55nm high mobility SiGe(:C) pMOSFETs with HfO₂ gate dielectric and TiN metal gate for advanced CMOS

O. Weber^{1,2}, F. Ducroquet^{1,2}, T. Ernst¹, F. Andrieu¹, J.-F. Damlencourt¹, J.-M. Hartmann¹, B. Guillaumot³,

A.-M. Papon¹, H. Dansas¹, L. Brévard¹, A. Toffoli¹, P. Besson³, F. Martin¹, Y. Morand³ and S. Deleonibus¹

¹CEA/DRT-LETI - 17, Rue des Martyrs 38054 Grenoble Cedex 9, France, email : weberol@chartreuse.cea.fr

²LPM, INSA-Lyon, BP 69, 69621 Villeurbanne Cedex, France

³STMicroelectronics, 850 Rue J. Monnet 38926 Crolles Cedex, France

Abstract

For the first time, MOS transistors with compressively strained SiGe(:C) channel, metal gate and high-k dielectric are demonstrated down to 55nm gate length. SiGe(:C) surface channel pMOSFETs with HfO₂ gate dielectric exhibit a 10^4 gate leakage reduction and a 65% mobility enhancement at high transverse effective field (1MV/cm) when compared to the universal SiO₂/Si reference. With such a thin Equivalent Oxide Thickness (EOT=16-18Å), this represents the best gate leakage/mobility trade-off ever published.

Keywords : pMOSFET, High-k, SiGe(:C) and Metal Gate.

Introduction

HfO₂ is a leading high-k gate dielectric candidate to replace SiON in future CMOS technology generations [1]. However, the most serious drawback in integrating HfO₂ is the carrier mobility degradation. In this context, tensile strained Si channel is a promising solution [2]. The drive current enhancement is then larger for nMOSFETs than for pMOSFETs, inducing even more unbalanced CMOS layout and performances [3]. Today, the compressively strained SiGe (or pure Ge [4]) channel is the best candidate for hole mobility enhancement. Using a SiGe channel with an appropriate high-k gate dielectric makes it possible to get rid of a thick Si cap and thus take advantage of a surface channel operation [5]. In this paper, the benefits of an optimised HfO₂/SiGe interfacial layer are discussed. We demonstrate an excellent gate leakage/mobility trade-off for pMOSFETs with HfO₂ gate dielectric and well controlled 55nm gate length transistors using strained SiGe channels. Another advantage of using a SiGe surface channel in terms of CMOS threshold voltage (V_{th}) adjustment with a TiN gate is demonstrated.

Device fabrication

After isolation and well implants, the $Si_{0,72}Ge_{0,28}$ (or $Si_{0,715}Ge_{0,28}C_{0,005}$) epitaxial channel was selectively grown on Si(001) at 650°C by Reduced Pressure - Chemical Vapour Deposition (RPCVD). 0.5% of carbon was added in some of the SiGe layers to improve their thermal stability. A damascene replacement gate process (described in details in [6]) was used to make the TiN/HfO₂ gate stack (Fig.1). The crucial step was the surface preparation just before the high-k dielectric deposition. On samples A (SiGe_A), HfO₂ was directly deposited on the HF cleaned SiGe surface. On

Fig.1: SEM cross section of a 55nm gate length SiGe pMOSFET with a TiN/HfO₂ gate stack.

samples B (SiGe_B), the ozone cleaning was the same as for our silicon references and resulted in a native chemical oxide growth. This oxide is thicker on SiGe surfaces (=10Å) than on Si ones (=7Å) and exhibits high interface state densities (D_{it}). In order to avoid those degradations in our SiGe_B samples, a sacrificial silicon layer (3nm) was grown just after the epitaxy of SiGe. A Ge retrograde profile is then obtained due to the chemically non abrupt Si on SiGe interface. Thin films of HfO₂ were deposited using an Atomic Layer Deposition PULSAR 2000TM with a {HfCl₄,H₂O} chemistry. Post deposition annealing (PDA) was performed at 600°C or 800°C in N₂ followed by a CVD TiN metal gate deposition. Both processes (A and B) are summarized in Table 1.

HfO₂ gate dielectric characterization

The Equivalent Oxide Thickness (EOT) was calculated accurately by using capacitance measurements and a quantum mechanical simulator. Clean A (HF-Last) exhibits lower EOT than clean B due to a thinner thickness of the interfacial layer (10Å and 14Å, respectively) for the same PDA (800°C) (Fig.2-Left). For lower temperature PDA (600°C), the EOT of SiGe_B samples can be reduced to 16.5Å (insert). Process quality for SiGe_B devices is demonstrated by the perfect interface structural quality analysed by High Resolution Transmission Electron Microscopy (HRTEM) (Fig.2-Right). An interfacial layer physical thickness of 15Å is measured on $SiGe_B$ devices. In $SiGe_A$ devices, even if the interface roughness is worse, a thinner interfacial layer thickness is confirmed (average=12Å). The high interface quality observed for SiGe_B is confirmed by the lack of C-V curve stretching (Fig.3-Left). A D_{it} as low as 3-4.10¹¹ cm⁻².eV⁻¹ is obtained (Fig.3-Right). For the same flatband voltage (Vfb), a

Fig.3: Left-Gate capacitance versus gate voltage for $SiGe_A$ and $SiGe(:C)_B$ samples. Right-D_{it} energy distribution in the band-gap.

2004 Symposium on VLSI Technology Digest of Technical Papers

 V_{tb} shift (0.25V) is obtained in SiGe_B devices compared to Si ones due to the valence band offset. The V_{tb} is therefore adjusted by the channel material, so the advantages of a midgap metal gate are reinforced by a strained SiGe channel. For EOT=16.5Å, gate leakage current is reduced by 4 orders of magnitude compared to SiO₂/Si devices (Fig.4).

Fig.4: Left-Gate leakage (Jg) versus (Vg-V_{th}) for 3nm deposited HfO_2 pMOSFETs in inversion regime. Right-Jg (EOT) @ |Vg-V_{th}|=1V

Mobility results

In SiGe_B, a small capacitance loss (EOT=1Å) is observed in inversion due to the retrograde Ge profile at the interface (Fig.3-Left and Fig.5-Left). Mobility curves (extracted by split C-V measurements, Fig.5-Right) show this loss is not associated with Si parasitic channel conduction, even at high effective field. The 15% mobility degradation with the HfO₂/Si stack compared to universal mobility is consistent with previously reported results [6]. At 1MV/cm, the HfO₂/SiGe_B (HfO₂/SiGe:C_B) device exhibits a 58% (65%) higher mobility than the universal mobility and a 90% (100%) higher mobility than our HfO₂/Si references. The corresponding measured drain current enhancement is shown in Fig.6-Left. The lower mobility in SiGe_A devices is explained by the high interface state density (Fig.6-Right). The SiGe strain induced mobility enhancement is higher with HfO₂ than with SiO₂ [7-10] (Fig.7-Left). This represents the best gate leakage/mobility trade-off in pMOSFETs for such a thin EOT [5],[11-12] (Fig.7-Right).

Fig.5: Left-quantum mechanical simulation of the gate to channel capacitance (Cgc) in SiGe_B. Right-Effective hole mobility versus effective field for the various channel-gate dielectric stacks.

Fig.6: Left-Drain current enhancement on long channel pMOSFETs. Right-Coulomb scattering impact on effective hole mobility.

Fig.7: Left-Mobility enhancement at 1MV/cm compared to the SiO₂/Si universal mobility (open symbols) and to the HfO₂/Si reference (full symbols). Right-Mobility at 1MV/cm versus T_{inv} compared to literature results.

55nm gate length devices characteristics

Well controlled 55nm gate length transistors with reduced Drain Induced Barrier Lowering (DIBL) are obtained (Fig.8 and Table 2). An adjusted V_{th} (V_{th} =-0.3V) is achieved thanks to the SiGe channel which allows an improved $I_{on}(260\mu A/\mu m)/I_{off}(40n A/\mu m)$ ratio @ Vdd=1.5V for high-performance applications. The V_{th} shift induced by the band offset of the channel material is of great interest since it is well established that dual metal gates with work-functions within about 0.2eV of the band edges will be required for sub-50nm high-performance CMOSFETs [13]. In this context a strained Si/strained SiGe (or Ge) for N/P dual channel [14] is a promising CMOS architecture to solve both the mobility and the metal work-function issues in mid-gap metal/high-k gate stacks.

Conclusion

An excellent gate leakage/mobility trade-off is achieved by optimising the $HfO_2/SiGe(:C)$ interface. The advantage of the SiGe(:C) surface channel in advanced CMOS concerning the hole mobility enhancement and the threshold voltage adjustment in mid-gap metal/High-k gate stacks is clearly demonstrated.

References

H. Iwai et al., IEDM Tech. Dig, pp.625-628, 2002
S. Datta et al., IEDM Tech. Dig, pp.653-656, 2003
K. Rim et al., Symp. VLSI Tech., pp.98-99, 2002
M. L. Lee et al., IEDM Tech. Dig, pp.429-432, 2003
Z. Shi et al., IEEE EDL, 24 (1), pp.34-36, 2003
B. Guillaumot et al., IEDM Tech. Dig, pp.355-358, 2002
F. Andrieu et al., ESSDERC, pp.267-270, 2003
P. Bouillon et al., IEDM tech. Dig, pp.559-562, 1996
N. Collaert et al., Si. Nano. Workshop, pp.15-16, 2002
Y. C. Yeo et al., IEEM Tech. Dig, pp.753-756, 2000
D. Wu et al., IEEE EDL, 24 (3), pp.171-173, 2003
C. H. Huang et al., Symp. VLSI Tech., pp.119-120, 2003
I. De et al., Solid State Elec., (44), pp.1077-1080, 2000
Q. Xiang, US Patent #6,600,170 B1, published Jul. 2003.

2004 Symposium on VLSI Technology Digest of Technical Papers