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CHAPTER 17 

MAGNETIC FIELD 

Key concepts 
• Moving charged particles make a magnetic field, which is different 

from an electric field. 
• The needle of a magnetic compass aligns with the direction of the net 

magnetic field at its location. 
• A current is a continuous flow of charge. 

• Electron current is number of electrons per second entering a 
section of a conductor. 

• Conventional current is measured in coulombs/second (am­
peres), and is assumed to consist of moving positive charges (real 
or imagined). The direction of conventional current is opposite 
to the direction of electron current. 

• The superposition principle can be applied to calculate the expected 
magnetic field from current-carrying wires in various configurations. 

• A current-carrying loop is a magnetic dipole. 
•Abar magnet is also a magnetic dipole. 
• A single atom can be a magnetic dipole. 

Electric fields are not the only kind of field associated with charged parti­
cles. When a compass needle turns and points in a particular direction, we 
say that there is a "magnetic field" pointing in that direction, which forces 
the needle to line up with it (Figure 17 .1). Initially we'll simply define mag­
netic field as "whatever it is that is detected by a compass." The twist of a 
compass needle is an indicator of magnetic fields, just as the twist of a sus­
pended electric dipole is an indicator of electric fields, as you saw in Chap­
ter 14. 

Magnetic fields are made by moving charges, so we will need to have some 
moving charges at hand. We will assemble some simple electric circuits in 
which currents can run steadily, providing a convenient source of moving 
charges. In this chapter we will study magnetic field, and we will also devel­
op an atomic-level description of magnets. Later, in Chapter 20, we will 
study the forces that magnetic fields exert on moving charges. 

17 .1 ELECTRON CURRENT 

Magnetic fields are made by moving charges. A current in a wire provides a 
convenient source of moving charges, and allows us to experiment with pro­
ducing and detecting magnetic fields. 

In equilibrium, there is no net motion of the sea of mobile electrons in­
side a metal. In the electric circuits we will construct in this chapter, we can 
arrange things so the electron sea does keep moving continuously. This 
continuous flow of electrons is called an "electric current," and is an indica­
tion that the system is not in equilibrium. In order to be able to talk about 
what things affect electric current, we need a precise definition: 

DEFINITION OF ELECTRON CURRENT 
The electron current i is the number of electrons per 

second that enter a section of a conductor. 

In an electric circuit with a steady current flowing, the electron current i is 
the same in every section of a wire of uniform thickness and composition 

1 7.1: Electron current 587 

Figure 17.1 A compass needle points in 
the direction of the net magnetic field at 
its location. 

Simple experiments 

There is a set of simple experiments re­
lated to the topics discussed in this 
chapter, which allow you to explore 
these phenomena yourself, using 
equipment such as batteries, wires, 
flashlight bulbs, and a compass. See 
Section 17.15 on page 612 for further 
information. 

Apple Inc.     EX1017     Page 4



588 Chapter 1 7: Magnetic Field 

' 

e==c, e+=c, e===t> 

(in Chapter 18 we'll see why). If we could count the number of electrons per second passing a particular point in a circuit (Figure 17.2), we could mea­sure electron current directly. This is difficult to do, so we use indirect mea­surements to determine the magnitude of electron current in a wire. One e==c, � e===t> 
e==c, et==,{>� 

111::,____,.___ e==c, ', � '� 

/ such indirect measurement involves measuring the magnetic field created by the moving electrons. 
Figure 17.2 The electron current in this conductor is the number of electrons per second passing the dashed line, 

Related experiment: 17,EXP.l 7 on page 613 

Related experiment: 17.EXP.18 on page 614 

Figure 17.3 If a compass needle is origi­nally pointing North, and a current-carry­ing wire aligned north-south is placed on the compass, the needle deflects. The deflection direction depends on whether the current runs northward or southward. 

Figure 17.4 If a current-carrying wire aligned east-west is placed on a compass, the needle does not deflect. 

As electrons drift through a wire, they collide with the atomic cores, and this "friction" heats the wire (and prevents the electrons from going faster and faster). Both the heating and the magnetic effects are proportional to the "electron current"-the number of electrons that enter the wire every second. 
17.X.1 If l.8xl016 electrons enter a light bulb in 3 milliseconds, what is the magnitude of the electron current at that point in the circuit? 
17.X.2 If the electron current at a particular location in a circuit is 9x1018electrons/s , how many electrons pass that point in 10 minutes? 

Simple circuits A simple electric circuit, involving a battery, wire, and a flashlight bulb, is a convenient means of producing a supply of moving electrons. We will refer to such circuits throughout this chapter. Despite the simplicity of the mate­rials, the physics questions that can be investigated with such circuits are centrally important ones. If you have the appropriate equipment, you may wish to do these experiments yourself. 
17 .2 DETECTING MAGNETIC FIELDS 

We can use a magnetic compass as a detector of magnetic fields. Just as the deflection of a charged piece of invisible tape or the twisting of a permanent electric dipole indicates the presence of an electric field, the twisting of a compass needle indicates the presence of a magnetic field. 
? How can you be sure that a compass needle is not simply responding to electric fields? 

In observing the behavior of a compass, we find that: • The compass needle is affected by the proximity of objects made of iron or steel, even if these objects are electrically neutral (and there­fore attract both positively and negatively charged tapes). It is also af­fected by the presence of nickel or cobalt, though these are less readily available. • The compass needle is unaffected by objects made of most other ele­ments, including aluminum, copper, zinc, and carbon, whereas charged tapes interact with these objects. • If it is not near objects made of iron, the compass needle points toward the Earth's magnetic north pole, while neither electrically charged ob­jects nor electric dipoles do this. If you bring a current-carrying wire near the compass, something very inter­esting happens: the compass needle is deflected while current is running in the wire, but not while the wire is disconnected from the battery. This effect was discovered by accident by the Danish scientist Oersted in 1820 while do­ing a lecture demonstration in a physics class. (He must have been sur­prised!) The phenomenon is often called "the Oersted effect." The biggest effect occurs if the wire points north-south (Figure 17.3); the deflection di­rection depends on whether the current runs northward or southward. The compass needle doesn't deflect if the wire points east-west (Figure 17.4). From such experiments, one can draw the following conclusions: 

Apple Inc.     EX1017     Page 5



17.3: Biot-Savart Law: Singl,e moving charge 589 

• the magnitude of the magnetic field produced by a current of moving 
electrons depends on the amount of current 

• a wire with no current running in it produces no magnetic field 
• the magnetic field due to the current appears to be perpendicular to 

the direction of the current 
• the direction of the magnetic field due to the current under the wire 

is opposite to the direction of the magnetic field due to the current 
above the wire 

A model for the observations 
The moving electrons in a wire create a magnetic field at various locations 
in space, including at the location of the compass. The vector sum of the 
Earth's magnetic field BEarth plus the magnetic field Bwire of a current-car­
rying wire makes a net magnetic field Bner (Figure 17 .5). Since a compass 
needle points in the direction of the net magnetic field at its location, the 
needle turns away from its original north-south direction to align with the 
net field. Because the magnetic field made by the wire is perpendicular to 
the wire and is in opposite directions above and below the wire, the pattern 
of magnetic field made by the wire must look like Figure 17 .6. 

It happens (conveniently) to be the case that the magnitudes of BEarth 
and Bwire are similar. If BEarth were much larger than B,vire , then we would 
see almost no response from the compass. 

? What would we observe if B,vire were much larger than BEarth ? 

If Bwire were much larger than BEarth , then the compass deflection would 
be nearly 90 ° , since the net magnetic field would be primarily due to the 
magnetic field made by the current in the wire. 

There is hardly any observable electric interaction of the current-carrying 
wire with nearby materials, because the wires have no net charge (actually, 
we'll see later that there are tiny amounts of excess charge on the surface, 
but too little to observe easily). 

Example: Compass deflection 
A current-carrying wire is oriented north-south and laid on top of a com­
pass. At the location of the compass needle the magnetic field due to the 
wire points west and has a magnitude of 3x10-6 T. The horizontal compo­
nent of Earth's magnetic field has a magnitude of about 2xl0-5 tesla. What 
compass deflection will you observe? 

The compass needle will point in the direction of the net magnetic 
field, so from the diagram in Figure 17.7: 

8.5° west 

17.X.3 A current-carrying wire oriented north-south and laid over a 
compass deflects the compass 15° east. What are the magnitude and 
direction of the magnetic field made by the current? The horizontal 
component of Earth's magnetic field is about 2x10-5 tesla. 

17.3 BIOT-SAVART LAW: SINGLE MOVING CHARGE 

Careful experimentation has shown that a stationary point charge makes an 
electric field given by this equation, called Coulomb's law: 

E = -1-.9..r 
4rcE0 r2 

Current 
carrying 
wire 

Figure 17.5 A compass needle points in 
the direction of the net magnetic field, 
which is the superposition of the magnetic 
field of the Earth and the magnetic field of 
the current-carrying wire which passes over 
the compass, aligned north-south. 

Figure 17.6 The magnetic field made by a 
current-carrying wire. At a location directly 
under the wire, the magnetic field is per­
pendicular to the wire. 

Figure 17.7 The compass points in the 
direction of the net magnetic field. 
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590 Chapter 17: Magnetic Field 
Similarly, careful experimentation shows that a moving point charge not 
only makes an electric field but also makes a magnetic field (Figure 17.8), 
which curls around the moving charge. This curly pattern is characteristic 

� of magnetic fields. (In contrast, we saw in Chapter 16 that it is impossible to 
r produce a curly electric field by arranging stationary point charges.) Mag­

netic field is measured in "tesla" and its magnitude and direction are given 
by the "Biot-Savart law" (pronounced bee-oh sah-V AR): 

Figure 17.8 The magnetic field made by 
a moving positive charge, shown in three 
planes normal to v . 

B 

/ 
/ 

Figure 17.9 The magnetic field made by 
a moving charge is perpendicular to the 
plane defined by v and r . 

counter­
clockwise 

B� 
0 A clockwise 

AxB � c e D 

Figure 17.10 The cross product is out of 
or into the plane defined by the two vec­
tors, depending on whether rotating the 
first vector toward the second vector 
(through an angle less than 180° ) is coun­
terclockwise or clockwise. 

Bf;? Qc '\Yi 
D 

OH 1\0 
Figure 17.11 All these cross products have 
the same magnitude and the same direc­
tion ( out of the plane). 

THE BIOT-SAVART LAW FOR A SINGLE CHARGE 

..,_ _ µ0 /JV X f B - 4n: i
2 , where 

µo = 10-7 tesla-m2 
exactly 

4n: coulomb·m/s 

v is the velocity of the point charge q, and r is a unit vector that 
points from the source charge toward the observation location. 

The vector cross product 
The Biot-Savart law involves v x r ,  a "vector cross product," which you en­
countered in the study of angular momentum. The magnetic field made by 
a moving charge is perpendicular to the plane defined by v and r (Figure 
17.9). 

There are two ways of calculating the cross product of two vectors A and 
B. The first is an algebraic vector calculation; the second involves finding 
the magnitude and direction separately, using geometry. Both are useful. 

CROSS PRODUCT AX B 

Vector: AX B = ( (AyB2 -A2By
), (A2Bx -AxBJ, (AxBy

-A
yBx)) 

Magnitude of vector: IA x Bl = IAI 1:sl sin 0 

Direction of vector: see below 

To determine the direction and magnitude of a vector cross product Ax B 
geometrically, do the following: 

• Place the tails of the vectors A and B together. These vectors define a 
plane. Look at this plane (Figure 17.10). 

• Imagine rotating A toward B , through the smaller of the two possible 
angles (never more than 180 ° ). If the rotation is counterclockwise, 
Ax B is out of the plane (toward the person in Figure 17.10). If the 
rotation is clockwise the result is into the plane ( C x D in Figure 17.10 
is into the plane, pointing away from the Rerson) 

• Find the magnitude of Ax B by IA x Bl = IAI 1:sl sin 0, where the angle 
0 is the angle between A and B. All the cross products in Figure 17.11 
have the same magnitude (and the same direction). 

The right-hand rule 
There is another way to determine the direction of the cross product, using 
a "right-hand rule": ..,. 

• Point fingers of right hand in direction of first vector A (Figure 17.12) 
• Rotate wrist, if necessary, to make it possible to 

• Bend fingers of right hand toward second vector B through an an­
gle 0 less than 180 ° (Figure 1 7 .13) 

• Stick out thumb, which points in direction of cross product A x B 
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17.3: Biot Savart Law: Single moving charge 591 

Wrist rotation 

The rotation of the wrist is an important part of the right-hand rule. Con­
sider the situation in Figure 17.14. With your right hand in this position, you 
can't bend your fingers backwards from the first vector A toward the sec­
ond vector B -it is a physical impossibility. You need to rotate your wrist 
into a position from which it is possible to bend the fingers, as shown in Fig­
ure 17.15. Pay attention to the size of the angle through which you bend 
your fingers. This is the angle whose sine is part of the definition of the mag­
nitude of the cross product. This angle should never be more than 180°. If 
it is, you have made a mistake in orienting your hand and are in danger of 
piercing your palm with your nails! Probably you need to rotate your wrist. 

Try this right-hand rule on the examples in Figure 17.10. When looking 
at A x B in the plane in Figure 1 7. l 0 you will find that your fingers bend 
counterclockwise and your thumb points out of the plane. When looking at 
C x D in the plane in Figure 17 .10 you will find that you have to rotate your 
wrist before you can bend your fingers, and your thumb points into the 
plane. So this right-hand rule and the counterclockwise/ clockwise rule 
used in Figure 17.10 are equivalent. In Figure 1 7 .11 you '11 find that in all 
cases the cross product is out of the plane. 

Two-dimensional projections 

Because it is more difficult to sketch a situation in three dimensions, when­
ever possible we will work with two-dimensional projections onto the x-y 
plane. If A and B lie in the x-y plane, the cross product vector Ax B points 
in the +z direction (out of the page, ®) or in the -z direction (into the 
page,®). 

17.X. 4 Given that v = ( v"' vy, v;; and r = ( x, Y, z) , write out v x r as 
a�ct� J�+f+� 

17.X.5 The following is an 
important exercise. At the 
locations marked with x in 
the accompanying figure, 
determine the direction of 
the magnetic field vectors 
due to a positive charge +q 

moving with a velocity v. For each observation location, draw the unit 
vector r from the charge to that location, then consider the cross product 
v x r. Pay attention not only to the directions of the magnetic field but also 
to the relative magnitudes of the vectors. 

17.X.6 If the charge is 
negative (-q) as in the 
adjacent figure, how does 
this change the pattern of 
magnetic field? 

17.X. 7 Explain why the 
magnetic field is zero 
straight ahead of and straight behind a moving charge. 

17.X. 8 How does the magnetic field of a moving point charge fall off with 
distance at a given angle: like 1 / r, I I i2 , or 1 / r3 ? 

17.X. 9 Describe the magnetic field made by a charge that is not moving. 

17.X.10 To get an idea of the size of magnetic fields at the atomic level, 
consider the magnitude of the magnetic field due to the electron in the 
simple Bohr model of the hydrogen atom. In the ground state the Bohr 
model predicts that the electron speed would be 2.2xl06 m/s , and the 
distance from the proton would be 0.Sxl010 m .  What is Bat the location 
of the proton? 

Figure 17.12 Open right hand, fingers 
point in direction of A. 

Figure 17.13 Bend fingers less than 180° 

toward lining u_p wiJh B . Thumb points 
in direction of A x B . 

Figure 17.14 You can't bend your fingers 
backward. You must rotate the wrist into a 
position that lets you bend the fingers. 

$igure 17. 15 After rotating the wrist, it is 
possible to bend the fingers. 

In the Appendix on vectors you can see 
how to calculate cross products in terms of 
unit vectors along the axes, i , j , and k . 
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592 Chapter 17: Magnetic Field

� 
V 

Figure 17.16 The magnetic field due to
moving charges in the wire curls around 
the wire . Here the moving charges are 
assumed to be negative . 

Current 
carrying 
wire 

Figure 17.17 If the moving particles in
the wire are electrons, in what direction 
are they moving? If we assume that the 
particles are positively charged, in which 
direction would they be moving? 

Sign of the moving charge 
Assume that the moving charged particles in a current-carrying wire are 
negatively charged, and move in the direction shown in Figure 17.16. 

? Use the Biot-Savart law and the right-hand rule to predict the 
direction of the magnetic field at several locations around the wire 
(Figure 17.16). 

Convince yourself that the cross product v x r does correctly give the direc­
tion and pattern of magnetic field near a wire. From this curly pattern you 
can see that the direction of compass deflection will be different if the wire 
is above or below the compass, which is observed. 

? Try the analysis again, but assume that the moving charges are 
positively charged particles moving in a direction opposite to that 
shown. Do you still predict the curly magnetic field as shown in Figure 
17. 16?

You should have concluded that for the purpose of predicting the direction 
of magnetic field, it does not matter whether we assume that the moving 
charges are negative and moving in a given direction, or positive and mov­
ing in the opposite direction. It is common to describe current flow in terms 
of "conventional current," which means assuming that the moving charges 
are positive, even if this is known not to be the case in a particular situation. 

17.X. ll  In Figure 1 7.17  a current-carrying wire lies on top of a compass.
Judging from the deflection of the compass away from north, what is the
direction of the electron current in the wire? If the current were due to the
motion of positive charges, which way would they be moving?

1 7  .4 RELATIVISTIC EFFECTS 

Magnetic field depends on your frame of reference 
Electric fields are made by charges, whether at rest or moving. Magnetic 
fields seem to be made solely by moving charges. But consider the following 
odd "thought experiment." 

Suppose Jack sits in the classroom with a charged piece of invisible tape 
stuck to the edge of his desk. He can of course observe an electric field due 
to the charged tape, but he doesn't  observe any magnetic field. His compass 
is unaffected by the charged tape, since those charges aren't moving: 

-' µ0 QV X r B = - = 0 smce v = 0
4n r2 

Jill runs at high speed through the classroom past the charged tape, carrying 
her own very sensitive compass. She observes an electric field due to the 
charged tape. But in addition, in her frame of reference the charged tape is 
moving, so she observes a small magnetic field due to the moving charges, 
which affects her compass! As far as Jack is concerned, the charged tape just 
makes an electric field. But apparently Jill sees a mixture of electric and 
magnetic fields made by what is for her a moving charged tape. 

Up until now we have implied that electric fields and magnetic fields are 
fundamentally different, but this "thought experiment" shows that they are 
in fact closely related. Moreover, this connection raises questions about the 
Biot-Savart law: 
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17.5: Electron current & conventional current 593 

Just what velocity are we supposed to use in this formula? The velocity of the 
tape relative to Jack (which is zero) or the velocity of the tape relative to Jill 
( opposite her own velocity)? 

The correct answer is that you use the velocities of the charges as you ob­
serve them in your frame of reference. Using these velocities in the Biot-Sa­
vart law you calculate the magnetic field; in your frame of reference you 
observe a magnetic field that agrees with your prediction. Observers in a dif­
ferent reference frame use the velocities observed in their frame to calcu­
late the magnetic field using the Biot-Savart law, and in their frame of 
reference they observe a magnetic field that agrees with their prediction. 
You and they make different predictions, and observe different magnetic 
fields, but both y�m and they find agreement between theory and experi­
ment. 

Evidently there is a deep connection between electric fields and magnetic 
fields, and this connection is made explicit in Einstein's special theory of 
relativity. Later in the text we will see further aspects of this connection. 

Retardation 
Remember that when you move a charge, the electric field of that charge at 
a distance from the charge doesn't change instantaneously (Section 1 3.6). 
The electric field doesn't change until a time sufficient for light to reach the 
observation location, and you measure a change in the electric field at the 
same instant that you see the charge move. 

The same retardation effect is observed with magnetic fields. If you sud­
denly change the current in a wire, the magnetic field at some distance from 
the source of the magnetic field stays the same until enough time has 
elapsed for light to reach the observation location. So magnetic field has 
some reality in its own right, independent of the moving charges that orig­
inally produced it. 

The Biot-Savart law does not contain any reference to time, so it cannot 
be relativistically correct. Like Coulomb's law, the Biot-Savart law is only ap­
proximately correct and will give accurate results only if the speeds of the 
moving source charges are small compared to the speed of light. 

1 7  .5 ELECTRON CURRENT & CONVENTIONAL CURRENT 

An easy way to observe the magnetic fields made by moving charged parti­
cles is to initiate and sustain a current-a continual flow of charged parti­
cles in one direction. In order to do this, we need to find a way to produce 
and sustain an electric field inside a wire, since we know that if the electric 
field inside a metal becomes zero, the metal object will be in equilibrium, 
and no current will flow. How exactly it is possible to arrange charges in or­
der to create such an electric field everywhere in a wire is the subject of 
Chapter 1 8. For the moment, we'll assume that we have somehow accom­
plished this by assembling a circuit from batteries, wires, and perhaps light 
bulbs, since evidently currents do flow in such circuits. 

In order to apply the Biot-Savart law to predict the magnitude and direc­
tion of the magnetic field associated with this current, we need to know the 
number of moving charges making the field, and how fast they are moving. 

A formula for electron current 
Consider a section of a metal wire through which the mobile-electron sea is 
continuously shifting, under the influence of a a nonzero electric field, as 
indicated in Figure 1 7. 1 8. There can be no excess charge anywhere inside 
the wire. To every mobile electron there corresponds a singly charged pos­
itive atomic core-an atom minus one electron which has been released to 
roam freely in the mobile-electron sea. Averaged over a few atomic diame-

/. 
.._ <}== + + + <}== v 

+ <}== <}== + + + 

<}== + + + + + <}== 

Figure 1 7.1 8  The mobile electron sea 
drifts to the left with a speed v .  
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594 Chapter 1 7: Magnetic Field 

<]= + + E + + 
v +) + <]= + + 

<]= + + + + 
I � - I  

v/':,. t 

ters, the interior of the metal is neutral, and the repulsion between the mo­
bile electrons is balanced out on the average by the attractions of the 

I + 1<}== positive cores. 
� . Suppose that in a metal wire the mobile-electron sea as a whole has an av-+ 
I / erage "drift speed" v. Assume that the current is evenly distributed across 

+ <J== the entire cross section of the wire (in a later chapter we will be able to show 
I that this is true. )  After a short time 1':,.t, this section of the electron sea will 

drift to the left a distance vi':,. t ,  as indicated in Figure 1 7.19 .  
Figure 17.19 During a time t,t the elec
tron sea shifts a distance vf, t .  

If the cross-sectional area of this wire is A, the volume of the disk-shaped 
portion of the sea that has flowed out of the left end of this section of the 
wire (and into the adjoining section of wire) in the time 1':,.t is Av/':,. t (Figure 
17 .20) . 

? If the density of mobile electrons (that is, the number of mobile 
electrons per unit volume) everywhere in the metal is n, how many 
electrons are in this disk? 

vt, t ( n ele:�ons) (A m2) (v  �)( 1':,.t s) = nAv!':,. t electrons 
Figure 17.20 The volume of the electron 
sea that has fowed past a point in the wire The number of electrons in this disk is the number of electrons that have 
during a time M is Avt, t . flowed out of this section of the wire in the short time 1':,.t. 

Related experiment: 
1 7.EXP. 19  on page 614  

? What is  the number of mobile electrons per second that flow past 
the left end of this piece of the wire? 

We divide by the time 1':,.t to calculate the number of mobile electrons per 
second that flow past the left end of this piece of the wire: 

#electrons = nA vi':,. t = nA v s 1':,. t  
This result, that the number of electrons passing some section of the wire 
per second is nAv , is sufficiently important to be worth remembering 
(though it is even better to remember the simple derivation that gives this 
result) . 

ELECTRON CURRENT 

The rate i at which electrons pass a section of a wire: 
i = nAv (# of electrons per second) 

n is the mobile electron density (the number of mobile electrons 
per unit volume) ,  A is the cross-sectional area of wire, and v is the 
average drift speed of electrons. 
In a circuit, electrons leave the negative end of the battery ( the end 
marked "-") and flow through the wire to the positive end of the 
battery. 

17.X.12 You have used copper wires in your circuits. Let's calculate the 
mobile electron density n for copper. A mole of copper has a mass of 64 g 
(0.064 kg) , and one mobile electron is released by each atom in metallic 
copper. The density of copper is about 9 grams per cubic centimeter, or 
9 x l03kg/m3

. Show that the number of mobile electrons per cubic meter 
in copper is 8.4x 1028m 3 . 

17.X.13 Suppose that i = 3.4x 1018 electrons/s are drifting through a 
copper wire. (This is a tygical value for a simple circuit.) The cross-sectional 
area of the wire is 8 x 10- m 2 ( corresponding to a diameter of 1 mm) , and 
the density of mobile electrons in copper is 8.4x 1028m 3 . What is the drift 
speed of the elecu·ons? 
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17.5: Electron current & conventional current 595 

17.X.14 At the drift speed found in the previous exercise, about how many 
minutes would it take for a single electron in the electron sea to drift from 
one end to the other end of a wire 30 cm long, about one foot? (A puzzle: 
if the drift speed is so slow, how can a lamp light up as soon as you turn it 
on? We'll come back to this in the next chapter.) 

Conventional current 
In most metals, current consists of drifting electrons. However there are a 
few materials in which the moving charges are positive "holes" in the sea of 
mobile electrons. The positive holes act in every way like real positive parti­
cles. For example, holes drift in the direction of the electric field, and they 
have a charge of +e. 

Electron current moves from the negative end of a battery through a cir­
cuit to the positive end of the battery; hole current would go in the opposite 
direction. Given this information, consider the following question: 

? From observations of the direction of magnetic field around a 
copper wire, can one tell whether the current in copper consists of 
electrons, or holes? 

Observations of the magnetic field due to a current-carrying wire are not 
sufficient to tell the difference, because if the sign of the moving charge is 
changed, the direction of the drift velocity is also changed: 
( +e)(  + v) ➔ (-e)(-v) (Figure 17.21 and Figure 17.22). Therefore the pre­
diction of the Biot-Savart law is exactly the same in either case. 

In copper, as in most metals, the current is due to moving electrons. The 
few metals that have hole current include aluminum and zinc. In the doped 
semiconductors important in electronics, "p-type" material (positive type) 
involves hole current, and "n-type" (negative type) involves electron cur­
rent. In Chapter 20 we will study the Hall effect, which can be used to deter­
mine whether the current in a wire is due to electrons or to holes. 

Because most effects ( other than the Hall effect) are the same for elec­
tron current and hole current, it is traditional to define "conventional cur­
rent" to run in the direction of hole current, even if the actual current 
consists of moving electrons, in which case the "conventional current" runs 
in the opposite direction to the electrons (Figure 17.22). This simplifies cal­
culations by eliminating the minus sign associated with electrons. (This sign 
ultimately goes back to a choice made by Benjamin Franklin when he arbi­
trarily assigned "positive" charge to be the charge we now know to be car­
ried by protons.) 

In addition, conventional current / is defined not as the number of holes 
passing some point per second but rather as the amount of charge (in cou­
lombs) passing that point per second. This is the number of holes per sec­
ond multiplied by the (positive) charge l ql associated with one hole: 

CONVENTIONAL CURRENT 

I =  l ql nAv (coulombs per second, or amperes) 

The direction of conventional current is opposite to the direction 
of electron current. The moving charged particles are assumed to 
be positive. 

In a metal, lql = e ,  but in an ionic solution the moving ions might have 
charges that are a multiple of e. 

17.X.15 In Exercise 17.X.1 2  you calculated an electron current of 
i = 3.4x1018 electrons/s . What was the conventional current, including 
units? 

£===l> e+=t> e===t> 
e==t> � e===t> 

£===l> e+==t> &====t> 
6=-c> £===l> 1&==9 

Figure 17.21 An electron current to the 
right moves negative charge from left to 
right. 

Figure 17.22 A conventional current to 
the left would move positive charge from 
right to left, which would have the same 
effect as moving negative charge from left 
to right, as in the previous figure. 
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� 
( 

Figure 17.23 Magnetic field contributed 
by a short thin length I'll of current-carry­
ing wire. 

�B 

Figure 17.24 The Biot-Savart law for the 
magnetic field contributed by a short thin 
length of wire carrying conventional cur­
rent I. The magnetic field due to this cur­
rent segment is perpendicular to the plane 
defined by 61 and r .  

1 7.6 THE BIOT-SAVART LAW FOR CURRENTS 

We don't often observe the magnetic field of a single moving charge. Usu­
ally we are interested in the magnetic field produced by a large number of 
charges moving through a wire in a circuit. The superposition principle is 
valid for magnetic fields, so we need to add up the magnetic-field contribu-
tions of the individual charges. 

Let's calculate the magnetic field due to a bunch of moving positive 
charges contained in a small thin wire of length til and cross-sectional area 
A (Figure 17.23). If there are n moving charges per unit volume, there are 
nMl moving charges in this small volume. We will measure the magnetic 
field at a location far enough away from this small volume that each moving 
charge produces approximately the same magnetic field at that location. 

? Show that the net magnetic field of all the moving charges in this 
small volume, far from the volume, is 

where I'll is a vector with magnitude I'll, ( the length of the segment 
of wire) pointing in the direction of the conventional current I 

This results from the fact that the volume Atil contains n(Ati l) moving 
charges, so the magnetic field is n(Atil) times as large as the magnetic field 
of one of the charges. Each moving charge has a charge q, and the conven­
tional current is I =  l ql ( nAv) . Collecting terms, we find the result given 
above. 

So we have an alternative form of the Biot-Savart law for the magnetic 
field contributed by a short thin length of current-carrying wire (Figure 
17.24): 

THE BIOT-SAVART LAW FOR A SHORT THIN LENGTH OF WIRE 

h µo 10 7 tesla ·m 2 l w ere - = - ------ exacty, 
4n coulomb-mis 

I'll is a vector in the direction of the conventional current I, and 
whose magnitude ti l  is the length ofthe segment of wire. r is a unit 
vector that points from the source charge toward the observation lo­
cation. 

? Explain why this formula also gives the right results if the moving 
charges are (negative) electrons, as long as we interpret I'll as a vector 
in the direction of the conventional current. 

The law works for moving electrons because while they have the opposite 
charge, they also move in the direction opposite to the direction of the con­
ventional current. These two changes in sign cancel each other. 

It is important to keep in mind that there is really only one Biot-Savart law, 
not two. Always remember that 

l'l.B = µo /til X r 
4n r2 

is simply the result of adding up the effects of many moving charges in a 
short thin length of wire, each of which contributes a magnetic field 
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1 7. 7: The magnetic field of current distributions 597 

B = µo qv X r 4c r2 The key point is that there are nMl electrons in a short length of wire, each moving with average speed v ,  so that the sum of all the qv contributions is ( nA�l) lq l v  = ( lq l nAv)�l  = J�l. 
1 7.7 THE MAGNETIC FIELD OF CURRENT DISTRIBUTIONS 

In the next sections we will apply the Biot-Savart law to find the magnetic field of various distributions of currents in wires. We will use the same four­step approach we used to find the electric field of distributed charges in Chapter 15: 1) Cut up the current distribution into pieces; draw �B for a repre-sentative piece. 2) Write an expression for the magnetic field due to one piece. 3) Add up the contributions of all the pieces. 4) Check the result. 
Applying the Biot-Savart law: A long straight wire Using the procedure outlined above, we can calculate the magnetic field near a long straight wire. This will make it possible to predict the compass needle deflection that you observe when you bring a wire near your com­pass, and you can compare your prediction with your experimental obser­vation. The long straight wire is one of the few cases that we can calculate com­pletely by hand. Except for a few special cases, calculating the magnetic field due to distributed currents is often best done by computer. The basic concepts you would use in a computer program are the same as we will use here, but the computer would carry out the tedious arithmetic involved in the summation step of the procedure. 
Step 1 :  Cut up the distribution into pieces and draw �B We will consider a wire of  length L (Figure 17.25). We cut up the wire into very short sections each of length �y, where �y is a small portion of the total length. We will calculate the magnetic field a perpendicular distance x from the center of the wire. Using the right-hand rule, we can draw the direction of �B for this "piece" of current. 
Step 2: Write an expression for the magnetic field due to one piece 
origi,n: Center of wire 
vector r : r = ( x, 0, 0) - ( 0, y, 0) = ( x, -y, 0) 
magnitude ofr : r = [ x2 + (-y)2 ] 1 12 

unit vector r = � = ( x, -y, 0> r [ x2 + (-y)2 ] 1 12 

location of piece: depends on y (so y will be the integration variable) 
�I in terms ofy: t.I = �y ( 0, l , 0) 
magnetic field due to one piece: 

�B = µo f�yfx r = µo J�y (0, l , 0) x ( x, -y, 0) 4rc (x2 + y2 ) 4rc ( x2 + y2) [ x2 + (-y)2] 1 12 

evaluate cross product: ( 0, 1 , 0) X ( X, -y, 0) = ( 0, 0, -X) 
expression for �B : 

I 

__! ____ _ 

Figure 17.25 Cut the wire into short pieces and draw the magnetic field con­tributed by one of the pieces. 

As usual, r extends from the source location to the observation location. 

J ... 
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598 Chapter 17: Magnetic Field 

--'- _ µo Ixt,.y 
t,.B - - 4- ( 2 2)3l2 ( O, O, I ) TC X + J 

components: Every piece of the straight wire contributes some magnetic field 
� in the -z direction, so we need to calculate only the z component. 
I 

Figure 17.26 Magnetic field of a straight 
current-carrying wire, at selected locations 
a distance rradially outward from the wire. 

Related experiment: 
17.EXP.20 on page 614 

Step 3: Add up the contributions of all the pieces 

By letting t,.y ➔ 0 ,  we can write the sum as an integral: 

B = -Ix y µo f' = +u2 d 
4rc Y = _ L/2 ( x2 + y2)312 

Fortunately, this integral can be found in standard tables of integrals: 

B = -Ix -��-µ0 [ ]
y = +L/2 

4rc x2 Jx2 + y2 y = -L/2 

B = µo Ix[ L/2 _ -L/2 
] 4rc x2 Jx2 + (L/2 )2 x2 Jx2 + (L/2 )2 

B = µo LI 
4n xJx2 + (L/2)2 

An extremely important case is that of a very long wire (L >> x) or, equiva­
lently, the magnetic field very near a short wire (x << L). 

? Show that you get 

µo 2I .  B ,;,,; - - if L >> x 
4TC X 

If L » x, Jx2 + (L/2)2 ""' L/2 , which leads to the stated result. 

In summary, Figure 17.26 shows the pattern of magnetic field a distance x 
from the center of a straight wire of length L. Because of the symmetry of 
this field, it does not matter where we draw our x axis-the field will be the 
same all around the rod. To indicate this, we replace x in our formula with 
r, the radial distance from the rod. 

Although the magnitude of the field is constant at constant r, the direc­
tion of the field is different at each angle, since the field curls around the 
wire. To express this as a vector equation we would have to include a cross 
product in the expression; it's simpler to get the direction using the right­
hand rule. 

MAGNETIC FIELD OF A STRAIGHT WIRE 

µo LI 
Bwire = 

4rc rJr2 + (L/2)2 

(length L, conventional current I, a perpendicular 
distance r from center of wire) 

µo 2I . B . ""' - - if L >> r wire 4rc r 

Historically, the result for a very long straight wire was first obtained by the 
French physicists Biot and Savart. Their names have come to be associated 
with the more fundamental principle (the "Biot-Savart law") that leads to 
this result. 

Step 4: Check the result 

direction: In Figure 17.26 the right-hand rule is consistent with the diagram. 
units: 
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(T • m) (m • A) = T 
A (m · m) 

far away (r» L): 

which is indeed the magnetic field contributed by a short wire of length f...l. 

Another right-hand rule 
There is another right-hand rule which is often convenient to use with cur­
rent-carrying wires. As you can see in Figure 1 7.27, if you grasp the wire in 
your right hand with your thumb pointing in the direction of conventional 
current, your fingers curl around in the direction of the magnetic field. 
Clearly this right-hand rule is consistent with the one we used for the Biot­
Savart law. 

17 .8 A CIRCULAR LOOP OF WIRE 

Next we'll calculate the magnetic field of a circular loop of wire that carries 
a conventional current I. We'll do only the easiest case-the magnetic field 
at any location along the axis of the loop, which is a line going through the 
center and perpendicular to the loop. 

This calculation is important for two reasons. First, many scientific and 
technological applications of magnetism involve circular loops of current­
carrying wire. Second, the calculation will also lead into an analysis of atom­
ic current loops in your bar magnet. After calculating the magnetic field we 
will compare our predictions with experiments. 

Step 1 :  Cut up the distribution into pieces and draw f...B 
See Figure 1 7.28. We cut up the loop into very short sections each of length 
f...l (a small portion of the total circumference 2nR) (Figure 1 7.28; side view 
in Figure 17 .29). Determine direction of f...B with right-hand rule. Note that 
the angle between f...l and r is 90 ° for every location on the ring. 

Step 2: Write an expression for the magnetic field due to one piece 

To work out f...B for an arbitrary f...l will be algebraically messy, since 

f...l = ( Rcos(0 + d0), Rsin (0 + d0), 0) - ( Rcos0, Rsin 0, 0) , and 

r = ( 0, 0, z) - ( Rcos 0, Rsin 0, 0) 
However, we can simplify the problem considerably by noticing the symme­
try of the situation. Because of the circular symmetry of the ring, the f...Bx 
and f...BY 

contributed by one piece will be canceled by the contributions of 
a piece located on the other side of the loop. 

Furthermore, the f...B, contributed by each piece of the ring will be exact­
ly the same. This allows us to select one piece for which f...Bz is easy to cal­
culate, and use this value for every piece in the sum. We will select the piece 
shown in the diagram, located on the y axis. 
origi,n: Center of loop 

vector r :  r = ( obs. loc.) - ( source) = ( O, O, z) - ( O, R., O) = (O, -R., z) 

magnitude of r :  r = [R2 + z2 ] 1 12 

unit vector r = l = ( O, -R., z) 
r [R2 + z2] 1 i2 

location of piece: depends on 0 (so 0 will be the integration variable) 

17. 8: A circular loop of wire 599 

Figure 17.27 The thumb of the right 
hand points in the direction of conven­
tional current flow I, and the fingers curl 
around in the direction of the magnetic 
field. 

Figure 17.28 Cut the loop into short 
pieces and draw the magnetic field con­
tributed by one of the pieces. Note that 
dl-1r for every piece of the loop. The loop 
is in the xy plane, with x to the right and y 
up. D-B is perpendicular to the plane 
defined by D-1 and r . 

I 

R 
- - - �� -··· --·- ·-·· 

z 

I 

Figure 17.29 Side view of the current-car­
rying loop. Again note that dl-1r for every 
piece of the loop. 
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600 Chapter 1 7: Magnetic Field 

( 

Figure 17.30 Magnetic field of a circular 
loop of current-carrying wire. 

Figure 17.31 Magnetic field at the center 
of a loop of current-carrying wire. 

Related experiment: 
17.EXP.21 on page 614  

�I : l�tl = (-R.t.0, 0, 0)  the magnitude of �I is RA0. 

magnetic field due to one piece: 
�B = µo /dl x r  = µo i-R.f.0, 0, 0) x ( 0, -R, z) 

4 rc r2 4rc [R2 + z2 ]3i2 

evaluate cross product: 
(-R.t.0, 0, 0) x ( 0, -R, z) = ( 0, zR.t.0, R2�0) 

We need only the z component, since the others will add up to zero: 
expression for �Bz : 

�B = µo /R2�0 
z 4rc [ R2 + z2] 3i2 

In Figure 17.29 we show the component �Bz along the axis and the compo­
nent �B 1_ perpendicular to the axis. 

Step 3: Add up the contributions of all the pieces 
We can express the sum as an integral, where 0, which specifies the location 
of a piece of the ring, runs all the way around the ring. Remember that �Bz 
contributed by each piece is the same. 

2 rr 2rr 

B = f 
µo JR2 d0 = µo JR2 

f d0 z 4rc(z2 + R2)3i2 4rc ( z2 + R2)3
/

2 

0 0 
The integral Jo

n 

d0 is just 2rc . Here is the result (Figure 17.30): 

MAGNETIC FIELD OF A LOOP 

B _ µo 2rcR2/ 
loop - 4rc ( z2 + R2 )3i2 

for a circular loop of radius R and conventional current I 
at a distance z from the center, along the axis 

Step 4: Check the result 
units: 

(T • m) ( m 2 • A) = T 
A (m2)3i2 

direction: Check several pieces with the right-hand rule. 
special case: Center of the loop (Figure 17.31), where the magnetic field is 
especially easy to calculate from scratch. By the right-hand rule, �I x r 
points out of the page for every piece of the loop, and its magnitude is sim­
ply M since�l..lr -the magnitude of r is 1, and sin (90°)=1. 

So we have this: 

B _ "' µo J� l  _ µo /(2rcR) _ µo 2rc/ 
L.i4rc R2 4rc R2 4rc R 

because the sum of all the �l's is just 2rcR, the circumference of the ring. 

? Show that the general formula for the magnetic field of a loop 
reduces to this result if you let z = 0 , which is another kind of check. 

Qualitative features of the magnetic field of a loop of wire 
It is interesting to see what the magnetic field is far from the loop, along the 
axis of the loop. 
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? Show that if z is very much larger than the radius R, the magnetic 
field is approximately equal to 

4n z3 

The key to this result is that if z >> R, ( z2 + R2 )312 "" ( z2 )312 = z3 . We see that 
the magnetic field of a circular loop falls off like 1/ z3. 

? Figure 17.32 shows the pattern of magnetic field along the axis of a 
coil containing many loops. What is the direction of the magnetic field 
at the points above and below the coil? (Hint: Apply the Biot-Savart law 
qualitatively to the near and far halves of the circular loop.) 

Above the coil in Figure 17.33 the upper part of the coil contributes a larger 
magnetic field to the left than does the lower part of the coil to the right, so 
the net field points to the left. Compare the pattern of magnetic field in Fig­
ure 17 .33 with the pattern of electric field around an electric dipole. 

Magnetic field at other locations outside the loop 
The magnetic field at other locations outside the loop is more difficult to 
calculate analytically, but the magnetic field has a characteristic dipole pat­
tern (Figure 17.34). 

A special right-hand rule for current loops 
There is another "right-hand rule" that is often used to get the direction of 
the magnetic field along the axis of a loop. Let the fingers of your right 
hand curl around in the direction of the conventional current, and your 
thumb will point in the direction of the magnetic field. 

? Try using this right-hand rule to determine the direction of the 
magnetic field at the indicated observation location in Figure 17.35. 

You should find that the magnetic field points down. This right-hand rule 
should of course give the same result as applying the more general right­
hand rule to the cross product ill x r and adding up the contributions of 
the various parts of the loop, as called for by the Biot-Savart law. 

? On the diagram, consider ill x r for two short pieces of the loop, 
on opposite sides of the loop. Show that the two pieces together 
contribute a magnetic field in the downward direction above the loop. 

17.9 MAGNETIC DIPOLE MOMENT 

Recall the formula for the electric field along the axis of an electric dipole, 
at a distance rfar from the dipole: 

E l gp_ h h " 1 • d" 1 " axis "" -4- . � , w ere t e e ectnc 1po e moment p = qs 
n£0 , 

Similarly, in the formula for the magnetic field along the axis of a current­
carrying coil, at a distance rfar from the coil, we can write this: 

B µo 2µ h h " • d. 1 " LA axis "" 

4n � , w ere t e magnetic 1po e moment µ = 

Here A is the area of the loop ( nR2- for circular loops). This formula for 
magnetic field is approximately valid even if the loop is not circular. The 
magnetic dipole moment µ is considered to be a vector pointing in the di­
rection of the magnetic field along the axis (Figure 17.36). This means that 
the direction of the magnetic dipole moment can be obtained by curling 
the fingers of your right hand in the direction of the conventional current, 
and your thumb points in the direction of the magnetic dipole moment. 

•♦ 

17. 9: Magnetic dipol,e moment 601 

@ / out of page 

> Lm p,;:-➔• .. 
Figure 17.32 Predict the direction of the magnetic field of the coil, above and below the coil. 

•♦ 

® I out of page 

) 
L'° p,;:-➔• .. 

•· 
Figure 17.33 The magnetic field above and below the coil points in the opposite direction to the field along the axis. 

Figure 17.34 The magnetic field of a cur­rent loop (which lies in the xz plane, viewed edge-on) ,  at locations outside the loop, in a plane containing the axis of the loop. . � 
I B = ?  
I 

I 

I 
I 
I 

<;2:) 
Figure 17.35 Curl the fingers of your right hand in the direction of the conven­tional current, and your thumb will point in the direction of the magnetic field. 

I 

Figure 17.36 The magnetic dipole moment µ is considered to be a vector pointing in the direction of the magnetic field along the axis. 
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602 Chapter 17: Magnetic Field 

Related experiment: 17.EXP.22 on page 615 

Figure 17.37 A bar magnet affects a com­pass. 
Related experiments: 1 7.EXP.23 and 1 7.EXP.24 on page 6 15  

Figure 17.38 The Earth acts like a mag­net. Its type "N" pole is in the Antarctic, and its type "S" pole is in the Arctic. 

We will see later that the concept of magnetic dipole moment also applies to magnets and provides a way of characterizing the strength of a magnet. 
17.X.16 What is the magnetic dipole moment of a 3000-turn rectangular coil that measures 3 cm by 5 cm and carries a current of 2 amperes? 

Twisting of a magnetic dipole For reasons that we will discuss in a later chapter, the magnetic dipole mo­ment vector µ acts just like a compass needle. In an applied magnetic field, a current-carrying loop rotates so as to align the magnetic dipole moment 
µ with the field. 
1 7  .1 0 THE MAGNETIC FIELD OF A BAR MAGNET 

From its name, you might guess that a magnet also makes a magnetic field. We say that a magnetic field is present if we see a compass needle twist. If you bring a bar magnet near a compass, you see that a bar magnet does make a compass needle deflect (Figure 17.37) .  Two magnets interact with each other, attracting or repelling depending on their relative orientations. Magnetic interactions have some similarity to electric interactions: one can observe both attraction and repulsion, the superposition principle is val­id, and the interactions pass through matter. However, there are also some major differences. A bar magnet interacts only with iron or steel objects, while a charged invisible tape interacts with all objects. A magnet is perma­nently magnetic, while a charged invisible tape or plastic pen loses its charge within a relatively short time. Two negatively charged objects always repel each other, while two magnets may repel or attract, depending on their ori­entations. The magnetic field around a current-carrying wire has a "curly" pattern that we don't  see with electric fields. 
The magnetic field of the Earth The magnetic field of the Earth has a pattern that looks like that of a bar magnet (Figure 17.38) . In the Northern Hemisphere, the Earth's magnetic field dips downward toward the Earth. A horizontally held compass is affect­ed only by the horizontal component of the magnetic field, and this hori­zontal component gets smaller as you move closer to the magnetic poles. For example, the horizontal component is smaller in Canada than it is in Mexico, despite the fact that the magnitude of the magnetic field is larger in Canada. The horizontal component is zero right at the magnetic poles, where the magnitude of the magnetic field is largest. The Earth is a big magnet, but its type "S" pole is in the Arctic, and the "N" end of a compass needle points toward this type "S" pole. The Earth's magnetic poles are not located exactly at the geographic poles. The "S" pole is located in northern Canada, about 1300 km (800 miles) from the geographic north pole, and the "N" pole is on the Antarctic continent, about 1300 km from the geographic south pole. 
Dependence on distance The horizontal component of the Earth's magnetic field, which is the com­ponent that affects a horizontally held compass, is different at different lat­itudes, depending on the distance from the "magnetic poles" of the Earth. Here are measurements of the magnitude of the horizontal component of the Earth's magnetic field at a few selected locations in the United States: 
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Location 

Maine 

Much of the United States 

Florida, Hawaii 

Horizontal component 
of Earth's magnetic field 

about l .Sxl0-5 tesla 

about 2x10-5 tesla 

about 3x10-5 tesla 

Knowing the horizontal component of the Earth's magnetic field, we can 
use the deflection of the compass needle to measure the magnitude of the 
magnetic field of the magnet. We can then study both the distance depen­
dence and the directional pattern of the magnetic field of the magnet. 

A bar magnet is a magnetic dipole 
The pattern of directions of magnetic field around a bar magnet is very sim­
ilar to the pattern of directions of the magnetic field around a current loop, 
and to the pattern of the electric field around a permanent electric dipole 
seen in Chapter 13 (Figure 17.39). Also, along the axis of a magnet or a cur­
rent loop or a permanent electric dipole, the magnetic or electric field var­
ies like 1 / r'3 as can be seen in Experiment 17.EXP.25. Moreover, the 
magnitude of the field off to the side of an electric dipole or a magnet is half 
as large as it is at the same distance along the axis. Because of these strong 
similarities, a magnet is often called a "magnetic dipole." In Problem 
17.P.41 you can use experimental data to determine the magnetic dipole 
moment of a bar magnet. 

Example: Determining the magnetic dipole moment of a magnet 
A compass originally points north. A bar magnet whose mass is 69.5 g is 
aligned east-west and placed near a compass as shown in Figure 17.40. 
When the distance between the center of the magnet and the center of the 
compass is 23.3 cm, the compass deflects 70 degrees. What is the magnetic 
dipole moment of the bar magnet? 

Bnet = BEarth + Bm 

Bmagnet = BEarth tan 70 ° 

Bmagnet = (2x 1 0 5 T)tan70 ° = 5.Sxl0-5 T 

µo 2 µ 
Bmagnet = 4rc r3 

µ = Bm r3 = 

2 µ0 
4rc 

Magnetic monopoles 

(5.Sxl0-5 T)(0.233 m)3 
= 

2(  1 x10-7T 
� m) 

3.5 A·  m2 

There is one dramatic difference between electric and magnetic dipoles. 
The individual positive and negative electric charges ("monopoles") mak­
ing up an electric dipole can be separated from each other, and these point 
charges make outward-going or inward-going electric fields (which vary like 
1 / r2 ). One might expect a magnetic dipole to be made of positive and neg­
ative magnetic monopoles, but no one has ever found an individual mag­
netic monopole. Such a magnetic monopole would presumably make an 
outward-going or inward-going magnetic field (which would vary like 
1 / r2 ) , but such a pattern of magnetic field has never been observed. 

1 7. 1 0: The magnetic field of a bar magnet 603 

,.,. -� ·i · ✓---.... 
-� 

"\ 

t :1 • 
�\._ 

� 

JI l /\I 

Figure 17.39 A bar magnet is a magnetic dipole. The field pattern is that of a dipole, and the magnitude of the field is proportional to 1 / r3 . 

Related experiments: l 7.EXP.25-17.EXP.27 on pages 615-616 

}- - - - - - - - - ; Bmagnet 

Figure 17.40 Determining the magnetic dipole moment of a bar magnet. 

,I .. 
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Figure 17.41 No magnetic monopoles. 
This pattern of outward-going magnetic 
field has never been observed. 

I 

Figure 17.42 Top view of a circuit lying 
on a table (looking down at the table). 

The straight wires contribute nothing to 
the magnetic field at A, because for each 
wire dJ X f = Q . 

A 

Figure 17.43 dJJ_f- for every step around 
the loop. The magnitude of r is constant 
and equal to the radius of the loop. 

We model the magnet as a dipole, located 
at the center of the magnet. 

Figure 17.41 is an example of the sort of magnetic field pattern that many 
scientists have diligently looked for but not found. If you cut a magnet in 
two, you don't get two magnetic monopoles-you just get two magnets! 

Example: A circuit in the Antarctic 

In a research station in the Antarctic, a circuit containing a partial loop of 
wire, of radius 5 cm, lies on a table. A top view of the circuit (looking down 
on the table) is shown in Figure 17.42. A current of 5 amperes runs in the 
circuit in the direction shown. You have a bar magnet with magnetic mo­
ment 1.2 A-m2. How far above location A, at the center of the loop, would 
you have to hold the bar magnet, and in what orientation, so that the net 
magnetic field at location A would be zero? The magnitude of the Earth's 
magnetic field in the Antarctic is about 6 x 1 0-5 T. 

Orientation: 

BEarth points out of the page (out of the ground, in the Antarctic) 

Bcircuit points out of the page ( out of the table) 

Bar magnet must be held with its north pole downward (into page), 
to make a magnetic field into the ground. 

Components of magnetic field out of page at location A: 
-5 BEarth = 6x10 T 

Bstraight wires = 0 

B due to 3/4 loop: B = f dB = 

Origin: center of the loop. 

lrl = R (constant) 

At all locations <R.lr , so I ca x rl = dlsin 90 ° = dl = Rd0 , as shown 
in Figure I 7.43. So 

IB1oopl = f
97[ µo J(R:0) = µo JR r

1[ d0 = µ0 .£01
2
;2 = µo 3nJ 

n/2 4n R 4n R2 n/2 4n R n 4n 2R 

IB I = (1x10-7T · m) (3n)(5 A) = 4 7 xl0-5 T loop A 2(0.05 m) • 

B + B = 6x l 0-5 T + 4.7x10-5 T = 1.06x10-4 T Earth 3/ 4 loop 
So we need 

B l .06 x l 0-4 T � µo 2µ 
magnet = 41t z3 

l

µ0 (2 )
j

l /
3 

41t µ 

Z 
= 

Bmagnet 

So we hold the magnet with its center about 13 cm above the circuit, 
with its north pole toward the ground. 

1 7  . 1 1 THE ATOMIC STRUCTURE OF MAGNETS 

We have seen that the magnetic field of a circular current loop looks suspi­
ciously similar to the magnetic field of a magnet. The pattern of directions 

Apple Inc.     EX1017     Page 21



of the magnetic field looks the same, and it is even the case that for both 
magnets and current loops the magnitude of the field at large distances 
along the axis falls off like 1 / r3 . Both magnets and current loops can be de­
scribed in terms of magnetic dipole moment µ .  

A single atom can be a magnetic dipole 
Inside every atom there are moving charged particles. In an atom in a mag­
netic material, these subatomic "currents" may produce tiny magnetic mo­
ments that add up to a nonzero magnetic moment for each atom. (In 
contrast, in a non-magnetic material, these tiny magnetic moments would 
add up to zero.) 

There are three possibilities for the source of the subatomic "currents" 
that might give a single atom a nonzero magnetic dipole moment: 

• An electron orbiting around the nucleus (Figure 17.44) 
• An electron spinning on its own axis (Figure 17.44) 
• Rotational motion in the nucleus (protons and neutrons have spin 

about their own axes and can also orbit around inside the nucleus) 
In all of these situations the object has angular momentum, and the mag­
netic dipole moment turns out to be proportional to the angular momen­
tum L of the particle: 

µ = (factor)L 

We can use a simple model to estimate this proportionality factor. 

Magnetic dipole moment of an orbiting electron 
It is easiest to estimate this proportionality factor by considering the mag­
netic dipole moment of an orbiting electron, using the simple Bohr model 
of an atom to get an order of magnitude estimate. As indicated in Figure 
17.45, let's suppose that each atom has one unpaired electron that orbits 
the nucleus along a circular path, at constant speed. Each orbiting electron 
can be considered to be a tiny current loop, which makes a dipole magnetic 
field. 

? In Figure 17.45, what is the direction of the resulting magnetic field 
to the left and right of the atoms, and of the magnetic dipole moment 
of one atom? (Remember that electrons are negative.) 

The magnetic field due to each orbiting electron would point to the left, so 
the magnetic dipole moment of each atom, and of the whole object, would 
point to the left. 

For a current loop, we know that 

µ = J(rr.R2 ) 

? What would the current I be for one orbiting electron (Figure 
17.46)? 

The current I is a measure of how much charge passes one location per sec­
ond. The charge on the electron is -e, and the time it takes the electron to 
go around once is T = 2rr.R/ v ,  where v is the speed of the electron, so: 

I =  e ev 
2rr.R 

So the magnetic dipole moment of a single orbiting electron would be: 

( ev� l 
µ = J(rr.R2) = - (rr.R2) = - eRv 

2rr. 2 

1 7.11: The atomic structure of magnets 605 

Orbital 

Electron� 

Spin 

Figure 17.44 Electrons have spin as well as orbital motion that can contribute to the magnetic dipole moment. 

Figure 17.45 A simple model for a magnet might involve electrons in circular atomic orbits. 

J 
figure 17.46 Simple model of an atom in which an outer electron orbits a positive inner core. 
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606 Chapter 17: Magnetic Field 

Although the spin angular momentum has 
a factor of l /2 , there is a compensating 
factor of 2 in its relation to the magnetic 
dipole moment. 

Relating magnetic d ipole moment to angular momentum The magnitude of the angular momentum of an electron in a circular orbit 1s: 
I ll = I r  x pl Since in a circular orbit r J_ p , this reduces to: 

L = Rpsin90° = Rmv ( v « c )  We can express the magnetic dipole moment of the orbiting electron in terms of angular momentum by multiplying by 1 :  
(m) l l e  l e  µ = m (

2
eRv) = 2, ;(Rmv) = 2,;L 

So our estimate of the proportionality factor relating magnetic dipole mo­ment to angular momentum for a particle in an atom is this: 
I e (factor) ::::, --
2 m  We will assume that this expression for the proportionality factor is valid for orbiting electrons, electrons spinning on their axes, and nucleons (protons and neutrons) spinning on their axes. How big is this factor? 

I e For an electron: 2; ! ( l .6x10 19 C) 10  = �--� = 8.9x 10  C/kg 2 (9x lO 31 kg) 
I e _I ( 1 .6x lO-19 C) 7 For a nucleon: -2-m = �---� = 4.7x 1 0  C/kg 2 ( 1.7x 10 27 kg) This factor is nearly 2000 times smaller for a nucleon. Angular momentum is quantized, with similar values for electrons and nucleons, so the magnetic dipole moment of a single atom comes almost entirely from orbiting elec­trons or electrons spinning on their own axes. 

Angular momentum of an orbiting or spinning electron You may recall, from Chapter 10, that both translational angular momen­tum (like the orbital angular momentum of an electron) and rotational an­gular momentum (like the angular momentum of an electron spinning on its axis) are quantized in very small systems such as atoms; only certain dis­crete values are possible. For an electron orbiting a nucleus, the angular mo­mentum has to be an integer multiple of Planck's constant h divided by 2rc , written as 1i :  34 L = N1i , where N= 0, 1 ,  2, 3, etc., and 1i = l .O5 x 10 Js The electron's spin angular momentum is always one-half of 1i .  (If you are not familiar with angular momentum quantization, you may wish to read Section 17.12, which uses more familiar classical reasoning about circular motion to estimate the orbital angular momentum of an electron. The an­swer is the same. )  Assuming one quantum of angular momentum, we have the following: 
L = 1i , so µ ::::, �; n 

Evaluating this expression, we find that: -19 µ ::::, (!) ( l .6x 10 C)( l .OSx l0 34 Js) 2 (9x 10 31 kg) 
23 2 µ ::::, 1 x l O  ampere •m per atom 

--
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Comparing with experiment 
If you have a bar magnet, a compass, and a meter stick, you can determine 
the magnetic dipole moment of the bar magnet experimentally. The proce­
dure for doing this is detailed in Problem 17.P.41. 

In the example on page 603, we found that a particular magnet whose 
mass was 69.5 g has a magnetic dipole moment of 3.5 A •  m2 . Assume that 
the magnetic dipole moment of this magnet is due to the fact that each 
atom has one unpaired electron contributing a magnetic dipole moment of 
µ "' 1 x l0-23 ampere-m2 (due either to orbital or spin angular momentum), 
and that the magnetic dipole moments of all the atoms are aligned in the 
same direction. What would the predicted magnetic dipole moment of this 
bar magnet be? 

Example: Estimated magnetic dipole moment of a bar magnet 
The bar magnet in the example on page 603 has a mass of 69.5 g. Assume 
that almost all of the atoms in this magnet are iron atoms. The mass of one 
mole of iron is 56 g. 

( 69.5 g ) 23 23 n = 
56 g/mol 

(6.02x l 0  atoms/mol) = 7.5 x l0 atoms 

23 ( -23 A·mj µ = nµatom = (7.5 x l 0  atoms) l x lO -- = 7.5 A-m2 
atom 

? The estimated value of the magnetic dipole moment of this magnet 
is 7.5 A· m2 , but the observed value is only 3.5 A• m2 . Is this good 
agreement or poor agreement? 

This is excellent agreement! The values differ by a factor of only about 2. 
The fact that the prediction and measurement are this close is evidence that 
the basic assumptions of our very simple model-that each atom in a mag­
net is itself a small dipole, and that the field produced by the magnet is the 
sum of the fields of all the atoms-are reasonable assumptions. If the pre­
dicted and measured values had differed by a factor of a thousand or a mil­
lion, we would have had to re-examine our model. 

Simplified models 
We made a number of simplifying assumptions in our model of an atomic 
dipole. You probably know, from chemistry courses, that more sophisticated 
atomic models do not assume that electrons orbit the nucleus in well-de­
fined circular paths. In these models, there is only a probability for finding 
the electron at a particular place. Moreover, many electrons in atoms have 
spherically symmetric probability distributions (''s orbitals"), and such a 
symmetric distribution has a zero average angular momentum. However, 
electrons in non-spherically-symmetric probability distributions ("p, d, or f 
orbitals") have nonzero angular momentum, and can contribute a non-zero 
magnetic dipole moment. Additionally, we assumed that in every atom 
there is just one electron that contributed a magnetic field, but in some ma­
terials two or more unpaired electrons may contribute. 

Nonetheless, the fact that our simplified model gave a prediction with an 
appropriate order of magnitude shows the power of reasoning with simple 
models. 

The modern theory of magnets 
Modern theories of the nature of magnets take into account not just the 
contribution of individual atoms in a solid magnet, but the effects of their 
interactions with each other. These more complex theoretical treatments 

1 7. 11: The atomic structure of magnets 607 

Related problem: 17.P.42 on p. 6 18 

The "spinning ball" model of the electron isn't really adequate, because the most sensitive experiments are consistent with <.the notion that an electron is a true point charge and has zero radius! It is neverthe­less an experimental fact that an electron does make a magnetic field as though it were a spinning ball of charge, and it can be useful to think of it literally as a spin­ning ball. 
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608 Chapter 1 7: Magnetic Field 

suggest that the magnetic dipole moments due to the rotational angular 
momentum of spinning electrons contribute most of the magnetic field of 
a magnet, although the orbital angular momentum of electrons does make 

" some contribution. 

Figure 17.47 Disordered magnetic 
domains-the net magnetic field pro­
duced by the iron is nearly zero. 

Coil 

Figure 17.48 The magi:etic field of a coil 
causes a partial ordering of the magnetic 
domains, which produces a significant 
nonzero magnetic field contributed by the 
iron. 

As we saw above, because the factor el m is so much smaller for a proton 
than for an electron, we can ignore nuclear contributions to the magnetic 
field of your bar magnet. Nuclear magnetic dipole moments do play an im­
portant role in the phenomenon of nuclear magnetic resonance (NMR), 
and in the technology of magnetic resonance imaging (MRI) used in med­
icine, which is based on NMR. 

Alignment of the atomic magnetic d ipole moments 

In many materials, an atom has no net orbital or spin magnetism. In most 
materials whose individual atoms do make a magnetic field, the orbital and 
spin motions in different atoms don't line up with each other, so the net 
field of the many atoms in a piece of the material averages out to zero. But 
in a few materials, notably iron, nickel, cobalt, and some alloys of these ele­
ments, the orbital and spin motions in neighboring atoms line up with each 
other and therefore produce a sizable magnetic field. These unusual mate­
rials are called "ferromagnetic." The reason for the alignment can be ade­
quately discussed only within the framework of quantum mechanics; 
basically the alignment is due to electric interactions between the atoms, not 
to the much weaker magnetic interactions. 

Magnetic domains 

In an ordinary piece of iron that isn't a magnet, the iron is a patchwork of 
small regions, called "magnetic domains," within which the alignment of all 
the atomic magnetic dipole moments is nearly perfect. But normally these 
domains are oriented in random directions, so the net effect is that this 
piece of iron doesn't produce a significant net magnetic field. Figure 17.4 7 
shows a picture of the situation, in which the arrows indicate the magnetic 
dipole moments of the atoms. 

If you use a coil to apply a large magnetic field to the iron, domains that 
happen to be nearly aligned with the applied field tend to grow at the ex­
pense of domains that have a different orientation (Figure 17.48). Also, with 
a sufficiently large applied magnetic field, the magnetic dipole moments of 
the atoms in a domain tend to rotate toward aligning with the applied field, 
just as a compass needle turns to align with an applied field. The result of 
both of these effects is to partially align the magnetic dipole moments of 
most of the atoms, which produces a magnetic field Biron which may be 
much larger than the applied magnetic field. There is a kind of multiplier 
effect. 

In the case of very pure iron, when you turn off the current in the coil, 
the piece of iron goes back nearly to its original disordered patchwork of do­
mains and doesn't act like a magnet any more. But in some other ferromag
netic materials, including some alloys of iron, when you remove the applied 
field the domains remain nearly aligned. In that case you end up with a per
manent magnet, which is commonly made of the alloy Alnico (Alnico V con­
tains 51 % iron, 8% aluminum, 14% nickel, 24% cobalt, and 3% copper). 
Hitting a magnet a hard blow may disorder the domains and make the metal 
no longer act like a magnet. Heating above a critical temperature also de­
stroys the alignments. 

Iron inside a coil 
It is possible to observe this multiplier effect. A small magnetic field created 
by current-carrying loops of wire wrapped around a piece of iron can lead 
to a large observed magnetic field being contributed by the iron, due to the 
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17.12: 'kfatimate of orbital angular momentum of an electron in an atom 609 

alignment of the magnetic dipole moments in the iron. Thanks to this mul­
tiplier effect, putting an iron core inside a current-carrying coil of wire 
makes a powerful "electromagnet" that can pick up iron objects. 

Why are there multiple domains? 
Within one domain of a ferromagnetic material such as iron, strong electric 
forces between neighboring atoms make the atomic magnetic dipole mo­
ments line up with each other. Why don't all the atoms in a piece of iron 
spontaneously align with each other? Why does the piece divide into small 
magnetic domains with varying magnetic orientations in the absence of an 
applied magnetic field? 

There is a simple way to get some insight into why this happens. Consider 
two possible patterns of magnetic domains in a bar of iron in the absence of 
an applied magnetic field, a single domain or two opposed domains (Figure 
17.49). 

You can simulate this situation by taking two permanently magnetized bar 
magnets and holding them in one of these two positions, as shown in Figure 
17.50. 

? Which of these two magnet configurations do you find to be more 
stable, the parallel or the antiparallel alignment? By analogy, which is 
more likely for a bar of iron, that it have just one domain or that it split 
into two domains in the absence of an applied magnetic field? 

You will find that if you start with the parallel alignment the magnets tend 
to flip into the antiparallel alignment. The domain structure of iron can be 
a compromise between a tendency for neighboring atoms to have their 
magnetic dipole moments line up with each other (a strong but short-range 
electric interaction), and a competing tendency for magnetic dipole mo­
ments to flip each other (a weaker but longer-range magnetic interaction). 

However, the net effect depends critically on the details of the geometric 
arrangement. Although two long bar magnets that are side by side tend to 
line up with their magnetic dipole moments in opposite directions, two thin 
disk-shaped magnets tend to line up with their magnetic dipole moments in 
the same direction. What happens inside a magnetic material depends on 
the details of the geometrical arrangement of the atoms and on the details 
of the electric interactions between neighboring atoms. 

1 7. 1 2 *ESTIMATE OF ORBITAL ANGULAR MOMENTUM OF 
AN ELECTRON IN AN ATOM 

We can estimate the orbital angular momentum of an electron in an atom 
by using the simple Bohr model of an atom, in which an electron orbits a 
nucleus at constant speed in a circular orbit, and applying the Momentum 
Principle. In this model (Figure 17 .51), an outer electron is held in a circu­
lar orbit of radius R by the electric attraction to the rest of the atom (which 
has a net charge of +e). 

We want to find the magnitude of the angular momentum of the elec­
tron: 

I ll = l r x rl 
Since in a circular orbit r J..p , this reduces to: 

L = Rp = Rmv ( v « c )  
-10 We know the radius of an atom (about 1 xl O m )  and the mass of an elec­

-31 tron (9xl0 kg) , so we need to find the speed of the electron. 

Related experiments: 

1 7.EXP.28 on page 616 

1 7.EXP.29 on page 616 

One domain Two domains 

Figure 17.49 Possible arrangements-one 
magnetic domain or two. 

N N 

s s 

N S 

S N 

Figure 17.50 Arrange two bar magnets 
side by side, aligned parallel or antiparal­
lel. 

Figure 17.51 Simple model of an atom in 
which an outer electron orbits a positive 
inner core. 
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610 Chapter 17: Magnetic Field 

System: electron, charge -e 
Surroundings: nucleus and outer electrons, 
with charge +e 

Momentum principle: d_,,_ --' 
� = Fnet dt 

l 

Parallel component ( constant speed, so parallel 
component of momentum is not changing): 

r!d! A - 0 dtp -
Perpendicular component (electric force on electron is 
toward the nucleus, perpendicular to momentum): 

pl�I 
= 

FJ_ 

( mv{� = 
�4:£0 �2) 

mv2 1 e2 
= -- -R 4n:£0 R2 

v =  
� m 

Plugging in the electron charge and mass, and 
assuming an approximate atomic radius of 

10 l x lO m ,  we get: 

V = (9x109 N · m2/ C2) (1.6xl 0-19 C)2 

( l xl0-10  m)(9x10 31  kg) 
6 v ,;:;;, l .6x10 m/s 

This gives a value for angular momentum of: 

L = Rmv = ( l xl0-10 m)(9x10-31 kg) (l .6x106m/s) 

L ,;:::,  l .4x10-34 kg · m2 /s2 

This is close to the quantum mechanical value of 

ti = l .OSxl0 34 Js . If we had reproduced Bohr's 
full calculation we would have obtained a slightly 
different value for R, and L would be exactly n .  

17.13 *MAGNETIC FIELD OF A SOLENOID 

The analysis in this section offers one more example of 
how to apply the Biot-Savart law. It shows that the mag­
netic field is nearly uniform along the axis of a solenoid, 
far from the ends. A solenoid is a coil which is much 
longer than its radius. 

Step 1 : Cut up the distribution into pieces 
and draw �B 
We consider a solenoid of length L that is made up of N 
circular loops wound tightly right next to each other, 

each of radius R We consider each loop as one piece. 
The conventional current in the loops is /. 

A solenoid of length L with N loops of ra­
dius R carrying current I. 

? Given what you know about individual current 
loops, what will be the direction of the magnetic 
field �B contributed by each of the loops at any 
location along the axis of the solenoid in the figure 
above? 

All of the contributions inside the solenoid will point to 
the right in the diagram. 

Step 2: Write an expression for the magnetic 
field due to one piece 
origi,n: Center of solenoid 
location of one piece: Given by z, so integration variable is z 
distance from loop to observation location: d - z .  

Liz 
1---z_,➔ 1 -····l � . 

- - - -- , __ -- � -- _j I -----1 -----+---Ht- --t--

f __ ; 
d - z  

L/2. - t  L/2. 

Defining an integration variable z for sum­
ming the contributions of the many loops. 

? How many closely packed loops are contained 
in a short length �z of the solenoid? 

There are N/L loops per meter, so the number of loops 
in a length �z is (N/L)�z. We know the magnetic field 
made by each loop along its axis. 

? Show that the loops contained in the section �z 
of the solenoid contribute a magnetic field at the 
observation location in the z direction of this 
amount: 

Step 3: Add up the contributions of all the pieces 
The net magnetic field lies along the axis and is the sum­
mation of all the �Bz contributed by all the loops: 

µo 2n:R2 IN �z 
Bz = I,�Bz = L, 4n; L [ ( d - z) 2 + R2 ] 312 
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Many of these quantities are the same for every piece and can be taken outside the summation as common multiplicative factors: 
B _ µo 2nR2IN-.;;;:i tu 

z 
- 4n L .L. [ ( d - z)2 + R2]3l2 

This can be turned into an integral, with z ranging from -L/2 to +L/2: 
B = µo 2nR2 IN r=+Ll2 dz z 4n L Jz=-L/2 [ ( d - z)2 + R2 ] 3l2 

Let u = d - z ,  in which case dz = -du, and therefore the limits on the integration run from u = d - (-L/2) to 
u = d - ( +L/2) : 

µo 2rcR2 INr=d- L/2 -du B = z 4n L u=d + L/2 [ u2 + R2 ] 3l2 
= µo 2nR2INr=d+ L/2 du 4n L u=d- L/2 [ u2 + R2 ] 3l2 

Fortunately, this integral can be found in standard tables of integrals: 
B = µo _2_n_R_2_JN_ [ u Ju =  d+ L/2 

z 4n L R2 Ju2 + R2 u =  d- L/2 

B = µo 2nIN[ d + L/2 _ d - L/2 ] z 4n L J(d + L/2)2 + R2 J( d - L/2)2 + R2 

In this expression, d is the distance from the center of the solenoid. Here is a plot of this expression for Bz for a particular solenoid, as a function of the distance from the center of the solenoid. Notice that the magnetic field is nearly uni­form inside the solenoid, as long as you are not too near the ends. The field is even more uniform for solenoids that are longer and/ or thinner than this one. 
Length L = 25 cm, radius R = 3 cm 

z 

? If the radius R is small compared with the length 
L (R << L) , show that at the center of the solenoid the magnetic field has a remarkably simple value: 

With d = 0 and R << L, the quantity in square brackets above reduces to 
L/2 J(L/2)2 

-L/2 J(-L/2)2 

17. 13: *Magnetic field of a solenoid 61 1 

which is equal to 2, from which follows the simple form Bz "" µ0NI/ L .  • -
The function plotted above shows that this is also the approximate magnetic field inside the solenoid along much of the axis, not too close to the ends. Outside the solenoid, the magnetic field falls off rapidly. At a large distance the field falls off like 1 / r3 , since the solenoid then looks like a simple collection of current loops. 
MAGNETIC FIELD INSIDE A LONG SOLENOID 

B µoNI • "d  1 1 "d 
z "" L ms1 e a ong so eno1 

(radius of solenoid « L) 

The same result can be obtained with much less effort by using Ampere's law, which we will study in a later chap­ter. 
Step 4: Check the result Does our final result make sense? In particular, do we have the right units? Comparing with the magnetic field for a single current element, 

µo J�l X r - --4n i2-we easily verify that our answer does have the right units, since 
NI . I� l 
L has the same umts as � 

(Remember that r is dimensionless.) 

J 
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612 Chapter 1 7: Magnetic Field 

1 7. 1 4 SUMMARY 

The BiotSavart law 
_,_ µo qv x r "' B = 4rc i2 (single moving particle) 

- /<( 
qe� 

A B-'- -- µo Ill! X r ( ct· .b . ) D current 1stn ut10n 4rc i2 

µo = 10-7 tesla -m2 exactly 4rc coulomb·m/s 
r is a unit vector that points from the source charge toward the observation location. 

Electron current: i = nAv Conventional current: I =  l ql nAv 
A magnetic field can be detected by a compass; horizon-

5 tal component of BEanh "" 2 x l0 tesla in much of the continental United States. 
Magnetic field of a wire 

, ... B 

for a straight wire of length L and conventional current I, at a perpendicular distance rfrom the center of the wire 

Magnetic field of a loop 

B µo 2rcR2J "" µo 2µ for z >> R loop = 4c (z2 + R2 ) 3i2 4rc 23 
for a circular loop of radius R and conventional current I, at a distance z from the center, along the axis 
Magnetic dipole moment of a loop: µ = (rcR2 ) J  

Magnetic field inside a long solenoid 

inside a long solenoid (radius of solenoid « L) 

Note that a solenoid is very long compared to its radius-it is not the same thing as a coil com­posed of a few loops close together. 
Atomic model of magnets 

An atom can be a magnetic dipole, whose mag­netic dipole moment is primarily due to the spin (rotational angular momentum) of un­paired electrons. The orbital angular momen­tum of electrons can also contribute. 
The magnetic dipole moment of a bar magnet is the sum of the magnetic dipole moments of all its constituent atoms. 

Ferromagnetic material 
Organized into domains of aligned atomic mag­netic dipole moments, and an applied field can orient these domains. Removal of the applied field may leave the material partially aligned, forming a permanent magnet. 

1 7  . 1 5 EXPERIMENTS 

Equipment In the study of magnetic field you will need the following equipment: • two flashlight batteries in a battery holder 
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• light bulbs of two kinds • screw-in bulb sockets • several short copper wires with clips on the ends ("clip leads" used as connecting wires) • a long wire (about 2 m in length) • a liquid-filled magnetic compass • unmagnetized nails for 17.EXP.28 on page 616 
Simple circuits To observe the magnetic effects of electric currents, it is useful to construct simple circuits containing wires, light bulbs, and batteries. These are the simplest examples of systems in which we can observe the fundamental elec­tric and magnetic properties of continuous electric currents. The equipment needed for the experiments in this chapter is the following: two D cells ( and it useful to have a battery holder for them) , flashlight bulbs (#48 and #14 if possible) ,  sockets for these bulbs, insulated "hookup" wire, some clip leads (wires with alligator clips on the end), a liquid-filled compass (air-filled compasses typi­cally don't work well because the needle tends to get stuck on its pivot) ,  and a bar magnet (a magnet with a north end and a south end) . Suitable equipment may be available in a laboratory or you can purchase experiment kit EM-8675 from http://www.pasco.com. 
Light bulbs and sockets The filament of a light bulb (the very thin metal wire that glows) is made of tungsten, a metal that does not melt until reaching a very high temperature. A glowing tungsten wire would rapidly oxidize and burn up in air, so there is a vacuum or an inert gas such as argon inside the bulb. The thin tungsten filament in the bulb strongly resists the passage of electrons. When the electron sea is forced to move through the tungsten, the mobile electrons col­lide with the positive cores (nuclei plus inner electrons) ,  and this "friction" makes the metal get hot and glow. 
1 7  .EXP . 1 7  Experiments with simple circuits (a) Using one battery, some donnecting wires (insulated wires with clips on the ends, not bare Nichrome wire) , and a round bulb (#14) but no socket, make the bulb light up. If the bulb glows with a steady light, this is a "steady state." Make a di­agram showing how you connected the circuit. 

1 7. 15: Experiments 613 

(b) Examine a light bulb carefully, and imagine slicing the bulb in half lengthwise. Here is a cutaway sketch: 

On a copy of the sketch, label the important parts and connec­tions, indicating which parts of the bulb you think are metal conductors, and which parts are insulators. Using a different color if available, show the conducting path that electric current follows through the bulb. What happens if you switch the connections to the battery? Does the light bulb still light? (c) Closely examine the long #48 bulb and the round #14 bulb. 

A long #48 bulb (left) and a round #14 bulb (right) . The tungsten filaments in both bulbs are about the same length, but perhaps you can see even with the naked eye that the filament in the long bulb is extremely thin-thinner than the filament in the round bulb. Through which bulb would you guess it would be easier to push electric current, through a thin filament (as in the long bulb) or through a thick filament (as in the round bulb)?  Why? (At this point this is mostly just a guess, but we'll study this in detail later. )  (d)  Examine a bulb socket (the receptacle into which a bulb is screwed) , and imagine slicing the socket in half lengthwise. Make a cutaway sketch, and label the important parts and con­nections. Indicate which parts are metal conductors and which parts are insulators. On your sketch, trace the path (in a differ­ent color if available) along which electrons will move through the socket when there is a bulb in it. Screw a bulb into the sock­et and connect the socket to the battery with two connecting wires. Make sure the bulb lights. ( e) Connect a round bulb in a socket to two batteries "in se­ries" (that is, one after the other) using connecting wires. 

Two batteries and k round bulb in series. The socket is not shown. '-

To connect two batteries in series, put them in the battery holder in opposite directions, and connect them as shown (note that "+" is connected to "-" ) .  Compare the brightness of the bulb with one battery and with two batteries in series. Be-
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614 Chapter 1 7: Magnetic Field 

cause of this difference we'll usually use two batteries in series in our experiments. 
17.EXP.18  The magnetic effects of currents Make a two-battery circuit with a rouncf bulb in a socket. Place your magnetic compass on a flat surface under one of the wires as shown below. Keep the compass away from steel ob­jects, such as the steel-:iacketed batteries, and the alligator clips on the ends of your wires. If you are working on a steel table, you may need to put the compass on a thick book. (For flexi­bility in placement, you may find it useful to make a long wire by connecting two of your wires together. ) Connect the circuit so that the bulb glows, and do the following: • Lift the wire up above the compass. • Orient the wire to be horizontal and lined up with the compass needle. (Using a long wire may make it easier to do this. ) • Bring the aligned wire down onto the compass: 

Wire aligned with the compass needle. 
(a) What is the effect on the compass needle as you bring the wire down on top of the compass? (b) What happens when the wire is initially aligned perpen­dicular instead of parallel to the needle as shown below? 

Wire perpendicular to the compass needle. 
(c) Reverse the connections to the batteries, or reverse the direction of the wire over the compass, in order to force elec­trons through the circuit in the opposite direction. Again make the compass needle deflect. How is the deflection of the compass needle affected by changing the direction of the cur­rent? (d) Run the wire under the compass instead of over the compass. What changes? 

Wire under compass. 
(e) To make sure that it is the current in the wire, and not the metal wire itself, that·affects the compass, disconnect the batteries. When you bring the wire down on the compass, is there a deflection? 

(f) Record the observed compass deflection in the following cases: 1 :  Two batteries and the (bright) round bulb. 2: Two batteries and the (dim) long bulb. 3: Two batteries, and just a long wire (no bulb) .  This is called a "short circuit", and it puts a large drain on the batter­ies, so you should not leave this connected for many minutes. The effect you have just observed was discovered by accident by the Danish scientist Oersted in 1820 while doing a lecture demonstration in a physics class. The phenomenon is often called "the Oersted effect." From your experiments, you should have drawn the following conclusions: • the magnitude of the magnetic field produced by a cur­rent of moving electrons depends on the amount of cur­rent • a wire with no current running in it produces no magnet­ic field • the magnetic field due to the current appears to be per­pendicular to the direction of the current • the direction of the magnetic field due to the current un­der the wire is opposite to the direction of the magnetic field due to the current above the wire 
1 7.EXP. 19  Electron current and battery Use the right-hand rule to predict whether the compass needle should deflect to the left or right, assuming that electron cur­rent flows out of the negative end of the battery and into the positive end. Check to see that the needle does deflect in the predicted direction. 
1 7.EXP.20 The magnetic field of a long straight wire Use clip leads to connect a wire about 2 meters long to a bat­tery, but don't make the final connection yet. Lay the wire down on the floor or a table, making a straight length as long as possible, heading north and south, as far from the steel bat­tery as possible. • Hold the compass above the wire at a height where the compass deflection is 20° when you turn the current on and off. Mark on a vertically held piece of paper this height r20o of the compass needle above the wire, and record this height. • Mark the paper at twice this height and use the second mark to place the compass at a height 2 ( r20°) above the paper, and record the compass deflection. (a) Are your data consistent with the theoretical prediction that the magnitude of the magnetic field near a long straight wire is proportional to 1/ r, where r is the perpendicular dis­tance to the wire? (b) Using your value of r20, determine the amount of cur­rent I in the wire. 
Experimental observations of a coil of wire Next we will make measurements of a coil of wire, con­sisting of multiple loops to make a larger magnetic field than a single loop would provide. 
17.EXP.21 The magnetic field of a coil of wire Take an insulated wire about 2 meters in length and wrap a coil of about N = 20 turns loosely around two fingers. Twist the ends together to help hold the coil together, and remove the coil from your fingers. Use clip leads to connect the coil to a battery. 
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By appropriate placement and orientation of your compass 
relative to your Nturn current loop, measure the experimental 
magnetic field direction and relative magnitude at the loca­
tions indicated. Remember that you must always position the 
compass in such a way that the coil's magnetic field is perpen­
dicular to the Earth's magnetic field. 

To battery 

Measure the magnetic field at the indicated locations. 

On a diagram like that above, draw the magnetic field vec­
tors at all marked locations. Record the number of turns N, the 
approximate radius of the coil R, the distances to the measure­
ment locations, and the compass deflections at those locations. 

(a) Do your measurements agree with the predicted pattern 
of magnetic field around a coil of wire? 

(b) Determine the amount of current I in the wire. 

17.EXP.22 A coil is a compass 
For reasons that we will jiscuss in a later chapter, the magnetic 
dipole moment vector µ acts just like a compass needle. In an 
applied magnetic field, a current-cai;,_rying loop rotates so as to 
align the magnetic dipole moment µ with the field. 

It is hard to observe this twisting with your own hanging coil, 
because the rather stiff wires prevent the coil from freely rotat­
ing, unless you suspend the entire apparatus from a thread, 
batteries and all. Or do this: 

If you have access to kitchen equipment, you may be able to 
float your batteries and coil in a bowl or large glass or alumi­
num pan, or on a block of wood. (Avoid steel containers!) 
Then you may be able to observe the axis of the coil line up 
with the Earth's magnetic field, just as though the magnetic di­
pole moment of the coil were a compass needle. 

17.EXP.23 Directions of the magnetic field of a bar 
magnet 

From its name, you might guess that a magnet makes a magnet­
ic field. We say that a magnetic field is present if we see a com­
pass needle twist, so let's see whether your bar magnet does 
make your compass needle deflect. 

Place your compass to the right of your bar magnet, with the 
magnet oriented in such a way as to make the compass deflect 
to the east as shown in the accompanying figure. Make a simi­
lar diagram in your notebook. 

We define the direction of a magnetic field B at a 
particular location as the direction that the "north" 
end of a compass points to when placed at that loca­
tion. 

(a) Assuming that the bar magnet makes a magnetic field 
along the axis of the magnet, draw a vector in your notebook 
to show the direction of the compass needle, a�d another ar­
row to show the direction of the magnetic field Bm of your bar 
magnet at the present location of the compass. For future ref­
erence, write "N" for "north" on the end of the magnet that the 
magnetic field points out of (attach tape to write on if neces­
sary). 

1 7. 15: Experiments 6 1 5  

(b) Move the compass t o  the left of your magnet, above your 
magnet, and below your magnet, as shown. For each location, 
record the direction of the compass needle, and also record on 
your diagram the direction of the magnetic field due to the bar 
magnet at that location. 

® t �anh 

® compass 

® 
deflects 
to the east 

Place your compass at each of the locations shown above, rel­
ative to your bar magnet, and note the deflection of the com­
pass needle. What is the direction of the magnet's magnetic 
field at these locations? 

(c) Does this pattern of field look familiar? Where have we 
seen a similar pattern of field directions in space before? 

(d) Suspend your magnet from a thread or a hair, using a 
piece of tape, or float the magnet on a dish or plate in water. 
Note which end points toward the north. Evidently a compass 
consists simply of a magnet in the shape of a needle, mounted 
on a pivot. 

17.EXP.24 Magnets and matter 
Obtain another magnet by working with a partner or finding a 
kitchen magnet. Make sure that you have labeled the north 
and south ends of both magnets. 

(a) Describe briefly the interactions that the two magnets 
have with each other. 

(b) You probably know that magnets don't interact strongly 
with anything but iron or steel objects (steel is mostly iron). 
Magnets also interact with nickel or cobalt objects, but these 
aren't so readily available. Check to see for yourself that your 
magnet doesn't interact with aluminum (aluminum foil) or 
copper ( a penny, or an electrical wire), or any nonmetal. Also 
notice that your magnet is strongly attracted to steel parts of 
your electricity kit. 

(c) Check what happens with charged invisible tape, and see 
that while there is the usual attraction of a charged tape for any 
uncharged object, there doesn't seem to be any magnetic in­
teraction, because either end of the magnet acts the same. 

(d) Can you give any evidence that magnetic interactions 
pass through matter, as electric interactions do? 

(e) Place two magnets in various positions near your com­
pass to demonstrate to your satisfaction that the superposition 
principle holds for the magnetic fields of magnets; that is, the 
net field of the two magnets is the vector sum of the two fields. 
Give one example1of your observation of the superposition 
principle for magnetic fields. 

17.EXP.25 Dependence on distance for a bar magnet 
Again place the compass to the right of your bar magnet, ori­
ented in such a way as to make the compass deflect 70° to the 
east. Do not work on a table that contains steel components, which 
can interfere with the measurements. The best place to make 
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6 1 6  Chapter 17: Magnetic Field 

the measurements is outdoors, away from iron and steel ob­
jects. 

f-- - -

Place· the magnet at a center-to-center distance r such that 
the compass needle deflection is 70°. 

(a) At the location where you get a 70° deflection, measure 
the distance r from the center of the magnet to the center of 
the compass. A centimeter ruler is provided at the back of the 
book. 

(b) Use vector analysis and the magnitude of the Earth's 
field to calculate the magnitude Br of the magnetic field of the 
magnet at this distance r from the center of the magnet. 

(c) Now move the magnet farther away by a factor of two; 
that is, place the magnet so that the distance from the center 
of the magnet to the center of the compass is 2r. Record the 
new distance and the new compass deflection angle. Calculate 
the magnitude �r of the magnetic field of the magnet at this 
new distance from the magnet. 

(d) By what ratio did the magnetic field of the magnet de­
crease when the distance from the magnet was doubled? 

(e) The magnetic field of the magnet gets smaller with dis­
tance, and it is plausible to guess that the magnetic field of the 
magnet might vary as 1/r'", where n is initially unknown. Ac­
cording to your measurements, what is n? (You may wish to 
make measurements at some other distances to give further 
support to your analysis. ) 

(f) Extrapolating to a location near one end of your bar 
magnet, approximately how strong is the magnetic field in tes­
la near one end of your magnet? (Remember, measure rto the 
center of the magnet. ) 

(g) Place the compass north or south of the magnet, at the 
original distance r from the center of the magnet, and deter­
mine the magnitude of the magnetic field at this location. How 
does this magnitude compare to your result in (b) ? 

Place the compass north or south of the bar magnet and note 
the deflection of the compass needle. 

17.EXP.26 Coils attra�t and repel like magnets 
There is yet another way in which the behavior of a magnet and 
of a current-carrying coil of wire is very similar. Hang your coil 
over the side of the table and bring your bar magnet near the 

hanging coil, along the axis of the coil. Reverse the magnet. 
Repeat from the other side of the coil. Is this behavior similar 
to the interaction you have observed between two bar mag­
nets? 

1 7.EXP.27 "Cutting a magnet in two" 
Without actually cutting a magnet into two pieces, you can sim­
ulate such an operation by putting two bar magnets together 
north end to south end, then taking them apart. 

Place two magnets together end-to-end: do they behave like 
a single magnet? 

Do you in fact find that the put-together longer magnet acts 
just like a single magnet, and that after pulling them apart the 
two pieces still act like magnets? 

If you have the equipment available, you can magnetize a 
soft iron nail by stroking it with a magnet; then use a hacksaw 
to cut it in half and investigate the properties of each half. 

1 7.EXP.28 The magnetic multiplier effect 
Note: You need unmagnetized nails for this experiment. If the 
nails have ever been near a magnet, they may have become 
strongly magnetized. Check this by bringing a nail near the 
compass, first one end, then the other. If the nail is unmagne­
tized, both ends of the nail will affect the compass equally. If 
however the nail is strongly magnetized, the two ends of the 
nail will affect the compass quite differently. 

If a nail is strongly magnetized, bring your bar magnet near 
it (but not touching the nail) to magnetize the nail in the op­
posite direction. Check again with the compass and repeat as 
necessary, trying to reduce the magnetization to zero. Do not 
proceed until you have at least three unmagnetized nails. 

Now you can study the magnetic multiplier effect. Take an 
insulated wire about 2 meters in length and wrap a coil of 
about 20 turns loosely around two fingers. Twist the ends to­
gether to help hold the coil together and remove it from your 
fingers. Connect the coil to a battery and position your com­
pass to the east or west of the coil so that the compass needle 
deflects away from north by about 5 degrees. Turn off the cur­
rent, so the compass deflection goes to zero. 

(a) Insert an unmagnetized iron nail into the coil and 
record the compass deflection (if any). Now start the current 
again and observe what happens to the compass deflection. 
Add additional nails and observe and record what happens to 
the compass deflection. 

(b) Explain briefly why each nail produces a sizable increase 
in the compass deflection when you turn on the current. 

(c) To check whether the nails are permanently magnetized 
after being inserted into the coil, turn off the current. If the 
compass still deflects significantly without any current in the 
coil, the nails have become strongly magnetized. Are they? 

( d) Bring one of these nails near the compass, first one end 
and then the other. Is the nail slightly magnetized? 

1 7.EXP.29 An electromagnet 
Next, construct an "electromagnet." Take an insulated wire 
about 2 meters in length and wrap it tightly around an iron 
nail, all along its length. You can make multiple layers of wind­
ings, back and forth along the nail, to increase the effects, but 
leave the ends of the nail sticking out so that you can touch the 
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nail to other objects. Twist the ends of the wire together to help hold the coil together. Connect the coil to a battery and bring it near another nail. Can you pick up the other nail? (If the battery is not fresh, you may not get enough current to lift the other nail, but you should be able to lift a paper clip! )  Why does the other nail fall when you cut the current? Is there any evidence that the elec­tromagnet nail retains some magnetization? 
1 7  .1 6 REVIEW QUESTIONS 

Cross product 

17 .RQ.30 A vector C of magnitude 3 lies along the x axis, and a vector D of magnitude 5 lies in the xy plane, 30 degrees from the x axis. What is the magnitude and direction of the cross product C x D ? What is the magnitude and direction of the cross product D x C ? Draw both vectors on a diagram. 
y 

X 

The angle between these two vectors is 30 degrees. 
The Biot-Savart law 

17.RQ.31 An electron is moving horizontally to the right with speed 4xl06 m/s. What is the magnetic field due to this mov­ing electron at the indicated locations? (Each location is 5 cm from the electron.) Give both magnitude and direction of the magnetic field at each location. 
5 cm 

An electron moves to the right with speed 4x 106 m/ s. 
17 .RQ.32 What is the direction of the magnetic field at the in­dicated locations inside and outside this current-carrying rect­angular coil of wire shown? Explain briefly. (Direction of conventional current is shown.) 

X I .. 
r 

X 

17.16: Review questions 617 

Measuring magnetic field with a compass 

17 .RQ.33 A current carrying wire oriented north-south is laid on top of a compass. If the compass deflection is 17° , what is the magnitude of the magnetic field due to the current? 
17.RQ.34 Consider the portion of a circuit shown. When no current is running, both compasses point north (direction shown by the gray arrows) .  When current runs in the circuit, the needle of compass 1 deflects as shown. What direction will the needle of compass 2 point? Draw a sketch indicating its de­flection. 

The wire rests on top of two compasses. 
Field of a straight wire 

17  .RQ.35 In a circuit consisting of a long bulb and two flash­light batteries in series the conventional current is about 0.1 ampere. What is the magnetic field 5 mm from the wire? (This is about how far away the compass needle is when you place the wire on top of the compass.) Is this a big or a small field? 
Two straight wires 

17.RQ.36 A battery is connected to a Nichrome wire and a conventional current of 0.3 ampere runs through the wire. The wire is laid out in the form of a rectangle 50 cm by 3 cen­timeters. What is the magnetic field at the center of the rectan­gle? Give the direction as well as the magnitude. 
--+ �l ______ x _____ �l� cm 

50 cm 

Coil of wire 

17 .RQ.37 A thin circular coil of wire ofradius 5 cm consists of 100 turns of wire, as shown. If the conventional current in the wire is 4 amperes, what are the magnitude and direction of the magnetic field at the center of the coil? (Direction of conven­tional current is shown.) 
___ I

...,
=
,,.

4 amperes 

J 100 turns 

A current of 4 A runs through a thin cir­cular coil of wire with 100 turns. 

Apple Inc.     EX1017     Page 34



618 Chapter 17: Magnetic Field 

Dependence on distance 
17.RQ.38 (a) How can you produce a magnetic field that is nearly uniform in a region? (b) How can you produce a magnetic fie1l that falls off like 
1/r? f ( c) How ca_n you produce a magnetic field that falls off like 1/ r2 ?  (Note that you cannot use just a short piece of current­carrying wire, because the other parts of the wire also contrib­ute. ) ( d) How can you produce a magnetic field that falls off like 
11:?? Magnetic materials 
17  .RQ.39 An iron bar magnet makes a pattern of magnetic field that looks just like the pattern of magnetic field outside a long current carrying coil of wire. Are there currents in the iron? Explain briefly. 
17  .RQ.40 Suppose you have two Alnico bar magnets, one with a mass of 100 grams and one with a mass of a kilogram. At a dis­tance of a meter from the center of either one, how would the magnetic field differ? Why? 
17 .17 PROBLEMS 

17 .P .41 Magnetic dipole moment of your bar magnet The magnetic field along the axis of a bar magnet can be writ­ten like this: 
Use your own data from Experiment 17.EXP.25 on page 615 to determine the magnetic moment m of your bar magnet. If you have mislaid those data, quickly repeat the measurements now. You will use the value of your magnetic moment in later work. The magnetic moment describes how strong a magnet is: the bigger the magnetic moment, the bigger the magnetic field at some distance r. 
17  .P .42 Predicting the magnetic dipole moment of your 
magnet Determine the mass of your magnet and thereby determine the number N of atoms in your magnet. Although your magnet is probably made of some alloy such as Alnico V (51 % iron, 8% aluminum, 14% nickel, 24% cobalt, and 3% copper) ,  for sim­plicity assume it is made just of iron, which has a density of 8 grams/cm3 and an atomic mass of 56 (that is, 6x1023 atoms weigh a total of 56 grams) .  Assuming that each of the atoms has a magnetic moment with a value estimated in Section 17.11 , see how well the atomic model for a magnet fits the value of the magnetic moment of your bar magnet determined in the previous problem. 

17  .P .43 Fields of an electron The electron is traveling with a speed of 3x106 m/s . 
3xl06 rn/s 

J_ - - - - - - _fi''' �'. �· - - - - -
Electron 

A 

(a) At location A, what are the directions of the electric and magnetic fields contributed by the electron? (b) Calculate the magnitudes of the electric and magnetic fields at location A. 
17  .P .44 Wire on compass You place a long straight wire on top of your compass, and the wire is a height of 5 millimeters above the compass needle. If the conventional current in the wire is I= 0.2 ampere and runs left to right as shown, calculate the approximate angle the nee­dle deflects away from north and draw the position of the com­pass needle. 

___ North 

0 I= 0.2 A 

Wire on top of a compass. 
1 7  .P .45 Magnetic field of arcs Two long wires lie very close together and carry a conventional current I as shown and each wire has a semi-circular kink, one of radius R1 and the other of radius f½. Calculate the magni­tude and direction of the magnetic field at the common center of the two semi-circular arcs. 

1 7  .P .46 Deflecting a compass needle When you bring a current-carrying wire down onto the top of a compass, aligned with the original direction of the needle and 5 mm above the needle, the needle deflects by 10  degrees. 

Deflecting a compass needle. 
(a) Show on a diagram the direction of conventional cur­rent in the wire, and the direction of the additional magnetic field made by the wire underneath the wire, where the com­pass needle is located. Explain briefly. 
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(b) Calculate the amount of current flowing in the wire. The measurement was made at a location where the horizontal component of the Earth's magnetic field is BEanh "' 2x 10-5 tes­la. 
17.P.47 Using magnetic field to measure current You can use measurements of the magnetic field of a coil to de­termine how much current your battery is supplying to the coil. Using your value of B (Experiment 1 7.EXP.2 1  on page 6 14) , determine the conventional current I through your coil. If this current is less than 3 ampere, you should replace the battery. 
17 .P .48 Wire with a loop in it A very long wire carrying a conventional current !is straight ex­cept for a circular loop of radius R Calculate the magnitude and direction of the magnetic field at the center of the loop. 

17 .P .49 Deflecting a compass needle with a coil A thin circular coil of radius r = 15  cm contains N = 3 turns of Nichrome wire. A small compass is placed at the center of the coil, as shown below. With the battery disconnected, the com­pass needle points to the right, in the plane of the coil. Assume that the horizontal component of the Earth's magnetic field is about BEarth "' 2 x 10 5 tesla. When the battery is connected, a current of 0.25 ampere runs through the coil. Predict the deflection of the compass needle. If you have to make any approximations, state what they are. Is the deflection outward or inward as seen from above? What is the magnitude of the deflection? 

Deflect 
outward 

17 .P .50 Magnetic moment of a bar magnet 

Deflect 
inward 

A bar magnet is aligned east-west, with its center 1 6  cm from the center ofa compass. The compass is observed to deflect 50° away from north as shown, and the horizontal component of the Earth's magnetic field is known to be 2 x 10 5tesla . 
Northk,., ,., · 

0 
f- - - - -16 Z� - - - - I (a) Label the N and S poles of the bar magnet and explain your choice. 

17.17: Problems 61 9 

(b) Determine the magnetic dipole moment of this bar magnet, including correct units. 
1 7.P.51 Magnetic field in a circuit A circuit consists of a battery and a Nichrome wire, through which runs a current I 

�
-

--'I
'------'!-

---
---'

f.\
._
�_

a_d_iu_s_r 

______ _, -:l=-.__ ___ > ______________ ! h 
L ( a) At the location marked x ( the center of the semicircle) ,  what is the direction of the magnetic field? (b) At the location marked x ( the center of the semicircle) ,  what is the magnitude of the magnetic field? If you have to make any approximations, state what they are. 

17 .P.52 Magnetic field of coils Two thin coils of radius 3 cm are 20 cm apart and concentric with a common axis. Both coils contain 10 turns of wire with a conventional current of 2 amperes that runs counterclockwise as viewed from the right side) . 
2 A  

10 turns 10 turns 

Side view 

- - - I (a) What is the magnitude and direction of the magnetic field on the axis, halfway between the two loops, without mak­ing the approximation z >> r? (For comparison, remember that the horizontal component of magnetic field in the United States is about 2 x l0 5 tesla) .  (b) I n  this situation, the observation location is not very far from either coil. How bad is it to make the l / z3 approxima­tion? That is, what percentage error results if you calculate the magnetic field using the approximate formula for a current loop instead of the exact formula? (c) What is the magnitude and direction of the magnetic field midway between the two coils if the current in the right loop is reversed to run clockwise? 
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620 Chapter 1 7: Magnetic Field 

17 .P .53 A bent wire 
A conventional current I runs in the direction shown. Deter­
mine the magnitude and direction of the magnetic field at 
point C, the center of the circular arcs. 

One-and-a half turns 

17.P.54 Magnetic fields in the home 
At one time, concern was raised about the possible health ef­
fects of the small alternating (60-hertz) magnetic fields created 
by electric currents, in houses and near power lines. In a 
house, most wires carry a maximum of 15 amperes (there are 
15-ampere fuses that melt and break the circuit if this current 
is exceeded) . The two wires in a home power cord are about 3 
millimeters apart as shown, and at any instant they carry cur­
rents in opposite directions (both of which change direction 
60 times per second) .  

Side view 
3 mm 
H J in •• 1 out B = ? 
i · ·- - - - - - - - - - - - -- - i 
' 50 cm ' 

Top view 

t !/ = 15 ampere 

-· - 1  

An appliance power cord consists of two 
wires side by side. 

(a) Calculate the maximum magnitude of the alternating 
magnetic field, 50 cm away from the center of a long straight 
power cord that carries a current of 15 amperes. Both wires are 
at the same height as the observation location. 

(b) Explain briefly why twisting the pair of wires into a braid 
as shown would minimize the magnetic field at the location dis­
cussed in (a) . 

(The magnitude of the field that you calculate is very small 
compared to the Earth's magnetic field, but there were ques­
tions as to whether a very small alternating magnetic field 
might have health effects. After many detailed studies, the con­
sensus of most scientists now seems to be that these small alter­
nating magnetic fields are not a hazard after all. ) 

17.P.55 Magnetic field of a current 
A thin wire is part of a complete electrical circuit which carries 
a current L For this problem consider only the piece of wire of 
length d as shown in the figure below. Answer the following 
questions based on this figure. 

P f- - - - - - - - - - - - - - -I 
T x  < w,h,0> 

I 

I 

h t  
I 

I 

I 

I 

•• L x  <-w 0 0> 
Q 

' '  

A thin wire is part of an electrical circuit. 

(a) What are the magnitude and direction of the magnetic 
field due to the wire at Q (location< -w, 0, 0 >? 

(b) Set up the integrals necessary to determine the x, y, and 
z components of the magnetic field at P ( location < -w, h, 0 >) .  
The integrals must be in a form which can be evaluated (no 
cross products in the integrand) ,  but you do not need to eval­
uate them. 

( c) What is the direction of the magnetic field at location P? 

17  .P .56 Calculating the magnetic field of a solenoid 
This problem requires calculations in three dimensions and 
will familiarize you with the details of the magnetic field made 
by a solenoid (a long coil) .  

A solenoid of length L = 0.5 meter and radius R = 3 cm is 
wound with N = 50 turns of wire carrying a current I =  l am­
pere. Its center line lies on the x axis, with the origin at the cen­
ter of the solenoid. 

(a) Calculate and display magnetic field vectors at the loca­
tions in the xy plane, inside and outside of the solenoid, as 
shown below. It is acceptable to approximate the helix as sim­
ple loops, if you find that is easier to do. (If you have a helix 
instead of loops, i'i.l also has a z component. ) Do the pattern 
and direction of magnetic field make sense? 

x 

Locations at which to calculate the mag­
netic field of a solenoid. 

(b) Display the numerical value of the magnitude of the 
magnetic field at one location, the center of the solenoid. Also 
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display the theoretical numerical value of the magnetic field, 
in the approximation that this is a very long solenoid 
( B "" µ0NJ/ L ) . What is the minimum number of steps around 
one loop ( or around one turn of the helix) that are necessary 
to obtain good agreement between the theoretical value and 
your numerical integration? What is your criterion for "good 
agreement"? 

(c) Vary the number of loops. What is the minimum num­
ber of loops ( or turns of the helix) that are necessary to get an 
approximately uniform field inside the solenoid? 

(d) How do the magnitude and direction of the magnetic 
field outside the solenoid compare to the magnitude and di­
rection of the magnetic field inside the solenoid? 

Suggestions 
Consider r to be a vector from the midpoint of Al to the ob­
servation location. 

One way to find Al is to find two vectors a and b to the 
endpoints of Al , then subtract to get Al , as shown. 

y 

Finding �l . 
One way to get started is to calculate the magnetic field for 

a single loop located at the origin, then extend the program to 
include 50 loops. 

In debugging your program, you may find it useful to dis­
play the Al vector for each step. 

1 7. 18: Answers to exercises 621 

1 7  .1 8 ANSWERS TO EXERCISES 

17.X.1 (page 588) 6xl018 electrons/s 

17.X.2 (page 588) 5.4xl021 electrons 

17.X.3 (page 589) 5.4xI0 6 T 

17.X.5 (page 591) 

17.X.6 (page 591) 

17.X.7 (page 591) Cross product involves sin0 , which is zero. 

17.X.8 (page 591) 1/ r2 

17  .X.9 (page 591) zero magnetic field 

17.X. 10  (page 591 )  14 tesla, which is an extremely large mag­
netic field 

17.X. 1 1  (page 592) Electron current flows to the left, conven­
tional current to the right. 

17.X. 13 (page 594) 5xI0-5m/s 

17.X. 14 (page 595) 1.00 minutes � 
17.X. 15 (page 595) 0.54 ampere 

17.X. 16 (page 602) 9 A •  m2 
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22.1: Changing magnetic fields and curly electric fields 777 

CHAPTER 22 

FARADAY'S LAW 

Key concepts 
• A curly electric field accompanies a time-varying magnetic field. 
• Faraday's law is a quantitative relationship between the rate of change 

of magnetic field and the curly electric field. 
• Superconductors have zero resistance at low temperatures, and they 

exclude magnetic field (Meissner effect). 
• Coils in circuits oppose change of current, determined by the amount 

of their "inductance." 
• There is energy in a magnetic field. 
• Optional: There is a differential form of Faraday's law involving "curl." 

Charges make electric fields, and electric fields affect charges. Moving 
charges make magnetic fields, and magnetic fields affect moving charges. 
In Chapter 20 we glimpsed a deeper relationship among these phenomena 
in the oddly different electric and magnetic forces observed by a stationary 
Jack and a moving Jill, and in field transforms between reference frames. 

In this chapter we will see another fundamental aspect of the relationship 
between the electric and magnetic fields. It turns out that a time-varying 
magnetic field can produce an electric field! So there are two different ways 
to produce an electric field: by charges according to Coulomb's law, or by 
time-varying magnetic fields. In the latter case, we say that the time-varying 
magnetic field "induces" an electric field, and the phenomenon is referred 
to as "magnetic induction." 

No matter how an electric field is produced, it has the same effect on a 
charge q ( that is, F = qE ) , but the "non-Coulomb" electric field induced by 
a time-varying magnetic field has a different pattern in space than the "Cou­
lomb" electric field due to charges. In particular, a round-trip path integral 
of the non-Coulomb electric field is not zero, unlike the situation with the 
Coulomb electric field. Because of this, time-varying magnetic fields can in­
duce an emf around a circuit loop. 

22.1  CHANGING MAGNETIC FIELDS AND 
CURLY ELECTRIC FIELDS 

Consider a long solenoid, a long hollow coil of current-carrying wire (Fig-
ure 22.1). In Chapter 17 using the Biot-Savart law and Chapter 21 using Am­
pere's law we found that with a current Ii in the solenoid, the magnetic field 
Bi inside a tightly-wound solenoid (not too near the ends) is 
B1 = µ0NI1 I d ,  where N is the number of turns of wire and d is the length 
of the solenoid. The magnetic field outside the solenoid (not too near the 
ends) is very small and for a very long solenoid can be taken to be zero. 

If the current is constant, then Bi is constant in time. In that case a charge 

B � 0 outside solenoid 

Length d 
Nloops 

Figure 22. 1 The magnetic field inside a 
long solenoid is B1 = µoNI1/ d. 

B � 0 outside solenoid 

Figure 22.2 A time-varying magnetic field 
in the solenoid generates a curly electric 
field! 

,t! 

lt­
E 

E 

that is in motion somewhere outside the solenoid will not experience an B1 

I� 1 
electric or magnetic force, because the electric and magnetic fields outside 1 
the solenoid are essentially zero. But something remarkable happens if we �· 
vary the current, so that the magnetic field Bi inside the solenoid varies with 
time (Figure 22.2). There is still almost no magnetic field outside the sole-
noid, but we observe a curly electric field both inside and outside of the so­
lenoid! This peculiar electric field curls around the axis of the solenoid 
( end view; Figure 22.3). The electric field is proportional to dBi/ dt, the rate 
of change of the magnetic field. 

Figure 22.3 There is a curly electric field 
in the presence of a time-varying mag­
netic field. In this case B1 is increasing 
with time. 
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778 Chapter 22: Faraday 's Law 

Bi out, increasing 
dBi . -dt mto page 

B 1  out, decreasing 

t:IB1 -dt out of page 

Bi in, increasing Bi in, decreasing 
dBi dBi . -dt out of page -dt mto page 

Figure 22.4 Four cases: magnetic field 
out or in, increasing or decreasing. 

Figure 22.5 Find the change in the mag
netic field as a basis for determining the 
direction of -dB 1 / dt . 

Inside the solenoid the electric field is proportional to r, the distance 
from the axis (smaller near the axis). Outside the solenoid the curly electric 
field is proportional to I/ r; the electric field gets smaller as you go farther 

.,. away from the solenoid. The curly electric field has the usual effect on 
1 charges: a charge q experiences a force F = qE . For example, a proton 

placed above the solenoid in Figure 22.3 will be initially pushed to the right. 
While the curly electric field affects charges in the usual way, it isn't pro­

duced by charges according to Coulomb's law. Rather, this electric field is 
associated with the time-varying magnetic field, and we call such an electric 
field a "non-Coulomb" field ENc .  

? Explain how you know that this pattern of non-Coulomb electric 
field cannot be produced by an arrangement of stationary charges. 

Traveling in a complete loop around the solenoid, 1ENc • di * 0 . Since the 
round-trip integral of the electric field due to stationary charges is always ze­
ro, this electric field cannot be produced by stationary charges. 

TWO WAYS TO PRODUCE ELECTRIC FIELD 

• A Coulomb electric field is produced by charges according to 
Coulomb's law: 

E = -1 -.!l.r 
4nc0 r-

• A non-Coulomb electric field ENc is associated with time-varying 
magnetic fields dBi dt . Outside of a long solenoid inside of 
which the magnetic field is B1 , the induced electric field is pro­
portional to dB1/ dt and decreases with distance like 1 /  r. 

No matter how an electric field E i  is produced, it has the same effect on a 
charge q2: F2i = q2E i . 

Figure 22.4 shows what is observed experimentally in four different cases, 
where the magnetic field points out of or into the page, and increases or de­
creases with time. From these results you can see that it is not the direction 
of Bi that determines the direction of ENc , but rather the direction of the 
rate of change of Bi . Here is a right-hand rule that summarizes the experi­
mental observations, and which you should memorize: 

DIRECTION OF THE CURLY ELECTRIC FIELD 

With the thumb of your right hand pointing in the direction of -dBi /  dt , 
your fingers curl around in the direction of ENc . 

Hints on using this right-hand rule 

In order to use this right-hand rule, you need to be able to determine the 
direction of the vector quantity -dBi/ dt . It helps to think about this quan­
tity in the form -i1Bi / 11 t ,  where 11t is a small, finite time interval. From this 
form you can see that the direction of -dBi/  dt is the same as the direction 
of -11Bi , the negative of the change in direction of the magnetic field dur­
ing a short time. 

So a good way to find the direction of -dBi / dt is to draw the magnetic 
field Bi ( t) at a time t, and the magnetic field Bi ( t + 11 t) at a slightly later 
time t + 11 t ,  and observe the change 11Bi (Figure 22.5). Then -11Bi is the 
direction of - dB 1 / dt . 

22.X.1 A magnetic field near the floor points up and is increasing. Looking 
down at the floor, does the non-Coulomb electric field curl clockwise or 
counterclockwise? 
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22.1: Changing magnetic fields and curly el,ectric fields 779 

22.X.2 A magnetic field near the ceiling points down and is decreasing. 
Looking up at the ceiling, does the non-Coulomb electric field curl 
clockwise or counterclockwise? 

Driving current with a non-Coulomb electric field 
Suppose we place a circular metal ring of radius r2 around a solenoid (Fig­
ure 22.6) , with the magnetic field in the solenoid increasing with time (Fig­
ure 22. 7) . The non-Coulomb electric field inside the metal will drive 
conventional current clockwise around the ring ( -dBi /  dt points into the 
page; point your right thumb into the page and see how your fingers curl 
clockwise) . The technological importance of this effect is that it can make 
current run in a wire just as though a battery were present. 

The current I2 in the ring is proportional to the electric field ENc inside 
the metal, as in an ordinary circuit. However, in ordinary circuits there are 
charges on the surface of the wires that, together with charges on the bat­
tery, produce the electric field inside the metal that drives the current. 

? Think about a possible pattern of surface charge on this ring. Why 
is it impossible to draw a plausible gradient of surface charge on the 
ring in this situation? 

The symmetry of the ring makes it impossible to have a surface charge gra­
dient along the ring. We reason by contradiction: If you pick one point and 
draw positive surface charge there, then gradually decrease the amount of 
positive charge and increase the amount of negative surface charge, you 
find that when you get back to the starting point there is a huge change in 
surface charge (from - to +) , which would produce a huge E, in the wrong 
direction (Figure 22.8) . But there is nothing special about the point you 
picked, so it can't  have a different electric field from all other points on the 
ring. So there cannot be a varying surface charge around the ring. (There 
will be a small pile-up of electrons on the outside of the ring, which then 
provides the radially-inward force that turns the electron current.) 

The emf is the (non-Coulomb) energy input per unit charge. The (non­
Coulomb) force per unit charge is the (non-Coulomb) field ENC· 

? Therefore, what is the emf in terms of ENc for this ring, if the ring 
has a radius r2? 

We have emf = 1ENc • di = ENc(2rcr2) ,  since ENc is constant and parallel 
to the path. The current in the ring of radius r2 is I2 = emf/ R, where R is the 
resistance of the ring. It is as though we had inserted a battery into the ring. 

? If the metal ring had a radius r2 twice as large, what would the emf 
be, since emf = dENc • di ? Remember that the experimental 
observations show iliat the non-Coulomb electric field outside the 
solenoid is proportional to 1/r. 

Double the radius implies half the electric field, so the product ENc(2rcr2) 
stays the same. Apparently the emf in a ring encircling the solenoid is the 
same for any radius. (In fact, we get the same emf around any circuit sur­
rounding the solenoid, not just a circular ring.) 

? Consider a round-trip path that does not encircle the solenoid 
(Figure 22.9) . The electric field is shown all along the path A-B-C-D-A. � 
Use the fact that ENc = emf/ (2rcr) to explain why we have the result 
emf = jENc • di = 0 around this path that does not encircle the 
solenoi 

As you make a round trip around the path A-B-C-D-A, the contribution to 
J..,. � 
'j'_ENc • dl is positive along A-B, zero along B-C (the parallel component of 
electric field is zero) , negative along C-D, and zero along D-A. Moreover, 

Figure 22.6 A metal ring is placed around 
the solenoid. 

Figure 22.7 End view: The non-Coulomb 
electric field drives a current I2 in the ring. 

Figure 22.8 This pattern of surface 
charge is impossible, because it would 
imply a huge E at the marked location, 
and in the wrong direction! 

B1 inside 
solenoid 

Figure 22.9 A path that does not encircle 
the solenoid. 

Apple Inc.     EX1017     Page 41



780 Chapter 22: Faraday 's Law 

( 1 )  

the magnitude of the contribution along C-D is  equal to that along A-B, be­
cause the longer path is compensated by the smaller electric field (which is 
proportional to 1/ r). Therefore we have a zero emf along this path. The 

� non-Coulomb electric field would polarize a wire that followed this path but 
1 would not drive current around the loop. 

We see that in order to drive current in a wire the wire must encircle a re­
gion where the magnetic field is changing. If the wire doesn't encircle the 
region of changing magnetic field, there is no emf. 

22 .X.3 In Figure 22.10 , will current run in wire ( l ) ?  In wire (2) ?  
22.X.4 O n  a circular path o f  radius 10 cm in air around a solenoid with 
increasing magnetic field, the emf is 30 volts. What is the magnitude of the 
non-Coulomb electric field on this path? 
22.X.5 A wire with resistance 4 ohms is placed along the path in the 
previous exercise. What is the current in the wire? 

Figure 22. 10  Will current run in these 22.2 FARADAY'S LAW 
wires? 

Ammeter 

Figure 22.1 1 An ammeter measures cur­
rent in a loop surrounding the solenoid. 
Initially I1 is constant, so B1 is constant, 
and no current runs through the ammeter. 

I , - - - - - , 
I ' 

I '
, 

Ii / ' ,  ' I ' 
I ' 

I ' 
I ' 

I __________ ___,_,. 
Ito t1 ui t3 

12 

Figure 22.1 2  Vary the solenoid current Ii 
and observe the current I2 that runs in the 
outer wire, ti._•ough the ammeter. 

So far we have a right-hand rule for determining the direction of the curly 
electric field, but we don't have a way to determine the magnitude of the 
non-Coulomb electric field. Faraday's law is a quantitative relationship be­
tween the rate of change of the magnetic field and the magnitude of the 
non-Coulomb electric field. To establish this quantitative relationship, in 
principle we could vary the magnetic field and measure ENc by observing 
the effect of the curly electric field on an individual charged particle, but it 
can be difficult to track the path of an individual charged particle. Alterna­
tively, we can construct a circuit following a path where we expect a non­
Coulomb electric field and measure the current in the circuit as a function 
of dB/ dt. We will describe circuit experiments that lead to Faraday's law. 

Observing current caused by non-Coulomb electric fields 
We can use an ammeter to measure the induced current in a circuit that en­
circles a solenoid. In Figure 22.11 we omit showing the power supply and 
connections to the solenoid. Initially the solenoid current 11 is constant, so 
B1 is constant, and no current runs through the resistive wire and the am­
meter. 

If we vary the magnetic field B1 by varying 11 , we can infer something 
about the resulting non-Coulomb electric field ENc from its integral around 
the circuit, which is the emf. Unfortunately you can't observe the phenom­
enon with the circuit equipment you have been using, because you need a 
more sensitive ammeter than is provided by your compass. Perhaps your in­
structor will demonstrate the effects or arrange for you to experiment with 
appropriate equipment. 

Suppose that we vary the current 11 in the long solenoid, thus causing the 
magnetic field B1 to vary, and we observe the current I2 in the outer wire. In 
the solenoid we first increase the current rapidly , then hold the current con­
stant, and then slowly decrease the current, at half the rate we used at first 
(Figure 22.12). Ifwe know the resistance R of the circuit containing the am­
meter we can determine the emf from the ammeter reading, since 
emf -RI2 = 0 ; the wire acts as though a battery were inserted. 

1) While the solenoid current 11 is increasing from to to t1 (Figure 22.12), 
B1 is increasing, and the current I2 runs clockwise in the circuit, out of the 
"+" terminal of the ammeter. The ammeter is observed to read a negative 
current. Remember that conventional current flowing into the positive ter­
minal of an ammeter gives a positive reading. 
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2) While the solenoid current I1 is held constant from t1 to ½ (Figure 22.12) , the magnetic field in the solenoid isn't changing, and there is no emf in the circuit. The ammeter reading is zero: dB/ dt makes ENc (and associated emf) . No dB/ dt, no ENc, even if there is a large ( constant) B. 3) While the solenoid current I1 is decreasing from ½ to t3 (at half the ini­tial rate; see Figure 22. 12) , B1 is decreasing, and the current I2 runs counter­clockwise in the circuit, into the "+" terminal of the ammeter. The ammeter is observed to read a positive current. The current I2 is observed to be half what it was during the first interval. ENC (and associated emf) outside the solenoid are proportional to dB/ dt inside the solenoid. 4) There is one more crucial experiment. If we use a solenoid with twice the cross-sectional area but the same magnetic field, we find that the cur­rent I2 is twice as big (which means that the emf is twice as big) .  ENc (and associated emf) outside the solenoid are proportional to the cross-sectional area of the solenoid. 
Magnetic flux Putting together these experimental observations, and being quantitative about the emf, we find experimentally that the magnitude of the induced emf is numerically equal to this: 

lem� = [ !cB1 n rr) I 
The quantity ( B1 n rr )  is called the "magnetic flux" <!>mag on the area encir­cled by the circuit ( <I> is the capital Greek letter Phi) . Magnetic flux is calcu­lated in the same way as the electric flux introduced in Chapter 21  on Gauss's law. The magnetic flux on a small area t1A is B • 6.t1A = B .1 t1A , where 6. is a dimensionless unit vector perpendicular to the area L1A ( 6. is called the "normal" to the surface) ;  B .1 is the perpendicular component of magnetic field. We add up all such contributions over an extended surface to get the magnetic flux over that surface (Figure 22. 13) : 

DEFINITION OF MAGNETIC FLUX 

<!>mag = fB • ndA = fB.1dA 
Note that magnetic flux can be positive, negative, or zero, depending on the orientation of the magnetic field B relative to the normal 6. .  

22.X.6 A uniform magnetic field of 3 tesla points 30° away from the perpendicular to the plane of a rectangular loop of wire 0. 1 m by 0.2 m (Figure 22. 14) . What is the magnetic flux on this loop? 
Faraday's law-quantitative The experimental fact that a time-varying magnetic field produces an emf whose magnitude is equal to the rate of change of magnetic flux is called "Faraday's law" ( discovered by the British scientist Michael Faraday in"' 1831) .  Faraday's law summarizes a great variety of experimental data, not just the data for the experiments we have discussed. Faraday's law is a major physical law concerning time-varying magnetic fields. Unlike the motional emf we studied in Chapter 20, Faraday's law cannot be derived from any of the other fundamental principles we have studied. 

22.2: Faraday 's law 781 
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Figure 22.13 The magnetic fux on an area is the sum of the magnetic flux on each small subarea. 

Figure 22.14 Calculate the magnetic flux on the area enclosed by this loop of wire. 
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782 Chapter 22: Faraday 's Law 

l 

FARADAY'S LAW d<Dmag emf = -
dt 

where emf = fENe • dI and <Dmag = JB • fi dA 

In words: The induced emf along a round-trip path is equal to the rate of change of the magnetic flux on the area encircled by the path. 
Direction: With the thumb of your right hand pointing in the direction of -dBi dt ,  your fingers curl around in the direction of ENe . 
Putting these pieces together, we have the following form: 

FORMAL VERSION OF FARADAY'S LAW 

fENe • dI = -![ fB • fi dA] (sign given by right-hand rule) 
Faraday's law summarizes the experiments we've described so far: • A faster rate of change of magnetic flux induces a bigger emf (if the magnetic flux is constant there is no induced emf) . • If there is a bigger area with the same perpendicular magnetic field there is a bigger emf. 
The meaning of the minus sign If tqe thumb of your right hand points in the direction of -dBi dt ( that is, the opposite of the direction in which the magnetic field is increasing) ,  your fingers curl around in the direction along which the path integral of electric field is positive: 

fENe • dl = -![ fB • fi dA] (sign given by right-hand rule) 
For most of our work it is simplest to calculate tlie magnitude of the effect, ignoring signs and directions, and then give the appropriate sign or direc­tion based on the right-hand rule. We will include the minus sign in Fara­day's law, as a reminder of what we need to do to get directions. 
Flux and path What area exactly do we use when calculating the magnetic flux? Imagine a soap film stretched over the closed path around which we are calculating fENe • dl .  We want to compute <Dmag on the area covered by that soap film. 

22.X. 7 A wire of resistance 10 ohms and length 2.5 m is bent into a circle and is concentric with a solenoid in which the magnetic flux changes from 5 tesla-m2 to 3 tesla•m2 in 0 .1  seconds. What is the emf in the wire? What is the non-Coulomb electric field in the wire? What is the current in the wire? 
The Coulomb electric field can be included in Faraday's law We will usually write emf = dENe • dl as a reminder that it is the curly non­Coulomb electric field that &as a nonzero round-trip path integral, which we call the emf around that path. However, we could also calculate the emf in terms of the net electric field E = Ee + ENe , where Ee is the Coulomb electric field due to charges: 

1->. • emf = JE • dl 
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This is true because we have 

1..,. s 

since 'jEc • dl = 0 ( round-trip integral of Coulomb electric field is zero). 

Application: A circuit surrounding a solenoid 
We can apply Faraday's law to analyze quantitatively the situation of a circuit 
with an ammeter surrounding a solenoid (Figure 22.15; a cross section of 
the solenoid is shown). There is magnetic field B1  only over the circle of 
radius r1 ( the solenoid), and it points in the same direction as n ,  the unit 
vector perpendicular to the surface. 

? Calculate the magnetic flux <!>mag on the area enclosed by the 
solenoid, the flux on the other portions of the area encircled by the 
circuit, and the total flux on the area encircled by the circuit. 

On the area enclosed by the solenoid, <l> mag = B1 ( n: rr) , because BJ_ is con­
stant and equal to B1 throughout the cross-section of the solenoid. On every 
small area outside the solenoid, the magnetic field is nearly zero, so 
<!>mag = 0 .  Therefore the total flux through the outer wire is 
<l> mag = B 1 ( 71: rrl 

What counts is the magnetic flux encircled by the circuit, not the magnet­
ic flux on a closed surface such as a box or sphere. Unlike electric flux, the 
total magnetic flux on a closed surface is always zero, because "magnetic 
monopoles" seem not to exist. 

Experimentally we find that the emf around the circuit is numerically 
equal to d<l>magl dt, as predicted by Faraday's law. For example, suppose the 
magnetic field in the solenoid increases from 0.1 tesla to 0.7 tesla in 0.2 sec­
onds, and the area of the solenoid is 3 cm 2. 

? What is the emf around the circuit? 

Faraday's law predicts the following average emf: 

emf = Ll.<l>mag 
ti. t 

Ammeter reading 

= (0.6T)(3x 1 0-4 m2 ) = 
(0.2 s)  

9x1 0-4 volts 

? If the resistance of the wire plus ammeter is 0.5 ohms, what current 
will the ammeter display? 

The circuit acts as though a battery were inserted, emf - RI = 0 , so 

I emf (9x10-
4 volts)  1 8 1 0 3 = -- = = . x ampere 

R (0.Sohm) 

One more experiment: let's reconnect the wire and ammeter so that they 
don't encircle the solenoid (Figure 22.16). 

? As we increase the current (and magnetic field) in the solenoid, 
what would you predict from Faraday's law about the ammeter 
reading? Why? 

22.2: Faraday 's law 783 

Ammeter 

ft [SJ 

Figure 22. 1 5  A cross section through the 
solenoid; calculate the flux enclosed by the 
wire. 

Ammeter 

Figure 22.16 What happens if the circuit 
does not encircle the solenoid? 

Within the area bounded by the wire outside the solenoid, there is practi- , 
cally no magnetic field, so no magnetic flux <!>mag , and no rate of change of � 
magnetic flux d<l>magl dt. When we try the experiment, we do indeed find 
that the ammeter shows little or no current. 

Voltmeter readings 
Since a voltmeter acts like an ammeter with a large resistance in series, a 
voltmeter may give a puzzling reading in the presence of time-varying mag-

Apple Inc.     EX1017     Page 45



784 Chapter 22: Faraday s Law 

Voltmeter Voltmeter 

?? ?? 

B1 increasing 

Figure 22.17 What do these voltmeters 
read? 

Figure 22.18 The induced emf of a thin 
coil is approximately N times the emf of 
one loop. 

11111111,===i� 

Figure 22.19 Move coil 1 toward coil 2, 
and there is a time-varying magnetic field 
inside coil 2. 

netic flux. Consider the two voltmeters shown in Figure 22.17. You normally 
expect that when voltmeter leads are connected to each other, the voltme­
ter must read zero volts. 

? But do these voltmeters read zero? 

The voltmeter leads on the left of Figure 22.17 encircle a region of changing 
magnetic field, so the voltmeter will read an emf equal to d<Dmagl dt. The 
leads of the other voltmeter don't encircle a region of changing magnetic 
field, so the voltmeter reads zero. 

Because of the effect of time-varying magnetic fields, you have to be a bit 
careful in interpreting a voltmeter reading when there are varying magnetic 
fields around. For example, when there are sinusoidally alternating currents 
("AC") there are time-varying magnetic fields due to those time-varying cur­
rents. If the leads of an AC voltmeter happen to surround some AC magnet­
ic flux, this will affect the voltmeter reading. 

22.X. 8 The magnetic field in a solenoid is B = µ0NI/ d .  A circular wire of 
radius 10 cm is concentric with a solenoid of radius 2 cm and length d = 1 
meter, containing 10 ,000 turns. The current increases at a rate of 50 A/s. 
What is the emf in the wire? What is the non-Coulomb electric field in the 
wire? 

The emf for a coil with multiple turns 
In many devices, instead of just one loop of wire surrounding a time-varying 
flux there is a coil with many turns, which increases the effect: the emf in a 
coil containing Nturns is approximately Ntimes the emf for one loop of the 
coil. This point needs some discussion. 

In the space around the increasing flux in the coil, there is a curly pattern 
of induced (non-Coulomb) electric field. If the loops are tightly wound so 
that they are very close together, ENc is about the same in each loop (Figure 
22.18). The emf from'one end of the coil to the other is the integral of the 
non-Coulomb field: 

emf = f ENc • dl = N(ENcLone turn) = N( emfone turn) 

N turns 

Because of this, Faraday's law for a coil is written in the f9llowing form: 

FARADAY'S LAW FOR A COIL 

emf = -N
d<l>mag (sign given by right-hand rule) dt 

The induced emf in a coil of N turns is equal to N times 
the rate of change of the magnetic flux on one loop of the coil. 

22.X. 9 A thick copper wire connected to a voltmeter surrounds a region of 
time-varying magnetic flux, and the voltmeter reads 10 volts. If instead of a 
single wire we use a coil of thick copper wire containing 20 turns, what does 
the voltmeter read? 
22.X.10 A thin Nichrome wire connected to an ammeter surrounds a 
region of time-varying magnetic flux, and the ammeter reads 10 amperes. 
If instead of a single wire we use a coil of thin Nichrome wire containing 20 
turns, what does the ammeter read? 

Faraday's law and moving coils or magnets 
A time-varying magnetic field produces a curly electric field. One way to cre­
ate a time-varying field is by varying the current in a coil, but this isn't the 
only way to do produce a time-varying field. With a steady current in one coil 
in Figure 22.19, you can move that coil closer to a second coil. This increases 
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the magnetic field (and magnetic flux) inside the second coil, and while the magnetic field is increasing there is an emf (and a current in the second coil). You can also induce an emf by moving a bar magnet toward or away from coil 2, since this creates a time-varying magnetic field (and magnetic flux) inside the coil (Figure 22.20). You can also get an induced emf by rotating the first coil ( or a bar mag­net; Figure 22.21), since this changes the flux through the second coil as long as you are rotating and therefore changing the magnetic field (and magnetic flux) in the region of space surrounded by the second coil. These various experiments give additional confirmation that the emf in one or more loops of wire is due to a time-varying magnetic field, and nu­merically equal to the rate of change of the magnetic flux enclosed by the loops: 

22.X.11 Suppose you move a bar magnet toward the coil in Figure 22.22, with the "S" end of the bar magnet closest to the coil. Will the ammeter read positive or negative? 
22.X.12 Now move the bar magnet away from the coil, with the "S" end still closest to the coil. Will the ammeter read + or -? 
22.X. 13 A bar magnet is held vertically above a horizontal metal ring, with the south pole of the magnet at the top (Figure 22.23 ) .  If the magnet is lifted straight up, will current run clockwise or counterclockwise in the ring, as seen from above? 

An interesting complication The current Ii in a coil of wire makes a magnetic field Bi , If Ii varies with time, there is a time-varying magnetic field dBi/ dt in a second coil that can induce an emf and a current I2 in the second coil. This induced current I2 
also makes a magnetic field B2, an effect that we have ignored until now. If I2 is constant ( due to a constant dBi/ dt) , the additional magnetic field B2 is constant and so does not contribute additional non-Coulomb electric field. However, if d2 B1 I dt2 -ct- 0 ( there is a time-varying rate of change), then I2 isn't constant, and there is a time-varying magnetic field dB2/ dt that contrib­utes a non-Coulomb electric field and emf of its own. In many cases this ef­fect is small compared to the main effect and can be ignored. If the effect is sizable, you can see that a full analysis could be rather difficult, because you have a changing Ii making a changing I2 that contributes to the change, which .. . Whew! We will mostly avoid trying to analyze this complicated kind of situation in this introductory textbook, though we will see an example in the discus­sion of superconductors later in this chapter. A related issue is self-induc­tance, which we will also study later in this chapter. 
Example: Two coils 

22.2: Faraday 's law 785 

Figure 22.20 Moving a magnet toward coil 2 creates a time-varying magnetic field inside the coil. 

Figure 22.21 Rotating a bar magnet (or coil 1) produces a time-varying magnetic field inside coil 2 .  

Figure 22.22 Will the ammeter read posi­tive or negative? (Exercises 22.X.ll  and 22.X. 12. )  

c::::, 
Figure 22.23 Will the current run clock­wise or counterclockwise? (Exercise 22.X. 13.) 

Two coils of wire are near each other, 20 cm apart, positioned on a common axis, as shown in Figure 22.24. Coil 1 has a radius 8 cm and contains 3000 � loops of wire. It is connected to a power supply whose output voltage can be changed, so that the current Ii in coil 1 can be varied. Coil 2 contains 1500 loops of wire and has radius 5 cm, and is rotated 35° from the axis, as shown 

13000 turns 

20 cm 
in Figure 22.24. The current in Coil 1 changes from O to 3 amperes in 4 mil­liseconds. Calculate the emf in Coil 2. Figure 22.24 Two coils. 
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786 Chapter 22: Faraday 's Law 

n 

Solution Start from fundamental principles. For a given current /1 in the first coil, we can find B1 , the magnetic field that this current makes at the location of Coil � 2. We know ( d/1 / dt) , so we can find ( d<l\nal dt) in Coil 2, which gives us the emf in Coil 2. Approximations: Assume the coils are far enough apart that the magnetic field of the first coil is approximately uniform in direction and magnitude throughout the interior of the second coil (Figure 22.25), and can be ap­proximated as a magnetic dipole field. Also assume that the length of the coils is small compared to the distance between them (essentially treating all loops as if they were located at the center of the coil). 
Work out everything symbolically first, plug in numbers at the end. 

Figure 22.25 Assume the magnetic field 
made by coil 1 is uniform through the 
interior of coil 2. 

Magnetic field B 1 at the location of coil 2: 2 µ0 2/1 (TCr1 ) B1 ""' N1 4- 3 

C 

Figure 22.26 Upper: A long solenoid 
passes through a loop of wire. Lower: A 
perspective view. 

TC z 
Magnetic flux through one loop of coil 2: 2 <!>mag ""' B1 (TCr2)cos0 

2 µ0 2/1 (TC r1 )  2 = N, 4- 3 (TCr2)cos 0 TC Z 

/1 is the only quantity that is changing, so emf around one loop of coil 2 is: 
l d<D · 1 µ0 2(TCrr)(TC r§) d/1 emf = � ;:::, NI -----'- cose-dt 4TC z3 dt 

total emf for all of coil 2: 
f = 7'T l d<Dmagl ;:::, N "' µo 2(TCrr)(TCr§) e d/1 em 1v2 1 1v24 3 cos d dt TC z t 

( 1500)(3000}( 1 x l 0 7 T) (2)(0.08 m)2(TC2)(0.05 m)2 cos35 °(3 A) 

(0.20 m)3( 4x 10-3 s) = 10.9 V 
Example: Wire loop and a solenoid 
A length of wire whose total resistance is R is made into a loop with two quar­ter-circle arcs of radius r1 and radius r2, and two straight radial sections as shown in Figure 22.26. A very long solenoid is positioned as shown, going into and out of the page. The solenoid consists of N turns of wire wound tightly onto a cylinder of radius rand length d, and it carries a counterclock­wise current ls which is increasing at a rate dl/ dt. What are the magnitude and direction of the magnetic field at C, at the center of the two arcs? The "fringe" magnetic field of the solenoid (that is, the magnetic field produced by the solenoid outside of the solenoid) is neg­ligible at point C. Show all relevant quantities on a diagram. 
Solution As usual, start from fundamentals. Initially the only sources of field are the moving charges in the solenoid (which make Bs in the solenoid) and dB/dt in the solenoid (which makes a curly non-Coulomb electric field around the solenoid). The curly electric field constitutes an emf that drives current fioop 
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in the surrounding wire. The current-carrying wires produce a magnetic 
field at location C. 

Minor point: Because the wire is not circular, pile-up leads to tiny 
amounts of surface charge on the wire. The net electric field in the wire ( the 
superposition of the non-Coulomb and Coulomb fields) follows the wire 
and is uniform in magnitude throughout the wire. 

µ NI 
1) Inside solenoid, Bs = -0 _s out of page. See Figure 22.27. d 
2) Flux through outer loop = 

o - µoNis r2 BsAscos(O ) + (O)Arest of loop = -d-rc 
3) -dB/ dt into page, so ENc and induced current lj00P clockwise 
as shown. 

emf µoNrcr2 dls = -- -- -R d R dt 
4) Bat c 1 due to straight segments, inner wire, and outer wire: 

Bstraight segments = 0 because dl x r = 0 (see diagram) 

Binner wire = f µo /loop dl X r 
= µo /loop f 4rc rr 4rc rr 

quarter loop quarter loop 
dlsin(90° ) 

µo I1oop(
2rcr1

) = Binner wire = 4rc rr 4 
µo rcfioop 
4 2 ' and Bouter wire TC rl 

= µo re/loop 
4rc 2r2 

Binner wire is out of the page, and Bouter wire is into the page at location 
C. Since B is proportional to 1 / r, Binner wire is larger than Bouter wire· 
So the net field is out of the page, with this magnitude: 

_ µo rcfioop( 1 l_') Bnet at C = Binner wire - Bouter wire - 4rc 2 � - :;:-z1 
Bnet at C = µo (�1 (µoNrc r2 dls\ (..!. - ..!. l , out of the page 4 rc V d R dt) r1 rz1 

22.3 FARADAY'S LAW AND MOTIONAL EMF 

22.3: Faraday 's law and motional emf 787 

Figure 22.27 Fields and currents. 

vti.t 
H In Chapter 20 we studied motional emf: when a wire moves through a mag­

netic field, magnetic forces drive current along the wire. We calculated the 
motional emf in a moving bar of length L as ( qlv x Bl ) LI q ,  the (non-Cou­
lomb) work per unit charge done by the magnetic force qv x B . If the veloc-
ity of the bar is perpendicular to the magnetic field, the motional emf is ® 
simply vBL. There is another way to calculate motional emf that is often 
mathematically easier, in terms of magnetic flux. 

L 

As shown in Figure 22.28, in a short time M the bar moved a distance t:,, x = v!:,, t ,  and the area surrounded by the current-carrying pieces of the 
circuit increased by an amount !:,,A = L!:,,x = Lv!:,, t .  There is an increased 
magnetic flux through the circuit of amount 

t:,,<l>mag = B_j_t:,,A = B(Lv!:,, t) 
Dividing by !:,,t we find this: 

BLv 

Figure 22.28 There is increased flux 
through the circuit as the bar moves. 

Apple Inc.     EX1017     Page 49



788 Chapter 22: Faraday 's Law 

B ft 

' y  
Figure 22.29 We can compute the emf of 
a generator from the rate of change of 
flux. 

Figure 22.30 Move this rectangular circuit 
around in a uniform, constant field. 

But BLv is equal to the emf vBL generated by the magnetic force, and in the 
limit of small lit we have the following: 

MOTIONAL EMF = RATE OF CHANGE OF MAGNETIC FLUX 

lem� = l
d

:�
agl (sign given by direction of magnetic force) 

Although we have proved this result only for a particular special case, it can 
be shown that this result applies in general to calculating motional emf­
that is, an emf associated with the motion of a piece of a circuit in a magnet­
ic field that is not varying in time. 

As an example, consider a generator (Figure 22.29). When the normal to 
the loop is at an angle 0 = co t  to the magnetic field, the flux through the 
loop is Bhwcos (co t) , so emf = l d<I>ld� = coBhwsin(cot) , which is the same 
result we obtained in Chapter 20 when we calculated the emf directly in 
terms of magnetic forces acting on electrons in the moving wires (motional 
emf). 

22.X.14 A uniform, non-time-varying magnetic field of 3 tesla points 30 ° 

away from the perpendicular to the plane of a rectangular loop of wire 0 . 1  
m by  0.2 m (Figure 22.30 ) .  The loop as a whole i s  moved in  such a way that 
it maintains its shape and its orientation in the uniform magnetic field. 
What is the emf around the loop during this move? 
22.X.15 In 0 .1  s the loop is stretched to be 0 . 12  m by 0 .22 m. What is the 
average emf around the loop during this time? 

The two pieces of the flux derivative 
A time-varying magnetic field is associated with a curly (non-Coulomb) elec­
tric field. We can quantitatively predict the behavior of circuits enclosing a 
time-varying magnetic field by calculating the rate of change of magnetic 
flux on the surface bounded by the circuit. 

However, in the preceding section we saw that there is another way that 
magnetic flux can change. If the magnetic field is constant but the shape or 
orientation of the loop changes, so as to enclose more or less flux, the flux 
changes with time even though the magnetic field doesn't, and this is the 
phenomenon of motional emf associated with magnetic forces. 

Any change in magnetic flux, whether due to a change in magnetic field 
or a change in shape or orientation, produces an emf equal to the rate of 
change of flux. Both effects can be present simultaneously. Suppose that as 
you drag a metal bar along rails, the magnitude of the uniform magnetic 
field is also increasing with time. The flux is B .1 A ,  and the rate of change of 
the flux is due in part to the change in the magnetic field, and in part to the 
change in the area enclosed by the changing path: 

d<l>mag dt d dB.1 dA = dt(B1 A) = dtA + B1-dt 

Ch=ge of R, .I 
fixed path 

' Change of path, 
fixed B 

In some but not all cases the two effects can be related through a change of 
reference frame. If you move a magnet toward a stationary coil, the magnet­
ic field in the coil is increasing with time, and there is a curly non-Coulomb 
electric field that drives current in the coil. 
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22. 4: Summary: Non-Coulomb fields and forces 789 

If on the other hand you move a coil toward a stationary magnet, the mag­netic field is not changing with time anywhere, but the coil is moving in a magnetic field, so there is a magnetic force on the mobile charges in the wire, and motional emf. In both situations you can calculate the same emf from the same rate of change of flux, and you observe the same current to run in the coil, though the mechanism looks different in the two cases. You can shift between one situation and the other simply by changing your reference frame (move with the magnet, or move with the coil). The principle of relativity implies that you should predict the same emf and the same current in either frame of reference, and you do. It is not always possible to relate the two kinds of effects simply by chang­ing reference frame. For example, consider a bar sliding along rails. In the reference frame of the bar, the bar is at rest but the resistor is moving. In neither reference frame is there a time-varying magnetic field. (A full analysis in the reference frame of the bar is complicated. If the bar is at rest in this frame, why is it polarized? We saw in Chapter 20 that the an­swer is given by special relativity: when you transform to the frame of the bar in the presence of a uniform magnetic field, a transverse electric field of magnitude vB appears, and in this reference frame it is this new electric field that polarizes the bar.) 
22.4 SUMMARY: NON-COULOMB FIELDS AND FORCES 

If the magnetic field changes ( dBi dt nonzero), there is a non-Coulomb electric field ENc which curls around the region of changing flux, and emf = 1ENc • dl is nonzero. In purely motional emf, however, where the path changes but the magnetic field doesn't change, the non-Coulomb forces are magnetic forces, not electric. The non-Coulomb electric field ENc affects stationary as well as moving charges, but the (non-Coulomb) magnetic forces only affect moving charg­es, such as electrons in the moving metal bar. It is somewhat odd that the magnitude of the emf in both of these situations is d<l>magl dt, but that's  how it works. We have identified three different kinds of electric and magnetic effects on the electrons inside a wire: 1) Coulomb electric fields due to surface charges (superposition of 
contributions of the form E = -4 1 �r ); 

7tEo , 2) non-Coulomb electric fields associated with time-varying magnetic 
dB fields, dt ; and 

3) magnetic forces qv x B if the wire is moving (yielding a motional 
lem� = l d:�agl due to change of path). 

All of these effects can be present simultaneously. For example, if the mag­netic field is changing while you pull a bar along rails, there is a Coulomb electric field due to the charges that build up on the surfaces of the circuit elements, there is a non-Coulomb electric field due to the changing mag­netic field, and there are non-Coulomb magnetic forces on electrons inside the moving bar. The round-trip integral of the Coulomb electric field is ze­ro. The round-trip integral of the non-Coulomb electric field and the non­Coulomb magnetic force per unit charge together gives the emf, and the current / is given by I= emf/ R, where lem� = I d<l>mag
/ dq . 

J 
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790 Chapter 22: Faraday 's Law 

p 

Figure 22.31 Resistivity vs. tempera­ture for an ordinary metal. 
p 

T 

22.5 THE CHARACTER OF PHYSICAL LAWS 

We certainly haven't explained why there is a curly, non-Coulomb electric 
� field around a solenoid when the magnetic field in the solenoid changes. All 

we have done is show that Faraday's law correctly predicts the observed elec­
tric field (and emf) in this admittedly strange situation. That is why Fara­
day's law is called a physical "law": it summarizes a wide variety of 
experiments and predicts the outcomes of experiments yet to be done, but 
in a deeper sense it doesn't "explain" anything. It doesn't tell us "why" there 
is a non-Coulomb electric field. 

However, the status of Faraday's law is really no different than the status 
of Coulomb's law. Coulomb's law correctly summarizes a wide variety of ex­
periments and predicts the outcomes of electrical experiments yet to be 
done, but it explains nothing at all about "why" there are "electrically 
charged particles" or "why" these "charged particles" attract and repel each 
other with a 1 I i2 force. 

When we ask you to "explain" electric or magnetic phenomena, we ask 
you to explain a wide range of phenomena in terms of a small number of 
fundamental physical laws: Coulomb's law or Gauss's law, the Biot-Savart law 
or Ampere's law, electric and magnetic forces, Faraday's law. We don't and 
can't ask you to go one level deeper and explain these fundamental laws, be­
cause these laws are in fact summaries of a wide variety of experiments and 
may not have an explanation in terms of principles that are even more basic. 

It would be satisfying to find deeper physical laws that would explain the 
laws we have been studying and explain other laws as well, because that 
would reduce even further the number of principles required to predict a 
very wide range of phenomena. In fact, we have seen that in the framework 
of Einstein's theory of special relativity, magnetic phenomena appear to be 
essentially electric phenomena as seen from a different reference frame. 
Quantum electrodynamics goes even further in unifying electricity and 
magnetism. And recent work by theoretical and experimental physicists has 
provided the basis for physical laws that encompass both electromagnetism 
and the so-called "weak force" responsible for certain kinds of radioactivity. 

The search goes on for an all-encompassing "theory of everything" that 
would include gravitation and the physics of quarks, thought to be the build­
ing blocks of protons and neutrons. But many physicists suspect that even if 
a "theory of everything" explained all observable physical phenomena, it 
wouldn't explain itself. 

22.6 SUPERCONDUCTORS 

Figure 22.32 Resistivity vs. temperature for a superconductor. As you lower the temperature, the resistivity of an ordinary metal decreases 
but remains nonzero even at absolute zero (Figure 22.31), while some ma­
terials lose all resistance to electric current. Such materials are called "super­
conductors." It isn't that the resistance merely gets very small. Below a 
critical temperature Tc that is different for each superconducting material, 
the resistance vanishes completely, as indicated in Figure 22.32. To put it an­
other way, the mobility is infinite. A nonzero electric field in a superconduc­
tor would produce an infinite current! As a result, the electric field inside a 
superconductor must always be zero, yet a nonzero current can run anyway. 

Figure 22.33 A current in a superconduct­ing ring persists for years. 

In a ring made of lead that is kept at a temperature below 7.2 degrees 
Kelvin ( that is, only 7 .2 degrees above absolute zero), one can observe a cur­
rent that persists undiminished for years (Figure 22.33) ! 

? How can you check that the current in the lead ring hasn't changed 
since last month, without inserting an ammeter into the ring or 
touching the ring in any way? 
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Since the current loop produces a magnetic field, you could use a compass 
or other more sensitive device to measure the magnetic field produced by 
the current. 

? Does this persistent current violate the fundamental principle of 
conservation of energy? Why or why not? 

No energy is being dissipated in the ring. Since its resistance is zero, the 
power used up is zero (power = RI2). Energy conservation is not violated. 

? Do the persistent atomic currents in your little bar magnet violate 
the principle of conservation of energy? Why or why not? 

The "currents" in the bar magnet are due to the spin and orbital motion of 
electrons in the atoms of the magnet. The energy of these electrons remains 
constant-no energy is used up, so no energy input is required. Energy con­
servation is not violated. 

A fruitful way to think about a superconductor is to say that the persistent 
current is similar to the persistent atomic currents in a magnet, but the di­
ameter of a persistent current loop in a superconductor can be huge com­
pared to an atom. In both the magnet and the superconductor the 
persistent currents can be explained only by means of quantum mechanics. 
In both cases the explanation hinges on the fact that these systems have dis­
crete energy levels. Since the energy levels are separated by a gap, there can 
be no small energy changes, and hence there is no mechanism for energy 
dissipation. 

Effect of magnetic fields on a superconductor 
The lack of resistance in a superconductor offers obvious advantages for 
power transmission and in electromagnets. But for a long time after 1911, 
when the Dutch physicist Kamerlingh Onnes discovered superconductivity 
in mercury below 4.2 degrees Kelvin, all superconductors required very low 
temperatures. Recently materials have been discovered that are supercon­
ducting at temperatures above the boiling point of liquid nitrogen (77 
Kelvin, -196 degrees Celsius). Because liquid nitrogen is rather inexpensive 
to produce, this opens up new opportunities for the use of superconduc­
tors. There is even hope that some material might be found that would be 
a superconductor at room temperature. 

Magnetic flux through a superconducting ring 
The complete lack of electric resistance has some odd consequences for the 
effect of magnetic fields on a superconductor. Suppose you try to change 
the flux through a superconducting metal ring. This would produce a curly 
electric field (whose round-trip integral is an emf equal to d<I>mag

l dt). This 
curly electric field would drive an infinite current in the ring, because there 
is no resistance! Because an infinite current is impossible, we conclude that 
it is not possible to change the flux through a superconducting ring. 

What does happen when you try to change the flux through the ring by 
an amount �<l>mag? Since the flux cannot change, what happens is that a 
(noninfinite) current runs in the ring in such a way as to produce an 
amount of flux -�<l>mag• so that the net flux change is zero! We'll consider 
a specific experimental situation to illustrate the phenomenon. / 

Start with a ring and a magnet at room temperature, so that there is a cer- � 

22. 6: Superconductors 791 

tain amount of flux <1>0 through the ring (Figure 22.34), then cool the ring Figure 22.34 Start with a ring with initial 
below the critical temperature at which it becomes superconducting (obvi- flux <1>0, then cool the ring down to make 
ously the ring has to be made of a material that does become superconduct- it become superconducting. 
ing at some low temperature). 
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Less <Pmagnet 

Smaller 

Figure 22.35 At low temperature, move 
the magnet away from the ring, reducing 
the flux in the ring contributed by the 
magnet. 

Net flux = <1>0 

Figure 22.36 Current runs in the super­
conducting ring in such a way that the net 
change in the flux in the ring is zero. 

· �  
ll 
B = O  
inside 

� 

disk 

,+ .,,  
+ ""' 

Figure 22.37 The Meissner effect: Cur­
rents run in the solid superconducting 
disk in such a way that the net magnetic 
field is zero inside the disk. 

Next move the magnet away from the ring, thus decreasing the flux made 
by the magnet inside the ring (Figure 22.35); there is a change in the flux 
due to the magnet, of some amount -ll<I>. 

In a nonsuperconducting material, an emf would be induced in the ring, 
with a current emf = RI. But since the resistance R of the superconducting 
ring is zero, the emf must be zero (0 times I is 0). Assuming that Faraday's 
law applies to superconductors, it must be that just enough current runs in 
the superconductor, in the appropriate direction, to increase the flux by an 
amount +ll<I>. The net change in the flux is zero, and the flux remains equal 
to the original flux <l>o. 

Experimentally, that's exactly what happens. Enough current runs in the 
ring to make exactly the right amount of magnetic flux to make up for the 
decrease in the flux due to moving the magnet farther away, so that the flux 
through the ring remains constant (Figure 22.36). Even though a current 
runs, the electric field inside the superconductor is zero. 

22.X.16 When the magnet is moved very far away, how much flux is inside 
the ring compared to the original flux <1>0? How much of this flux is due to 
the current in the ring? 

The Meissner effect 
For many years it was assumed that a similar effect would happen with a solid 
disk instead of a hollow ring. It was expected that as you cooled the disk be­
low its critical temperature the magnetic flux through the disk would stay 
the same, and that when you moved the magnet away the induced current 
in the disk would maintain the original flux. In 1933 physicists were aston­
ished to discover that something else happened, something quite dramatic. 
As soon as the disk was cooled down below the critical temperature for the 
onset of superconductivity, the magnetic field throughout the interior of 
the solid disk suddenly went to zero! 

This peculiar phenomenon is called the Meissner effect, and it applies to 
a particular class of materials called "Type I" superconductors. The config­
uration of net magnetic field (due to the magnet plus the currents inside 
the superconductor) looks something like Figure 22.37, with no net mag­
netic field inside the superconductor. Persistent currents are created in the 
superconductor which make a magnetic field that exactly cancels the mag­
netic field due to the magnet, everywhere inside the superconductor. Note 
that the currents in Figure 22.37 are oriented so that the disk and magnet 
repel each other. 

The Meissner effect was totally unexpected, and it cannot be explained 
simply in terms of the lack of electric resistance in a superconductor (plus 
Faraday's law) as we did for the hollow ring. The Meissner effect is a special 
quantum-mechanical property of superconductors, and its explanation 
along with the quantum-mechanical explanation of other properties of su­
perconductors was a triumph of the Bardeen-Cooper-Schrieffer (BCS) the­
ory published in 1957. 

Given that both the electric field and the magnetic field !Oust be zero in­
side the superconductor, by using Gauss's law and Ampere's law it can be 
shown that the superconducting currents can run only on the surface of the 
superconductor, not in the interior. In particular, current in the interior 
would produce magnetic field throughout the material. 

The electric field in an ordinary conductor in equilibrium goes to zero 
due to polarization. However, the fact that electric and magnetic fields must 
be zero in a superconductor even when not in equilibrium is quite a differ­
ent, quantum-mechanical effect. 
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Magnetic levitation . . . .   

h Meissner effect is the basis for a dramatic kind of magnetic leV1tat10n. 

! ;agnet can hover above a superco�ducting disk, becau�e no
_ 
m�tter how 

th magnet is oriented, currents run m the superconductmg disk m such a e 
as to repel the magnet. One design for maglev trains uses this supercon­

way 
ducting effect. 

This is in coptrast to the situation with ordinary magnets. If you try to bal-

ance a magnet above another magnet, with the slightest misalignment the 

upper magnet flips over and is attracted downward rather than repelled up-

ward. 
The "Levitron" toy achieves levitation with ordinary magnets by giving the 

upper magnet a high spin, so that the magnetic torque makes the spin di­
rection precess rather than flip over. When a superconductor supports the 
upper magnet, gyroscopic stabilization is not needed. 

22.7 INDUCTANCE, AND ENERGY IN A MAGNETIC FIELD 

Changing the current in a coil can induce an emf in a second coil. A related 
effect happens even with a single coil: an attempt to change the current in 
a coil induces an emf in the same coil, because the coil surrounds a region 
of time-varying magnetic field ( dB/ dt) , produced by itself. We can show that 
this self-induced emf acts in a direction to oppose the change in the cur­
rent. As a result, there is a kind of sluggishness in any coil of wire: it is hard 
to change the current, either to increase it or to decrease it. It is not difficult 
to calculate this self-induction effect quantitatively for a solenoid. 

A very long plastic cylinder with radius R, and length d »  R, is wound with 
N closely-packed loops of wire with negligible resistance. The solenoid is 
placed in series with a power supply and a resistor, and current I runs 
through the solenoid in the direction shown in Figure 22.38. This current 
makes a magnetic field B inside the solenoid that points to the right. 

If the current is steady, the electric field inside the metal of the solenoid 
coil is nearly zero (very small resistance of this wire). Now suppose that you 
try to increase the current, by turning up the voltage of the power supply. If 
the current increases with time, there will be an increasing magnetic flux 
enclosed by each loop of the solenoid. In Chapter 17 we found that the 
magnetic field inside a solenoid of length d is B = µ

0NI/ d .  
? How much emf is generated in one loop of the coil if the current 
changes at a known rate di/ dt? 

We have this: 

emf = � = - --rcR2 = -- rc R2 - (one loop) 
I d<l> 

I 

d 
[
µa NI 

] 
µoN di 

dt dt d d dt 
? There are Nloops, and each loop encloses approximately the same 
�mount of time-varying magnetic flux. Therefore, what is the net emf 
induced along the full length of the solenoid? 

Evidently we add up all the individual one-loop emfs in series to obtain the 
emf from one end of the coil to the other: 

emf ;,.[µoN R2 d!l µo.N2 R2 dl ( . l "d) = 
" 'L  drc dtJ = -d- rc dt entire so enoi 

? If we increase the current I, what is the direction of the induced 
curly electric field, clockwise or counterclockwise as seen from the 
right end of the solenoid? Does this induced electric field act to assist 
or oppose the change in R 

d Nloops 

Figure 22.38 A circuit contains a solenoid. 

.. 
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794 Chapter 22: Faraday 's Law 

If the current is increasing, the non-Coulomb electric field ENc curls clock­
wise around the solenoid, opposing the increase in the current and polariz­
ing the solenoid (Figure 22.39). The new surface charges produce a 

� Coulomb electric field Ee which follows the wire and points opposite to the 
1 non-Coulomb field. If the resistance of the solenoid wire is very small, the 

magnitude of the two electric fields is nearly equal (Ee "' ENc). 

Volts 
20 30 

10 0 4  
0 50 I��-�------

Figure 22.39 The non-Coulomb electric 
field opposes the increase in the current, 
and polarizes the solenoid. 

Volts 
20 30 

+ -

1 0  0 40 +i,--..u ..... ...v-
0 50 -ir------' 

Figure 22.40 The coil acts temporarily 
like a battery inserted to oppose the 
change. 

Note the similarity to a battery: a non-Coulomb emfind (the induced emf) 
maintains a charge separation, and there is a potential drop � ¼ol along the 
solenoid that is numerically equal to emfind· If the wire resistance r501 is sig­
nificant, we have � ¼ol = emfind - r50i/, just like a battery with internal resis­
tance. You can think of this self-induced emf as making the solenoid act like 
a battery that has been put in the circuit "backwards," opposing the change 
in the current (Figure 22.40). 

It is standard practice to lump the many constants together and write that 
the self-induced emf is proportional to the rate of change of the current, 
with proportionality constant L: 

Jemfindl = LI :� 

The proportionality constant L is called the "inductance" or "self-induc­
tance" of the device, which is called an "inductor." 

? Use the results above to express the inductance L in terms of the 
properties of a solenoid. 

Evidently the (self-) inductance of a solenoid is this: 

L = µo
.N2 

nR2 d 
The unit of inductance (volt-seconds/ampere) is called the "henry" in hon­
or of the 19th-century American physicist Joseph Henry, who simultaneous­
ly with Michael Faraday in 1831 discovered the effects of time-varying 
magnetic fields. 

? What if you decrease the current through the solenoid? What 
happens to the induced emf? Does it assist or oppose the change? 

If you go through the previous analysis but with a decreasing current, you 
find that the emf goes in the other direction, tending to drive current in the 
original current direction and therefore opposing the decrease. The sole­
noid introduces some sluggishness into the circuit: it is more difficult to in­
crease the current or to decrease the current. The sign of the effect should 
not be surprising, since if the self-induced emf assisted rather than opposing 
an increase in the current, the current would grow without limit! 

22.X. 1 7  To get an idea of the order of magnitude of inductance, calculate 
the self-inductance in henries for a solenoid with 1000 loops of wire wound 
on a rod 10 cm long with radius 1 cm. 

Energy density 

In Chapter 16 we showed that there is an energy density associated with elec­
tric field, by expressing the energy in a capacitor in terms of the electric 
field in the capacitor: 

Electric energy _ ! E2 
Volume - 2

60 

Now we can show that there is energy density associated with magnetic field, 
by expressing the energy in an inductor in terms of the magnetic field in the 
inductor. We obtain an important result about magnetic energy that is quite 
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general, despite the fact that the derivation is for the specific case of an in­
ductor. 

It is easy to show that the magnetic energy stored in an inductor is � LP . 
The power going into an inductor is Jt,,. Vas for any device, and 

Integrating over time, we have 

f ftf dJ fl/ 1 If 1 energy input = (It,,. V) dt = L /dtdt = L /dl = L[i/] 1; = t,,.(2Ll2) 

µ0NI µo .N2 
Since B = -

d
- and L = -

d
-nR2 , we have 

l (µo.N2 
) (  Bd '\ 2 

Magnetic energy = 2 -
d
-rcR2 µoN) 

Magnetic energy = � _!_ (rcR2 d)B2 

µo 
The magnetic field of the solenoid is large in the volume ( rcR2 d) . There­
fore we have the following result for the electric and magnetic energy den­
sities: 

ELECTRIC AND MAGNETIC ENERGY DENSITIES 

Energy 
Volume 

Although we have calculated the magnetic energy density for the specific 
case of a long solenoid, this is a general result. The interpretation is that 
where there are electric or magnetic fields in space, there is an associated 
energy density, proportional to the square of the field (E and/ or If2). 

*Current in an RL circuit 
A circuit containing a resistor R and an inductor L is called an "RL" circuit. 
Figure 22.41 shows a series RL circuit some time after a switch was closed. 
The energy-conservation loop rule for this series circuit is this: 

t,,. Vbattery + t,,. Vresistor + t,,. v;nductor = 0 

dl emf battery - RI - L dt = 0 
emfbattery L 

The term -Ldl/ dt in the loop equation has a minus sign because, as we 
have seen, the emf of the inductor opposes the attempt to increase the cur­
rent when we close the switch. The properties of this differential equation 
are similar to those of the differential equation of a resistor-capacitor (RC) 
circuit analyzed in Chapter 19. 

Figure 22.41 An RL circuit containing a 
resistor and an inductor. 

Let the time when we closed the switch be t= 0. The current was of course 
zero just before closing the switch, and it is also zero just after closing the 
switch, since the sluggishness of the inductor does not permit an instanta­
neous change from I = 0 to I = nonzero. In fact, such an instantaneous � 

1 

change would mean that dl/ dt would be infinite, which would require an in­
finite battery voltage to overcome,the infinite self-induced emf in the induc-
tor. 
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I 
/final = emf battery/ R - - - - - - - - - - - - - - - - - - - - -

Figure 22.42 A graph of current vs. time in the RL circuit. The switch was closed at 
t =  0. 

Figure 22.43 An LC circuit consists of an inductor and a capacitor. 

? Prove that 

l = -- I - e  
emf battery [ -(v 1] 

R 

by substituting I and dl/ dt into the energy-conservation equation. 
What is the final current in the circuit (that is, after a very long 
time)? Does that make sense? 

For large t, the exponential goes to zero, and we have I=  emf battery/ R This 
makes sense, because after a long time there is a steady-state current, and 
the flux does not change any more. With no change in the flux, no emf is 
generated in the inductor, and the current has the value that it would have 
if the inductor were not in the circuit. The current builds up slowly to this 
value. Figure 22.42 shows a graph of the current vs. time. One measure of 
the time it takes for the current to build up is the "time constant" L/R:, at this 
time the exponential factor has dropped to 1/ e: 

e-(v t = e-rnrn = e-1 = 1 
e 

You see that having an inductor in a circuit makes the circuit somewhat slug­
gish. It takes a while for the current to reach the value that it would have 
reached right away if the circuit had consisted just of a battery and a resistor. 

? It is interesting to see what happens when you try to open the 
switch, after the steady current has been attained. If the current were 
to drop from I to zero in a short time tit, explain why the emf induced 
along the solenoid is very large, and can be much larger than the 
battery emf. 

The induced emf depends on dB/ dt, which is proportional to dl/ dt. If the 
time interval is very short, then dl/ dt is very large, and the induced emf is 
very large. As a result of this large emf, you may see a spark jump across the 
opening switch. This phenomenon makes it dangerous to open a switch in 
an inductive circuit if there are explosive gases around. 

*Current in an LC circuit 

We have studied many examples of equilibrium and of steady-state currents. 
We have also seen examples of a slow approach to equilibrium (an RC cir­
cuit) or to a steady-state current ( the RL circuit we just examined). 

There is another possibility: a circuit might oscillate, with charge sloshing 
back and forth forever-the system never settles down to a final equilibrium 
or a steady state. Of the systems we've analyzed or experimented with, none 
of them oscillated continuously, because there was always some resistance in 
the system that would have damped out any such oscillatory tendencies. It is 
possible that during the first few nanoseconds when surface charge is rear­
ranging itself in a circuit, there may be some sloshing of charge back and 
forth, but this oscillation dies out due to dissipation in the resistive wires. 

A circuit containing an inductor L and a capacitor Cis called an LC circuit 
(Figure 22.43). Such a circuit can oscillate if the resistance is small. In this 
circuit, the connecting wires are low-resistance thick copper wires. Suppose 
the capacitor is initially charged, and then you close a switch, connecting 
the capacitor to the inductor. 

At first it is difficult for charge on the capacitor to flow through the induc­
tor, because the inductor opposes attempts to change the current (and the 
initial current was zero). But the inductor can't completely prevent the cur­
rent from changing, so little by little there is more and more current, which 
of course drains the capacitor of its charge. 
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We'll see that just at the moment when the capacitor runs out of charge, 
there is a current in the inductor which can't change to zero instantaneous­
ly, due to the sluggishness of the inductor. So the system doesn't come to 
equilibrium but overshoots the equilibrium condition and pours charge 
into the capacitor. When the capacitor gets fully charged ( opposite in sign 
to the original condition), the capacitor starts discharging back through the 
inductor. 

This oscillatory cycle repeats forever if there is no resistance in the circuit. 
If there is some resistance, the oscillations eventually die out, but the system 
may go through many cycles before equilibrium is reached. 

The energy-conservation loop rule for this circuit is 

l dl 
� vcapacitor + � ½nductor = CQ- L dt = 0 

where Q is the charge on the upper plate of the capacitor, and I is the con­
ventional current leaving the upper plate and going through the inductor. 

? Can you explain why I= -dQ/ dt? 

dQ/ dt is the amount of charge flowing off of the capacitor plate per second. 
This is the same thing as the current. Because charge is leaving the plate, dQ 
is negative, so I =  -dQ/ dt. Since I =  -dQ/ dt, we can rewrite the energy-con­
servation equation as 

? Show that 

l d2 n - Q + L� = 0 C dt2 

is a possible solution of the rewritten energy-conservation equa­
tion, by substituting Q and its second derivative into the equation. 

Moreover, this solution fits the initial conditions at t = 0, just after closing 
the switch, if � is the initial charge on the upper plate, since this expression 
reduces to Q = (2zcos(O) = �- (For other initial conditions, the correct solu­
tion is a sine, or a combination of sine and cosine.) 

? Now that you know Q on the upper plate of the capacitor as a 
function of time, calculate the current I through the inductor as a 
function of time. 

The current is given by the following: 

I = -� = J#-csin ()u� 

Now that we have expressions for Qand las a function of time, we can graph 
both quantities (Figure 22.44). This is very special: charge oscillates back 
and forth in the circuit forever (if there is negligible resistance). There is 
no equilibrium, and there is no steady state. No battery or other source of 
energy input is needed, because there is no dissipation. The charge just 
keeps going back and forth on its own. If there is some resistance, the oscil­
lations slowly die out, as shown in Figure 22.45. 

Note that the current I does not become large instantaneously (due to 
the sluggishness of the inductor). Also note that the current, which is the 
rate of depletion of the capacitor charge, reaches a maximum just when Q 
goes to zero. This maximum current starts charging the bottom plate of the 
capacitor positive, which makes the current decrease. When the current be­
comes zero, the system is in a state very similar to its original state, but 

f- !'.eEi�d_ T 4 ( 1 � • Q =  Q;cos - t  JLG 
I= -dQ/dt 

t 

Figure 22.44 Capacitor charge and induc­
tor current in an LC circuit with no resis­
tance. 

Figure 22.45 An LC circuit with resis­
tance. 
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inverted ( the bottom plate is positive). Now the system runs the other way 
and eventually gets back after one complete cycle to a state in which the top 
plate is again positive, and the current is momentarily zero. Then the pro­
cess repeats. 

After one com,_e!_ete cycle, (1/ /LC) t = 2n , so the period of the oscilla­
tion is T = 2n,/L C .  The frequency f = l / T  = l /(2n JLc) . 

22.X. 18 What is the oscillation frequency of an LC circuit whose capacitor 
has a capacitance of 1 microfarad and whose inductor has an inductance of 
1 millihenry? (Both of these are fairly typical values for capacitors and 
inductors in electronic circuits. See page 794 for a numerical example of 
inductance. )  

*Energy in an LC circuit 

Another way to talk about an LC circuit is in terms of stored energy. The 
original energy was the electric energy stored in the capacitor (equal to 
Q2 I (2 C) ; see Chapter 19). At the instant during the oscillation when the 
charge on the capacitor is momentarily zero, there is no energy stored in the 
capacitor; all the energy at that moment is stored in the inductor, in the 
form of magnetic energy. As the system oscillates, energy is passed back and 
forth between the capacitor and the inductor. 

Earlier in this chapter we showed that the magnetic energy stored in an 
inductor is � LP . At t =  0, the current is zero, and all the energy in the system 
is the electric energy of the capacitor. At the instant when Q = 0 on the ca­
pacitor, the current is a maximum, and all the energy in the system is the 
magnetic energy of the inductor. 

? If Q; is the initial charge on the capacitor, use an energy argument 
to find the maximum current /max in the circuit. 

Initially, all of the stored energy is electric: 

U = Uelectric + Umagnetic = i !2;2 
2 C 

When I =  Imax, Q = 0, so all of the stored energy is magnetic: 

U = Ue1ectric + Umagnetic = �L�a.x 

Since the total energy in the circuit does not change, because the circuit has 
no resistance and no energy is dissipated as heat, the following must be true: 

Q; 
JLc 

? Show that this result is consistent with Q = Q;cos ( t/ JLc) by 
calculating I =  -dQ/ dt and seeing what the maximum I is. 

Starting from the charge as a function of time, we have this: 

An Q; . ( t _\ Q; I = - � = -
JLc 

sm M , so that /max = 
JLc 

This is the same result we obtained by using an energy argument. 
We have been discussing "free" oscillations, in which the oscillations (per­

petual or dying out) proceed with no inputs from the outside. If you try to 
"force" the oscillations by applying an AC voltage from the outside (with an 
AC power supply), you find that it is difficult to get much current to run un­
less you nearly match the "free" oscillation frequency f = l /(2n /LC) . This 
is an example of what is called a "resonance" phenomenon (see end of 
Chapter 6), in which a system (the LC circuit in this case) responds signifi-
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cantly only when the forcing of the system is done at a frequency close to 
the free-oscillation frequency. 

*AC circuits 
For completeness, it should be mentioned that an important use of induc­
tors is in AC circuits (sinusoidally alternating current). You have just seen 
that LC circuits are characterized by sinusoidally alternating currents, as are 
generators with loops rotating in a magnetic field. Whenever there is an AC 
current passing through an inductor, there is an AC emf generated in the 
inductor due to the time-varying flux. If the current is a sine function, the 
emf is a cosine function, and vice versa. 

There is an elaborate mathematical formalism for dealing with AC cir­
cuits, including accounting for the fact that the current and voltage in an 
AC circuit need not reach their maxima at the same time (a "phase shift", 
which was 90° in the LC circuit we just analyzed). We will not go into these 
complications here, but it is worth noting that an important element in un­
derstanding such circuits is to recognize the role of the self-induced emf in 
an inductor, and the fact that in an inductor a sinusoidal current is associ­
ated with a cosinusoidal voltage. 

22.8 *SOME PECULIAR CIRCUITS 

This section offers examples of surprising aspects of circuits when there is a 
time-varying magnetic field. 

*Two bulbs near a solenoid 
We can show you a very simple circuit that behaves in a rather surprising 
way. Consider two light bulbs connected in series around a solenoid with a 
varying magnetic field (Figure 22.46). The solenoid carries an alternating 
current (AC) in order to provide a time-varying magnetic flux through the 
circuit, so that there is an emf to light the bulbs. If the flux varies as <!>mag = 
<I>0sin (rot), in the bulb circuit we have a varying emf = emf0cos (mt), since the 
emf is proportional to the rate of change of the magnetic flux. If each bulb 
has a resistance R, there is an alternating current through the bulbs of this 
amount: 

emf emfo I =  - = -- cos(m t) 2R 2R 

Notice that a uniformly increasing flux (<!>mag = <!>0t) would yield a constant 
emf, but a sinusoidally varying flux yields a cosinusoidally varying emf. It is 
very convenient to use AC currents to study the effects of time-varying mag­
netic fields, because both the inducing current and the induced current 
vary as sines and cosines, and AC voltmeters and ammeters can be used to 
measure both parts of the circuit. 

Now we alter the circuit by connecting a thick copper wire across the cir­
cuit (Figure 22.47). You may find it surprising that the top bulb gets much 
brighter and the bottom bulb no longer glows. Let's try to understand how 
this happens. 

As usual, we need to write charge-conservation node equations and ener­
gy-conservation loop equations, so we need to label the nodes and loops as 
in Figure 22.48 (any two of these three loops would be enough, but we'd ... 
like to show how to handle all of them). 

Here is the key to analyzing this peculiar circuit. The round trip around 
loop 1 or loop 2 takes in an emf Uust as though there were a battery in the 
loop). But the round trip around loop 3 does not enclose any time-varying 
flux and so has no emf. Therefore the loop and node rules are the follow-

22.8: *Some peculiar circuits 799 

Varying B 
, 1  ' 

Figure 22.46 Two light bulbs connected 
around a long solenoid with-varying B. 

Figure 22.47 Add a thick copper wire to 
the two-bulb circuit. 

Figure 22.48 Add a thick copper wire to 
the two-bulb circuit. 
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Figure 22.49 A uniform metal ring, and a metal ring with a thin section. 

ing, where R1 and J½ are the resistances of the hot top bulb and cold bottom 
bulb, and the resistance of the added copper wire is essentially zero: 

loop 1: emf - R1I1 - J½I2 = 0 node N: 11 = 12 + /3 
loop 2: emf - R1I1 = 0 
loop 3: ]½12 = 0 (no flux enclosed) 

From the loop 3 equation we see that /2 = 0, which is why the bottom bulb 
doesn't glow. 

With 12 = 0, the node N rule says that Ii = /3: all the current in the top bulb 
goes through the copper wire (and none through the bottom bulb). Both 
the loop 1 and loop 2 equations reduce to R1I1 = emf, so the current 
through the top bulb is /1 = emf/ R1 = ( emf0/ R1 ) cos (co t) , which is nearly 
twice what it was before we added the extra copper wire (R1 > R due to high­
er temperature). 

22.X.19 Here are four different ways to connect the copper wire. Based on the analysis we have just carried out, involving identifying whether or not there is a battery-like emf in a loop, what is the brightness of both bulbs in circuits 1, 2, 3, and 4? 

*Coulomb and non-Coulomb electric fields in a nonuniform ring 
In a circular ring encircling a solenoid with a time-varying magnetic field, 
there is current driven by a non-Coulomb electric field. There is no gradient 
of surface charge along the ring, although there is a small transverse polar­
ization required to turn the electrons in a circle ( top of Figure 22.49). 

If there is a thin section of the ring, however, charge will pile up at the 
ends of the thin section, and there will be surface charges all along the ring 
(bottom of Fi�ure 22.49). These surface charges will produce a Coulomb 
electric field Ee which adds vectorially to the non-Coulomb electric field 
ENc that is due to the changing magnetic flux. The net electric field 
ENc + Ee is what drives the electrons around the ring. 

Inside the thin section the net electric field is larger than it was for the 
uniform ring, and in the thick sections the net electric field is smaller than 
it was for the uniform ring. 

? If both rings are made out of the same material, how do you know 
that the current must be smaller in the ring with the thin section than 
it was in the uniform ring? 

In the thick section of the nonuniform ring, the only thing that changed is 
that the net electric field is smaller, so the current in the thick section must 
be smaller. (Of course this same smaller current runs through the thin sec­
tion of this ring.) 

Note that the Coulomb electric field Ee is large and goes clockwise in the 
thin section, but Ee is small and goes counterclockwise in the thick section. 
Since Ee is due to point charges, the round-trip integral of Ee is zero. 
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On the other hand, the non-Coulomb electric field ENc due to the 
changing magnetic flux goes clockwise all around the ring, and its round­
trip integral is emf = d<l>mag/ dt ,  which is not zero. 

*Two competing effects in a shrinking ring 
Suppose we stretch a springy metal ring of radius R and place it in a region 
of uniform magnetic field B pointing out of the page, which is increasing at 
a rate of dB/ dt (Figure 22.50) .  When we let go of the ring, it contracts at a 
rate dR/ dt (which is a negative number). What is the emf around the metal 
ring? 

In terms of flux, there are two competing effects here. The increasing 
magnetic field B tends to increase the flux, but the decreasing area tends to 
decrease the flux. Whether or not a current will flow depends on the rela­
tive magnitudes of these two contributions to the net flux. 

Since the magnetic field is the same throughout the ring and is perpen­
dicular to the page, the flux through the ring at any instant is 
<l>mag = B(n R2) .  The emf is the rate of change of the flux: 

emf = 
d<l>mag = .E_ [ B( n R2) ] = dB

( n R2 ) + B
d( n R2 ) 

dt dt dt dt 

emf = dB
(n R2) + B(2n R) dR 

dt dt 
What is the physical significance of these two contributions to the emf? Be­
cause there is a changing magnetic field, there is a clockwise non-Coulomb 
electric field in the wire. The first term, involving dB/ dt, is associated with 
this non-Coulomb electric field in the wire. 

Because the wire is moving inward, there is a magnetic force on the elec­
trons in the wire. In this case, v x B (the magnetic force per unit charge) is 
counterclockwise in the ring. The second term, involving the negative quan­
tity dR/ dt, is associated with the magnetic force on the moving pieces of the 
ring (motional emf) . Note that l dR/ dtl is the speed of pieces of ring toward 
the center, and 2nr is the circumference, so the contribution to the emf is 
similar to emf = BLv for a rod of length L sliding on rails. 

Note that if ( dB/ dt)( n R2) = B(2n R) l ( dR/ dt)I , the emf would be zero 
even though we had both a changing magnetic field and a changing area. 
In this case the magnetic force on an electron inside the ring is equal and 
opposite to the non-Coulomb electric force, due to the non-Coulomb elec­
tric field. 

There is no surface charge gradient around this symmetrical ring, and no 
Coulomb electric field around the ring. The forces on electrons in the met­
al ring are due to the non-Coulomb electric field and to the non-Coulomb 
magnetic force on the moving pieces of the ring. 

22.9 *THE DIFFERENTIAL FORM OF FARADAY'S LAW 

As with Gauss's law and Ampere's law, there is a differential form of Fara­
day's law, valid at a particular location and time. Using properties of vector 
calculus one can show that the integral form of Faraday's law is equivalent 
to the following, where the derivative is a "partial derivative" with respect to 
time (holding position constant): 

DIFFERENTIAL FORM OF FARADAY'S LAW 

..,. a:s _,. ..,. a:s curl(E) = - - or V x E = - -
at at 

J 

B out of page and increasing 
® 

Figure 22.50 A springy metal ring that 
had been stretched and is now shrinking. 
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22.10 *LENZ'S RULE 

With the thumb of your right hand pointing in the direction of -dBi/ dt , 
your fingers curl around in the direction of ENc . Another rule, called 

� "Lenz's rule," can be used to get the direction of the non-Coulomb electric 
{ field. We describe Lenz's rule briefly, although it is unnecessary to learn and 

use Lenz's rule in this introductory textbook on electricity and magnetism, 
for reasons that we will give below. 

Imagine that you place a wire around the changing flux, so that the non­
Coulomb electric field drives current in the wire: 

LENZ'$ RULE 
The induced (non-Coulomb) electric field would drive current 

in a direction to make a magnetic field 
that attempts to keep the flux constant. 

To see how this works, consider the first example in Figure 22.51, where B1 
points out of the page and is increasing, and the non-Coulomb electric field 
curls clockwise around the solenoid. If a wire encircles the solenoid, conven­
tional current runs clockwise in the wire, and this induced current produces 
an additional magnetic field in the region, pointing into the page. 

B1 out, increasing B 1 out, decreasing 
This additional magnetic field is in the opposite direction to the change 

in B1 , so we say that the induced magnetic field attempts to keep the mag­
netic flux constant despite the increase in B1 . The induced current does not 
succeed at keeping the net flux constant (unless the wire is made of super­
conducting material). In particular, if B1 is increasing at a constant rate, the 
current 12 in the ring and the induced magnetic field are constant by Fara­
day's law, so the net flux does increase. 

B 1 in, increasing B 1 in, decreasing 

Figure 22.5 1  Using Lenz's rule to deter­mine the direction of the non-Coulomb electric field. 

If on the other hand B1 points out of the page and is decreasing ( the sec­
ond example in Figure 22.51), there is a counterclockwise non-Coulomb 
electric field that would drive conventional current counterclockwise in a 
wire, which would make a magnetic field out of the page, in the direction to 
attempt to keep the magnetic flux constant despite the decrease in B1 . 
(Again, the net flux will nevertheless decrease, unless the ring is supercon­
ducting.) 

? Go through this analysis for the third and fourth examples shown 
on the previous page, and convince yourself that Lenz's rule does 
correctly summarize the experimental data for the direction of the 
non-Coulomb electric field. 

An interesting property of Lenz's rule is that it also correctly gives the direc­
tion of current in the case of motional emf, or in situations where both a 
time-varying magnetic field and motion contribute to a change in the flux 
enclosed by a part of a circuit. 

We have not emphasized Lenz's rule for two reasons. We have empha­
sized time-varying magnetic field and non-Coulomb electric field (rather 
than just time-varying flux and emf), to give a stronger sense of mechanism 
and to distinguish the effects of time-varying magnetic fields from the ef­
fects of motion of a wire in a magnetic field. Also, it is very easy to make se­
rious conceptual mistakes using Lenz's rule when first studying the effect of 
time-varying magnetic fields, due to a natural tendency to try to use it for 
predicting the magnitude of the induced current flow, not just its direction. 
In particular, except for superconductors, it is not true that "enough cur­
rent runs to cancel the change in the magnetic field." 
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22.1 1 SUMMARY 

Faraday 's law 

The new phenomenon introduced in this chapter is that a time-varying magnetic field is accompanied by a non­Coulomb electric field that curls around the region of varying field. Unlike the Coulomb electric field pro­duced by point charges, the non-Coulomb electric field has a nonzero round-trip path integral if the path encir­cles a time-varying flux. 
Faraday's law d<I>mag emf = - dt 

where emf = 1ENc • dl and <I>mag = fB • fi. dA 
In words: The induced emf along a round-trip path is equal to the rate of change of the magnetic flux on the area encircled by the path. 
Direction: With the thumb of your right hand point­ing in the direction of -dBi dt , your fingers curl around in the direction of ENc . 

Formal version of Faraday's law 
1ENc • dl = -1

t
[ fB • fi. dA] 

(sign given by right-hand rule) Faraday's law also covers the case where the flux changes due to changes in the path ("motional emf'), and the non-Coulomb force in this case is a magnetic force. 
In general, there can be any combination of three effects acting on electrons in a circuit: 1) Coulomb electric field due to surface charges; 2) Non-Coulomb electric field due to time-varying magnetic field; and 3) Magnetic forces on moving portions of the circuit (motional emf). 
Superconductors 

Superconductors have zero resistance, and a conse­quence of this is that a superconducting ring maintains a constant flux in the area enclosed by the ring. The magnetic field inside a superconductor is always zero ( the Meissner effect), and this important property can­not be explained merely in terms of zero resistance. 
Inductance 

When you vary the current in a coil, the varying flux en­closed by the coil induces an emf in the same coil which makes it difficult to change the current. This sluggish­ness plays a role in RL and LC circuits, and it is quanti­fied by the "inductance" L of the coil. The emf is proportional to the rate of change of the magnetic flux, 

22. 11 :  Summary 803 

which is proportional to the rat: of change of the cur­rent: 

We calculated the inductance m one particular case, that of a long solenoid: 
Lsolenoid 

Electric and magnetic energy densities 

Energy 1 r,9 1 1 B2 d • • l / 3 = 2e0n- + 2- , measure lD JOU es m Volume µo 
RL (resistor inductor) circuits 

The current in an RL series circuit varies with time: 
I = -----'- I - e 

emf battery [ 
(� t] R 

LC (inductorcapacitor) circuits 

An LC circuit oscillates sinusoidally with a frequency 
f = l / (2rrJLC) :  

If there is no resistance, an LC circuit never reaches a fi­nal equilibrium or a final steady state. 
*The differential form of Faraday 's law 

..,. aB _,_ ..,. aB curl(E) = - at or V X E  = 
at 

22.1 2 REVIEW QUESTIONS 

Faraday 's law 

22.RQ.20 The north pole of a bar magnet points toward a 
thin circular coil of wire containing 40 turns. The magnet is 
moved away from the coil, so that the flux through one turn in­
side the coil decreases by 0.3 tesla-m2 in 0.2 seconds. What is 
the average emf induced in the coil during this time interval? 
Viewed from the right side ( opposite the bar magnet), does the 
induced current run clockwise or counterclockwise? Explain 
briefly. 
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804 Chapter 22: Faraday 's Law 

22.RQ.21 In a circular region of radius r1 there is a uniform 
magnetic field B pointing out of the paper ( the magnetic field 
is essentially zero outside this region) .  The magnetic field is de­
creasing at this moment at a rate l dB/ dtl . A wire of radius r2 and 
resistance R lies entirely outside the magftetic-field region 
(where there is no magnetic field). In which direction does 
conventional current 1 flow in the ring? What is the magnitude 
of the current R Show the pattern of (non-Coulomb) electric 
field in the ring. What is the magnitude ENC of the non-Cou­
lomb electric field? 

22.RQ.22 Two coils of wire are near each other, positioned 
on a common axis. Coil 1 is connected to a power supply whose 
output voltage can be adjusted by turning a knob, so that the 
current 11 in coil 1 can be varied, and fr is measured by amme­
ter 1. 

Ammeter 2 

Ammeter 1 

Current 12 in coil 2 is measured by ammeter 2. The ammeters 
have needles that deflect positive or negative depending on 
the direction of current passing through the ammeter, and am­
meters read positive if conventional current flows into the "+" 
terminal. Here is a graph of 11 vs. time. 

I 

I1 = 3 A  � - - - - - , 
Ammeter 1 ,, "' ' 

,, ' ,, ' ,, ,, ' ,, ' ,, ' 
,, ,, ' ,, ' 

4 6 8 

Draw a graph of 12 vs. time over the same time interval. Explain 
your reasoning. 

Inductance 
22.RQ.23 A thin coil has 12 rectangular turns of wire. When 
a current of 3 amperes runs through the coil, there is a total 
flux of 10-3 tesla-m2 enclosed by one turn of the coil (note that 
<D = kl, and you can calculate the proportionality constant k) . 
Determine the inductance in henries. 

22.RQ.24 Would the inductance of a solenoid be larger or 
smaller if the solenoid is filled with iron? Explain briefly. 

RL and LC circuits 
22.RQ.25 

(a) When an RL circuit has been connected to a 1.5-volt bat­
tery for a very short time, what is the potential difference from 
one end of the resistor to the other? 

(b) When an RL circuit has been connected to a 1.5-volt bat­
tery for a very long time, what is the potential difference from 
one end of the resistor to the other? 

(c) Explain briefly the difference between equilibrium, 
steady-state current, and the behavior of an LC circuit. 

22.1 3 PROBLEMS 

22.P.26 Some small problems on time-varying magnetic 
fields 

(a) Two metal rings lie side-by-side on a table. Current in 
the left ring runs clockwise and is increasing with time. This in­
duces a current to run in the right ring. Does this induced cur
rent run clockwise or counterclockwise? Explain, using a 
diagram. (Hint: Think carefully about the direction of magnet­
ic field in the right ring produced by the left ring, taking into 
consideration what sections of the left ring are closest. ) 

(b) A very long straight wire (essentially infinite in length) 
carries a current of 6 ampere. The wire passes through the cen­
ter of a circular metal ring of radius 4 cm and resistance 2 
ohms that is perpendicular to the wire. If the current in the 
wire increases at a rate of 0.25 ampere/s, what is the current in­
duced in the ring? Explain carefully. 

-0--
(c) A bar magnet is dropped through a vertical copper tube 

and is observed to fall very slowly, despite the fact that mechan­
ical friction between the magnet and the tube is negligible. Ex­
plain carefully, including adequate diagrams. 
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22.P.27 A wire and a rectangular loop 
A very long wire carries a current 11 upward as shown, and this 
current is decreasing with time. Nearby is a rectangular loop of 
wire lying in the plane of the long wire, and containing a resis­
tor R; the resistance of the rest of the loop is negligible com­
pared to R The loop has a width w and height h, and is located 
a distance d to the right of the long wire. 

d 

!- w - , 

(a) Does the current 12 in the loop run clockwise or counter­
clockwise? Explain, using a diagram. 

(b) Show that the magnitude of the current 12 in the loop is 
this: 

J. = µo (2 h) ln [ ( d + w)/ d]
l d

l1 1 2 4n R dt 
(Hint: divide the area into narrow vertical strips along which 
you know the magnetic field.) 

22.P.28 Two concentric metal rings 
A very small circular metal ring of radius r = 0.5 cm and resis­
tance x = 5 ohms is at the center of a large concentric circular 
metal ring of radius R = 50 cm and resistance X = 500 ohms. 
The two rings lie in the same plane. At t = 3 seconds, the large 
ring carries a clockwise current of 3 ampere. At t = 3.2 seconds, 
the large ring carries a counterclockwise current of 5 ampere. 

50 cm 
500 Q 

(a) What is the average electric field induced in the small 
ring during this time? Give both the magnitude and direction 
of the electric field. Draw a diagram, showing all relevant quan­
tities. 

(b) What are the magnitude and direction of the average 
current in the small ring? 

22.P.29 Design a circuit 
It is now possible to buy capacitors that have a capacitance of 
one farad. 

(a) Design a solenoid so that when it is connected to a 
charged one-farad capacitor, the circuit will oscillate with a pe­
riod of one second. Give all the relevant parameters of the so­
lenoid (length, etc.) so that someone could build the solenoid 
from your design specifications. Assume that there is wire avail­
able with low enough resistance that the resistance of the sole­
noid is negligible, although this may be difficult to achieve in 
practice unless the wire is superconducting. 

22. 13: Problems 805 

(b) If the one farad capacitor is initially charged to 3 volts, 
what is the maximum current that will run through the induc­
tor? 

22.P.30 Connect a battery to a solenoid 
A cylindrical solenoid 40 cm long with a radius of 5 mm has 300 
tightly-wound turns of wire uniformly distributed along its 
length. Around the middle of the solenoid is a two-turn rectan­
gular loop 3 cm by 2 cm made of resistive wire having a resis­
tance of 150 ohms. 

One microsecond after connecting the loose wire to the bat­
tery to form a series circuit with the battery and a 20-ohm resis­
tor, what is the magnitude of the current in the rectangular 
loop and its direction (clockwise or counterclockwise in the di­
agram) ?  

22.P.31 Induced electric field 
The magnetic field is uniform and out of the page inside a cir
cle of radius R The magnetic field is essentially zero outside 
the circular region. The magnitude of the magnetic field as a 
function of time is (B0 + bt3) .  BO and b are positive constants, 
and t =  time. 

R 
P�----+--

�
--➔ Q 

® ® 

(a) What are the direction and magnitude of the induced 
electric field at location P, at a distance r1 to the left of the cen­
ter (r1 < R) ? 

(b) What are the direction and magnitude of the induced 
electric field at location Q, at a distance r2 to the right of the 
center ( r2 > R) ? 

22.P.32 Magnetic monopoles 
One of the methods physicists have used to search for magnet­
ic monopoles is to 

1
monitor the current produced in a loop of 

wire. Draw graphs_ of current in the loop vs. time for an electri­
cally uncharged magnetic monopole passing through the loop, 
and for an electrically uncharged magnetic dipole (such as a 
neutron) passing through the loop with its north end head­
first. Don't worry too much about the details of the exact mo­
ment when the particle goes through the plane of the loop; 
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concentrate on the times just before and just after this event. 
Explain the differences in the two graphs. 

(A signal corresponding to a magnetic monopole was seen 
once in such an experiment, but no one h been able to re­
produce this result, and most physicists setm to believe that 
the supposed event was due to extraneous noise in the system 
or other malfunction of the apparatus.) 

22.P.33 A coil attached to an oscilloscope 
A thin circular coil of qtdius r1 with N1 turns carries a current 
11 = a +  bt + ct2, where t is the time and a, b, and c are positive 
constants. A second thin circular coil of radius r2 with N2 turns 
is located a long distance x along the axis of the first coil. The 
second coil is connected to an oscilloscope, which has very 
high resistance. 

N1 turns 
Radius r1 

Power supply 

Volts 
20 30 

1 0 0 40 
0 50 

N2 turns 
Radius r2 

Observing with an oscilloscope. 

(a) As a function of time t, calculate the magnitude of the 
voltage that is displayed on the oscilloscope. Explain your work 
carefully, but you do not have to worry about signs. 

(b) At point P on the drawing (on the right side of the sec­
ond coil ) ,  draw a vector representing the non-Coulomb elec­
tric field. 

(c) Calculate the magnitude of this non-Coulomb electric 
field. 

22.P.34 A bar magnet and a coil 
A coil with 3000 turns and radius 5 cm is connected to an oscil­
loscope. You move a bar magnet toward the coil along the 
coil's axis, moving from 40 cm away to 30 cm away in 0.2 sec­
onds. The bar magnet has a magnetic moment of 0.8 am­
pere-m2 . 

A bar magnet is moved toward a coil. 

(a) On the diagram, draw the non-Coulomb electric field 
vectors at locations 1 and 2. Briefly explain your choices graph­
ically. 

(b) What is the approximate magnitude of the signal ob­
served on the oscilloscope? 

(c) What approximations or simplifying assumptions did 
you make? 

22.P.35 Toroid 
A toroid has a rectangular cross section with an inner radius r1 
= 9 cm, an outer radius r2 = 12  cm, and a height h = 5 cm, and 
it is wrapped around by many densely-packed turns of current­
carrying wire (not shown in the diagram) .  The direction of the 
magnetic field inside the windings is shown on the diagram. 
There is essentially no magnetic field outside the windings. A 
wire is connected to a sensitive ammeter as shown. The resis­
tance of the wire and ammeter is R = 1 .4 ohms. 

Ammeter 

:� ?? 
+
�� 

�-..::�>11111�--7 
R = resistance of 
ammeter plus wire 

The current in the windings of the toroid is varied so that the 
magnetic field inside the windings, averaged over the cross sec­
tion, varies with time as shown: 

B B =  1.6 T 

3 5 12 

Make a careful graph of the ammeter reading, including sign, 
as a function of time. Label your graph, and explain the nu­
merical aspects of the graph, including signs. 

22.P.36 The betatron 
Suppose you have an electron moving with speed comparable 
to the speed of light in a circular orbit of radius r in a large re­
gion of uniform magnetic field B. 

(a) What must be the relativistic momentum p of the elec­
tron? 

(b) Now the uniform magnetic field begins to increase with 
time: B = B0 + bt , where B0 and b are positive constants. In 
one orbit, how much does the energy of the electron increase, 
assuming that in one orbit the radius doesn't change very 
much? (This effect was exploited in the "betatron," an electron 
accelerator invented in the 1940s.) 

Note: it turns out that the electron's energy increases by less 
than the amount you calculated, for reasons that will become 
clear in Chapter 23. 

Apple Inc.     EX1017     Page 68



22.P.37 Throw a bar magnet You throw a bar magnet downward with its south end pointing down. The bar magnet has a magnetic dipole moment of 1 .2 A-m2. Lying on the table is a nearly flat circular coil of 1000 turns of wire, with radius 5 cm. The coil is connected to an os­cilloscope, which has a very large resistance. 

30 cm 
Oscilloscope 

D 

(a) On a diagram, show the pattern of non-Coulomb elec­tric field in the coil. Explain briefly. (b) At the instant when the magnet is 30 cm above the table, the oscilloscope indicates a voltage of magnitude 2 millivolts. What is the speed v of the magnet at that instant? 
22.P.38 A proton in a magnetic field A single circular loop of wire with radius R carries a large clock­wise constant current fioop = !0, which constrains a proton of mass M and charge e to travel in a small circle of radius rat con­stant speed around the center of the loop, in the plane of the loop. The orbit radius r is much smaller than the loop radius 
R: r« R 

(a) Draw a diagram of the proton orbit, indicating the direc­tion that the proton travels, clockwise or counterclockwise. Ex­plain briefly. (b) What is the speed v of the proton, in terms of the known quantities 10, R, r, M, and e? Explain your work, including any approximations you must make. (c) The current was constant for a while, but at a certain time t= to it began to decrease slowly, so that after to the current was 1100P = 1
0 

- k( t - t0) . On your diagram of the proton orbit, draw electric field vectors at four locations ( one in each quad­rant) and explain briefly. (d) When the current decreases, does the proton speed up or slow down? 

22.13: Problems 807 

22.P.39 A rectangular loop A very long, tightly-wound solenoid has a circular cross section of radius 3 cm ( only a portion of the very long solenoid is shown in the diagram) .  The magnetic field outside the sole­noid is negligible. Throughout the inside of the solenoid the magnetic field B is uniform, to the left as shown, but varying with time t: B = [0.07 + 0.03t2] tesla. Surrounding the circular solenoid is a loop of 4 turns of wire in the shape of a rectangle 10 cm by 1 5  cm. The total resistance of the 4-turn loop is 0.1 ohm. 
4 turns 0.1 ohm 10 cm 

A long solenoid inside a rectangular coil. (a) At t = 2 seconds, what is the direction of the current in the 4-turn loop? Explain briefly. (b) At t = 2 seconds, what is the magnitude of the current in the 4-turn loop? Explain briefly. 
22.P.40 Solenoid and ring A very long solenoid of length d and radius r1 is tightly wound uniformly with N turns of wire. A variable power supply forces a current to run in the solenoid of amount 11 = p- kt ,  where 
p and k are positive constants (so that the current is initially equal to p but decreases with time) . A circular metal ring of ra­dius r2 and resistance R is centered on the solenoid and located near the middle of the solenoid, very far from the ends of the solenoid (so that the solenoid contributes essentially no mag­netic field outside the solenoid) . 

Volts 
20 30 

1 0 0 40 + 
0 50 -

Very long solenoid radius r1 
N turns along length d A metal ring around a long solenoid. 

(a) What are the magnitude and the direction of the magnetic field at the center of the ring, due to the solenoid and the ring, as a functionifr the time t? Explain your work; part of the credit will be given for the clarity of your explanation, includ­ing clarity of appropriate diagrams. (b) Qualitatively, how would these results have been affect­ed if an iron rod had been inserted into the solenoid? Very briefly, why? 
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22.P.41 Oscilloscope and coils A thin coil of radius r1 = 4 cm, containing N1 = 5000 turns, is connected through a resistor R = 100 ohms to an AC power supply running at a frequency f = 2500 herl;l, so that the cur­rent through the resistor (and coil) is I1 sin (2n x 2500 t) . The voltage across the resistor triggers an oscilloscope which also displays this voltage, which is 10 volts peak-to-peak and there­fore has an amplitude of 5 volts (and therefore the amplitude of the current1 is I1 = 0.05 ampere) .  

AC power supply 

r2= 2 cm N2 = 3000 turns 
r1= 4 cm 
N1 = 5000 turns 

Oscilloscope 
5 volts,-

+: -
�---_L--+"1 

f- - � 0.4 msec Oscilloscope and coils. 
A second thin coil of radius r2 = 2 cm, containing N2 = 3000 turns, is a distance L = 40 cm from the first coil. The axes of the two coils are along the same line. The second coil is connected to the upper input of the oscilloscope, so that the voltage across the second coil can be displayed along with the voltage across the resistor. (a) Assume you have adjusted the VOLTS/DIVISION knob on the upper input so that you can easily see the signal from the second coil. Sketch the second coil voltage along with the resistor voltage on the oscilloscope display, paying careful at­tention to the shape and positioning of the two voltage curves with respect to each other. Explain briefly. (b) Calculate the amplitude (maximum voltage) of the sec­ond coil voltage. If you must make simplifying assumptions, state clearly what they are. 
22.P .42 A copper bar slides on rails A copper bar of length h and electric resistance R slides with negligible friction on metal rails which have negligible electric resistance. The rails are connected on the right with a wire of negligible electric resistance, and a magnetic compass is placed under this wire (the diagram is a top view) . The com-

pass needle deflects to the right of north, as shown on the dia-gram. 
® ® -.- North ! Resistance R 

® I 
I 

� ® h '  ® I 

X 

_L 

® ® ® 
B = Bo +  bt 

A copper bar slides on rails. 
Throughout this region there is a uniform magnetic field B pointing out of the page, produced by large coils which are not shown. This magnetic field is increasing with time, and the magnitude is B = B0 + bt, where B0 and b are constants, and t is the time in seconds. You slide the copper bar to the right and at time t = 0 you release the bar when it is a distance x from the right end of the apparatus. At that instant the bar is moving to the right with a speed v. (a) Calculate the magnitude of the initial current I in this circuit. (b) Calculate the magnitude of the net force on the bar just after you release it. (c) Will the bar speed up, slow down, or slide at a constant speed? Explain briefly. 
22.P.43 A wire and a rectangular loop A thin rectangular coil lies flat on a low-friction table. A very long straight wire also lying flat on the table, a distance z from the coil, carries a conventional current I to the right as shown, and this current is decreasing: I= a - bt, where t is the time in seconds, and a and b are positive constants. The coil has width w and height h, where h << z. It has N turns of wire with total resistance R 

I =  a - bt 

A thin rectangular coil lies on a low-friction table a distance z from a very long current­carrying wire. Not to scale: h << z. What are the initial magnitude and direction of the nonzero net force that is acting on the coil? Explain in detail. If you must make simplifying assumptions, state clearly what they are, but bear in mind that the net force is not zero. 
22.P .44 Power lines Tall towers support power lines 50 m above the ground and 20 m apart that run from a hydroelectric plant to a large city, carrying 60-hertz alternating current with amplitude 104 ampere. 
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That is, the current in both of the power lines 1s 
I =  ( 1 04 A) sin(2n  • 60 hertz · t) . 

I 
50 ill I 

I 
_j_ 

Base 

Power lines carrying alternating current. 

(a) Calculate the amplitude (largest magnitude) and direc­
tion of the magnetic field produced by the two power lines at 
the base of the tower, when a current of 104 ampere in the left 
power line is headed out of the page, and a current of 104 am­
pere in the right power line is headed into the page. 

(b) This magnetic field is not large compared to the Earth's 
magnetic field, but it varies in time and so might have different 
biological effects than the Earth's steady field. For a person ly­
ing on the ground at the base of the tower, approximately what 
is the maximum emf produced around the perimeter of the 
body, which is about 2 meter long by half a meter wide? 

22.P.45 A current-carrying wire moves toward a coil 
A long straight wire carrying current I is moving with speed v 
toward a small circular coil of radius r containing N turns, 
which is attached to a voltmeter as shown. The long wire is in 
the plane of the coil. ( Only a small portion of the wire is shown 
in the diagram.) 

1 Voltmeter 
X 

radius r 

A current-carrying wire moves toward a 
coil. 

At the instant when the long wire is a distance xfrom the center 
of the coil, what is the voltmeter reading? Include both magni­
tude and sign. (Remember that a voltmeter reads "+" if the 
higher potential is connected to the "+" terminal of the voltme-

22. 13: Problems 809 
ter.) Explain. State what approxim�tions or simplifying as­
sumptions you make. 

22.P .46 A moving superconducting ring 
A superconducting ring of radius R has a permanent conven­
tional current I in the direction shown and is oriented with its 
axis along the x axis. The ring is moving to the right along the x axis with uniform speed v. Calculate the electric field E 
(magnitude and direction) at location ( x, y, 0) relative to the 
center of the ring. If you must make any simplifying assump­
tions or approximations, state them explicitly. 

®1 

- t �_-_ _ ; ____ _  -_ _  -_ _ _ -<_•J 
®1 

A moving superconducting ring. 

J. 
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22.14 ANSWERS TO EXERCISES 

22.X.1 (page 778) Clockwise. 
22.X.2 (page 779) Counterclockwise. � 
22.X.3 (page 780) (1 ) no current. (2)  current. 
22.X.4 (page 780) 47.7 V/m 
22.X.5 (page 780) 7.5 amperes 
22.X.6 (page 781) 0.052 tesla-m2 

22.X. 7 (page 782) 20 volts; 8 V / m; 2 amperes 
22.X.8 (page 784) 7.9xl0-4 volts ; l .3xl0 3 V/m 
22.X.9 (page 784) 200 volts 
22.X.10 (page 784) 10 amperes; 20 times emf, but 20 times re­sistance 
22.X. 1 1  (page 785) Ammeter reading is positive. Remember that an ammeter reads positive if conven­tional current flows into the "+" terminal of the ammeter. 
22.X.12  (page 785) Ammeter reading is negative. 
22.X.13 (page 785) Current in loop runs clockwise, seen from above. 
22.X.14 (page 788) 0 
22.X.15 (page 788) 0.166  volts 
22.X.16 (page 792) The flux must still be equal to <1>0. Since the magnet is too far away to contribute, all the flux must be due to the induced current in the ring. 
22.X.17 (page 794) 4xl0-3 henry 
22.X.18 (page 798) 5000 hertz 
22.X.19 (page 800) In the first three cases, for the bulb labeled "bright" a loop can be drawn which consists of just that bulb plus a wire which en­circles the varying magnetic flux; for the bulb labeled "off' a loop can be drawn which consists of just that bulb plus a wire which does not encircle the varying magnetic flux. 1 )  lower bulb bright, upper off; 2) upper bulb bright, lower off; 3) up­per bulb bright, lower off. For the fourth case, neither bulb is in a loop that doesn't en­circle the varying magnetic flux. The current is smaller than in the other circuits, because the induced emf drives two bulbs in series. 
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