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Superresolution Video Reconstruction with Arbitrary
Sampling Lattices and Nonzero Aperture Time
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Abstract— Printing from an NTSC source and conversion
of NTSC source material to high-definition television (HDTV)
format are some of the recent applications that motivate su-
perresolution (SR) image and video reconstruction from low-
resolution (LR) and possibly blurred sources. Existing methods
for SR image reconstruction are limited by the assumptions
that the input LR images are sampled progressively, and that
the aperture time of the camera is zero, thus ignoring the
motion blur occurring during the aperture time. Because of the
observed adverse effects of these assumptions for many common
video sources, this paper proposes i) a complete model of video
acquisition with an arbitrary input sampling lattice and a nonzero
aperture time, and ii) an algorithm based on this model using
the theory of projections onto convex sets to reconstruct SR
still images or video from an LR time sequence of images.
Experimental results with real video are provided, which clearly
demonstrate that a significant increase in the image resolution can
be achieved by taking the motion blurring into account especially
when there exists large interframe motion.

Index Terms—Superresolution, video stills, video resampling,
standards conversion.

I. INTRODUCTION

W ITH THE availability of frame grabbers capable of
acquiring multiple frames of video, there is a growing

interest in superresolution image and video reconstruction (SR
reconstruction), whereby multiple frames are used to overcome
the inherent resolution limitations of a low-resolution (LR)
camera system. SR reconstruction proves useful in many
practical applications, including printing SR stills from video,
where it is often desirable to enlarge an image and increase
the detail. Because video signals are commonly interlaced,
creating SR stills requires a combination of deinterlacing and
removing acquisition degradations. Some other applications
are conversion from NTSC video to a high-definition television
(HDTV) standard, and creation of synthetic “video zoom,”
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where a region of the video display is enlarged by some factor
and then replayed.

SR reconstruction methods consist of three basic compo-
nents: i) motion compensation, ii) interpolation, and iii) blur
and noise removal, which can be implemented separately or
simultaneously. Motion compensation is used to map the pixels
from all available LR frames to a common reference frame.
The motion field can be modeled in terms of a set of individual
motion vectors (which can be estimated at each pixel with a
technique such as block matching [1]), or by warping map-
pings such as affine or perspective transformations [2] (which
can be estimated as in [3]). The second component, interpola-
tion including sampling lattice conversion, refers to mapping
the motion-compensated pixels onto a rectangularly sampled
SR grid. The third component, blur and noise removal, is
needed to remove the sensor blurring and optical blurring.
We note here that the existing methods account for blurring
due to nonzero aperture size (sensor blur), but not due to
nonzero aperture time (motion blur). This paper demonstrates
that motion blurring is a significant source of degradation when
there exist large interframe motion (high action video); and
then, superresolution and sampling lattice conversion should
be handled simultaneously (in a unified framework) with
motion-blur modeling. This unified framework is the video
formation model proposed in Section II.

When the three components of SR reconstruction are treated
in separate processing stages, as in [4] and [5], the interpo-
lation proceeds without regard for the physical degradations
in the LR image formation process. These methods are only
applicable when the blurs are the same for all LR frames, and
can effectively be modeled as a single blur function acting
on the resulting SR image. When nonzero aperture time is
considered, the motion model would then have to be restricted
to constant velocity, uniform translational motion. Further, this
method is suboptimal, since the restoration stage is vulnerable
to errors made in the interpolation stage. A frequency domain
formulation that addressed the interpolation step was originally
proposed by Tsai and Huang [6]. This approach, which makes
explicit use of the aliasing relationship under the assumption
that the SR image is bandlimited, was extended by Kimet al.
[7], [8] as a least squares problem where noise and linear
shift-invariant (LSI) blurring in the LR images are taken
into account, thus simultaneously solving the interpolation
and restoration portions of the SR problem. Tomet al. [9],
on the other hand, apply the expectation-maximization (EM)
algorithm to simultaneously solve the restoration and motion
estimation problems. Their algorithm is also implemented in
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the frequency domain, so like the SR method proposed in [7],
[8], it is limited to global translational motion between LR
frames and LSI blur functions.

An iterative class of image domain algorithms have also
been proposed for SR reconstruction of progressively sampled
LR images, that allow for more flexibility in modeling the
imaging process, since they can correct for linear shift varying
(LSV) degradations. These algorithms simultaneously solve
the restoration and interpolation problems by posing a model
relating the LR images to the desired SR image, and then
using iterative reconstruction techniques to estimate the SR
image. In one such algorithm, Stark and Oskoui [10] propose
using the method of projections onto convex sets (POCS),
and account for the blur caused by the LR sensor geometry.
Tekalp, Ozkan, and Sezan [4] also use a POCS formulation
and in this case the sensor noise is taken into account in
addition to the blur caused by the physical dimensions of the
sensor. Both of these POCS-based methods are applied to LR
images whose relative motion is described by translations only.
Also, they both assume that the aperture time is negligible.
A similar formulation of the problem is given by Irani and
Peleg [11], in which the method of averaging projections
[12] is used to iteratively solve for the SR image. This
algorithm is applied to the case of translational and rotational
motion between the LR frames, but does not model the noise
process. Mann and Picard [13] have extended Irani and Peleg’s
method by incorporating a perspective motion model into the
image acquisition process. Later, Irani and Peleg [14] have
posed a slightly different formulation to take into account
more general interframe motion modeling, such as an affine
model. Here, an iteration is used that can be shown to be
equivalent, in certain cases, to the Landweber iteration [15].
Again, this method does not model the noise. The Landweber
iteration is also used by Komatsuet al. [16], where they
solve the slightly different problem of SR reconstruction
from multiple LR cameras. Their motion model is restricted
to translations, and they interpolate the LR images to the
SR size, then use block matching to compute a vector for
every pixel location. Later, they extend their method to the
case of multiple cameras with different sensor element sizes
[17]. The basic sampling pattern for each sensor, however, is
rectangular.

There also exist Bayesian methods for SR image recon-
struction that use a statisticala priori model for the SR
image, and simultaneously solve the restoration and inter-
polation problems by using a maximuma posteriori (MAP)
or maximum likelihood (ML) formulation. Cheesemanet al.
[20] use Gaussian models for all distributions, and estimate
both the SR image and the LR image registration parameters
(in the general case, they use a six-parameter affine model)
with Jacobi’s method to iteratively solve the problem. In their
method, the sensor point spread function (PSF) can be taken
into account; however, the resulting optimization becomes
extremely ill-posed. Shultz and Stevenson [19], [20] use a
Huber–Markov–Gibbs model for thea priori SR image model,
which is intended to preserve edges while providing a global
smoothness constraint. In their formulation, the blur function,
modeling sensor blur caused by the dimensions of the LR

sensor, is an input to the algorithm. The input data is only
considered to be sampled on a progressive lattice.

Although most of the above methods do consider blurring
due to nonzero aperture size, they all ignore blurring that
occurs during the aperture time, and do not allow for a general
description of the sampling lattice used. Sensor aperture time
modeling in the framework of the image sequence restoration
problem has been proposed by Trussell and Fogel [21], but
in this case the sequence of input images are progressively
sampled, and the objective is to remove blur degradations,
not to increase the spatial sampling density. Since many
consumer video cameras use a relatively large aperture time
and are interlaced, it is important to consider arbitrary input
lattices and correct for motion blurring due to nonzero aperture
time. Also, since the motion blur is in general space-varying
and varies from one frame to another, resampling over a
denser rectangular lattice and deblurring cannot be performed
separately. The combination of modeling and POCS formu-
lation we propose will allow simultaneous interpolation from
nonrectangular sampling structures and removal of aperture
time effects.

To this effect, this paper proposes a novel SR algorithm to
process LR imagery sampled on an arbitrary spatio-temporal
lattice, and that takes into account a nonnegligible aper-
ture time. SR imagery output on an arbitrary lattice can be
computed by appropriately subsampling a sequence of pro-
gressively sampled SR images, thus providing the capability
to convert from interlaced NTSC sampling lattices to higher
resolution HDTV lattices. The remainder of this paper is
organized as follows. The model relating the input LR video
to a SR version of this video, via an LSV PSF, is delineated in
Section II. In Section III, the modeling is used in conjunction
with the method of POCS, to derive an algorithm for SR
reconstruction. The effectiveness of the proposed algorithm
is demonstrated in Section IV by application to real video
sequences.

II. M ODELING

In this section we present a model that serves to unify
the problems of sampling lattice conversion and SR image
reconstruction in the presence of nonzero aperture time. Before
beginning, we note that because the motion blurring caused
by a nonzero aperture time will in general be space and time
varying, it cannot be factored out of the SR restoration problem
and performed as a separate postprocessing step. Thus, our
modeling will directly include the aperture time effect from
the beginning.

Conceptually, continuous LR imagery is the spatio-temporal
intensity distribution at the focal plane of the camera, where
the sensor is placed. The observed, or sampled LR imagery
is found at the output of the camera sensor. Continuous SR
imagery is defined as the spatio-temporal intensity distribution
at the focal plane of the camera, as it would exist if it were
not effected by the degradations introduced by the LR camera
system. In modeling the LR imaging process, we account for

1) motion (caused by movement of the LR camera or
changes in the contents of the scene);
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Fig. 1. Video formation model.

2) a nonzero sensor aperture time;
3) nonzero physical dimensions for each individual sensor

element (i.e., giving rise to a particular image pixel);
4) blurring caused by the imaging optics;
5) sensor noise;
6) sampling of the continuous scene on an arbitrary

space–time lattice.

The proposed model is delineated as follows. First, a
video formation model is described. Motion modeling is then
included into the video formation model, which results in an
LSV system. Next, a discretization is presented to relate a
discrete version of the SR image to the observed LR imagery:
The result is a discrete LSV system. To preserve generality
in the presentation of the overall model, the motion modeling
in this section is generic. An important problem, however,
is how to actually compute the resulting discrete LSV blur
function for a specific motion model, such as an affine model.
Therefore, in the Appendix we provide a practical method
for computing the discrete LSV blur function when various
motion models are considered as a part of the overal modeling
presented in this section.

A. Video Formation

The proposed video formation model is depicted in Fig. 1,
where the input signal denotes the continuous SR
imagery in the focal plane coordinate system The
effects of the physical dimensions of the LR sensor (i.e., blur
due to integration over the sensor area) and the optical blur
(i.e., out-of-focus blur) are modeled in the first stage of the
figure. There, the SR imagery is convolved with
the kernels and which represent
the sensor and the focus blurs, respectively. Both kernels are
functions of time, but we restrict them to be constant over
the aperture time (next stage). The focus blur and aperture
dimensions are thus allowed to differ from frame to frame.
This is useful for modeling the case of multiple LR cameras,
and/or focus changes.

The sensor aperture time is modeled in the second stage of
the figure by an integrator whose output is given by

(1)

where denotes the sensor aperture time. Note that the first
two stages commute, since the first is spatially LSI, and the
second is temporally LSI.

The third stage in Fig. 1 models sampling using the arbitrary
space-time lattice The output of this stage is denoted
by As a matter of convention, integer values

and that appear as a function argument, are
interpreted as in

(2)

where denotes the matrix that specifies the sampling
lattice [22], and denotes the transpose operation. In the last
modeling step, additive noise due to the LR sensor is added
to the sampled video signal.

B. Including Motion: The LSV System

We now incorporate a motion model into the video forma-
tion model to establish an LSV relationship between the LR
imagery and the desired SR image at a fixed but arbitrary time

By appropriately setting the value(s) of a single (still)
SR image or a sequence of SR images (i.e., SR video) can
be reconstructed.

When a motion model is incorporated into the image
formation model, the first two stages in Fig. 1 can be combined
to form a single LSV relation. We begin by considering motion
as in

(3)

where denotes and is a transformation
relating the position of an intensity at time to its
position at time This equation expresses the well-
known assumptions of intensity conservation along motion
trajectories. By letting the
output of the first modeling stage can be expressed as

(4)

By making the change of variables and
using (3), (4) becomes

(5)

where denotes the inverse transformation, denotes
the Jacobian of and denotes the determinant operator.
It is evident from (5) that the first stage of the model has been
transformed into an LSV operation, acting on a SR image at
time To reflect this fact, we let

(6)

denote the LSV PSF modeling the effect of the sensor geome-
try, focus blur, and relative motion. This equation demonstrates
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Fig. 2. Effect of the blur function warping is demonstrated.

an effective sensor warping, which is depicted in Fig. 2. In the
figure, the picture to the left represents the imaging process at
time where a sensor element is imposed on the picture. The
picture to the right shows the equivalent imaging process at
time Notice the warping applied to the aperture in going
from time to is the inverse of the warping applied to the
image. Rewriting (5) in LSV form yields

(7)

The second modeling stage can now be expressed as

(8)

By changing the order of the integrations, the above becomes

(9)

where

(10)

Thus, the first two stages of the model have been combined
into a single LSV system, acting on the continuous SR image
at time This allows us to write the observed LR imagery
in terms of a continuous SR image at time as

(11)

where is the effective LSV PSF, and the integer ar-
guments and have the same interpretation as in
(2).

C. Discretization

It is desirable to discretize the LSV blur relationship in
(11), to relate the observed LR images to a discrete version
of Thus, a discrete superposition summation of
the form

(12)

Fig. 3. Depiction of the discrete LSV PSF for the case of translational
motion.

will now be formulated. We assume that the continuous
imagery is sampled on the two-dimensional (2-
D) lattice (i.e., are integers that specify a point
in by a SR sensor, to form

An individual SR sensor element (giving rise to a single SR
image pixel) is assumed to have physical dimensions, which
can be used as a unit cell for the lattice and to have
a uniform response over its support. Thus, the space of the
focal plane is completely covered by the SR sensor. The term

is used to denote the unit cell shifted to the
location specified by With this definition, and with
the assumption that is approximately constant
over (11) can be written as

(13)

By comparing (12) with (13), it is evident that

(14)

where the integer arguments and are inter-
preted as in (2).

A pictorial example of the discrete LSV PSF formulation,
with a rectangular SR lattice is provided in Fig. 3. In the
figure, it is assumed that the motion is purely translational,
that a square LR sensor geometry (outlined in bold) is used,
and that there is no focal blur. The space is the sensor
focal plane at time The focal plane is shown covered by
shifted SR sampling unit cells The LR sensor area
is shown outlined in bold, and the larger of the two shaded
regions shows the region of the focal plane “swept” by the
LR sensor during the aperture time The discrete LSV
PSF specified in (14) is formed by computing the duration
of time a given area of the LR sensor “dwelled” over the
region while translating from the dotted outline
at the aperture opening time, to the bold outline at the aperture
closing time. Note that the result indicated by (14) does not
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specify a simple area of overlap between the large shaded
region of the figure and the SR sampling regions

Because the blur PSF (14) is LSV when the sampling
geometry is not progressive and/or when the motion is not
a global translation between frames, the solution method for
SR reconstruction should be capable of processing LSV blurs.
Both the Landweber iteration and POCS methods have this
property. The POCS solution delineated in the next section,
however, has a mechanism for adapting to space-varying prop-
erties of the additive noise, whereas the Landweber iteration
does not because it converges to the inverse of the least squared
error solution.

III. T HE POCS SOLUTION

We propose a POCS based solution to the SR reconstruction
problem. The method of POCS requires the definition of closed
convex constraint sets within a well-defined vector space, that
contain the actual SR image. An estimate of the SR image is
then defined as a point in the intersection of these constraint
sets, and is determined by successively projecting an arbitrary
initial estimate onto the constraint sets.

Associated with each constraint set is a projection operator
mapping an arbitrary point within the space to the closest

point within the set. Relaxed projection operators,
can also be defined and used in finding

an estimate in the intersection set. For a detailed review of
POCS, please see [23].

We define the following closed, convex constraint sets, one
for each pixel within the LR image sequence

(15)

where

(16)

is the residual associated with an arbitrary member,of the
constraint set. We refer to these sets as the data consistency
constraint sets. Note that sets can be defined
only where the motion information is accurate. It is there-
fore a simple task to incorporate occlusion and uncovered
background knowledge, by only defining sets for appropri-
ate observations. This type of flexibility is an advantage of
the POCS-based solution. The quantity is a
bound reflecting the statistical confidence, with which the
actual image is a member of the set Since

where denotes the actual
SR image, the local statistics of are identical
to those of Hence the bound is
determined from the possibly space and time-varying statistics
of the noise process, so that the actual image (i.e., the ideal
solution) is a member of the set within a certain statistical
confidence. Thus, the POCS solution will be able to model
space- and time-varying white noise processes.

The projection of an arbitrary
onto can be defined as [24]

(17)

where the “” function argument is interpretted as meaning
“ .”

Additional constraints such as bounded energy, positivity,
and limited support can be utilized to improve the results.
Here, we also use the amplitude constraint set

(18)

with amplitude bounds of and The projection
onto the amplitude constraint set is defined as a clip-

ping operation such that limits
to values between and

Given the above projections, an estimate, of
the SR image is obtained iteratively from all LR
images where constraint sets can be defined, as

(19)

where denotes the composition of the relaxed projection
operators projecting onto the family of sets
The initial estimate, is obtained by bilinearly
interpolating one of the LR images to the SR grid, and
then motion compensating. The remaining LR images can be
similarly used to estimate the borders of the SR image.

A pictorial depiction of the proposed POCS method is given
in Fig. 4. The LSV blur relates a region (shaded) of the current
SR image estimate, say to a particular pixel intensity

in one of the LR images. The residual term
is then formed, which indicates whether or

not the observation could have been formed from the current
SR image estimate (within some error bound determined by

and therefore whether the SR estimate belongs
to the data consistency set If it is not in
the set (i.e., the residual is too large), the projection operator

backprojects the residual onto the current SR
image estimate [the additive term in (17)], thus forming a
new estimate of the SR image that does belong to the set

and therefore could have given rise to the
observation within the bound
Performing these projections over every LR pixel where a
consistency constraint set is defined completes the composite
projection referred to in (19). Subsequent
projection onto the amplitude constraint set completes a single
iteration of the POCS algorithm. In theory, the iterations
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Fig. 4. Pictorial depiction of the POCS based reconstruction algorithm.

continue until an estimate lies within the intersection of all the
constraint sets. In practice, however, iterations are generally
terminated according to a certain stopping criterion such as
visual inspection of the image quality, or when changes
between successive estimates, as measured by some metric
(i.e., using the norm), fall below a preset
threshold.

One possible implementation of the POCS-based recon-
struction algorithm is as follows.

1) Choose the reference frame, and thus the reference time
.

2) Estimate motion to satisfy (3):

a. spatially bilinearly interpolate each LR image
to the SR image grid;

b. estimate motion from each interpolated LR image,
to the interpolated LR image at .

3) Define sets according to (15), for each
pixel site where the motion path is accurate.

4) Compute the blur for every site
where the sets have been

defined.
5) Estimate by motion compensating one of

the interpolated images from step 2 (use the other LR
images in a similar manner for estimating the borders).

6) For all sites where the sets
have been defined:

a. compute the residual according
to (16);

b. backproject the residual using
the projection in (17).

7) Perform the amplitude projection based on (18).
8) If the stopping criterion is satisfied then stop, otherwise

go to 6.

IV. RESULTS

We have conducted three experiments to demonstrate the
performance of the proposed SR image reconstruction al-
gorithm. The digitized data for each experiment has been
acquired using consumer grade imaging and capture devices,
and the motion and blur functions will need to be estimated
from the data. These experiments show upsampling from
diamond and interlaced lattices when motion blur is negligible,
and clearly show the importance of modeling the aperture time
when the interframe motion is large.

The first experiment uses LR images acquired using a digital
camera placed at different positions against a stationary target.
This camera uses a color filter array (CFA) that samples the
green channel on a nonrectangular diamond-shaped grid. We
will process only the green channel in this first experiment.
To create a color SR image, we can separately process the red
and blue channels as well, and combine these with the result
from the green channel processing. In the second experiment,
we consider an interlaced LR video sequence obtained by
digitizing the S-video output of a Hi-8 tape, recorded and
played back by a consumer grade Sony Hi-8 camcorder. The
third experiment uses input LR video captured by digitizing the
live feed from the S-video output of the same Hi-8 camcorder.
In the first two cases, relative motion is not excessive, and the
effect of the aperture time is negligible. In the last experiment,
motion is sufficiently large and the effect of aperture time is
nonnegligible. In both the second and third experiments, we
convert the digitized color signal to a luminance signal, and
only process the luminance. Although the camcorder may have
a CFA pattern, we do not have direct access to the CFA output,
and as a result treat the grabbed LR data as if it originates
from a luminance charge coupled device (CCD) array sensor.
Color images could be obtained by processing the chrominance
channels as well, and combining the results.

In all experiments, the proposed algorithm is used to simul-
taneously resample a reference LR image over a progressive
grid, increase the sampling density of this grid by a factor of
two in both dimensions, and undo the effects of sensor and
optical blurs. Since we have not yet discussed how the motion
information that is included in the model should be estimated
in practice, that discussion comes next. Then, each of the three
experiments are described in detail. In each experiment, the
blur PSF is computed using the methods detailed in the
Appendix.

A. Estimating Motion

The complexity of the modeling described in Section II,
for computing the blur PSF is determined by the
motion model. In the simplest case, the motion from the LR
images to the reference can be modeled as a spatially uniform
translation. In practice, however, we have found this model to
be inadequate. As a result, this section uses hierarchical block
matching (HBM) methods to estimate nonuniform translational
motion, and also affine motion models and estimators. In
either case, the performance of the proposed POCS-based SR
algorithm will ultimately be limited by the effectiveness of
the motion estimation and modeling. We use HBM in the first
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TABLE I
BLOCK MATCHING PARAMETERS FOR THE DIGITAL CAMERA EXPERIMENT

experiment to show that when the aperture time is negligible
and the nontranslational components of the actual motion
are small, this nonparametric motion estimation method is
effective. In all cases, the input LR images are bilinearly
interpolated over a LR, progressive grid, for the purpose of
motion estimation.

In the case of block matching, the motion is assumed to be
locally translational. When other warping effects are small, this
approximation can be quite effective, as our experiments will
demonstrate. The HBM method of Bierling [1] is used to esti-
mate the nonuniform motion field. The matching criterion used
is the mean absolute difference (MAD) between measurement
blocks. At each level in the hierarchy, a log-D type search is
used, where the following parameters are tabulated for each
experiment. The maximum horizontal/vertical displacement
(Max Disp. hor./vert.) is the displacement used in the first
step of the log-D search. The horizontal/vertical measurement
window size (Window Size hor./vert.) is the size of the window
over which the MAD is computed. The horizontal/vertical
filter size (Filter Size hor./vert.) specifies the support of a
Gaussian filter, with variance set to one-half of the support
size. The step size is the horizontal and vertical distance
between neighboring pixels in the reference image for which
an estimate of the motion is computed, the subsampling factor
(SSF) is the horizontal and vertical subsampling used when
computing the MAD over the measurement window, and the
accuracy of estimation is in terms of the sampling period of
the progressive LR lattice. The parameter values for HBM are
shown in Table I. Note that all units for the parameters are
relative to the spatial sampling period of a progressive LR
lattice (i.e., refinement to one-quarter-pixel accuracy, relative
to the progressive LR lattice, is performed in the final level
of HBM).

The second and third experiments model the interimage
motion using the global affine transformation defined by the
parameters - in

(20)

This parametric modeling method is more descriptive of the
actual imaging process, so the resulting blur computation
will be more accurate, as well as more involved. Also, the
spurious inaccurate vectors that can be introduced by HBM are
eliminated. The technique we use to estimate the parameters

is summarized by Bergenet al. [3], and is based
on a Taylor series expansion of the optical flow equation.
This method requires spatial and temporal derivatives to be

Fig. 5. Graphical depiction of the computing for the LSI blur function
h0

2
(x1; x2; t; tr):

estimated. The spatial derivatives are estimated using a 2-
D second-order polynomial least-squares fit over a 55
window centered at each pixel, while the temporal derivatives
are computed using a two-point finite forward difference at
each pixel. Prior to estimating these derivatives, the images
are blurred using an 11 11 pixel uniform blur to reduce the
effects of noise.

B. Digital Camera Experiment

In this experiment, we use a digital camera to acquire
multiple LR images. The camera uses a CFA that samples
the green channel over a diamond grid. Six LR images of
a stationary text target are acquired, with the camera being
placed on a table in approximately the same position for each
picture. Because of the approximate camera placement, the
images contain relative motion. The goal of this experiment
is to simultaneously convert one of the LR images from the
diamond grid to a progressive one, undo the effects of sensor
and optical blurs, and increase the density of the progressive
grid by a factor of two in both spatial dimensions. The aperture
time is considered to be negligible in this experiment, and LR
images of size 130 142 (horizontal by vertical, relative to
a rectangular grid) are cut from the same location in the full
size images.

The six LR images are shown in Fig. 7, parts “a”–“f,” where
they have been bilinearly interpolated for display purposes, to
fill a rectangular sampling grid. The image in part “a” is taken
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Fig. 6. Demonstration of the approximation used for affine and perspective
warps.

TABLE II
ESTIMATED AFFINE MOTION PARAMETERS FOR THESECOND EXPERIMENT

as the reference, and motion is estimated from each LR image
to the reference using the parameters shown in Table I. Motion
estimation is performed on the bilinearly interpolated images
shown in the figure, so the vectors are relative to a rectangular
LR grid. The horizontal and vertical dimensions of the LR
sensor are taken to be twice the size of the corresponding
SR sensor element dimensions, and the sensor is taken to
have a square support with uniform response. The optical blur
function is assumed to be Gaussian with unity variance,
and have a 5 5 support, in terms of the sampling period
of the SR image.

The POCS algorithm is initialized using the image shown
in in Fig. 7, part “g.” The relaxation parameter, in (19)
is set to 0.1, the parameter is assumed to be
0.01, and the minimum and maximum allowable grey levels
are 0 and 255, respectively. This choice of parameters leads
to fairly rapid convergence, which is measured in terms of
visual quality. The sensitiviy of the POCS algorithm to these
parameters has been addressed under similar constraint sets
in [25]. The POCS result after 20 iterations is shown in part
“h.” We chose 20 iterations simply because no visual changes
are detectable in the SR estimates at this point. It is clear
from the pictures that the proposed algorithm has created a
SR image with considerably more resolution than is seen in
the LR images. The reason for some of the aliasing artifacts

Fig. 7. Results from the digital camera experiment. Parts a–f are the LR
images, converted to a rectangular sampling grid for display using bilinear
interpolation. Part g is the SR image computed using bilinear interpolation,
and part h is the POCS result.

that are apparent in the resulting SR image is due to only
using six LR images; the problem becomes underdetermined
with six images, since we need at least eight LR images to
have the same number of unknowns as equations.

C. Camcorder Experiment: Negligible Aperture Time

In this experiment, we use a Hi-8 camcorder to acquire
interlaced LR images. The camcorder is hand held while
aimed at the target scene, and the video is recorded on an
Hi-8mm tape. The target is a cardboard containing musical
notes, and is not perfectly planar. Six frames (12 fields) of
the taped video are captured by frame grabbing the output
of the camcorder during playback. The motion in the scene
is due to the movement of the hand-held camera and is not
excessive. The effect of the aperture time is considered to be
negligible. We apply the proposed algorithm to simultaneously
convert from an interlaced sampling lattice to a progressive
one, increase the sampling density by a factor of two in both
horizontal and vertical directions, and reduce the effects of
sensor and optical blurs.

The 12 LR fields of size 80 40 are cut from the same
location in each of the grabbed fields, and are shown in Fig. 8,
parts “a”–“l.” The field shown in part “a” of the figure is
taken as the reference image, and the affine motion parameters
listed in Table II are estimated using the previously discussed
method. All of the POCS parameters are set to the same values
as in the previous experiment. The initialization obtained using
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TABLE III
ESTIMATED AFFINE MOTION PARAMETERS FOR THE THIRD EXPERIMENT

bilinear interpolation is shown in Fig. 8, part “m,” and the
POCS result after ten iterations is shown in part “n.” Again,
it is clear from the pictures that the POCS result has created
an SR image with considerably more resolution than is seen
in either the LR images or the bilinear interpolated SR image.
This experiment is important, since anyone with access to a
consumer camcorder could obtain such LR images.

D. Camcorder Experiment: Nonnegligible Aperture Time

The third experiment uses LR interlaced video that is
captured by grabbing the live S-video output from the same
Hi-8 camcorder used in the previous experiment. In this case,
the motion during the aperture time is nonnegligible, and
we demonstrate the use of our algorithm in the presence of
interlaced video effected by motion blurring. An SR image is
reconstructed over a progressive grid that is two times denser
in both dimensions than that of the given frames (so for a
given field, the upsampling is by two horizontally and by four
vertically).

Motion blur is introduced by imaging a moving poster board
containing both text and pictorial information. The camera
aperture time is set to seconds, which is its default
setting. Five interlaced, digital, LR frames (ten fields) are
acquired by connecting the S-video output of the camcorder
to a frame grabber. LR fields of size 90 45 are then cut
out from the grabbed images to form the inputs to our SR
algorithm. The cutouts are chosen to contain approximately
the same portion of the scene, so they do not come from
the same spatial location in every image. The cutting process
accounts for a significant global translational motion, and
as a result, when motion is estimated between the cutouts
this shift is taken into account. These cutouts are shown
deinterlaced by bilinear interpolation in Fig. 9, parts “a”–“j,”
where deinterlaced images are used to make it easier to gain
a feel for the motion blurring. Motion is estimated from each
deinterlaced LR cutout image to the reference image, chosen
as image “a” in the figure, using the previously discussed
affine motion estimation method. The results of the motion
estimation are tabulated in Table III, along with the relative
global shifts incurred during the cutting process (the coordinate
system is anchored at the top left corner of the image, with the
horizontal component increasing in the left–right direction, and
the vertical component increasing in the top–bottom direction).
Using the information furnished in the table, the blur is

Fig. 8. Results from the negligible aperture time Hi-8 camcorder experiment.
Parts a–l are the LR fields. Part m is the SR image computed using bilinear
interpolation, and part n is the POCS result.

computed as described in the Appendix, for the case of an
affine motion model. To initialize the POCS algorithm, the
LR image labeled “j” is chosen as the best image.

Three results are shown in Fig. 9, parts “k,” “l,” and “m.”
The first SR image, “k,” is produced by applying bilinear
interpolation to initialize the POCS algorithm. The second
SR image, “l,” is the result of applying the proposed POCS
algorithm when the aperture time is ignored. For this image,
the same POCS parameters as in the first experiment are used,
and the image is the result of ten iterations. The last SR image,
“m,” is the result of applying the proposed POCS algorithm
when the aperture time is taken into account. The resolution
in this SR image is far greater than in the other two images,
and since we have shown the POCS method to be effective
when the aperture time is indeed negligible, the importance of
modeling the aperture time is evident.

To both more fully appreciate this result and provide a
more realistic sized image for viewing, a larger section of
the same processed image is shown in Fig. 10. In the figure,
the color channels have been included. There is no noticeable
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Fig. 9. Results from the nonnegligible aperture time Hi-8 camcorder experiment. Parts a–j are the LR images deinterlaced using bilinear interpolation.
Part k is the SR image computed using bilinear interpolation of the reference image shown in j. Part l is the SR image obtained if the aperture time is
ignored, and part m is the SR image resulting from the proposed POCS algorithm.

difference resulting from applying the SR procedure to the
chrominance channels, or simply bilinearly interpolating them,
so the bilinearly interpolated versions are included. Notice that
in the POCS result the strip of film furthest to the right (top
portion of the picture) can be seen to contain a saxophone
with a hand on it, and that on the film strip immediately to
the left is text with the letters “A” and “L.” The source of
the ringing artifacts is most likely due to our assumption that
the acquired video data came directly from a CCD sensor.
This is not the case, since the CCD data within the camera
has already been processed and converted to the NTSC format
before our digitization. We are forced to make this assumption,
since in practice we do not have access to the internal camera
CCD data. Given the blur support sizes (as high as 2525),
however, we do not believe this ringing is excessive.

As part of this experiment, we also demonstrate the efficacy
of using multiple (as opposed to only a single) LR fields. We
have used the POCS projection algorithm exactly as previously
described in this experiment, with the exception of only using
the visually best field (Fig. 9, part “j”) to estimate the SR
image. The resulting SR image is shown in Fig. 11, part
“a.” In part “b” of the same figure, the output of the POCS
algorithm when all fields are used (Fig. 9, part “m”) is shown
for comparison. We can see that even though the other fields
are far more affected by the motion blurring than field “j,”
a noticeable improvement is still produced by using them in
the algorithm. Note that using any LR field other than “j” for
single field processing would provide an even greater contrast
in the results, since all other LR fields are more substantially
motion blurred than “j.” We have thus demonstrated the lower
bound on the improvement increase for multifield processing.

Before leaving this section, a few comments are in order.
First, with regard to the interframe motion, although the

nontranslational component of the motion appears small in the
printed pictures, it is large enough that applying the algorithms
under the assumption of global translational motion leads
to no improvement over bilinear interpolating a single field.
Also of interest is that the LSV motion blur is different in
each LR frame. As a result, a formulation using a separate
postprocessing step for motion blur removal would not be
appropriate for the images processed in the third experiment.
Last, the computations required for this algorithm are not
trivial, but not prohibitive either. Using nonoptimized code,
the images in Figs. 7 and 8 are computed on a SPARC-10
platform in roughly 30 min. The images in Fig. 9 require
more processing time, roughly 3 h, due to the larger blur
sizes caused by the large interimage motion. We emphasize,
however, that no attempts have been made to optimize the
algorithm implementation or the code used. For instance,
the POCS projections easily lend themselves to a parallel
implementation.

V. CONCLUSION

We have proposed a model for video acquisition that takes
into account sampling on an arbitrary lattice, a sensor ele-
ment’s physical dimensions, the aperture time, focus blurring,
and additive noise. This model relates the observed LR video
to discretized SR video. The proposed model is then used
in developing a POCS-based algorithm for reconstructing a
SR image or video from LR video or imagery containing
relative motion. Fractional pixel relative motion is necessary
for resampling over a denser lattice. However, when motion is
large, resolution improvement is not possible unless blur due to
nonzero aperture time is modeled and taken into account. We
have demonstrated this fact through examples using real video.
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Fig. 10. Results from the nonnegligible aperture time Hi-8 camcorder ex-
periment, where large regions are processed, and color is included. At top is
the POCS initialization, and at bottom is the result after six iterations.

Fig. 11. Results from the nonnegligible aperture time Hi-8 camcorder ex-
periment, where only a single field is used for estimating the SR image. Part
a shows the SR image generated using only LR field j from the previous
figure, and part b shows the result of using all the fields (same as m in the
previous figure).

In addition,experiments with real data have been performed
that demonstrate the effectiveness of our algorithm when the
input imagery is not sampled progressively, and the input
imagery is motion blurred with different blurs in each field.

APPENDIX

A PRACTICAL BLUR COMPUTATION METHOD

This appendix describes a practical method for computing
the blur function given by (14). Two cases will be

treated to serve this goal. In the first case, translational motion
is assumed. In the second case, general image warpings are
considered. To solve this second case, a general approximation
is given, that leads to a blur computation algorithm that is built
on top of the algorithm delineated for the translational motion
case. Relative to this approximation, we make specific mention
of the affine and perspective transformations.

1) Translational Motion: For the case of translational mo-
tion, we define piecewise constant velocity motion paths,
effective during the th opening of the aperture (i.e., acquiring
the LR image at time as

(21)

where the velocities and where
are assumed to be constant over the aperture time
is the time of the th opening of the aperture, and denotes
the relative initial position at theth opening of the aperture.
The quantity is a function of the times and If for the
moment the focal blur is ignored, then the PSF
is LSI, and by defining
and applying (6) and (10)

(22)

If we now assume the aperture response is a 2-D “rect”
function given by

else,

then can be computed graphically as depicted in Fig. 5. The
coordinate sets the starting point of the line shown
in the figure, at time The integral follows the line to
its endpoint at and the result is simply the length
of the line segment that intersects the shaded region. Working
out this integration shows that the PSF consists
of convex regions in the coordinate system, within each of
which is described by the equation of a plane. Computing
the discrete PSF then requires nothing
more than summing the volumes under planar convex regions
formed by the intersection of [see (14)] and the
convex regions that define

The focus blur can be subsequently taken into
account using a discrete approximation by carrying out the
convolution

(23)

where is the discrete representation of the focus
blur for the LR image, and denotes 2-D discrete
convolution over the variables By taking the focal
blur into account in this way, we are making the assumption
that the blur PSF within a region about
is approximately LSI. This is a reasonable assumption as long
as the image has not undergone an extreme nontranslational
warping. Handling the focus blur as in (23) is attractive,
since can easily be computed when the focus blur is not
considered, and the convolution in (23) is easy to implement.
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2) General Warpings:We now extend this method for
computing the blur to the case of more complex warpings, such
as those described by affine or perspective transformations.
The extension is based on the following observation: The
warping between the times and may be significant,
however, the nontranslational component of the warping
that effects the blur shape will be small during the aperture
time. This concept is demonstrated in Fig. 6. The figure is a
graphical representation of the computation described in (10),
which is rewritten here as

(24)

The figure depicts the warped blur kernel as it translates
across the point during the integration time from to
The value of is then the “dwell” time over weighted
by the Jacobian and the amplitude of Computation of
(24) is difficult since the translating kernel is contin-
uously warping during the integration period. As previously
pointed out, however, the nontranslational component of this
warping, during the aperture time, is assumed to be small.
This effect is demonstrated in Fig. 6 by showing the dotted
outline of the function superimposed
on the shaded region representing In
terms of (24), the approximation makes the assumptions
that i) the Jacobian weighting is a constant, ii) the warping

is maintained throughout the aperture time
(i.e., this function only translates aschanges), and iii) the
path of translation during two consecutive frames and, thus,
within the aperture time, is linear. With this approximation,
(24) can be rewritten as

(25)

where

(26)

and is the time between consecutive frames.
Using this approximation, the same procedure for computing

the blur in the case of spatially uniform, temporally piecewise
constant-velocity translational motion is used, except that at
each point the blur is computed with the appropriate warping
applied to the rectangular function depicted in Fig. 5. To
summarize, when the warping is defined by uniform and
constant translations, the approximation will result in an exact
blur computation. When the warping is affine, the Jacobian
does not vary with but we have approximated it to be
constant over time, while the aperture is open. Additionally,
the translation is assumed to be constant velocity, where this
may not necessarily the case. In the case of perspective motion,
the approximation has the same effects as in the affine case,
with the additional approximation that the Jacobian is constant
over the spatial blur support of This approximation is

used for the affine case to compute the blurs in Section IV,
Results.

REFERENCES

[1] M. Bierling, “Displacement estimation by hierarchical blockmatching,”
in Proc. SPIE Visual Communications and Image Processing ’88, pp.
942–951.

[2] G. Wolberg,Digital Image Warping. Los Alamitos, CA: IEEE Comput.
Soc. Press, 1990.

[3] J. Bergen, P. Burt, R. Hingorani, and S. Peleg, “A three-frame algorithm
for estimating two-component image motion,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 14, pp. 886–896, Sept. 1992.

[4] A. M. Tekalp, M. K. Ozkan, and M. I. Sezan, “High-resolution im-
age reconstruction from lower-resolution image sequences and space-
varying image restoration,” inIEEE Int. Conf. Acoustics, Speech, Signal
Processing, San Francisco, CA, Mar. 23–26, 1992, pp. III-169–172.

[5] H. Ur and D. Gross, “Improved resolution form subpixel shifted pic-
tures,”CVGIP: Graph. Models Image Processing, vol. 54, pp. 181–186,
Mar. 1992.

[6] R. Y. Tsai and T. S. Huang, “Multiframe image restoration and regis-
tration,” in Advances in Computer Vision and Image Processing, T. S.
Huang, Ed. Greenwich, CT: JAI Press, 1984.

[7] S. P. Kim, N. K. Bose, and H. M. Valenzuela, “Recursive reconstruction
of high resolution image from noisy undersampled multiframes,”IEEE
Trans. Acoust., Speech Signal Processing, vol. 38, pp. 1013–1027, June
1990.

[8] S. P. Kim and W.-Y. Su, “Recursive high-resolution reconstruction of
blurred multiframe images,”IEEE Trans. Image Processing, vol. 2, pp.
534–539, Oct. 1993.

[9] B. C. Tom, A. K. Katsaggelos, and N. P. Galatsanos, “Reconstruction
of a high resolution image from registration and restoration of low
resolution images,” inProc. IEEE Int. Conf. Image Processing, Austin,
TX, Nov. 13–16, 1994.

[10] H. Stark and P. Oskoui, “High-resolution image recovery from image-
plane arrays, using convex projections,”J. Opt. Soc. Amer. A, vol. 6,
pp. 1715–1726, 1989.

[11] M. Irani and S. Peleg, “Improving resolution by image registration,”
CVGIP: Graph. Models Image Processing, vol. 53, pp. 231–239, May
1991.

[12] M. R. Civanlar and H. J. Trussell, “The Landweber iteration and
projection onto convex sets,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-33, pp. 1632–1634, Dec. 1985.

[13] S. Mann and R. W. Picard, “Virtual bellows: constructing high quality
stills from video,” in Proc. IEEE Int. Conf. Image Processing, Austin,
TX, Nov. 13–16, 1994.

[14] M. Irani and S. Peleg, “Motion analysis for image enhancement:
Resolution, occlusion, and transparency,”J. Visual Commun. Image
Represent., vol. 4, pp. 324–335, Dec. 1993.

[15] A. J. Patti, “Digital video filtering for standards conversion and resolu-
tion enhancement,” Ph.D. dissertation, Univ. Rochester, Rochester, NY,
1995.

[16] T. Komatsu, K. Aizawa, T. Igarashi, and T. Saito, “Signal-processing
based method for acquiring very high resolution images with multiple
cameras and its theoretical analysis,”Proc. Inst. Electr. Eng.—I, vol.
140, pp. 19–25, Feb. 1993.

[17] T. Komatsu, T. Igarashi, K. Aizawa, and T. Saito, “Very high resolu-
tion imaging sheme with multiple different-aperature cameras,”Signal
Processing: Image Commun., vol. 5, pp. 511–526, Dec. 1993.

[18] P. Cheeseman, B. Kanefsky, and R. Hanson, “Super-resolved surface
reconstruction from multiple images,” Tech. Rep., NASA, Jan. 1993.

[19] R. R. Schultz and R. L. Stevenson, “A Bayesian approach to image
expansion for improved definition,”IEEE Trans. Image Processing, vol.
3, pp. 233–242, May 1994.

[20] R. R. Schultz and R. L. Stevenson, “Improved definition video frame
enhancement,” inProc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, Detroit, MI, May 1995, pp. 2169–2172.

[21] H. J. Trussell and S. Fogel, “Identification and restoration of spa-
tially variant motion blurs in sequential images,”IEEE Trans. Image
Processing, vol. 1, pp. 123–126, Jan., 1992.

[22] E. Dubois, “The sampling and reconstruction of time-varying imagery
with application in video systems,”Proc. IEEE, vol. 73, pp. 502–522,
Apr. 1985.

[23] M. I. Sezan, “An overview of convex projections theory and its
applications to image recovery problems,”Ultramicroscopy, no. 40, pp.
55–67, 1992.

Authorized licensed use limited to: Cliff Reader. Downloaded on October 31,2023 at 03:07:37 UTC from IEEE Xplore.  Restrictions apply. 

12



1076 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 8, AUGUST 1997

[24] H. J. Trussell and M. R. Civanlar, “Feasible solution in signal restora-
tion,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32,
pp. 201–212, 1984.

[25] M. K. Ozkan, A. M. Tekalp, and M. I. Sezan, “POCS-based restoration
of space-varying blurred images,”IEEE Trans. Image Processing, vol.
3, pp. 450–454, Apr. 1994.

Andrew J. Patti (S’91–M’96) was born in Utica,
NY. He received the B.S.E.E degree from Clarkson
University, Potsdam, NY, in 1987, and theM.S.E.E.
and Ph.D. degrees from the University of Rochester,
Rochester, NY, in 1991 and 1995, respectively.

From 1987 to 1990, he worked as an Engineer at
the Westinghouse Defense Electronics Center, Bal-
timore, MD, designing hardware for electro-optical
systems. He is currently a Member of Technical
Staff at Hewlett Packard Laboratories. His research
interests in the area of digital video processing

include motion estimation, standards conversion, resolution enhancement, and
restoration and segmentation.

M. Ibrahim Sezan (S’80–M’84–SM’91) received
the B.S degrees in electrical engineering and math-
ematics from Bogazici University, Istanbul, Turkey
in 1980, with the highest honors. He received the
M.S degree in physics from Stevens Institute of
Technology, Hoboken, NJ, and the M.S and Ph.D
degrees in electrical computer and systems engi-
neering from Rensselaer Polytechnic Institute (RPI),
Troy, NY, in 1982, 1983, and 1984, respectively.

He is currently the Senior Manager of Digital
Video Processing, Sharp Laboratories of America,

Camas, WA. From 1984 to 1996, he was with Eastman Kodak Company,
Rochester, NY, where he headed the Video and Motion Technology Area,
Imaging Research and Advanced Development Laboratories, from 1992 to
1996. He also holds an Adjunct Associate Professor position at the Electrical
Engineering Department, University of Rochester.

Dr. Sezan was the co-recipient of the A. B. Du Mont award at RPI in
1984. During 1988–1992, he served as an Associate Editor of the IEEE
TRANSACTIONS ONMEDICAL IMAGING. From 1992 to 1994, he was an Associate
Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING. He is a member of
the Multidimensional Digital Signal Processing Committee of the IEEE Signal
Processing Society. He contributed to the booksImage Recovery: Theory and
Application (New York: Academic, 1987),Mathematics in Signal Processing
(Oxford, U.K.: Oxford 1987),Handbook of Signal Processing(Marcel Dekker,
1988), Digital Image Restoration(New York: Springer-Verlag, 1991),Real
Time Optical Information Processing(New York: Academic, 1994). He edited
Selected Papers in Digital Image Restoration(SPIE Milestone Series, 1992),
and co-editedMotion Analysis and Image Sequence Processing(Boston, MA:
Kluwer, 1993) His current research interests include motion analysis, video
processing, content-based compression, and multimedia data bases. He is a
member of Sigma Xi.

A. Murat Tekalp (S’80–M’84–SM’91) received the
B.S. degree in electrical engineering and mathemat-
ics (with highest honors) from Boǧazici University,
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