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Superresolution Video Reconstruction with Arbitrary
Sampling Lattices and Nonzero Aperture Time
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Abstract—Printing from an NTSC source and conversion where a region of the video display is enlarged by some factor
of NTSC source material to high-definition television (HDTV) and then replayed.
format are some of the recent applications that motivate su- g reconstruction methods consist of three basic compo-
perresolution (SR) image and video reconstruction from low- o . . oy .
resolution (LR) and possibly blurred sources. Existing methods nents: '_) motion compe_nsatlon, i) |.nterpolat|0n, and iii) blur
for SR image reconstruction are limited by the assumptions and noise removal, which can be implemented separately or
that the input LR images are sampled progressively, and that simultaneously. Motion compensation is used to map the pixels
the aperture time of the camera is zero, thus ignoring the from all available LR frames to a common reference frame.
motion blur occurring during the aperture time. Because of the g tion field can be modeled in terms of a set of individual
observed adverse effects of these assumptions for many common ™ . . . . .
video sources, this paper proposes i) a complete model of videoMotion vectors (which can be estimated at each pixel with a
acquisition with an arbitrary input sampling lattice and a nonzero  technique such as block matching [1]), or by warping map-
aperture time, and ii) an algorithm based on this model using pings such as affine or perspective transformations [2] (which
the theory of projections onto convex sets to reconstruct SR can pe estimated as in [3]). The second component, interpola-

still images or video from an LR time sequence of images. .. . . . . . -
Experimental results with real video are provided, which clearly tion including sampling lattice conversion, refers to mapping

demonstrate that a significant increase in the image resolution can the mQtion-Compensated pixels onto a rectarllgularly samplled
be achieved by taking the motion blurring into account especially SR grid. The third component, blur and noise removal, is

when there exists large interframe motion. needed to remove the sensor blurring and optical blurring.
Index Terms—Superresolution, video stills, video resampling, We note here that the existing methods account for blurring
standards conversion. due to nonzero aperture size (sensor blur), but not due to

nonzero aperture time (motion blur). This paper demonstrates
that motion blurring is a significant source of degradation when
there exist large interframe motion (high action video); and
ITH THE availability of frame grabbers capable ofthen, superresolution and sampling lattice conversion should
acquiring multiple frames of video, there is a growingye handled simultaneously (in a unified framework) with
interest in superresolution image and video reconstruction ($fdtion-blur modeling. This unified framework is the video
reconstruction), whereby multiple frames are used to overcofig@mation model proposed in Section L.
the inherent resolution limitations of a low-resolution (LR) when the three components of SR reconstruction are treated
camera system. SR reconstruction proves useful in mapyseparate processing stages, as in [4] and [5], the interpo-
practical applications, including printing SR stills from videojation proceeds without regard for the physical degradations
where it is often desirable to enlarge an image and increasehe LR image formation process. These methods are only
the detail. Because video signals are commonly interlacgghplicable when the blurs are the same for all LR frames, and
creating SR stills requires a combination of deinterlacing aRdn effectively be modeled as a single blur function acting
removing acquisition degradations. Some other applicatiogg the resulting SR image. When nonzero aperture time is
are conversion from NTSC video to a high-definition televisioponsidered, the motion model would then have to be restricted
(HDTV) standard, and creation of synthetic “video z00m.f, constant velocity, uniform translational motion. Further, this

method is suboptimal, since the restoration stage is vulnerable
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the frequency domain, so like the SR method proposed in [Bgnsor, is an input to the algorithm. The input data is only
[8], it is limited to global translational motion between LRconsidered to be sampled on a progressive lattice.
frames and LSI blur functions. Although most of the above methods do consider blurring
An iterative class of image domain algorithms have alstue to nonzero aperture size, they all ignore blurring that
been proposed for SR reconstruction of progressively samplaezturs during the aperture time, and do not allow for a general
LR images, that allow for more flexibility in modeling thedescription of the sampling lattice used. Sensor aperture time
imaging process, since they can correct for linear shift varyimgodeling in the framework of the image sequence restoration
(LSV) degradations. These algorithms simultaneously solpeoblem has been proposed by Trussell and Fogel [21], but
the restoration and interpolation problems by posing a modsl this case the sequence of input images are progressively
relating the LR images to the desired SR image, and theampled, and the objective is to remove blur degradations,
using iterative reconstruction techniques to estimate the Rt to increase the spatial sampling density. Since many
image. In one such algorithm, Stark and Oskoui [10] proposensumer video cameras use a relatively large aperture time
using the method of projections onto convex sets (POC®)d are interlaced, it is important to consider arbitrary input
and account for the blur caused by the LR sensor geometattices and correct for motion blurring due to nonzero aperture
Tekalp, Ozkan, and Sezan [4] also use a POCS formulatitime. Also, since the motion blur is in general space-varying
and in this case the sensor noise is taken into accountaind varies from one frame to another, resampling over a
addition to the blur caused by the physical dimensions of tidenser rectangular lattice and deblurring cannot be performed
sensor. Both of these POCS-based methods are applied todeRarately. The combination of modeling and POCS formu-
images whose relative motion is described by translations onligtion we propose will allow simultaneous interpolation from
Also, they both assume that the aperture time is negligiblonrectangular sampling structures and removal of aperture
A similar formulation of the problem is given by Irani andtime effects.
Peleg [11], in which the method of averaging projections To this effect, this paper proposes a novel SR algorithm to
[12] is used to iteratively solve for the SR image. Thiprocess LR imagery sampled on an arbitrary spatio-temporal
algorithm is applied to the case of translational and rotatiorlattice, and that takes into account a nonnegligible aper-
motion between the LR frames, but does not model the noigge time. SR imagery output on an arbitrary lattice can be
process. Mann and Picard [13] have extended Irani and Pelegesnputed by appropriately subsampling a sequence of pro-
method by incorporating a perspective motion model into tiggessively sampled SR images, thus providing the capability
image acquisition process. Later, Irani and Peleg [14] hai@ convert from interlaced NTSC sampling lattices to higher
posed a slightly different formulation to take into accourfesolution HDTV lattices. The remainder of this paper is
more general interframe motion modeling, such as an affinéganized as follows. The model relating the input LR video
model. Here, an iteration is used that can be shown to tea SR version of this video, via an LSV PSF, is delineated in
equivalent, in certain cases, to the Landweber iteration [1§ection II. In Section I, the modeling is used in conjunction
Again, this method does not model the noise. The Landwebgith the method of POCS, to derive an algorithm for SR
iteration is also used by Komatset al. [16], where they reconstruction. The effectiveness of the proposed algorithm
solve the slightly different problem of SR reconstructiofs demonstrated in Section IV by application to real video
from multiple LR cameras. Their motion model is restricte@equences.
to translations, and they interpolate the LR images to the
SR size, then use block matching to compute a vector for
every pixel location. Later, they extend their method to the
case of multiple cameras with different sensor element sizedn this section we present a model that serves to unify
[17]. The basic sampling pattern for each sensor, however the problems of sampling lattice conversion and SR image
rectangular. reconstruction in the presence of nonzero aperture time. Before
There also exist Bayesian methods for SR image recd?eginning, we note that because the motion blurring caused
struction that use a statistical priori model for the SR by a nonzero aperture time will in general be space and time
image, and simultaneously solve the restoration and int&@rying, it cannot be factored out of the SR restoration problem
polation problems by using a maximuanposteriori (MAP) and performed as a separate postprocessing step. Thus, our
or maximum likelihood (ML) formulation. Cheeseman al. modeling will directly include the aperture time effect from
[20] use Gaussian models for all distributions, and estimaifée beginning.
both the SR image and the LR image registration parameter§onceptually, continuous LR imagery is the spatio-temporal
(in the general case, they use a six-parameter affine modBfgnsity distribution at the focal plane of the camera, where
with Jacobi’'s method to iteratively solve the problem. In thethe sensor is placed. The observed, or sampled LR imagery
method, the sensor point spread function (PSF) can be tal@dound at the output of the camera sensor. Continuous SR
into account; however, the resulting optimization becomé®agery is defined as the spatio-temporal intensity distribution
extremely ill-posed. Shultz and Stevenson [19], [20] use & the focal plane of the camera, as it would exist if it were
Huber—Markov—Gibbs model for tteepriori SR image model, hot effected by the degradations introduced by the LR camera
which is intended to preserve edges while providing a globgystem. In modeling the LR imaging process, we account for
smoothness constraint. In their formulation, the blur function, 1) motion (caused by movement of the LR camera or
modeling sensor blur caused by the dimensions of the LR  changes in the contents of the scene);

Il. MODELING
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g1(x1,z2,t) ga(zy, 29,1) ga(my, ma, k)

S(z1,29,1) t T . k
s ha(2y, 20, L) * xho(2y, 20, 1) %/ dr Sampling g(my, my, k)
*Ji-T, A

v(my, ma, k)
Fig. 1. Video formation model.
2) a nonzero sensor aperture time; my,me, and k, that appear as a function argument, are

3) nonzero physical dimensions for each individual sensimterpreted as in
element (i.e., giving rise to a particular image pixel);

4) blurring caused by the imaging optics; ga(my,ma, k) = 92(157t)|V5[ml ma k]! 2)

5) sensor noise; _ ~ where V, denotes the matrix that specifies the sampling

6) sampling of the continuous scene on an arbitrafice [22], and* denotes the transpose operation. In the last
space-time lattice. modeling step, additive noise due to the LR sensor is added

The proposed model is delineated as follows. First, t8 the sampled video signal.
video formation model is described. Motion modeling is then
included into the video formation model, which results in ag_ |ncluding Motion: The LSV System

LSV system. Next, a discretization is presented to relate aWe now incorporate a motion model into the video forma
discrete version of the SR image to the observed LR imageﬁ/: P

The result is a discrete LSV system. To preserve general on model to establish an LSV relationship between the LR

in the presentation of the overall model, the motion mOde"nlg.agjrgpe;)r;g;n(:\t(;ﬁ/s'srg?tir?;tma\?zljé (2)flgfedab:i:]3{slt(;a:in)|; time

in this section is generic. An important problem, howevegR image or a seauence of SR imaaes (ie.. SR video) can
is how to actually compute the resulting discrete LSV bl R reco%structed qu ges (i.e., )

function for a specific motion model, such as an affine mod “Wh i del is i ted into the i
Therefore, in the Appendix we provide a practical metho €n a maoton model 1S Incorporated Into the image
for computing the discrete LSV blur function when variou%rmmIon '?"Ode" the first .tWO stages n Fig. 1 can b? comb|_ned
motion models are considered as a part of the overal modeli Squrm asingle LSV relation. We begin by considering motion
presented in this section. asm

f(.t) = f(M(z,t,t.). 1) = f(@,.t7) ®3)

Th d video f . del is depicted in Fi wherez denoteS(x1,z2), and M(z, ¢, ¢,.) is a transformation
e proposed video formation model is depicted in Fig. Jrelating xz, the position of an intensity at time, to its

where the input signaf(z1, 7, ) denotes the continuous SRy sition &, at time ¢,. This equation expresses the well-

imagery in the fogal plz?me cqordinate systém, z2). The known assumptions of intensity conservation along motion
effects of the physical dimensions of the LR sensor (i.e., bl hjectories. By lettinghy (z,t) = ha(x, t)sxho(z,t), the

due to integration over the sensor area) and the optical b tbut of the first modeling stage can be expressed as

(i.e., out-of-focus blur) are modeled in the first stage of the P g stad P

figure. There, the SR imagerf{xz1,x2,t) is convolved with ) = /h z— A dy. 4
the kernelsh,(z1,x2,t) and h,(x1,z2,t), which represent 9u(.1) e =270 ) dx @)
the sensor and the focus blurs, respectively. Both kernels 8 making the change of variables, = M(x,t,t,) and
functions of time, but we restrict them to be constant OV%rsing (3), (4) becomes " o

the aperture time (next stage). The focus blur and aperture '

A. Video Formation

dimepsions are thus aII_owed to differ from_frame to frame. g(z,t) = /hl(:c — MYzt ) f(@e, )
This is useful for modeling the case of multiple LR cameras,
and/or focus changes. A J(M)| 7L das, (5)

The sensor aperture time is modeled in the second stage of . ) i
the figure by an integrator whose output is given by whereM ™" denotes the inverse transformatioi{M) denotes

the Jacobian oM, and| - | denotes the determinant operator.
@ It is evident from (5) that the first stage of the model has been

transformed into an LSV operation, acting on a SR image at
e t,.. To reflect this fact, we let

1 t

g2(w1, 2, 1) = T/ g1(xy, 2, 7) d7
a Jt—T, .

whereT, denotes the sensor aperture time. Note that the fiPs

two stages commute, since the first is spatially LSI, and the hy(x;xy, 38, t)

second I-S tempor_ally. LSI. . . - _ hl(.’l,' _ M_l(-'l"tT,t, tv*))‘J(MN_l (6)

The third stage in Fig. 1 models sampling using the arbitrary
space-time latticeA;. The output of this stage is denoteddenote the LSV PSF modeling the effect of the sensor geome-
by go(m1,m2, k). As a matter of convention, integer valuesry, focus blur, and relative motion. This equation demonstrates

Authorized licensed use limited to: Cliff Reader. Downloaded on October 31,2023 at 03:07:37 UTC from IEEE Xplore. Restrictions apply.

3



PATTI et al. SUPERRESOLUTION VIDEO RECONSTRUCTION 1067

Imaging a pixel at time ¢ Iiffective imaging relative to time £, i Inynal

i | .
M . e T - lowe-res sensor
(] ; Ly o
sensor aperture 21 | I 1 (m ezl

cffective sensor aperture

Fig. 2. Effect of the blur function warping is demonstrated. i

— |
an effective sensor warping, which is depicted in Fig. 2. In tt | -
figure, the picture to the left represents the imaging process at

time ¢, where a sensor element is imposed on the picture. Tﬁé-,S- Depiction of the discrete LSV PSF for the case of translational
picture to the right shows the equivalent imaging process gt

time ¢,.. Notice the warping applied to the aperture in going

from time ¢ to ¢, is the inverse of the warping applied to thewill now be formulated. We assume that the continuous

image. Rewriting (5) in LSV form yields imagery f(x1,z2,t.) is sampled on the two-dimensional (2-
D) lattice A, (i.e., (n1,n2) are integers that specify a point
gi(x,t) = /hl(z;z'tT;t7t7,)f(a:tr7t1,)dz-tT, (7) inAy), by a SR sensor, to fornf(n,ny,t,).
An individual SR sensor element (giving rise to a single SR

image pixel) is assumed to have physical dimensions, which
can be used as a unit céf}_ for the latticeA, , and to have

! a uniform response over its support. Thus, the space of the
ga2(x,t) = //hl(:c; e ;7,6 ) (2, 1) dxy dr. (8) focal plane is completely covered by the SR sensor. The term

U, (n1,n2) is used to denote the unit cél, shifted to the

location specified byni,ny). With this definition, and with
By changing the order of the integrations, the above becomgg assumption thaf($17x27tr) is approximately constant
overl,_(n1,n2), (11) can be written as

The second modeling stage can now be expressed as

t—T1,

gl t) = / ho(ws e st flon, b de, (9)
g(my,ma, k)

where = Z f(ny,na.t.) - ho(my, mos & 5 k. t,)
t (n1,n2)
ho(z; e 5, ) = / hi(z; e 57,80 dT. (10) dx, +v(my, ma, k). (13)
t—T1,
Thus, the first two stages of the model have been combin%& comparing (12) with (13), it is evident that
into a single LSV system, acting on the continuous SR image hy (n1,n2;my, ma, k)

at time¢,.. This allows us to write the observed LR imagery
in terms of a continuous SR image at time as = /u ( )hQ(mlcm%f’"tT? kit.)dz,  (14)
1 (T1,N2
g(my,ma, k) = /hQ(ml,mQ;xtT;k,t,,)f(xmt,,)dxtr where the integer arguments, ,ms, k,ny, andn, are inter-
preted as in (2).
+v(my, ma, k) (11) A pictorial example of the discrete LSV PSF formulation,

. . . with a rectangular SR latticg; , is provided in Fig. 3. In the
where ?2(') Is the e(jﬁ:c::ve L;V PSF, gntd thet|r:_teger a_rfigure, it is assumed that the motion is purely translational,
gumentsms, my, an ave Ine same Interpretation as M4t 5 square LR sensor geometry (outlined in bold) is used,

@ and that there is no focal blur. THe;,z2) space is the sensor
) o focal plane at timet,.. The focal plane is shown covered by
C. Discretization shifted SR sampling unit cellg, (n1,7,). The LR sensor area

It is desirable to discretize the LSV blur relationship iris shown outlined in bold, and the larger of the two shaded
(11), to relate the observed LR images to a discrete versitggions shows the region of the focal plane “swept” by the
of f(z1,72,t:). Thus, a discrete superposition summation dfR sensor during the aperture tinig,. The discrete LSV
the form PSF specified in (14) is formed by computing the duration

of time a given area of the LR sensor “dwelled” over the
g(my,ma, k)= Y f(ny,na,te)he, (na,nasma,ma, k) regionid,, (n1,ns), while translating from the dotted outline
(n1,nz) at the aperture opening time, to the bold outline at the aperture
+ v(my, ma, k) (12) closing time. Note that the result indicated by (14) does not
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specify a simple area of overlap between the large shadedhe projectionP,_(m;,ms, k)[x(n1, n2,t,)] of an arbitrary

region of the figure and the SR sampling regiéfis(n;,n2). x(ni,ne,t,) onto C,_(my, ma, k) can be defined as [24]
Because the blur PSF (14) is LSV when the sampling

geometry is not progressive and/or when the motion is not P, (my,my, B)[z(n1, ng, )]

= w(nlan27t1‘) +
a global translation between frames, the solution method for [ (7®(-) = &(-))he, (n1,n2;-)

SR reconstruction should be capable of processing LSV blurs. Zzhg (01,09 ) , rat >(-) > 6o(+)
Both the Landweber iteration and POCS methods have this o o

property. The POCS sqlutlon delmegted in the next .sectlon, 0, —8o(-) < () < 8o(")
h0\_/vever, has a mgchanl_sm for adapting to space-varying prop- (r@ () + 8o())he, (n1,n2; ) @ s
erties of the additive noise, whereas the Landweber iteration S5 12 (or. 011 ;@ ()< =80()
does not because it converges to the inverse of the least squared £ \OL 02

error solution. . o

17)

Ill. THE POCS SLUTION where the * function argument is interpretted as meaning
We propose a POCS based solution to the SR reconstructiem, , ms, k.”
problem. The method of POCS requires the definition of closedAdditional constraints such as bounded energy, positivity,
convex constraint sets within a well-defined vector space, thatd limited support can be utilized to improve the results.
contain the actual SR image. An estimate of the SR imageHegre, we also use the amplitude constraint set
then defined as a point in the intersection of these constraint
sets, and is determined by successively projecting an arbitrary Ca ={y(n1,n2, tr) a < fng, o, ty) < B (18)

initial estimate onto the constraint sets. with amplitude bounds oft = 0 and 3 = 255. The projection

Associated with each constraint set is a projection opera’gg['1 onto the amplitude constraint sét, is defined as a clip-

P, mapping an arbitrary point within the space to the closeafng operation such thal  [x(ny, n. £,)] iMits £(n1, g, t,)
point within the set. Relaxed projection operatdfs= (1 — "\ o1 \oc hetweer and 3 142 ) 102;
M+ AP;0<A<2, can also be defined and used in finding " i en the above orojections, an estimafény, na. ), of
an estimate in the intersection set. For a detailed review tﬂfe SR imagef(ny, ny, £..), is obtained iteratively’ fro7m a7|| '
POCS, please see [23]. 1,12,%:),

) X . imagesg(m1,ms2, k) where constraint sets can be defined, as
We define the following closed, convex constraint sets, one gesg(ma, mz, k)

for each pixel within the LR image sequeng@n;,ma, k): Ferr(ny,na. ty)
Ct, (my,ma, k) ={y(ni,no, tr): |7’(y)(m17 ma, k)| = TaTlfelm,na o) (=012, (19
< bo(my,ma, k)} (15) whereT denotes the composition of the relaxed projection
operators projecting onto the family of sef§,_ (mq,ms, k).
where The initial estimate,fo(nl,ng,tr), is obtained by bilinearly
\ interpolating one of the LR images to the SR grid, and
acy (m1,me, k) =g(mq, me, k) — Z y(ny, na, &) then motion compensating. The remaining LR images can be
(n1,mz2) similarly used to estimate the borders of the SR image.
< hy, (1, n9;my, ma, k) (16) A pictorial depiction of the proposed POCS method is given

in Fig. 4. The LSV blur relates a region (shaded) of the current
is the residual associated with an arbitrary mempenf the SR image estimate, saf(-), to a particular pixel intensity
constraint set. We refer to these sets as the data consisteyley:,m2,k) in one of the LR images. The residual term
constraint sets. Note that sefs, (my, m, k) can be defined r/¢)(m;,m», k) is then formed, which indicates whether or
only where the motion information is accurate. It is thereiot the observation could have been formed from the current
fore a simple task to incorporate occlusion and uncover&R image estimate (within some error bound determined by
background knowledge, by only defining sets for appropréy(m1, m2,k)), and therefore whether the SR estimate belongs
ate observations. This type of flexibility is an advantage ¢ the data consistency s€étl, (mi,mo,k). If it is not in
the POCS-based solution. The quantiy(my,mo,k) is a the set (i.e., the residual is too large), the projection operator
bound reflecting the statistical confidence, with which th®, (m., m», k) backprojects the residual onto the current SR
actual image is a member of the s@f (m.,mo, k). Since image estimate [the additive term in (17)], thus forming a
I (my,my, k) = v(my, ma, k), where f denotes the actual new estimate of the SR image that does belong to the set
SR image, the local statistics of/)(m;, m», k) are identical C,_(my,ma, k), and therefore could have given rise to the
to those ofv(m,,mz, k). Hence the boundy(m ,ms, k) is observationg(my,ms, k), within the boundéy(my, ma, k).
determined from the possibly space and time-varying statistiésrforming these projections over every LR pixel where a
of the noise process, so that the actual image (i.e., the ideahsistency constraint set is defined completes the composite
solution) is a member of the set within a certain statisticarojection T[f[(ﬂl,ﬂQ,tr)] referred to in (19). Subsequent
confidence. Thus, the POCS solution will be able to modptojection onto the amplitude constraint set completes a single
space- and time-varying white noise processes. iteration of the POCS algorithm. In theory, the iterations
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."r.'.m:.--!l__ Framme 1 IV. RESULTS

horw-ria [ Lor-res We have conducted three experiments to demonstrate the
performance of the proposed SR image reconstruction al-
gorithm. The digitized data for each experiment has been
1 ] acquired using consumer grade imaging and capture devices,
. ! and the motion and blur functions will need to be estimated

: ! from the data. These experiments show upsampling from
Back-praject the ermor g 1) diamond and interlaced lattices when motion blur is negligible,
b WL the . : / and clearly show the importance of modeling the aperture time
COMRIBHNCY ComElrainis _D_Jf‘:

e

By |:.H LN ]

Bt

Ty

[
1y i when the interframe motion is large.

The first experiment uses LR images acquired using a digital
camera placed at different positions against a stationary target.
This camera uses a color filter array (CFA) that samples the
green channel on a nonrectangular diamond-shaped grid. We
will process only the green channel in this first experiment.
To create a color SR image, we can separately process the red
and blue channels as well, and combine these with the result

Fig. 4. Pictorial depiction of the POCS based reconstruction algorithm.from the green channel processing. In the second experiment,

we consider an interlaced LR video sequence obtained by

digitizing the S-video output of a Hi-8 tape, recorded and
continue until an estimate lies within the intersection of all thﬁlayed back by a consumer grade Sony Hi-8 camcorder. The
constraint sets. In practice, however, iterations are genergfiyq experiment uses input LR video captured by digitizing the
terminated according to a certain stopping criterion such f% feed from the S-video output of the same Hi-8 camcorder.
visual inspection of the image quality, or when changag the first two cases, relative motion is not excessive, and the
between successive estimates, as measured by some Mgffict of the aperture time is negligible. In the last experiment,
(i.e., [[fe — fe-1ll, using theLy norm), fall below a preset motion is sufficiently large and the effect of aperture time is

i1

Sopir Risolution Ima

threshold. nonnegligible. In both the second and third experiments, we
One possible implementation of the POCS-based recisvert the digitized color signal to a luminance signal, and
struction algorithm is as follows. only process the luminance. Although the camcorder may have
1) Choose the reference frame, and thus the reference time€FA pattern, we do not have direct access to the CFA output,
tr. and as a result treat the grabbed LR data as if it originates

2) Estimate motion to satisfy (3): from a luminance charge coupled device (CCD) array sensor.

Color images could be obtained by processing the chrominance
a. spatially bilinearly interpolate each LR imagehannels as well, and combining the results.

g(my,ms, k) to the SR image grid; In all experiments, the proposed algorithm is used to simul-
b. estimate motion from each interpolated LR imagégneously resample a reference LR image over a progressive
to the interpolated LR image af. grid, increase the sampling density of this grid by a factor of

two in both dimensions, and undo the effects of sensor and

3) Define sets’, (., ms, k) according to (15), for each _optical b_Iurs. Sin_ce_ we have_ not yet discussed how the_motion
pixel Site(ml,;ng, k) where the motion path is accurate!nforma_t'on that is mclugjed in the model should be estimated
4) Compute the bluh, (ny,na; my, ms, k) for every site in praptlce, that dlscuss_|on comes n_ext. Then, each qf the three
(my,ms, k) where 'Ehe set€’, (my,ms, k) have been experiments are described in detail. In each experiment, the

defined. blur PSFh, () is computed using the methods detailed in the

5) Estimatefo(n1, n2,.) by motion compensating one ofAPPeNdix.

the interpolated images from step 2 (use the other LR

images in a similar manner for estimating the bordersh. Estimating Motion
6) For all sites(my,mz, k) where the set§ (my,ms, k)

have been defined: The complexity of the modeling described in Section II,

for computing the blur PSH: (-), is determined by the
h idual /o di motion model. In the simplest case, the motion from the LR
a compu.te the residuat/e’(m;, m2, k) according images to the reference can be modeled as a spatially uniform
to (16); . translation. In practice, however, we have found this model to
b. backproject the residual/¢)(my,m», k) using be inadequate. As a result, this section uses hierarchical block
the projectionP;, (mq,ma, k) in (17). matching (HBM) methods to estimate nonuniform translational
motion, and also affine motion models and estimators. In
7) Perform the amplitude projectiaR 4 based on (18).  either case, the performance of the proposed POCS-based SR
8) If the stopping criterion is satisfied then stop, otherwisggorithm will ultimately be limited by the effectiveness of
go to 6. the motion estimation and modeling. We use HBM in the first
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TABLE |
BLOCK MATCHING PARAMETERS FOR THE DIGITAL CAMERA EXPERIMENT

Level | Max Displ. | Window Size | Filter Size | Step Size | SSF | Accuracy
hor. I vert. | hor. I vert. | hor. l vert.
1 31 31 | 128 128 10 10 32 8 1
2 15 15 64 64 10 10 16 8 1
3 7 7 64 64 5 5 8 4 1
4 3 3 28 28 5 5 4 4 1
5 1 1 12 12 3 3 3 2 0.25

experiment to show that when the aperture time is negligibli 2
and the nontranslational components of the actual motio i
are small, this nonparametric motion estimation method i
effective. In all cases, the input LR images are bilinearly

interpolated over a LR, progressive grid, for the purpose o A M.
motion estimation. -

In the case of block matching, the motion is assumed to b s ok i g
locally translational. When other warping effects are small, thic & + @, + #4T, N e
approximation can be quite effective, as our experiments wilal == T,

demonstrate. The HBM method of Bierling [1] is used to esti-

mate the nonuniform motion field. The matching criterion usec

is the mean absolute difference (MAD) between measureme

blocks. At each level in the hierarchy, a log-D type search it

used, where the following parameters are tabulated for eac
experiment. The maximum horizontal/vertical displacemen -
(Max Disp. hor./vert.) is the displacement used in the firs
step of the log-D search. The horizontal/vertical measuremel
window size (Window Size hor./vert.) is the size of the windowig 5 Graphical depiction of the computing for the LSI blur function
over which the MAD is computed. The horizontal/verticak,(x1, 2, t.t,).

filter size (Filter Size hor./vert.) specifies the support of a

Gaussian filter, with variance set to one-half of the SUppo&timated. The spatial derivatives are estimated using a 2-

size. The step size is the horizontal and vertical distan £ cecond-order polynomial least-squares fit over a 5

betwe_en neighboring plxe!s in the reference image f_or whig indow centered at each pixel, while the temporal derivatives
an estimate of the motion is computed, the subsampling fac or computed using a two-point finite forward difference at

S)rsn':)ul?n thﬁ}:?\;i%nge?rlﬂeviggzhf:gii?&::goyvseadngv?ggch pixel. Prior to estimating these derivatives, the images
puting ' e blurred using an 1% 11 pixel uniform blur to reduce the

accuracy of estimation is in terms of the sampling period g .
. : effects of noise.

the progressive LR lattice. The parameter values for HBM are

shown in Table I. Note that all units for the parameters are

relative to the spatial sampling period of a progressive LR. Digital Camera Experiment

lattice (i.e., refinement to one-quarter-pixel accuracy, relative| tnis experiment, we use a digital camera to acquire

to the progressive LR lattice, is performed in the final 'e"%ultiple LR images. The camera uses a CFA that samples

of HBM). ) ) ) ~ the green channel over a diamond grid. Six LR images of
The second and third experiments model the interimagegiationary text target are acquired, with the camera being

motion using the global affine transformation defined by tr‘ﬁaced on a table in approximately the same position for each

[o4+® Jatr=10

parameters;-cg In picture. Because of the approximate camera placement, the
images contain relative motion. The goal of this experiment
9(x1 + c1 + Cow1 + €32, T2 + €4 + 521 + Coa, 1) is to simultaneously convert one of the LR images from the

= gp(w1,2,t). (20) diamond grid to a progressive one, undo the effects of sensor

and optical blurs, and increase the density of the progressive
This parametric modeling method is more descriptive of thgrid by a factor of two in both spatial dimensions. The aperture
actual imaging process, so the resulting blur computatidime is considered to be negligible in this experiment, and LR
will be more accurate, as well as more involved. Also, thienages of size 13« 142 (horizontal by vertical, relative to
spurious inaccurate vectors that can be introduced by HBM aeectangular grid) are cut from the same location in the full
eliminated. The technique we use to estimate the parametgize images.
c1,Ce, -+ Cg IS Summarized by Bergeet al. [3], and is based The six LR images are shown in Fig. 7, parts “a™"“f,” where
on a Taylor series expansion of the optical flow equatiothey have been bilinearly interpolated for display purposes, to
This method requires spatial and temporal derivatives to bkt a rectangular sampling grid. The image in part “a” is taken
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TABLE 1 I % N =
ESTIMATED AFFINE MOTION PARAMETERS FOR THE SECOND EXPERIMENT ! g ' ; =
image Affine Paramecters =
e | e | es [ es | s | e ’ -
b 1.609 | 0.0002 | -0.0042 | 0.113 | 0.0095 | 0.0013 - -
¢ 3.791 | 0.0007 | -0.0059 | 0.584 | -0.0038 { 0.0031
d 5.471  0.0037 | -0.0141 | 0.815 | -0.0018 | 0.0087 -
e 6.278 | -0.0009 | -0.0017 | 0.471 | -0.0069 | 0.0010 f -
f 6.322 | 0.0076 | -0.0026 | 0.122 | 0.0126 | -0.0046 —
8 6.510 | 0.0063 | -0.0066 O'i/l? _0'00%0 -0.0009 Fig. 7. Results from the digital camera experiment. Parts a—f are the LR
h 6.013 | 0.0017 | -0.0080 | 0.572 | 0.0068 | -0.0081 images, converted to a rectangular sampling grid for display using bilinear
i 5.810 | -0.0078 | -0.0051 | 0.722 | -0.0039 | -0.0037 interpolation. Part g is the SR image computed using bilinear interpolation,
5 15.390 | 0.0028 | -0.0096 | 1.280 | -0.0031 | 0.0031 and part h is the POCS result.
k 5.043 | -0.0032 | -0.0025 | 2.059 | -0.0004 | -0.0185
L 0647 | -0.0055 | -0.0079 | 1.601 | -0.0094 | 0.0042 that are apparent in the resulting SR image is due to only

using six LR images; the problem becomes underdetermined
with six images, since we need at least eight LR images to

as the reference, and motion is estimated from each LR im .
ve the same number of unknowns as equations.

to the reference using the parameters shown in Table I. Motion
estimation is performed on the bilinearly interpolated images
shown in the figure, so the vectors are relative to a rectangu%r
LR grid. The horizontal and vertical dimensions of the LR In this experiment, we use a Hi-8 camcorder to acquire
sensor are taken to be twice the size of the correspondingerlaced LR images. The camcorder is hand held while
SR sensor element dimensions, and the sensor is takeraitned at the target scene, and the video is recorded on an
have a square support with uniform response. The optical bldF8mm tape. The target is a cardboard containing musical
function A, is assumed to be Gaussian with unity varianceptes, and is not perfectly planar. Six frames (12 fields) of
and have a 5< 5 support, in terms of the sampling periodhe taped video are captured by frame grabbing the output
of the SR image. of the camcorder during playback. The motion in the scene
The POCS algorithm is initialized using the image showis due to the movement of the hand-held camera and is not
in in Fig. 7, part “g.” The relaxation parametek, in (19) excessive. The effect of the aperture time is considered to be
is set to 0.1, the parametés(m;,mo, k) is assumed to be negligible. We apply the proposed algorithm to simultaneously
0.01, and the minimum and maximum allowable grey levetonvert from an interlaced sampling lattice to a progressive
are 0 and 255, respectively. This choice of parameters leam®, increase the sampling density by a factor of two in both
to fairly rapid convergence, which is measured in terms dbrizontal and vertical directions, and reduce the effects of
visual quality. The sensitiviy of the POCS algorithm to thessensor and optical blurs.
parameters has been addressed under similar constraint sethe 12 LR fields of size 80« 40 are cut from the same
in [25]. The POCS result after 20 iterations is shown in paldcation in each of the grabbed fields, and are shown in Fig. 8,
“h.” We chose 20 iterations simply because no visual changearts “a™-“l.” The field shown in part “a” of the figure is
are detectable in the SR estimates at this point. It is clgaken as the reference image, and the affine motion parameters
from the pictures that the proposed algorithm has createdisied in Table Il are estimated using the previously discussed
SR image with considerably more resolution than is seen imethod. All of the POCS parameters are set to the same values
the LR images. The reason for some of the aliasing artifacts in the previous experiment. The initialization obtained using

Camcorder Experiment: Negligible Aperture Time
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TABLE 11l
ESTIMATED AFFINE MOTION PARAMETERS FOR THE THIRD EXPERIMENT

image | Cut Offset Affine Parameters
hor. I vert. c [ I c3 { [N cs cg
b 10 -10 | -0.027 | -0.0062 | 0.0007 | 1.319 | 0.0001 | -0.0064
c 20 -20 | -0.091 | -0.0128 | -0.0001 | 2.524 | 0.0053 | -0.0089
d 30 -32 1 -0.469 | -0.0125 | -0.0037 | 0.807 | 0.0060 | -0.0103
e 41 -42 ] 0.294 | -0.0170 | -0.0045 | 0.931 | 0.0086 | -0.0144
f 50 -52 | -0.581 | -0.0185 | -0.0068 | -0.278 | 0.0128 | -0.0128
g 60 -60 | -0.008 | -0.0212 | -0.0080 | 0.717 | 0.0162 | -0.0132
h 69 -68 | -0.107 | -0.0210 | -0.0094 | 1.083 | 0.0175 | -0.0151
i 79 | -76 | 1.375 | -0.0220 | -0.0115 | 1.289 | 0.0175 | -0.0142
j 88 | -85 | 2.555 | -0.0230 | -0.0139 | 0.401 | 0.0160 | -0.0163

bilinear interpolation is shown in Fig. 8, part “m,” and the
POCS result after ten iterations is shown in part “n.” Again
it is clear from the pictures that the POCS result has creat ®
an SR image with considerably more resolution than is se:

in either the LR images or the bilinear interpolated SR imag:
This experiment is important, since anyone with access to %
consumer camcorder could obtain such LR images.

D. Camcorder Experiment: Nonnegligible Aperture Time

The third experiment uses LR interlaced video that i
captured by grabbing the live S-video output from the sarn
Hi-8 camcorder used in the previous experiment. In this cas
the motion during the aperture time is nonnegligible, an
we demonstrate the use of our algorithm in the presence
interlaced video effected by motion blurring. An SR image i
reconstructed over a progressive grid that is two times den:
in both dimensions than that of the given frames (so for
given field, the upsampling is by two horizontally and by fou
vertically). - -

Motion blur is introduced by imaging a moving poster boaru
containing both text and pictorial information. The camergig- 8. Results from the negligible a_lperturetin_ﬁe Hi-8 camcordere?(perir_n_ent.
aperture time is set tol; seconds, which is its defaulti?;;;:ﬂgf g:% Lpirft'?:d;' tigr})gésst?;a? image computed using bilinear
setting. Five interlaced, digital, LR frames (ten fields) are
acquired by connecting the S-video output of the camcorder
to a frame grabber. LR fields of size 90 45 are then cut computed as described in the Appendix, for the case of an
out from the grabbed images to form the inputs to our Sﬁﬁne motion model. To initialize the POCS algorithm, the
algorithm. The cutouts are chosen to contain approximatdiR image labeled “" is chosen as the best image.
the same portion of the scene, so they do not come fromThree results are shown in Fig. 9, parts “k,” “I,” and “m.”
the same spatial location in every image. The cutting proceB3e first SR image, “k,” is produced by applying bilinear
accounts for a significant global translational motion, arigterpolation to initialize the POCS algorithm. The second
as a result, when motion is estimated between the cuto®8 image, “I,” is the result of applying the proposed POCS
this shift is taken into account. These cutouts are showgorithm when the aperture time is ignored. For this image,
deinterlaced by bilinear interpolation in Fig. 9, parts “a’—"j,"the same POCS parameters as in the first experiment are used,
where deinterlaced images are used to make it easier to gaitgl the image is the result of ten iterations. The last SR image,
a feel for the motion blurring. Motion is estimated from eactim,” is the result of applying the proposed POCS algorithm
deinterlaced LR cutout image to the reference image, chosehen the aperture time is taken into account. The resolution
as image “a” in the figure, using the previously discussed this SR image is far greater than in the other two images,
affine motion estimation method. The results of the motioand since we have shown the POCS method to be effective
estimation are tabulated in Table Ill, along with the relativethen the aperture time is indeed negligible, the importance of
global shifts incurred during the cutting process (the coordinatedeling the aperture time is evident.
system is anchored at the top left corner of the image, with theTo both more fully appreciate this result and provide a
horizontal component increasing in the left—right direction, andore realistic sized image for viewing, a larger section of
the vertical component increasing in the top—bottom directiorthe same processed image is shown in Fig. 10. In the figure,
Using the information furnished in the table, the blur ishe color channels have been included. There is no noticeable
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Fig. 9. Results from the nonnegligible aperture time Hi-8 camcorder experiment. Parts a—j are the LR images deinterlaced using bilinear interpolation.
Part k is the SR image computed using bilinear interpolation of the reference image shown in j. Part | is the SR image obtained if the aperture time is
ignored, and part m is the SR image resulting from the proposed POCS algorithm.

difference resulting from applying the SR procedure to th@ontranslational component of the motion appears small in the
chrominance channels, or simply bilinearly interpolating therprinted pictures, it is large enough that applying the algorithms
so the bilinearly interpolated versions are included. Notice thander the assumption of global translational motion leads
in the POCS result the strip of film furthest to the right (topo no improvement over bilinear interpolating a single field.
portion of the picture) can be seen to contain a saxophoAtso of interest is that the LSV motion blur is different in
with a hand on it, and that on the film strip immediately t@ach LR frame. As a result, a formulation using a separate
the left is text with the letters “A” and “L.” The source of postprocessing step for motion blur removal would not be
the ringing artifacts is most likely due to our assumption thappropriate for the images processed in the third experiment.
the acquired video data came directly from a CCD sensdast, the computations required for this algorithm are not
This is not the case, since the CCD data within the camdrévial, but not prohibitive either. Using nonoptimized code,
has already been processed and converted to the NTSC forthatimages in Figs. 7 and 8 are computed on a SPARC-10
before our digitization. We are forced to make this assumptigplatform in roughly 30 min. The images in Fig. 9 require
since in practice we do not have access to the internal camerare processing time, roughly 3 h, due to the larger blur
CCD data. Given the blur support sizes (as high as<2#b), sizes caused by the large interimage motion. We emphasize,
however, we do not believe this ringing is excessive. however, that no attempts have been made to optimize the
As part of this experiment, we also demonstrate the efficagigorithm implementation or the code used. For instance,
of using multiple (as opposed to only a single) LR fields. Wiée POCS projections easily lend themselves to a parallel
have used the POCS projection algorithm exactly as previougiplementation.
described in this experiment, with the exception of only using
the visually best field (Fig. 9, part “j") to estimate the SR
image. The resulting SR image is shown in Fig. 11, part V. CONCLUSION
“a.” In part “b” of the same figure, the output of the POCS We have proposed a model for video acquisition that takes
algorithm when all fields are used (Fig. 9, part “m”) is showinto account sampling on an arbitrary lattice, a sensor ele-
for comparison. We can see that even though the other fietdent's physical dimensions, the aperture time, focus blurring,
are far more affected by the motion blurring than field “j,’and additive noise. This model relates the observed LR video
a noticeable improvement is still produced by using them to discretized SR video. The proposed model is then used
the algorithm. Note that using any LR field other than “j” foiin developing a POCS-based algorithm for reconstructing a
single field processing would provide an even greater contr&R image or video from LR video or imagery containing
in the results, since all other LR fields are more substantialiglative motion. Fractional pixel relative motion is necessary
motion blurred than “j.” We have thus demonstrated the lowésr resampling over a denser lattice. However, when motion is
bound on the improvement increase for multifield processinigrge, resolution improvement is not possible unless blur due to
Before leaving this section, a few comments are in orderonzero aperture time is modeled and taken into account. We
First, with regard to the interframe motion, although thbave demonstrated this fact through examples using real video.
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treated to serve this goal. In the first case, translational motion
is assumed. In the second case, general image warpings are
considered. To solve this second case, a general approximation
is given, that leads to a blur computation algorithm that is built
on top of the algorithm delineated for the translational motion
case. Relative to this approximation, we make specific mention
of the affine and perspective transformations.

1) Translational Motion: For the case of translational mo-
tion, we define piecewise constant velocity motion paths,
effective during the:th opening of the aperture (i.e., acquiring
the k** LR image at timet;), as

x, = M(z,t,t,)=x+xp, +vi(t — (i — 1)) (21)

where the velocitie®; ;, andwva i, wherewy, = [v1x  v2x]"
are assumed to be constant over the aperturefimé; — 1)

is the time of thekth opening of the aperture, aag, denotes
the relative initial position at théth opening of the aperture.
The quantityz;, is a function of the timeg;, andt,.. If for the
moment the focal blur is ignored, then the Piafx; z, ; ¢, t,.)

is LSI, and by defininghy(x — x4, ;t,t.) = holz; 2,5t t)
and applying (6) and (10)

1 [T
hoy(x;t. t.) = T / ho(x + xp, +v37) dT. (22)
a JO

If we now assume the aperture response is a 2-D “rect”
function given by

1 AM,;

ha($17$2) = { AMlAMQ; |$1| < 2
0; else,

AM,
2

7|$2|<

Fig. 10. Results from the nonnegligible aperture time Hi-8 camcorder ex- , . . L
periment, where large regions are processed, and color is included. At tophi€nhs can be computed graphically as depicted in Fig. 5. The

the POCS initialization, and at bottom is the result after six iterations.  coordinatex + xp, Sets the starting point of the line shown
in the figure, at timer = 0. The integral follows the line to

its endpoint atr = T,, and the result is simply the length
of the line segment that intersects the shaded region. Working
out this integration shows that the P$&(x;¢,%,.) consists

of convex regions in the coordinate system, within each of
which h5(-) is described by the equation of a plane. Computing
the discrete PSH;, (ny, na;m, mo, k) then requires nothing
more than summing the volumes under planar convex regions
formed by the intersection dff;, (n1,7n.) [see (14)] and the
convex regions that defing(-).

Fig. 11. Results from the nonnegligible aperture time Hi-8 camcorder ex- The focus blurho(:c, t) can be SUbsequently taken into

periment, where only a single field is used for estimating the SR image. PECOUNt Using a discrete approximation by carrying out the
a shows the SR image generated using only LR field j from the previog®nvolution
figure, and part b shows the result of using all the fields (same as m in the

previous figure). he, (01, nas iy, M, k), ny b, (n1,12) (23)

whereh? (n1,n2) is the discrete representation of the focus

In addition,experiments with real data have been performﬁ vh . :
that demonstrate the effectiveness of our algorithm when t E’l‘" for t_he K LR Image, an,d*"l’"ﬂ denoteg 2-D discrete
nvolution over the variable§:;,n2). By taking the focal

input imagery is not sampled progressively, and the inpﬁf

. . . o . . ur into account in this way, we are making the assumption
imagery is motion blurred with different blurs in each field. 7! ) .
gery that the blur PSR, _, within a region aboute;(m,, ms, k),

is approximately LSI. This is a reasonable assumption as long
APPENDIX as the image has not undergone an extreme nontranslational
A PRACTICAL BLUR COMPUTATION METHOD warping. Handling the focus blur as in (23) is attractive,
This appendix describes a practical method for computisince h,, can easily be computed when the focus blur is not
the blur functionh, (-) given by (14). Two cases will be considered, and the convolution in (23) is easy to implement.
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2) General Warpings:We now extend this method forused for the affine case to compute the blurs in Section IV,
computing the blur to the case of more complex warpings, suBesults.

as those described by affine or perspective transformations.
The extension is based on the following observation: The
warping between the times. and ¢, may be significant,

however, the nontranslational component of the warping
that effects the blur shape will be small during the aperturétl
time. This concept is demonstrated in Fig. 6. The figure is a
graphical representation of the computation described in (10[g]
which is rewritten here as 3]

t
ho(@: 30,1, 1,) = / bl - MYz, 7,1,)
t—T,

[4]
| J(M(zy 7,1, dr (24)
The figure depicts the warped blur keritgl-) as it translates [5]
across the point,,_ during the integration time frorh-1}, to ¢.
The value ofhy(-) is then the “dwell” time over,, , weighted (g

by the Jacobian and the amplitude /of(-). Computation of
(24) is difficult since the translating kernél(-) is contin-
uously warping during the integration period. As previously
pointed out, however, the nontranslational component of this
warping, during the aperture time, is assumed to be sma(lg8
This effect is demonstrated in Fig. 6 by showing the dotte
outline of the functiorh, (M~ "(x,, ,t—T,,t,)) superimposed

on the shaded region representih@(M‘l(:cLT,t,t,,)). in
terms of (24), the approximation makes the assumptions
that i) the Jacobian weighting is a constant, ii) the warpin
M(x, ,7—1T,.%.) is maintained throughout the aperture tim
(i.e., this function only translates aschanges), and iii) the
path of translation during two consecutive frames and, thusl!
within the aperture time, is linear. With this approximation,
(24) can be rewritten as [12]

| J(M(M(z,t = To,t,),7,8:))|

[13]

t

/ hi(f(x,7) — M~ (z1, ,t — Ty t,))dr (25)
t—T,

[14]
where

T—71 [15]

s+ MY Mzt — T, + T,t.),t — To t)

Lz, )= T
(26)

(16]

and7 is the time between consecutive frames.

Using this approximation, the same procedure for computingy]
the blur in the case of spatially uniform, temporally piecewise
constant-velocity translational motion is used, except that ak
each pointe the blur is computed with the appropriate warping
applied to the rectangular function depicted in Fig. 5. T8
summarize, when the warping is defined by uniform and
constant translations, the approximation will result in an exaig0]
blur computation. When the warping is affine, the Jacobian
does not vary withe,,, but we have approximated it to bepq)
constant over time, while the aperture is open. Additionally,
the translation is assumed to be constant velocity, where tr[g
may not necessarily the case. In the case of perspective motion,
the approximation has the same effects as in the affine case
with the additional approximation that the Jacobian is consta[r%iir
over the spatial blur support &f;(-). This approximation is
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