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Restoration of a Single Superresolution
Image from Several Blurred, Noisy,
and Undersampled Measured Images

Michael Elad and Arie FeueiSenior Member, |IEEE

Abstract— The three main tools in the single image restora- estimator [1]-[4], and 3) projection onto convex sets (POCS)
tion theory are the maximum likelihood (ML) estimator, the  gpproach ([5]).

maximum a posteriori probability (MAP) estimator, and the set The consistent development of computer technology in

theoretic approach using projection onto convex sets (POCS). L . .
This paper utilizes the above known tools to propose a unified recent years has led to a growing interest in image restoration

methodology toward the more complicated problem ofuperreso- theory. The main directions are nontraditional treatments to the
lution restoration. In the superresolution restoration problem, an  classic problem and looking at new, second-generation restora-
improved resolution image is restored from several geometrically tjgn problems, allowing for more complicated and more com-

warped, blurred, noisy and downsampledneasured images. The . . . . )
superresolution restoration problem is modeled and analyzed putationally intensive algorithms. Among these new second

from the ML, the MAP, and POCS points of view, yielding a 9generation problems are multiple image restoration [6]—{12]
generalization of the known superresolution restoration meth- and superresolution image restoration [13]-[27]. This pa-
ods. The proposed restoration approach is general but assumesper focuses on the latter problem of superresolution restora-

explicit knowledge of the linear space- and time-variant blur, -5 - Application of such restoration methods arises in the
the (additive Gaussian) noise, the different measured resolu- .
following areas.

tions, and the (smooth) motion characteristics. A hybrid method
combining the simplicity of the ML and the incorporation of 1) Remote sensingvhere several images of the same area

nonellipsoid constraints is presented, giving improved restoration are given, and an improved resolution image is sought.

performance, compared with the ML and the POCS approaches. C . . ;
The hybrid method is shown to converge to the unique optimal 2) Frame freeze in videowhere typical single frame in

solution of a new definition of the optimization problem. Su- video signal is generally of poor quality and is not
perresolution restoration from motionless measurements is also suitable for hard-copy printout. Enhancement of a freeze
discussed. Simulations demonstrate the power of the proposed image can be done by using several successive images
methodology. merged together by a superresolution algorithm.

Index Terms—Constrained optimization problems, estimation, 3) Medical imaging (CT, MRI, ultrasound, etcthese en-
inlﬂc’i_ge restoration, MAP, ML, POCS, regularization, supperres- able the acquisition of several images, yet are limited in
olution.

resolution quality.

The superresolution restoration idea was first presented

|. INTRODUCTION by Tsay and Huang [13]. They used the frequency domain

HE CLASSIC theory of restoration of a single imagé@PpProach to demonstrate the ability to reconstruct one im-
T from linear blur and additive noise has drawn a lot gproved resolution image from several downsampled noise-free
research attention in the last three decades [1]-[4]. MaMgrsions of it, based on the spatial aliasing effect. Other
algorithms were proposed in the literature for this classf€sults suggested a simple generalization of the above idea
and related problems, contributing to the construction oft@ noisy and blurred images. A frequency domain recursive
unified theory that ties together many of the existing metiglgorithm for the restoration of superresolution images from
ods [4]. In the single image restoration theory, three majopisy and blurred measurements is suggested in [14]-[16]. A
and distinct approaches are extensively used in order to §ggtial domain alternative, based on Papoulis [17] and Yen [18]
practical restoration algorithms: 1) maximum likelihood (MLpeneralized sampling theorems is suggested by Ur and Gross
estimator [1]—[4], 2) maximuna posteriori(MAP) probability [19]. Srinivas and Srinath [20] proposed a superresolution
restoration algorithm based on a minimum mean squared
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iterative backprojection (IBP) method adopted from computeperations can be found in [17] and [32]. In this paper, the
aided tomography (CAT). This method starts with an initiageneral linear space variant case is treated, and it is shown
guess of the output image, projects the temporary result to that superresolution can be achieved even without motion.
measurements (simulating them), and updates the temporaryhis paper is organized as follows: Section Il presents a new
guess according to this simulation error. This method is notodel for the superresolution problem and the application of
limited as the previous ones to specific motion characteristidte ML, the MAP, the POCS, and the hybrid algorithms for
and allows arbitrary smooth motion flow, although the convethe restoration task. Section Il presents a short analysis of the
gence of the proposed algorithm is proven only for an affimeotionless superresolution restoration problem. In Section IV
geometric warp between the measured images [23]. Set the® compare the main known superresolution restoration tech-
retic approach to the superresolution restoration problem waigues to the approach presented here, showing that the new
also suggested [24]-[26]. The main result there is the abiligpproach is a generalization of those techniques. Simulations
to define convex sets which represent tight constraints on tiesults presented in Section V and Section VI concludes the
required image. Having such constraints, it is straightforwagper.

to apply the POCS method. The restoration procedure in

[24]-[26] has the same benefits as the IBP method mentione@i. SuPERRESOLUTIONRESTORATION: A NEW APPROACH

earlier: arbitrary smooth motion, linear space variant blur

:Csnngghbc;rgggfﬁae:gﬁeﬁ%d;“;ﬁ gg':ghlﬁggfg%’ngfaﬁto:;; erresolution restoration problem. Simplicity and direct con-
nection to the problem of single image restoration (from one

gasny cor_nbmed with the restoration process. Howeve_r, Prateasured image) are the main benefits of this approach. Thus,
tical application of the projections might be computatlonal%e various known methods to restore one image from one

demanding, thus limiting the POCS applicability. measured image are easily generalized to the new problem of

Another approach toward the super-resolution restoratig le i : :
, e image restoration from several measured images.
problem is presented by Schultz and Stevenson [27]. TthPg 'mag I v " images. We

. . art our presentation with a new model to the problem and
approa_ch uses MAP estimator, with the Huber-Markqv Raﬂien turn to apply known restoration methods to the suggested
dom Field (HMRF) prior. The blur of the measured images. Jqel.
is assumed to be simple averaging, and the measurements
additive noise is assumed to be independent and identica&y
distributed (i.i.d.) Gaussian vector. This choice of prior causes
the entire problem to be nonquadratic, thus complicating theThe key to a comprehensive analysis of the classical su-
resulting minimization problem. perresolution problem is to formulate the problem and to

In complete analogy to the single image restoration proBrodel it as simply and as efficiently as possible. We start by
lem, this paper proposes a unified methodology toward tREesenting the problem to be solved and then turn to introduce
problem of superresolution restoration. In this problem, onén analytical model describing it. Throughout this paper we
improved resolution image is restored from several blurrefgPresent images columnwise lexicographically ordered for
noisy, and downsampled measured images. The superresBlatrix notation convenience.
tion restoration problem is modeled by using sparse matrices3iven areN measured image’, };_,, where each image
and analyzed from the ML, the MAP, and the POCS pointg (in the general case) of different siéf, x M;]. We
of view. The result is a direct generalization of the class@ssume that these images are different representations of
problem of single image restoration from one measured image single high-resolution imagel’ of size [L x L], where
The three approaches merge into one family of algorithmigpically L > M, for 1 < k < N. More specifically, each
which generalizes the single image restoration theory [1]-[#)€asured image is the result of an arbitrary geometric warping,
on one hand, and the existing superresolution a|gorith,{i,|gear space-variant blurring, and uniform rational decimating
proposed in the literature [13]-[23] on the other hand. THerformed on the ideal high-resolution image We further
proposed restoration approach is general but assumes expféfiume that each of the measured images is contaminated
knowledge of the linear space- and time-variant blur, tHey nonhomogeneous additive Gaussian noise, uncorrelated
(additive Gaussian) noise, the different measured resolutioR§tween different measurements. In order to treat the most
and the (smooth) motion flow. The presented methodolo@?nerfﬂ case, it is assumed that each measurement is the result
also enables the incorporation of POCS into the ML or MAPT different blur, noise, motion, and decimation parameters.
restoration algorithms, similar to the way it is done for thdranslating the above description to an analytical model, we
iterative single image restoration problem [4], yielding hybri§€t
superresolution restoration algorithm with further improved Y, =DiC P X+ E, for 1<k<N 2.1)
performance and assured convergence.

The classic superresolution restoration assumes a relatiieere Fy, is a [L? x L?] matrix representing the geometric
motion between the measured images as part of the modehrp performed on the imag&, C, is the linear space-
in order to achieve superresolution restoration capabilisariant blur matrix of size[L? x L?], Dy, is a [M? x L?]
[13]-[27]. Another question addressed in this paper is wheth@atrix representing the decimation operator resulting’jn
motion is a necessary condition for a feasible restoratidp, stands for the additive zero mean Gaussian noise in the
with improved resolution. Theoretical results for the LSI blukth measurement with positive definite autocorrelation matrix

' In this section, we present a new approach toward the

Modeling the Problem

3
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noise 1
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Fig. 1. Degradation model for the superresolution restoration problem
Wk_l of size[ M} x M?]. All these matricesK}, Cy,, Dy, Wy) The autocorrelation matri)Wk_1 can be chosen as the
are assumed to be known in advance. Fig. 1 illustrates tidentity matrix if noa priori knowledge on the additive noise
model schematically. is given. Such a choice corresponds to the assumption that

Before we turn to use the above model, we justify the abotee noise is white, which is typically the case for many
assumption regarding the availability of the matrices involvedgstoration problems, including superresolution applications.
The geometric warp matri¥}, is a one-to-one representatiorAs mentioned before, a colored noise can be assumed with
of the optic flow between theondecimated noiselesgrsion its parameters estimated as part of the restoration process [4],
of the kth measured image and the ideal imade This though this approach will not be further discussed here.
optic flow can be reliably estimated from the noisy and Having the above model, grouping of tie equations into
downsampled measurement if it is smooth enough. SuchP@e can be done for notational convenience. This way we get
case corresponds to global motion characteristics. Note that
the orientation of the ideal image should be chosen arbitrarily ry’, D.C\F; E, H,
as equal to the orientation of one of the measurements. T : X+|:|l=1: |x+E

The assumption on tha priori knowledge of the blurring ' ; o : -
matrix can be explained in some applications by referring Yy DNCnEy En Hy
the blur to measurable phenomena, such as optics and sensor ¢Y=HX+E (2.2)
blur. In other cases, we may assume that the superresolution
restoration process is robust to errors in the blurring functiowhere we have defineff;, = D;C, F},, and the autocorrela-
and thus use rough guess for the blur function and allow sutihn of the Gaussian random vecthy is
errors to exist. Of course, such robustness should be proven, a

point that will not be treated in this paper. A different approach -1
. . . S . Lo w1 0
which will not be discussed in this framework is estimating the r _ I
blur function in parallel to the restoration process, as suggested E{E } - =W (2.3)
for single image restoration algorithms [4]. 0 Wi

The decimation ratio between the ideal image and/tte
measurement image is the only parameter determining theThe obtained model equatiof = HX + E is a classic
matrix Dj,. This ratio is directly drawn from the ratio betweerrestoration problem model [1]-[4]. Thus, we can easily apply
the number of pixels in the measured ima@#? and the the ML estimator, the MAP or the POCS methods in order to
ideal imageL?. The determination of the ideal image pixelsestore the imag&l, which is exactly our purpose here. In the
number is arbitrary. Choosing a very high value will caus®llowing sections we shall briefly present the way to apply
the problem to be ill-posed, with the ability to relax it byeach of those tools.
regularization. Choosing a low value can result in underuti-
lization of information in the measurements, but will improve )
the noise suppression results. One intuitive rule that can hEpML Restoration
us determineL is the requirement.? < M2 + .- + M2 + According to the ML estimator [1]-[4], the estimation of
.-+ 4+ M%, which can be explained as a requirement that thiee unknown imageX is done by maximizing the condi-
amount of given data (in the measurements) should be largienal probability density function of the measurements, given
than the amount of information required in the restored imaghe ideal imag&{Y/X}. Assuming that the measurements

4
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additive noise is zero mean Gaussian random process withs done before, the MAP estimation gives
autocorrelation matrixW %, performing several algebraic

steps we get that _the _ML is reduced to the weighted least XMAP = argmax{ P{Y /X }P{X}}
squares (WLS) estimation of the form

Xy = argmaxP{Y /X } = argmax{[Y — HLX|"W[Y - H]
X X
+XTQT X} (2.8)
— T
- ar%r(nax{ [Y - HX]" WY - HX]} (2.4) Minimizing the above function with respect t& yields
= the following result:
Differentiating with .respect td; and equating to zero gives RXJ\{AP =P (2.9)
the well-known classic pseudoinverse result
where
RX,, =P (2.5) N
R=Q '+H'WH=Q '+ H}WiH,
where: k=1
N
N T T
P=H'WY =Y HI'WY, (2.10)
R=H'"WH=>_ HW,H ;
kfl and the resemblance to the ML result is evident. It can be

P=HIWY = ZHEWkYk' (2.6) shown [4] that if an autoregressive (AR) model is assumed
- - - on the imageX, a simple and direct connection between the
Laplacian regularization matrix and the AR coefficients can be
Locally adaptive regularization can be included in the abowstablished. As before for the ML, the MAP estimator reduces
analysis with both algebraic and physical interpretations a large set of sparse equations that can be solved iteratively
[1]-[4]. Using the Laplacian operato§ and a weighting [29].

matrix V' (penalizing nonsmoothness according to ahgriori

knowledge on the smoothness required at each pixel), we @etSet Theoretic Restoration

k=1

According to the set theoretic approach [5], eachriori

XML :argmax{[l— H&]TW[X_ HX] knowledge on the r_equired restored image_s_hould be formu-
X lated as a constraining convex set containing the restored

I image as a point within this set. Using the model presented
+B[SX] V[SX]} (2.7)  earlier, we can suggest a group of such convex sets based on

the ¢, distance measure
Differentiating again with respect t& and equating to zero 5
yields the equatioR.X ,,, = P, which is the same asin (2.5), Ok = {X‘ [ DkCrr X = Yy llyy, < 1} 1<k<N.
but a new term3STV S, is added to the matriR. Various (2.11)
iterative methods for practical ways to solve this large set dhis defines a group ¥V convex sets—ellipsoids, in this case.
sparse linear equations have been suggested in the literatfifae measurements additive noise is white, thigp= o >-1,

(see, e.g., [29)]). other forms of constraints can be proposed, based/.gn
distance measure [5], [24], [25]
C. MAP Restoration Gilm,n) = { X|[[DACUELX] ) — (s )| < S0(m,m) }
According to the MAP estimator, the additive noise, the 1< k< N;¥(m,n) € 6, 2.12)

measurements, and the ideal image are all assumed stochastic

signals. The MAP estimation of the unknown imakiés done Wwhere 6. is the support region of théth measured image,

by maximizing the conditional probability density function ofind ¢, stands for the uncertainty of the model [24], [25].

the ideal image given the measuremeRt{SX /Y }. Based on This convex set is actually a polytop constructediif scalar

Bayes rule, maximizing®{ X /Y} is equivalent to maximizing constraints—each corresponds to one pixel of the measured

the function P{Y/X}P{X} [1]-[4]. Therefore, the MAP imageY,, requiring that the absolute value of the model error

estimator is equivalent to the ML estimator, with the uniformt this point be bounded.

probability distribution assumption af. Another set that can be used is the one constraining smooth-
If we assume that the measurements additive noise is z8&$S. According to the proposed smoothness constraint [4], we

mean Gaussian random process with auto-correlation ma@Bn suggest convex set versions as before.

W1, and X is a zero mean Gaussian random process alsofor 2, we have

with autocorrelation matrixQ, the MAP estimator becomes Go = {X‘HSX

the MMSE estimator. Performing several algebraic steps as -

2 < 1} (2.13)

5
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or for ¢.: E. Hybrid Restoration

We have seen that the ML, the MAP, and the uniform-
< 50} V(m,n) € o (2.14) weights bounding ellipsoid estimators give similar linear set
of equations, to be solved using iterative algorithms [29]. The
where 6, is the support region of the ideal image. We cahenefit in using these approaches is the relative simplicity
incorporate additional nonlinear constraints such as constraidfsthe restoration process. Their main drawback is the fact
on the output energy, phase, support, and others. An often ulgat additional nonquadratic constraints representing additional
constraint is the one posed on the amplitude of the result a priori knowledge of the ideal signal are not incorporated
into the restoration process. This section presents the way to
G4 = {z(m,n)|AL < z(m,n) < Ay} ¥Y(m,n) € by combine the simplicity of the above iterative algorithms with
(2.15) the application of the nonquadratic constraints. We start by
Having a group ofM convex sets, each containing thelefining a new convex optimization problem, which combines
required image, the POCS method suggests the followiAguadratic scalar error with/ convex constraints as follows:
iterative algorithm for the recovery of a point within the
intersection of these sets [5]:

Gs(m.n) = {X]|[9X] ..

minimizec? = { [Y — HX]"W[Y - HX]+4[sX]"V[sx]}

subjecttof X € &y, 1<k < M} (2.19)

X, =PuPy_1-- - BP{X, 2.16 .
=t MEM=L 2P ( ) where the quadratic error takes care of the model and the

where P is th roiection of ven int onto théh smoothness errors, and the additional constraints refer
ere F; Is the projection of a given point onto thel to the nonellipsoidsa priori knowledge. The quadratic error

convex set. Relaxed projections can be used instead of dir{e‘e%n is the same as was defined in the ML. the MAP. and
ones in order to improve convergence rate [3]. PrOJeCt'QHe bounding ellipsoid methods. Our aim is to construct an

onto an ellipsoid, as .requwed for t.he sets given in (2211) aré‘#l‘icient iterative algorithm to solve this constrained convex
(2.13), is a computationally complicated task. Projection oNtQ v mization problem. The benefit of the proposed new for-

a2 T;Itldlrgenzszjzaldcube, ats IS given 1n the contvex stets Mulation is in the fact that it combines both set theoretic and
I( 12) ant . ( N ), d0es n(c)j trheqw_re anyhparamle ert s€ Upl’s%chastic estimation approaches. This way, all ahpriori

:or?ni)angs d“t):) It?]ée;;lc?jg’ct?gn ontuos ali traTI]I?pCsoizlmp er to app ¥<nowledge is utilized effectively and, in contrast to the POCS

. .method, th i ingl timal soluti ix A

A different approach toward the POCS idea is the boundlring]ed [(Zc]i [3§]re is a single optimal solution (see appendix A)

elllpsmdh methﬁdtrEG], [SO],; [:’.’3,[]' This rﬂgthqg IS _}_’ﬁ“dbfor. th% Following the iterative methods presented in [4], we propose
case where afl the constraints are €flipsolds. 1he basic | ae%imple yet effective two-phase iterative algorithm to solve

here is to find the ellipsoid bounding the intersection of all tr}%e above optimization problem. Analysis of this method can
participating constraints, and to choose its center as the out 8tfound in Appendix A. Suppose that an efficient iterative

resullt. In [6], [.30]’ and .[33]’ the bou_nding ellipsoid metho. I%orithm that is known to converge to the minimum of the
gnd its properties are discussed. Using th_e convex sets giyen, . squared erref is given, denoted by; [29]. Algorithms
in (2.11) and (2.13), we get that the bounding ellipsoid centgach as the conjugate gradient (CG) or the Gauss—Siedel can
is [6], [30], [33] be considered as excellent candidatesfoBeyond this first
iterative algorithmZ;, M projection operators denoted by
k = 1,2,.--. M can be constructed, each projects onto a
convex set and represents a single given constraint. Assuming
that the M projections are all given using the Euclidiean
N metric, we suggest the following global iterative step:
R = poSTVS + kZ prH i Wi Hy, K = I THB G (220)
=1
N This interlaced approach is generally converging tcu-
P= ZPkH;ZFWka optimal point of the problem given in (2.19) (see Appendix
k=1 A). Adding several new iterations, where ndyis replaced
by the (notoriously slow [29]kteepest descent, updates the
and {Pk}ﬁ;o must satisfy previous result and assures that the final convergence is to
the optimal point, as is proved in Appendix A. Off course,
N such convergence is assured only if the iterative algoritfyms
YVO<E<SN pp,>0 and Zpk <1. (2.18) in both phases (conjugate-gradient/Gauss—Siedel, and steepest
k=1 descent) are converging to the minimume3f29].
Appendix A also shows that the Gauss—Siedel or the CG
For each different choice O{pk}£;0 a different bounding algorithms [29] can serve for the first phase, because of
ellipsoid is obtained, with a different center. For the speci#their relatively fast convergence, but indeed, might converge
case where alp;, are identical, we get the results obtained bjo a suboptimal result, whereas the steepest descent assures
the ML and the MAP methods. convergence to the optimal result. It should be noted that

RXBE = B (2.17)

where

6
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applying the CG algorithm combined with projection opera- 2) the decimation is the same for all the measured images:
tions might cause instability behavior, because the projections D, = D,Vk;

might destroy theR-orthogonality of the search directions, 3) the weight matrices are the same for all measurements
generated by the CG algorithm. However, our simulations gave and equals I[W, = W = I, Vk;

no evidence for such problem. 4) the blur matrices are block-Toeplitz, which corresponds
to LSI blur;
lIl. M OTION-FREE SUPERRESOLUTION 5) the blur matrices’ kernel has zero center of mass in

The classic superresolution restoration assumes a relative the two axes. This assumption is crucial since nonzero
motion between the measured images as part of the model, center of mass implies a global translational motion of
in order to achieve superresolution restoration capability the corresponding measured image. We could replace
[13]-[27]. This section refers to the question of whether this requirement by a tighter requirement and restrict
the motion is a necessary condition for a feasible restoration the analysis to the case of symmetric blurring kernel (in
with improved resolution. An example for such application is the two axes), but this of course only limits the results
a fixed camera filming fixed objects. The question is whether  of the analysis.
superresolution image can be obtained from several suctHaving all these assumptions, we have the following matrix
images with different defocusing. This section contains g check for singularity:
short analysis of the above question. More details can be

found in [33]. N Dcy1F 1be,y
_ T T — : : =HT
A. Theoretic Analysis R=> CiD'DCy= | : : H'H.
. . . k=1 DCy DCy
As was shown in the previous section, the ML, MAP, and (3.1)

POCS (only for ellipsoids and, norm) methods give similar |t is easy to see that if the matrbd is of full rank, then
restoration procedures, namely the solution of a large setRfis nonsingular [31]. One immediate necessary condition for
sparse linear equatiorRX = P. We say that superresolu-this requirement comes from the dimensions on the métrix
tion restoration is possible if the linear set of equations {he number of its rowsNA/2, must be at least as high as
well posed, which means that the mati is nonsingular. the number of its columnsL2. This necessary condition is
But, when regularization is combined as an interpolator, thigerefore

matrix R is always nonsingular, even if the other termsRn

2
are singular. Therefore, we omit the regularization term for L? < NM?=> [L/M} <N 3.2)
the following analysis to concentrate on the restoration part
without the need for interpolation. The rank of the ternDC}, is M? at the most (sinc& > M).

Another way of looking at the equations set is the followingraking the first row of each such terfC;,, we getN vectors.
The spatial aliasing effect in the frequency domain is intifhese vectors must span at least (e[r;}/M)2 dimensional
mately connected to the superresolution restoration idea. Thigbspace in order to enatieto be full rank. Since these rows
connection can be directly seen in frequency domain methastsnsist of only[2p + 1]* nonzero entries at fixed locations,
such as [13]-[16]. Spatial aliasing means that high-frequengyd since the center of mass for each kernel must be zero
components are folded and added to lower frequency ongsee the assumption 5 made above) we get a second necessary
By getting several measurements with different spatial aliasiggndition forH to be full rank, as follows:
effect, these high frequencies can be identified and restored; )
this is the main idea behind the superresolution restora- [L/M} < [2p+1]2_2 (3.3)
tion methods. Intuitively, we can understand that having a
measured image with no aliasing effect means that highﬁhere(2p+ 1) x (2p+1) is the kernel size of the blurring
frequencies components do not exist in the original imaggperatorsC;, [1]-[3]. From the above two necessary (but not
thus removing need for restoring them, and in such casesgfficient) conditions, we have that superresolution restoration
the obtained restoration equation becomes ill posed. Takiggimpossible if the following condition is not met:
this reasoning further, we can say that when the defined )
superresolution restoration problem reduces to an ill-posed [L/M} < Inin{[2p+1]2 —2,N} (3.4)
equations set, this corresponds directly to an overresolution
demand from the restoration process. Regularizing the ifithich poses a restriction over the resolution improvement,
posed problem is equivalent to introducing interpolation singgverned by the blur-kernel size and the number of measure-
the data available is insufficient. ments. Note, however, that the above inequality only presents
We are interested in the case whefp = I,Vk, which necessary conditions for the superresolution restoration possi-
means that there is no relative geometric motion between thigty. One interesting point with regard to the above result is
measured images. The question to be solved is: Can the mafiit increasing the number of measurements cannot increase
R under the above assumption dn, be nonsingular? We the restored resolution beyond the upper bound posed by the

further simplify the analysis by assuming that kernel size. However, increased number of measurements with
1) all the measured images are of the same 3i%¢ i.e., the same output resolution means that better reduction of noise
M} =M3}=...=M%=M?% can be achieved.
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00100 (00000 00000 00000
]01210 01210 01210 02220
1
c;=—[1 2321 ; ¢,=—|02 420 =022 2 0 c,=lo2220
119 2 16 3 14 4 18
01210 01210 01210 02220
00100 00000 00000 00000
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101210 111111 111211 111:211
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5 18 6 25 7 28 8 26
01210 11111 11211 11211
00100 11111 01110 01110
Fig. 2. The eight blurring kernels for the test.
TABLE | that using more iterations could cause unstable results. It is
RESULTS FOR THETWO SUPERRESOLUTIONRESTORATION TESTS known that limiting the iteration number stands for a variation
Cond #of R Rank of R Cond. # ol R Rank of R of regularization [4]. Thus, the nonregularized restoration re-
N kernels [5x 5] kernels [5x 5] kernels [3x 3] kemels[3x3]  SuUlts are in a way also regularized. The restoration results with
1 (o) 64 (o) 64 smoothness regularization were computed using 20 iterations.
2 (=) 128 () 128 The restored images are presented in Fig. 3. As can be seen
3 () 192 (=) 192 from the images, raising the number of measurements indeed
4 264108 256 (full) (=) 192 improves the restoration result as expected. Regularizing using
> 261106 236 (full () 192 the Laplacian operator also improves the results significantly,
6 7.62-105 256 (full) (o0) 192 -
especially for a low number of measurements.
7 785-105 256 (full) (=) 192 h . d . dff t b| k |
o 83105 256 (full) () 102 This experiment was repeated using different blur kernels,

all [3 x 3], created from those in Fig. 3 by eliminating the
outer elements. In this case, since the number of free param-
eters isp> + p + 1 = 3, requiring L/M = 2 is theoretically

B. Motionless Superresolution: Simulation Results impossible according to (3.4). Indeed, Table | shows that in

To demonstrate that superresolution is possible withotiS case the rank of the matricés is bounded by 192,
motion, we have chosen the following case. Let= 16, Meaning thatR is singular for allV, as expected.
M = 8, andp = 2. We then need to have > 4 in order to Summarizing this section, we have shown that superres-

satisfy the necessary condition (3.4). By assuming asymmet‘?ﬂ:’t'on restoration is possible even wlthout motion between
blur kernel, we have only? + p + 1 = 7 free parameters th_e_: measurements. We have established two necessary con-
(see [33] for more details). Eight different experiments haitions that apply to the case of LSI blur and uniform size
been conducted varying in the number of measurement ima&g%asurements.

used, from one to eight. Each of the available measurements

resulted from using different blur kernel; these are given in IV. RELATION TO OTHER METHODS

Fig. 2. TheCy, £ = 1,2,-.-,8 are constructed each from
a corresponding kernel in a block Toeplitz form. The matri
R was constructed for each test and its rank calculated. Tr<
results are summarized in Table I. We note that for our choi

Since this paper proposes a new approach to the superreso-
éion restoration problem, it is appropriate to relate this new
ﬁ]gproach to the methods already known in the literature. In
of blur kernelsR is nonsingular whev > 4. Namely, in this € ;equel, we W”.I pr_esent a brief description of each of t_he
existing methods in light of the new results. The four main

case, motionless superresolution restoration is possible. . .
. . ; .~ _known methods for superresolution restoration are the IBP
As part of this same experiment, eight measurements ima eSihod [21]-[23], the frequency domain approach [14]-[16]
from an ideal imageX, blurred by C;, decimated byD ’ q y bp '

and contaminated by white Gaussian noise with= 1 the POCS approach [24]-{25], and the MAP approach [27].

. : : This section will concentrate on these four methods.
were created. The ideal image was then restored using four,

five, six, seven, and eight measurements, with and without

regularization. The regularization constant was chosen to fe The I1BP Method

£ = 0.3. The weight matrix for the regularization term was The IBP method [21]-[23] is an iterative algorithm that

diagonal matrix, with “1” for all the image plane, except foprojects the temporary result onto the measurements, simu-

a rectangle covering the letter A, which got the weight 0.1.lating them this way. The above simulation error is used to
The restored images without regularization were computegdate the temporary result. If we take this exact reasoning

using the CG algorithm using only five iterations. It was foundnd apply it on our proposed model in (2.1), denoting the

8
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Ideal Image

Measurements

Non-Regularized

Regularized

Fig. 3. Motionless superresolution restoration demonstratdon= 4 (left) to N = 8 (right).

temporary result at thenth step bem, we get for the  According to the above discussion, therefore, the new
simulated measuremerﬁ’sk .. = DrCLF, X, The proposed approach has thus several benefits when compared to the IBP
update equation in the IBP method [21]-[23] is given in scalanethod, as follows.

form, but when put in matrix notations, we get 1) There is a freedom to choose faster iterative algorithms
N (such as the CG) to the quadratic optimization problem.
o o ’ 2) Convergence is assured for arbitrary motion charac-

L =X+ Y QYo - 1] nverge : : cha
=l T kZle —k K teristic, linear space variant blur, different decimation
factors for the measurements, and different additive

=X +Y o [Y D Cy.F, Xrn:| (4.1) noise statistics. o o

kzl b 3) Locally adaptive regularization can be added in a simple

_ _ fashion, with improved overall performance.
where ), are some error relaxation matrices to be chosen.

The configuration obtained in (4.1) is a simple error relaxation

algorithm (such as the steepest descent, the Gauss—Si€defhe Frequency Domain Method

algorithms, or other algorithms), which minimizes a quadratic A frequency domain analysis is possible only for an LSI
error as defined in (2.4). This analogy means that the IBRse, where the blur, the motion, and the decimation are all
method is none other than the ML (or least squares) methggace invariant. In order for the motion to be LSI, only global
proposed here without regularization. In the IBP methaganslational motion is allowed. It can be shown [31]-[33] that
presented in [21]-[23], the matriceg; were chosen to be in such cases, the matrR is unitarily similar to a block di-
Qn = Fy; LCwDy. whereCj, is a reblurring operator, an;, agonal matrix using the 2-D discrete Fourier transform (DFT)
is an mterpolatlon to be determined [21]-[23]. If we choosgatrix. Actually, if we take the previous section discussion and
the simple SD algorithm for the solution of (2.5), we geissume that the blur kernels are with nonzero center of mass,
that Q, = Ff Cif D This result implies that choosing thewe get a treatment for the general LSI superresolution case.
transpose of the blur matrix as the reblurring operator, and zexe is shown in [33], since the matrix to be inverted as part
padding as the interpolation operator gives almost the sagfethe restoration procedure is block diagonal matrix, small
result as the IBP method. The only difference is the choiggoups of pixels in the output image (in the frequency domain)
of the warp matrixF}, in the above two configurations. Sincecan be calculated independently. Thus, the overall restoration
FT = (F'F)™ F,:-” the IBP method uses the additionahlgorithm is separable and can be implemented most efficiently
positive—definite inverse of the matric¢$’! F},) to the error in a parallel scheme.

relaxation matrices proposed by the SD algorithm. TheseThe frequency domain algorithm proposed in [14]-[16]
additional terms may compromise the convergence propert@ges the same result as the one discussed here. In addition,
of the IBP algorithm, whereas the SD (and others) approatite recursive least squares (RLS) algorithm is proposed there
performed directly on the ML optimization problem assureis order to add new measurements to the process, using the
convergence. previous restoration result. The frequency domain method as

9
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proposed in [14]-[16] is again the ML approach presented
here for the LSI case. Thus, its result is the same as the one
that is obtained by the IBP method. As mentioned before,
regularization can be added in order to improve the restoration
results, a tool that is not proposed in [14]-[16]. However, since
a regularization weight matrix that assigns locally adaptive
smoothness weight to each pixel is linear spaegiant,
locally adaptive regularization is not possible in the frequency
domain approach. Instead, we can suggest a different scheme
where the superresolution restoration is performed twice using
LSI formulation—once without regularization, yieldinjgi
and once with LSI regularization yielding 2

ut?

The locally

out" 5
adaptive restoration result can then be constructed by the gﬁ;
equation 3

Fig. 4. Ideal image.
Xout = [I - V] : &iut +V. qut (42)

According to the above discussion, our new approach thus

whereV is the regularization weight matrix. This way, Nona5 several advantages when compared to the MAP—Huber
smooth regions will be chosen from the nonregularized restofgathod given in [27], listed below.

tion process, and smooth regions will be chosen from the

. ' 1) In our approach, relatively simple and efficient iterative
regularized image.

algorithms can be applied, with assured convergence,
whereas the MAP-Huber method results in a more
C. The POCS Method complicated optimization problem.

The approach taken in [24]-[26] is the direct application of 2) The MAP—Huber method as given in [27] treats only
the POCS method for the restoration of superresolution image. simple blur and white noise.
The suggested approach did not use the smoothness constrail Locally adaptive regularization can be added in a simple
as proposed here, and chose to usefthedistance measure fashion, with improved overall performance.
in order to get simpler projection operators. In the sequel, we
have presented the bounding ellipsoid method as a tool Be Conclusion: Relation to Other Methods
relate the POCS results to the stochastic estimation methodsn this section we have shown that the four main known
We have seen that applying only ellipsoids as constraints giu@gthods for superresolution restoration are highly connected
a very similar result to the ML and the MAP methods [33]. Ifo the new approach presented here. Moreover, since our
[24]-[26], it is suggested to add only the amplitude constraigpproach is strongly connected to the classic restoration theory,
given in (2.15) to the trivial ellipsoid constraints. We havgarious tools and ideas to enhance the superresolution restora-
shown that instead, we can suggest a hybrid method that g result are revealed. These tools enable the improvement
a unique solution, and yet is very simple to implement.  of the restoration procedure both from the computational and

the output quality points of view. In a sense, we can say

D. The Map Method with Huber—Markov Prior that the methodology presented here gives a unified approach

The MAP approach with the Huber—Markov prior Waéoward the superresolution restoration problem and solution,
suggested by Schultz and Stevenson [27]. Their approaac'ﬁd generalizes (to some extent) the already known methods.

starts with a linear model describing the relationship between
the measurements and the required higher resolution image.
This model is very similar to ours, given in (2.2). However, In this section, we present simple examples that demonstrate
they restrict their treatment to simple uniform blur, and thihe effectiveness of the proposed method for the superresolu-
measurements noise is assumed to be i.i.d. Gaussian vedton restoration problem. All the simulations correspond to
with variance which linearly decays as a function of the imagg/nthetic data, in order to bypass problems which are beyond
index, related to the center index. This property gives high#re scope of this paper such as motion estimation, and the
influence to near images, and low influence to distant onesblurring function estimation. We start with a single high-
As we have seen above, the MAP estimator suggests soguelity image of siz¢100 x 100] shown in Fig. 4, from which
sort of regularization, originated from stochastic modeling. Wwe generated 16 blurred, downsampled, and noisy images of
the Huber—Markov prior, this regularization is a Gibbs priosize [50 x 50].
that penalizes high activity regions. No attempt is made to The degradation includes affine motion (with zoom ratio
adopt this penalty to be locally varying, according to thim the range [0.9,1.1], rotation in the range [(;hOand
image content. The Huber—Markov prior is simply a quadrattcanslation in the range-[5,5] pixels), blur with the 1-D
function for low activity values, and linear for higher valuesseparable kerngd.7 1.0 0.7]/2.4, a 2:1 decimation ratio,
As such, the overall resulting minimization problem becomesd additive white Gaussian noise with = 3. All the
nonquadratic, and is typically more complicated to solve. degraded images are shown in Fig. 5.

V. SIMULATIONS AND ANALYSIS

10
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Fig. 5. The 16 measured images.

Figs. 6—9 show the restored images using the hybrid restora-
tion algorithm. In the first ten iterationsk (= 1---10) the
stepl; [see (2.20)] consists of using the CG algorithm. In the
next 30 iterationsX = 11---40) the CG is replaced by the
SD algorithm. In both phases of the algorithm there is one
projection to the set presented in (2.15) limiting the output
image gray level to the range [0,63]. The initialization image
was chosen to be the first measured image after additional blur,
and interpolation. We made an attempt to use the initialization
as was recommended in [22], but found out that the benefit
was minor in terms of convergence rate. Exact known motion
flow, blur function, and decimation ratio were used in the
restoration process. The various restored images correspond
to different regularization terms as is listed in the figures.
The first image (Fig. 6) contains no regularizatigh £ 0 Fig. 6. Superresolution restoration result without regularization (MSE
in (2.19)]. The second image (Fig. 7) corresponds to LSf-17:

regularization ¥ = I) Laplacian as the smoothness operatothe previous section for the frequency domain superresolution

and 3 = 2. Fig. 8 presents the restored image with locakstoration. Instead of solving the optimization problem with

adaptive regularization, using the as before, and diagonal arbitrary diagonal matri®’, we use two restored images, one

matrix V' with diagonal values in the range [0.01,1], definediithout regularizationX'’,, and one with LSI regularization,

by yielding X2 ,, as is presented in Figs. 6 and 7. The locally
P o T T Lo -1 adaptive restoration result is constructed by (4.2).

V+ NG = 1) =la-log {1490 5)} +1] ®-1) Summarizing the obtained results, we first see that a super-
where ¢(¢,7) is the smoothness measured by the gradiergsolution image can be generated; the text is readable and the
on the initialization image andv = 99. The final image, icons are recognizable, in all cases, after the restoration. As
Fig. 9, presents the result of an alternative approach to thepected, the restoration without regularization gives ringing
locally adaptive regularization procedure as was presentedefifects [4]. The ringing effects are reduced effectively by the

11
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Fig. 7. Superresolution restoration result with LSI regularization (MSE Fig. 8. Superresolution restoration result with locally adaptive regulariza-
154.82). tion: the direct approach (MSE 112.22).

LSI regularization, causing degradation in the sharpness of
the output edges. The two LSV regularization approaches give
relatively sharp images, as can be seen in Figs. 8 and 9, with
reduced ringing in the smooth regions. It is difficult to compare
the two LSV regularization methods for the general case,
because different definitions of the matrix might change
significantly the restoration results.

VI. CONCLUSION

This paper addresses the superresolution restoration prob-
lem: Namely, given a humber of moved, blurreldcimated,
and noisy versions of a single ideal image, one wants to restore
the original image. To solve this problem, a new general
model was introduced here. This model enabled the direct
generalization of classic tools from restoration theory to tif%gr{:%y
new problem. In this context, the ML, the MAP, and the POCS
methods are all shown to be directly and simply applicable tation restoration problem and solution, and generalizes the
superresolution restoration with equivalencies between thedeeady known methods. However, this generalization is not
methods. The restoration problem at hand in each of thadeal, since MAP estimator with nonquadratic priors, POCS
approaches reduces to the problem of solving a very large ggth L., norm, and other possible methods are not special
of sparse linear equations. cases of the proposed approach. Rather, we have shown in this
A hybrid algorithm is proposed that combines the benefits phper a generalization of well-known methods from restora-
the simple ML estimator, and the ability of the POCS to incofion theory to the superresolution problem. Establishing such
porate nonellipsoids constraints. This hybrid algorithm solvg®nnection enables to import various other known tools from
a constrained convex minimization problem, combining all thestoration theory, to be implemented in the more complicated
a priori knowledge on the required result into the restoratiosroblem of superresolution restoration.
process. An efficient iterative two-phase algorithm is presented
for solving the defined problem, and convergence is assured to APPENDIX A
the optimal point. Simulations are performed to demonstrate HYBRID RESTORATION METHOD
superresolution restoration using the hybrid algorithm. Definition A-1: The following constrained quadratic opti-
An interesting question with regard to superresolutiomization problem is defined &R:
restoration i_s raised an_d treated in this paper. Typically, Minimize 52(&) — XTRX —2XTP 44
superresolution restoration methods assume that motion .
exists between the measured images [13], [27]. The subjectto {X €3 1< k< M}
guestion whether the motion is necessary for superresolutishere R is a positive definite matrixg is a constant which
restoration ability is not treated in the literature. Wensures that?(X) > 0, andS3;, are all closed convex selll.
demonstrate that, indeed, there is an ability to restore anLet.X  , denote the optimal solution of the probléhmwhen
image with improved resolution, based on several motionless constraints are added to the optimization criteria. Clearly,
blurred, decimated, and noisy images. this vector is given by the equatiak,,, = R7'P and is
The proposed methodology is compared to known supemique. LetSgdenote the (assumed) nonempty intersection
resolution methods [13]-[25]. It is shown that the presentesf the M convex sets3;, namely, 3o = ﬂﬁil Sg. This
methodology gives a unified approach toward the superresmtersection set is closed and convex too. The problém

Superresolution restoration result with locally adaptive regulariza-
linear combination (MSE= 94.57)

12
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is equivalent to a problem where thd convex constraints Proof: From the properties of POCS [see, e.g., [5] and
are replaced by a single constrailit € . (A.4)] we have
Theorem AL:If X, , ¢ So then the solution to the problem
P is a point on the boundary G&. LAX T} = JUIAY H| < 1A XS = LAY }]
Proof: The proof is by contradiction. LeX, € int{So} S|I=pR| - X-Y|| < [|X-Y]|| VX Y €eR™
be the solution of the problen®. Then, because of the (A.6)

convexity of the quadratic erra?(X), it is clear that
Hence,J{I,{e}} is a contraction mapping and as such has
e2(X) < e2(X,) (A.1) a unique fixed point. Then, clearly the algorithm in (A.5)
converges ta\ __ regardless of the initializationX __ satisfies

for X = aX,, + (1 - a)X, for all 0 < a < 1. Since the following equation:

X, € int{So}, there existd) < ay < 1 such that JIAX. ) = X (A7)
X=X, +(1—a)X, €S0 It can be readily shown (see [5]) that for ady ¢ 3¢ we
have
which, together with (A.1) leads to a contradiction. W
Theorem A2:The problemP has a unique solution. (X - J{X}LY - J{X})
Proof: We refer to the problenP with the constraint =[X - XYY - J{X}] <0 VY €S (A8)

X e Q. If Xopt € So then Xopt is the solution of the

problemP, and since this point is unique, we have a uniqud caseX,,, € So, L{X,,} = X, s0 J{X,, } = X,
solution. Now, assuming that,,, ¢ So, we have from the and the theorem holds. In cagt, . ¢ So, Li{X } = Xoo —
previous theorem that the solution (or solutions if there at8RX, — P]. Since X, , _¢ So we have thav_(o_o # Kot
several) is on the boundary &,. Assume thatY, and X, and thus, the local gradient ef'(X) at the pointX,, is

are two distinct solutions to the problem Then nonzero and thud {X } = X — p[RX - P] ¢ So.
Otherwise we would have
1. X,;X, € Boundary of3y JUIAX W =LIX_ ) # X
2. HX,) =*(Xy)
3. VX £ X X,e2(X) > 2(X,) = 2(X,) which contradicts (A.7). Then, by (A.7) and (A.8) we have
(A-2) X o} = HIAX Y = T{IAX )]

. . =ulP-RX_ 'Y - X J<OVY €S  (A9)
Since Sy is convexX, = aX; + (1 —a)X, € o V0 <

«a < 1. Furthermore, because of the nonsingularityRofit Hence

can readily be shown that
’ () - (X)) = YTRY - XTRX

e2(Xy) =eXaX, + (1 - a)X,) < ag®(X,) —2PT(Y - X VY € S (A.10)
2 _ 2
+ (1= a)e’(X,) = e7(X,) and by using the inequality given in (A.9) in the above
forall 0<a<1 (A.3) equation, we get
2 2 T T T
and sinceX, € Sy, this leads to contradiction and we must ¢ (Y)-e(X) 2 Y RY —2Y" RX + XJ RX
have a unique solution. | =X — X]TR[XOO - Y] > 0vY € Sy. (A.11)
In Section I, we have presented an iterative algorithm to ) )

solve the problenP. We show that the proposed algorithnnd thereforeX_ is the solution of the probler® .~ W
converges to the solution ¢¥. Note that, from the above, we have that if the iterative

Theorem A3:Let J be the projection onto the closed condlgorithm is not the steepest descent, then the limiting point
vex set3y (using the Euclidiean norm), arkl defined as the S not necessarilythe optimal solution of.
steepest descent mapping, namely
ACKNOWLEDGMENT

I{X} =X - p[RX - P] (A4)  The authors are grateful to Prof. A. Nemiroveski, Industrial
Engineering Department, Technion, for his useful suggestions

where B and P are the matrix and vector defining, and regarding methods to solve the convex optimization problem
1 > 0 is the stepsize chosen such thiat— ;i R) has all its rajsed in this research. We also thank Dr. N. Cohen and Dr.

eigenvalues in (-1,1). Define the algorithm R. Kimmel, Electrical Engineering department, Technion, for
the fruitful and helpful discussions on various mathematical
Xy = X)) (A.5) implications of this research. Finally, we wish to thank the
anonymous reviewers (in particular reviewer A) for their
Then, (A.5) converges globally to the solution f suggestions, which resulted in an improved paper.

13



1658

(1]

[2]
(3]

(4]
(5]

(6]
(7]

(8]

(9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]

(20]

(21]

[22]

(23]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 12, DECEMBER 1997

REFERENCES [24]

R. C. Gonzalez and P. WintDigital Image Processing New York:

Addison-Wesley, 1987.
W. K. Pratt, Digital Image Processing New York: Wiley, 1991.
A. K. Jain, Fundamentals in Digital Image ProcessingEnglewood [25]

Cliffs, NJ: Prentice-Hall, 1989.
R. L. Lagendijk and J. Biemontterative Identification and Restoration

of Images. Boston, MA: Kluwer, 1991.

D. C. Youla, “Generalized image restoration by the method of alternatirge]
orthogonal projections,TEEE Trans. Circuits Systvol. CAS-25, pp.
694-702, 1978.

A. K. Katsaggelos, “A multiple input image restoration approach,”
Vis. Commun. Image Representat., vol. 1, pp. 93-103, Sept. 1990.
D. C. Ghiglia, “Space-invariant deblurring given N independently
blurred images of a common object]: Opt. Soc. Amer., vol. 1, pp. [28]
398-402, Apr. 1984.

B. R. Hunt and O. Kubler, “Karhunen—Loeve multispectral image
restoration, Part I: Theory,[EEE Trans. Acoust., Speech, Signal Pro-[29]
cessing, vol. ASSP-32, pp. 592-599, June 1984.

S. J. Ko and Y. H. Lee, “Nonlinear spatio-temporal noise suppressiqgQ]
techniques with applications in image sequence processiB&E Int.
Symp. CIS, 1991, vol. 5, pp. 662—-665.
T. S. Huang,Image Sequence Analysis.
1981.

[27]

[31]
New York: Springer-Verlag,
[32]

, Image Sequence Processing and Dynamic Scene Analydey
York: Springer-Verlag, 1983.

A. J. Patti, A. M. Tekalp, and M. | Sezaimage Sequence Restoration
and De-Interlacing by Motion-Compensated Kalman Filteri®@PIE,
vol. 1903, 1993.

T. S. Huang and R. Y. Tsay, “Multiple frame image restoration and
registration,” in Advances in Computer Vision and Image Processing,
vol. 1, T. S. Huang, Ed. Greenwich, CT: JAI, pp. 317-339, 1984.

S. P. Kim, N. K. Bose, and H. M Valenzuela, “Recursive reconstruction
of high resolution image from noisy undersampled multiframéSEE
Trans. Acoust., Speech, Signal Processutg. 38, pp. 1013-1027, June
1990.

N. K. Bose, S. P. Kim, and H. M Valenzuela, “Recursive implementatio
of total least squares algorithm for image reconstruction from nois
undersampled multiframes,” iAroc. IEEE Int. Conf. Acoustics, Speech,
and Signal Processing (ICASSP), Minneapolis MN, vol. V, pp. 269-27;
1993.

H. C. Kim, “High resolution image reconstruction from undersample
multiframes,” Ph.D. dissertation, Pennsylvania State Univ., Univ. Par!,
PA, 1994,

A. Papoulis, “Generalized sampling theoremBEE Trans. Circuits
Syst., vol. CAS-24, pp. 652—-654, Nov. 1977.

L. J. Yen, “On nonuniform sampling of bandwidth limited signal&E
Trans. Circuits Theory, vol. 3, pp. 251-257, Apr. 1956.

H. Ur and D. Gross, “Improved resolution from sub-pixel shifted
pictures,”"CVGIP: Graph. Models Image Processol. 54, pp. 181-186,
Mar. 1992.

C. Srinivas and M. D. Srinath, “A stochastic model-based approach
simultaneous restoration of multiple miss-registered imageBJE, vol
1360, pp. 1416-1427, 1990.

S. Peleg, D. Keren, and L. Schweitzer, “Improving image resoluti
using subpixel motion,’Pattern Recognit. Lett.vol. 5, pp. 223-226,
Mar. 1987.

M. Irani and S. Peleg, “Improving resolution by Image Registration,
CVGIP: Graph. Models Image Processiol. 53, pp. 231-239, Mar.
1991.

(33]

and transparencyJ. VCIR, vol. 4, pp. 324-335, Dec. 1993.

14

A. M. Tekalp, M. K. Ozkan, and M. I. Sezan, “High-resolution image
reconstruction from lower-resolution image sequences and space vary-
ing image restoration,|EEE Int. Conf. Acoustics, Speech and Signal

Processing (ICASSP)San Francisco, CA., Mar. 1992, vol. Ill, pp.
169-172.
A. J. Patti, M. I. Sezan, and A. M. Tekalp, “High-resolution image

reconstruction from a low-resolution image sequence in the presence of
time-varying motion blur,” inProc. ICIP, Austin, TX, Nov. 1994, pp.
343-347.

___, “High-resolution standards conversion of low-resolution video,”

in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP), Detroit, MI., May 1995, vol. Il, pp. 2197-2200.

R. R. Schultz and R. L. Stevenson, “Improved definition video frame
enhancementEEE Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP), Detroit, MI., May 1995, vol. IV, pp. 2169-2172.

M. Elad and A. Feuer, “On restoration and super-resolution for contin-
uous image sequence-adaptive filtering approach,” Int. Rep. 942, The
Technion—Israel Inst. Technol., Haifa, Oct. 1994.

D. M. Young, lterative Solution of Large Linear SystemsNew York:
Academic, 1971.

F. C. SchweppeUncertain Dynamic SystemsEnglewood Cliffs, NJ:
Prentice-Hall, 1973.

R. A. Horn and C. J. Johnsomatrix Analysis.
Cambridge Univ. Press, 1985.

J. L. Brown, “Multi-channel sampling low-pass signal$fEE Trans.
Circuits Syst. vol. CAS-28, Feb. 1981.

M. Elad and A. Feuer, “Restoration of single super-resolution image
from several blurred noisy and under-sampled measured images,” Int.
Rep. 973, The Technion, Israel Inst. Technol., Haifa, June 1995.

Cambridge, MA:

Michael Elad was born in Haifa, Israel, on De-
cember 10, 1963. He received the B.Sc., M.Sc., and
D.Sc. degrees from the Electrical Engineering De-
partment, Technion—Israel Institute of Technology,
Haifa, in 1986, 1988, and 1997, respectively.

He is currently employed by Hewlett-Packard
Laboratories—Israel, Technion, Haifa. His current
research interests include reconstruction and esti-
mation problems in image processing and low-level
vision, adaptive filtering algorithms, and pattern
recognition.

Arie Feuer (S'74-M'86-SM'93) received the
B.Sc and M.Sc. degrees from the Technion—Israel
Institute of Technology, Haifa, in 1967 and 1973
respectively, and the Ph.D. degree from Yale
University, New Haven, CT, in 1978.

From 1967 to 1970, he was with Techno-
matic—Israel, working in factory automation.
From 1978 through 1983, he was with Bell
Labs, Holmdel, NJ, studying telephone network
performance. Since 1983, he has been with the
Faculty of Electrical Engineering, Technion. His

\

» “Motion analysis for image enhancement: resolution, occlusionesearch interests are in adaptive systems and sampled data systems, both in
control and in signal and image processing.


https://www.researchgate.net/publication/5567412



