".

	B.3 Challenge Domain Parameter Generation and Validation
	B.3.1 Challenge Domain Parameter Generation
	1. Choose two nonnegative integers minchallengelen and maxchallengelen, such that minchallengelen £ maxchallengelen.

	B.3.2 Challenge Domain Parameter Verification
	1. Check that minchallengelen and maxchallengelen are nonnegative integers.
	2. Check that minchallengelen £ maxchallengelen.

	B.4 Challenge Validation Primitive
	1. Compute the bit-length challengelen of the bit string Challenge.
	2. Verify that challengelen Œ [minchallengelen, maxchallengelen]. (That is, verify that the challenge has an appropriate length.)

	B.5 Secret Key Generation (SKG) Primitive
	1. Each entity shall be bound to a unique identifier (e.g., distinguished names). All identifiers shall be bit strings of the same length entlen bits. Entity U1’s identifier will be denoted by the bit string U1. Entity U2’s identifier will be...
	2. A specialized MAC scheme shall have been chosen, with tagging transformation as specified in Section 5.7.1 of ANSI X9.63-2001 [B7]. The length in bits of the keys used by the specialized MAC scheme is denoted by mackeylen.
	1. A bit string MACKey of length mackeylen bits to be used as the key of the established specialized MAC scheme.
	2. A bit string QEU1 owned by U1.
	3. A bit string QEU2 owned by U2.
	1. Form the bit string consisting of U1’s identifier, U2’s identifier, the bit string QEU1 corresponding to U1’s challenge, and the bit string QEU2 corresponding to QEU2’s challenge:
	MacData = U1 || U2 || QEU1 || QEU2. (8)
	2. Calculate the tag MacTag for MacData under the key MacKey using the tagging transformation of the established specialized MAC scheme:

	MacTag = MACMacKey(MacData). (9)
	3. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop.
	4. Set Z=MacTag.

	B.6 Block-Cipher-Based Cryptographic Hash Function
	1. A block-cipher encryption function E shall have been chosen, with a key size that is equal to the block size. The Matyas-Meyer-Oseas hash function has a message digest size that is equal to the block size of the established encryption func...
	2. A fixed representation of integers as binary strings or octet strings shall have been chosen.
	1. A bit string M of length l bits, where 0£ l < 2n.
	1. Pad the message M according to the following method:
	a) Right-concatenate to the message M the binary consisting of the bit ‘1’ followed by k ‘0’ bits, where k is the smallest non-negative solution to the equation

	l+1+k º 7n (mod 8n). (10)
	b) Form the padded message M’ by right-concatenating to the resulting string the n-bit string that is equal to the binary representation of the integer l.
	2. Parse the padded message M’ as M1 || M2|| … || Mt where each message block Mi is an n-octet string.
	3. The output Hasht is defined by

	Hash0 =08n; Hashj =E(Hashj-1, Mj) Å Mj for j=1,…,t. (11)

	B.7 Symmetric-Key Authenticated Key Agreement Scheme
	Figure 90 Symmetric-Key Authenticated Key Agreement Scheme
	1. Each entity has an authentic copy of the system’s challenge domain parameters D=(minchallengelen, maxchallengelen).
	2. Each entity shall have access to a bit string Key of length keylen bits to be used as the key. Each party shall have evidence that access to this key is restricted to the entity itself and the other entity involved in the symmetric-key aut...
	3. Each entity shall be bound to a unique identifier (e.g., distinguished names). All identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier will be denoted by the bit string U. Entity V’s identifier will be de...
	4. Each entity shall have decided which MAC scheme to use as specified in Section 5.7 of ANSI X9.63- 2001 [B7]. The length in bits of the keys used by the chosen MAC scheme is denoted by mackeylen.
	5. A cryptographic hash function shall have been chosen for use with the key derivation function.
	6. A specialized MAC scheme shall have been chosen for use with the secret key generation primitive with tagging transformation as specified in Section 5.7.1 of ANSI X9.63-2001 [B7]. The length in bits of the keys used by the specialized MAC ...
	7. A fixed representation of octets as binary strings shall have been chosen. (e.g., most-significant-bit-first order or least-significant-bit-first order).

	B.7.1 Initiator Transformation
	1. An integer keydatalen that is the length in bits of the keying data to be generated.
	2. (Optional) A bit string SharedData of length shareddatalen bits that consists of some data shared by U and V.
	1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge QEU for the challenge domain parameters D. Send QEU to V.
	2. Then receive from V a challenge QEV’ purportedly owned by V. If this value is not received, output ‘invalid’ and stop.
	3. Receive from V an optional bit string Text1, and a purported tag MacTag1’. If these values are not received, output ‘invalid’ and stop.
	4. Verify that QEV’ is a valid challenge for the challenge domain parameters D as specified in section sub- clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.
	5. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU owned by U and Q2=QEV’ owned by V, using as key the shared key Key. If the SKG primitive outputs ‘invalid’, output ‘invalid’ and stop.
	6. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the established hash function to derive keying data KKeyData of length mackeylen+keydatalen bits from the shared secret value Z and the shared data [SharedData].
	7. Parse the leftmost mackeylen bits of KKeyData as a MAC key MacKey and the remaining bits as keying data KeyData.
	8. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV’, the bit string QEU, and if present Text1:
	MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]. (12)
	9. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking transformation of the appropriate MAC scheme specified in Section 5.7.2 of ANSI X9.63-2001 [B7]. If the tag checking transformation outputs ‘invalid’,...
	10. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU corresponding to U’s challenge, the bit string QEV’ corresponding to V’s challenge, and optionally a bit string Text2:

	MacData2 = 0316 || U || V || QEU || QEV’ || [Text2]. (13)
	11. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation of the appropriate MAC scheme specified in Section 5.7.1 of ANSI X9.63-2001 [B7]:

	MacTag2 = MACMacKey(MacData2). (14)
	12. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and, if present, Text2 to V.

	B.7.2 Responder Transformation
	1. A challenge QEU’ purportedly owned by U.
	2. An integer keydatalen that is the length in bits of the keying data to be generated.
	3. (Optional) A bit string SharedData of length shareddatalen bits that consists of some data shared by U and V.
	4. (Optional) A bit string Text1 that consists of some additional data to be provided from V to U.
	1. Verify that QEU’ is a valid challenge for the challenge domain parameters D as specified in sub- clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.
	2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge QEV for the challenge domain parameters D. Send to U the challenge QEV.
	3. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU’ owned by U and Q2=QEV owned by V, using as key the shared key Key. If the SKG primitive outputs ‘invalid’, output ‘invalid’ and stop.
	4. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the established hash function to derive keying data KKeyData of length mackeylen+keydatalen bits from the shared secret value Z and the shared data [SharedData].
	5. Parse the leftmost mackeylen bits of KKeyData as a MAC key MacKey and the remaining bits as keying data KeyData.
	6. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV, the bit string QEU’, and, optionally, a bit string Text1:
	MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]. (15)
	7. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation of the appropriate MAC scheme specified in Section 5.7 of ANSI X9.63-2001 [B7]:

	MacTag1 = MACMacKey(MacData1). (16)
	8. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not received, output ‘invalid’ and stop.
	9. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU’ corresponding to U’s purported challenge, the bit string QEV corresponding to V’s challenge, and the bit string Text2 (if present):

	MacData2 = 0316 || U || V || QEU’ || QEV || [Text2]. (17)
	10. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking transformation of the appropriate MAC scheme specified in Section 5.7 ANSI X9.63-2001 [B7]. If the tag checking transformation outputs ‘invalid’...

	Annex C Test Vectors for Cryptographic Building Blocks
	C.1 Data Conversions
	C.2 AES Block Cipher
	C.3 CCM* Mode Encryption and Authentication Transformation
	1. The parameter M shall have the integer value 8.
	1. The key Key of size keylen=128 bits to be used:
	Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF. (18)
	2. The nonce N of 15-L=13 octets to be used:

	Nonce = A0 A1 A2 A3 A4 A5 A6 A7 || 03 02 01 00 || 06. (19)
	3. The octet string m of length l(m)=23 octets to be used:

	m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E. (20)
	4. The octet string a of length l(a)=8 octets to be used:

	a = 00 01 02 03 04 05 06 07. (21)
	C.3.1 Input Transformation
	1. Form the octet string representation L(a) of the length l(a) of the octet string a:
	2. Right-concatenate the octet string L(a) and the octet string a itself:
	3. Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non-negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16:
	4. Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non-negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16:
	5. Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

	C.3.2 Authentication Transformation
	1. Form the 1-octet Flags field as follows:
	2. Form the 16-octet B0 field as follows:
	3. Parse the message AuthData as B1 || B2 ||B3, where each message block Bi is a 16-octet string.
	4. The CBC-MAC value X4 is computed as follows:

	C.3.3 Encryption Transformation
	1. Form the 1-octet Flags field as follows:
	2. Define the 16-octet Ai field as follows:
	3. Parse the message PlaintextData as M1 ||M2, where each message block Mi is a 16-octet string.
	4. The ciphertext blocks C1, C2 are computed as follows:
	5. The string Ciphertext is the result of omitting all but the leftmost l(m)=23 octets of the string C1 ||C2:
	6. Define the 16-octet encryption block S0 by
	7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M=8 octets of S0 and the authentication tag T:

	C.4 CCM* Mode Decryption and Authentication Checking Transformation
	1. The parameter M shall have the integer value 8.
	1. The key Key of size keylen=128 bits to be used:
	2. The nonce N of 15-L=13 octets to be used:
	3. The octet string c of length l(c)=31 octets to be used:
	4. The octet string a of length l(a)=8 octets to be used:
	C.4.1 Decryption Transformation
	1. Parse the message c as C ||U, where the right-most string U is an M-octet string:
	2. Form the padded message CiphertextData by right-concatenating the string C with the smallest non- negative number of all-zero octets such that the octet string CiphertextData has length divisible by 16.
	3. Form the 1-octet Flags field as follows:
	4. Define the 16-octet Ai field as follows:
	5. Parse the message CiphertextData as C1 ||C2, where each message block Ci is a 16-octet string.
	6. The ciphertext blocks P1, P2 are computed as follows:
	7. The octet string m is the result of omitting all but the leftmost l(m)=23 octets of the string P1 || P2:
	8. Define the 16-octet encryption block S0 by
	9. The purported authentication tag T is the result of XOR-ing the string consisting of the leftmost M=8 octets of S0 and the octet string U:

	C.4.2 Authentication Checking Transformation
	1. Form the message AuthData using the input transformation in sub-clause C.3.1, with as inputs the string a and the octet string m that was established in sub-clause C.4.1(step 7.):
	2. Use the authentication transformation in sub-clause C.3.2, with as input the message AuthData to compute the authentication tag MACTag:
	3. Compare the output tag MACTag resulting from this transformation with the tag T that was established in sub-clause C.4.1(step 9.):

	C.5 Cryptographic Hash Function
	C.5.1 Test Vector Set 1
	1. The bit string M of length l=8 bits to be used:
	1. Pad the message M by right-concatenating to M the bit ‘1’ followed by the smallest non-negative number of ‘0’ bits, such that the resulting string has length 14 (mod 16) octets:
	2. Form the padded message M’ by right-concatenating to the resulting string the 16-bit string that is equal to the binary representation of the integer l.
	3. Parse the padded message M’ as M1, where each message block Mi is a 16-octet string.
	4. The hash value Hash1 is computed as follows:

	C.5.2 Test Vector Set 2
	5. The bit string M of length l=128 bits to be used:
	1. Pad the message M by right-concatenating to M the bit ‘1’ followed by the smallest non-negative number of ‘0’ bits, such that the resulting string has length 14 (mod 16) octets:
	2. Form the padded message M’ by right-concatenating to the resulting string the 16-bit string that is equal to the binary representation of the integer l.
	3. Parse the padded message M’ as M1 || M2, where each message block Mi is a 16-octet string.
	4. The hash value Hash2 is computed as follows:

	C.6 Keyed Hash Function for Message Authentication
	C.6.1 Test Vector Set 1
	1. The key Key of size keylen=128 bits to be used:
	2. The bit string M of length l=8 bits to be used:
	1. Create the 16-octet string ipad (inner pad) as follows:
	2. Form the inner key Key1 by XOR-ing the bit string Key and the octet string ipad:
	3. Form the padded message M1 by right-concatenating the bit string Key1 with the bit string M:
	4. Compute the hash value Hash1 of the bit string M1:
	5. Create the 16-octet string opad (outer pad) as follows:
	6. Form the outer key Key2 by XOR-ing the bit string Key and the octet string opad:
	7. Form the padded message M2 by right-concatenating the bit string Key2 with the bit string Hash1:
	8. Compute the hash value Hash2 of the bit string M2:

	C.6.2 Test Vector Set 2
	1. The key Key of size keylen=256 bits to be used:
	2. The bit string M of length l=128 bits to be used:
	1. Compute the hash value Key0 of the bit string Key:
	2. Create the 16-octet string ipad (inner pad) as follows:
	3. Form the inner key Key1 by XOR-ing the bit key Key0 and the octet string ipad:
	4. Form the padded message M1 by right-concatenating the bit string Key1 with the bit string M:
	5. Compute the hash value Hash1 of the bit string M1:
	6. Create the 16-octet string opad (outer pad) as follows:
	7. Form the outer key Key2 by XOR-ing the bit string Key0 and the octet string opad:
	8. Form the padded message M2 by right-concatenating the bit string Key2 with the bit string Hash1:
	9. Compute the hash value Hash2 of the bit string M2:

	C.7 Specialized Keyed Hash Function for Message Authentication
	C.8 Symmetric-Key Key Agreement Scheme
	1. The unique identifiers of the entities U and V to be used:
	2. The key Key of length keylen=128 bits to be used:
	3. The optional parameter SharedData of length shareddatalen=48 bits to be used:
	C.8.1 Initiator Transformation
	1. The length keydatalen in bits of the keying data to be generated: keydatalen=128.
	2. The optional bit string Text2 to be used is not present, i.e., Text2 = e (the empty string).
	1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge QEU for the challenge domain parameters D. Send QEU to V.
	2. Then receive from V a challenge QEV’ purportedly owned by V. If this value is not received, output ‘invalid’ and stop.
	3. Receive from V an optional bit string Text1, and a purported tag MacTag1’. If these values are not received, output ‘invalid’ and stop.
	4. Verify that QEV’ is a valid challenge for the challenge domain parameters D as specified in sub-clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.
	5. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU owned by U and Q2=QEV’ owned by V, using as key the shared key Key. If the SKG primitive outputs ‘invalid’, output ‘invalid’ and stop.
	a) Form the bit string MACData = U || V || QEU || QEV’:
	b) Calculate the MACTag for MACData under the key Key using the tagging transformation of the HMAC-Matyas-Meyer-Oseas MAC scheme:
	c) Set Z=MACTag:

	6. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the Matyas-Meyer- Oseas hash function to derive keying data KKeyData of length 256 bits from the shared secret value Z and the shared data SharedData:
	a) The hash values Hash1, Hash2 are computed as follows:
	b) Set KKeyData=Hash1 || Hash2:

	7. Parse the leftmost 128 bits of KKeyData as a MAC key MacKey and the remaining bits as keying data KeyData.
	8. Form the bit string MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]:
	9. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking transformation specified in Section 5.7.2 of ANSI X9.63-2001 [B7]. If the tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop.
	a) Calculate MacTag1=MACMacKe y (MacData1) = E6 C3 DE 1F E8 63 15 B9 E6 A0 2B 44 FF 63 D8 D0.
	b) Verify that MacTag1=MacTag1’.

	10. Form the bit string MacData2 = 0316 || U || V || QEU || QEV’ || [Text2]:
	11. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation specified in Section 5.7.1 of ANSI X9.63-2001 [B7] with the HMAC-Matyas-Meyer-Oseas MAC scheme:
	MacTag2 = MACMacKey (MacData2) = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3 6D. (22)

	C.8.2 Responder Transformation
	1. A challenge QEU’ purportedly owned by U.
	2. The length keydatalen in bits of the keying data to be generated: keydatalen=128.
	3. The optional bit string Text1 to be used is not present, i.e., Text1 = e (the empty string).
	1. Verify that QEU’ is a valid challenge for the challenge domain parameters D as specified in sub-clause B.3.2. If the validation primitive rejects the challenge, output ‘invalid’ and stop.
	2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63-2001 [B7] to generate a challenge QEV for the challenge domain parameters D. Send to U the challenge QEV.
	3. Use the SKG primitive in clause B.5 to derive a shared secret bit string Z from the challenges Q1=QEU’ owned by U and Q2=QEV owned by V, using as key the shared key SharedKey. If the SKG primitive outputs ‘invalid’, output ‘invalid’ and stop.
	a) Form the bit string MACData=U || V || QEU’ || QEV:
	b) Calculate the MACTag for MACData under the key Key using the tagging transformation of the HMAC-Matyas-Meyer-Oseas MAC scheme:
	c) Set Z=MACTag:

	4. Use the key derivation function in Section 5.6.3 of ANSI X9.63-2001 [B7] with the Matyas-Meyer- Oseas hash function to derive keying data KKeyData of length 256 bits from the shared secret value Z and the shared data SharedData:
	a) The hash values Hash1, Hash2 are computed as follows:
	b) Set KKeyData=Hash1 || Hash2:

	5. Parse the leftmost 128 bits of KKeyData as a MAC key MacKey and the remaining bits as keying data KeyData.
	6. Form the bit string MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]:
	7. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation specified in Section 5.7 of ANSI X9.63-2001 [B7] with the HMAC-Matyas-Meyer-Oseas MAC scheme:
	8. If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U, if present the bit string Text1, and MacTag1.
	9. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not received, output ‘invalid’ and stop.
	10. Form the bit string MacData2 = 0316 || U || V || QEU’ || QEV || [Text2]:
	11. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking transformation specified in Section 5.7 ANSI X9.63-2001 [B7]. If the tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop.
	a) Calculate MacTag2=MACMacKey (MacData2) = 66 36 8D 61 0F E0 0B 7F 06 3E 74 C4 78 0A A3 6D.
	b) Verify that MacTag2=MacTag2’.

	Annex D ZigBee Protocol Stack, Settable Values (Knobs)
	D.1 Network Settings
	D.1.1 nwkMaxDepth and nwkMaxChildren
	D.1.1.1 Description
	D.1.1.2 Cost impact
	D.1.1.3 Value range

	D.1.2 NwkMaxRouters
	D.1.2.1 Description
	D.1.2.2 Cost impact
	D.1.2.3 Value range

	D.1.3 Size of routing table
	D.1.3.1 Description
	D.1.3.2 Cost impact
	D.1.3.3 Value range

	D.1.4 Size of neighbor table
	D.1.4.1 Description
	D.1.4.2 Cost impact
	D.1.4.3 Value range

	D.1.5 Size of route discovery table
	D.1.5.1 Description
	D.1.5.2 Cost impact
	D.1.5.3 Value range

	D.1.6 Number of reserved routing table entries
	D.1.6.1 Description
	D.1.6.2 Cost impact
	D.1.6.3 Value range

	D.1.7 Buffering pending route discovery
	D.1.7.1 Description
	D.1.7.2 Cost impact
	D.1.7.3 Value range

	D.1.8 Buffering on behalf of end devices
	D.1.8.1 Description
	D.1.8.2 Cost impact
	D.1.8.3 Value range

	D.1.9 Routing cost calculation
	D.1.9.1 Description
	D.1.9.2 Cost impact
	D.1.9.3 Value range

	D.1.10 nwkSymLink
	D.1.10.1 Description
	D.1.10.2 Cost Impact
	D.1.10.3 Value Range

	D.2 Application Settings
	D.2.0.1 Logical device type
	D.2.0.2 Description
	D.2.0.3 Cost impact
	D.2.0.4 Value Range
	D.2.0.5 Stack profile and beacon payload parameters
	D.2.0.6 Description
	D.2.0.7 Cost impact
	D.2.0.8 Value Range
	D.2.0.9 Number of active endpoints per device (maximum)
	D.2.0.10 Description
	D.2.0.11 Cost impact
	D.2.0.12 Value Range
	D.2.0.13 Discovery Information Cache Size
	D.2.0.14 Description
	D.2.0.15 Cost impact
	D.2.0.16 Value Range
	D.2.0.17 Binding Table Size
	D.2.0.18 Description
	D.2.0.19 Cost impact
	D.2.0.20 Value Range
	D.2.0.21 End to End Response Messaging
	D.2.0.22 Description
	D.2.0.23 Cost impact
	D.2.0.24 Value Range
	D.2.0.25 Acknowledged Service in APS
	D.2.0.26 Description
	D.2.0.27 Cost impact
	D.2.0.28 Value Range

	D.3 Security Settings
	D.3.0.1 Security level
	D.3.0.2 Description
	D.3.0.3 Cost impact
	D.3.0.4 Value Range
	D.3.0.5 Master key source
	D.3.0.6 Description
	D.3.0.7 Cost impact
	D.3.0.8 Value Range
	D.3.0.9 Always use Network layer security - on or off
	D.3.0.10 Description
	D.3.0.11 Cost impact
	D.3.0.12 Value Range
	D.3.0.13 Number of NWK Keys
	D.3.0.14 Description
	D.3.0.15 Cost impact
	D.3.0.16 Value Range
	D.3.0.17 Number of Application Keys
	D.3.0.18 Description
	D.3.0.19 Cost impact
	D.3.0.20 Value Range
	D.3.0.21 Number of Frame Counters Used
	D.3.0.22 Description
	D.3.0.23 Cost impact
	D.3.0.24 Value Range
	D.3.0.25 Security timeout periods
	D.3.0.26 Description

	Annex E ZigBee Stack Profiles
	E.1 Stack Profiles
	a) Home Controls
	b) Building Automation
	c) Plant Control

	E.2 Stack Profile Definitions
	E.3 Home Controls Stack Profile
	E.3.1 Network Settings
	E.3.2 Application Settings
	E.3.3 Security Settings

	E.4 Building Automation Stack Profile
	E.4.1 Network Settings
	E.4.2 Application Settings
	E.4.3 Security Settings

	E.5 Plant Control Stack Profile
	E.5.1 Network Settings
	E.5.2 Application Settings
	E.5.3 Security Settings

	Annex F KVP XML schemas
	F.1 XML schema for the get command
	F.2 XML schema for the get response command
	F.3 XML schema for the set command
	F.4 XML schema for the set response command
	F.5 XML schema for the event command
	F.6 XML schema for the event response command
	F.7 Example KVP commands
	Figure 91 Example of a set with acknowledgement command frame
	Figure 92 Example of a set response command frame
	Figure 93 Example of a KVP set command frame

	F.8 Example MSG command
	Figure 94 Example of an MSG command frame to set the speed of a fan
	Figure 95 Example of an MSG command frame to set x and y coordinates of a sensor

