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CHAPTER 1 0 

Environmental Robustness 

A speech recognition system trained in the 
lab with clean speech may degrade significantly in the real world if the clean speech used in 
lr~ning doesn't match real-world speech. If its accuracy doesn't degrade very much under 
mismatched conditions, the system is called robust. There are several reasons why reaJ­
world speech may differ from clean speech; in this chapter we focus on the influence of the 
~coustica/ environment, defined as the transformations that affect the speech signal from the 
time it leaves the mouth until it is in digital format. 
. Chapter 9 discussed a number of variability factors that are critical to speech recogni­
tion. Because the acoustical environment is so important to practical systems, we devote this 
chapter to ways of increasing the environmental robustness, including microphone, echo 
cancellation, and a number of methods that enhance the speech signal, its spectrum, and the 
corresponding acoustic model in a speech recognition system. 
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10.1. THE ACOUSTICAL ENVIRONMENT 

Environmental ;---­
obustness 

The acoustical environment is defined as the set of transfonnations that affect th 
· nal from the time it leaves the speaker's mouth until it is in digital form. / spee~h 

s1g . . . . dd. . . d . wo main 
sources of distortion are described here. a 1t1ve n01se an channel distortion. Ad . . 
noise, such as a fan running in the background, door slams, or other speakers' s dhn,~e 

· · d" • be d b . peec , 1s common in our daily hfe. Channel 1stort1on can cause y reverberation, the fre 
· f · I • I fi I • · quency response of a microphone, the presence o an e ectnca I ter m the AID circuitry th 

I. h d • e re-
sponse of the local loop of a telep_hone me, a speec c_o ec, etc. Reverberation, caused by 
reflections of the acoustical wave m walls and other objects, can also dramatically alter the 
speech signal. 

10.1.1. Additive Noise 

Additive noise can be stationary or nonstationary. Stationary noise, such as that made by a 
computer fan or air conditioning, has a power spectral density that does not change over 
time. Nonstationary noise, caused by door slams, radio, TV, and other speakers' voices, has 
statistical properties that change over time. A signaJ captured with a close-talking micro­
phone has little noise and reverberation, even though there may be lip smacks and breathing 
noise. A microphone that is not close to the speaker's mouth may pick up a lot of noise 
and/or reverberation. 

As described in Chapter 5, a signal x[n] is defined as white noise if its power spectrum 
is flat, S,;x{/) = q, a condition equivalent to different samples being uncorrelated, 
RiJn] =qo[n]. Thus, a white noise signal has to have zero mean. This definition tells us 
about the second-order moments of the random process, but not about its distribution. Such 
noise can be generated synthetically by drawing samples from a distribution p(x); thus we 
could have uniform white noise if p(x) is uniform, or Gaussian white noise if p(x) is Gaus­
sian. While typically subroutines are available that generate uniform white noise, we are 
often interested in white Gaussian noise as it resembles better the noise that tends to occur 
in practice. See Algorithm IO. I for a me~hod to generate white Gaussian noise. Variable xis 
normally continuous, but it can also be discrete. 

White noise is useful as a conceptual entity, but it seldom occurs in practice. ~os'. of 
the noise captured by a microphone is colored, since its spectrum is not flat. Pink noise 15 a 
particular type of colored noise that has a low-pass nature as it has more energy at the 10~ 

frequ~~cies and rolls off at higher frequencies. The noise g~nerated by a computer fan, an _aJI' 
cond1t1oner O • . . synthesize . k . ' r an automobile engme can be approximated by pink n01se. We can . d 
pm noise by filt • . . . aJ the desire enng white n01se with a filter whose magnitude squared cqu 5 
power spectrum. 

A great deal of dd" • . rt'es change 
over time 1 . a itive noise is nonstationary, since its statistical prope I ran 

• n practice even th . . • • system, 0 
automobile are ' e noises from a computer, an air cond1ttomng d licks 

not perfectly stat' . . h keyboar c ' are caused by ph . 1 . tonary. Some nonstat1onary n01ses, sue as h as lip 
ys1ca ob•ects Th . • es sue 

J • e speaker can also cause nonstationary nms 

l 
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,..cks and breath noise. The cocktail party effect is the phenome d h' sin" . non un er w ,ch a human 

I
. cener can focus onto one conversat10n out of many in a cockta·I t Th • ,s . 1 par y. e noise of the 

versations that are not focused upon rs called babble noise Whe th • . con . . 
0 

. • n e nonslat,onary noise 
•
5 

correlated with a known s1e,nal, the adaptive echo-canceling (AEC) tecl • f S • , 1111ques o ect,on 
t OJ can be used. 

ALGORITHM 10.1 : WHITE NOISE GENERATION 

To generate white noise in a computer, we can first generate a random variable p with a 

Rayleigh distribution: 

p/P) = pe-P' '~ (10.1) 

from another random variable rwith a uniform distribution between {O, 1), p, (r) = 1 , by simply 

equating the probability mass P/P)ldpj = p,(r)ldrJ so that 1:~ = pe-P' 12; with integration, 

it results in r = e-P' ;2 and the inverse is given by 

p = ✓-2 In r (10.2) 
If ris uniform between (0, 1), and p is computed through Eq. (10.2), it follows a Rayleigh dis­
tribution as in Eq. (10.1 ). We can then generate Rayleigh white noise by drawing independent 
samples from such a distribution. 

If we want to generate white Gaussian noise, the method used above does not work, be­
cause the integral of the Gaussian distribution does not exist in closed form. However, if p fol­
lows a Rayleigh distribution as in Eq. (10.1), obtained using Eq. (10.2) where r is uniform 
between (0, 1), and 8 is uniformly distributed between (0, 2 ,r ), then the white Gaussian noise 
can be generated as the following two variables x and y: 

x = pcos(0) (10.3) 
y= psin(0) 

They are independent Gaussian random variables with zero mean and unity variance, since the 
Jacobian of the transformation is given by 

'cJp, 'cJp .. 

J = 'cJp ae = cos0 -psin0 = p 

'cJp ,, op)' sin0 pcos8 

(10.4) 

ap ae 
and the joint density p(x, y) is given by 

p(x,y) = p(p,0) p(p)p(0) =-l e-p' 12 

J p 2,r (10.5) 

I I • 
= 

2
,c e-(., +r>12 == N(x,O,I)N(y,O,l) 
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Of additive noise can sometimes change the way the speaker speaks 'l"L 
The presence . . . . 1 ue 

d 
,/:I. [401 is a phenomenon by which a speaker mcreases his vocal effort in th 

Lomba~ e,,ect f . . e 
f b kground noise. When a large amount o noise 1s present, the speaker tend 

presence o ac . f . . s to 
h. h ntails not only a higher arnphtude, but also o ten higher pitch, slightly di" shout, w 1c e . . . 11er-

& ts and a different colonng of the spectrum. It 1s very difficult to characten· ent ,orman , ze 
these transformations analytically, but recently some progress has been made [36]. 

10.1.2. Reverberation 

If both the microphone and the speaker are in an anechoic' chamber or in free space, a mi­
crophone picks up only the direct acoustic path. _In pr~ctice, in addition to the direct acoustic 
path, there are reflections of walls and other obJects m the room. We are well aware of this 
effect when we are in a large room, which can prevent us from understanding if the rever­
beration time is too long. Speech recognition systems are much less robust than humans and 
they start to degrade with shorter reverberation times, such as those present in a nonnat of­
fice environment. 

As described in Chapter 2, the signal level at the microphone is inversely proportional 
to the distance r from the speaker for the direct path. For the kth reflected sound wave, the 
sound has to travel a larger distance rk , so that its level is proportionally lower. This reflec­
tion also takes time ¾ = '* / c to arrive, where c is the speed of sound in air.2 Moreover, 
some energy absorption a takes place each time the sound wave hits a surface. The impulse 
response of such filter looks like 

(10.6) 

where P.t is the combined attenuation of the kth reflected sound wave due to absorption. 
Anechoic rooms have A = 0 . In general pk is a (generally decreasing) function of fre­
quency, so that instead of impulses <5[n] in Eq. (10.6), other (low-pass) impulse responses 
are used. 

. Often we have available a large amount of speech data recorded with a close-talking 
microphone, and we would like to use the speech recognition system with a far field micro­
phone. To do that we can filter the clean-speech training database with a filter h[n], so !hat 
the filtered speech resembles speech collected with the far field microphone, and then retrain 
the sySlem. Th_is requires estimating the impulse response h[n] of a room. Alternatively, we 
can ~lter the signal from the far field microphone with an inverse filter to make it resemble 
the signal from the close-talking microphone. 

' An anechoic chamber is a roo th h rb. materials so 
that ·1 b rb m at as walls made of special fiberglass or other sound-abso ing 
fac~. a so s all echoes. It is equivalent to being in free space, where there are neither walls nor reflecting sur· 
2 
ln air at standard atrnosph - I varies with 

different ed" d . enc pressure and humidity the speed of sound is c = 33 l.4 + 0.6T (m Is) • t 
m ia an different levels of humidity and pressure. 
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One way to estimate the impulse response is to play a white noise s· 1 [ ] hr 
· · h· h • 1gna x n t ough 

a loudspeaker or art1fic1al mout , t e signal y[n) captured at the microphone is given by 

y[n] = x[n]*h[n]+ v[n] (I0.7) 

where v[n] is the additive noise present at the microphone. This noise is due to sources such 

S air conditioning and computer fans and is an obstacle to measuring h[n] Th . 1 a . d . . . . h . e 1mpu se 
response can be estimate by rnm1m1zmg t e error over N samples 

)

2 
} .\'-1 M-1 

E=-r(y[n]- Lh[mJx[n-m] 
N n~o m2 0 

(10.8) 

which, taking the derivative with respect to h[m] and equating to O, results in our estimate 

h[/J: 

- =-L y[n]- Lh[mJx[n-m] [n-l] aE I I N-,( M-, } 

Jh[/] ltl/J=h[/J N n=O n,=O 

=-I,y[nJx[n-1]- I, h[m] - Lx[n-m]x[n-l] 
} N-1 M-1 ( 1 N-1 ) 

N n..O m=O N n=O 
(10.9) 

=-I,y[nJx(n-1]-l;[l]- Lh[m] - I',x[n-m]x[n-l]-8[m-l] =0 
1 N-1 M-1 ( I N-1 ) 

N n=O m;Q N n=O 

Since we know our white process is ergodic, it follows that we can replace time averages by 
ensemble averages as N ➔ oo : 

J IH 

lim-I,x[n-m]x[n-l] = E {x[n-m]x[n-l]} = 8[m-l] 
N_. N n=O 

so that we can obtain a reasonable estimate of the impulse response as 

• } N-1 

h[l] =-LY[n]x[n-l] 
N ,, .. o 

Inserting Eq. (10.7) into Eq. (10.11) ,we obtain 

h[l] = h[l] +e[l] 

where the estimation error e[n] is given by 

f N-1 M-1 ( } N-1 ]' 
e{l]= N ~ v[n]x[n-l]+ ~ h[m] N ~x[n-m]x[n-1]-o[m-/] 

(10.10) 

(10.11) 

(10. 12) 

(10.13) 

If v[n] and x[n] are independent processes, then E{e[/]} = 0, sin~e x[nJ is zero-m~:~ 
so that the estimate of Eq. (10. 11) is unbiased. The covariance matnx decreases to 
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o Ustness 

N ➔ 00 with the dominant tenn being the noise v[n]. The choice of N for a 1 . 
• . OW-vru, 

estimate depends on the filter length M and the noise level present in the room. ance 
The filter h[n] could also be e~timat_ed b~ playing_ sine waves of different fre ue . 

or a chirp3 [52]. Since playing a white n01se signal or sme waves may not be p ~ ncies . . . ractical an 
other method is based on collectmg stereo recordings with a close-talking micro h ' • 

h[ ] f I h M • . P one and a 
far field microphone. The filter n o engt 1s estimated so that when appli d 

[ ... . th d 'hth e tOthe 
close-talking signal x n] 1t m1mm1zes e square error wll e far field signal y( ] • 

. f M 1 · • n ' which 
results in the following set o mear equations: 

M-1 L h[m]R_.Am-n] = Rl)'[n] 
in•O 

which is a generalization of Eq. ( 10.11) when x[n] is not a white noise signal. 

7!XXl ,----,:------:----:----:-----:---:----:,-----,;-----,,--~ 

6(XX) 

500'.l . 

I 400J ,~ 
5l 21.XXl 

f 100J 

I o~~~..,._ ______ ___J 

-11XXl 

·21.XXl 

I' 
-0000 on--;::;,=--;:;;::-----:::=----:--'----=---!.--..,__---',___j 

~ ~ ~ ~ 1@ 1~ 1@ 1~ 1~2CXX> 
lime (sarr1)1es) 

(10.14) 

Figure IO.I Typical imp I estimated b dri . u ~e response of an average office. Sampling rate was 16 kHz. It was 
Eq. (lO ll)y Th vfimlg a 4-mm~te segment of white noise through an artificial mouth and using 

• • e i ter length is about 125 ms. 

It is not uncommon t h . . • rooms In F' 10 ° ave reverberation times of over J 00 milliseconds m office 
• igure .1 we show the t • al • yp1c impulse response of an average office. 

10.1.3. A Model of the Environment 

A widely used model of the d . 
rupted by both add'f . egradation encountered by the speech signal when it gets cor· 

1 IVe noise and ch 1 d' . derive anne 1stort1on is shown in Figure 10.2. We can 

~' A;,:ch: irp=-:fu-nc- t~io--- .-----~ 
time: sin(n n contmuously varies its fr • with 

(Wo +©in)) . cqucncy. For example, a linear chirp varies ics frequency hnearlY 
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the relationships between the clean signal and the corrupted s· 1 b th -. 1gna o m power-spectrum 
and cepstrum domains based on such a model [2) . 

.x[m] ~ .... __ "_[,,_,1 _ _;---1►~(T\-1.-J>---J►~ y[m 1 r 
11(111] 

Figure 10.2 A model of lhe environmenl. 

In the time domain, additive noise and linear filtering results in 

y[m] = x[m] *h[m]+ n[m] (I0.15) 

It is convenient to express this in the frequency domain using the short-time analysis 
methods of Chapter 6. To do that, we window the signal, take a 2K-point OFT in Eq. ( I 0.15) 
and then the magnitude squared: 

IY(/2 )/2 = 1xu~ )/2 IH(f. >1
2 

+IN<f. )1
2 

+ 2 Re{X(J. )H(f. )N'(ft )} 

= IX(f. )j2 jH(h )1
2 

+IN(f. )j2 + 2jX(.ft )l!H(f. >IIN(ft )lcos(81 ) 

(10.16) 

where k = 0, i,•··,K, we have used upper case for frequency domain linear spectra, and 01 

is the angle between the filtered signal and the noise for bin k. 
The expected value of the cross-term in Eq. (I 0.16) is zero, since x[m) and n[m] are 

statistically independent. In practice, this term is not zero for a given frame, though it is 
small if we average over a range of frequencies, as we often do when computing the popular 
mel-cepstrum (see Chapter 6). When using a filterbank, we can obtain a relationship for the 
energies at each of the M filters: 

(I0.17) 

where it has been shown experimentally that this assumption works well in practice. 
Equation (10.17) is also implicitly assuming that the length of /z[n), the filter's !mpulse 

response, is much shorter than the window length 2N. That means that for filters with long 
reverberation times, Eq. (10.17) is inaccurate. For example, for INU)!

2 = 0, a wind~w shift 
of T. and a filter"s impulse response h[n]=8[n-T], we have Y,[fm]=X,_,[J,.], •-~·•_ the 
output spectrum at frame t does not depend on the input spectrum at that frame. This 1s a 
more serious assumption, which is why speech recognition systems tend to fail under long 
reverberation times. 
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By taking logarithms in Eq. (10.17), and after some algebraic manipulation w b . , e o ta1n 

lnlY(f,)j2 "'ln!X(f,)j2 +lnlH(/,)l
2 

+ In (I+ exp(ln IN(f, )j
2 

- In IXU;)( - In jH(/.)1
2
)) (IO.i8J 

Since most ,c;pcech recognition .">yst~ms ~se c~pstrum features, it is useful to see the ef. 
feel of the additive noise and channel d1str;ruon directly on the cepstrum. To do that. lefs 
define the following length-(M + I) cepstrum vectors: 

x = c(lnlX(/4>1
2 

In IX(J; )12 ln !X(fi,l) 

h = c(1nlH<fr»l2 In Ill( .Ii { ln ilf(f\{ l) 

n :::: c(JnlN(fri>I), lnlN(fi )!1 ln (Nf /l, f ) 
(10.19) 

y ~ C ( In I Y (fr, >1
2 

lnfY(J;)i2 ... ln \Yr ful) 
where C is the O<:f matrix and we have ur.,ed lower-case bold to represent cepstrurn vecim. 

Comhining Hq.c;, ( J(), I 8) and (I 0. I 9J results. in 

y "' x ·• h + g(n - x -h) (1010) 

where 1hr, 11onlinc11r function g(:t) is given by 

l({:r.) = C In (1 + e<:-'z) (10.21) 

EquullorH1 ( I 0.20) and ( I 0.21) say that we can compute the cepstrum of the corrupted 
spccd1 If we know the ccpstrum of the cle.in speech, the cepstrum of the noise, and the cep-
11trnm of the filler. J n practice, the DCT matrix C is not square, so that the dimension of the 
ccpslrurn vector is much smaller than the number of filters. This means thaI we are losing 
rcsolutkm when going back to the frequency domain, and thus Eqs. (10.20) and (10.21) rep­
re,r.ent <mly an approximation, Lhough it has been shown to work reasonably well. 

As di.r.cusscd in Chapter 9, the distribution of the cepstrum of x can be modeled as_ a 
rnix lure of Om1ssian densities. Even if we assume that x follows a Gaussian disoibution. Yi:! 

nq. ( l0.10) i11 no longer Gaussian because of the nonlinearity in Eq. (I 0.21). 
H is difficult to visualize the effect on the distribution, given the nonlinearity involved. 

'f'o pruvl(lc 1iomc insight, lcl's consider the frequency-domain version of Eq. (JO.IS) when 
11<, fl11cri11ll is done, i.e., H(f) = 1: 

)' ~ x + In (I+ exp ( n -x)) (10.22) 

where x. 11 • nnd Y represent the log-spectral energies of the clean signal, noise, and noisy 
Sij.!ui,I. rv!lptictivcly, for a given frequency. Using simulated data, not real speech, we can 
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""alyze the effect of this transfom1ation. Let's assume that both ,. a d G . 
,,., ... n n are auss1an ran-
dom variables. We can use Monte Carlo simulation to draw a large numbe of . f 

· d' 'b • . r pomts ram 
those two Gaussian 1stn uttons and obtain the corresponding noisy values Y using Eq 
(10.22). Figure 10.3 shows the resulting distribution for several values of ,T' • w fi . d. 

· • • I 1 · v , • e ,xe 
µ. = o dB , srnce 1t 1s on y a re at1~e lev_el, _and set a,, = 2 dB, a typical value. We also set 

µ = 25dB and see that the resulting d1stnbution can be bimodal when a · . 1 0 
r " IS \ery ar0 e. 

Fortunately, for modern speech rec~gnit!on . systems that have many Gaussian components, 
<Jr is never that large and the result.mg d1stnbution is unimodal. 

0.03 0.04 0.00 

0.03 0.00 
0.02 

0.02 0.04 

O.o1 
0.01 0.02 

0 0 0 
0 50 100 0 20 40 60 0 20 40 60 

Figure 10.3 Distributions of the corrupted Jog-spectra y of Eq. (10.22) using simulated data. 

The distribution of the noise log-spectrum n is Gaussian with mean O dB and standard devia­

tion of 2 dB. The disrribution of the clean log-spectrum x is Gaussian with mean 25 dB and 

standard deviations of 25, 10, and 5 dB, respectively (the x-axis is expressed in dB). The first 

distribution is bimodal, whereas the other two are approximately Gaussian. Curves are ploned 

using Monte Carlo simulation. 

Figure l 0.4 shows the distribution of y for two values of µ", given the same values for 
the noise distribution, µ. = 0 dB and CJ. = 2 dB , and a more realistic value for a _, = 5 dB . 
We see that the distribution is always unimodal, though not necessarily symmetric, particu­

larly for low SNR ( µ" - µ. ). 

0.08 0.1 

0.06 

.. - 0.04 0.05 

0.02 

0 0 20 30 
0 10 20 30 0 10 

Figure 10.4 Distributions of the corrupted log-spectra y of Eq. (10.22) using simulated da~a. 

Th d. · · · • G • 'th mean O dB and standard dev1a­
e 1stnbuuon of the noise log-spectrum n 1s aussian wi _ . . . of 

tion of 2 dB. The distribution of the clean log-spectrum is Gaussian wuh stnn~ard devianon_ 
• 'b • • proximately Gaussian 

5 dB and means of IO and 5 dB, respectively. The first dtSln uuon is ap . . 

while the second is nonsymmetric. Curves are plotted using Monte Carlo simulanon. 
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. . . d •n an HMM are mixtures of Gnussians so that, even if e h 
The distnbuuons use 1 . . "b • . ac 

. fonned into a non-Gaussian d1stn ut10n, the composite distr·b G .• component 1s trans . . . 1 u-
aussian I d d arely by another mixture of Gaussrnns. In fact, 1f you retrain th 

f can be mode e a equ d e 
10n . h t dard Gaussian assumption on corrupte speech, you can get good re-

model using t e s an 
suits, so this approximation is not bad. 

l0.2. ACOUSTICAL TRANSDUCERS 

Acoustical u·,msducers are devices that convert the acoustic energy of ~ound into electrical 
energy (microphones) and vice versa (loudspeakers) . In the case o_f a microphone this trans­
duction is generally realized with a diaphragm, whose movem~nt m re~ponse to sound pres­
sure varies the parameters of an electrical system (a vanable-res1stance conductor, a 
condenser, etc.), producing a variable voltage that constitutes the microphone output. We 
focus on microphones because they play an important role in designing speech recognition 

systems. 
There are near field or close-talking microphones, and far field microphones. Close-

talking microphones, either head-mounted or telephone handsets, pick up much less back­
ground noise, though they are more sensitive to throat clearing, lip smacks, and breath noise. 
Placement of such a microphone is often very critical, since, if it is right in front of the 
mouth, it can produce pops in the signal with plosives such as Ip/. Far field microphones can 
be lapel mounted or desktop mounted and pick up more background noise than near field 
microphones. Having a small but variable distance to the microphone could be worse than a 
larger but more consistent distance, because the corresponding HMM may have lower vari­
ability. 

When used in speech recognition systems, the most important measurement is the sig­
nal-to-noise ratio (SNR), since the lower the SNR the higher the error rate. In addition, dif­
ferent microphon~s have different transfer functions, and even the same microphone offers 
different transfer functions depending on the distance between mouth and microphone. 
Varying noise and channel conditions are a challenge that speech recognition systems have 
to address, and in this chapter we present some techniques to com bat them . 

. ~he ?1°s~ pop~lar type of microphone is the condenser microphone. We shall study in 
detail zts directionality patterns, frequency response, and electrical characteristics. 

10.2.1. The Condenser Microphone 

A condenser microphone ha • . . d by an • 1 . . s a capacitor cons1stmg of a pair of metal plates separate 
msu atmg matena1 called d" 1 • . a ie ectnc (see Figure 10.5). Its capacitance C is given by 

( I 0.23) 
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where e0 is a constant, b is the width of the plate, and h is the separation bet th 1 · h • • h ween e p ates. 
If we polanze t e capacitor wit a voltage ~ .. , it acquires a charge Q given by 

(10.24) 

One of the ~lates is free to m~ve in response to changes in sound pressure, which re­
sults in a change in the plate separatmn t!Jz, thereby changing the capacitance and producin 
a change in voltage t:i.V = t:i.hV.~-I h. Thus, the sensitivity4 of the microphone depends on th! 
polarizing voltage Ve..·, which is why this voltage can often be Joo v or more. 

Figure 10.S A diagram of a condenser microphone. 

Electret microphones are a type of condenser microphones that do not require a spe­
cial polarizing voltage V«, because a charge is impressed on either the diaphragm or the 
back plate during manufacturing and it remains for the life of the microphone. Electret mi­
crophones are light and, because of their small size, they offer good responses at high 
frequencies. 

From the electrical point of view, a microphone is equivalent to a voltage source v(t) 

with an impedance 21,1, as shown in Figure 10.6. The microphone is connected to a preampli­
fier which has an equivalent impedance RL. 

Microphone 
Z.11 

v(r) f ~ 

Preamplifier 
RL 

o-1 1-y-~a r-
e,-----

Figure 10.6 Electrical equivalent of a microphone. 

- -----------
' Th . • l f lh leclric signal the microphone delivers 

e sensitivity of a microphone measures the op1'11-circu1t vo tage O e e . h. h . ped e 
fo ft 94 dB SPL when there 1s no load or a 1g 1m anc • 

r_ a sound wave for a given sound pressure level, o en . • 
Tlus voltage is measured in dBV, where the 0-dB reference is 1 V rms. 
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From Figure 10.6 we can see that the voltage on RL is 

Environmental R --­
obUstness 

00.25) 

Maximization of v11 (t) in Eq. (10.25) results in RL = 00
, or in practice R > 

. • . . h . d L >R 
which is called bridging. Thus, for highest sens1t1v1ty t e 1mpe ance of the ampJifi h .,,, 

. h If . er as to 
be at least Jo times hi~her than that of t~e mi crop one. t?e microphone is connected to an 
amplifier with lower impedance, there is a load loss of signal level. Most low-impedance 
microphones are labeled as 150 ohms, though the actual values may vary between 100 
300. Medium impedance is ~00 ohms _and high impedanc: is 600-1 0,0?0 ohms. In pract~~~ 
the microphone impedance 1s a function of frequency. Signal power 1s measured in dB 
where the O-dB reference corresponds to 1 mW dissipated in a 6OO-ohm resistor. Thus~ 
dBm is equivalent to 0.775 V. 

Since the output impedance of a condenser microphone is very high (- 1 Mohm), a 
JFET transistor must be coupled to lower the equivalent impedance. Such a transistor needs 
to be powered with DC voltage through a different wire, as in Figure 10.7. A standard sound 
card has a jack with the audio on the tip, ground on the sleeve, DC bias V00 on the ring, and 
a medium impedance. When using phantom power, the Vee bias is provided directly in the 
audio signal, which must be balanced to ground. 

Microphone Preamplifier 

Figure l0.7 Equivalent circuit for a condenser microphone with DC bias on a separate wire. 

. It _is i~portant to understand how noise affects the signal of a microphone. If thermal 
n01se anses m the resistor RL, it will have a power 

PN ==4kTB (10.26) 

where k = 1.38 x Jff23 J/K • h , . oK dB is 
the b d .dth . 15 t e Bolzmann s constant Tis the temperature in • an d 

an wi m Hz Th th • · ' 297°K) an 
for a bandwidth of 4 kHe . erma! noise m Eq. (10.26) at room temperature(~=. . antlY 
higher than th. b z is equivalent to -132 dBm. In practice, the noise is sign1fic u·c 

is ecause of prea 1 ·fi • . . d J tromagne interference (p . mp 1 1er noise, radio-frequency noise an e ec th be· 
oor grounding co • . • al pa 

tween the micropho d nnectJons). It 1s, thus, important to keep the sign . desir· 
ne an the prea h . . • e It 1s mp as s ort as possible to avoid extra nois • 
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able to have a microphone with low impedance to decrease the effect of noise due to radio­
frequency interference, and to decrease the signal loss if long cables are used. Most micro­
phones specify their SNR and _range where they are linear (dynamic range). For condenser 
microphones, a power supply 1s necessary (DC bias required). Microphones with balanced 
output (the signal appears across two inner wires not connected to ground, with the shield of 
the cable connected to ground) are more resistant to radio frequency interference. 

10.2.2. Directionality Patterns 

A microphone's directionality pattern measures its sensitivity to a particular direction. Mi­
crophones may also be classified by their directional properties as omnidirectio11al (or noll­

directio,za[) and directional, lhe latter subdivided into bidirectional and unidirectional, based 
upon their response characteristics. 

10.2.2.1. Omnidirectional Microphones 

By definition, the response of an omnidirectional microphone is independent of the direction 
from which the encroaching sound wave is coming. Figure 10.8 shows the polar response of 
an omnidirectional mike. A microphone's polar response, or pickup pattern, graphs its out­
put voltage for an input sound source with constant level at various angles around the mic. 
Typically, a polar response assumes a preferred direction, called the major axis or front of 
the microphone, which corresponds to the direction at which the microphone is most sensi­
tive. The front of the mike is labeled as zero degrees on the polar plot, but since an omnidi­
rectional mic has no particular direction at which it is the most sensitive, the omnidirectional 
mike has no true front and hence the zero-degree axis is arbitrary. Sounds coming from any 
direction around the microphone are picked up equally. Omnidirectional microphones pro­
vide no noise cancellation. 

(a) (b) 

. . • • • al • ophone and (b) its cross Figure 10.8 (a) Polar response of an ideal ommd1recuon micr 
section. 

• s ·d· t· I condenser microphone. Figure 10.8 shows the mechanics of the ideal omni irec iona th . 
. h The pressure enters e operung A sound wave creates a pressure all around the microp one. . h . . • erts the d1ap ragm move-

of the mike and the diaphragm moves. An electncal circuit conv 

'ideal DlllJJidirectional microphones do not exist. 
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. t an electrical voltage or response. Sound waves impinging on the mike creat ment in o ' . . . . ea 
pressure at the opening regardless o~ the d1re~t1on from which they are co~mg; therefore we 

h ondirectional, or omnidirectional, microphone. As we have s~en rn Chapter 2, if th 
ave an . . . b (A 1 ) J(JJ/ • e 

source signal is Beiox, the signal at a distance r 1s given Y r e independently of the 

angle. . . . 
This is the most inexpensive of th~ condenser_ microphones, and_ It has the advantage 

of a flat frequency response that doesn t change with the angle or distance to the micro­
phone. On the other hand, because of its ~nif~rm polar pattern. it picks u~ not only the de­
sired signal but also noise from any direction. For example, 1f a pair of speakers is 
monitoring the microphone output, the sound from the speakers can reenter the microphone 
and create an undesirable sound calledfeedback. 

10.2.2.2. Bidirectional Microphones 

The bidirectional microphone is a noise-canceling microphone; it responds less to sounds 
incident from the sides. The bidirectional mike utilizes the properties of a gradient micro­
phone to achieve its noise-canceling polar response. You can see how this is accomplished 
by looking at the diagram of a simplified gradient bidirectional condenser microphone, as 
shown in Figure 10.9. A sound impinging upon the front of the microphone creates a pres­
sure at the front opening. A short time later, this same sound pressure enters the back of the 
microphone. The sound pressure never arrives at the front and back at the same time. This 
creates a displacement of the diaphragm and, just as with the omnidirectional mike, a corre­
sponding electrical signal. For sounds impinging from the side, however, the pressure from 
an incident sound wave at the front opening is identical to the pressure at the back. Since 
both openings lead to one side of the diaphragm, there is no displacement of the diaphragm, 
and the sound is not reproduced. 

----....----,, ~1 : • ' '. 
I loo, i' 'ti1 ' 

I >,:·· r, ~ ' 
'-.4 ' ~ I s; ,: .., I 

I ~, · ~ I 

: ~~~~.:::r.5.iiL : 
I -· I 
t I 
I I 

I 

Noise sound wave 
from the side 

Speech sound wave 
from the front 

Figure 10.9 Cross sectio f 'd · • . n o an 1 eal b1d1rect10nal microphone. 
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To compute the polar response of this gradient microphone Jet's k th • . . . . ma e e approxima-
tion of Figure l 0.10, w~ere the microphone signal 1s the difference between the signal at the 
front and rear of the diaphragm, the separation between plates 1·s 2d a d • th d' ., n r 1s e 1stance 
between the source and the center of the microphone. 

source 

(-d, 0) (d, 0) 

Figure 10.10 Approximation to the noise-canceling microphone of Figure J0.9. 

You can see that lj, the distance between the source and the front of the diaphragm, is 
the nonn of the vector specifying the source location minus the vector specifying the loca­
tion of the front of the diaphragm 

(10.27) 

Similarly, you obtain the distance between the source and the rear of the diaphragm 

(10.28) 

The source arrives at the front of the diaphragm with a delay 81 = 'i I c , where c is the 
speed of sound in air. Similarly, the delay to the rear of the diaphragm is 82 = r2 I c. If the 
source is a complex exponential eiWl, the difference signal between the front and rear is 
given by 

x(t) = A eJ21rf<1-6, > _ A e121rIc,-0i > = !:..ei21tfl G(f, 0) (10.29) 
'i r2 r 

where A is a constant and, using Eqs. ( I 0.27), ( 10.28) and ( I 0.29), the gain G(/, 0) is given 
by 

(10.30) 

where we have defined ,1.. = d Ir and -r = r I c . 
The magnitude of Eq. (10.30) is used to plot the polar respo~s_e of_Figure _10.11. As 

~an be seen by the plot, the pattern resembles a figure eight. 1:he b1d_trect1onal m1~e h~s an 
interchangeable front and back, since the response has a maximum m two opposite direc­
tions. In practice, this bidirectional microphone is an ideal case, and the polar response has 
10 be measured empirically. 
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110 25 

190 
o I 

Z70 

Figure 10.11 Polar response of a bidirectional microphone obtained through Eq. (10.30) with 
d = 1 cm, r = 50 cm, c = 33,000 cm/s, and J = I 000 Hz. 

According to the idealized model, the frequency response of omnidirectional micro­
phones is constant with frequency, and this approximately holds in practice for real omnidi­
rectional microphones. On the other hand, the polar pattern of directional microphones is not 
constant with frequency. Clearly it is a function of frequency, as can be seen in Eq. (10.30). 
In fact, the frequency response of a bidirectional microphone at 0° is shown in Figure 10.12 
for both near field and far field conditions. 

-oo,...2~-------½----------='---1...-...LJ 
u 10' ,o~ 

~~) 

~gure lO.l2 Frequency response of a bidirection:il micropho~ \\ilh d = I cm al oc obrained 
1 

~~gh Eq. 0?-30). The larger the distanc-e lx-twe-en plates.. me lower the frequency of the 
~1;x11:1n. Th~ h~ghes1 values are obtained for 8250 Hz :ind 2-t750 Hz and the null for 16..500 

fi l
·d

1 
he s~~,d lme- COm'sponds to for fo~ld condition~ l .;t = o O" ) and the dooed line co near 

te l'Ondttt,)llS ( A. ,:: 05 ). - • -
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zero, 

It can be shown, after taking the derivative of G(/,0) in Eq. (10.30) and equating to 
that the maxima are given by 

C 
(. :::: -(211-I) 
·" 4d (10.31) 

with 11 == 1. 2,-· •. We can obse_rve from Eq. (I 0.31) that the larger the width of the dia-
phragm, the lower ~e first maximum. . . . . 

The increase m frequ_ency respon~e, or sens1t1v1ty, m the near field. compared to the 
far field, is a measure of nmse cancellatton. Consequently the microphone is said to be noise 
canceling. The microphone is also referred to as a differential or gradient microphone, since 
it measures the gradient (difference) in sound pressure between two points in space. The 
boost in low-frequency response in_ the near field is also referred to as the proximity effect, 
often used by singers to boost their bass levels by getting the microphone closer to their 
mouths. 

By evaluating Eq. (I 0.30) it can be seen that low-frequency sounds in a bidirectional 
microphone are not reproduced as well as higher frequencies, leading to a thin sounding 
mike. 

Let's interpret Figure 10.12. The net sound pressure between these two points, sepa­
rated by a distance D = 2d, is influenced by two factors: phase shift and inverse square law. 

The influence of the sound-wave phase shift is less at low frequencies lhan at high, 
because the distance D between the front and rear port entries becomes a small fraction of 
the low-frequency wavelength. Therefore, there is little phase shift between the ports at low 
frequencies, as the opposite sides of the diaphragm receive nearly equal amplitude and 
phase. The result is slight diaphragm motion and a weak microphone output signal. At 
higher frequencies, the distance D between sound ports becomes a larger fraction of the 
wavelength. Therefore, more phase shift exists across the diaphragm. This causes a higher 
microphone output. 

The pressure difference caused by phase shift rises with frequency at a rate of 20 dB 
per decade. As the frequency rises to where the microphone port spacing D equals half a 
wavelength, the net pressure is at its maximum. In this situation, the diaphragm movement is 
also at its maximum, since the front and rear see equal amplitude but in opposite polarities 
?f the wave front. This results in a peak in the microphone frequency response, as illus?"aced 
m Figure 10.12. As the frequency continues to rise to where the microphone port s?acmg D 
equals one complete wavelength, the net pressure is at its minimum. Here, the diaphra~m 
does not move at all, since the front and rear sides see equal amplitude at the same polan~· 
0'. the wave front. This results in a dip in the microphone frequency response, as shown m 
Figure 10.12. 
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A second factor creating a net pressure diff:rence across the diaphragm is the impact 
of the inverse square law. If the sound-pressure difference between the front and rear pons 
of a noise-canceling microphone were measured near the sound source and again further 
from the source. the near field measurement would be greater than the far field. In other 
words the microphone's net pressure difference and, therefore, output signal, is greater -1 ' h • I n the near sound field than in the far field. T e mverse-square- aw effect is independent of 
frequency. The net pressure that causes the diaphragm to move !s a combination of both the 
phase shift and inverse-square-law effect. Th_ese two fac~ors mfluence the frequency re­
sponse of the microphone differently, dependmg on the distance to the sound source. For 
distant sound, the influence of the net pressure difference from the inverse-square-law effect 
is weaker than the phase-shift effect; thus, the rising 20-dB-per-decade frequency response 
dominates the total frequency response. As the microphone is moved closer to the sound 
source, the influence of the net pressure difference from the inverse square law is greater 
than that of the phase shift; thus the total microphone frequency response is largely flat. 

The difference in near field to far field frequency response is a characteristic of all 
noise-canceling microphones and applies equally to both acoustic and electronic types. 

10.2.2.3. Unidirectional Microphones 

Unidirectional microphones are designed to pick-up the speaker's voice by directing the 
audio reception toward the speaker, focusing on the desired input and rejecting sounds ema­
nating from other directions that can negatively impact clear communications, such as com­
puter noise from fans or other sounds. 

Speech sound wave 
from the front 

Figure 10.13 Cross sect1·0 f ·d· • no a um 1recuonal microphone. 
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f• ·gure 10 13 shows the cross-section of a unidirectional microphone wh· h 1 1. 1 • . . . , 1c a so re 1es 
the Principles of a gradient microphone. Nonce that the unidirectional in·c I k • . upon . . . . . . . 1 oo s s1m1-

lar to the bidirecuonal, exce~t that the1e 1s a res1st1ve ?1aterrnl (often cloth or foam) between 

I 
diaphragm and the open mg of one end. The matenul's resistive properties slow down th 

11e h b k • h • e 
S
sure on its path from t e ac openmg to t e diaphragm. [f the additional delay thro h pre h . be . ug the back plate is given by t 0 , t e gam can given by 

(10.32) 

which was obtained by modifying Eq. (l 0.30). Unidirectional microphones have the greatest 
response to sound waves impinging from one direction, typically referred to as the front, or 
major axis of the microphone. One typical response of a unidirectional microphone is the 
cardioid pattern shown in the polar plot of Figure I 0.14, plotted from Eq. ( I 0.32). The fre­
quency response at 0° is similar to that of Figure l 0.12. Because the cardioid pattern of polar 
response is so popular among them, unidirectional mikes are often referred to as cardioid 
mikes. 

90 25 

"" .. , .. _c ;f, •.. 3) 

. .: : .. • . : .. · • .... ,., 
,., : .. . ,. . ,., . . .. 

" .. ; . ._ . . . . . 
... ' .. . . . . .._.,..._~ 

270 

. . h Th polar response was obtained Figure 10.14 Polar response of a unidirectional microp one. e 
2 

and r = o 06 ms. 
through Eq. (10.32) with d = 1 cm, r = 50 cm, c = 33,000 cmls,f = 1 kH ' 0 

• 

. . fi d h ma tic based on Figure 1 O. l 0, 
Equation (10.32) was derived under a simph ie sc e f real microphone has 

wh· h · · . . • th polar response o a ic 1s an 1deahzed model so that, m practice, e 
I uem of a commercial 

10. be measured empirically. The frequency response and po ar pa 
microphone are shown in Figure 10.15. 
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1IO" 1111' 

0 
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125H.I - { 2000Hi 
250 HI: } - 4000 Hi 
500 HI: - --· """"'M eooo H~ 

1000 Hz - - - • 18000 H.i 
C 1000S 
cardioid 

Figure IO.IS Characteristics of an AKG ClOOOS cardioid microphone: (top) frequency re­
sponse for near and far field conditions (note the proximity effect) and (bottom) polar pattern 
for different frequencies. 

Although this noise cancellation decreases the overall response to sound pressure (sen­
sirivity) of the microphone, the directional and frequency-response improvements far out­
weigh the lessened sensitivity. It is particularly well suited for use as a desktop mic or as 

Part of an embedded microphone in a laptop or desktop computer. UnidirectionaJ micro­
phones achieve superior noise-rejection performance over omnidirectionals. Such perform­
ance is necessary for clean audio input and for audio signal processing algorithms such as 
acoustic echo cancellation, which form the core of speakerphone applications. 

10.2.3. Other Transduction Categories 

In~ pas~ive microphone, sound energy is directly converted to electrical energy, whereas an 
1.1r.t,~e microphone requires an external energy source that is modulated by the sound wave. 
Active transducers thus r~quire phantom power, but can have higher sensitivity. . 

We can also class1fy microphones according to the physical property to which lhe 
shound wave ~esponds. A pressure microphone has an electrical response that corresponds to 
t e pressure m a sound wa h"l se corre· 

d
. ve, w I e a pressure gradient microphone has a respon 

spon mg to the dim • ressure 
. h . erence m pressure across some distance in a sound wave. A P 

m1crop one 1s a fine r d . 1 has a re· 
. epro ucer of sound but a gradient microphone typical Y 

sponse greatest m the d" • ' · d back· 
ground sound Th. . ir~cllon of a desired signal or talker and rejects undesire a on 
of only a de/· d 

1
.s is particularly beneficial in applications that rely upon the reprodt de· 

grades peroo rre sig
5
na1, ~here any undesired signal entering the reproduction se~ere Y 

rmance. uch is the c • . 1· auons. ase m voice recognition or speakerphone app ic 
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In terms of the mechanism by which they create an ele t..: 1 • 
d • h Cu ,ca signal corresponding to 

'
he sound wave they etect, m1crop ones are classified as elect . 

• • h • romagnellc electrostatic and 
; ,zoe/ectric. Dy11am1c m1crop ones are the most popular ty f 1 ' • . '. 

P e • h h pe o e ectromagneuc micro 
Phone and condenser m1crop ones t e most popular type of elect ta • . -

· · h • ros Ile microphone 
Electromagnetic m1crop ones induce voltage based on a • . • 

f I . . varymg magnetic field Rib-
bon microphones are a type o e ectromagnettc microphones that e I h. : 

h I mp oy a t m metal nbbon 
suspended between t e po es of a magnet. Dynamic microphones a 1 . . 

I . . re e ectromagnet1c mi-
crophones that emp oy a movmg coll suspended by a light diaphrag ( p· 

b . . m see 1gure 10 16) 
acting like a speaker ut m reverse. The diaphragm moves with cha • d • ' . . . . nges m soun pressure, 
which in turns moves the cm!, which causes current to flow as lines of fl f h . . ux rom t e magnet 
are cut. Dynamic microphones n~ed no batteries or power supply, but they deliver low si _ 
nal levels that need to be preamphfied. g 

Output~~ Diaphragm 
voltage "'4~' 
Magnet ~- · 

Coil 

Figure 10.16 Dynamic microphone schematics. 

Piezoresistive and piezoelectric microphones are based on the variation of electric re­
sistance of their sensor induced by changes in sound pressure. Carbon button microphones 
consist of a small cylinder packed with tiny granules of carbon that, when compacted by 
sound pressure, reduce the electric resistance. Such microphones, often used in telephone 
handsets, offer a worse frequency response than condenser microphones, and lower dynamic 
range. 

10.3. ADAPTIVE ECHO CANCELLATION (AEC) 

If a spoken language system allows the user to Lalk while speech is being output through the 
loudspeakers, the microphone picks up not only the user's voice, but also the speech !rom 
the loudspeaker. This problem may be avoided with a half-duplex system that does not hsten 
when a signal is being played through the loudspeaker, though such systems 0 ff_er an unnatu­
ral user experience. On the other hand, a full-duplex system that allows barge•m by the. user 
10 interrupt the system offers a better user experience. For barge-in to work, the signal 
Pia d th Th• • h. ved with echo cancella-. ye rough the loudspeaker needs to be canceled. 1s 1s ac ie 
lion (see Figure 10.17), as discussed in this section. 

In hands-free conferencing the local user's voice is output by the rern~te loudspeaker, 
whose signal is captured by the remote microphone and after some delay is output by the 
local J d ·f ·th they are greatly attenuated or ou speaker. People are tolerant to these echoes 1 ei er 
lhe delay is short. Perceptual studies have shown that the longer the delay, the greater lhe 
attenua1· ion needed for user acceptance. 
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Figure 10.17 Block diagram of an echo-canceling application. x[n] represents the signal from 
the loudspeaker, s[,r] the speech signal, 1•[n] the local background noise, and e[11] 1he signal 
that goes to the microphone. 

The use of echo cancellation is mandatory in telephone communications and hands­
free conferencing when it is desired to have full-duplex voice communication. This is par­
ticularly important when the call is routed through a satellite that can have delays larger than 
200 ms. A block diagram is shown in Figure 10.18. 

In Figure 10.17, the return signal r[n], assuming no local noise, is the sum 

r[n] = d[n]+s[n] (10.33) 

where s[n] is the speech signal and d[n] is the attenuated and possibly distorted version of 
the loudspeaker's signal .x[11]. The purpose of the echo canceler is to remove the echo d[n) 
from the return signal r[n], which is done by means of an adaptive FIR filter whose coeffi­
cients are computed to minimize the energy of the canceled signal e[n]. The filter coeffi• 
cients are reestimated adaptively to track slowly changing line conditions. 

This problem is essentially that of adaptive filtering only when s[n] = 0, or in other 
words when the user is silent. For this reason, you have to implement a double-talk detection 
module that detects when the speaker is silent. This is typicaJly feasible because the ec~o 
d[nJ is usually small, and if the return signaJ r[n] has high energy it means that the user 15 

x[n] 

' 
t 

Speake rA Adaptive Hybrid -
filter circuit H 

SpeakerB 

1 
e[n] d[n]'t d[ i],i~ s[nJ 

◄◄t------o~--.:..Jr[S.:.:n.L.] ---~...l • i_ v[n] 
Noise 

Figure 10.18 Block diagram of h . resents 
the remote call signal [ ] th ec O canceling for a telephone communication. x[n} rep 

, s II e local outgoi • al Th . . • d ?-4 wire can· 
version and is nonideal b . ng s,gn • e hybnd c1rcu1t H oes a -

ecause of impedance mismatches. 
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not silent. Errors in doubl~-tal~ detectio~ ~esult in divergence of the filter, so it is generally 
referable to be conservative rn the dec1s1on and when in doubt not adapt the filter coeffi­

~ients. Initialization could be done by sending a known signal with white spectrum. The 
quality of the filtering is measured by the so-called echo-return loss enhancement (ERLE): 

E{d2 [n]} 
ERLE(dB) = lOlog10 . • , 

£{(d[11]-d[11])"} 
(10.34) 

The filter coefficients are chosen to maximize the ERLE. Since the telephone-line 
characteristics, or the acoustic path (due to speaker movement), can change over time, the 
filter is often adaptive. Another reason for adaptive filters is that reliable ERLE maximiza­
tion requires a large number of samples, and such a delay is not tolerable. 

In the following sections. we describe the fundamentals of adaptive filtering. While 
there are some nonlinear adaptive filters, the vast majority are linear FIR filters, with the 
LMS algorithm being the most important. We introduce the LMS algorithm, study its con­
vergence properties, and present two extensions: the normalized LMS algorithm and trans­
fonn-domain LMS algorithms. 

10.3.1. The LMS Algorithm 

Let's assume that a desired signal d[n] is generated from an input signal x[n] as follows 

l-1 

d[n] == Lgkx[n-k]+u[n] = G 7
X[n]+u[n] ( I 0.35) 

k=il 

with G = {g g ... g } the input signal vector X[n] = {x[n],x{n-1], • •xfn-L +I]}• and 
O• P L-1 • 

u[n] being noise that is independent of x[n]. d th 
We want to estimate d[n] in terms of the sum of previous samples of xf n]. To O at 

we define the estimate signal y[n] as 

L-1 

J1n] = L w.[n]x[n-k] = W7
[n]X[n] 

(10.36) 

•~O 

where W[n] = {w [n] w [n] ... w [n]} is the time-dependent coefficient vector. The instan-
0 • I • L-1 . • • ' b 

taneous error between the desired and the esumated signal ,s given Y 

e[n] = d[n]-W7 [n]X[n] 
(10.37) 

. pd the value of the coefficient vector in 
The least mean square (LMS) algonthm u ates 

the steepest descent direction 
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W[n+1]= W[n]+ee[n]X[n] 00.38) 

where e is the step size. This algorithm is very popular because of its simplicity and 
effectiveness [58]. 

10.3.2. Convergence Properties of the LMS Algorithm 

The choice of e is important: if it is too small, the adaptation rate will be slow and it might 
not even track the nonstationary trends of x[n], whereas if E is too large, the error might 
actually increase. We analyze the conditions under which the LMS algorithm converges. 

Let's define the error in the coefficient vector V[n] as 

V[n] = G - W[n] 

and combine Eqs. ( 10.35), ( l 0.37), ( l 0.38), and ( l 0.39) to obtain 

V[n + 1) = V[n]-eX[n]XT[n]V[n]-eu[n]X[n] 

Taking expectations in Eq. (10.40) results in 

E {V[n +I]} = E {V[n]}- EE {X[ n ]XT [n ]V[n]} 

(10.39) 

(10.40) 

(10.41) 

where we have assumed that u[n] and x[n] are independent and that either is a zero-mean 
process. Finally, we express the autocorrelation of X[n] as 

(10.42) 

where Q is a matrix of its eigenvectors and A is a diagonal matrix of its eigenvalues 
{\,A,, .. ·,Ai_,}, which are all real valued because of the symmetry of R.a. 
. . Although we know that X[n] and V[n] are not statistically independent, we assume 
1? this section that they are, so that we can cbuih1 sume insight on the convergence proper­
ues. With this assumption, Eq. (10.41) can be expressed as 

E{V[n+ ll} = E{V[n]}(l-eR.1,J (10.44) 

which, applied recursively, leads to 

E{V[n+l]} = E{V[O]}(l-eR.a)" (10.45) 
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Using Eqs. (10.39) and (10.42) in (10.45), we can express the (i + l)th element of E{W(n]} as 

L-1 

E{w;[n]} = g; + L%(1-eA)"E{ii;[O]} 
j=O ( 10.46) 

where % is the (i + I, j + I )th element of the eigenvector matrix Q, and q,,) is the rotated 
coefficient error vector defined as ' 

(10.47) 

From Eq. (I 0.46) we see that the mean value of the LMS filler coefficients converges 
exponentially to the true value if 

(10.48) 

so that the adaptation constant e must be detennined from the largest eigenvalue of X[nJ 
for the mean LMS algorithm to converge. 

10.3.3. Normalized LMS Algorithm 

In practice, mean convergence doesn't tell us the nature of the fluctuations that the coeffi­
cients experience. Analysis of the variance of V[n] together with some more approxima­
tions result in mean-squared convergence if 

(10.49) 

with (J'; = E{x2[n]} being the input signal power and Ka constant that depends weakly on 
the nature of the input signal statistics but not on its power. 

Because of the inaccuracies of the independence assumptions above. a rule of thumb 
used in practice to detennine the adaptation constant e is 

0 0.1 
<e<-­

La2 
J: 

(10.50) 

The choice of largest value for e in Eq. (10.49) makes the LMS algorithm ~ck/:­
Slationary variations in x fastest and achieve faster convergence. On the olher an ' . e 
misadjustment of the filter coefficients increases as both the filter lengtb L and adap_cattonf 

d • rant can be made a function o constant E increase. For this reason, often the a aptation cons 
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. 1 values at first and smaller values once convergence has b 
11 ( E[ n J ), with arger een deter. 

mined. 1. d LMS algorithm (NLMS) uses the result of Eq. (10.49) and th The nomza ize. , erefore 
defines a nonnalized step size ' 

e 
e[n]= o +La_;[n] 00.51) 

h the constant O avoids a division by O and 6';[n] is an estimate of the input signal were - 1 ' d 
power, which is typically done with an exponentia wm ow 

a;[n] = (I- /3)<1;[n-I]+ /3x
2
[nJ (10.52) 

or a sliding rectangular window 

(10.53) 

where both /J and N contra] the effective memory of the estimators in Eqs. (10.52) and 
(10.53), respectively. Fina11y, we need to pick e so that O < E < 2 to assure convergence. 
Choice of the NLMS algorithm simplifies the selection of E , and the NLMS often con­
verges faster than the LMS algorithm in practical situations. 

10.3.4. Transform-Domain LMS Algorithm 

As discussed in Section I 0.3.2, convergence of the LMS algorithm is detennined by the 
largest eigenvalue of the input. Since complex exponentials are approximate eigenvect~rs 
for LTI systems, the LMS algorithm's convergence is dominated by the frequency band~~ 
largest_ energy, and convergence in other frequency bands is generally much slower.1?115 15 

the ~tionale for the subba11d I.MS algorithm, which perfonns independent LMS algonthms 
for different frequency bands, as proposed by Boll [14]. 

The block I.MS (BLMS) algorithm keeps the coefficients unchanged for a block k of L 
samples 

L-1 

W[k+l)= W[k]+e I,e[kL +m]X[kL+ m] (!0.54) 

m=O 

which is repres t d b • . d efficientlY . en e Y a hnear convolution and therefore can be 1mplemente ·m-
usmg length-2N FFT . N tice (hat 1 

I . s accordmg to overlap-save method of Figure 10.19. 0 ~re-
p ementmg a linear c 1 • . . h s the rri . onvo ut1on with a c1rcular convolution operator sue a 
quires the use of the dashed box. 
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[Old x I New x] 

FFf 

Conjugate 

Generate Length 2N 
Data vector 

FFT 

Update weight 
vector W 

----------- ---------, 

Force last N 
elements to 0 

I 
I 

Input 
x[11] 

FFT 

Save last 
N samples 

Output y[n) 

Figure 10.19 Block diagram of the constrained frequency-domain block LMS algorithm. The 
unconstrained version of this algorithm eliminates the computation inside the dashed box. 
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An unconstrained frequency-domain LMS algorithm can be implemented by removing 
the constraint in Figure I 0.19, therefore implementing a circular instead of a linear convolu­
tion. While this is not exact, the algorithm requires only three FFTs instead of five. In some 
practical applicacions, there is no difference in convergence between the constrained and 
unconstrained cases. 

10.3.5. The RLS Algorithm 

The search for the optimum filter can be accelerated when the gradient vector is properly 
~eviated toward the minimum. This approach uses the Newcon-Raphson method ~o i:er::i­
l!vely compute the root of j(x) (see Figure l 0.20) so that the value at iteration i + 1 is given 
by 

(10.55) 
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Figure 10.20 Newton-Raphson method to compute the roots of a function. 

To minimize function j{x) we thus compute the roots of f(x) through the above 

method: 

/'(xJ 
X1+1 = X; - j'(x,) (10.56) 

In the case of a vector, Eq. (10.56) is transfonned into 

(10.57) 

where we add a step size E[n], and where V 2e(wi) is the Hessian of the least-squares func­
tion which, for Eq. ( 10.37), equals the autocorrelation of x: 

(10.58) 

The recursive least squares (RLS) algorithm specifies a method of estimating Eq. 
(10.58) using an exponential window: 

R[n] = AR[n-1] + x[n]xT[n] (10.59) 

While the RLS algorithm converges faster than the LMS algorithm, it also is more 
computationally expensive, as it requires a matrix inversion for every sample. Several algo­
rithms have been derived to speed it up (54 J. 

10.4. MULT™ICROPHONE SPEECH ENHANCEMENT 

The use of more than one microphone is motivated by the human auditory system, in which 
the use of both ears has been shown to enhance detection of the direction of arrival, as well 

• SNR h • • t m uses 10 
as increase w en one ear 1s covered. The methods the human auditory sys e . . 

1• h • 'b d 10 this acc~mp is this task are still not completely known, and the techniques descn e 
section do not mimic that behavior. 

M• h · hone Joca­icrop one arrays use multiple microphones and knowledge of the microp . d 
tions to predict delays and thus create a beam that focuses on the direction of tbe desire 
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speaker and rejects signals ~oming from other angles. Reverberation, as discussed in Section 
10.1.2, can be com?a!ed with l?ese techniques. Blind source separation techniques are an­
other family of statistical techniques that typically do not use spatial constraints, but rather 
statistical independence between different sources. 

While in this ~ection we d_escribe only linear processing, i.e., the output speech is a 
linearly filtered version of the microphone signals, we could also combine these techniques 
with the nonlinear methods of Section I 0.5. 

10.4.1. Microphone Arrays 

The goals of microphone arrays are twofold: finding the position of a sound source in a 
room, and improving the SNR of the received signal. Steering is helpful in videoconferenc­
ing, where a camera has to follow the current speaker. Since the speaker is typically far 
away from the microphone, the received signal likely contains a fair amount of additive 
noise. Microphone arrays can also be used to increase the SNR. 

Letx[n] be the signal at the source S. Microphone i picks up a signal 

Y;[n] = x[n] * g;[n] + v,[n] (10.60) 

that is a filtered version of the source plus additive noise v,[n]. If we have N such micro­
phones, we can attempt to recover s[n] because all the signals y,[n] should be correlated. 

A typical assumption made is that all the filters g;[n] are delayed versions of the same 
filter g[n] 

(10.61) 

with the delay D; = d, / c , d, being the distance between the source Sand microphone i, and 
c the speed of sound in air. We cannot recover signal x[n] without knowledge of g[n] or the 
signal itself, so the goal is to obtain the filtered signal y[n] 

y[n] = x[n] * g[n] 

so that, combining Eqs. (10.60), (10.61), and (10.62), 

Y, [ n] = y[ n - D,] + vi[ n] 

(10.62) 

(10.63) 

Assuming v,[n] are independent and Gaussianly distributed, the optimal estimate of 

x[nJ is given by 

l N-1 

y[n] =-LY,[n+D,] == y[n]+v[n] 
N i•O 

(10.64) 

which is the so-called delay-and-sum beamformer [24, 29], where the residual noise v[n] 
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00.65) 

has a variance that decreases as the number of microphones N increases, since th . 
e noises 

v;[n + D,] are uncorrelated. 
Equation (10.64) requires estimation of the delays D;. To attenuate the additive noise 

v[llJ it is not necessary to identify the absolute delays, but rather the delays relative t 
• . o one 

reference microphone (for example, the center microphone). It can be shown that them . 

mum likelihood solution consists in maximizing the energy of ji[n] in Eq. (10.64). whic~x;; 

the sum of cross-correlations: 

( 10.66) 

This approach assumes that we know nothing about the geometry of the microphone 
placement. In fact, given a point source and assuming no reflections, we can compute !he 

delay based on the distance between the source and the microphone. The use of geometry 
allows us to reduce the number of parameters to estimate from (N - 1) to a maximum of 3, in 

case we desire to estimate the exact location. This location is often described in spherical 
coordinates (<p,0,p) with <p being the direction of arrival, 0 the e]evation angle, and p 

the distance to the reference microphone, as shown in Figure 10.21. 

Speaker 

Figure 10.21 Spherical coordinates (<p,0,p) with <p being the direction of arrival, 0 the 
.;!e·,t~h.m angle, and p the distance to the reference microphone. 

While 2-D and 3-D microphone configurations can be used, which would allow us to 

~etenni~e not just the steering angle <p , but also distance to the origin p and azimuth . 6' 
lmear microphone arrays are the most widely used configurations because they are the si~­
plest. In a linear array all the microphones are placed on a line (see Figure 10.22). In lhis 
case, we ca~not determine the elevation angle 0 . To detennine both <p and P we need al 

least two microphones in the array. 

If the microphones are relatively close to each other compared to the distance to tbe 
s_ource, the angle of arrival <p is approximately the same for all signals. With this assumP· 

tmn, the nonnalized delay 15; with respect to the reference microphone is given by 
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(10.67) 

Figure 10.22 Linear microphone array (five microphones). The source signal arrives at h 
microphone with a different delay, which allows us to find the correct angle of arrival. eac 

With approximation, we define D;(<p), the relative delay of the signal at microphone; 
10 the reference microphone, as a function of the direction of arrival angle <p and independ­
ent of p. The optimal direction of arrival <p is then that which maximizes the energy of the 
estimated signal i[n] over a set of samples 

(10.68) 

=argmax I, - lyJn-~sin(q,)] ( 
l N-1 ) l 

q, ,, N i=O C 

The term beamforming entails that this array favors a specific direction of arrival 'P 
~d that sources arriving from other directions are not in phase and therefore are _attenuated. 
Since the source can move over time, maximization of Eq. ( 10.68) can be done m an adap­
tive fashion. 

· h.b. d ti n in As the beam is steered away from the broadside, the system ex 1 its a re_ uc 
O 

. 

spatial discrimination because the beam pattern broadens. Furthennore, beamwtdt.h vanes 
wilh frequency, so an array has an approximate bandwidth given by the upper /. and lower 
Ii frequencies 

f _ C '" _______ _ 
d ~.~ I cos <p - cos q,'I (l0.69) 

f, - f,, ,--
N 
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with d being the sensor spacing, q/ the steering angle measured with respect to the . . axis of 
the array and cp the direction of the source. For a des1Ted range of ±30' and five s 

' . . . ensors 
spaced 5 cm apart, the range 1s approx~mately ~80 to 44~_Hz. _We seem Figure 10.23 that 
at very low frequencies the response 1s essentially ommdirect1onal, since the micro h 
spacing is small compared to the Jarge wavelength. At high frequencies more lobe~ one 
appearing, and the array steer~ toward no_t only the preferre~ direction but others as ::. 
For speech signals, the upshot 1s tha~ we either need a lot of microphones to provide a direc­
tional polar pattern at low frequencies, or we need them to be spread far enough apan , or 
both. 

Figure 10.23 Polar pattern of a microphone array with steering angle of <p' = 0 , five micro­
phones spaced 5 cm apart for 400, 880, 4400, and 8000 Hz from left to right, respectively, for 
a source located at 5 m. 

The polar pattern in Figure 10.23 was computed as follows: 

N -/2•/[a,sin"'+!r..,.-/a,!]'c 

P(f,r,<p) =Le I e1" . I 
i•I r - }Q; 

(10.70) 

though the sensors could be spaced nonunifonnly, as in Figure 10.24, allowing for better 
behavior across the frequency spectrum. 

• 
,Mid-fregu¥nc~ array 

I I I 

• • • • • • • • 
I I I I I 
High-frequency array 

J 
Low-frequency array 

Fi_gure l0.24 Nonunifonn linear microphone array containing three subarrays for the high, 
nud, and low frequencies. 
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Once a microphone array has been steered towars a direction ,n' •t . 
• • .,, , 1 attenuates noise 

rce coming from other directions. The beamwidth depends not only th f sou . . . on e requency of 
the signal but also on the steenng direction. If the beam is steered toward d' . , • . f: . a irect1on <p 
then the direction of the source or which the beam response fall to half its power has bee~ 
found empirically to be 

-1 J '+ K l 
<fJJdB (/) = cos tos <p - Ndf J (l 0. 71) 

with K being a constant. Equ~tion_ (]0.7_1) shows that the smaller the array, the wider the 
beam, and that lower frequencies yield wider beams also. Figure 10.25 shows that the band­
width of the array when steering toward a 30° direction is lower than when steering at oo. 

Figure 10.25 Polar pattern of a microphone array with steering angle of qf = 30' , five micro­
phones spaced 5 cm apart for 400, 880, 3000, and 4400 Hz from left to right, respectively, for 
a source located at 5 m. 

Microphone arrays have been shown to improve recognition accuracy when the mi­
crophones and the speaker are far apart [51]. Several companies are commercializing micro­
phone arrays for teleconferencing or speech recognition applications. 

Only in anechoic chambers does the assumption in Eq. (10.61) hold, since in practice 
many reflections take place, which are also different for different microphones. In addition, 
the assumption of a common direction of arrival for all microphones may not hold either. 
For this case of reverberant environments, single beamformers typically fail. While comput­
ing the direction of anival is much more difficult in this case, the SNR can still be improved. 

Let's define the desired signal d[n] as that obtained in the reference microphone. We 
can estimate the vector H[ n] = {hi" ... , hll , h,_i, • .. , h2L, • • ·, lzcN-rJP • • ·, \N-IJL} for the (N-1 J L­
tap filters that minimizes the error array [25] 

e[n] = d[n]-H[n}Y[n] (10.72) 

where the (N- 1) microphone signals are represented in the vector 

Y[n] = {Yi[n], .. , y
1 
[n- l- l],y

2
[n], .. ,y2 [n-L-l], • ·,YN-1 [n], .. ,yN_,[n-L- I]} 

Th~ filter coefficientsG(n] cart be estimated through the adaptive filtering techniques de­
scnbed in Section 10.3. The clean signal is then estimated as 
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array. 

x[n] = .!_(d[n]+ H[n]Y[n]) 
2 
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(l0.73) 

This last method does not assume anything about the geometry of the mic h rop one 

10.4.2. Blind Source Separation 

The problem of separating the desired speech from interfering sources, the cocktail , 
'I • • I • Bl' Part} effect [15], has been one of lhe holy gra1 s 1~ s1gna _processing. in~ source separation 

(BSS) is a set of techniques that assume no mformauon about the mixing process or the 
sources, apart from their mutual statistical independence, hence is termed blind. Independent 
component analysis (ICA), developed in the last few years [ 19, 38], is a set of techniques 10 
solve the BSS problem that estimate a set of linear filters to separate the mixed signals uooer 
the assumption that the original sources are statistically independent. 

Let's first consider instantaneous mixing. Let's assume that R microphone signals 
y,[n], denoted by y[n]=(y1[n],y2[n],-··,yR[n1), are obtained by a linearcombinationofR 
unobserved source signals x;[n], denoted by x[n] = (.x; [n], x2[n],- • ·, xR[nl): 

y[n] = Gx[n] (10.74) 

for all n, with G being the R x R mixing matrix. This mixing is termed instantaneous, since 
the sensor signals at time n depend on the sources at the same, but no earlier, time point 
Had the mixing matrix been given, its inverse could have been applied to the sensor signals 
to recover the sources by x[n] = G-1y[n]. In the absence of any information about the mix• 
ing, the blind separation problem consists of estimating a separating matrix H = G-1 from 
the observed microphone signals alone. The source signals can then be recovered by 

x[n] = Hy[n] (10.75) 

We'll use here the probabilistic formulation of ICA, though alternate frameworks for 
ICA have been derived also [18]. Let p.(x[n]) be the probability density function (pdf) of 
the source signals, so that the pdf of microphone signals y[n] is given by 

Pi,(y[n]) =IHI p,(Hy[nJ) (]0.76) 

and if we furthermore assume the sources x[n] are independent from themselves in time, 
x[n + i] i =I= 0, then the joint probability is given by 

N~ N~ 

py(y[O), y[1],··,y[N -1)) = fl py(y[n]) =!HIN ITP. (Hy[n]) 
11=0 11=0 

(10.77) 

whose nonnalized log-likelihood is given by 
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I I N-1 

'I'= N In p>_(y[0],y(I], • • ·,y[N -1)) = In IHI+-L, In Px(Hy[n)) 
N 11=0 

(10.78) 

IL can be shown that 

( I 0.79) 

so that that the gradient of 'I' [38] in Eq. ( I 0. 78) is given by 

aq, T -I } ,\·-1 T 

- = (tt ) +-L,¢(Hy(nJ)(yfnJ) 
aH N n=O 

( I 0.80) 

where ip(x) is expressed as 

¢(x) = d In p, {x) 
ax (10.81) 

If we further assume the distribution is a zero mean Gaussian distribution with stan­
dard deviation a, then Eq. (I 0.8 I) results in 

X 
ip{x)=--

a2 

which inserted into Eq. (I 0.80) yields 

~=(Hrf'-2/- I,y[n](y[n])r =(Hrt---rR 
:\\I/ H ,, 1 N-J ) H 

oH a N"~ a 
' 

with R being the matrix of cross-correlations. i.e., 

l \'- I 

Ri/ =-I,y;[n}y1[n] 
N 11=0 

(10.82) 

(10.83) 

(I0.84) 

Setting Eq. (10.83) to O results in maximization of Eq. (10.78) under the Gaussian as­
sumption: 

( 10.85) 

which can be solved using the Cholesky decomposition described in Chapter 6. 

Since a is generally not known, it can be shown from Eq. (] 0.85) that the sources can 

be recovered only to within a scaling factor [17]. Scaling is in general not a big problem, 

since speech recognition systems perform automatic gain control (AGC). Moreover, the 

sources can be recovered to within a permutation. To see this, let's define a two-dimensional 
matrix A 
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' o 11 
A=l 1 0 (10.86) 

' / 

which is orthogonal: 

(10.87) 

If H is a solution of Eq. (10.85), then AH is also a solution. Thus, a permutation of the 
sources yields the same correlation matrix in Eq. (10.84). Although we have shown it only 
under the Gaussian assumption, separation up to a scaling factor and source pennutation is a 
general result in blind source separation [17]. 

Unfortunately, the Gaussian assumption does not guarantee separation. To see this, we 
can define a two-dimensional rotation matrix A 

A= 1'·cos8 -sin81 
sin0 cos0 J 

' / 

(10.88) 

which is also orthogonal, so that if His a solution of Eq. (10.85), then AH is also a solution. 
The Gaussian assumption entails considering only second-order statistics, and to en­

sure separation we could consider higher-order statistics. Since speech signals do not follow 
a Gaussian distribution, we could use a Laplacian distribution, as we saw in Chapter 7: 

which, using Eq. (10.8 I), results in 

tp(x) = {-/3 X > 0 
f3 x< 0 

(10.89) 

(10.90) 

and thus a nonlinear function of H for Eq. (10.80). Since a closed-form solution is not possi­
ble, a common solution in this case is gradient descent, where the gradient is given by 

(10.91) 

and the update fonnula by 

(10.92) 

which is the so-called infomax rule [10]. 
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Often the nonlinearity in Eq. (10.90) is replaced by a sigmoid6 function : 

¢(x) = -/3 tanh(/Jx) 

which implies a density function 
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(10.93) 

(10.94) 

The sigmoid converges to the Laplacian as /3 ➔ 00 • Nonlinear functions in Eqs. 
(l0.90) and (10.93) can be expanded in Taylor series so that all the moments of the observed 
signals are used and not just the second order, as in the case of the Gaussian assumption. 
These nonlinearities have been shown to be more effective in separating the sources. The 
use of more accurate density functions for P. ( x) , such as a mixture of Gaussians [9], a1so 
results in nonlinear ef>(x) functions that have shown better separation. 

A problem of Eq. ( 10.92) is that it requires a matrix inversion at every iteration. The 
so-called natural gradient [7] was suggested to avoid this, also providing faster conver­
gence. To do this we can multiply the gradient of Eq. (10.91) by a positive definite matrix, 
the inverse of the Fisher's infonnation matrix H~H", for example, to whiten the signal: 

(10.95) 

which, combined with Eq. (10.91), results in 

(10.96) 

where the estimated sources are given by 

(10.97) 

Notice the similarity of this approach to the RLS algorithm of Section 10.3.5. Similarly to 
most Newton-Raphson methods, the convergence of this approach is quadratic instead of 

linear as long as we are close enough to the maximum. 
Another way of overcoming the lack of separation under the independent Gaussian as­

sumption is to make use of temporal infonnation, which we know is important for speech 
signals. If the model of Eq. (10.74) is extended to contain additive noise 

Y[n] = Gx[n] + v[n] 
(10.98) 

'The · · 1- c tanh(x)-sinh(x) / cosh(x), where 
. sigmoid function can be expressed in terms of the hyperbo 1c tangen -

Slnh(x):;(e' -e-')/2 and cosh(x)= (e' +e-')12. 



514 Environmental Robustness 

we can compute the autocorrelation of y[n] as 

00.99) 

or, after some manipulation, 

(10.100) 

which we know must be diagonal because the sources x are independent, and thus H can be 
estimated to minimize the squared error of the off•diagonal terms of R.(n] for several val­
ues of n [11 ). Equation (10.100) is a generalization of Eq. (10.85) when considering tempo­
ral correlation and additive noise. 

x,[n] y,[n]L§ 
gll[n] 

+ ----- - , I::::; I 
g12[n] 

g2,[n] h21[n] 

g22[n] + _._ ___ hi1[n] 
yin] 

Figure 10.26 Convolutional model for the case of two microphones. 

The case of instantaneous mixing is not realistic, as we need to consider the transfer 
functions between the sources and the microphones created by the room acoustics. It can be 
shown that the reconstruction filters hy(n] in Figure 10.26 will completely recover the 
original signals x1[n] if and only if their z-transforms are the inverse of the z-transfonns of 
the mixing filters g!i[n]: 

(IO.IOI) 

If the matrix in Eq. (10.101) is not invertible, separability is impossible. This can ha~­
pen if both microphones pick up the same signal, which could happen if either the two mt-
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crophones are too closet~ ~ach othe~ or the two sources ~re too close to each other. It's rea­
. , ble to assume the m1xmg fillers g;;[n] to be FIR lilters. whose length will generally 
sona • • h" h. 
depend 011 the reverberation tune, w 1c m tun~ depends on the room size, microphone posi-
. n wall absorbance, and so on. In general this means that the reconstruction filters h.[n] 

110 • • I I dd' • l f"I ,, have an infinite unpu se response. n a_ 1t1011. t le I ters g;;[n] may have zeroes outside the 
it circle, so that .perfect reconstruction filters would need to have poles outside the unit 

~i~cle. For this reason it is not possible, in general, to recover the original signals exactly. 
In practice. it's convenient to assume such tilters to be FIR of length q. which means 

that the original signals x,[n] and x2[11], will not be recovered exactly. Thus the problem 
consists in estimating the reconstruction filters h1;[11] directly from the microphone signals 
y,[n] and y2[n], so that _th: est!mated sign~ls x;_[n] are as close as possible to the original 
signals. Often we are sat1shed if the resulting signals are separated, even if they contain 
some amount of reverberation. 

An approach commonly used to combat this problem consists of taking a filterbank 
and assuming instantaneous mixing within each filter {38]. This approach can separate real 
sources much more effectively, but it suffers from the problem of pennutations, which in 
this case is more severe because frequencies from different sources can be mixed together. 
To avoid this, we may need a probabilistic model of the sources that takes into account cor­
relations across frequencies [3]. Another problem occurs when the number of sources is lar­
ger than the number of microphones. 

10.5. ENVIRONMENT COMPENSATION PREPROCESSING 

The goal of this section is to present a number of techniques used to clean up the signal of 
additive noise and/or channel distortions prior to the speech recognition system. Although 
lhe techniques presented here are developed for the case of one microphone, they can be 
generalized to the case where several microphones are available using the approaches de­
scribed in Section I 0.4. These techniques can also be used to enhance the signal captured 
with a speakerphone or a desktop microphone in teleconferencing applications. 

Since the use of human auditory system is so robust to changes in acoustical environ­
ment, many researchers have attempted to develop signal processing schemes that mimic the 
functional organization of the peripheral auditory system [27, 49]. The PLP cepstrum de­
scribed in Chapter 6 has also been shown to be very effective in combating noise and chan­
nel distortions [60]. 

Another alternative is to consider the feature vector as an integral part of the recog­
nizer, and thus researchers have investigated its design so as to maximize recognition accu­
racy, as discussed in Chapter 9. Such approaches include LOA [34] and neural networks 
[45]. These discriminatively trained features can also be optimized to operate better under 
~oisy conditions, thus possibly beating the standard mel-cepstrum. especially when several 
Independent features are combined [50]. The mel-cepstrom is the most popular feature vec­
tor for speech recognition. In this context we present a number of techniques th3t have _been 
~roposed over the years to compensate for the effects of additive noise and channel d•stor­
llons on the cepstrum. 
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10.5.1. Spectral Subtraction 

Environ~b -0 ustness 

The basic assumption in this section is that the desired clean signal x[m] has been c 
b dd

. . . orrupted y a 1t1ve noise n[m]: 

y[m] = x[m]+n[m] (10,102) 

and that both x[m] and n[m] are statistically independent, so that the power spectrum of the 
output y[m] can be approximated as the sum of the power spectra: 

(10.103) 

with equality if we take expected values, as the expected value of the cross term vanishes 
(see Section 10.1.3). 

Although we don't know IN(/)12, we can obtain an estimate using the average perio­
dogram over M frames that are known to be just noise (i.e., when no signal is present) as 
long as the noise is stationary 

(10.104) 

Spectral subtraction supplies an intuitive estimate for IX(/)I using Eqs. (10.103) and 
(10.104) as 

(I 0.105) 

where we have defined the frequency-dependent signal-to-noise ratio SNR(f) as 

(10.106) 

Equation (I 0.105) describes the magnitude of the Fourier transform but not the ph~­
This is raol cl problem if we are interested in computing the mel-cepstrum as discuss~ m 
Chapter 6. We can just modify the magnitude and keep the original phase of Y(/) using a 
filter Hu(f): 

X(f) = Y(f)Hu (f) (I0.107) 

where, according to Eq. (10.105), Hu(f) is given by 

(l0.108) 
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Since j.xuf is a power spectral density, it has to be positive, and therefore 

SNR(/) 2': I 
(l0. l09) 

but we ~a~e no guarantee that . SNR(f), as computed by Eq. (10.106), satisfies Eq. ( 10. I 09). 
In fact, 1t 1s easy to see that noise frames do not comply. To enforce this constraint Boll [ 

131 suggested modifying Eq. (I 0.108) as follows; ' 

(10.110) 

with a 2". 0, so that the quantity within the square root is always positive, and where J,,(x) is 
given by 

It is useful to express SNR(f) in dB so that 

x = 10log10 SNR 

and the gain of the filter in Eq. ( 10.111) also in dB: 

g.,.(x) = 20log10 J.,.(x) 

Using Eqs. (10.111) and (I 0.112), we can express Eq. (10.113) by 

g .. (x) = max (t0log10 (1-10-1110 ),-A) 

after expressing the attenuation a in dB: 

Q =} o-A/IO 

Equation (10.114) is plotted in Figure 10.27 for A= IO dB. 

(IO.Ill) 

(10.112) 

(10.I 13) 

(10.114) 

(IO.I 15) 

The spectral subtraction rule in Eq. (10.11 I) is quite intuitive. To implement it we can 
do a short-time analysis, as shown in Chapter 6, by using overlapping windowed segments, 
zero-padding, computing the FFf, modifying the magnitude spectrum, taJ<lng the inverse 
FFT, and adding the resulting windows. 

This implementation results in output speech that has significantly less noise, though it 
exhibits what is called musical noise [ 12]. This is caused by frequency bands f for w~ich 
lrvf == jN(/)r. As shown in Figure 10.27, a frequency lo for which IYffo( < l~Uo>I" is 
attenuated by A dB, whereas a neighboring frequency J;, where IYC.t. )/ > /N(J; >I , ha~ a 
much smaller attenuation. These rapid changes with frequency introduce tones at varymg 
frequencies that appear and disappear rapidly. 
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Figure 10.27 Magnitude of the spectral subtraction filter gain as a function of the input 
instantaneous SNR for A= 10 dB, for the spectral subtraction of Eq. (10.114), magnitude 
subtraction of Eq. (I 0. J I 8), and oversubtraction of Eq. ( 10.119) with /3 = 2 dB. 

The main reason for the presence of musical noise is that the estimates of SNR(f) 

through Eqs. (10.104) and (10.106) are poor. This is partly because SNR(f) is computed inde­
pendently for each frequency, whereas we know that SNR(fo) and SNR(f..) are correlated if 
/ 0 and f.. are close to each other. Thus, one possibility is to smooth the filter in Eq. (10.114) 

over frequency. This approach suppresses a smaller amount of noise, but it does not distort the 
signal as much, and thus may be preferred by listeners. Similarly, smoothing over time 

sNR(f,t) = rsNR(f,t-1)+(1-r) IYCJ)I: 
IN(/)j 

(10.116) 

can also be done to reduce the distortion, at the expense of a smaller noise attenuation. 
Smoothing over both time and frequency can be done to obtain more accurate SNR meas­
urements and thus less distortion. As shown in Figure 10.28, use of spectral subtraction can 
reduce the error rate. 

Additionally, the attenuation A can be made a function of frequency. This is useful 
when we want to suppress more noise at one frequency than another, which is a tradeoff 
between noise reduction and nonlinear distortion of speech. • 

Other enhancements to the basic algorithm have been proposed to reduce the musical 
noise. Sometimes Eq. (10.111) is generalized to 

(10.117) 
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Figure 10.28 Word error rate as a function of SNR (dB) using Whisper on the Wall Street 
Joumal 5000-word dictation task. White noise was added at different SNRs. The solid line 
represents the baseline system trained with clean speech, the line with squares the use of spec­
tral subtraction with the previous clean HMMs. They are compared to a system trained on the 
same speech with the same SNR as the speech tested on. 
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where a= 2 corresponds to the power spectral subtraction rule in Eq. (] 0.111 ), and a= 1 
corresponds to the magnitude subtraction rule (plotted in Figure 10.27 for A= 10 dB): 

(10,118) 

Another variation, called over~ubtraction, consists of multiplying the estimate of the 
noise power spectral density INC.ff in Eq. (10.104) by a constant 10P110

, where f3 > 0, 
which causes the power spectral subtraction rule in Eq. (10.114) to be transformed to an­
other function 

g,,. (x) = max ( 10 log,o ( 1-1 o-<x-P)IIO ),-A) (10.119) 

This causes lruf < jN'(f)r to occur more often than )Y(f)j2 > jN(f)j
2 

for frames for which 
IYU>li ""jN(f)j2 

, and thus reduces the musical noise. 

10.5.2. Frequency-Domain MMSE from Stereo Data 

You have seen that several possible functions, such as Eqs. (10.114), (10.118), or (10.119), 
can be used to attenuate the noise and it is not clear that any one of them is better than the 
others, since each has been obtain~d through different assumptions. This opens the possibil­
i~y of estimating the curve g(x) using a different criterion, and, thus, different approxima­

hons than those used in Section 10.5.1. 
One interesting possibility occurs when we have pairs of stereo uttera~ces that_ ~ave 

been recorded simultaneously in noise-free conditions in one channel and nmsy cond1tJOns 
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in the other channel. In this case, we can estimate f(x) using a minimum mean squ 
criterion (Porter and Boll [47), Ephraim and Malah [23]), so that are<1 

i(x) = ar~,i:d~i(x,u;)- J(SNR(t;))Y,U;) )'} (10,120) 

or g(x) as 

g(x) = ar~,i::in {t ~ (10 log,. [x,u)I' -g( SNR(/1 ) )-!Olog,. [Y,U;)[' )'} (I0.12!) 

which can be solved by discretizing}tx) and g(x) into several bins and summing over all M 
frequencies and N frames. This approach results in a curve that is smoother and thus offers 
less musical noise and lower distortion. Stereo utterances of noise-free and noisy speech are 
needed to estimate Jtx) and g(x) through Eqs. (l 0.120) and (10.121) for any given acoustical 
environment and can be collected with two microphones, or the noisy speech can be ob­
tained by adding to the clean speech artificial noise from the testing environment. 

Another generalization of this approach is to use a different function f(x) or g(x) for 
every frequency [2] as shown in Figure 10.29. This also allows for a lower squared error at 
the expense of having to store more data tables. In the experiments of Figure 10.29, we note 
that more subtraction is needed at lower frequencies than at higher frequencies in this case. 

If such stereo data is available to estimate these curves, it makes the enhanced speech 
sound better [23] than does spectral subtraction. When used in speech recognition S)'Stems, it 
also leads to higher accuracies [2]. 

10.5.3. Wiener Filtering 

Let's reformulate Eq. (10.102) from the statistical point of view. The process y[n] is the 
sum of random process x[ n] and the additive noise v[ n] process: 

y[n] = x[n] + v[n] (10.122) 

We wish to find a linear estimate i[n] in tenns of ~he process y[n]: 

-
x[n] = L h[m]y[n-m] (10.123) 

n,;::--

~hich is the result of a linear time-invariant filtering operation. The MMSE estimate of h[n] 
m Eq. (10.123) minimizes the squared error 

(10. 124) 
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Figure 10.29 Empirical curves for input-to-output instantaneous SNR. Eight different curves 
for 0, 1, 2, 3, 4, 5, 6, 7 and 8 kHz are obtained following Eq. (10.121) [2) using speech re• 
corded simultaneously from a close-talking microphone and a desktop microphone. 

which results in the famous Wiener-Hopf equation 
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-
R,y[I] = L h[m]R>,, [l-mJ 

(10.1 25) 
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so that, taking Fourier transforms, the resulting filter can be expressed in the frequency do. 

main as 

S,.,.(/) 
H(f)=-=___,;··-

S_.1,(/) 
(10.126) 

If the signal x[n] and the noise v[n] are orthogonal, which is often the case, then 

(10.127) 

so that Eq. ( I 0.126) is given by 

H ( /) = S_u (/) 
• S,c.,.(/)+S"'(J') 

(10.128) 

Equation ( I 0.128) is called the 11011causal Wiener filter. This can be realized only if 
we know the power spectra of both the noise and the signal. Of course, if Su(/) and 
S,,y (/) do not overlap, then H (/) = I in the band of the signal and H (/) = 0 in the band 
of the noise. 

In practice, S:r..-(/) is unknown. If it were known, we could compute its mel-cepstrum, 
which would coincide exactly with the mel-cepstrum before noise addition. To solve this 
chicken-and-egg problem, we need some kind of model. Ephraim [22] proposed the use of 
an HMM where, if we know what state the current frame falls under, we can use its mean 
spectrum as S~(/). In practice we do not know what state each frame fa11s into either, so 
he proposed to weigh the filters for each state by the a posterior probability that the frame 
falls into each state. This algorithm, when used in speech enhancement, results in gains of 7 
dB or more. 

A causal version of the Wiener filter can also be derived. A dynamical state model al­
gorithm called the Kalman filter (see [ 42] for details) is also an extension of the Wiener fil­
ter. 

10.5.4. Cepstral Mean Normalization (CMN) 

Different microphones have different transfer functions, and even the same microphone has 
a varying transfer function depending on the distance to the microphone and the room 
acoustics. In this section we describe a powerful and simple technique that is designed to 
handle convolutional distortions and, thus, increases the robustness of speech recognition 
systems to unknown linear filtering operations. . 

Given a signal x[n], we compute its cepstrum through short-time analysis, resulting m 
a set of T cepstral vectors X = { x0, x1 , ... , Xr _,} . I ts sample mean x is given by 

_ l T-1 

x=-Ix 
T ''"° I 

(IO. 129) 
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Cepstral mean normali~ation (CMN) (Atal [8]) consists of subtracting x from each vector 
x to obtain the normalized cepstrum vector i : 
• I I 

X, =X, -x (10.130) 

Let's now consider a signal y[nJ, which is the output of passing x[nJ through a filter 
h[n]. We can compute another sequence of cepstrum vectors y = {y y ... } N 

d fi h 
o, 1 • ,Yr- i . ow 

Jet's further e me a vector as 

where C is the DCT matrix. We can see that 

y, = x, + h 

and thus the sample mean y, equals 

l r-1 l r-1 

y=-IY, =- 2,(x, +b)=x+h 
T t=O T t=O 

and its nonnalized cepstrum is given by 

Y, =y, -y, =x, 

(10.131) 

(10.132) 

(l0.133) 

(10.134) 

which indicates that cepstral mean normalization is immune to linear filtering operations. 
This procedure is performed on every utterance for both training and testing. Intuitively, the 
mean vector i conveys the spectral characteristics of the current microphone and room 
acoustics. In the limit, when T ➔ oo for each utterance, we should expect means from utter­
ances from the same recording environment to be the same. Use of CMN to the cepstrum 
vectors does not modify the delta or delta-delta cepstrum. 

Let's analyze the effect of CMN on a short utterance. Assume that our utterance con­
tains a single phoneme, say Isl. The mean i will be very similar to the frames in this pho­
neme, since Isl is quite stationary. Thus, after normalization, x, aa O . A similar result will 
happen for other fricatives, which means that it would be impossible to distinguish these 
ultrashort utterances, and the error rate will be very high. If the utterance contains more than 
one phoneme but is still short, this problem is not insurmountable, but the confusion among 
phonemes is still higher than if no CMN had been applied. Empirically, it has been found 
that this procedure does not degrade the recognition rate on utterances from the same acous­
tical environment, as long as they are longer than 2-4 seconds. Yet the method provides 
significant robustness against linear filtering operations. In fact, for telephone recordings, 
where each call has a different frequency response, the use of CMN has been shown to pro­
vide as much as 30% relative decrease in error rate. When a system is trained on one micro­
phone and tested on another, CMN can provide significant robustness. 

. . Interestingly enough, it has been found in practice that th~ ~rror rat~. for u~erance~ 
wuhm the same environment is actually somewhat lower, too. This 1s surpnsmg, given tha 
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there is no mismatch in channel conditions. One explanation is that, even for the same . . mi-
crophone and room acoustics, the distance ~etween the mouth an~ the microphone varies for 
different speakers, which causes slightly different transfer functions, as we studied in Sec­
tion 10.2. In addition, the cepstral mean characterizes not only the channel transfer function 
but also the average frequency response of different speakers. By removing the Jong-te~ 
speaker average, CMN can act as sort of speaker nonnalization. 

One drawback of CMN is it does not discriminate silence and voice in computing the 
utterance mean. An extension to CMN consists in computing different means for noise and 

speech (5): 

hu+rJ =-]-Ix, -m. 
N, tEq, 

D(j+I) =-1-Ix, -mn 
Nn IEq. 

(10.135) 

i.e., the difference between the average vector for speech frames in the utterance and the 
average vector m. for speech frames in the training data, and similarly for the noise frames 
ma . Speech/noise discrimination could be done by classifying frames into speech frames 
and noise frames, computing the average cepstra for each, and subtracting them from the 
average in the training data. This procedure works well as long as the speech/noise classifi­
cation is accurate. It's best done by the recognizer, since other speech detection algorithms 
can fail in high background noise (see Section 10.6.2). To avoid errors in transitions be­
tween speech and noise, delta and delta-delta can be computed prior to this speech/noise 
mean normalization so that they are unaffected. As shown in Figure 10.30, this algorithm 
has been shown to improve robustness not only to varying channels but also to noise. 
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Fig?re l~.30 Word error rate as a function of SNR (dB) for both no CMN and CMN-2 [SJ. 
White noise was ad_ded at different SNRs and the system was trained with speech with th_e 
same SNR. The Whisper system is used on the 5000-word Wall Street Joumal task using a bi­
gram language model. 
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10.s.s. Real-Time Cepstral Normalization 

cMN requires the complete utterance to compute the cepstral mean; thus, it cannot be used 
in a real-time system, and an approximation needs to be used. In this section we discuss a 
modified version of CMN that can address this problem, as well as a set of techniques called 
RASTA that attempt to do the same thing. 

We can interpret CMN as the operation of subtracting a low-pass filter d[n], where all 
the T coefficients are identical and equal I/ T, which is a high-pass filter with a cutoff fre­
quency w0 that is arbitrarily close to 0. This interpretation indicates that we can implement 
other types of high-pass filters. One that has been found to work well in practice is the ex­
ponential filter. so the cepstral mean x, is a function of time 

(10.136) 

where a is chosen so that the filter has a time constanc7 of at least 5 seconds of speech. 
Other types of filters have been proposed in the literature. In fact, a popular approach 

consists of an UR bandpass filter with the transfer function: 

(10.137) 

which is used in the so-called relative spectral processing or RASTA [32]. As in CMN, the 
high-pass portion of the filter is expected to alleviate the effect of convolutional noise intro­
duced in the channel. The low-pass filtering helps to smooth some of the fast frame-to-frame 
spectral changes present. Empirically, it has been shown that the RAST A filter behaves 
similarly to the real-time implementation of CMN, albeit with a slightly higher error rate. 
Both the RASTA filter and real-time implementations of CMN require the filter to be prop­
erly initialized. Otherwise, the first utterance may use an incorrect cepstral mean. The origi­
nal derivation of RAST A includes a few stages prior to the bandpass filter, and this filter is 
performed on the spectral energies, not the cepstrum. 

10.S.6. The Use of Gaussian Mixture Models 

Algorithms such as spectral subtraction of Section 10.5.1 or the frequency-domain MMSE 
of Section 10.5.2 implicitly assume that different frequencies are uncorrelated from each 
other. Because of that, the spectrum of the enhanced signal may exhibit abrupt changes 
across frequency and not look like spectra of real speech signals. Using the model of the 

'Th • • h If For an expoaen-. e time constant t of a low-pass filler is defined as the value for which the output 15 cut m a • 
Ila] filter of parameter a and sampling race F,, a= ln2/(TF, l • 
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environment of Section l 0.1.3, we can express the clean-speech cepstral vector x as a func­
tion of the observed noisy cepstral vector Y as 

I (1 C"'(d-)")) x==y-b-C n -e 00.138) 

where the noise cepstral vector n is a random vector. The MMSE estimate of x is given by 

iMMSE = E{x I y} = y-b -CE {In ( 1-eC-'<n-yl) I y} (I 0.139) 

where the expectation uses the distribution of n. Solution to Eq. (10. J 39) results in a nonlin­
ear function which can be learned, for example, with a neural network [53]. 

A popular model to attack this problem consists in modeling the probability distribu­
tion of the noisy speech y as a mixture of K Gaussians: 

K-1 K-1 

p(y)= L,P(ylk)P[k]= L,N(y,µk,I:k)P[k] (10.140) 
k=O t~o 

where P[k] is the prior probability of each Gaussian component k. If x and y are jointly 
Gaussian within class k, then p(x I y, k) is also Gaussian [42) with mean: 

(10.141) 

so that the joint distribution of x and y is given by 

K-1 K- 1 

p(x,y) = L,P(X,y i k)P[k] = L,P(X I y,k)p(y I k)P[k] 
k=O k=O 

K-1 
(10.142) 

= I,N(x,C*y+rt,r4)N(y,µk,l:k)P[k] 
k=O 

where r* is called the correction vector, C1c is the rotation matrix, and the matrix f, tells 
us how uncertain we are about the compensation. 

~ maximum likelihood estimate of x maximizes the joint probability in Eq. (J0.l 42)­
Assummg the Gaussians do not overlap very much (as in the FCDCN algorithm [2]}: 

XML= arg~axp(x,y,k) = argmax N(y,µ4,I:k)N(x,Cky+r .. ,r4)P[k] 
le 

(10.143) 
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whose solution is 

(10.144) 

where 

k = argmax N(y,µ*, 1:. )P[kJ 
k 

(I 0.145) 

It is often more robust to compute the MMSE estimate of x (as in the CDCN [2J and 
RATZ [43] algorithms): 

K - 1 K-1 

i.,,,11s£ = E{x I y} = I, p(k I y)E {x I y,k} = L,p(k I y)(C.y + r1) 
k=O k=O 

(10.146) 

as a weighted sum for all mixture components, where the posterior probability p(k I y) is 
given by 

(kl )= p(ylk)P[k] 
p y K-1 

LP(Ylk)P[k] 
k=O 

(10.147) 

where the rotation matrix c. in Eq. (10.144) can be replaced by I with a modest degrada­
tion in performance in return for faster computation (21 J. 

A number of different algorithms [2, 43] have been proposed that vary in how the pa­
rameters µ*, .t*, rk, and r* are estimated. If stereo recordings are available from both the 
clean signal and the noisy signal, then we can estimate µk, 1:. by fitting a mixture Gaussian 
model toy as described in Chapter 3. Then C1 , r1 and r* can be estimated directly by 
linear regression of x and y. The FCDCN algorithm [2, 6] is a variant of this approach when 
it is assumed that 1:* = cr2I, r k = y2I, and c. = I , so that µ* and rt are estimated 
through a VQ procedure and r1 is the average difference (y - x) for vectors y that belong to 
mixture component k. An enhancement is to use the instantaneous SNR of a frame, defined 
as the difference between the log-energy of that frame and the average log-energy of the 
background noise. It is advantageous to use different correction vectors for different instan­
taneous SNR levels. The log-energy can be replaced by the zeroth-order cepstral coefficient 
with little change in recognition accuracy. 
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Often, stereo recordings are not available and we nee~ other means of estimating pa-

ters µ ~ r and r . . CDCN [6] is one such algorithm that has a model of thee rame 1:, .uk , i • t . . . . n-
vironment as described in Section 10.1.3, which defines a nonlinear rela1Jonsh1p between x 
y and the environmental parameters n an~ h for the_ noise _and channel. This method als~ 
uses an MMSE approach where the correcllon vector 1s a weighted average of the correction 
vectors for all classes. An extension of CDCN using a vector Taylor series approximation 
[44] for that nonlinear function has been shown to offe~ improved results. Other methods 
that do not require stereo recordings or a model of the environment are presented in [43]. 

10.6. ENVIRONMENTAL MODEL ADAPTATION 

We describe a number of techniques that achieve compensation by adapting the HMM to the 
noisy conditions. The most straightforward method is to retrain the whole HMM with the 
speech from the new acoustical environment. Another option is to apply standard adaptive 
techniques discussed in Chapter 9 to the case of environment adaptation. We consider a 
model of the environment that allows constrained adaptation methods for more efficient 
adaptation in comparison to the general techniques. 

10.6.1. Retraining on Corrupted Speech 

If there is a mismatch between acoustical environments, it is sensible to retrain the HMM. 
This is done in practice for telephone speech where only telephone speech, and no clean 
high-bandwidth speech, is used in the training phase. 

Unfortunately, training a large-vocabulary speech recognizer requires a very large 
amount of data, which is often not available for a specific noisy condition. For example, it is 
difficult to collect a large amount of training data in a car driving at 50 mph, whereas it is 
much easier to record it at idle speed. Having a small amount of matched-conditions training 
data could be worse than a large amount of mismatched-conditions training data. Often we 
want to adapt our model given a relatively small sample of speech from the new acoustical 
environment. 

One option is to take a noise waveform from the new environment, add it to all the ut­
terances in our database, and retrain the system. If the noise characteristics are known ahead 
of time, this method allows us to adapt the model to the new environment with a relatively 
s~all amount of data from the new environment, yet use a large amount of training data. 
Figure 10.31 shows the benefit of this approach over a system trained on clean speech for 
the case of additive white noise .. If the target acoustical environment also has a differe~t 
channel, we can also filter all the utterances in the training data prior to retraining. This 
method allows us to adapt the model to the new environment with a relatively small amount 
of data from the new environment. 

If the n?ise sampl~ _is available offline, this simple technique can provide good results 
at no cost dunng recognition. Otherwise the noise addition and model retraining would need 
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Figure 10.31 Word error rate_ as a func~ion of the testing data SNR (dB) for Whisper trained 
on clean data an~ a sys~em tramed on _noisy data at the same SNR as the testing set as in Figure 
10.30. White noise at different SNRs is added. 
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10 occur at runtime. This is feasible for speaker-dependent small-vocabulary systems where 
the training data can be kept in memory and where the retraining time can be small, but it is 
generally not feasible for large-vocabulary speaker-independent systems because of memory 
and computational limitations. 

One possibility is to create a number of artificial acoustical environments by corrupt­
ing our clean database with noise samples of varying levels and types, as well as varying 
channels. Then all those wavefonns from multiple acoustical environments can be used in 
training. This is called multistyle training [39], since our training data comes from different 
conditions. Because of the diversity of the training data, the resulting recognizer is more 
robust to varying noise conditions. In Figure 10.32 we see that, though generally the error­
rate curve is above the matched-condition curve, particularly for clean speech, multistyle 
training does not require knowledge of the specific noise level and thus is a viable alterna­
tive to the theoretical lower bound of matched conditions. 

30 
~ 25 - Matched Noise --a, .., 

20 a, 
- Multistyle a: .. 15 e .. 10 w 

"tJ 
5 .. 

0 
~ 0 

5 10 15 20 25 

SNR (dB) 

Figu~e l0.32 Word error rates of multistyle training compared to matche~-n~ise training as a 
functton of the SNR in dB for additive white noise. Whisper is trained as 10 Figure 10.30: Toe 
~rror rate of multistyle training is between 12% (for low SNR) and 2S% (for high S~) hiter 
tn relative terms than that of matched-condition training. Nonetheless, multistyle trainmg oes 
better than a system trained on clean data for all conditions other than clean speech. 
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10.6.2. Model Adaptation 

E • --­D VJ r on men ta I Robustness 

We can also use the standard adapt~tion meth~ds used for speaker adapta~ion, such as MAP 
or MLLR described in Chapter 9. Smee MAP 1s an unSlructured method, it can offer re 1 . . . 'f" SU ts 
similar to those of matched conditions, but it requires a sigm icant amount of adaptar . h b . ton 
data MLLR can achieve reasonable performance wit a out a mmute of speech for m· · . mm 
mismatches [ 41]. For severe mismatches. MLLR also reqmres a large number of transfonn _ 
tions, which, in tum, require a larger amount of adaptation data as discussed in Chapter 9_ a 

Let's analyze the case of a single MLLR transform, where the affine transfonnation • . I f IS 
simply a bias. Jn this case the MLLR transfonn consists on y o a vector h that, as in the 
case of CMN described in Section 10.5.4, can be estimated from a single utterance. Instead 
of estimating h as the average cepstral mean, this method estimates h as the maximum 
likelihood estimate, given a set of sample vectors X = { Xo, x,, • ·, x 7_1} and an HMM model 
A. [48], and it is a version of the EM algorithm where all the vector means are tied together 
(see Algorithm I 0.2). This procedure for estimating the cepstral bias has a very slight reduc­
tion in error rates over CMN, although the improvement is larger for short utterances [48]. 

ALGORITHM 10.2: MLE SIGNAL BIAS REMOVAL 

Step 1: Initialize b <0> = O at iteration J = o 
Step 2: Obtain model Au> by updating the means from m A- to m A- + b U> , for all Gaussians k. 
Step 3: Run recognition with model Au> on the current utterance and determine a state seg• 
mentation 0[t] for each frame t. 
Step 4: Estimate h<1+1> as the vector that maximizes the likelihood, which, using covariance 
matrices :Ek , is given by: 

h U•ll = ( % l:~,1 r % 1:;;',1 (x, - m0,1) (10.148) 

Step 5: If converged, stop; otherwise, increment j and go to Step 2. In practice two iterations 
are often sufficient. 

If both additive noise and linear filtering are applied, the cepstrum for the noise and 
that for most speech frames are affected differently. The speecWnoise mean nonna/ization 
[5] algori~m can_be extended similarly, as shown in Aigorithm 10.3. The idea is to estimate 
a vector n and b , such that all the Gaussians associated to the noise model are shifted by 
ii, and all remaining Gaussians are shifted by ii . 

We can make Eq. (10.150) more efficient by tying all the covariance matrices. This 
transfonns Eq. (10.150) into 

(l0.149) 
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i.e., the difference between the average vector for s eech fr . 
average vector ms for speech frames in the train in f ata an a~e~ 

10 
the utteran~e and the 

m . This is essentially the same equation as in th g ' h d ~tmilarly for the noise frames 
tio~ described in Section I 0.5.4. The differe . e shpeec -noise cepStral mean normaliza-

nce Is t at the speech/n • d" , • . . 
done by the recognizer instead of by a separate class·fi Th' oise iscnmmation 1s 

• . . 1 ier. Is method is m • 
high-background-nmse cond1t1ons where traditional s h/ . . ore accurate in 

. . peec noise classifiers c f ·1 A 
compromise, a codebook with considerably fewer Gauss·a th . an ai • s a 
to estimate ii and ii. 1 ns an a recognizer can be used 

ALGORITHM 10.3: SPEECH/NOISE MEAN NORMALIZATION 

Step 1: Initialize h<01 = 0 , n'01 = 0 at iteration i = o 
Step 2: Obtain mo~el A <i> ~y updating the means of speech Gaussians from 
m* + h<J) , and of noise Gauss1ans from m, to m, + 0 u,. mk to 

Step 3_: Run recognition with model A ti> on the current utterance and determine a state 5 . 
mentallon 0[t] for each frame t. eg 

Step 4: Estimate h<J+'.J and nU+iJ as the vectors that maximize the likelihood for speech 
frames ( t E q, ) and noise frames ( t e q n ), respectively: 

he;"> ~ (,~ :E~,I) _, ,?;; :E~,I ( x, - m.,,) 

/ 1-1 
(j-t-1) _ -I -1 

11 -l,~I:s,,1.1 ,f I:01,1(x,-msr,1) 

(10.150) 

Step 5: lf converged, stop; otherwise, increment j and go to Step 2. 

10.6.3. Parallel Model Combination 

By using the clean-speech models and a noise model, we can approximate the distributions 
obtained by training a HMM with corrupted speech. The memory requirements for the algo­
rithm are then significantly reduced, as the training data is not needed online. Parallel model 
combination (PMC) is a method to obtain the distribution of noisy speech given the distribu­
tion of clean speech and noise as mixture of Gaussians. As discussed in Section 10.1.3, if the 
clean-speech cepstrum follows a Gaussian distribution and the noise cepstrum follows another 
Gaussian distribution, the noisy speech has a distribution that is no longer Gaussian. The PMC 
method nevertheless makes the assumption that the resulting distribution is Gaussian whose 
mean and covariance matrix are the mean and covariance matrix of the resulting non-Gaussian 
distribution. If it is assumed that the distribution of clean speech is a mixture of N Gaussians, 
and the distribution of the noise is a mixture of M Gaussians, the distribution of the noisy 
speech contains NM Gaussians. The feature vector is often composed of the cepstrum, delta 
cepstrum, and delta-delta cepstrum. The model combination can be seen in Figure 10.33. 
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Figure 10.33 Parallel model combination for the case of one-state noise HMM. 

If the mean and covariance matrix of the cepstral noise vector n are given by µ: and 
1::, respectively, we first compute the mean and covariance matrix in the log-spectral do­
main: 

µ~ = c-'µ~ 
I~ =c-11::<c-1)7 

(10.151) 

In the linear domain N =en, the distribution is Iognonnal, whose mean vector µN 
and covariance matrix .I:N can be shown (see Chapter 3) to be given by 

µN[i] = exp{µ~[i]+ .I:~[i,i]/ 2} 
l:N[i,j] = µN [i)µN[jJ(exp{ l:~[i, j]}-1) (10.152) 

with expressions similar to Eqs. (10.151) and (10.152) for the mean and covariance matrix 
ofX. 



Using Lhe model of the environment with no filt . . . 
y . I er is equivalent to b • • 

linear spectral vector given by (see Figure I 0_33) o tam mg a random 

Y==X+N 
. (10.153) 

and, since X and N are mdependent, we can obtain the . . 
mean and covanance matrix of y as 

µy =µx +µ1' 

(10. 154) 

Although the sum of two lognomrnl distributions is n t 1 
normal approximation [26] consists in assuming that y is i° ognorrnl al, t~e popular log-

• & I ognorma . In this case we c 
apply lhe inverse 1onnu ae of Eq. (10.152) to obtain the mean a d . . . an 

I d 
. . n covariance matrix m the 

log-spectra omarn. 

I:1[i "]==In{ 2:y[i,j] + 1.f 
Y '

1 [ ·1 [ ·1 µy l µy J . 

µ~[i] = In µy [i]-_!.. ln ·,r 1:v [i, j] + 1} 
2 _µy[i]µy[j] 

(10.155) 

and finally return to the cepstrum domain applying the inverse of Eq. (10.151): 

µ; =Cµ~ 

r =C:E'cr y y 

(10.156) 

The lognonnal approximation cannot be used directly for the delta and delta-delta cep­
strum. Another variant that can be used in this case and is more accurate than the lognonnal 
approximation is the data-driven parallel model combination (DPMC) [26J, which uses 
Monte Carlo simulation to draw random cepstrum vectors from both the clean-speech HMM 
and noise distribution to create cepstrum of the noisy speech by applying Eqs. (10.20) and 
(10.21) to each sample point. These composite cepstrum vectors are not kept in memory, 
only their means and covariance matrices are, therefore reducing Lhe required memory 
though still requiring a significant amount of computation. The number of vectors drawn 
from the distribution was at least I 00 in [26]. A way of reducing the number of random vec­
tors needed to obtain good Monte Carlo simulations is proposed in [56]. A version of PMC 
using numerical integration, which is very computationally expensive, yielded the best re­
sult~. 

Figure I 0.34 and Figure 10.35 compare the values estimated through the lognonnal 
approximation to the true value, where for simplicity we deal with scalars. Thus x. n, ~nd Y 
repres~nt the log-spectral energies of the clean signal, noise, and noisy signal, respecnvel~, 
for a given frequency. Assuming x and n to be Gaussian with means ':'-x ~nd µ,. and van­
ances a, and er respectively we see Lhat the lognonnal approximation is accurate when 
fue n ' 

standard deviations a and a are small. 
X fl 
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Figure 10.34 Means and standard deviation of noisy log-spectrum y in dB according to Eq. 
(10.165). The distribution of the noise log-spectrum n is Gaussian with mean O dB and stan­
dard deviation 2 dB. The distribution of the clean log-spectrum x is Gaussian, having a stan­
dard deviation of l O dB and a mean varying from -25 to 25 dB. Both the mean and the 
standard deviation of y are more accurate in first-order VTS than in PMC. 
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Figure 10.35 Means and standard deviation of noisy log-spectrum y in dB according to Eq. 
(10.165). The distribution of the noise log-spectrum n is Gaussian with mean O dB and stan­
dard deviation of 2 dB. The distribution of the clean log-spectrum x is Gaussian with a stan­
dard deviation of 5 dB and a mean varying from -25 dB to 25 dB. The mean of y is well 
estimated in both PMC and first-order VTS. The standard deviation of y is more accurate in 
first-order VTS than in PMC. 
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The-model of the acoustical environment described in Section 10.1.3 describes the relation­
ship between the cepstral vectors x, n, and y of the clean speech, noise, and noisy speech, 
respectively: 

y=x+h+g(n-x-h) (10.157) 

where his the cepstrum of the filter, and the nonlinear function g(z) is given by 

(10.158) 

Moreno [44) suggests the use of Taylor series to approximate the nonlinearity in Eq. 
(10.158), though he applies it in the spectral instead of the cepstral domain. We follow that 
approach to compute the mean and covariance matrix of y [4]. 

Assume that x, h, and n are Gaussian random vectors with means µ µ, and µ and .t., , , fl 

covariance matrices .t..,, .t,,, and .t,,, respectively, and furthermore that x, h, and n are 
independent. After algebraic manipulation it can be shown that the Jacobian of Eq. (10.157) 
with respect to x, h, and n evaluated at µ = µ 0 - µx - µh can be expressed as 

where the matrix A is given by 

A=CFC-1 

(10.159) 

(10.160) 

and Fis a diagonal matrix whose elements are given by vector f(µ) , which in turn is given 
by 

f{µ) = le:-' 
l+e 11 

(10.161) 

Using Eq. (10.159) we can then approximate Eq. (10.157) by a first-order Taylor se­
ries expansion around (µn, µx, µh) as 

Y==µ_, +µ,, +g(µ,, -µ,. -µ,,) (10.162) 
+A(x-µ .. ) + A(h-µ,,)+(1-A)(n- µ,.) 

The mean of y, µ ,. , can be obtained from Eq. (10.162) as 
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(10.163) 

and its covariance matrix I,Y by 

(10.164) 

so that even if I,x, I,,,, and I,
11 

are diagonal, I,>, is no longer diagonal. Nonetheless, we can 
assume it to be diagonal, because this way we can transform a clean HMM to a corrupted 
HMM that has the same functional form and use a decoder that has been optimized for di­
agonal covariance matrices. 

It is difficult to visualize how good the approximation is, given the nonlinearity in­
volved. To provide some insight, let' s consider the frequency-domain version of Eqs. 
(10.157) and (10.158) when no filtering is done: 

y = x+ ln(l +exp(n-x )) (10.165) 

where x, n, and y represent the log-spectral energies of the clean signal, noise, and noisy 
signal, respectively, for a given frequency. In Figure 10.34 we show the mean and standard 
deviation of the noisy log-spectral energy y in dB as a function of the mean of the clean log­
spectral energy x with a standard deviation of 10 dB. The log-spectral energy of the noise n 
is Gaussian with mean 0 dB and standard deviation 2 dB. We compare the correct values 
obtained through Monte Carlo simulation (or DPMC) with the values obtained through the 
lognorma1 approximation of Section 10.6.3 and the first-order VTS approximation described 
here. We see that the VTS approximation is more accurate than the lognormal approxima­
tion for the mean and especially for the standard deviation of y, assuming the model of the 
environment described by Eq. (10.165). 

Figure 10.35 is similar to Figure 10.34 except that the standard deviation of the clean 
log-energy x is only 5 dB, a more realistic number in speech recognition systems. In this 
case, both the lognormal approximation and the first-order VTS approximation are good 
estimates of the mean of y, though the standard deviation estimated through the lognonnal 
approximation in PMC is not as good as that obtained through first-order VTS, again assum­
ing the model of the environment described by Eq. (10.165). The overestimate of the vari­
ance in the lognormal approximation might, however, be useful if the model of the 
environment is not accurate. 

To compute the means and covariance matrices of the delta and delta-delta parameters. 
let's take the derivative of the approximation of y in Eq. ( I 0.162) with respect to time: 

cJy,., A ax 
ar ar (I 0. 166) 

so that the delta-cepstrum computed through &c = x -x is related to the derivative 
I 1+2 1-2' 

[28] by 
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(10.167) 

so that 

µA>.= Aµ.1x (10.168) 

and similarly 

2:4y := ,4l;~A7 + (1-A)LM (I -A)7 (10.169) 

where we assumed that h is constant within an utterance, so that flb = o . 
Similarly, for the delta-delta cepstrum, the mean is given by 

µ42>· = Aµ42x (10.170) 

and the covariance matrix by 

I l ""AI., A7 +(I-A)l:., (I-Af 
4 y ... -x ... ·n (10.171) 

where we again assumed that h is constant within an utterance, so that /!!. 2b = O . 
Equations (I 0.163), (10. I 68), and (10.170) resemble the MLLR adaptation formulae 

of Chapter 9 for the means, though in this case the matrix is different for each Gaussian and 
is heavily constrained. 

We are interested in estimating the environmental parameters µ" , µh, and I:" , given 
a set of T observation frames y, . This estimation can be done iteratively using the EM algo­
rithm on Eq. (10.162). If the noise process is stationary, l:611 could be approximated, assum­
ing independence between nr+2 and n,_2 , by IM = 21:". Similarly, l:

4
2

0 
could be 

approximated, assuming independence between rui,+i and &l,_1 , by I:
4

2" = 4I0 • If the 
noise process is not stationary, it is best to estimate I:411 and I:

4
2
0 

from input data directly. 
If the distribution of x is a mixture of N Gaussians, each Gaussian is transformed ac­

cording to the equations above. If the distribution of n is also a mixture of M Gaussians, the 
composite distribution has NM Gaussians. While this increases the number of Gaussians, the 
decoder is still functionally the same as for clean speech. Because normally you do not want 
to alter the number of Gaussians of the system when you do noise adaptation, it is often as­
sumed that n is a single Gaussian. 

10.6.5. Retraining on Compensated Features 

We have discussed adapting the HMM to the new acoustical environment us_ing the s~ndard 
front-end features, in most cases the mel-cepstrum. Section 10.5 dealt with cleanmg the 
noisy feature without retraining the HMMs. It's logical to consider a combination of both, 
where the features are cleaned to remove noise and channel effects and then the HMMs are 
re1ra· d . . . • ..& t Tot's idea is illustrated •ne to take mto account that this processmg stage 1s not peuec • 
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in Figure I 0.36, where we compare the word_ ~rror r~t~ of the ~tandard matched-noise­
condition training with the matched-noise-c_ond1tton tr~mmg_ after 1~ has been compensated 
by a variant of the mixture Gaussian algonthms descnbed m Section I 0.5.6 [2 I]. An im­
provement is obtained by retraining on compensated features, which beats the unprocessed 

matched-condition training. 
The low en-or rates of both curves in Figure I 0.36 are hard to obtain in practice, be­

cause they assume we know exactly what the noise level and type are ahead of time, which 
in general is hard to do. On the other hand, this could be combined with the multistyle train­
ing discussed in Section I 0.6.1 or with a set of clustered models discussed in Chapter 9. 
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Figure 10.36 Word error rates of matched-noise training without feature preprocessing and 
with the SPLICE algorithm [21] as a function of the SNR in dB for additive white noise. 
Whisper is trained as in Figure 10.30. Error rate with the mixture Gaussian model is up to 30% 
lower than that of standard noisy matched conditions for low SNRs while it is about the same 
for high SNRs. 

10.7. MODELING NONSTATIONARY NOISE 

The previous sections deal mostly with stationary noise. In practice, there are many nonsta­
tionary noises that often match a random word in the system's lexicon better than the silence 

model. In this case, the benefit of using speech recognition vanishes quickly. . 
The most typical types of noise present in desktop applications are mouth noise (hp 

smacks, throat clearings, coughs, nasal clearings, heavy breathing, uhms and uhs, etc), com­
puter noise (keyboard typing, microphone adjustment, computer fan, disk head seeking, 
etc.), and office noise (phone rings, paper rustles, shutting door, interfering speakers, etc.). 

~e can ~sea simple method that has been successful in speech recognition [57], as shown 
m Algonthm 10.4. This method consists of adding noise words modeled with HMMs to ab­
sorb these nonstationary noises. 
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In practice, updating the transcription turns out to be important, because human label­
ers often miss short noises that the system can uncover. Since the noise training data are 
often limited in terms of coverage, some noises can be easily matched to short word models, 
such as: if, two. Due to the unique characteristics of noise rejection, we often need to further 
augment confidence measures such as those described in Chapter 9. In practice, we need an 
additional classifier to provide more detailed discrimination between speech and noise. We 
can use a two-level classifier for this purpose. The ratio between the all-speech model score 
(fully connected context-independent phone models) and the all-noise model score (fully 
connected silence and noise phone models) can be used. 

Another approach (55) consists of having an HMM for noise with several states to 
deal with nonstationary noises. The decoder needs to conduct a three-dimensional Viterbi 
search which evaluates at each frame every possible speech state as well as every possible 
noise state to achieve the speech/noise decomposition (see Figure I 0.37). The computational 
complexity of such an approach is very large, though it can handle nonstationary noises 
quite well in theory. 

ALGORITHM 10.4: EXPLICIT NOISE MODELING 

Step 1: Augmenting the vocabulary with noise words (such as ++SMACK++), each composed 
of a single noise phoneme (such as +SMACK+), which are thus modeled with a single HMM. 
These noise words have to be labeled in the transcriptions so that they can be trained. 
Step 2: Training noise models, as well as the other models, using the standard HMM training 
procedure. 
Step 3: Updating the transcription. To do that, convert the transcription into a networ1<, where 
the noise words can be optionally inserted between each word in the original transcription. A 
forced alignment segmentation is then conducted with the current HMM optional noise words 
inserted. The segmentation with the highest likelihood is selected, thus yielding an optimal Iran­
scriplion. 
Step 4: If converged, stop; otherwise go to Step 2. 

~:~ 
Speech 
HMM 

b~~====:s::;:::::==~--\ 

o~-+0--+()-+() 
Observations 

Figure 10.37 Speech noise decomposition and a three-dimensional Viterbi decoder. 
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10.8. HISTORICAL PERSPECTIVE AND FURTHER READING 

. . number of diverse topics that are often described in different fields· 
This chapter contains a . • fil • ' 

. 1 ~ ence covers it all For further readmg on adaptive I tenng, you can check the 
no srng e re1er • . ·ct· d B 

W.dr d Stearns [59] and Haykin [30]. Theodon 1s an . ellanger provide [S4] 
books by 1 ow an . , • [ 6] 

d f adaptive filtenng and Bremmg et al. 1 a good summary of echo 
a goo summary o ' . -
canceling techniques. Lee [38] has a good sumn:iary of mdependent co~ponent analysis for 

bl. d eparation. Deller et al. [20] provide a number of techniques for speech en-
m source s • d · · · 

hancement. Juang [35] and Junqua [37] survey techniques use m 1mprovmg the robustness 
of speech recognition systems to noi~e. Ac~ro [2) compares a number of fe~ture transforma­
tion techniques in the cepstral domam and introduces the model of the environment used in 

this chapter. . . 
Adaptive filtering theory emerged early m the 1900s. 1:1e Wiener and LMS filters 

were derived by Wiener and Widrow in 1919 and 1960, respectively. Norbert Wiener joined 
the MIT faculty in 1919 and made profound contributions to generalized harmonic analysis, 
the famous Wiener-Hopf equation, and the resulting Wiener filter. The LMS algorithm was 
developed by Widrow and his colleagues at Stanford University in the early 1960s. 

From a practical point of view, the use of gradient microphones (Olsen (46)) has 
proven to be one of the more important contributions to increased robustness. Directional 
microphones are commonplace today in most speech recognition systems. 

Boll [ 13 J first suggested the use of spectral subtraction. This has been the cornerstone 
for noise suppression, and many systems nowadays still use a variant of Boll's original algo­
rithm. 

The Cepstral mean nonnalization algorithm was proposed by Atal [8] in 1974, al­
though it wasn't until the early 1990s that it became commonplace in most speech recogni­
tion systems evaluated in the DARPA speech programs (33]. Hennansky proposed PLP [31] 
in 1990. The work of Rich Stern's robustness group at CMU (especially the Ph.D. thesis 
work of Acero [1] and Moreno (43]) and the Ph.D. thesis of Gales [26] also represented ad­
vances in the understanding of the effect of noise in the cepstrum. 

Bell and Sejnowski (10] gave the field of independent component analysis a boost in 
_1995 with their infomax rule. The field of source separation is a promising alternative to 
improve the robustness of speech recognition systems when more than one microphone is 
available. 
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CHAPTER 1 1 

Language Modeling 

Acoustic pattern matching, as discussed in 
Chapter 9, and knowledge about language are equally important in recognizing and under­
s_tanding natural speech. Lexical knowledge (i.e., vocabulary definition and word pronuncia­
llon) is required, as are the syntax and semantics of the language (the rules that detennine 
what sequences of words are grammatically well-formed and meaningful). In addition, 
knowledge of the pragmatics of language (the structure of extended discourse, and what 
people are likely to say in particular contexts) can be important to achieving the goal of spo­
ken language understanding systems. In practical speech recognition, it may be impossible 
to separate the use of these different levels of knowledge, since they are often tightly inte­
grated. 

In this chapter we review the basic concept of Chomsky's fonnal language theory and 
the probabilistic language model. For the formal language model, two things are fundamen-
tal· th • "fi • f th e. _e _grammar and the parsing algorithm. The grammar_ ts a _fonnal spec, teat.Ion° . e 
p nnissible structures for the language. The parsing technique 1s the method of analyzi_ng 
lhe sentence to see if its structure is compliant with the grammar. With the advent of bodies 
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?f text (corpora) that have had their structures hand-annotated, it is now possible to general­
ize the formal grammar to include accurate probabilities. Furthennore, the probabilistic rela­
ti~nship among a sequence of words can be directly derived and modeled from the corpora 
with the so-called stochastic language models, such as n-gram, avoiding the need to create 
broad coverage fonnal grammars. Stochastic language models play a critical role in building 
a working spoken language system, and we discuss a number of important issues associated 
with them. 

11.1. FORMAL LANGUAGE THEORY 

In constructing a syntactic grammar for a language, it is important to consider the generality, 
the selectivity, and the understandability of the grammar. The generality and selectivity ba­
sically detennine the range of sentences the grammar accepts and rejects. The understand­
ability is important, since it is up to the authors of the system to create and maintain the 
grammar. For SLU systems described in Chapter 17, we need to have a grammar that covers 
and generalizes to most of the typical sentences for an application. The system also needs to 
distinguish the kind of sentences for different actions in a given application. Without under­
standability, it is almost impossible to improve a practical SLU system since it typically 
involves a large number of developers to maintain and refine the grammar. 

The most common way ofrepresenting the grammatical structure of a sentence, "Mary 
loves that person, " is by using a tree, as illustrated in Figure 11.1. The node labeled S is the 
parent node of the nodes labeled NP and VP for noun phrase and verb phrase, respectively. 
The VP node is the parent node of node Jl.-for verb. Each leaf is associated with the word 

Rewrite Rules: 

1. s-NPVP 
2. VP-.. VNP 
3. vp ...... AUX VP 
4. NP➔ ARTNPI 
5. NP_,,_ ADJ NP I 
6. NPJ-ADJNPI 
7. NPJ➔ N 
8. NP- NAME 
9. NP-,. PRON 
JO. NAME- Mary 
11. V ..,.. loves 
12. ADJ- that 
I 3. N-;. person 

person 

Figure 11.1 A tree representation ofa sentence and its corresponding grammar. 
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in the sentence to be analyzed. To construct such a tree for _ 
a sentence, we must know the 

structure of the language so that a set of rewrite rules can b d d . 
. 1 . . e use to escn be what tree 

structures aie allowab e. These rules, as illustrated in Figure 11 1 d . . 
d d . . , etermme that a certain 

symbol may be expan e m the tree by a sequence of symbols Th . 
· · h • . • e grammatrcal structure 

helps in determ1111ng I e meaning ol the sentence It tells us th t 1 • 1 . .. ,. • a t iat m l 1e sentence modi-
fies person. Mary loves that person. 

11.1.1. Chomsky Hierarchy 

In Chomsky's formal _language theory [I,_ 14, 15], a grammar is defined as G = ( v, T. P, S). 
where Vand Tare fimte sets of 11on-term111afs and terminals, respectively. v contains all the 
"?n-termi11al_ symbols. We often use upper-case symbols to denote them. In the example 
discussed here, S,_ NP, NP I, VP, NAME, ADJ, N, and V are non-tenninal symbols. The ter­

minal set T contains Mary, loves, that, and person, which are often denoted with tower-case 
symbols. P is a finite set of production (rewrite) rules, as illustrated in the rewrite rules in 
Figure 11.1. Sis a special non-terminal, called the start symbol. 

The language to be analyzed is essentially a string of terminal symbols, such as "Mary 
loves that person." It is produced by applying production rules sequentially to the start sym­
bol. The production rule is of the form a ➔ f3 , where a and f3 are arbitrary strings of 
grammar symbols V and T, and the a must not be empty. In formal language theory, four 
major languages and their associated grammars are hierarchically structured. They are re­
ferred to as the Chomsky hierarchy [I] as defined in Table l l. I. There are four kinds of 
automata that can accept the languages produced by these four types of grammars. Among 
these automata, the finite-state automaton is not only the mathematical device used to im­
plement the regular grammar but also one of the most significant tools in computational lin­
guistics. Variations of automata such as finite-state transducers, hidden Markov models, and 
n-gram models are important examples in spoken language processing. 

These grammatical formulations can be compared according to their generative capac­
ity, i.e., the range that the formalism can cover. While there is evidence that natural lan­
guages are at least weakly context sensitive, the context-sensitive requirements are rare in 
practice. The context-free grammar (CFG) is a very important structure for dealing with 
both machine language and natural language. CFGs are not only powerful enough to de­
scribe most of the structure in spoken language,' but also restrictive enou_gh to have effici~nt 
parsers to analyze natural sentences. Since CFGs offer a good compromise between pa:smg 
efficiency and power in representing the strocture of the language, they have been wrd~ly 
applied to natural language processing. Alternatively, regular grammru:s, as re~resented with 
a finite-state machine, can be applied to more restricted applications. Smee fimt~-state_ gram­
mars are a subset of the more general context-free grammar, we focus our d1scuss1on on 
context-free grammars only, although the parsing algorithm for finite-state grammars can be 
more efficient. 

- -------------
' Th • d' p II dGazdar[54] 

e effort to prove natural languages are not context-free is summanzc 111 u um an • 
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Table 11.1 Chomsky hierarchy and the corresponding machine that accepts the language, 

Types Constraints Automata 
Phrase structure a ➔ fJ . This is the most general Turing machine 
grammar ~rammar. 
Context-sensitive A subset of the phrase structure Linear bounded 
grammar grammar. laJ sjfjl, where I.I indicates automata 

the length of the string. 

Context-free gram- A subset of the context sensitive Push down automata 
mar (CFG) grammar. The production rule is 

A ➔ fJ , where A is a non-terminal. 

This production rule is shown to be 
equivalent to Chomsky normal form: 
A ➔ wand A ➔ BC , where w is a 

tenninal and B, Care non-terminals. 

Regular grammar A subset of the CFG. The production Finite-state auto-
rule is expressed as: A ➔ w mata 
and A ➔ wB. 

As discussed in Section 11.1.2, a parsing algorithm offers a procedure that searches 
through various ways of combining grammatical rules to find a combination that generates a 
tree to illustrate the structure of the input sentence, which is similar to the search problem ia 
speech recognition. The result of the parsing algorithm is a parse tree/ which can be re­
garded as a record of the CFG rules that account for the structure of the sentence. In other 
words, if we parse the sentence, working either top-down from S or bottom-up from each 
word, we automatically derive something that is similar to the tree representation, as illus­
trated in Figure I I. I. 

A push-down automaton is also called a recursive transition network (RTN), which is 
an alternative fonnalism to describe context-free grammars. A transition network consists of 
nodes and labeled arcs. One of the nodes is specified as the initial state S. Starting at the 
initial state, we traverse an arc if the current word in the sentence is in the category on lhe 
arc. If the arc is followed, the current word is updated to the next word. A phrase can be 
parsed if there is a path from the starting node to a pop arc that indicates a complete parse 
for all the words in the phrase. Simple transition networks without recursion are often called 
finite-state machines (FSM). Finite-state machines are equivalent in expressive power to 
regular grammars and, thus, are not powerful enough to describe all languages that can ~ 
described by CFGs. Chapter 12 has a more detailed discussion on RTNs and FSMs used '

0 

speech recognition. 

' Th I . In practice, a e resu t can be more than one parse tree since natural language sentences are often ambiguous. as 
• I ·th • mong thell1, P~mg a ~on m should not only consider all the possible parse trees but also provide a ranking a 

discussed m Chapter 17. 
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11.1.2. Chart Parsing for Context-Free Grammars 

Since Chomsky introduced the notion of context-free grammars - th 1950 . 
· h • · m e s, a vast litera-

ture has ansen on t e parsmg algorithms. Most parsing algorith d 1 . 
. ms were eve oped m com-

puter science to analyze programmmg languages that are not a b' • h 
. . m 1guous m t e way that 

spoken ~anguage 1s [I, 32]. We discuss only the most relevant materials that are fundamental 
to buildmg spoken language systems, namely the chart parser for the cont t fi 

. . . . ex - ree grammar. 
This algonthm has been widely used m state-of-the-art spoken language d t d. 

tems. 
, un ers an mg sys-

11.1.2.1. Top Down or Bottom Up? 

Parsing is a special case of the search problem generally encountered in speech recognition. 

A parsing algorithm offers a procedure that searches through various ways of combining 

grammatical rules to find a combination that generates a tree to describe the structure of the 

input sentence, as illustrated in Figure 11.1. The search procedure can start from the root of 

the tree with the S symbol, attempting to rewrite it into a sequence of tenninal symbols that 

matches the words in the input sentence, which is based on goal-directed search. Alterna­

tively, the search procedure can start from the words in the input sentence and identify a 

word sequence that matches some non-terminal symbol. The bottom-up procedure can be 

repeated with partially parsed symbols until the root of the tree or the start symbol S is iden­

tified. This data-directed search has been widely used in practical SLU systems. 

A top-down approach starts with the S symbol, then searches through different ways to 

rewrite the symbols until the input sentence is generated, or until all possibilities have been 

examined. A grammar is said to accept a sentence if there is a sequence of rules that allow 

us to rewrite the start symbol into the sentence. For the grammar in Figure I I.I, a sequence 

ofrewrite rules can be illustrated as follows: 
s 
➔ NP VP (rewriting S using S➔NP) 

➔NAME VP (rewriting NP using NP➔NAME) 

➔Mary VP (rewriting NAME using NAME➔Mary) 

➔Mary loves that person (rewriting N using N➔person_) . 
Alternatively, we can take a bottom-up approach to start with the words m t~e _mput 

sentence and use the rewrite rules backward to reduce the sequence of symb~ls until 11 ~e­
comes S. The left-hand side of each rule is used to rewrite the symbol on the nght-hand side 

as follows: 
➔NAME loves that person (rewriting Mary using NAME➔Mary) 
➔NAME V that person (rewriting loves using V➔loves) 

➔NP VP 

➔S (rewriting NP using S➔NP VP) 
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A parsing algorithm must systematically explore every possible state that repr 
. . If . k I esents the intermediate node m the parsmg tree. a m1sta e occurs ear y on in choosing th 

1 
that rewrites S, the intennediate parser results can be quite wasteful if the number oferu:: 
becomes large. 

The main difference between top-down and bottom-up parsers is the way the granun 
rules are used. For example, consider the rule NP-+ADJ NP 1. In a top-down approach t:r 
rule is used to identify an NP by looking for the sequence ADJ NP I. Top-down parsing' c/ 
be very predictive. A phrase or a word may be ambiguous in isolation. The top-down ap~ 
proach may prevent some ungrammatical combinations from consideration. It never wastes 
time exploring trees that cannot result in an S. On the other hand, it may predict many dif­
ferent constituents that do not have a match to the input sentence and rebuild large constitu­
ents again and again. For example, when the grammar is left-recursive (i.e., it contains a 
non-terminal category that has a derivation that includes itself anywhere along its leftmost 
branch), the top-down approach can lead a top-down, depth-first left-to-right parser to recur­
sively expand the same non-terminal over again in exactly the same way. This causes an 
infinite expansion of trees. In contrast, a bottom-up parser takes a sequence ADJ NP/ and 
identifies it as an NP according to the rule. The basic operation in bottom-up parsing is to 
take a sequence of symbols and match it to the right-hand side of the rules. It checks the 
input only once, and only builds each constituent exactly once. However, it may build up 
trees that have no hope of leading to S since it never suggests trees that are not at least lo­
cally grounded in the actual input. Since bottom-up parsing is similar to top-down parsing in 
terms of overall performance and is particularly suitable for robust spoken language process­
ing as described in Chapter 17, we use the bottom-up method as our example to understand 
the key concept in the next section. 

11.1.2.2. Bottom-Up Chart Parsing 

As a standard search procedure, the state of the search consists of a symbol list, starting with 
the words in the sentence. Successor states can be generated by exploring all possible ways 
to replace a sequence of symbols that matches the right-hand side of a grammar rule with its 
left-hand side symbol. A simple-minded solution enumerates all the possible matches, lead­
ing to prohibitively expensive computational complexity. To avoid this problem, it is neces­
sary to store partially parsed results of the matching, thereby eliminating duplicate ~ork. 
This is the same technique that has been widely used in dynamic programming, as descn~ed 
in Chapter 8. Since chart parsing does not need to be from left to right, it is more efficient 
than the graph search algorithm discussed in Chapter I 2, which can be used to parse tbe 
input sentence from left to right. 

A data structure, called a chart, is used to allow the parser to store the partial res.ults of 
the matching. The chart data structure maintains not only the records of all the constJ.tUents 
derived from the sentence so far in the parse tree but also the records of rules that have 
matched partially but are still incomplete. These ;re called active arcs. Here, matches arhe 
1 'd d fr h • • b' h resent t e a ways cons1 ere om t e pomt of view of some active constituents, w 1c rep 
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bparts that the input sentence can be divided into according to ti . 1 . su . 1e rewrite ru es Acltve 
nstituents are stored m a data structure called an agenda To fiild •1 co . . . . . • grammar ru es that 

match a stnng mvolvmg the active constituent, we need to identify rules that start with the 
active constituent or rul~s that have already been started by earlier active constituents and 

quire the current constituent to complete the rule or to extend the rule Th b • . re . . . . e as1c operat10n 
ofa chart-based pa~ser mvolves com_bmmg these partially matched records (active arcs) with 
a completed :onst1tuent to fo~n either a. new compl_eted constituent or a new partially 
matched (but mc~mplete) constituent that 1~ an extension of the original partially matched 
constituent. Just hke the gr~ph search algorithm, we can use either a depth-first or breadth­
first search strategy, depend mg on how the agenda is implemented. If we use probabilities or 
other heuristics, we take the best-first strategy discussed in Chapter 12 to select constituents 
from the agenda. The chart-parser process is defined more precisely in Algorithm J 1. l. It is 
possible to combine both top-down and bottom-up. The major difference is how the con­
stituents are used. 

ALGORITHM 11.1: A BOTTOM-UP CHART PARSER 

Step1: Initialization: Define a list called chart to store active arcs, and a list called an agenda 
to store active constituents until they are added to the chart. 
Step 2: Repeat: Repeat Step 2 to 7 until there is no input left. 
Step 3: Push and pop the agenda: If the agenda is empty, look up the interpretations of the 
next word in the input and push them to the agenda. Pop a constituent C from the agenda. If C 
corresponds to position from w; to w1 of the input sentence, we denote it C{i,j]. 
Step 4: Add C to the chart: Insert C[i,j] into the chart. 
Step 5: Add key-marked active arcs to the chart: For each rule in the grammar of the form 
x~c Y, add to the chart an active arc (partially matched constituent) of the form X[i,j]~°CY, 
where O denotes the critical position called the key that indicates that everything before O has 
been seen, but things after O are yet to be matched (incomplete constituent). 
Step 6: Move O forward: For any active arc of the form X{1,j]~ Y ... °C ... Z (everything before 
wI) in the chart, add a new active arc of the form X{1,j] ~ Y ... C0 

... Zto the chart. 
Step 7: Add new constituents to the agenda: For any active arc of the form X[1,/]~Y ... °C, 
add a new constituent of type Xf 1,j] to the agenda. . 
Step 8: Exit: If s-,: 1,n] is in the chart, where n is the length of the input sentence, we can exit 
successfully unless we want to find all possible interpretations of the sentence. The chart may 
contain many S structures covering the entire set of positions. 

Let us look at an example to see how the chart parser parses the sentence Mary loves 
rliat person using the grammar specified in Figure 11.1. We first create the cha~ and agenda 
data structure as illustrated in Figure 11 .2 (a), in which the leaves of the tree-hke char_t data 
Slructure corresponds to the position of each input word. The parent of each b~o_ck m :: 
chart covers from the position of the left child's corresponding starting word position to 
right h'ld' • • Th th t block in the chart covers c I s corresponding ending word pos1t1on. us, e roo 
the whole sentence from the first word Mary to the last word person. The chart parser scans 
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through the input words to match against possible rewrite rules in the grammar For th fi 
. . • e 1rst 

word, th~ rule Name~Ma,y can be matched,_ so 1t 1s added to the agenda according to Step 
3 

in Algorithm I I .1. In Step 4, Name~Ma,y 1s added to the chart from the agenda. After the 
word Mary is processed, we have Name~Ma,y, NP~Name, and S~NP0 VP in the chart 
illustrated in Figure l l.2 (b). NP0 VP in the chart indicates that O has reached the poin~ :~ 
which everything before 0 has been matched (in this case Mary matched NP) but everythin 
after O is yet to be parsed. The completed parsed chart is illustrated in Figure 11.2 (c). g 

A parser may assign one or more parsed structures to the sentence in the language it 
defines. If any sentence is assigned more than one such structure, the grammar is said to be 
ambiguous. Spoken language is, of course, ambiguous by nature.3 For example, we can have 
a sentence like Ma1J1 sold the student bags. It is unclear whether student should be the modi­
fier for bags or whether it means that Mary sold the bags to the student. 

Chart parsers can be fairly efficient simply because the same constituent is never con­
structed more than once. In the worst case, the chart parser builds every possible constituent 
between every possible pair of positions, leading to the worst-case computational complex­
ity of 0( n 3 ), where n is the length of the input sentence. This is still far more efficient than a 
straightforward brute-force search. 

In many practical tasks, we need only a partial parse or shallow parse of the input sen­
tence. You can use cascades of finite-state automata instead of CFGs. Relying on simple 
finite-state automata rather than full parsing makes such systems more efficient, although 
finite-state systems cannot model certain kinds of recursive rules, so that efficiency is traded 
for a certain lack of coverage. 

Name[l,l] ➔ Mary 

Mary loves that person 

(a) The chart is illustrated on the left, and the agenda is on the right. The agenda now has one 
rule in it according to Step 3, since the agenda is empty. 

, Th . .. J,/ , /ol'eS that e 5~.me parse tree can also mean multiple things, so a parse tree itself does not define mean mg. MOT') 

perso11 could be sarcastic and mean something different. 
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~12me➔ Mary 

< NP➔ Namc ~y 
Mary loves 

V[2,2]➔ loves 

that person 

(b) After Mary, the chart now has rules Name-+Mary, NP-+Name, and S-.+NP0 VP. 

(Jame➔ Mary' 
NP➔ Name y 

Mary loves that person 

553 

(c) The chart after the whole sentence is parsed. S➔ NP VP covers the whole sentence, indicating that 
thesenten • ce 1s parsed successfully by the grammar. 

Figure 11.2 An example of a chart parser with the grammar illustrated in Figure 1 l .1 . PartS (a) 
and (b) show the initial chan and agenda to parse the first word; part (c) shows tbe chart after 

lhe sentence is completely parsed. 
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11.2. STOCHASTIC LANGUAGE MODELS 

----­Language Mod 1· e rng 

Stochastic language models (SLM) tak_e_a probabilistic ~iewpoint oflanguage modeling. We 
need to accurately estimate the probab1hty P(W) for a given word sequence W == w w 
In the formal language theory discu~sed in Sectio~ 11.1, P(W) can be regarded as \ ~-~·;,if 
the word sequence is accepted or reJected, respectively, by the grammar. This may be ina _ 
propriate for spoken language systems, since the grammar.itself is unlikely to have a co!. 
plete coverage, not to mention that spoken language 1s often ungrammatical in real 
conversational applications. 

The key goal of SLM is to provide adequate probabilistic information so that likely 
word sequences should have a higher probability. This not only makes speech recognition 
more accurate but also helps to dramatically constrain the search space for speech recogni­
tion (see Chapters 12 and 13). Notice that SLM can have a wide coverage on all the possible 
word sequences, since probabilities are used to differentiate different word sequences. The 
most widely used SLM is the so call n-gram model discussed in this chapter. In fact, the 
CFG can be augmented as the bridge between the n-gram and the formal grammar if we can 
incorporate probabilities into the production rules, as discussed in the next section. 

11.2.1. Probabilistic Context-Free Grammars 

The CFG can be augmented with probability for each production rule. The advantages of 
probabilistic CFGs (PCFGs) lie in their ability to more accurately capture the embedded 
usage structure of spoken language to minimize syntactic ambiguity. The use of probability 
becomes increasingly important to discriminate many competing choices when the number 
of rules is large. 

In the PCFG, we have to address the parallel problems we discussed for HMMs in 
Chapter 8. The recognition problem is concerned with the computation of the probability of 
the start symbol S generating the word sequence W = w1, w2 .... wr, given the grammar G: 

P(S ⇒ WIG) (11.1) 

where ⇒ denotes a derivation sequence consisting of one or more steps. This is equivalent 
to the chart parser augmented with probabilities, as discussed in Section 11.1.2.2. 

The training problem is concerned with determining a set of rules G based on the 
training corpus and estimating the probability of each rule. If the set of rules is fixed, the 
simplest approach to deriving these probabilities is to count the number of times each rule is 
used in a corpus containing parsed sentences. We denote the probability of a rule A ➔ a by 
P(A ➔ alG). For instance, if there are m rules for left-hand side non-tenninal node 

A: A ➔ a 1, A ➔ a 2, •••A ➔ am, we can estimate the probability of these rules as follows: 

(11.2) 

i=l 

where C(.) denotes the number of times each rule is used. 
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When you have hand-annotated corpora, you can use the maximum likelihood estima­
tion as illustrated by Eq. (11.2) to derive the probabilities. When you don't have hand­
annotated corpora, _you ~an extend the EM algorithm (see Chapter 4) to derive these prob­
:1bilities. The algorithm 1s also known as the i11side-outside algorithm. As we discussed in 
Chapter 8, you can develop algorithms similar to the Viterbi algorithm to find the most 
likely parse tree that could have generated the sequence of words P(W) after these probabili­
ties are estimated. 

We can make certain independence assumptions about rule usage. Namely, we assume 
that the probability of a constituent being derived by a rule is independent of how the con­
stituent is used as a subconstituent. For instance, we assume that the probabilities of NP 
rules are the same no matter whether the NP is used for the subject or the object of a verb, 
although the assumptions are not valid in many cases. More specifically, let the word se­
quence W=w1, w2 . ••• wr be generated by a PCFG G, with rules in Chomsky normal form as 
discussed in Section 11 . 1.1: 

(11.3) 

where A,,, and An are two possible non-terminals that expand A; at different locations. The 
probability for these rules must satisfy the following constraint: 

L,P(Ai ➔ Am A,, I G) + L P(A1 ➔ W1 I G) = I, for all i ( 11.4) 
"'•" I 

Equation (II .4) simply means that all non-tenninals can generate either pairs of non­
tenninal symbols or a single terminal symbol, and all these production rules should satisfy 
the probability constraint. Analogous to the HMM forward and backward probabilities dis­
cussed in Chapter 8, we can define the inside and outside probabilities to facilitate the esti­
mation of these probabilities from the training data. 

A non-terminal symbol Ai can generate a sequence of words w i w i +l · •• w1c; we define 
the probability of lnside(j,A; ,k) = P(A; ⇒ w j w j +1 ... w1 I G) as the inside constituent pr~b­
ability, since it assigns a probability to the word sequence inside the constituent. The inside 
probability can be computed recursively. When only one word is emitted, the transition rule 
of the form A; ➔ w m applies. When there is more than one word, rules of the form 
1-i ➔ A.,A. must apply. The inside probability of inside(j, A;, k) can be expressed recur­
sively as follows: 

inside(J,A;,k)= P(A; => wiwi+l· .. w,d 
k-1 

= LLP(A; ➔ AmAn)P(Am ⇒ Wj ... w,)P(An ⇒ W1+1 .. • wk) 

11,m l=j 

le - I =LL P( A1 ➔ A,,, A,, )inside(}, A,,, , [)inside(/+ I, A11 , k) 
n,m l"'- j 

( l 1.5) 
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The inside probability is the sum of the probabilities of all derivations for the seer 
over the span of j to k. One possible derivation of the form can be drawn as a parse ~~: 
shown in Figure 11.3. 

Another useful probability is the outside probability for a non-terminal node A. cov 
, er-

ing w, to w,, in which they can be derived from the start symbol S, as illustrated in Figure 
11.4, together with the rest of the words in the sentence: 

(11.6) 

After the inside probabilities are computed bottom-up, we can compute the outside 
probabilities top-down. For each non-terminal symbol A,, there are one of two possible con­
figurations Am ➔ A,, A; or A111 ➔ A; A,, as illustrated in Figure 11.5. Thus, we need to con­
sider all the possible derivations of these two forms as follows: 

outside(s,A,,t) = P(S => w1 ... ws-i A, w,.1 ... w7) 

%P(Am ➔ A,,Ai)P(An => w, ... wJ_,)P(S=> w, ... w/-J Am w,+J'••Wr)+ l 
=I 

m,,. + t P(Am ➔ A,An)P(A,, => w1• 1 ••• w,)P(S => W1 ••• WJ-l Am w1+l' .. w7 )1 
,~1+1 

(11.7) 

J-1 

LP( Am ➔ An /4 )inside(/, A,,, s - 1 )outside(/, Am ,t) + 
= L l=IT 

m,n + L P(A,,, ➔ A,An)inside(t+l,An,l)outside(s, Am,/) 
/g1+1 

The inside and outside probabilities are used to compute the sentence probability as 
follows: 

P(S => w1 ••• wr) = .I,. inside(s, A;, t)outside(s, A;, t) 
I 

for any s ~ t 

Figure 11.3 Inside probability is computed recursively as sum of all the derivations. 

(11.8) 
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s 

w, 

Figure 11.4 Definition of the outside probability. 

Since outside(!, A;, T) i~ equal to 1 for the starting symbol only, the probability for the 
whole sentence can be conveniently computed using the inside probability alone as 

P(S =>WIG)= inside(!, S, T) (11.9) 

We are interested in the probability that a particular rule, A; ➔ Am A,, is used to cover 
a span ws ... wl' given the sentence and the grammar: 

e(i,m,n,s,t) = P(A, ⇒ w, ... w,,A; ➔ A,,,An IS ⇒ W,G) 

- l IP(A, ➔ An,A,, jG)inside(s,A,,,,k)inside(k+l,An,t)outside(s,A,,t) 
P(S => w I G) k=• 

(11.10) 

These conditional probabilities form the basis of the inside-outside algorithm, which is simi­
lar to the forward-backward algorithm discussed in Chapter 8. We can start with some initial 
probability estimates. For each sentence of training data, we detennine the inside and out­
side probabilities in order to compute, for each production rule, how likely it is that the pro­
duction rule is used as part of the derivation of that sentence. This gives us the number of 
counts for each production rule in each sentence. Summing these counts across sentences 
gives us an estimate of the total number of times each production rule is used to produce the 

s s 

Figure 11.5 Two possible configurations for a non-terminal node A;· 
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sentences in the training corpus. Dividing by the total counts of productions used for e h 
non-terminal gives us a new estimate of the probability of the production in the M~E 
framework. For example, we have: 

T-1 T L L~(i,m,n,s,t) 

P(A- ➔ A A I G) == ___:;s_::;l:.....:1-'=s'-'--+-.c_l ---
1 m n T-1 T (II.Ii) 

LL L~(i,m,n,s,f) 
111,11 s=l l=s-+-l 

In a similar manner, we can estimate P(A; ➔ w,,, I G). It is also possible to Jet the in­
side-outside algorithm fonnulate all the possible grammar production rules so that we can 
select rules with sufficient probability values. If there is no constraint, we may have too 
many greedy symbols that serve as possible non-terminals. In addition, the algorithm is 
guaranteed only to find a local maximum. It is often necessary to use prior knowledge about 
the task and the grammar to impose strong constraints to avoid these two problems. The 
chart parser discussed in Section 11.1.2 can be modified to accommodate PCFGs [29, 45]. 

One problem with the PCFG is that it assumes that the expansion of any one non­
terminal is independent of the expansion of other non-terminals. Thus each PCFG rule prob­
ability is multiplied together without considering the location of the node in the parse tree. 
This is against our intuition since there is a strong tendency toward the context-dependent 
expansion. Another problem is its lack of sensitivity to words, although lexical infonnation 
plays an important role in selecting the correct parsing of an ambiguous prepositional phrase 
attachment. In the PCFG, lexical information can only be represented via the probability of 
pre-terminal nodes, such as verb or noun, to be expanded lexically. You can add lexical de­
pendencies to PCFGs and make PCFG probabilities more sensitive to surrounding syntactic 
structure [6, 11, 19, 31, 45]. 

11.2.2. N-gram Language Models 

As covered earlier, a language model can be formulated as a probability distribution P(W) 
over word strings W that reflects how frequently a string W occurs as a sentence. For ex­
ample, for a language model describing spoken language, we might have P(hi) c: 0.ol, since 
perhaps one out of every hundred sentences a person speaks is hi. On the other hand, we 
would have P(lid gallops Changsha pop) = 0, since it is extremely unlikely anyone would 
utter such a strange string. 

P(W) can be decomposed as 

P(W) == P( w1 , w2 , ... , w n) 

== P(w1 )P(wzlwi)P(w3lw1, Wz ) .. • P(w"lw1' Wz , ... , wn-t) 
II 

== IT P(w;lw1,w2 , ... ,w;_1) 

i=I 

(11.12) 
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where P( IV; I w,, W2 ' ••• , w,_,) is the probab'.lity that w; will follow, given that the word se­
quence w,. w2, .. ·:. "';-1 wa~ presented pr~v1ously. In Eq. (11.12). the choice of IV; thus de­
pends on t!1e e_ntne past history o_f the input. For a vocabulary of size v there are vi-I 
different h1sto~1es and so, to_ specify P( w,-_l 1_11!, W2 • • •• , W;_,) completely, / values would 
have to be estunated. In reality, the probab1lit1es P(w -lw, w 11, ) are · 'bl t . . . . , . • 2, .. •, ;-1 1mposs1 e o 
estl•1113te for even moderate ,-alues of i, smce most h1stones w w ,,, are • . . . 1 , 2 • • • · , ., 1-1 unique or 
have occurred only a few limes. A practical solution to the above problems is to assume that 
P(wil w, , w2 , ... , w1_ 1) depends only on. some equivalence classes. The equivalence class 
can be simply based on the several previous words w,_N+i, w1_N+'.! , ... , w,_1. This leads to 
an II-gram language model. If the word depends on the previous two words, we have a tri­
gram: P( 1111 I w1_2 , w,-_1) .. Simil~rly, ~e can have unigram: P( 111

1 ), or bigram: P( w;I w1_ 1
) 

language models. The trigram 1s parl!cularly powerful, as most words have a strong depend­
ence on the previous two words, and it can be estimated reasonably well with an attainable 
corpus. 

In bigram models, we make the approximation that the probability of a word depends 
only on the identity of the immediately preceding word. To make P(w1 I w1_1) meaningful 
for;= l, we pad the beginning of the sentence with a distinguished token <s>; that is, we 
pretend Wo = <s>. In addition, to make the sum of the probabilities of all strings equal I, it is 
necessary to place a distinguished token <Is> at the end of the sentence. For example, to 
calculate P(Ma,y loves that person) we would take 

P(Mary loves that person)= 
P(M aryl<s> )P( 1 o veslM a1y )P( thatjloves )P(perso11 Ith a t)P( <ls>l,,erson) 

To estimate P( w
1 
I wi-1) , the frequency with which the word w1 occurs given that the 

last word is w . we simply count how often the sequence (w,_., li'1) occurs in some text 1-I • 
and nonnalize the count by the number of times w;_, occurs. 

In general, for a trigram model, the probability of a word de~ends on the two preced­
ing words. The trigram can be estimated by observing the frequencies or counts of the word 
pair C(w;-2, w,_

1
) and triplet C(w,_2 , W;_1, w1) as follows: 

(11.13) 

. 1 d • • corpus For n-gram models, The text available for building a model 1s cal e a trammg • . f E 
th . ·i1 · s of words The estimate o q. e amount of training data used is typically many mi ion . •. f b b·1·-
(I . • 1 b this assignment o pro a 1 1 

1.13) is based on the maximum likelihood pnncip e, ecause h · • d ta of all · . . • b b 'lity to t e tram mg a hes yields the trigram model that assigns the highest pro a 1 
poss·b1 • 1 e tngram_models. ode! as its order. This terminology 

We sometimes refer to the value n of an_ n-gram m dels are an instance. Jn particu-
comes from the area of Markov models, of which n-gram mo 
la M k model of order n-1. r, an n-gram model can be interpreted as a ar ov 
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Consider a small example. Let our training data S be comprised of the three sentences 
John read her book. I read a different book. John r~ad a book by Mu/an . and let us calculate 
P(John read a book) for the maximum likelihood b1gram model. We have 

C(< s >,John)_ 2 
P(Johnl<s>)= C(<s>) - 3 

C(John,read) _ 2 
P(readlJohn)= C(John) - 2 
P(alread)= C(read,a) =~ 

C(read) 3 

P(book I a)= C(a,book) = ..!_ 
C(a) 2 

C(book,<ls >) 2 
P(< Is >I book)= C(book) = 3 
These trigram probabilities help us estimate the probability for the sentence as: 

P(John read a book) 

= P(John I< s >)P(read I John)P(a I read)P(book I a)P(< Is >I book) 

.,. 0.148 

(11.14) 

If these three sentences are all the data we have available to use in training our lan­
guage model, the model is unlikely to generalize well to new sentences. For example, the 
sentence "Mulan read her book" should have a reasonable probability, but the trigram will 
give it a zero probability simply because we do not have a reliable estimate for 
P(reacflMulan ). 

Unlike linguistics, grammaticality is not a strong constraint in the n-gram language 
model. Even though the string is ungrammatical, we may still assign it a high probability if 11 

is small. 

11.3. COMPLEXITY MEASURE OF LANGUAGE MODELS 

Language can be thought of as an infonnation source whose outputs are words W; belonging 
to the vocabulary of the language. The most common metric for evaluating a language 
~~del is the word recognition error rate, which requires the participation of a speech re~og­
mtton syStem. Alternatively, we can measure the probability that the language model assi~s 
to teSt word strings without involving speech recognition systems. This is the derivative 
measure of cross-entropy known as test-set perplexity. 

. The mea~~re of cross-entropy is discussed in Chapter 3. Given a language model_ th: 
assigns probabthty P(W) to a word sequence W, we can derive a compression algonth 

that encodes the text W using - log2 P(W) bits. The cross-entropy H (W) of a model 



~ -m-p:le=xi:ty~M::ea:s:u~re:-:of~LZ:an:g~u:a:g~e~M~o:d~e~ls~------------------
561 

P(w;l"';-n+I "" W;-1) on data W • with a sufficiently long word sequence, can be simply 
approximated as 

I 
H(W)=--log2 P(W) 

N.,,,. (11.15) 

where N w is the length of the text W measured in words. 
The perplexity PP(W) of a language model P(W) is defined as th · 1 f . . . . e rec1proca o the 

(geometric) average probab1hty assigned by the model to each word in the test set w. This 
is a measure, related to cross-entropy, known as test-set perplexity: 

PP(W)=2H(W) 
(11.16) 

The perplexity can be roughly interpreted as the geometric mean of the branching fac­
tor of the text when presented to the language model. The perplexity defined in Eq. (I 1.16) 
has two key paramet~rs:. a langua~~ model and a word sequence. The test-set4 perplexity 
evaluates the generalization capab1hty of the language model. The training-set perplexity 
measures how the language model fits the training data, like the likelihood. It is generally 
true that lower perplexity correlates with better recognition performance. This is because the 
perplexity is essentially a statistically weighted word branching measure on the test set. The 
higher the perplexity, the more branches the speech recognizer needs to consider statisti­
cally. 

While the perplexity [Eqs. (I 1. I 6) and (l l.15)] is easy to calculate for then-gram [Eq. 
(1 l.12)], it is slightly more complicated to compute for a probabilistic CFG. We can first 
parse the word sequence and use Eq. (11.9) to compute P(W) for the test-set perplexity. 
The perplexity can also be applied to nonstochastic models such as CFGs. We can assume 
they have a unifonn distribution in computing P(W). 

A language with higher perplexity means that the number of words branching from a 
previous word is larger on average. In this sense, perplexity is an indication of the complex­
ity of the language if we have an accurate estimate of P(W). For a given language, the dif­
ference between the perplexity of a language model and the true perplexity of the language 
is an indication of the quality of the model. The perplexity of a particular language model 
can change dramatically in terms of the vocabulary size, the number of states of grammar 
rules, and the estimated probabilities. A language model with perplexity X has rough!~ the 
same difficulty as another language model in which every word can be f~ll~wed by _x_ differ­
ent words with equal probabilities. Therefore, in the task of continuous d1~1t r~cogmt10~•- the 
perplexity is 10. Clearly, lower perplexity will generally have less confusion m recogmtlon. 
Typical perplexities yielded by n-gram models on English text range from about 50_ to al­
most 1000 (corresponding to cross-entropies from about 6 to 10 bi_~word), dependmg on 
the type of text. In the task of 5 0OO-word continuous speech recogmtlon for the Wall Street 
J ' d th b. rammar are re-ournal, the test-set perplexities of the trigram grammar an e igram g 

• W • . d and that from the training data to de-
. e often distinguish between the word sequence from the unseen teSt ata 

nve the language model. 
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b b t 128 and l76 respectively.~ In the tasks of 2000-word conversational Air 
ported to e a ou • f d • 

I 
~ t' System (A TIS) the test-set perplexity o the wor tngram model is typi-

Travel n,onna 10n , 
cally less than 20. • f b'J ' Since perplexity does not take into account acous~ic con usa I ity, we eventually have 
to measure speech recognition accuracy. For example, if the vocabulary of a speech recog­
nizer contains the E-set of English alphabet: B, C, D, E'. G, P,and T, we can define a CFG 

th h 1 
perplexity value of 7. Such a low perplexity does not guarantee we will have 

at as a ow . . . • f b'l' f 
good recognition perfonnance, because of the mtnns1c acoustic con usa 1 ity o the E-set. 

11.4. N-GRAM SMOOTHING 

One of the key problems in n-gram modeling is the inherent data sparseness of real training 
data. If the training corpus is not large enough, many actually possible word successions 
may n~t be well observed, leading to many extremely small probabilities. For example, with 
several-million-word collections of English text, more than 50% of trigrams occur only 
once, and more than 80% of trigrams occur less than five times. Smoothing is critical to 
make estimated probabilities robust for unseen data. If we consider the sentence Mu/an read 
a book in the example we discussed in Section 11.2.2, we have: 

di 
i,1 l ) C(Mulan,read) 0 P(rea 1V1U an = _;..,_ ___ --'- = -L C(Mulan, w) 1 

"' 

giving us P(Mulan read a book) = 0. 
Obviously, this is an underestimate for the probability of .. Mu/an read a book" since 

there is some probability that the sentence occurs in some test set. To show why it is impor­
tant to give this probability a nonzero value, we turn to the primary application for language 
models, speech recognition. In speech recognition, if P(W) is zero, the string W will never 
?e considered as a possible transcription, regardless of how unambiguous the acoustic signal 
ts. Thus, w_henever a string W such that P(W) = O occurs during a speech recognition task, 
an error will be made. Assigning all strings a nonzero probability helps prevent errors in 
spe~h rec~gni~on. This is the core issue of smoothing. Smoothing techniques adjust the 
maximum hkehhood estimate of probabilities to produce more robust probabilities for un· 
seen data, although the likelihood for the training data may be hurt slightly. 
. The name s~oo_thing comes from the fact that these techniques tend to make distribu-

tio_n~ _flatter, by adJustmg low probabilities such as zero probabilities upward, and high prob­
abi!Jues downward. Not only do smoothing methods generally prevent zero probabilities, 

·• Some experimental results show that th t . . r ample, French E 
1
. h 

1 1
. e e5t-set perplex1ues for different languages are comparable. ,-or ex 

, ng 1s . ta 1an and Gennan hav b' per cor-
pora. l!alian has a much h' h ~ a igra":1 teSl-set perple11ity in the range of 95 to 133 for newspa h' h 
numbe f ~ . rg er perplexity reduct10n (a factor of 2) from bigram to trigram because of the ig 

r o ,uncuon words. The trigra 1 • . . m perp ex,ty ofltahan 1s among the lowest in these languages [34]. 
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h Y also attempt to improve the accuracy of the model 
but t e as a whole Wh 

b bl.lity is estimated from few counts, smoothing has the pot 1. 1 . • . enever a 
Pro a . en 1a to s1gn1 fie ti • 

the estimation so that 1t has better generalization capability an Y im-prove . . . 
To give an example, one simple smooth mg technique is to pret d h . 

Ore than it actually does, yielding en eac btgram occurs 
0ncem 

_ 1 + C(w,._1, w;) _ 1 + C(wi-1, w,.) 
P(w;lw;-1)- ~ - ~ 

~(l+C(w1_1,w;)) V+ ~C(l1';_1,w,-) (11.17) 

where vis the size of the vocabulary. In prac_tice, vocabularies are typically fixed to be tens 
of thousands of words or less. All words not m th~ vocabulary are mapped 10 a single word, 
usually called the unknown word. Let us reconsider the previous example using this new 
distribution, and let us take our vocabulary V to be the set of all words occurring in the train­
ing data S, so that we have V = 11 (with both <s> and </s> ). 

For the sentence John read a book, we now have 

P(John read a book) 

= P(John I</ s >)P(read I John)P(a I read)P(book I a)P(< Is >I book) 

"'0.00035 

(I 1.18) 

In other words, we estimate that the sentence John read a book occurs about once 
every three thousand sentences. This is more reasonable than the maximum likelihood esti­
mate of0.148 ofEq. (11.14). For the sentence Mu/an read a book, we have 

P(Mulan read a book) 

=P(Mulan I</ s >)P(read I Mulan)P(a I read)P(book I a)P(< Is >I book) 

== 0.000084 

(11.19) 

Again, this is more reasonable than the zero probability assigned by the maximum 
likelihood model. In general, most existing smoothing algorithms can be described with the 
following equation: 

~-,h(w; I w,_n+1 ·•·W;-1) 

=={a(w; I w,_n+1···W;-1) 

r(wl-n+1···w1-1)P.moo1h(W1 I W;-n+2···w,_,) 

if C(w,_n+i ···w,)>O 

if C(w,-n+i···w;)=O 

(11 .20) 

0 T~at is, if an n-gram has a nonzero count we use the distribution a( w,-1 wi-n+1 • •• W;-1 ~. 

w~herwise, we backoff to the lower-order n-gram distribution Psm~!h (wi I ~i-~+2 • :· W;;~~ 
ere the scaling factor y(w. w . ) is chosen to make the cond1tional d1stnbution 

to one W ,-n+J •· · ,-1 b k .« odels 
• e refer to algorithms that fall directly in this framework as ac 011 m • 
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Several other smoothing algorithms are expressed as the linear interpolation of higher­

and lower-order n-gram models as: 

P,,,,00,1,(w, I Wi-nw .. w;-1) 
= A.PML (w, I Wl-n+I .•. W1_1) + (l-1)~moo1I,( w, I Wi-n+2···W1-1) 

(11.21) 

where A is the interpolation weight that depends on w,_n+1 ••• wi-1 • We refer to models of this 

fonn as interpolated models. . . 
The key difference between backoff and mterpolate~ models_ 1s that for the probability 

of n-grams with nonzero counts, interpolated models use mfo~ahon from lower-order dis­
tributions while backoff models do not. In both backoff and interpolated models, lower­
order distributions are used in determining the probability of n-grams with zero counts. 
Now, we discuss several backoff and interpolated smoothing methods. Performance com­
parison of these techniques in real speech recognition applications is discussed in Section 

11.4.4. 

11.4.1. Deleted Interpolation Smoothing 

Consider the case of constructing a bigram model on training data where we have that 
C(enliven you) = 0 and C(en/iven thou) = 0. Then, according to both additive smoothing of 
Eq. (I 1.17), we have P(youlenliven) = P(thoulenliven). However, intuitively we should have 
P(youlenliven) > P(thoulen/iven), because the word you is much more common than the 
word thou in modem English. To capture this behavior, we can interpolate the bigram model 
with a unigram model. A unigram model conditions the probability of a word on no other 
words, and just reflects the frequency of that word in text. We can linearly interpolate a bi­
gram model and a unigram model as follows: 

(11.22) 

where OS AS 1. Because P(youlenliven) = P(thoulenliven)=O while presumably P(you) > 
P(thou), we will have that ~(you I enliven)> P,(thou I enliven) as desired. 

In general, it is useful to interpolate higher-order n-gram models with lower-order n­
gram models, because when there is insufficient data to estimate a probability in the higher­
order model, the lower-order model can often provide useful information. An elegant way of 
perfonning this interpolation is given as follows 

P1 (wi lwi-n+l ••• W;-1) 

=A.,,,-n ♦l,_w,_,P (wdw1-n+l···"'1-1)+(l-A.II' W· )P1(w.1w. +2···W1-1) 
1-,,+1~ . ,-1 , r-n 

(11.23) 

That is, the nth-0rder. smoo~ed model is defined recursively as a linear interpolation 
~etween the nth-order maximum likelihood model and the (n-l)th-order smoothed model. 

0 end the recursion, we can take the smoothed first-order model to be the maximum likeli-
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hood distribution (unigram), or we can take the smoothed zeroth- d d . 
• · • ff fi d p ( I or er mo el to be the uni-

form d1stnbu~10n. iven a ixe_ W; wi-11+1: •• wi-1 } ' it is possible lo search efficient! f◄ 
the interpolatt0n parameters usmg the deleted mterpolation method d' d . Y or 

. h • I , . . iscusse in Chapter 9 
Notice that t e optima 11,,,. ., " is different for different h1'sto . • ·~ ... ,... nes w w For 

example, for a context we have seen thousands of limes a high A .11 b . 1-•+1 "· ,'-1 • 
. • • • . . . . ' wi e suitable, since the 

higher-order d1stnbutton ts very reltable, tor a history that has occu d 1 . . . . rre on y once, a lower X. 
is appropnate. Trammg each parameter it . . independently can b h fi 1. . "·:-•" ..... ,., e arm u , we need an 
enormous amount of data to tram so many mdependent parameters accurate! 0 'b'I 

. · · h ~ · . y. ne posst 1 -
ity rs to d1v1d~ t e "·1•;~,. ...... ,... mto a moderate number of partitions or buckets, constraining 
all ,\.,_ ..... ,., m the same bucket_ to have the same value, thereby reducing the number of 
independent .parameters to b~ estimated. Ideal!~, we should tie together those A,,. .,. that 
we have a pnor reason to believe should have similar values. • .......... ,... 

11.4.2. Backoff S_moothing 

Backoff smoothing is attractive because it is easy to implement for practical speech recogni­
tion systems. The Katz backoff model is the canonical example we discuss in this section. It 
is based on the Good-Turing smoothing principle. 

11.4.2.1. Good-Turing Estimates and Katz Smoothing 

The Good-Turing estimate is a smoothing technique to deal with infrequent n-grams. It is 
not used by itself for n-gram smoothing, because it does not include the combination of 
higher-order models with lower-order models necessary for good performance. However, it 
is used as a tool in several smoothing techniques. The basic idea is to partition n-grams into 
groups depending on their frequency (i.e. how many time the n-grams appear in the training 
data) such that the parameter can be smoothed based on n-gram frequency. 

The Good-Turing estimate states that for any n-gram that occurs r times, we should 
pretend that it occurs r • times as follows: 

(11.24} 

w~ere n, is the number of n-grams that occur exactly r times in _the training data. To convert 
thts count to a probability, we just nonnalize: for an n-gram a with r counts, we take 

( 11.25} 

~ -
.. .. ~ • N • ual to the 

where N == L n,r •. Notice that N = I,n,r = L (r + l)nr+I = ~ n,r' 1.e., IS eq 
r=O r=O r=O 

original number of counts in the distribution [28]. 



566 
Language Modeling 

. d the intuitions of the Good-Turing estimate by adding the 
Katz smoothing exlen s &] . 
. . . h d models with lower-order models [3 - Take the btgram as our 

combmauon of h1g er-or er • • fi 
1 . gested using the Good-Turing estimate or nonzero counts as 

example, Katz smoot 11ng sug 
follows: 

( d r ifr>O 
c· ( w,_, w,) == l.;( w,_, )P( W;) ifr=O 

(11.26) 

h d • xi·mately equal to r• Ir. That is, all bigrams with a nonzero count r are w ere , 1s appro . . . 
d

. d d"ng to a discount ratio d which tmphes that the counts subtracted from 1scounte accor 1 r, . . 
the nonzero counts are distributed among the zero-count b1grams a~cordmg to the next 
lower-order distribution, e.g., the unigram mode~. The valu~ a( w,_, ) 1s chosen to equalize 
the total number of counts in the distribution, 1.e., L ... , C ( w,_, w, ~ = L,.; C: ( w1_ 1 w1) • The 
appropriate value for a(w,_1) is computed so that the smoothed btgram satisfies the prob-

ability constraint: 

(11.27) 

To calculate P • ( wil w,-_1) from the corrected count, we just nonnalize: 

( 11.28) 

In Katz implementation, the d, are calculated as follows: large counts are taken to be 
reliable, so they are not discounted. In particular, Katz takes dr = 1 for all r > k for some k, 
say kin the range of 5 to 8. The discount ratios for the lower counts r ~ k are derived from 
the Good-Turing estimate applied to the global bigram distribution; that is, n, in Eq. (1 I .24) 
denotes the total number of bigrams that occur exactly r times in the training data. These d, 
are chosen such that 

• the resulting discounts are proportional to the discounts predicted by the 
Good-Turing estimate, and 

• the total number of counts discounted in the global bigram distribution is 
equal to the total number of counts that should be assigned to bigrams with 
zero counts according to the Good-Turing estimate. 

The first constraint corresponds to the following equation: 
. 

r 
d, =µ­

r 
(11.29) 
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"'or 1• e {l ... k} with some constant µ . The Good Tu • . 
1• ' - rmg estimate pred' ts h 
n1

ass assigned to bigrams with zero counts is n1 ic t at the total 
no ;-= n, ' and the second constraint corre-

sponds to the equation o 

k 

~n,.(1-d,.)r=n1 

r=l 

Based on Eq. ( 11 .30), the unique solution is given by: 

111 
d, = --( k-+-1 )-"-nk_+_I _ 

n1 

(11.30) 

(11.31) 

Katz smoothing for higher-order 11-gram models is defined analogously. The Katz n­
gram backoff model is defined in tem1s of the Katz (n-1 )-gram model. To end the recursion, 
the Katz unigram model is taken to be the maximum likelihood unigram model. It is usually 
necessary to smooth n, when using the Good-Turing estimate, e.g., for those n, that are 
very low. However, in Katz smoothing this is not essential because the Good-Turing esti­
mate is used only for small counts r<=k, and n, is generally fairly high for these values of r. 
The procedure of Katz smoothing can be summarized as in Algorithm 11.2. 

In fact, the Katz backoff model can be expressed in terms of the interpolated model 
defined in Eq. ( 11.23 ), in which the interpolation weight is obtained via Eq. (I 1.26) and 
( 11.27). 

ALGORITHM 11.2: KATZ SMOOTHING 

{

C( wH w,) IC( w,_1) 

PK.,: ( W; I w,_1) = d, C( w1_ 1 w,) IC( W;_1) 

a(w,_1 )P(w;) 

• 
r (k + ])nk+I 

ifr >k 

if k ~ r > 0 

ifr = 0 

where d == r n1 
, 1- (k+l)nk+l 

and a( w;_,) = 1 _·~ P(w.) 
L... M',, r >0 I 

n, 
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11.4.2.2. Alternative Backoff Models 

In a similar manner to the Katz backoff model, there are other ways to discount the b . 
't F • t b I t d • • • I pro ab11-1 y mass. or ms ance, a so u e zscountmg mvo ves su~tractin~ a fixed discount D <== 1 
from each nonzero count. _If we express the absolute d1scountmg in term of inte 0 
models, we have the following: rp lated 

(11.32) 

To make this distribution sum to l, we nonnalize it to determine J., . Absol t 
disc_ount~ng is explai;1ed with the Good-Turing estimate. Empirically ;{;;;-'~~~~age Go~d~ 
Turmg discount r - r associated with n-grams of larger counts (rover 3) is largely constant 
over r. 

Consider building a bigram model on data where there exists a word that is very com­
mon, say Francisco, that occurs only after a single word, say San. Since C(Francisco) is 
high, the unigram probability P(Francisco) will be high, and an algorithm such as absolute 
discounting or Katz smoothing assigns a relatively high probability to occurrence of the 
word Francisco after novel bigram histories. However, intuitively this probability should not 
be high, since in the training data the word Francisco follows only a single history. That is, 
perhaps Francisco should receive a low unigram probability, because the only time the word 
occurs is when the last word is San, in which case the bigram probability models its prob­
ability well. 

Extending this line of reasoning, perhaps the unigram probability used should not be 
proportional to the number of occurrences of a word, but instead to the number of different 
words that it follows. To give an intuitive argument, imagine traversing the training data 
sequentially and building a bigram model on the preceding data to predict the current word. 
Then, whenever the current bigram does not occur in the preceding data, the unigram prob­
ability becomes a large factor in the current bigram probability. If we assign a count to the 
corresponding unigram whenever such an event occurs, then the number of counts assigned 
to each unigram is simply the number of different words that it follows. In Kneser-Ney 
smoothing [40], the lower-order n-gram is not proportional to the number of occurrences of 
a word, but instead to the number of different words that it follows. We summarize the Kne-
ser-Ney backoff model in Algorithm 11.3. . 

Kneser-Ney smoothing is an extension of other backoff models. Most of the previ~us 
models used the lower-order n-grams trained with ML estimation. Kneser-Ney smoorbmg 
instead considers a lower-order distribution as a significant factor in the combined model 
such that they are optimized together with other parameters. To derive the formula, more 
generally, we express it in terms of the interpolated model specified in Eq. (11.23) as: 
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( 11.33) 

To make this distribution sum to I, we have: 

1-i .. ;_ ... ";-1 = '° C("' .,, ) C( w,_,,.1 ••• w1-1 •) 
"-lw " 1-n+l·• • '"I 

I 

D 
( 11.34) 

where C{l~,-•w··w(_, •) is the numb~r of unique words that follow the history 

IV;-n+i ••• w;_1• This equation enables us to mterpolate the lower-order distribution with all 

words, not just with words that have zero counts in the higher-order distribution. 

ALGORITHM 11.3: KNESER-NEY BJGRAM SMOOTHING 

l·max{C(wHw,)-D,O} ifC( 
w1_1w1)> 0 

PKN(w; I w,_1) = ·1 C(w;-1) 

_a(w1_,)Pm(w;) otherwise 

where PKN ( w,) = C( •w;) IL C( •w,) , C( •w,) is the number of unique words preceding w,. 

a(wH) is chosen to make the distribution sum to 1 so that we have: 

1_ ~ max{C(w;-iw,)-D,O} 
"-' .. , ,cc"'r-1•, >>o C(w. ) 

a(w )= i-1 

1-1 1-~ P. (w) 
"-' ..-,.C(11•r-1•·, )>0 KN I 

Now, take the bigram case as an example. We need to find a unigram distribution 

PKN (w;) such that the marginal of the bigram smoothed distributions should match the 

marginal of the training data: 

{11.35) 

For P (w;_1), we simply take the distribution found in the training data 

(11.36) 



570 Language Modeling 

We substitute Eq. (11.33) in Eq. {11.35). For the bigram case, we have: 

C(l11;) 

_ ~ C( )[max{C(w,_1w;)-D,O} D ,r,( )P. ( )] 
- ~K' w,_, ~ + ~ "-- w,-1• KS w, 

.-1 ~ ... ,C(wHw,) ~,r, C(w,_1111,) 

~ C(w; 1w1)-D ~ D 
= ~ C(w;_1) - + ~C(w;_1) C( )C(w,_1•)P,.,v(w,- ) 

" . ·c (11· w 1>0 C( w1_1 ) w ~• w,_, ,-4 . ,-1 , ,-, 

(11.37) 

Solving the equation, we get 

(11.38) 

... , 

which can be generalized to higher-order models: 

(11.39) 

.. , 
where C(•w1_,,+2 ... w1) is the number of different words that precede w,_n+2 ... w,.. 

In practice, instead of using a single discount D for all nonzero counts as in Kneser­
Ney smoothing, we can have a number of different parameters (D;) that depend on the range 
of counts: 

Pw(w, I W;-11+1· .. w,_,) 

C(w1-n+1 ··•wi>-D(C(wl-n+l ... w,. )) =-----==-----'-'---+ 
L,M,, C(w1-n+1· .. w;) 

(11.40) 

+r(wi-n+l'"'w/-1)PK.._.(w1 I w,_n+2 .. ,W,-_1) 

This modification is motivated by evidence that the ideal average discount for n-grams 
with one or two counts is substantially different from the ideal average discount for n-grams 
with higher counts. 

11.4.3. Class N-grams 

As discussed in Chapter 2, we can define classes for words that exhibit similar semantic or 
grammatical behavior. This is another effective way to handle the data sparsity problem. 
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based language models have been shown to be effective fior 'd d . . . Class· d d . rap1 a aptat1on training 
rnall data sets, and re uce memory requirements for real-time speech 1. . ' 

on s . • f app 1cat1ons. 
For any given assignment o a word w; to class c there may b 

, , e many-to-many map-
. gs e g a word w,- may belong to more than one class and a class c . pm , • ·• • . . ' ; may contam more 

One word. For the sake of s1mphc1ty, assume that a word w. can b • 
1 than , e unique y mapped to 

only one class C;. Then-gram model can be computed based on the previous n-1 classes: 

(11.41) 

where P(w,-lc,-) denotes the probability o~ :word w,. given class c, in the current position, 
and P(c;!c,-_n+I ••• c1_1) denotes the pr_obab1hty of class c,- given the class history. With such 
a model, we can learn ~he ~lass mappmg W-k from either a training text or task knowledge 
we have about the apphcat1on. In general, we can express the class trigram as: 

P(W)= 2 IT P(w; lc;)P(c, /c;-i_ci-1) 
c1 ... t 11 

I 
(11.42) 

If the classes are nonoverlapping, i.e. a word may belong to only one class, then Eq. 
(11.42) can be simplified as: 

(11.43) 

lfwe have the mapping function defined, we can easily compute the class n-gram. We 
can estimate the empirical frequency of each word C(w,-), and of each class C(c1). We can 
also compute the empirical frequency that a word from one class will be followed immedi­
ately by a word from another C(c,._1c,-). As a typical example, the bigram probability of a 
word given the prior word (class) can be estimated as 

(I 1.44) 

For general-purpose large vocabulary dictation applications, class-based n-grams have 
not significantly improved recognition accuracy. They are mainly used as a bac~o~ model 
10 ~omplement the lower-order n-grams for better smoothing. Nevertheless, for hmite_d do­
mam speech recognition, the class-based n-gram is very helpful as the class can efficie~tly 
encode semantic information for improved key word spotting and speech underStaodmg 
accuracy. 

ll,4•3.1. Rule~Based Classes 

There a d th yntactic-semantic in-
r re a number of ways to cluster words together base on e s 
1orrn f f h can be gen-a ton that exists for the language and the task. For example, part-o -speec 
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erally used to produce a smaJl number of classes although this may lead to signifi . 
creased perplexity. Alternatively, if we have domain knowledge, it is often advan;cant)y in­

cluster together words that have a similar semantic functional role. For example i;geous to 
b "ld • I ' • I • ' • ' we need to u1 a conversat1ona system ,or air trave m,ormat1on systems, we can group th 

of different airlines such as United Airlines, KLM, and Air China, into a broad az·ri· e n,ame 
. . . me c ass 

We can do the same thmg for the names of different airports such as JFK, Narita • 
Heathrow, the names of different cities like Beijing, Piusburgh, and Moscow and ' and 
~uch a~ approach. is particularly powerful, sin~e the _amount of training data is

1 

alway:
0

1:~ 
Jted. With generaJ1zed broad classes of semantically interpretable meaning, it is easy to add 
a new airline such as Redmond Air into the classes if there is indeed a start-up airline named 
Redmond Air that the system has to incorporate. The system is now able to assign a reason­
able probability to a sentence like "Show me all flights of Redmond Air from Seattle to Bos­
ton" in a similar manner as "Show me all flights of United Airlines from Seattle to Boston." 
We only need to estimate the probability of Redmond Air, given the airline class c

1
. We can 

use the existing class n-gram model that contains the broad structure of the air travel infor­
mation system as it is. 

Without such a broad interpretable class, it would be extremely difficult to deal with 
new names the system needs to handle, although these new names can always be mapped to 
the special class of the unknown word or proper noun classes. For these new words, we can 
alternatively map them into a word that has a similar syntactic and semantic role. Thus, the 
new word inherits all the possible word trigram relationships that may be very similar to 
those of the existing word observed with the training data. 

11.4.3.2. Data-driven Classes 

For a general-purpose dictation application, it is impractical to derive functional classes in 
the same manner as a domain-specific conversational system that focuses on a narrow task. 
Instead, data-driven clustering algorithms have been used to generalize the concept of word 

similarities, which is in fact a search procedure to find a class label for each word with a pre­
defined objective function. The set of words with the same class label is called a cluster. We 
can use the maximum likelihood criterion as the objective function for a given training cor­
pus and a given number of classes, which is equivalent to minimizing the perplexity ~o~ _!he 

• • h d be m1t1al· trammg corpus. Once again, the EM algorithm can be used here. Eac wor can 
ized to a random cluster (class label). At each iteration, every word is moved to the class lhat 
produces the model with minimum perplexity [9, 48]. The perplexity modifications can be 
calculated independently, so that each word is evaluated as if all other word classes ~ere 
held fixed. The algorithm converges when no single word can be moved to another class ma 
way that reduces the perplexity of the clustered n-gram model. d · 

0 • 1 ki • • s discusse in ne specia nd of class n-gram models is based on the dec1s1on tree a 
Chapter 4• We can use it to create equivalent classes for words in the history, so that can we 
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have a compact Jong-dist~nce 11-gr~m language model (2]. The sequential decomposition, as 
expressed in Eq. ( 11.12). 1s approximated as: 

IT II 

P(W) = IT P(wi I£( W1, 11'2, ... , 11';-1)} = rr P(w, I E(h)} (l l.45) 
i=I i=I 

where E(h) denotes a many-to-one mapping function that groups word histories h into some 
equivalence classes. It is important to have a scheme that can provide adequate infonnation 
about the history so it can serve as a basis for prediction. In addition, it must yield a set of 
classes that can be reliably estimated. The decision tree method uses entropy as a criterion in 
developing the equivalence classes that can effectively incorporate long-distance informa­
tion. By asking a number of questions associated with each node, the decision tree can clas­
sify the history into a small number of equivalence classes. Each leaf of the tree, thus, has 
the probability P(w11E(w1 ... w,_, )) that is derived according to the number of times the 
word w; is found in the leaf. The selection of questions in building the tree can be infinite. 
We can consider not only the syntactic structure, but also semantic meaning to derive per­
missible questions from which the entropy criterion would choose. A full-fledged question 
set that is based on detailed analysis of the history is beyond the limit of our current comput­
ing resources. As such, we often use the membership question to check each word in the 
history. 

11.4.4. Performance of N-gram Smoothing 

The perfonnance of various smoothing algorithms depends on factors such as the training­
set sizes. There is a strong correlation between the test-set perplexity and word error rate. 
Smoothing algorithms leading to lower perplexity generally result in a lower word error rate. 
Among all the methods discussed here, the Kneser-Ney method slightly outperforms other 
algorithms over a wide range of training-set sizes and corpora, and for both bigram and tri­
gram models. Albeit the difference is not large, the good performance of the Kneser-Ney 
smoothing is due to the modified backoff distributions. The Katz algorithms and deleted 
interpolation smoothing generally yield the next best performance. All these three smooth­
ing algorithms perform significantly better than the n-gram model without any smoothing. 
The deleted interpolation algorithm perfonns slightly better than the Katz method in sparse 
data situations, and the reverse is true when data are plentiful. Katz's algorithm is particu­
larly good at smoothing larger counts; these counts are more prevalent in larger data sets . 

Class n-grams offer different kind of smoothing. While clustered n-gram models ofte? 
?ffer no significant test-set perplexity reduction in comparison to the word n-~ram model, it 
15 beneficial to smooth the word n-gram model via either backoff or interpolation meth0ds. 
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For example, the decision-tree based long-distance class language model does 
· d h • • -1 • • . not of. fer significantly improve speec recogmhon accuracy unti 1t IS interpolated with th 

. . d • 'fi I d 1 . e Word tngram. They are effective as a omam-spec1 IC anguage mo e 1f the class can acco 
. . c. . mmo-

date domain-specific 1111om1at1011. 
Smoothing is a fundamental technique for statistical modeling, important not on! fi 

language mo~eling but for many other applications a: °"'.ell. Whenever data sparsity rs;; 
issue, smoothmg can help performance, and data sparsity IS almost always an issue in stati _ 
tical modeling. In the extreme case, where there is so much training data that all paramete:s 
can be accurately trained without smoothing, you can almost always expand the model, such 
as by moving to a higher-order n-gram model, to achieve improved perfomiance. With more 
parameters, data sparsity becomes an issue again, but a proper smoothing model is usually 
more accurate than the original model. Thus, no matter how much data you have, smoothing 
can almost always help perfonnance, and for a relatively small effort. 

11.5. ADAPTIVE LANGUAGE MODELS 

Dynamic adjustment of the language model parameter, such as n-gram probabilities, vo­
cabulary size, and the choice of words in the vocabulary, is important, since the topic of 
conversation is highly nonstationary [4, 33, 37, 41, 46). For example, in a typical dictation 
application, a particular set of words in the vocabulary may suddenly burst forth and then 
become dormant later, based on the current conversation. Because the topic of the conversa­
tion may change from time to time, the language model should be dramatically different 
based on the topic of the conversation. We discuss several adaptive techniques that can im­
prove the quality of the language model based on the real usage of the application. 

11.5.1. Cache Language Models 

To adjust word frequencies observed in the current conversation, we can use a dynamic 
cache language model [ 41]. The basic idea is to accumulate word 12-grams dictated so far in 
the current document and use these to create a local dynamic n-gram model such as bigram 
Pcachc ( W; I wH). Because of limited data and nonstationary nature, we should use a lower­
order language model that is no higher than a trigram model P 1 (w -1 w,- ? w,-_1), which can 

. . cac 1e 1 - - II 
b~ interpolated with the dynamic bigrarn and unigram. Empirically, we need to no~~ Y 
give a high weight to the unigram cache model because it is better trained with the limited 
data in the cache. ' 

With the cache trigram, we interpolate it with the static n-gram model 
p$ ( w;I wi-n+I • .. W;-1) • The interpolation weight can be made to vary with the size of the 
cache. 

P.:a<h<' ( W; I wl-11+1 • •• w,_, ) 

=AJ~,(w;lw,_,.+1· ··w,_,)+(l-A)P (w. !w w ) 
' t.: L"t1c/k 1 I /-2 /-I 

(I 1.46) 



Adaptive Language Models 575 

The cache model is desirable in practice because of its impressive empirical perform­
ance improvement. In a dictation application, we often encounter new words that are not in 
the static vocabulary. The same words also tend to be repeated in the same a1ticle. The cache 
model can address this problem effectively by adjusting the parameters continually as rec­
ognition and correction proceed for incrementally improved performance. A noticeable 
benefit is thal' we can better predict words belonging to fixed phrases such as Windows ;vr 
and Bill Gates. 

11.s.2. Topic-Adaptive Models 

The topic can change over time. Such topic or style infonnation plays a critical role in im­
proving the quality of the static language model. For example, the prediction of whether the 
word following the phrase the operating is ~J,stem or table can be improved substantially by 
knowing whether the topic of discussion is related to computing or medicine. 

Domain or topic-clustered language models split the language model training data ac­
cording to topic. The training data may be divided using the known category information or 
using automatic clustering. In addition, a given segment of the data may be assigned to mul­
tiple topics. A topic-dependent language model is then built from each cluster of the training 
data. Topic language models are combined using linear interpolation or other methods such 
as maximum entropy techniques discussed in Section 11.5.3. 

We can avoid any pre-defined clustering or segmentation of the training data. The rea­
son is that the best clustering may become apparent only when the current topic of discus­
sion is revealed. For example, when the topic is hand-injury to baseball player, the pre­
segmented clusters of topic baseball & hand-injuries may have to be combined. This leads 
to a union of the two clusters, whereas the ideal dataset is obtained by the intersection of 
these clusters. In general, various combinations of topics lead to a combinatorial explosion 
in the number of compound topics, and it appears to be a difficult task to anticipate all the 
needed combinations beforehand. 

We base our determination of the most suitable language model data to build a model 
upon the particular history of a given document. For example, we can use it as a query 
against the entire training database of documents using information retrieval techniques 
[57]. The documents in the database can be ranked by relevance to the query. The most rele­
vant documents are then selected as the adaptation set for the topic-dependent language 
model. The process can be repeated as the document is updated. . 

There are two major steps we need to consider here. The first involves using the av~• I­
able document history to retrieve similar documents from the database. The second cons1~ts 
of using the similar document set retrieved in the first step to adapt the general or topic­
independent language model. Available document history depends upon the desi~ and the 
requirements of the recognition system. If the recognition system is designed for hve-mode 
application, where the recognition results must be presented to the user with a small delay, 
the available document history will be the history of the document user created so far •. On 
the other hand, in a recognition system designed for batch operation, the amount of ttme 
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taken by the system to recognize speech is of little consequence to the user. In the batch 
mode, therefore, a multi-pass recognition system can be used, and the document history will 
be the recognizer transcript produced in the current pass. 

The well-known information retrieval measure called TFIDF can be used to locate 
similar documents in the training database [57]. The term frequency (TF) tfiJ is defined as 
the frequency of the jth term in the document D;, the unigram count of the term J in the 
document D1. The inverse document frequency (IDF) id/1 is defined as the frequency of the 
jth tem1 over the entire database of documents, which can be computed as: 

Total number of documents 
idfJ = . . . 

Number of documents contammg term; 
(11.47) 

The combined TF-IDF measure is defined as: 

TFJDFiJ = tfiJ log(id/;) (11.48) 

The combination of TF and IDF can help to retrieve similar documents. It highlights 
words of particular interest to the query (via TF), while de-emphasizing common words that 
appear across different documents (via IDF). Each document including the query itself, can 
be represented by the TFIDF vector. Each element of the vector is the TFIDF value that cor­
responds to a word (or a term) in the vocabulary. Similarity between the two documents is 
then defined to be the cosine of the angle between the corresponding vectors. Therefore, we 
have: 

S. ., . (D D ) Lk tfidf.1 * tfid~A 
mu anty i 1 = 1::::========="""========= 

• -J'Ik (tfid/;A )2 * Lk (tfidfi.,Y 
(11.49) 

All the documents in the training database are ranked by the decreasing similarity be­
tween the document and the history of the current document dictated so far, or by a topic of 
particular interest to the user. The most similar documents are selected as the adaptation set 
for the topic-adaptive ianguage model [46]. 

11.5.3. Maximum Entropy Models 

The language model we have discussed so far combines different n-gram models via linear 
interpolation. A different way to combine sources is the maximum entropy approach. It con• 
structs a single model that attempts to capture all the infonnation provided by the various 
knowle?ge sources. Each such knowledge source is reformulated as a set of constraints ~at 
t~e d~srred distribution should satisfy. These constraints can be, for example, marginal dis· 
tnbuhons of the combined model. Their intersection, if not empty, should contain a set of 
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Probability functions that are consistent with these separate knowledg 
O 

h . e sources. nee t e 
desired knowledge sources have been incorporated we make no oth . b . . . , er assumption a out 
other constraints, which leads to c_hoosmg the flattest of the remaining possibilities, the one 
with the highest entropy. The max11num entropy principle can be stated as follows: 

• Reformul_ate different infonnation sources as constraints to be satisfied by the 
target estimate. 

• Among all probability distributions that satisfy these constraints, choose the 
one that has the highest entropy. 

Given a general event space {X}. let P(X) denote the combined probability function. 
Each constraint is associated with a characteristic function of a subset of the sample space, 
J;(X). The constraint can be written as: 

L P(X)fi (X) = £ 1 (11.50) 
X 

where E; is the corresponding desired expectation for /,-(X), typically representing the re­
quired marginal probability of P(X). For example, to derive a word trigram model, we can 
reformulate Eq. (11.50) so that constraints are introduced for unigram, bigram, and trigram 
probabilities. These constraints are usually set only where marginal probabilities can be es­
timated from a corpus. For example, the unigram constraint can be expressed as 

{
I if w::a:w1 /, (w)= 

"I O otherwise 
(11.51) 

The desired value Ew, can be the empirical expectation in the training 

data, L fw, (w)/ N, and the associated constraint is 
Mf=tn1inlng d11ta 

LP(h) LP(w I h)J...
1 
(w) == E..,. 

h ,. 

(11.52) 

where h is the word history preceding word w. b b·t·ty fu 
. . • 11 fr me other known pro a I t nc-We can choose P(X) to diverge mm1ma Y om so 

lion Q(X), that is, to minimize the divergence function: 

,L P(X) log P(X) 
X Q(X) 

(11.53) 

. . 'b • th divergence is equal to the nega-
. When Q(X) is chosen as the uniform distn utton~ e fu ction leads to maximiz-

hve of entropy with a constant. Thus minimizing the divergence n 
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ing the entropy. Under a minor consistent assumption, a unique solution is guaranteed to 

exist in the fonn [20): 

P(X) oc TI µf (X) (11.54) 

where µ
1 

is an unknown constant to be ~ound. To search t~e expo~enti~l family defined by 
Eq. (11.54) for theµ; that make P(X) satisfy all the constramts, an 1terat1ve algorithm called 
generalized iterative scaling exists [20]. It guarantees to converge to the solution with some 
arbitrary initial µ 1. Each iteration creates a new estimate P(X), which is improved in the 
sense that it matches the constraints better than its previous iteration [20]. One of the most 
effective applications of the maximum entropy model is to integrate the cache constraint into 
the language model directly, instead of interpolating the cache n-gram with the static n­
gram. The new constraint is that the marginal distribution of the adapted model is the same 
as the lower-order n-gram in the cache [56]. In practice, the maximum entropy method has 
not offered any significant improvement in comparison to the linear interpolation. 

11.6. PRACTICAL ISSUES 

In a speech recognition system, every string of words W = w1 w2 ... w n taken from the pre­
scribed vocabulary can be assigned a probability, which is interpreted as the a priori prob­
ability to guide the recognition process and is a contributing factor in the detennination of 
the final transcription from a set of partial hypothesis. Without language modeling, the entire 
voca~ulary must be considered at every decision point. It is impossible to eliminate many 
candidates from consideration, or alternatively to assign higher probabilities to some candi­
dates than others to considerably reduce recognition costs and errors. 

11.6.1. Vocabulary Selection 

For most speech recognit1'0 t • • . · d . . n sys ems, an mflected form 1s considered as a different wor · 
This 1s because these inflected fio typ· 11 h · · · • I nns 1ca y ave different pronunc1ahons syntactic ro es, 
!,nd usage pa~erns. So the words work, works, worked, and working are co~ted as four dif­
ierent words m the vocabulary. 

We prefer to have a small b I • . . • fu ble 
d'd t . er voca u ary size smce this eliminates potential con sa 

can I a es m speech recog • r I • . ' h Jinu't d b 1 . . m ion, eadmg to improved recognition accuracy. However, t e 
e voca u ary size 1mpos I s 

fl 'bl 1 . es a severe constraint on the users and makes the system es eXI e. n pracllce the · I 
affects the . d, _percentage of the Out-Of-Vocabulary (OOV) word rate direct Y 

perceive quality of th the 
OOV rate and th d .. e syStem. Thus, we need to balance two kinds of errors, . 

e wor recogrution • • 1ze the OOV rate ifth error rate. We can have a larger vocabulary to mmnn 
e system resources • w . . . t f the permit. e can mm1mize the expected OOV ra e 0 
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test data with a given vo~abulary size. A corpus of text is used in conjunction with dictionar­
ies to determine appropnate vocabularies. 

The availnbili~y of various _types and amounts of training data, from various time peri­

ods, affects the quality o~ the ~enved vocabulary. Given a collection of training data, we can 
create an ordered word hst with the lowest possible OOV curve, such that. for any desired 
vocabulary size V, a minimum-OOV-rate vocabulary can be derived by taking the most fre­
quent V words in that list. Viewed this way, the problem becomes one of estimating unigram 
probabilities of the test distribution, and then ordering the words by these estimates. 

As illustrated in Figure 11.6, the perplexity generally increases with the vocabulary 
size, albeit it really does not make much sense to compare the perplexity of different vo­
cabulary sizes. There are generally more competing words for a given context when the vo­
cabulary size becomes big, which leads to increased recognition error rate. In practice, this is 
offset by the OOV rate, which decreases with the vocabulary size as illustrated in Figure 
t 1.7. If we keep the vocabulary size fixed, we need more than 200,000 words in the vocabu­
lary to have 99.5% English words coverage. For more inflectional languages such as Ger­
man, larger vocabulary sizes are required to achieve coverage similar to that of English.6 

In practice, it is far more important to use data from a specific topic or domain, if we 
know in what domain the speech recognizer is used. In general, it is also important to con­
sider coverage of a specific time period. We should use training data from that period, or as 
close to it as possible. For example, if we know we will talk only about air travel, we benefit 
from using the air-travel related vocabulary and language model. This point is well illus­
trated by the fact that the perplexity of the domain-dependent bigram can be reduced by 

more than a factor of five over the general-purpose English trigram. 

500 
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. . . b I sizes. The training set consists 
Figure 11.6 The perplexity of bigrarn with different voca ~ ary and email The test 
f . . . ·ncluding newspapers • 0 500 m1lhon words derived from vanous sources, 1 . f d'f 

1 edia that has a wide coverage o 1 • 
set comes from the whole Microsoft Encarta, an encyc op 
ferent topics. 

'Th . . n lish with a 20k-word vocabuh1ry (34]. 
e OOV rate of German is about 1wice as high as that of E g 
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Figure U.7 The OOV rate with different vocabulary size. The training set consists of 500 mil­
lion words derived from various sources including newspaper and email. The test set came 
from the whole Microsoft Encarta encyclopedia. 

For a user of a speech recognition system, a more personalized vocabulary can be 
much more effective than a general fixed vocabulary. The coverage can be dramatically im­
proved as customized new words are added to a starting static vocabulary of 20,000. Typi­
cally, the coverage of such a system can be improved from 93% to more than 98% after 
1000-4000 customized words are added to the vocabulary [18J. 

In North American general business English, the least frequent words among the most 
frequent 60,000 have a frequency of about 1:7,000,000. In optimizing a 60,000-word vo­
cabulary we need to distinguish words with frequency of I :7 ,000,000 from those that are 
slightly less frequent. To differentiate somewhat reliably between a l :7,000,000 word and, 
say, a 1:8,000,000 word, we need to observe them enough times for the difference in their 
counts to be statistically reliable. For constructing a decent vocabulary, it is important that 
most such words are ranked correctly. We may need 100,000,000 words to estimate these 
parameters. This agrees with the empirical results, in which as more training datct is used, 
the OOV curve improves rapidly up to 50,000,000 words and then more slowly beyond that 
point. 

11.6.2. N-gram Pruning 

Whe~ high order n-gram models are used, the model sizes typically become too large for 
prac?cal applications. It is necessary to prune parameters from n-gram models such that the 
relative entropy between the original and the pruned model is minimized. You can choose n­
grams ~o as to maximize perfonnance (i.e., minimize perplexity) while minimizing the 
model size (39, 59, 64]. 

1:he criterion to prune n-grarns can be based on some well-understood information­th
[ eorellc measure of language model q11ality. For example, the pruning method by Stolcke 
641 removes some n-grarn ti· te . . . . . ning es ma s while mm1m1zmg the perf orrnance loss. After pru ' 
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he retained explicit 11-gram probabilities are unchanged, but backoff weight t . h . . s are 
recomputed. Stolc~e prunmg us~s. t e cntenon that minimizes the distance between the 
distribution embodied by the ong~nal model and that of the pruned model based on the 
Kullback-leibler distance de fined m Eq. (3.181 ). Since it is infeasible to maximize over all 
possible subsets ~f n-grams, Stolcke prunning assu~es that the n-grams affect the relative 
entropy roughly mdependently, and compute the distance due to each individual n-gram. 
The JI-grams are thus ranked by their effect on the model entropy, and those that increase 
relative entropy the least are pruned accordingly. The main approximation is that we do not 
consider possible interactions between selected n-grams, and prune based solely on relative 
entropy due to removing a single n-gram. This avoids searching the exponential space of 11• 
gram subsets. 

To compute the relative entropy, KL(p II p'), between the original and pruned n-gram 
models p and p', there is no need to sum over the vocabulary. By plugging in the tenns for 
the backoff estimates, the sum can be factored as shown in Eq. ( 11.55) for a more efficient 
computation. 

KL(p II p) = -P(h){P(w I h)[logP(w I h') + loga'(h)-logP(w I h)] 

+[loga'(h)-loga(h)](l- }: P(w, jh))} ( 11.55) 

w,e-JJn,J:off (w,h) 

where the sum in P( w; I h) is over all non-backoff estimates. To compute the 
w,&-.Bn, koff( w;hl 

revised backoff weights a'(h), you can simply drop the term for the pruned n-gram from 
the summation (backoff weight computation is illustrated in Algorithm 11. l ). 

In practice, pruning is highly effective. Stolcke reported that the trigram model _can be 
compressed by more than 25% without degrading recognition performance. Comparing the 
pruned 4-gram model to the unpruned trigram model, it is better to use pruned 4-grams lhan 
to use a much larger nwnber of trigrams. 

11.6.3. CFG vs. N-gram Models 

!his chapter has discussed two major language models. While CFGs remain one of th~ ~oS
t 

important formalisms for interpreting natural language, word 11-gram models are su~finsdmgfily 
Powerful fi d · • . • Th fi rmalisms can be um te or or omam-mdependent apphcat1ons. ese two O • • f th 
bolh speech recognition and spoken language understanding. To improv~ portabilt~ 

0 
the do · · • fie CFGs mto e roam-independent n-gram it is possible to incorporate domam-speci ·ri • f domain · d ' . b.1• f the CFG and spec1 1cJty o ·tn ependent n-gram that can improve generahza 11ty 0 

then-gram 
Th • . f h structure in spoken lan-

e CFG is not only powerful enough to describe moSt O t ~ d d l or o de-&uage but 1 . . P(W) 1s regar e as . ' a so restnctive enough to have efficient parsers. r The 
Peocting upon whether the word sequence is accepted or rejected by the gramma • 
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problem is that the grammar is almost always inco~1P_l~te. A CFG-base~ system is good only 

h kn w what sentences to speak, which d1m1rushes the system s value and usability 
w en you o I • • h ll 'fi d 
of the system. The advantage of CFO 's structured ana ys1s 1s, t us, nu 1. 1e ~y the ~oor 

coverage in most real applications. On the other hand, the n-gram model 1s tramed with a 

large amount of data, the 11-word dependency can often accomm~date both syntactic and 
semantic structure seamlessly. The prerequisite of this approach 1s that we have enough 
training data. The problem for 11-gram models is that we need a lot of data and the model 

may not be specific enough. 
It is possible to take advantage of both rule-based CFGs and data-driven 11-grams. 

Let's consider the following training sentences: 

Meeting at three with Zhou Li. 
Meeting at four PM with Derek. 

If we use a word trigram, we estimate P(Zhoulthree with) and P(DereklPM with), etc. 

There is no way we can capture needed long-span semantic infonnation in the training data. 
A unified model has a set of CFGs that can capture the semantic structure of the domain. For 

the example listed here, we have a CFG for {name} and {time}, respectively. We can use 

the CFG to parse the training data to spot all the potential semantic structures in the training 
data. The training sentences now look like: 

Meeting {at three :TIME} with (Zhou Li:NAME} 
Meeting (at four PM:TIME} with {Derek: NAME} 

With analyzed training data, we can estimate our n-gram probabilities as usual. We 
have probabilities, such as P({name}j{time} with), instead of P(Zhoulthree with), which is 

more meaningful and accurate. Inside each CFG we also derive P("Zhou Li"l{name}) and 

P("four P~'l{time}) from the existing n-gram (n-gram probability inheritance) so that they 

are normahz~~-_If we add a new name to the existing {name} CFG, we use the existing n­

gram probab1httes to renormalize our CFGs for the new name. The new approach can be 

regarded as a standard n-gram in which the vocabulary consists of words and structured 
classes, a~ discussed in Section I I .4.3. The structured class can be very simple, such as 

{date}, {time}, and {name}, or can be very complicated such as a CFG that contains deep 
structured information Th b b"l' f ' · d or • e pro a I tty o a word or class depends on the previous wor s 
CFG classes. 

It is possible to inherit probability from a word n-gram LM. Let's take word trigram as 
our example here An 1·n t tt . ce 

• pu u erance W = w w w can be segmented mto a sequen 
T=tt t h h . . I 2 ··· " 

1 2
• .. "'' w ere eac 11 ts either a word in W or a CFG non-terminal that covers a se­

quence of words - in w Th 1-k l'h 
u,, • e 1 e I ood of W under the segmentation T is, therefore, 

(11.56) 
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P(u, It,), the likelihood of generating a word sequen - _ 
•• I b • I · - d fi . ce u,, -[u,,u,, ... u,k] from theCFG 

non-termma t,' can e m iente rom the domnm-independe t ct' ·; • 
CFG · . . n wor Ingram. We can essen-

tially use the constraint to condtt1on the domain-independ t t . . . · s h · fi en ngram mto a domam-
specific tngram. , uc a um 1ed language model can dramatical! • . 
performance using domain-specific CFGs [66]. ' ' Y improve cross-domain 

In summary, the CFG is widely used to specify the pern11·ssi"bl d · . . . e wor sequences m 
natural language processmg when trammg corpora are unavailable. It is suitable for dealing 
with structured comn~and and control applications in which the vocabulary is small and the 
semantics of the task 1s well defined. The CFG either accepts the input sentence or rejects ·t 
There is a serious coverage p~oblem associated with CFGs. In other words, the accuracy J0 ~ 

the CFG can be extremely !ugh when the test data are covered by the gram.mar. Unfortu­
nately, unless the task is narrow and well-defined, most users speak sentences that may not 
be accepted by the CFG, leading to word recognition errors. 

Statistical language models such as trigrams assign an estimated probability to any 
word that can follow a given word history without parsing the structure of the history. Such 
an approach contains some limited syntactic and semantic information, but these probabili­
ties are typically trained from a large corpus. Speech recognition errors are much more 
likely to occur within trigrams and ( especially) bigrams that have not been observed in the 
training data. In these cases, the language model typically relies on lower-order statistics. 
Thus, increased n-gram coverage translates directly into improved recognition accuracy, but 
usually at the cost of increased memory requirements. 

It is interesting to compute the true entropy of the language so that we understand 
what a solid lower bound is for the language model. For English, Shannon [60] used human 
subjects to guess letters by looking at how many guesses it takes people to derive the correct 
one based on the history. We can thus estimate the probability of the letters and hence the 
entropy of the sequence. Shannon computed the per-letter entropy of English with an en­
tropy of 1.3 bits for 26 letters plus space. This may be an underestimate, ~ince it is b_ased on 
a single text. Since the average length of English written words (including space) is ab~ut 
5.5 letters, the Shannon estimate of 1.3 bits per letter corresponds to a per-word perplexity 
of 142 for general English. 

Table 11.2 summarizes the performance of several different n-gram models on. a 
60,000-word continuous speech dictation application. The experiments used about 26_0 mi~­
lion words from a newspaper such as the Wall Street Journal. The speech recogmzer is 
based · . . fr the table when the amount on Whisper described m Chapter 9. As you can see om_ • 
of training data is sufficient both Katz and Kneser-Ney smoothmg offer comparable recog-
• • ' • ent when the mtton perfonnance, although Kneser-Ney smoothing offers a modeSt improvem 

amount of training data is limited. · h · 
I 1 E 1• h rd perplexity t e trigram 
n comparison to Shannon's estimate of genera ng is wo ' • 

Ian 4 142) This is because the text 1s guage for the Wall Street Journal is lower (91. vs. • F 
mo tl · l d ord usage pattern. or ex-

s Y business oriented with a fairly homogeneous sty e an ~ . I 
amp! ·r d am that 1s related to persona 
. e, 1 we use the trigram language for data from a new om 
information management, the test-set word perplexity can increase to 378 [661• 
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1 2 N Perplexity and its corresponding speaker-independent speech recognition Table I . -gram 
word error rate. 

Models Perplexitv Word Error Rate 
14.85% 

· -

Unigram Katz 1196.45 

Unigram Kneser-Ney 1199.59 14.86% 

Bigram Katz 176.31 11 .38% 

Bigram Kneser-Ney 176.11 11.34% 

Trigram Katz 95.19 9.69% 

Trigram Kneser-Ney 91.47 I 9.60% 

11.7. HISTORICAL PERSPECTIVE AND FURTHER READING 

There is a large and active area ofresearch in both speech and linguistics. These two distinc­
tive communities worked on the problem with very different paths, leading to the stochastic 
language models and the formal language theory. The linguistics community has developed 
tools for tasks like parsing sentences, assigning semantic relations to the parts of a sentence, 
and so on. Most of these parser algorithms have the same characteristics, that is, they tabu­
late each sub-derivation and reuse it in building any derivation that shares that sub­
derivation with appropriate grammars [22, 65, 67). They have polynomial complexity with 
respect to sentence length because of dynamic programming principles to search for optimal 
derivations with respect to appropriate evaluation functions on derivations. There are three 
well-known dynamic programming parsers with a worst-case behavior of 0( n3 ), where n is 
the number of words in the sentence: the Cocke-Younger-Kasami (CYK) algorithm (a bot­
tom-~p parser, proposed by J. Cocke, D. Younger, and T. Kasami) [32, 67), the Graham­
Hamson-Ruzzo algorithm (bottom-up) [30J, and the Earley algorithm (top-down) (21]. 

On t~e other hand, the speech community has developed tools to predict the next word 
on .the basis of what has been said, in order to improve speech recognition accuracy [35). 
~eitber a~proach has been completely successful. The fonnal grammar and the related pars­
mg algon~hms are too brittle for comfort and require a lot of human retooling to port from 
one. d?mam to another. The lack of structure and deep understanding has taken its toll 00 

statistical technology's b'l'ty t h . . . • 
1 

. . a 1 1_ o c o~se the nght words to guide speech recogmt1on,-
. n addition to those discussed m this chapter many alternative formal techniques are 

available. Augment d fr ' ture . e context- ee grammars are used for natural language to cap 
gramml~tical natural languages such as agreement and subcategorization. Examples include 
genera 12ed phrase structur [26 53) 
Y furt 

e grammars and head-driven phrase structure grammars ' • 
ou can her gener r th b re-. f a ize e augmented context-free grammar to the extent that t e 

quirement o context flree be h 1ifi1ca-
t • comes unnecessary. The entire grammar known as t e un 1011 grammar can bes e 'fi d ' Z] Most 
of these gr ' h P ci e as a set of constraints between feature structures (6 • 

1 ammars ave onl 1 • • d t ns n 
fact no practical d . . yd nrute success when applied to spoken language sys e1 d. for 
spoken language s o~am-m ependent parser of unrestricted text has been dev~Jope f de­
tailed semantic 

1
-
0
?5 

em~, partly because disambiguation requires the specificatton ° sts 
1onnat1on Analys· f h sugge • is O t e Susanne Corpus with a crude parser 
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Ver 80% of sentences are structurally ambiguous. More recently large t b k f that o . . . . , ree an s o 
parsed texts have given 1mpet~s to stat1st1c~l approaches to parsing. Probabilities can be 

ti mated from treebanks or plam text [ 6, 8, -4, 61] to efficiently rank analyses produced b 
es • I 'h Th y modified chart parsing a gont ms. . ese systems have yielded results of around 75% accu-
racy in assigning analyses to (unseen) test sentences from the same source as the unambigu­
ous training material. Attempts have also been made to use statistical induction to !ram the 
correct grammar for a given corpus of data [7, 43, 51, 58]. Nevertheless, these techniques 
are limited to simple grammars with category sets of a dozen or so non-terminals, or to train­
ing on manually parsed data. Furthermore, even when parameters of the grammar and con­
trol mechanism can be learned automatically from training corpora, the required corpora do 
not exist or are too small for proper training. In practice, we can devise grammars that spec­
ify directly how relationships relevant to the task may be expressed. For instance, one may 
use a phrase-structure grammar in which nonterminals stand for task concepts and relation­
ships and rules specify possible expressions of those concepts and relationships. Such se­
mantic grammars have been widely used for spoken language applications as discussed in 
Chapter 17. 

It is worthwhile to point out Lhat many natural language parsing algorithms are NP­
complete, a term for a class of problems that are suspected to be particularly difficult to 
process. For example, maintaining lexical and agreement features over a potentially infinite­
length sentence causes the unification-based formalisms to be NP-complete [3]. 

Since the predictive power of a general-purpose grammar is insufficient for reasonable 
perfonnance, 11-gram language models continue to be widely used. A complete proof of 
Good-Turing smoothing was presented by Church et al. [17). Chen and Goodman [13) pro­
vide a detailed study on different n-gram smoothing algorithms. Jelinek's Eurospeech tuto­
~al paper (35] provides an interesting historical perspective on the community's efforts to 
improve trigrams. Mosia and Giachin' s paper [48) has detailed experimental results on 
class-based language models. Class-based model may be based on parts of speech or mor­
phology (IO, 16, 23, 47, 63). More detailed discussion of Lhe maximum entropy language 
model can be found in [5, 36, 42, 44, 52, 55, 56]. . 

One interesting research area is to combine both n-grams and the structure that is pre­
sent in language. A concerted research effort to explore structure-based language model may 
be !he key for significant progress to occur in language modeling. This ~an be done as an~~i 
lated data becomes available. Nasr et al. [50] have considered a new umfied language mo 
composed of several local models and a general model linking the local models to~ether. 
Thf e local model used in their system is based on the stochastic FSA, which is esum~tedd 
rom th tr • • d • f ation are descnbe i e ammg corpora. Other efforts to incorporate structure 10 orm 
n [l2, 25, 27, 49, 66]. 

Yo th cMU open source Web 
sit 1 u can find tools to build n-gram language models at e d 1• tool-
kit: 3nd SRI's lang~age modeling toolkit Web site.8 Both contain language mo e mg 

and documentation. ----1 http://WWw~--------
' hltp:J/ .speech.cs.cmu.edu/sphinx/ 

wwwspeech • • .sn.com/projects/srilm/download.html 
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CHAPTER 1 2 

Basic Search Algorithms 

Continuous speech recognition (CSR) is both 
a pattern recognition and search problem. As described in previous chapters, the acoustic 
and language models are built upon a statistical pattern recognition framework. In speech 
recognition, making a search decision is also referred to as decoding. In fact, decoding got 
its name from information theory (see Chapter 3) where the idea is to decode a signal that 
has presumably been encoded by the source process and has been transmitted through the 
communication channel, as depicted in Chapter I, Figure 1.1 . In this chapter, we first review 
the general decoder architecture that is based on such a source-channel model. 

The decoding process of a speech recognizer is to find a sequence of words whose cor­
responding acoustic and language models best match the input signal. Therefore, the process 
?f such a decoding process with trained acoustic and language models is often referred to as 
JUSt a search process. Graph search algorithms have been explored extensively in the fields 
of artificial intelligence, operation research, and game theory. In this chapter first we present 
several basic search algorithms, which serve as the basic foundation for CSR. 

591 
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The complexity of a search algorithm is highly correlated with the ~earch spa~e, which 

d • d by the constraints imposed by the language models. We discuss the impact of is etermme ~ 
different language models, including finite-state grammars, context-free grammars, and 11 _ 

grams. • I I v· b' A "• d Speech recognition search is usu:ill~ done wll 1 t 1e 1ter I o~ ~- stack ecoders. The 
reasons for choosing the Viterbi decoder involve arguments that pomt to speech as a left-to­
ri ht process and to the efficiencies afforded by a time-synchronous process. The reasons for 
c;oosing a stack decoder involve ilS ability to more effectively exploit the A~• criteria, which 
holds out the hope of performing an optimal search as well as the ability to handle huge 
search spaces. Both algorithms have been successfully applied to various speech recognition 
systems. The relative merits of both search algorithms were quite controversial in the 1980s. 
Lately, with the help of efficient pruning techniques. Viterbi beam search has been the pre­
ferred method for almost all speech recognition tasks. Stack decoding, on the other hand, 
remains an important strategy to uncover the n-best and lattice structures. 

12.1. BASIC SEARCH ALGORITHMS 

Search is a subject of interest in artificiaJ intelligence and has been well studied for expert 
systems, game playing, and information retrieval. We discuss several general graph search 
methods that are fundamental to spoken language systems. Although the basic concept of 
graph search algorithms is independent of any specific task. the efficiency often depends on 
how we exploit domain-specific knowledge. 

The idea of search implies moving around, examining things, and making decisions 
about whether the sought object has yet been found. In general, search problems can be rep­
resented using the state-space search paradigm. It is defined by a triplet (S, 0, G), where S 
i~ a se~ of_ initial states, 0 a set of operators (or rules) applied on a state to generate a transi­
tion with its corresponding cost to another state, and G a set of goal states. A solution in the 
state-space search paradigm consists in finding a path from an initial state to a goal state. 
The state-space representation is commonly identified with a directed graph in which each 
node_ ~orresponds to a state and each arc to an application of an operator (or a rule), which 
transitions from one_ state to another. Thus, the state-space search is equivalent to searching 
through the graph with some objective function 

Bf • 
. e ore we present any graph search algorithms, we need to remind the readers of the 
impo~nce of the dynamic programming algorithm described in Chapter 8. Dynamic pro­
=~ammm_g ~ho~ld ~e applied ~henever possible and as early as possible because (1) un!ike 

Y heuns~ics, it will not sacnfice optimality; (2) it can transform an exponential search mto 
a polynomial search. 
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Although dynamic programming is a powerful polynomial search algorithm, many interest­
ing problems cannot be handled b~ it. A classical e~ample is the traveling salesman's prob­
lem. We need to find a shortest•d1stance tour, starting at one of many cities, visiting each 
city exactly once., and returning to the starting city. This is one of the most famous problems 
in the NP-hard class [l, 32]. Another classical example is the N-queens problem (typically 
8-queens), where the goal is to place N queens on an N x N chessboard in such a way that 
no queen can capture any other queen, i.e., there is no more than one queen in any given 
row, column, or diagonal. Many of these puzzles have the same characteristics. As we know, 
the best algorithms currently known for solving the NP-hard problem are exponential in the 
problem size. Most graph search algorithms try to solve those problems using heuristics to 
avoid or moderate such a combinatorial explosion. 

~--3 __ _,Q, ___ 3 __ __..J v 

4 

Figure 12.1 A highway distance map for cities S, A, B, C, D, E, F, and G. The salesman needs 
to find a path to travel from city S to city G [42). 

Let's start our discussion of graph search procedure with a simple city-traveling prob­
lem [42]. Figure 12.1 shows a highway distance map for all the cities. ~ salesman named 
John needs to travel from the starting city S to the end city G. One obvious wa~ to find a 
path is to derive a graph that allows orderly exploration of all possible palbs. Fi~ure_ 

12
•
2 

shows the graph that traces out all possible paths in the city-distance map shown m Figure 
12 I Allh . . • • al e should note that the search • · ough the city-city connection 1s b1-d1recuon , w 
?raph in this case must not contain cyclic paths, because they would not lead to any progress 
10 this scenario If • • b f des (states) in the graph 

we define the search space as the potenUal num er O no . th Viterbi algo-
~arch procedure, the search space for finding the _optimal state sequence 

10 
h: HMM and T 

~thm (described in Chapter 8) is N x T • where N is the number of states fo~_t oblem will 
~ i; length of the observation. Similary, the search space for John's trave mg pr 

·A • th branching factor, defined as the 
av nother important measure for a search graph is e b f des of a search graph 

erage number of successors for each node. Since the num er O no 
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(or tree) grows exponentia11y with base equal to this branching factor, we certainly need to 
watch out for search graphs (or trees) with a large branching factor. Sometimes they can be 
too big to handle (even infinite, as in game playing). We often trade the optima] solution for 
improved perfom1ance and feasibility. That is, the goal for such search problems is to find 
one satisfactory solution instead of the optimal one. In fact, most AI (artifical intelligence) 
search problems belong to this category. 

The search tree in Figure 12.2 may be implemented either explicitly or implicitly. In 
an explicit implementation, the nodes and arcs with their corresponding distances (or costs) 
are explicitly specified by a table. However, an explicit implementation is clearly impracti­
cal for large search graphs and impossible for those with infinite nodes. In practice, most 
parts of the graph may never be expJored before a solution is found . Therefore, a sensible 
strategy is to dynamically generate the search graph. The part that becomes explicit is often 
referred to as an active search space. Throughout the discussion here, it is important to keep 
in mind this distinction between the implicit search graph that is specified by the start node 
S and the explicit partial search graphs that are actua11y constructed by the search algo­
rithm. 

To expand the tree, the term successor operator (or move generator, as it is often 
called in game search) is defined as an operator that is applied to a node to generate all of 
the successors of that node and to compute the distance associated with each arc. The suc­
cessor operator obviously depends on the topology (or rules) of the problem space. Expand­
ing the starting node S, and successors of S, ad infinitum, gradually makes the implicitly 

Figure 12•2 The search tree (graph} for the salesman problem illustrated in Figure l 2· J. The 
number next to each node is the accumulated distance from start city to end city (42]. 
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defined graph explicit. Thi~ recursive procedure is _straightforward, and the search graph 
(tree) can be constructed without the extra bo~kkeepmg. However, this process would only 
generate a search tree where the same node might be generated as a part of several possible 

paths. . . . . 
for example, node E ,s being generated m four different paths. If we are interested in 

finding an optimal path to travel from S to G, it is more efficient to merge those different 
paths that lead to the same node E. We can pick the shortest path up to C, since everything 
following E is the same for the rest of the paths. This is consistent with the dynamic pro­
gramming principle-when looking for the best path from S to G, all partial paths from s to 
any node E, other than the best path from S to E, should be discarded. The dynamic pro­
gramming merge also eliminates cyclic paths implicitly, since a cyclic path cannot be the 
shortest path. Performing this extra bookkeeping (merging different paths leading into the 
same node) generates a search graph rather than a search tree. 

Although a graph search has the potential advantage over a tree search of being more 
efficient, it does require extra bookkeeping. Whether this effort is justified depends on the 
individual problem one has to address. 

Most search strategies search in a forward direction, i.e., build the search graph (or 
tree) by starting with the initial configuration (the starting state S) from the root. In the gen­
eral AI literature, this is referred to as forward reasoning [43], because it perfonns rule-base 
reasoning by matching the left side of rules first. However, for some specific problem do­
mains, it might be more efficient to use backward reasoning [43], where the search graph is 
built from the bottom up (the goal state G). Possible scenarios include: 

• There are more initial states than goal states. Obviously it is easy to start 
with a small set of states and search for paths leading to one of the bigger se_ts 
of states. For example, suppose the initial state Sis the homet~wn for Joh~-m 
the city-traveling problem in Figure 12.1 and the goal state G 1s an unfarn~har 
city for him. In the absence of a map, there are certa~nly ~ore loca~JOns 
(neighboring cities) that John can identify as being close to his home city S 
than those he can identify as being close to an unfamiliar location. I~ a sense, 
all of those locations being identified as close to John's home Ct~ S are 
equivalent to the initial state S. This means John might want to c~nsider rea­
soning backward from the unfamiliar goal city G for the trip planning. 

• Tl • • lier than that for Jor-ie branching factor for backward reasonmg IS sma . . ' th 
d . t arch in the direction wt wat reasoning. In this case 1t makes sense O se 

lower branching factor. . 
I . . . . d • Itaneously, until two partial 
t 15 in pnnc1ple possible to search from both en s simu . 1 h [43] B·•-

Path • d b • d' cuona searc • 
dir s _meet somewhere in the middle. This strategy is calle 1

• /re des at each step grows 
ectionaJ search seems particularly appealing if the number O no --J B~i11g ~cl-o ---------- . . cities he can easily remember the besl pn~ to 

rctu h se means that, once John reaches one of those neighboring • h ~.-.;cular board configuration, 
rn ome I · . . 0 1h player rcac es a p ... u 

he • 1 rs s1m1Iar to the killer book for chess play. nee c 
can folio h • • t wt e killer book for moves that can guarantee a vic ory. 
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exponentially with the depth that needs to be explored. However, som~times bi-directional 
search can be devastating. The two searches may cross each other, as illustrated in Figure 

12.3. 
The process of explicitly generating part of an implicitly defined graph fonns the es-

sence of our general graph search procedure. The procedure is summarized in Algorithm 
12.1. Jt maintains two lists: OPEN, which stores the nodes waiting for expansion, and 
CLOSE, which stores the already expanded nodes. Steps 6a and 6b are basically the book­
keeping process to merge different paths going into the same node by picking the one that 
has the minimum distance. Step 6a handles the case where v is in the OPEN list and thus is 
not expanded. The merging process is straightforward, with a single comparison and change 
of traceback pointer if necessary. However, when V is in the CLOSE list and thus is already 
expanded in Step 6b, the merging requires additional forward propagation of the new score 
if the current path is found to be better than the best subpath already in the CLOSE list. This 
forward propagation could be very expensive. Fortunately, most of the search strategy can 
avoid such a procedure if we know that the already expanded node must belong in the best 
path leading to it. We discuss this in Section 12.5. 

As described earlier, it may not be worthwhile to perfonn bookkeeping for a graph 
search, so Steps 6a and 6b are optional. If both steps are omitted, the graph search algorithm 
described above becomes a tree search algorithm. To illustrate different search strategies, 
tree search is used as the basic graph search algorithm in the sections that follows. However, 
you should note that all the search methods described here could be easily extended to graph 
search with the extra bookkeeping (merging) process as illustrated in Steps 6a and 6b of 
Algorithm 12.1. 

• Forward search explore<farea 
. ► . 

1f :L, --:-:-"":-::---~----- 0 
0 :. . Backward.search explored area 

""'-· • . • •• ◄◄---

Figure 12.3 A bad case for bi-directional search, where the forward search and the backward 
search crossed each other [42]. 



. Search Algorithms Basic 

,......ALGORITHM 12.1: THE GRAPH·SEARCH ALGORITHM 

597 

Step 1: Initialization: f'.ut _s in the O~EN list and create an initially empty CLOSE list 
Step 2: If the OPEN list Is empty, exit and declare failure. 
Step 3: Pop up the first node Nin the OPEN list remove it from the OPEN list and put it into 
the CLOSE list. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. . 
Step S: Expand node N by applying the successor operator to generate the successor set 
ss(N) of node N. Be sure to eliminate the ancestors of N from SS(N). 
Step 6: Vv e SS(N) do 

6a. (optional) If v e OPEN and the accumulated distance of the new path is smaller than 
that for the one in the OPEN list, do 

(i) change the traceback (parent) pointer of v to N and adjust the accumulated 
distance for v . 

(ii) go to Step 7. 
6b. (optional) If v e CLOSE and the accumulated distance of the new path is smaller 

than the partial path ending at v in the CLOSE list, do 
(i) change the traceback (parent) pointer of v to N and adjust the accumulated 

distance for all paths that contain v . 
(ii) go to Step 7. 

6c. Create a pointer pointing to N and push it into the OPEN list. . . 
Step 7: Reorder the OPEN list according to search strategy or some heunsttc measurement. 
Step 8: Go to Step 2. 

12.1.2. Blind Graph Search Algorithms 

If . bl th instead of the best path, blind 
the aim of the search problem is to find an accepta e pa . h d blindly 

se h • d • the OPEN hst t e same an 
arc 1s often used. Blind search treats every no e m I d Since blind search 

decides the order to be expanded without using any domain kno,w e ge,. austive search be-
treats d ifomz sea re t or ex z ' ~very node equally, it is often referre to as um 

I 
t pical\y not interested in 

cause it exhaustively tries out all possible paths. In Al, peop e are y sophisticated heurisLic 
blind search. However it does provide a lot of insight into many d nodes randomly. In­
search al .th ' bl' d arch does not expan f gon ms. You should note that m se h h Two popular types o 
s~ad, it follows some systematic way to explore the searc grap • 
bhnd search are depth-first search and breadth-first search. 
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12.1.2.1. Depth-First Search 

When we are in a maze, the most natural way to find a way out is to mark the branch we 
take whenever we reach a branching point. The marks allow us to go back to a choice point 
with an unexplored alternative, withdraw the most recently made choice and undo all conse­
quences of the withdrawn choice whenever a dead-end is reached. Once the alternative 
choice is selected and marked, we go forward based on the same procedure. This intuitive 
search strategy is called backtracking. The famous N-queens puzzle (32) can be handily 
solved by the backtracking strategy. 

Depth-first search picks an arbitrary alternative at every node visited. The search 
sticks with this partial path and works forward from the partial path. Other alternatives at the 
same level are ignored completely (for the time being) in the hope of finding a solution 
based on the current choice. This strategy is equivalent to ordering the nodes in the OPEN 
list by their depth in the search graph (tree). The deepest nodes are expanded first and nodes 
of equal depth are ordered arbitrarily. 

Although depth-first search hopes the current choice leads to a solution, sometimes the 
current choice could lead to a dead-end (a node which is neither a goal node nor can be ex­
panded further). In fact, it is desirable to have many short dead-ends. Otherwise, the algo­
rithm may search for a very long time before it reaches a dead-end, or it might not ever 
reach a solution if the search space is infinite. When the search reaches a dead-end, it goes 
back to the last decision point and proceeds with another alternative. 

Figure 12.4 shows all the nodes being expanded under the depth-first search algorithm 
for the city-traveling problem illustrated in Figure 12.1. The only differences between the 
graph search and the depth-first search algorithms are: 

1. The graph search algorithm generates all successors at a time (although all 
except one are ignored first), while depth-first search generates only one suc­
cessor at a time. 

2. The graph search, when successfully finding a path, saves only one path from 
the starting node to the goal node, while depth-first search in general saves 
the entire record of the search graph. 

. Depth-first search could be dangerous because it might search an impossible path thst 

is actually an infinite dead-end. To prevent exploring of paths that are too long, a depth 

bouod _ca? ?e placed to constrain the nodes to be expanded, and any node reaching th3t 
depth hmn 1s treated as a tenninal node (as if it had no successor). .thJJJ 

The general graph search algorithm can be modified into a depth-first search a]gon 
as illustrated in Algorithm 12.2. 
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Figure 12.4 The node-expanding procedure of the depth-first search for the path search prob­
lem in Figure 12.1. When it fails to find the goal city in node C, it backtracks to the parent and 
continues the search until it finds the goal city. The gray nodes are those that are explored. The 
dotted nodes are not visited during the search [42). 

ALGORITHM 12.2: THE DEPTH-FIRST SEARCH ALGORITHM 

Step 1: Initialization: Put Sin the OPEN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN list is empty, exit and declare failure. 
Step 3: Pop up the first node N in the OPEN list, remove it from the OPEN list and put it into the 
CLOSE list. 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 

4a. If the depth of node N is equal to the depth bound, go to Step 2. 
step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N from SS(N). 
Step 6: 'v'v e SS(N) do 

6c. Create a pointer pointing to N and push it into the OPEN list. 
Sfep 7: Reorder the the OPEN list in descendrng order of the depth of the nodes. 

~tep 8: Go to Step 2. 
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12.1.2.2. Breadth-First Search 

One natural alternative to the depth-first search strategy_is ~readth-first search. Breadth-first 
search examines all the nodes on one level before cons1dermg any of the nodes on the next 
level (depth). As shown in Figure 12.5, node B would be examined just after node A. The 
search moves on level-by-level, finally discovering G on the fourth level. 

Breadth-first search is guaranteed to find a solution if one exists, assuming that a finite 
number of successors (branches) always follow any node. The proof is straightforward. If 
there is a solution, its path length must be finite. Let's assume the length of the solution is 
M. Breadth-first search explores all paths of the same length increasingly. Since the number 
of paths of fixed length N is always finite, it eventually explores all paths of length M. By 
that time it should find the solution. 

It is also easy to show that a breadth-first search can work on a search tree (graph) 
with infinite depth on which an unconstrained depth-first search will fail. Although a 
breadth-first might not find a shortest-distance path for the city-travel problem, it is guaran­
teed to find the one with fewest cities visited (minimum-length path). In some cases, it is a 
very desirable solution. On the other hand, a breadth-first search may be highly inefficient 
when all solutions leading to the goal node are at approximately the same depth. The 
breadth-first search algorithm is summarized in Algorithm 12.3. 
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Figure 12.S The nod ct · • ••• • h b· 
lem in Fi re 

12 
e-expan mg procedure of a breadth-first search for the path searc pro 

are those ~at ar • I. 1: searches through each level until the goal is identified. The gray nodes 
e exp ored• The dotted nodes are not visited during the search [42]. 
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ALGORITHM 12.3: THE BREADTH-FIRST SEARCH ALGORITHM 

step 1: Initialization: '.u~ Sin the OP_EN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN 11st 1s empty, exit and declare failure. 

601 

Step 3: Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into th 
CLOSE list. e 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N). 
Step 6: Vv e SS(N) do 

6c .. Create a pointer pointing to N and push it into the OPEN list. 
Step 7: Reorder the OPEN list in increasing order of the depth of the nodes. 
Step 8. Go to Step 2. 

12.1.3. Heuristic Graph Search 

Blind search methods, like depth-first search and breadth-first search, have no sense (or 
guidance) of where the goal node lies ahead. Consequently, they often spend a lot of time 
searching in hopeless directions. If there is guidance, the search can move in the direction 
that is more likely to lead to the goal. For example, you may want to find a driving route to 
the World Trade Center in New York. Without a map at hand, you can still use a straight­
line distance estimated by eye as a hint to see if you are closer to the goal (World Trade 
Center). This hill-climbing style of guidance can help you to find the destination much·more 
efficiently. 

Blind search finds only one arbitrary solution instead of the optimal solution. To find 
the optimal solution with depth-first or breadth-first search, you must not stop searching 
when the first solution is discovered. Instead, the search needs to continue until it reaches all 
the s~lutions, so you can compare them to pick the best. This strategy for find!n~ the opti~al 
solution is called British Museum search or brute-force search. Obviously, it ts unfeasible 
when the search space is large. Again, to conduct selective search and yet still be able to find 
the optimal solution, some guidance on the search graph is necessary. . 

The guidance obviously comes from domain-specific knowledge. Such knowle~ge ,s 
usually referred to as heuristic information, and search methods taking advantage .0 ~ it are 
called heuristic search methods. There is usually a wide variety of differen~ heun~tic~_for 
the problem domain. Some heuristics can reduce search effort without sacrificing optim tty, 
While 0ther can greatly reduce search effort but provide only sub-optimal solutions. In m~

st 

~;acticaJ pr~blems, the choice of different heu~stics is usually a tradeoff between the quality 
lhe solution and the cost of finding the solution. 
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H 
. . . , ·mac1•011 works like an evaluation function h( N) that maps each node N eunst1c m101 . 

I b and Which serves to indicate the relative goodness (or cost) of continuing 
to a rea num er, . bl · h 1· · 
I I th fronl that node Since in our city-travel pro em. stra1g t- me distance is a t 1e searc 1 pa • • . . . 
natural way of measuring the goodness of a path. we can use the heunst1c function h(N) for 

the distance evaluation as: 

h(N)=Heuristic estimate of the remaining distance from node N to goal G ( 12. t) 

Since g(N). the distance of the partial path to the current node N, is generally known, we 

have: 

g(N)=The distance of the partial path already traveled from root S to node N ( 12.2) 

We can define a new heuristic function, /(N), which estimates the total distance for the 
path (not yet finished) going through node N. 

f(N) = g(N)+h(N) ( 12.3) 

A heuristic search method basically uses the heuristic function f (N) to re-order the 
OPEN list in the Step 7 of Algorithm 12. l. The node with the best heuristic value is ex­
plored first (expanded first). Some heuristic search strategies also prune some unpromising 
partial paths forever to save search space. This is why heuristic search is often referred to as 
heuristic pruning. 

The choice of the heuristic function is critical to the search results. If we use one that 
overestimates the distance of some nodes, the search results may be suboptimal. Therefore, 
heuristic functions that do not overestimate the distance are often used in search methods 
aiming to find the optimal solution. 

To close ,this section, we describe two of the most popular heuristic search methods: 
best-first (or A Search) [32, 43] and beam search [43]. They are widely used in many com­
ponents of spoken language systems. 

12.1.3.1. Best-First (A' Search) 

0 ;ce w~ have a reasonable heuristic function to evaluate the goodness of each node in th~ 
O EN 11st, we can explore the best node (the node with smallest J(N) value) first, since rt 
offers the best hope of leading to the best path. This natural search strate 0 y is called best• 
first search. To implement best-first search based on the Algorithm 12.1 Q we need 10 firSt 
evaluate f(N) for h ' • · s 6 W eac successor before putting the successors in the OPEN 11st m tep • 

~ al_so_ need to son the elements in the OPEN list hased on f(N) in Step 7, so that the best 

~o e 
1
~ m t~e front-most position waiting to be expanded in Step 3. The modified procedure 

i::ie 0~rr;~nl~ beSt-~rSt search is illustrated in Algorithm 12.4. To avoid duplicating no~es 
prin~ple Th 1st• w~ include Steps 6a and 6b to take advantage of the dynamic programin~ng 
into the s~me e:

0
~:. orm the needed bookkeeping process to merge different paths leading 
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ALGORITHM 12.4: THE BEST-FIRST SEARCH ALGORITHM 

Step 1: Initialization: '.u~ Sin the O~EN list and create an initially empty the CLOSE list. 
Step 2: If the OPEN hst 1s empty, exrt and declare failure. 
Step 3. Pop up the first node Nin the OPEN list, remove it from the OPEN list and put it into th 
CLOSE list. e 
Step 4: If node N is a goal node, exit successfully with the solution obtained by tracing back the 
path along the pointers from N to S. 
Step 5: Expand node N by applying the successor operator to generate the successor set 
SS(N) of node N. Be sure to eliminate the ancestors of N, from SS(N'). 
Step 6: 'rive SS(N) do 

6a. (optional) If v e OPEN and the accumulated distance of the new path is smaller than 
that for the one in the the OPEN list, do 

(i) Change the traceback (parent) pointer of v to N and adjust the accumulated 
distance for v . 

(ii) Evaluate heuristic function f(v) for v and go to Step 7. 
6b. (optional) If v e CLOSE and the accumulated distance of the new path is small than 

the partial path ending at v in the the CLOSE list, 
(i) Change the traceback (parent) pointer of v to N and adjust the accumulated 

distance and heuristic function J for all the paths containing v • 

(ii) go to Step 7. 
6c. Create a pointer pointing to N and push it into the OPEN list. 

Step 7: Reorder the the OPEN list in the increasing order of the heuristic function /( N). 
Step 8: Go to Step 2. 

A search algorithm is said to be admissible if it can guarantee to find ~ op~imal solu­
tion, if one exists. Now we show that if the heuristic functio~ h(N) of es~imatmg 

th
e re-. · • - of the true distance from N mammg distance from N to goal node G is an underesumate . . 

10 goal node G the best-first search illustrated in Algorithm 12.4 is adf!1issible. In fdact, 
h 

' • h • called A (pronounce as w en h(N) satisfies the above criterion, the best-first algont m 
15 

~~~~ • • Wh n the frontmost node m the 
The proof can be carried out informally as follows. e 

OPEN list is the goal node G in Step 4, it immediately implies that 

"tv E OPEN f(v)?. f(G) = g(G) + h(G) == g(G) 
(12.4) 

. 
i For a . . . . . . tion not overestimate the distance from N to G. 
S
. _dr111ss1b1hty, we actually require only that the heunst1c func h t ih's chapter without loss of general-1nee ll is d 1 • mate throug ou 1 

ity So _very rare lo have an exact estimate. we use un eres I d 1• ace of the trUe value. · rnet1 • 1 wer-boun es 1m mes we refer to an underestimate function as a 0 
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Equation (12.4) says that the di.stance est~mate of a?y incomplete path is no shorter 
than the. first found complete path. Smee the _distance estimate for any incomplete path is 
underest11nated. the first found complete path m Step 4 must be the optimal path. A similar 
argument can also be used to prove that the Step 6b is actually not necessary for admi "bl 

. . f . h . th ss1 e 
heur:sttc unctions; t at 1s, ere cannot be another path with a shorter distance from the 
startmg node to a node that has been expanded. This is a very important feature since St 
6b is, in general, very expensive and it requires significant updates of many already e?­
panded paths. 

The A· search method is actually a family of search algorithms. When h(N) = o for all 
N, the search degenerates into an uninfonned search3 [40]. In fact, this type of uninformed 
search is the famous branch-and-bound search algorithm that is often used in many opera­
tions research problems. Branch-and-bound search always expands the shortest path leading 
into an open node until there is a path reaching the goal that is of a length no longer than all 
incomplete paths terminating at open nodes. When g(N) is defined as the depth of the node 
N, the use of heuristic function f(N) makes the search method identical to breadth-first 
search. In Section 12.1.2.2, we mention that breadth-first search is guaranteed to find a 
minimum length path. This can certainly be derived from the admissibility of the A' search 
method. 

When the heuristic function is close to the true remaining distance, the search can usu­
ally find the optimal solution without too much effort. In fact, when the true remaining dis­
tances for all nodes are known, the search can be done in a totally greedy fashion without 
any search at all, i.e., the only path explored is the solution. Any non~zero heuristic function 
is then called an informed heuristic function, and the search using such a function is called 
informed search. A heuristic function hi is said to be more informed than a heuristic func­
tion h,_ if the estimate lzi is everywhere larger than h,_ and yet still admissible (underesti­
mate). Finding an informed admissible heuristic function (guaranteed to underestimate for 
all nodes) is, in general, a difficult task. The heuristic often requires extensive analysis of the 
domain-specific knowledge and knowledge representation. 

Let's look at a simple example-the 8-puzzle problem. The 8-puzzle consists of eight 
numbered, movable tiles set in a 3 x 3 frame. One cell of this frame is always empty, so it is 
possible to move an adjacent numbered tile into the empty cell. A solution for the 8-puzzle 
is to find a sequence of moves to change the initial configuration into a given goal co_nfigu­
ration as shown in Figure 12.6. One choice for an informed admissible heuristic funcuon _hi 
is the number of misplaced tiles associated with the current configuration. Since eac~ nu~­
placed tile needs to move at least once to be in the right position, this heuristic function ts 
clearly a lower bound of the true movements remaining. Based on this heuristic function, the 
value for the initial configuration will be 7 in Figure 12.7. If we examine this problem fur­
ther, a more informed heuristic function k, can be defined as the sum of all row and column 
distances of all misplaced tiles and their goal positions. For example, th~ _row_ and col~; 
distance between the tile 8 in the initial configuration and the goal pos1t1on 1s 2 + l- ' 

3 In some literature an uninformed search is referred to as uniform-cost search. 
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8 2 1 1 2 3 

6 4 4 5 6 

5 3 7 7 8 
Figure 12.6 Initial and goal configurations for 1he 8-puzzle problem. 

which indicates that one must move tile 8 at least 3 times in order for it to be in the right 
position. Based on the heuristic function '12 , the value for the initial configuration will be J 6 
in Figure 12.6. '12 is again admissible. 

In our city-travel problem, one natural choice for the underestimating heuristic func­
tion of the remaining distance between node N and goal G is the straight-line distance since 
the true distance must be no shorter than the straight-line distance. 

Figure 12.7 shows an augmented city-distance map with straight-line distance to goal 
node attached to each node. Accordingly, the heuristic search tree can be easily constructed 
for improved efficiency. Figure 12.8 shows the search progress of applying the A' search 
algorithm for the city-traveling problem by using the straight-line distance heuristic function 
to estimate the remaining distances. 

8.5 5.7 28 
.....---3 __ -,;fc',----3---. 

\::..,J 

7 
Figur IZ 7 . . . • • ,- t"on The numbers be-. e · The city-travel problem auomented with heuristic iniorma 1 • 
side h • . 0 • G [42J eac node md1cate 1he straight-line distance to the goal node • 
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Figure 12.8 The search progress of applying A' search for the city-travel problem. The search 
detennines that path S-A-C-E-G is the optimal one. The number beside the node isfvalues on 
which the sorting of the OPEN list is based [42]. 

12.1.3.2. Beam Search 

Sometimes, it is impossible to find any effective heuristic estimate, as required in A* search, 
particularly when there is very little (or no) information about the remaining paths. For ex­
ample, in real-time speech recognition, there is little information about what the speaker will 
utter for the remaining speech. Therefore, an efficient uninformed search strategy is very 
important to tackle this type of problem. 

Breadth-first style search is an important strategy for heuristic search. A breadth-first 
search virtually explores all the paths with the same depth before exploring deeper paths. In 
practice, paths of the same depth are often easier to compare. It requires fewer heuristics to 
rank the goodness of each path. Even with uninformed heuristic function ( h(N) == 0 ), lhe 
direct comparison of g (distance so far) of the paths with the same length should be area­
sonable choice. 

~eam search is a widely used search technique for speech recognition systems[~~• 31. 
371. It is a breadth-first style search and progresses along with the depth. Unlike traditional 
breadlh-first search, however, beam search only expands nodes that are likely to succe~ a~ 
each level. ?nly these nodes are kept in the beam, and the rest are ignored (pruned) for un 
proved efficiency. 

In general, a beam search only keeps up to w best paths at each stage (level), ao<l lhe 
rest of the paths are d" d d • h The nul11· b iscar e • The number w is often referred to as beam w1dt • . 

~r of _nodes explored remains manageable in beam search even if the whole search space bis 
g1ganuc. If a beam w·dth • . • factor • 

1 b I w is used m a beam search with an average branching t,er 
on Y wx nodes need to be explored at any depth, instead of the exponential num 
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ded for breadth-first search. Suppose that a beam width of 2 is used for the c·t t 1 nee . • 1 y- rave 
problem. figure 12.9 1llustrales how beam search progresses to find the path. We can also 
see that the beam search saved a large number of unneeded nodes, as shown by the dotted 

nodes. 
The beam search. algorith?1 can be easily_ mo~i~ied from the breadth-first search algo-

rithm and is illustrated m Algonthm _I 2.5. For s1'.11phc1ty, we do not include the merging step 
here. In Algorithm 12.5, Step 4 obviously requires sorting, which is time-consuming if the 
number wxb is huge. In practice, the beam is usually implemented as a flexible list where 
nodes are expanded if their heuristic functions f(N) are within some threshold (a.k.a., beam 
threshold) of the best node (the smallest value) at the same level. Thus, we only need to 
identify the best node and then prune away nodes that are outside of the threshold. Although 
this makes the beam size change dynamically, it significantly reduces the effort for sorting 
of the Beam-Candidate list. In fact, by adjusting the beam threshold, the beam size can be 
controlled indirectly and yet kept manageable. 

Unlike A' search, beam search is an approximate heuristic search method that is not 
admissible. However, it has a number of unique merits. Because of its simplicity in both its 
search suategy and its requirement of domain-specific heuristic information, it has become 
one of the most popular methods for complicated speech recognition problems. It is particu­
larly attractive when integration of different knowledge sources is required in a time­
synchronous fashion. It has the advantages of providing a consistent way of exploring nodes 
level by level and of offering minimally needed communication between different paths. It 
is also very suitable for parallel implementation because of its breadth-first search nature. 

7 
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ALGORITHM 12.5: THE SEAM SEARCH ALGORITHM 

Step 1: Initialization: Put Sin the OPEN list and cr~ate an initially empty CLOSE list. 
Step 2: If the OPEN list is empty, exit and declare failure. 
Step 3: 'f;/N E OPEN do 

Ja, Pop up node N in the OPEN list, remove it from the OPEN list and put it into the 

CLOSElist. 
3b. If node N is a goal node, exit successfully with the solution obtained by tracing back the 

path along the pointers from N to S. 
3c. Expand node N by applying a successor operator to generate the successor set SS{N'J 

of node N. Be sure to eliminate the successors, which are ancestors of N, from SS(N). 
3d. 'f;fv e SS(N) Create a pointer pointing to N and push it into Beam-Candidate list. 

Step 4: Sort the Beam-Candidate list according to the heuristic function f(N) so that the best 
w nodes can be pushed into the the OPEN list. Prune the rest of nodes in the Beam-Candidate 
list. 
Step 5: Go to Step 2. 

12.2. SEARCH ALGORITHMS FOR SPEECH RECOGNITION 

As describ:d in Chapter 9, the decoder is basically a search process to uncover the word 
sequence W = w1 w2 • •• wm that has the maximum posterior probability P(WIX) for the given 
acoustic observation X = X1X2 ... X,, . That is, 

W = argmax P(W IX)= argmax P(W)P(X I W) = arg max P(W)P(X I W) (12.5) 
• ,. P(X) w 

One obvious way is to search all possible word sequences and select the one with the beSt 
posterior probability score. · 

The unit of acoustic model P(XIW) is not necessary a word model. For large· 
vocabulary speech recognition systems, subword models, which include phonemes, demisyl­
lables, ~d syllables are often used. When subword models are used, the word model 
P(XIW) 1s then bta' d b • • 
. . . 

0 me Y concatenating the subword models according to the pronuncia· 
lion transcnpt1on of the words in a lexicon or dictionary. 

When word models are available, speech recognition becomes a search problem. The 
goal for speech recogn·f • th · the 
• 

1 ion ts us to find a sequence of word models that best descnbes 
mput wavefonn against th d d"'rv 
f h e wor models. As neither the number of words nor the boun w.i 

o eac word or phoneme • th • • to 
d I "th h . m e mput wavefonn is known appropriate search strategies 

ea wi t ese vanable-le h • ' 
When HMM ngt non5lationary patterns are extremely important. 

expanded to t: ~ are used for speech recognition systems, the states in the HMM can be 
speech model;~l~h e 

st
~te~search space in the search. In this chapter, we use HMMs as 0~~ 

• oug the HMM frainework is used to describe the search algorithms. a 
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techniques mentioned in this and the followino chapter can be u d " b 
. . . . e- se 1or systems ased on 

Other modeltng techniques, mcludmg template matchino and neural tw k I " _ . o ne or s. n 1act, many 
search techniques had been mvented before HMMs were applied to speech rec •t· 

HMM · • ogm 10n. 
Moreover, the i s state tr.insmon network is actually general enough to represent the 
general search framework for all modeling approaches. 

12.2.1. Decoder Basics 

The lessons learned from dynamic programming or the Viterbi algorithm introduced in 
Chapter 8 tell us that the exponential blind search can be avoided if we can store some in­
termediate optimal paths (results). Those intermediate paths are used for other paths without 
being recomputed each time. Moreover, the beam search described in the previous section 
shows us that efficient search is possible if appropriate pruning is employed to discard 
highly unlikely paths. In fact, all the search techniques use two strategies: sharing and prun­
ing. Sharing means that intermediate results can be kept, so that they can be used by other 
paths without redundant re-computation. Pruning means that unpromising paths can be dis­
carded reliably without wasting time in exploring them further. 

Search strategies based on dynamic programming or the Viterbi algorithm with the 
help of clever pruning, have been app1ied successfully to a wide range of speech recognition 
tasks [31], ranging from small-vocabulary tasks, like digit recognition, to unconstraint large­
vocabulary (more than 60,000 words) speech recognition. All the efficient search algorithms 
we discuss in this chapter and the next are considered as variants of dynamic programming 
or the Viterbi search algorithm. 

In Section 12.1, cost (distance) is used as the measure of goodness for graph search a!­
gorithms. With Bayes' formulation, searching the minimum-cost path (word ~quence) is 
equivalent to finding the path with maximum probability. For the s~ke of consi5tency, we 
use the inverse of Baves' posterior probability as our objective funcuon. Furthe~ore, loga-
• - . . • I • 1· ti ns That 1s the fol-nthms are used on the inverse posterior probab1hty to avoid mu !1P tea O • ' 

lowing new criterion is used LO find the optimal word sequence W : 

C(W !X)=Jog \ 1 . l =-log(P(W)P(X l W)] 
LP(W)P(X ; W)J 

(12.6) 

W = argmin C(W l X) 
(12.7) 

~-
R - mirror the likelihood for 
or SUnplicity, we also define the following cost measures 10 

c!Coustic models and language models: 
(12.8) 

C(X • WJ=-l~[P<X ' WJJ 

(12.9) 

C(Wj =-lc,g[P<V.')] 
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12.2.2. Combining Acoustic and Language Models 

Although Bayes' equation [Eq. (12.5)] suggests that the acoustic model probability (condi­
tional probability) and language model probability (prior probability) can be combined 
through simple multiplication, in practice some weighting is desirable. For example, when 
HMMs are used for acoustic models, the acoustic probability is usually underestimated. ow­
ing to the fallacy of the Markov and independence assumptions. Combining the language 
model probability with an underestimated acoustic model probability according to Eq. (12.5) 
would give the language model too little weight. Moreover, the two quantities have vastly 
different dynamic ranges particularly when continuous HMMs are used. One way to balance 
the two probability quantities is to add a language model weight L W to raise the language 
model probability P(W) to that power P(W)rn· [4, 25]. The language model weight LW is 
typically detennined empirically to optimize the recognition perfonnance on a development 
set Since the acoustic model probabilities are underestimated, the language model weight 
L W is typically > I . 

Language model probability has another function as a penalty for inserting a new word 
(or existing words). In particular, when a uniform language model (every word has an equal 
probability for any condition) is used, the language model probability here can be viewed as 
purely the penalty of inserting a new word. If this penalty is large, the decoder will prefer 
fewer longer words in general, and if this penaJty is smaJl, the decoder will prefer a greater 
number of shorter words instead. Since varying the language model weight to match the 
underestimated acoustic model probability will have some side effect of adjusting the pen­
alty of inserting a new word, we sometimes use another independent insertion penalty to 
adjust the issue of longer or short words. Thus the language model contribution becomes: 

(12. IO) 

where IP is the insertion penalty (generally O <JP~ 1.0) and N(W) is the number of words 
in sentence W. According to Eq. (12.10), insertion penalty is generally a constant that is 
added to the negative-logarithm domain when extending the search to another new word. In 
Chapter 9, we described how to compute errors in a speech recognition system and intro­
duced three types of error: substitutions, deletions and insertions. Insertion penalty is so 
named because it usually affects only insertions. Similar to language mouel weight, the in­
sertion penalty is determined empirically to optimize the recognition performance on a de­
velopment set. 

12.2.3. Isolated Word Recognition 

With isolated word recognition, word boundaries are known. If word HMMs are available, 
the acou5tic model probability P(XIW) can be computed usino the forward algorithm intro· 
duced in Chapter 8. The search becomes a simple pattern reco;nition problem, and lhe word 
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w with highest forward probability is then chosen as the reco • d 
d d HMM gmze word. When subword 

models are use • wor s can be easily constructed by concate t· . . h na mg correspondmg 
Phoneme HMMs 01 ot er types of subword HMMs according to th d d . . e proce ure escnbed 10 
Chapter 9. 

12.2.4. Continuous Speech Recognition 

Search in continuous ~peech recognition is rather complicated, even for a small vocabulary. 
since the search algorithm has to consider the possibility of each word starting at any arbi­
trary time frame. Some of the earliest speech recognition systems took a two-stage approach 
towards continuous speech recognition, first hypothesizing the possible word boundaries and 
then using pattern matching techniques for recognizing the segmented patterns. However, 
due to significant cross-word co-articulation, there is no reliable segmentation algorithm for 
detecting word boundaries other than doing recognition itself. 

Let's illustrate how you can extend the isolated-word search technique to continuous 
speech recognition by a simple example, as shown in Figure 12. l 0. This system contains 
only two words, w1 and wi. We assume the language model used here is an unifonn unigram 
(P(w1) = P(w2)= 1/2 ). 

It is important to represent the language structures in the same HMM framework. In 
Figure 12.10, we add one starting state S and one collector state C. The starting state has a 
null transition to the initial state of each word HMM with corresponding language model 
probability (1/2 in this case). The final state of each word HMM has a null transition to the 
collector state. The collector state then has a null transition back to the starting state in order 
to allow recursion. Similar to the case of embedding the phoneme (subword) HMMs into the 
word HMM for isolated speech recognition, we can embed the word HMMs for w, and wi 

into a new HMM corresponding to structure in Figure 12.10. Thus, the continuous speech 
search problem can be solved by the standard HMM formulations. 

HMM of 

WI 

HMM of 
Wz 

~ 
r· • • t k with two words 1111 and 

igure 12.10 A simple example of continuous speech recogn1tton as S . h ·tarting state 
wi· A uniform unigram language model is assumed for these wocds. state 15 \: s . 
While state C is a collector state to save fully expanded links between every wo pair. 
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The composite HMMs shown in Figure 12.10 can be viewed as a stochastic finite state 
network with transition probabilities and output distributions. The search algorithm is essen. 
tially producing a match between the acoustic observation X and a path-1 in the stochastic 
finite state network. Unlike isolated _word recognition, continuous speech recognition needs 
to find the optimal word sequence W . Th~ Viterbi algorithm is clearly a natural choice for 
this task since the optimal state sequence S corresponds to the optimal word sequence w. 
Figure 12.11 shows the HMM Viterbi trellis computation for the two-word continuous 
speech recognition example in Figure 12. l 0. There is a cell for each state in the stochastic 
finite state network and each time frame t in the trellis. Each cell CsJ in the trellis can be 
connected to a cell corresponding to time t or t+ 1 and to states in the stochastic finite state 
network that can be reached from s. To make a word transition, there is a null transi!ion 10 
connect the final state of each word HMM to the initial state of the next word HMM that can 
be followed. The trellis computation is done time-synchronously from left to right, i.e., each 
cell for time tis completely computed before proceeding to time r+ 1 . 
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Figure 12.11 HMM trellis for . 
the final state of th d HM con_tinuous speech recognition example in Figure l 2. IO. When 
from it to the initial e wor M 15 reached, a null arc (indicated by a dashed line) is linked 

state of the following word. 

• A path here means a sequence of states and transitions. 
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The state-space is a good indicator of search complexity. Since the HMM representation for 
each word in the lexicon is fixed, the state-space is detennined by the language models. Ac­
cording to Chapter 11, every language model (grammar) is associated with a state machine 
(automata). Such a state machine is expanded to form the state-space for the recognizer. The 
states in such a state machine are referred to as ln11g11age models states. For simplicity, we 
will use the concepts of state-space and language model states interchangeably. The expan­
sion of language model states to HMM states will be done implicitly. The language model 
states for isolated word recognition are trivial. They are just the union of the HMM states of 
each word. In this section we look at the language model states for various grammars for 
continuous speech recognition. 

12.3.1. Search Space with FSM and CFG 

As described in Chapter 8, the complexity for the Viterbi algorithm is O(N2T), where N is 
the total number of states in the composite HMM and Tis the length of input observation. A 
full time-synchronous Viterbi search is quite efficient for moderate tasks (vocabulary S 
500). We have already demonstrated in Figure 12. l l how to search for a two-word continu­
ous speech recognition task with a uniform language model. The unifonn language model, 
which allows all words in the vocabulary to follow every word with the same probability, is 
suitable for connected-digit task. In fact, most small vocabulary tasks in speech recognition 
applications usually use a finite state grammar (FSG) . 

. Figure 12.12 shows a simple example of an FSM. Similar to the process described in 
Secttons 12.2.3 and 12.2.4, each of the word arcs in an FSG can be expanded as a network 
of phoneme (subword) HMMs. The word HMMs are connected with null transitions with 
the grammar state. A large finite state HMM network that encodes all the legal sentences 
can be constructed based on the expansion procedure. The decoding process is achieved by 
performing a time-synchronous Viterbi search on this composite finite state HMM. 

. In practice, FSGs are sufficient for simple tasks. However, when an FSG is made to 
5al!sfy _the constraints of sharing of different sub-grammars for compa~tn~ss and support for 
dynamic modifications, the resulting non-detenninistic FSG is very similar to context-free 
~rammar (CFG) in tenns of implementation. The CFG grammar consists of a set of pr~duc­
hons or rules, which expand nonterminals into a sequence of terminals and nontennmaJs. 
Nonterminals in the grammar tend to refer to high-level task-specific concepts such as dates, 
names. and commands. The tenninals are words in the vocabulary. A grammar also has a 
non-termi I d . . na es1gnated as its start state . 

. Although efficient parsing algorithms, like chart parsing (desc~bed in ~hapter 11 ),_ ~e 
ava1Iabie for CFG, they are not suitable for speech recognition, which require~_ Iefc-to-ng : 
r;Ocessing. A context-free grammar can be fonnulated with a recursive ~Sll~on n~~w:~n 

iN). RTNs are more powerful and complicated than the finite state machines escn e 



614 Basic Search Algorithms 

Chapter 11 because they allow arc labels to refer to other networks as well as words. We use 
Figure 12.13 to illustrate how to embed HMMs into a recursive transition network. 

Figure 12.13 is an RTN representation of the following CFG: 

S➔ NP VP 

NP➔ sam I sam davis 

VP ➔ VERB torn 

VERB ➔ likes I hates 

There are three types of arcs in an RTN, as shown in Figure 12. 13: CAT(x), PUSH (x), 
and POP(x). The CAT(x) arc indicates that x is a terminal node (which is equivalent to a 
word arc). Therefore, all the CAT(x) arcs can be expanded by the HMM network for x. The 
word HMM can again be a composite HMM built from phoneme (or subword) HMMs. 
Similar to the finite state grammar case in Figure 12.12, each grammar state acts as a state 
with incoming and outgoing null transitions to connect word HMMs in the CFG. 

During decoding, the search pursues several paths through the CFG at the same time. 
Associated with each of the paths is a grammar state that describes completely how the path 
can be extended further. When the decoder hypothesizes the end of the current word of a 
path, it asks the CFG module to extend the path further by one word. There may be severaJ 
alternative successor words for the given path. The decoder considers all the successor word 
possibilities. This may cause the path to be extended to generate several more paths to be 
considered, each with its own grammar state. 

/w/ /ti 

------~ 

/silence/ 

/w/ + /ah/ + It/ _____ ___, 
/silence/ 

(optional) 

i 
Seattle's I weather 

r---_B_o_st_o_n'..;;_s_'\,_.J./ population ~ 
Denver's ~ lat itude ~ 

Figure 12.12 An illustration of how to compile a speech recognition task with finite state 
grammar into a composite HMM. 
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PUSH(NP) 
PUSH(VP) 0~ pop 

S: 0~ 
CAT (sam) 

CAT (davis) 

NP: 0 
CAT (Sam) 

CAT 

CAT (likes) CAT (tom) 
pop 

VP: ~ 

CAT (hates) 

Figure 12.13 A simple RTN example with three types of arcs: CAT(x), PUSH (x), POP. 

. Readers should note that the same word might be under consideration by the decoder 
in the context of different paths and grammar states at the same time. For example, there are 
t~o word arcs CAT (Sam) in Figure 12.13. Their HMM states should be considered as dis­
tmct states in the trellis because they are in completely different grammar states. Two differ­
ent states in the trellis also means that different paths going into these two states cannot be 
~erged. Since these two partial paths will lead to different successive paths, the search deci­
sion needs to be postponed until the end of search. Therefore: when embedding HMMs into 
word arcs in the grammar network, the HMM state will be assigned a new state identity, 
alth0ugh the HMM parameters (transition probabilities and output distributions) can still be 
shared across different grammar arcs. 

. Each path consists of a stack of production rules. Each element of the stack also con­
tams the position within the production rule of the symbol that is currently being explored. 
The search graph (trellis) started from the initial state of CFG (state S). When the path needs 
to be extended, we look at the next arc (symbol in CFG) in the production. When the search 
~nters a CAT(x) arc (tenninal), the path gets extended with the terminal, and the HMM trel­
lis computation is perfonned on the CAT(x) arc to match the model x against the acoustic 
data. When the final state of the HMM for x is reached, the search moves on via the null 
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transition to the destination of the CAT(x) arc. When the search enters a PUSH(x) arc, it 
indicates a nontem1inal symbol x is encountered. In effect, the search is about to enter a sub­
network of x~ the. destination of the PUSH(x) arc is stored in a last-in first-out (LIFO) stack. 
When the search reaches a POP arc that signals the end of the current network, the control 
should jump back to the calling network. In other words, the search returns to the state ex­
tracted from the top of the LIFO stack. Finally, when we reach the end of the production rule 
at the very bottom of the stack, we have reached an accepting state in which we have seen a 
complete grammatical sentence. For our decoding purpose, that is the state we want to pick 
as the best score at the end of time frame T to get the search result. 

The problem of connected word recognition by finite state or context-free grammars is 
that the number of states increases enormously when it is applied to more complex gram­
mars. Moreover it remains a challenge to generate such FSGs or CFGs from a large corpus, 
either manually or automatically. As mentioned in Chapter 11, it is questionable whether 
FSG or CFG is adequate to describe natural languages or unconstrained spontaneous lan­
guages. Instead, n-gram language models are often used for natural languages or uncon­
strained spontaneous languages. In the next section we investigate how to integrate various 
n-grams into continuous speech recognition. 

12.3.2. Search Space with the Unigram 

The simplest n-gram is the unigram that is memory-less and depends only on the current 
word. 

II 

P(W) = fI P(w,) (12.11) 
i=l 

Figure 12.14 shows such a unigram grammar network. The final state of each word 
HMM is connected to the collector state by a null transition, with probability 1.0. The col­
lector state is then connected to the starting state by another null transition, with transition 
probability equal to 1.0. For word expansion, the starting state is connected to the initial 
state of each word HM:t-.1 'Jy a null transition, with transition probability equal to the corre­
sponding unigram probability. Using the collector state and starting state for word expansion 
allows efficient expansion because it first merges all the word-ending paths5 (only the best 
one survives) before expansion. It can cut the total cross-word expansion from N2 to N. 

~ In graph search, 3 partial path still under consideration is also referred to as a theory, although we will use patlls 
instead of theories in this book. 
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w, 

P( 
w., 

• 
• 
• 

P(WN) 
WN 

Figure 12.14 A unigram grammar network where the unigram probability is attached as the 
transition probability from starting state S to the first state of each word HMM. 

12.3.3. Search Space with Bigrams 

617 

When the bigram is used, the probability of a word depends only on the immediately preced­

ing word. Thus, the language model score is: 

n 

P(W) = P(w1 I <s>)TT P(w, I w;_1) 
(12.12) 

/:.2 

where <s> represents the symbol of starting of a sentence. 
_Figure 12.15 shows a grammar network using a bigram language model. Because of 

~~ bigram constraint, the merge-and-expand framework for unigram search no long~r ap­
P ies here. Instead, the bigram search needs to perform expand-and-merge. Thus, bigram 
expan • • • N th b. sion is more expensive than unigram expansion. For a vocabulary size , e igram 
would need N2 word-to-word transitions in comparison to N for the unigram. Each word 

transition has a transition probability equal to the corresponding bigram probability. Fortu­
n_ately, the total number of states for bigram search is still proportional to the vocabulary 
s1zeN. 
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Figure 12.15 A bigram grammar network where the bigram probability P(w1 I W;) is at­
tached as the transition probability from word w,. to w1 [ 19]. 

Because the search space for bigram is kept manageable, bigram search can be imple­
mented very efficiently. Bigram search is a good compromise between efficient search and 

effective language models. Therefore, bigram search is arguably the most widely used 
search technique for unconstrained large-vocabulary continuous speech recognition. Particu­
larly for the multiple-pass search techniques described in Chapter 13, a bigram search is 
often used in the first pass search. 

12.3.3.1. Backoff Paths 

When the vocabulary size N is large, the total bigram expansion N 2 can become computa­
tionally prohibitive. As described in Chapter I I, only a limited number of bigrams are ob­
servable in any practical corpora for a large vocabulary size. Suppose the probabilities for 
unseen bigrams are obtained through Katz's backoff mechanism. That is, for unseen bigram 
P(w1 I w), 

P(w1 I w;) = a(w;)P(w1) (12.13) 

where a( w1) is the backoff weight for word w1 . 
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Using the backoff mechanism for unseen bigrams, the bigram expansion can be sig­
nificantly reduced [ 12]. Figure l 2. l 6 shows the new word expansion scheme. Instead of full 
bigram expansion, only ob~~~ved bigrams are c~nnected by direct word transitions with cor­
respondent bigram probab1httes. F~r backoff b1grams, the last state of word w, is first con­
necced to a central backoff node w11h transition probability equal to backoff weight a( w,). 
The backoff node is then connected to the beginning of each word 1111 with transition prob­
ability equal to its corresponding uni gram probability P( w1) . Readers should note that there 
are now two paths from w, to wl for an observed bigram P( w1 1 w,) . One is the direct link 
representing the observable bigram P(wi I w,), and the other is the two-link backoff path 
representing a(w,)P(w1). For a word pair whose bigram exists, the two-link backoff path is 
likely to be ignored since the backoff unigram probability is almost always smaller than the 
observed bigrarn P( wi I w;) . Suppose there are only Nb different observable bigrams, this 
scheme requires Nh + 2N instead of N 2 word transitions. Since under normal circumstance 
Nb « N2 , this backoff scheme significantly reduces the cost of word expansion. 

backoff node 

- I.__ _ w. ___, P(W-1 W,) 
L-__ w_; __ _.I_. 

Figure 12.16 Reducing bigram expansion in a search by using the backoff node. In_ 
ruld

ition to 
· · d b' th last state of word w 1s first con-nonnal b1gram expansion arcs for all observe 1grams, e , . 

nected to a central backoff node with transition probability equal to backoff weight a(w!) • 
• h • t espondmg 

The backoff node is then connected to the beginning of each word wJ wit 
I

s corr 

unigram probability P( w 1) [ 12). 

12.3.4. Search Space with Trigrams 

For a trigram language model, the language model score is: 
n 

P(W) = P( w
1 

l<s> )P( w
2 

l<s>, w1) TIP( w; I W;-2, W;-1) 
;:23 

(12. 14) 
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The search space is considerably more complex, as shown in Figure 12.17. Since the equ· 
!Va­

lence grammar class is the previous two words w, and w1 • the total number of gramm 
states is N 2

• From each of these grammar states, there is a transition to the next word [Jg]_ar 
Obviously, it is very expensive to implement large-vocabulary trigram search given 

the complexity of the search space. It becomes necessary to dynamically generate the tri­
gram search graph (trellis) via a graph search algorithm. The other alternative is to perform a 
multiple-pass search strategy, in which the . first-pass sear~h uses less detailed language 
models, like bigrams, to generate an n-best hst or word lattice, and then a second-pass de­
tailed search can use trigrams on a much smaller search space. Multiple-pass search strategy 
is discussed in Chapter 13. 

Figure 1217 A • . . . I ) is at· • tngram grammar network where the tngram probab1hty P(wi w" wi . 
tached to transition from grammar state word w, • w . to the next word Wi • Illustrated here is a 
two-word vocabulary, so there are four grammar st.:ies in the trigram network [19]. 
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12.3.5. How to Handle Silences Between Words 

Jn continuous speech recognition. there are unavoidable pauses (si·le J b d . , nces etween wor s or 
sentences. The pause 1s often referred to as silence or a non speech e t • • . . . - ven in continuous 
speech recog111tion: Acoustically, the pause is modeled by a silence model" that models 
bac~ground acoustic ~henom~na. Th~ silence model is usually modeled with a topology 
flexible. enough to act:ommod,1te a wide range of lengths, since the duration of a pause is 
arbitrury. 

It can be argu~d that silences are actually linguistically distinguishable events, which 
contribute to prosodic and meaning representation. For example, people are likely to pause 
more often in phrasal boundaries. However. these patterns are so for not well understood for 
unconstrained natural speech (particularly for spontaneous speech). Therefore, the design of 
almost all automatic speech recognition systems today allows silences occurring just about 
anywhere between two lexical tokens or between sentences. It is relatively safe to assume 
that people pause a little bit between sentences to catch breath, so the silences between sen­
tences are assumed mandatory while silences between words are optional. In most systems, 
silence is often modeled as a special lexicon entry with special language model probability. 
This special language model probability is also referred to as silence insertion penalty that is 
set to adjust the likelihood of inserting such an optional silence between words. 

It is relatively straightforward to handle the optional silence between words. We need 
only to replace all the grammar states connecting words with a small network like the one 
shown in Figure 12.18. This arrangement is similar to that of the optional silence in training 
continuous speech, described in Chapter 9. The small network contains two parallel paths. 
One is the original null transition acting as the direct transition from one word to another, 
while the other path will need to go through a silence model with the silence insertion pen­
alty attached in the transition probability before going to the next word. 

One thing to clarify in the implementation of Figure 12.18 is that this_ silence expan­
sion needs to be done for every grammar state connecting words. In the umgram gr~mmar 
network of Figure 12.14, since there is only one collector node to connect words, the silence 
expansion is required only for this collector node. On the other hand, in the bigram_ grammar 
network of Figure 12.15, there is a collector node for every word before expand111g to the 
next word. In this case the silence expansion is required for every collector node. For a vo­
cabulary size I V I thi~ means there are I V I numbers of silence networks in the grammar 

' • b" search we cannot merge 
search network. This requirement lies in the fact that m igram f 

th . al ·1 an then be regarded as part 0 
pa s before expanding into the next word. Option s, ence c f fi • h 
th • needs to be done a ter mis -

e search effort for the previous word so the word expansion . . 
• • d h • two possible pronunc1a-1~g the optional silence. Therefore, we treat eac_h wor a~ a~i:g oint integrates silence in 
lions, one with the silence at the end and one without. This vie P 
the word pronunciation network like the example shown in Figure 12• 19• 

;-;------------ . d ls In that case, there are several silence 
oine researchers extend the context-dependent modeling to silence mo e • • 

models bas •d . c on surrounding contexts. 
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w; ~ 
-------·>0--------> 

/sill 

~ ------ > 
Figure 12.18 Incorporating optional silence (a non-speech event) in the grammar search net­
work where the grammar state connecting different words is laced by two parallel paths. One 
is the original null transition directly from one word to the other, while the other first goes 
through the silence word to accommodate the optional silence. 

For efficiency reasons, a single silence is sometimes used for large-vocabulary con­
tinuous speech recognition using higher order n-gram language model. Theoretically, this 
could be a source of pruning errors.7 However, the error could turn out to be so small as to 
be negligible because there are, in general, very few pauses between word for continuous 
speech. On the other hand, the overhead of using multiple silences should be very minimal 
because it is less likely to visit those silence models at the end of words due to pruning. 

It/ luwl 

Figure 12.19 An example of treating silence as of the pronunciation network of word TWO. 
The shaded nodes represent possible word-ending nodes: one without silence and the other one 
with silence. 

12.4. TIME-SYNCHRONOUS VITERBI BEAM SEARCH 

When ~Ms are used for acoustic models, the acoustic model score (likelihood) used in 
sear~h is by definition the forward probability. That is, all possible state sequences must be 
considered. Thus, 

' Speech recognition errors d .. • . rs which •n bed . . ue to suu--optimal search or heuristic pruning are referred to as pn111111g erro • 
wi escnbcd 1n detail in Chapter 13. 
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(12.15) 

where the summation is to be taken over all possible state sequences s with the word se­
quence W unde_r consideration. Howeve~, under the trellis framework (as in Figure J 2. 11 ), 
more bookkeeping must be performed smce we cannot add scores with different word se­
quence history. Since th~ goal. of decodin? is to uncover the best word sequence, we could 
approximate the summation with the maximum to find the best state sequence instead. The 
Bayes' decision rule, Eq. (12.5), becomes 

(12.16) 

Equation (12. l 6) is often referred to as the Viterbi approximalion. It can be literally 
translated to "the most likely word sequence is approximated by the most likely state se­
queuce." Viterbi search is then sub-optimal. Although the search results by using forward 
probability and Viterbi probability could, in principle, be different, in practice this is rarely 
the case. We use this approximation for the rest of this chapter. 

The Viterbi search has already been discussed as a solution to one of the three funda­
mental HMM problems in Chapter 8. It can be executed very efficiently via the same trellis 
framework. To briefly reiterate, the Viterbi search is a time-synchronous search algorithm 
that completely processes time t before going on to time t+ I. For time t, each state is up­
dated by the best score (instead of the sum of all incoming paths) from all states in at time 
1-1. This is why it is often called time-synchronous Viterbi search. When one update occurs, 
it also records the backtracking pointer to remember the most probable incoming state. At 
the end of search, the most probable state sequence can be recovered by tracing back th~se 
back~.ick.ing pointers. The Viterbi algorithm provides an optimal s_olution for_ hand11ng 
nonlinear time warping between hidden Markov models and acoustic observati~n, ~~rd 

boundary detection and word identification in continuous speech recognition. This unified 
Viterbi search algorithm serves as the basis for all search algorithms as described in the reSt 

of the chapter. 
It • . • • h nous Viterbi search is necessary to clarify the backtracking pointer for time-sync ro . 

for conti • t d • n the opnmal state se-nuous word recognition We are generally not mteres e 1 
quence " • . d • the optimal word sequence 
i . ,or speech recognition.k Instead, we are only mtereste 10 e word 

h
~d1cated by Eq. ( 12.16). Therefore we use the backtrack pointer just to rememberhth d f 
•story ~ th ' be recovered at t e en ° or e current path so the optimal word sequence can h'story 

search. To be more specifi.~ when we reach the final state of a word'. w~ create ad :o the 
nocte conta· • ' . • d d end this history no e . . mmg the word identity and current time m ex an app ode if it 
existing backtrack pointer. This backtrack pointer is then passed onto the successor n 

----------- ---- • ' %·1 r, I in derivin" phoneuc 
scg~ c ~e are not interested in optimal state sequences for ASR, they are very use u 

0 

ntauon wh· h . ,. d loping ASR sys1ems. 
' ,c could provide important infonnat,on ,or eve 
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is the optimal path leading to the successor node for both intra-word and inter-word transi­
tion. The side benefit of keeping this backtrack pointer is that we no longer need to keep the 
entire trellis during the search. Instead, we only need space to keep two successive time 
slices (columns) in the trellis computation (the previous time slice and the current time slice) 
because all the backtracking infonnatiou is now kept in the backtrack pointer. This simplifi­
cation is a significant benefit in the implementation of a time-synchronous Viterbi search. 

Time-synchronous Viterbi search can be considered as a breadth-first search with dy­
namic programming. Instead of performing a tree search algorithm, the dynamic program­
ming principle helps create a search graph where multiple paths leading to the same search 
state are merged by keeping the best path (with minimum cost). The Viterbi trellis is a repre­
sentation of the search graph. Therefore, all the efficient techniques for graph search algo­
rithms can be applied to time-synchronous Viterbi search. Although so far we have 
described the trellis in an explicit fashion-the whole search space needs to be explored 
before the optimal path can be found-it is not necessary to do so. When the search space 
contains an enormous number of states, it becomes impractical to pre-compile the composite 
HMM entirely and store it in the memory. It is preferable to dynamically build and allocate 
portions of the search space sufficient to search the promising paths. By using the graph 
search algorithm described in Section 12. l. l, only part of the entire Viterbi trellis is gener­
ated explicitly. By constructing the search space dynamically, the computation cost of the 
search is proportional only to the number of active hypotheses, independent of the overall 
size of the potential search space. Therefore, dynamically generated trellises are key to heu­
ristic Viterbi search for efficient large-vocabulary continuous speech recognition, as de­
scribed in Chapter 13. 

12.4.1. The Use of Beam 

Based on Chapter 8, the search space for Viterbi search is O(NT) and the complexity is 
O(N2T), where N is the total number of HMM states and Tis the length of the utterance. 
For large-vocabulary tasks these numbers are astronomically large even with the help of 
dynamic programming. In order to avoid examining the overwhelming number of possible 
cells in the HMM trellis, a heuristic search is clearly needed. Different heuristics generate or 
explore portions of the trellis in different ways. 

A simple way to prune the search space for breadth-first search is the beam search de­
scribed in Section 12.1.3.2. Instead of retaining all candidates (cells) at every time frame, a 
threshold Tis used to keep only a subset of promising candidates. The state at time t with the 
lowest cost Dmin is first identified. Then each state at time t with cost > D . + T is dis­
carded from further consideration before moving on to the next time frame t;i". The use of 
the _beai~ alleviates the need to process all the cells. In practice, it can lead to substantial 
savings m computation with little or no loss of accuracy. . 

Al th0ugh beam search is a simple idea, the combination of time-synchronous Viterbi 
aod beam search algorithms produces the most powerful search strategy for large­
vocabulary speech recognition. Comparing path·s with equal length under a time-
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synchronous search framework ma~es beam search possible. That is, for two different word 
sequences W. and Wi , the poste~1or probabilities P(W1 Ix~) and P(W

2 
Ix~) are always 

compared based on the same partial acoustic observation x~. This makes the comparison 
straightforward because the denominator P(x~) in Eq. (12.5) is the same for both terms and 
can be ignored. Since the score comparison for each time frame is fair, the only assumption 
of beam search is that an optimal path should have a good enough partial-path score for each 
1ime frame to survive under beam pruning. 

The time-synchronous framework is one of the aspects of Viterbi beam search that is 
critical to its success. Unlike the time-synchronous framework, time-asynchronous search 
algorithms such as stack decoding require the nonnalization of likelihood scores over fea-
1ure streams of different time lengths. This, as we will see in Section l2.5, is the Achilles' 
heel of that approach. 

The straightforward time-synchronous Viterbi beam search is ineffective in dealing 
with the gigantic search space of high perplexity tasks. However, with a better understand­
ing of the linguistic search space and the advent of techniques for obtaining n-best lists from 
time-synchronous Viterbi search, described in Chapter 13, time-synchronous Viterbi beam 
search has turned out to be surprisingly successful in handling tasks of all sizes and all dif­
ferent types of grammars, including FSG, CFG, and n-gram [2, 14, 18, 28, 34, 38, 44]. 
Therefore, it has become the predominant search strategy for continuous speech recognition. 

12.4.2. Viterbi Beam Search 

To explain the time-synchronous Viterbi beam search in a fonnal way [3 I], we first define 
some quantities: 

D(t;s,; w) = total cost of the best path up to time t that ends in state s, of gram­
mar word state w. 

h(t;s,; w) = backtrack pointer for the best path up to time t that ends in state s, of 
grammar word state w. 

Readers should be aware that w in the two quantities above represents a grammar 
worc1 state in the search space. It is different from just the word identity since the same wo~d 
c~uld occur in many different language model states, as in the trigram search space shown m 
Figure 12.17. 

Th • • I [30] namely intra-ere are two types of dynamic programming (DP) trans1tJon ru es •. . 
;d and inter-word transition. The intra-word transition is just like the Viterbi rule for 

Ms and can be expressed as follows: 

D(t;s, ;w) = min{d(x s Is ·w)+D(t - l;s,-1;w)} 
I' I t-P 

S,-i 

h(t;s,; w) = h(t-1 b . (t· s • w)· w) 
' min , t, ' 

(I 2.17) 

(12.18) 
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where d(x1 .s, I s,_1; w) is the cost associated with taking the transition from state s to 
state s, while generating output observation x,, and bmin (t; s,; w) is the optimal prede~;~sor 
state of cell D(r;s,; w). To be specific, they can be expressed as follows: 

b.,,;,, (t;s,; w) = arg min {d(x, ,s, I s,_1; w) + D(t-I;st-1; w)} 
J,-,. 

(12.19) 

(12.20} 

The inter-word transition is basically a null transition without consuming any observa­
tion. However. it needs to deal with creating a new history node for the backtracking 
pointer. Let's define F(w) as the final state of word HM.M wand /( w) as the initial stare of 
word HMM n·. !\foreover, state T1 is denoted as the pseudo initial state. The inter-word tran­
sition can then be expressed as follows: 

D(r;q;w) = min{logP(w! v) + D(t; F(i·); ,·)} 
T 

(12.21) 

(12.22) 

where i·...,.., = arg !filll {log P(w ! v) + D(t; F( r); \.')} and :: is a link appending operator. 
The time-synchronous Viterbi beam search algorithm assumes thac all the intra-word 

transitions are e,·aluated before inter-word null transitions take place. The same time index 
is used incentionally for inter-word transition since the null lan~ua2e model state transition 
does not consume~ observation vector. Since the initial scate J(w)-for word IDl\i w could 
have a self-transition. the cell D(r;/(w);w) might already have an active path. Therefore, 
we need to perform the follo\\ing check 10 advance the inrer-word transitions. 

ifD(z;rr,w) < D(r;l(w);w) 
(12.23) 

D(r;J(w):w) == D(t; rr, w) and h(r; l(w); w) = h(r; rr, w) 

The rime-synchronous Viterbi be.am search can be summarized as in Algorithm 12-6-
For large-vocabulary s~h recognition, the experimental results show that only a small 
percentage of the entire search space (the beam) needs to be kept for each time intef\·al 1 

without i~creasing error races. Empirically, the ream size bas typically be-en found _t~ ~ 
be:',·ee~ )~ and 1 O'K of the entire searrh space. In Chapter 13 we d~-ribe srrategies 0 

usmg different level of beams for more effectively pruning. 

1,, -... =,. STACK DECODING {A. SR.\.RCH) 

If some reliable heuristics are available to guide the decodin~. the search can be done_ i? a 
depth-first f h" - - rn1S1I12 

. as. 10n around the best path early on. inscead of wastin2 effortS on unpro 10 
path$ via the time-synchronous beam search. Stack decoding rep~nts the best auernp( 
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ALGORITHM 12.6: T!ME·SYNCHRONOUS VITERBI BEAM SEARCH 

Step 1: Initialization: For all the grammar word states w which can start a sentence 
D(0;l(w);w)=0 ' 

h(O; /(w); w) = null 

Step 2: Induction: For time 1 = 1 to T do 
For all active states do 
Intra-word transitions according to Eq. (12.17) and (12.18) 
D(t;s,;w) = min {d(x, ,s, I s,_1; w) + D(t-I;st-1; w)} 

s,.. 

h(t;s,; w) = h(t -1, bmin (t;s,; w); w) 

For all active word-final states do 
Inter-word transitions according to Eq. ( 12.21 ), (12.22) and (12.23) 
D(t;71; w) = mJn {log P(w Iv)+ D(t; F(v); v)} 

h(t; 7]; w) = ( vm.,, I) :: h(I, F( Vrrun ); Vmin) 

if D(t;T]; w) < D(t;l(w); w) 

D(t;l(w);w) = D(t;T];w) and h(t;l(w);w) = h(t;71;w) 

Pruning: Find the cost tor the best path and decide the beam threshold 
Prune unpromising hypotheses 

Step 3: Termination: Pick the best path among all the possible final states of grammar at time 
T • Obtain the optimal word sequence according to the backtracking pointer h(t;T]; w) 

use A* search instead of time-synchronous beam search for continuous speech recognition. 
Unfortunately, as we will discover in this section such a heuristic function h(•) (defined in 
~ection 12.1.3) is very difficult to attain in continuous speech recognition, so search aJgo­
nlhms based on A* search are in general less efficient than time-synchronous beam search. 

Srack decoding is a variant of the heuristic A* search based on the forward algorithm, 
~here the evaluation function is based on the forward probability. It is a tree search aJgo­
n~hm, which takes a slightly different viewpoint than the time-synchronous Viterbi search. 
Time-synchronous beam search is basically a breadth-first search, so it is crucial to control th

e number of all possible language model states as described in Section 12.3. In a typical 
large-vocabulary Viterbi search with n-gram language models, this number is determined by 
the • d. equivalent classes of language model histories. On the other hand, stack deco mg as a 
tree search algorithm treats the search as a task for finding a path in a tree whose branches 
ctcorrespaod to words in the vocabulary V non-terminal nodes correspond to incomplete sen-

nces and • ' Th h tree has a constant br h' tenninal nodes correspond to complete sentences. e searc . 
12 20 i/nc mg factor of 1\11, if we allow every word to be followed by every word• Figure • 

USlrates such a search tree for a vocabulary with three words [J 9]-
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An important advantage of stack decoding is its consistency with the forward­
backward training algorithm. Viterbi search is a graph search, and paths cannot be easily 
summed because they may have different word histories. In general, the Viterbi search finds 
the optimal state sequence instead of optimal word sequence. Therefore, Viterbi approxima­
tion is necessary to make the Viterbi search feasible, as described in Section 12.4. Stack 
decoding is a tree search, so each node has a unique history, and the forward algorithm can 
be used within word model evaluation. Moreover, all possible beginning and ending times 
(shaded areas in Figure 12.21) are considered [24 ). With stack decoding, it is possible to use 
an objective function that searches for the optimal word string, rather than the optimal state 
sequence. Furthermore, it is in principle natural for stack decoding to accommodate long­
range language models if the heuristics can guide the search to avoid exploring the over­
whelmingly large unpromising grammar states. 

A.,~::-----------~ -======:j 
'~ 

~ 

Figure 12.20 A sta k d d • 
c eco mg search tree for a vocabulary size of three f 19). 



Stack Decoding (A"' Search) 
629 

By fo~mul~ting st_ack decoding in. a tree search framework, the graph search algo­
rithms described •~ Section I ~-1 can be directly applied to stack decoding. Obviously, blind­
search methods, like depth-first and breadth-first search, that do not take advamage of the 
goodness measure~nent of how close_ ~'e are gelling to the goal. are usually computationally 
infeasible in practtcal speech recogmtton systems. A~' search is clearly attractive for speech 
recognition, given the hope of a sufficient heuristic function to guide the tree search in a 
favorable direction without exploring too many unpromising branches and nodes. In contrast 
to the Viterbi search. it is not time-synchronous and extends paths of different lengths. 

The search begins by adding all possible one-word hypotheses 10 the OPEN list. Then 
the best path is removed from the OPEN list, and all paths from it are extended, evaluated, 
and placed back in the OPEN list. This search continues until a complete path that is guaran­
teed to be better than all palhs in the OPEN list has been found. 

Unlike Viterbi search, where the acoustic probabilities being compared are always 
based on the same partial input, it is necessary to compare the goodness of partial paths of 
different lengths to direct the A* tree search. Moreover, since stack decoding is done asyn­
chronously, we need an effective mechanism to detennine when to end a phone/word 
evaluation and move on to the next phone/word. Therefore, the heart and soul of the stack 
decoding are clearly in 

I. Finding an effective and efficient heuristic function for estimating the future 
remaining input feature stream and 

2. Determining when to extend the search to the next word/phone. 

• d. Each grid poinl corresponds to a 
Figure 12.21 The forward trellis space for stack deco mg. nts the values contributing to 

. . Th I ded area represe 
trellis cell in the forward computauon. e s '~ word sequence i11,, 11'2, W3, . • • [24 ]. 
the computation of the forward score for the opttmal 
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In the following section we describe these two critical components. Readers will note that 
the solutions to these two issues are virtually the same-using a normalization scheme to 
compare paths of different lengths. 

12.5.1. Admissible Heuristics for Remaining Path 

The key issue in heuristic search is the selection of an evaluation function. As described in 
Section 12.1.3, the heuristic function of the path H N going through node N includes the cost 
up to the node and the estimate of the cost to the target node from node N. Suppose path H.,· 
is going through node Nat time t; then the evaluation for path H N can be expressed as fol­
lows: 

(12.24) 

where g(H~.) is the evaluation function for the partial path of H N up to time t, and 
h(H~r) is the heuristic function of the remaining path from / + 1 to T for path H N. The 
challenge for stack decoders is to devise an admissible function for h( •) . 

According to Section 12.1.3. l, an admissible heuristic function is one that always un­
derestimates the true cost of the remaining path from t + l to T for path H N. A trivially 
admissible function is the zero function . In this case, it results in a very large OPEN list. In 
addition, since the longer paths tend to have higher cost because of the gradually accumu­
lated cost, the search is likely to be conducted in a breadth-first fashion, which functions 
very much like a plain Viterbi search. The evaluation function g( •) can be obtained easily by 
using the HMM forward score as the true cost up to current time t. However, how can we 
find an admissible heuristic function h( •) ? We present the basic concept here ( 19, 35]. 

The goal of h( •) is to find the expected cost for the remaining path. If we can obtain 
the expected cost per frame 1/1 for the remaining path, the total expected cost, (T - t) * 1/f , is 
simply the product of 1/1 and the length of the remaining path. One way to find such ex­
pected cost per frame is to gather statistics empirically from training data. 

1. After the final training iteration, perform Viterbi forced alignment with each 
training utterance to get an optimal time alignment for each word. 

2. Randomly select an interval to cover the number of words ranging from two 
to ten. Denote this interval as [i ... j]. 

3. Compute the average acoustic cost per frame within this selected interval ac­
cording to the following formula and save the value in a set A: 

• Viterbi forced alignment means that the Viterbi is perfom,ed on the HMM model constructed from the kfioWD 
word transcription. The term "forced" is used because the Viterbi alignment is forced to be perfonned on ihe co~-

od I V• ..... . ti d 1· • · • v·de the opll· rect m e • 11e,u1 orce a 1gnment 1s a very useful tool in spoken language processing as 1t can pro 1 

I • ali • "'f~ t purposes, ma state-time gnment with the utterances. This detailed alignment can then be used for w ,eren 
including discriminant training, concatenated speech synthesis, etc. 
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where w, ... ; is the word string corresponding to interval [i ... j]. 

4. Repeat Steps 2 and 3 for the entire training set. 

5. Define 1/lmin and 1/f ,,,,: as the minimum and average value found in set A. 
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(12.25) 

Clearly, 1/lmin should be a good under-estimate of the expected cost per frame for the 
future unknown path. Therefore, the heuristic function h(H?) can be derived as: 

( 12.26) 

Although lj/ min is obtained empirically, stack decoding based on Eq. (12.26) will generally 
find the optimal solution. However, the search using 1/f min usually runs very slowly, since 
Eq. (12.26) always under-estimates the true cost for any portion of speech. In practice, a 
heuristic function like V'cn,: that may over-estimate has to be used to prune more hypotheses. 
This speeds up the search at the expense of possible search errors, because "'"''g should rep­
resent the average cost per frame for any portion of speech. 1n fact, there is an argument that 
one might be able to use a heuristic function even more than 1/f ~ . The argument is that 1/f a,,g 

is derived from the correct path (training data) and the average cost per frame for all paths 
during search should be more than 111 because the paths undoubtedly include correct and , r~• 
mcorrect ones. 

12,5.2. When to Extend New Words 

Since stack decoding is executed asynchronously, it becomes necessary to detect when a 
phone/word ends, so that the search can extend to the next phone/word. If we have a co5t 
measure that indicates how well an input feature vector of any length matches the evaluated 
model sequence, this cost measure should drop slowly for the correct phone/word and rise 
~harply for an incorrect phone/word. In order to do so, it implies we must be able to compare 

YP01heses of different lengths. 
The first thing that comes to mind for this cost measure is simply the forwa~d co~t 

-logP(x' I t) . . . • n·c observation x 
b i ,s, 1111 , which represents the hkehhood of producing acous . 1 

ased on d • • d fi ·tely not smtable 
be wor sequence wk and ending at state s . However, it is e mi 

cau~e • • 1 ' Th· es the search 
1 1118 deemed to be smaller for a shorter acoustic input vector. is caus 
0 almost al . • rt· errors Therefore, 
we ways prefer short phones/words resulting m many mse wn •. d b e 

rnust d • ' • d rty descnbe a ov • ,.,_ enve some normalized score that satisfies the desire prope 
111enonna1· A 6 24]· ized cost C( x(, s, I wt) can be represented as follows [ • • 

C(,;,,, I w:) =-log : P(x; •;: I w/)] = -log[P(x; ,s, I w/)] + 1 logy 

Wherer(o . 
< r < l ) 1s a constant normalization factor. 

(12.27) 
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Suppose the searc~ is now evaluating a particular word W.1- ; we can define Cmin ~t) as 
the minimum cost for C(x: ,s, I w,t) for all the states of w• , and. am:,.,; (I) as the maximum 
forward probability for P(x:. s1 I wt) for all the states of wk • That 1s, 

( 12.28) 

am,. (t) = 1216~ [ P(x; I wt ,s,)] (12.29) 

We want C . (t) to be near O just as long as the phone/word we are evaluating is the correct 
one and wt'11ave not gone beyond its end. On the other hand, if the phone/~ord we are 
evaluating is the incorrect one or we have already passed its end, we want the Cmin (t) to be 
rising sharply. Similar to the procedure of finding the admissibleA heuristic function, we can 
set the normalized factor y empirically during training so that Cm;n(T) = 0 when we know 
the correct word sequence W that produces acoustic observation sequence x; . Based on Eq. 
( 12.27), y should be set to: 

(12.30) 

Figure 12.22 shows a plot of Cmin (t) as a functiof!_ of time for correct match. In addi­
tion, the cost for the final state FS(w1) of word w* , C(x;,s1 = FS(w*) I w,*), which is the 
score for wk -ending path, is also plotted. There should be a valley centered around O for 
C(x; ,s, = FS(w*) I wt), which indicates the region of possible ending time for the correct 
phone/word. Sometimes a stretch of acoustic observations may match better than the aver­
age cost, pushing the curve below 0. Similarly, a stretch of acoustic observations may match 
worse than the average cost, pushing the curve above 0. 

There is an interesting connection between the normalized factor r and the heuristic 
estimate of the expected cost per frame, 1/1, defined in Eq. (12.25). Since the cost is simply 
the logaiithm on the inverse posterior probability, we get the following equation: 

(12.31) 

_Equation (12.31) reveals that these two quantities are basically the same estimate. In 
fact, if we subtract the heuristic function f(H~.) defined in Eq. (12.24) by the constant 
lo~ ( Y), we get exactly the same quantity as the one defined in Eq. (12.27). Decisions on 
which path to extend first based on the heuristic function and when to extend the search to 
the next word/phone are basically centered on comparing partial theories with different 
lengths. Therefore, the normalized cost C(x; ,s, I wt) can be used for both purposes. 

. Based on the connection we have established, the heuristic function, f(H~), which 
e~tm;iates 1?e goodness of a path is simply replaced by the norrnaJized evaluation function 
C(x, ,s, I w, ) • If we plot the un-nonnalized cost C(x; ,s, I wt) for the optimal path and other 
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Figure 12.22 cmin (t) and C(x: ,s, = FS(wk) I wt) as functions of time,. The valley region 

represents possible ending times for the correct phone/word. 
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competing paths as the function time t, the cost values increase as paths get longer (illus­
lr~ted in Figure 12.23) because every frame adds some non-negative cost to the overall cost. 
ft is clear that using un-normalized cost function C(x' s I w*) generally results in a breadth-ft I' I I • 

rSI search. What we want is an evaluation that decreases slightly along the optimal path, 
~d ~opefupy increases along other competing paths. Clearly, the normalized cost function 

C(x.,s, I w, ) fulfills this role, as shown in Figure 12.24. 

optimal path 

---

F· th mpeting paths as a 
•gu~e 12,23 Unnonnalized cost C(x:,s, I w~) for optimal pach and 

O 
er co 

function of time. 
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---. 
optimal path 

Figure 12.24 Nonnalized cost C(x;,s, I wt) for the optimal path and other competing paths as 
a function of time. 

Equation (12.30) is a context-less estimation of the normalized factor, which is also re­
ferred to as zero-order estimate. To improve the accuracy of the estimate, you can use con­
text-dependent higher-order estimates like [24): 

Y; =r(x,.) 

Y, = y(X;, X1-1) 

r, =r(x;,x,_, , ... ,xi-!,+1) 

first-order estimate 

second-order estimate 

n-order estimate 

Since the nonnalized factor r is estimated from the training data that is also used to 

train the parameters of the HMMs, the normalized factor Y; tends to be an overestimate. ~s 
a result, amax (t) might rise slowly for test data even when the correct phone/word model 15 

evaluated. This problem is alleviated by introducing some other scaling factor 8 < l so !hat 
amax (I) falls slowly for test data for when evaluating the correct phone/word model. Toe 
best solution for this problem is to use an independent data set other than the training data 10 

derive the normalized factor r, . 

12.5.3. Fast Match 

E 'th . . . . d' time for a 
ven w1 an efficient heunstlc function and mechanism to detennme the en mg . • 

phone/word, stack decoding could still be too slow for large-vocabulary speech r~cognia;: 
tasks: ~s desc~bed in Section 12.5 .1, an effective underestimated heuristic funcu~~:;~ti­
rema.mmg portion of speech is very difficult to derive. On the other hand, a heu ord 
mate for the immediate short segment that usually corresponds to the next phone ordwuces 

b • 'bl • • • thatre may e ,easi e to attam. In this section, we describe the fast-match mechanism 
phone/word candidates for detailed match (expansion) bpatll• 

I h • d th best su 
n async ronous stack decoding, the most expensive step is to exten e entire 1JO· 

Fo~ ~ larg~-vocabulary search, it implies the calculation of P(x~+k I w) over 
th

~e possible 
ca u ary size IV 1- It is desirable to have a fast computation to quickly reduce 
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words starting at a given time t to reduce the search space. This process is often referred to 
asfast match (15, 35). In fa_ct, fast match is crucial to stack decoding, of which it becomes 
an integral part. Fast match is a method for the rapid computation of a list of candidates that 
constrain successive search phases. The expensive detailed match can then be performed 
afler fast match. In this sense, fast match can be regarded as an additional pruning threshold 
10 meet before new word/phone can be started. 

Fast match, by definition, needs to use only a small amount of computation. However, 
it should also be accurate enough not to prune away any word/phone candidates that partici­
pate in the best path eventually. Fast match is, in general, characterized by the approxima­
tions that are made in the acoustic/language models in order to reduce computation. There is 
an obvious trade-off between these two objectives. Fortunately, many systems [15] have 
demonstrated that one needs to sacrifice very little accuracy in order to speed up the 
computation considerably. 

Similar to admissibility in A. search, there is also an admissibility property in fast 
match. A fast match method is called admissible if it never prunes away the word/phone 
candidates that participate in the optimal path. In other words, a fast match is admissible if 
the recognition errors that appear in a system using the fast match followed by a detailed 
match are those that would appear if the detailed match were carried out for all 
words/phones in the vocabulary. Since fast match can be applied to either word or phone 
level, as we describe in the next section, we explain the admissibility for the case of word­
level fast match for simplicity. The same principle can be easily extended to phone-level fast 
match. 

Let V be the vocabulary and C(X I w) be the cost of a detailed match between input X 
and word w. Now F(XI w) is an estimator of C(X I w) that is accurate enough and fast to 
compute. A word list selected by fast match estimator can be attained by first computing 
f(XI w) for each word w of the vocabulary. Suppose w6 is the word for which the fast 
match has a minimum cost value: 

wb =argmin F(X I w) (12.32) 
~El' 

~fter computing C(X I wb) , the detailed match cost for wb , we fonn the fast match word 
hs~ A, from the word w in the vocabulary such that F( XI w) is no greater than C(X I wb) • 
In other words, 

A={we VI F(Xj w) ~C(XI w,.)} 
(12.33) 

Similar to the admissibility condition for A' search [3, 33], the faSt match ~Slimator 
F(•) conducted in the way described above is admissible if and on_ly if F(X I w) is always 
an under-estimator (lower bound) of detailed match C(X I w) • That is, 

F(XI w) :5 C(X I w) VX, w 
(12.34) 

~ proof is straightforward. If the word we has a l~wer detailed match cost C(X I wJ 'you 
Prove that it must be included in the fast match hst A because 
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Therefore, based on the definition of A, we e A. 
Now the task is to find an admissible fast match estimator. Bahl et al. [6] proposed one 

fast match approximation for discrete HMMs. As we will see later, this fast match approxi­
mation is indeed equivalent to a simplification of the HMM structure. Given the HMM for 
word w and an input sequence x; of codebook symbols describing the input signal, the 
probability that the HMM w produces the VQ sequence x; is given by (according to Chap­
ter 8): 

P(xi I w) = ,,.~JP..(s, ,s,, .•• s, >(v. (x, Is,>] (12.35) 

Since we often use Viterbi approximation instead of the forward probability, the equation 

above can be approximated by: 

P(xi I w) as}~~. [ P.( s., s,, .. . s,) fv. (x, Is,)] (12.36) 

The detailed match cost C(X I w) can now be represented as: 

C(X I w) =,/!:(",,{-log[ P.(s.,s,, .. . s, )u P.(x, Is,)]} 
(12.37) 

Since the codebook size is finite, it is possible to compute, fo~ each model ~;t~e :i:~ 
est output probability for every VQ label c among all states s1c m HMM w. 

m,.(c) to be the following: 

m .(c) =maxPw(c !s.t )=maxb1c(c) 
~ ~ E tt' ~EW 

We can further define the qmax (w) as the m~ximum state sequence with respect to T, i.e., the 

maximum probability of any complete path m HMM w. 

q (w) = max [P,..(s"s2, ... sr )] 
max r 

(12.38) 

(12.39) 

. F(A I w) as the following: 
Now let's define the fast match esumator 

F(~ I w) =-log[qmax(w)fl m..,(x,)] 
1=1 

(12.40) 

X I ) is admissible based on Eq. 

I 
. to show the fast match estimator F(X I w) ~ C( w 

t 1s easy 
(12.38) to Eq. (12.40). 
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Figure 12.25 The equivalent one-state HMM con-esponding to fast match computation defined 
in Eq. (12.40) [ 15]. 
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The fast match estimator defined in Eq. ( 12.40) requires T + I additions for a vector se­
quence of length T. The operation can be viewed as equivalent to the forward computation 
with a one-state HMM of the form shown in Figure 12.25. This correspondence can be in­
terpreted as a simplification of the original multiple-state HMM into such a one-state HMM. 
It thus explains why fast match can be computed much faster than detailed match. Readers 
should note that this HMM is not actually a true HMM by strict definition, because the out­
put probability distribution mw(c) and the transition probability distribution do not add up 
1oone. 

The fast match computation defined in Eq. ( I 2.40) discards the sequence infonnation 
with the model unit since the computation is independent of the order of input vectors. 
Therefore, one needs to decide the acoustic unit for fast match. In general, the longer the 
unit, the faster the computation is. and, therefore, the smaller the under-estimated cost 
F(X I w) is. It thus becomes a trade-off between accuracy and speed. 

Now let's analyze the real speedup by using fast match to reduce the vocabulary V to 
the list A, followed by the detailed match. Let IVl and I A I be the sizes for the vocabulary V 
and the fast match short list A Suppose I and 1d are the times required to compute one 
fast match score and one detaiied match s~ore for one word, respectively. Then, the total 
time required for the fast match followed by the detailed match is t I IV I +td _I A I, whereas 
the time required in doing the detailed match alone for the entire vocabulary is td IV I- The 
speed-up ratio is then given as follows: 

I (12.41) 

(// +!Al] 
Id IV I 

We h maller than !VI to have a sig-
. need '1 to be much smaller than t and I A I to be muc s . · E (12 40) 

n1ficam d d • 'ble fast match esumator m q. • • 
th speed-up using fast match. Using our a missi . d f N2T for C(X I w) 

e time co 1 • • ~ F(X I w) is T mstea o ' 
Wher . mp ex1ty of the com~utauon ~r . odel. Therefore, the tJ!td saving 
• e N is the number of states m the detatled acouStlC m 
ISabout N 2 

• I V1 one needs a very accurate fast 
rn In general, in order to make I A I much smaller than ' ft 

O 
relax the constraint of 

atch • Th' ·s why we o e 
adnus ~s_tI_mator that could result in t 1 .""' Id • 

15 1 In ractice, most real-time speech 
reco 5'.~tlity, although it is a nice principle to adher~ t?-ilit p rinciple with the fast match. 
p &nuion systems don't necessarily obey the admisSib Y/ [361 used several techniques 
or example, Bahl et al. [lOJ, Laface et al., [22} and Roe et a ·• 
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to construct off-line groups of acoustjcaJly similar words. ~nned with this grouping, they 
can use an aggressive fast match to select only a very short hst of word~, and words acousti­
cally similar to the words in this_ list are added to fom, the short word list A_ for further de. 
tailed match processing. By domg so, they are able. to report a very ef~c1~nt fast match 
method that misses the correct word only 2% of the ume. :When non-ad1mss1ble fast match 
is used, one needs to minimize the additional search error introduced by fast match empiri-

cally. 
Bahl et al. [6] use. a one-state HMM as their fast match units and a tree-structure lexi-

con similar to the lexical tree structures introduced in Chapter 13 to construct the short word 
list A for next-word expansion in stack decoding. Since the fast match tree search is also 
done in an asynchronous way, the ending time of each phone is detected using normalized 
scores similar to those described in Section 12.5.2. It is based on the same idea that this 
normalized score rises slowly for the correct phone, while it drops rapidly once the end of 
phone is encountered (so the model is starting to go toward the incorrect phones). During the 
asynchronous lexical tree search, the unpromising hypotheses are also pruned away by a 
pruning threshold that is constantly changing once a complete hypothesis (a leaf node) is 
obtained. On a 20,000-word dictation task, such a fast match scheme was about I 00 times 
faster than detailed match and achieved reaJ-time perfom,ance on a commercial workstation 
with only 0.34% increase in the word error rate being introduced by the fast match process. 

12.5.4. Stack Pruning 

Even with efficient heuristic functions, the mechanism to determine the ending time for 
phone/word, and fast match, stack decoding might still be too slow for large-vocabulary 
speech recognition tasks. A beam within the stack, which saves only a small number of 
promising hypotheses in the OPEN list, is often used to reduce search effort. This stack 
pruning is very similar to beam search. A predetermined threshold E is used to eliminate 
hypotheses whose cost value is much worse than the best path so far. 

. Both fa~t match and stack pruning could introduce search errors where the eventual 
optimal palh _1s_ thrown away prematurely. However, the impact could be reduced to a mini­
mum by e~pmcally adjusting the thresholds in both methods. 

The •~plementation of stack decoding is, in general more complicated, particularly 
when some inevitable • • . ' ffi • t . prumng strategies are incorporated to make the search more e icien • 
Tf~e d!fficultr of _devising both an effectively admissible heuristic function for h(•) and an 
e 1ect1ve est1matton of 1· • · • d th 
d norrna izatton factors for boundary determination has hm1te e 

a vantage that stack d d h . . • . 
h . . eco ers ave over Viterbi decoders. Unlike stack decoding, 1tme 

sync ronous Vtterb1 beam s h 'th ut 
heun·sti·c d 

1 
. . earc can use an easy comparison of same-length path wi 0 

e ermmat1on of wo db d • th ·m-
ple and uni'fied " r oun anes. As described in the earlier sections, ese SJ 

,eatures of Vite b. b . arious 
sound techniques to im r r 1 ~am search allow researchers to incorporate v . bi 
Beam search . p ave the efficiency of search. Therefore time-synchronous Viter 

enJoys a much b d . . ' . the 
principle of stack d ct· . roa er popularity m the speech community. However, d 

eco mg 1s esse t' J • A we e-scribe in Chapter 13 k n 18 particularly for n-best and lattice search. s 
' stac decoding plays a very crucial pat1 in multiple-pass search strate· 
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gies for 11-best and !a~tice search because the early pass is able to establish a near-perfect 
estimate of the remarnrng path. 

12.s.s. Multistack Search 

Even with the help of normalized factor y or heuristic function Ii(•), it is still more effec­
tive to compare hypotheses of the same length than those of different lengths, because hy­
potheses with the same length are compared based on the true forward matching score. 
Inspired by the time-synchronous principle in Viterbi beam search, researchers (8, 35 J pro­
pose a variant stack decoding based on multiple stacks. 

Multistack search is equivalent to a best-first search algorithm running on multiple 
siacks time-synchronously. Basically, the search maintains a separate stack for each time 
frame t, so it never needs to compare hypotheses of different lengths. The search runs time­
synchronously from left to right just like time-synchronous Viterbi search. For each time 
frame t, multistack search extracts the best path out of the t-stack, computes one-word ex­
tensions, and places all the new paths into the corresponding stacks. When the search fin­
ishes, the top path in the last stack is our optimal path. Algorithm 12. 7 illustrates the 
multistack search algorithm. 

This time-synchronous multistack search is designed based on the fact that by the time 
the I

th stack is extended, it already contains the best paths that could ever be placed into it. 
This phenomenon is virtually a variant of the dynamic programming principle introduced in 
Chapter 8. To make multistack more efficient, some heuristic pruning can be applied to re­
duc:e the computation. For example, when the top path of each stack is extended for one 
more word, we could only consider extensions between minimum and maximum duration. 
On the other hand, when some heuristic pruning is integrated into the multistack search, one 
might need to use a small beam in Step 2 of Algorithm 12.7 to extend more than just the beSt 

path to guarantee the admissibility. 

ALGORITHM 12. 7: MUL TISTACK SEARCH 

Step 1: Initialization: for each word v in vocabulary V 
for t = I, 2, .. . , T 

Compute C(x; Iv) and insert it to rth stack 
8tep 2: Iteration: for t = 1, 2, ... , T - I 

Sort the l" stack and pop the top path C(x; I wt) out of the stack 

for each word v in vocabulary v 
for r == t + 1,t + 2, .. . ,T 
E r I k+l) xtend the path C(x; I w;) by word v to get C(x, w, 

where w;+1 = wt II v and II means string concatenation 

Place C(x~ I w;+1) in -r'" stack 
step 3: Termination: Sort the T'" stack and the top path is the optimal word sequence 
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12.6. HISTORICAL PERSPECTIVE AND FURTHER READING 

s arch has been one of the most important topics in artificial intelligence since the origins of 
thee field. It plays the central role in general problem solving [29] an~ computer games. [43], 
Nilsson's Principles of Artificial Intelligence [32] and Barr and Fe1genbaum's The Hand­
book of Artificial Intelligence [11] contain a comprehensive introduction to state-space 
search algorithms. A* search was first proposed by Hart et al. [ 17]. A* was thought to be 
derived from Dijkstra's algorithm [13] and Moore's algorithm [27]. A* search is similar to 
the branch-and-bound algorithm [23, 39], widely used in operations research. The proof of 
admissibility of A* search can be found in [32]. 

The application of beam search in speech recognition was first introduced by the 
HARPY system (26]. It wasn't widely popular until BBN used it for their BYBLOS system 
[37]. There are some excellent papers with detailed description of the use of time­
synchronous Viterbi beam search for continuous speech recognition [24, 31 ]. Over the years, 
many efficient implementations and improvements have been introduced for time­
synchronous Viterbi beam search, so real-time large-vocabulary continuous speech recogni­
tion can be realized on a general-purpose personal computer. 

On the other hand, stack decoding was first developed by IBM [9]. It is successfully 
used in IBM's large-vocabulary continuous speech recognition systems [3, 16]. Lacking a 
time-synchronous framework, comparing theories of different lengths and extending theo­
ries are more complex as described in this chapter. Because of the complexity of stack de­
coding, far fewer publications and systems are based on it than on Viterbi beam search [ I 6, 
19, 20, 35]. With the introduction of multistack search [8], stack decoding in essence has 
actually come very close to time-synchronous Viterbi beam search. 

Stack decoding is typically integrated with fast match methods to improve its effi­
ciency. Fast match was first implemented for isolated word recognition to obtain a list of 
potential word candidates [5, 7]. The paper by Gopalakrishnan et al. [15] contains a compre­
?ensive ~escription of fast match techniques to reduce the word expansion for stack decod­
ing. Be_s1des the fast match techniques described in this chapter, there are a number of 
alte~ativ~ approaches [5, 21, 41]. Waast's fast match [41], for example, is based on a binary 
classificati?n tree built automatically from data that comprise both phonetic transcription 
and acousl!c sequence. 
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CHAPTER 1 3 

Large-Vocabulary Search Algorithms 

0 • t Chapter 1~ discussed the basic search tech­
~ques_ ?r speech recognition. However, the search complexity for large-vocabulary speech 
d cog_~it,on with high-order language models is still difficult to handle. In th.is chapter we 
w:5:~ e efficient search techniques in the context of time-synchronous Viterbi beam search, 
W ,c bec?mes the choice for most speech recognition systems because it is very efficient. 
t ~ u~e Microsoft Whisper as our case study to illustrate the effectiveness of various search 
ec niqu_es. Most of the techniques discussed here can also be applied to stack decoding. 

th ~llh the help of beam search, it is unnecessary to explore the entire search space or 
k e e~tire trellis. Instead, only the promising search state-space needs to be explored. Please 
eep in mind the distinction between the implicit search graph specified by the grammar 

network and the explicit partial search graph that is actually constructed by the Viterbi beam 
search algorithm. 

In th ' • • " l is chapter we first introduce the most critical search organ1zatron ,or arge-
vocabulary speech recognition-tree lexicons. Tree lexicons significantly reduce potential 
search sp • · I d t ace, although they introduce many practical problems. In part1cu ar, we nee o 
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bl S Such as reentrant lexical trees, factored language mode] probabilities sub address pro em . • • 
tree optimization, and subtree poly~orph1sm. . . . 

Various other efficient techniques also are introduced. Most of these techniques aim 
for clever pruning with the hope of sparing t?e correct paths. F~r more effective pruning, 
different layers of beams are usually use~. Wh~le_fast match techniques ?escribed in Chapter 
12 are typically required for stack decoding, s1m1lar concepts_ and techniques ~an be applied 
to Viterbi beam search. In practice, the look-ahead strategy 1s equally effective for Viterbi 

beam search. 
Although it is always desirable to use all the knowledge sources (KSs) in the search 

algorithm, some are difficult to integrate into the left-to-right time-synchronous search 
framework. One alternative strategy is to first produce an ordered list of sentence hypotheses 
(a.k.a. n-best list), or a lattice of word hypotheses (a.k.a. word lattice) using relatively inex­
pensive KSs. More expensive KSs can be used to rescore the n-best list or the word lattice to 
obtain the refined result. Such a multipass strategy has been explored in many large­
vocabulary speech recognition systems. Various algorithms to generate sufficient 11-best lists 
or the word lattices are described in the section on multipass search strategies. 

Most of the techniques described in this chapter rely on nonadmissible heuristics. 
Thus, it is critical to derive a framework to evaluate different search strategies and pruning 
parameters. 

13.1. EFFICIENT MANIPULATION OF A TREE LEXICON 

The lexicon entry is the most critical component for large-vocabulary speech recognition, 
since the search space grows linearly along with increased linear vocabulary. Thus an effi­
cient framework for hand1ing large vocabulary undoubtedly becomes the most critical issue 
for efficient search performance. 

13.1.1. Lexical Tree 

~e searc~ space for n-gram discussed in Chapter 12 is organized based on a straightforward 
hnear lexicon, i.e., each word is represented as a linear sequence of phonemes, independent 
of 0ther words. For example, the phonetic similarity between the words task and tasks is not 
leveraged. In a large-vocabulary ~yst?r.1, many words may share the same beginning pho· 
nemes. A tree structure is a natural representation for a large-vocabulary lexicon, as many 
phonemes can be shared t 1· • • I t ee based 

. 0 e immate redundant acoustic evaluations. The lex1ca r • 
search 1s thus essential ~ b ·1ct· 1 • or ui mg a real-time large-vocabulary speech recognizer. 

'. The term real-time means the decoc1· . ce rhe decod· 
mg process can take I mg process takes no longer than the duration of the speech. Sin_ . neous 

P ace as soon as th h "d I ioswntu responses after Speake ti . h • . e speec starts, such a real-time decoder can prov1 e rea 
rs 1rus talking. 
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,.., 

le/ 

,.., ,.., ,.., 

,.., ,.., W 2 :: label 

W ~=label 

Figure 13.1 An example of a lexical tree, where each branch corresponds to a shared phoneme 
and the leaf corresponds to a word. 
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Figure 13.1 shows an example of such a lexical tree, where common beginning pho­
nemes are shared. Each leaf corresponds to a word in the vocabulary. Please note that an 
extra null arc is used to fonn the leaf node for each word. This null arc has the following 
two functions: 

I. When the pronunciation transcription of a word is a prefix of other ones, the 
null arc can function as one branch to end the word. 

2. When there are homophones in the lexicon, the null arcs can function as lin­
guistic branches to represent different words such as two and to. 

The advantage of using such a lexical tree representation is obvious: it can effectively 
reduce the state search space of the trellis. Ney et al. (32] reported that a lexical tree repre­
sentation of a 12,306-word lexicon with only 43,000 phoneme arcs had a saving of a factor 
of 2•5 over the linear lexicon with t 00,800 phoneme arcs. Lexical trees are also referred t~ 
as prefix trees, since they are efficient representations of lexicons with sharing among Iext­
: .1 entries that have a common prefix. Table 13.1 shows the distribution of phoneme arcs for 

15 
~2•306-word lexical tree. As one can see, even in the fifth level the number of phoneme 

arcs ts only about one-third of the total number of words in the lexicon. 

Table 13 1 0 . . . . h ne arc for a 12,306-
• tstnbut1on of the tree phoneme arcs and acuve tree P one, 

Word lexic · on using a lexical tree representation (32]. -
Level 4 s 6 c.7 - 1 2 3 

~nemearcs 28 331 )511 3116 4380 4950 29.200 

-~ge active arcs 470 329 178 206 
23 233 485 
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The saving by using a lexical tree is substantial, because it not only results in consid­
erable memory saving for representing .state-search space but also saves tr~m~ndous time by 
searching far fewer potential paths. Ney et al. [321 report tha~ a tree o:gamzat10~ of the lexi­
con reduces the total search effort by a factor of 7 over the hnear lexicon organization. This 

• is because the lion's share of hypotheses during a typical large-vocabulary search is on the 
first and second phonemes of a word. Haeb-Umbach et al. [23] report that for a 12,306-word 
dictation task, 79% and I 6% of the state hypotheses are in the first and second phonemes, 
when analyzing the distribution of the state hypotheses over the state position within a word. 
Obviously, the effect is caused by the ambiguities at the word boundaries. The lexical tree 
representation reduces that effort by evaluating common phonetic prefixes only once. Table 
13.1 also shows the average number of active phoneme arcs in the layers of the lexical tree 
[32]. Based on this table, you can expect that the overall search cost is far less than the size 
of the vocabulary. This is the key reason why lexical tree search is widely used for large­
vocabulary continuous speech recognition systems. 

The lexical tree search requires a sophisticated implementation because of a funda­
mental deficiency--a branch in a lexical tree representation does not correspond to a single 
word with the exception of branches ending in a leaf This deficiency translates to the fact 
that a unique word identity is not determined until a leaf of the tree is reached. This means 
that any decision about the word identity needs to be delayed until the leaf node is reached, 
which results in the following complexities. 

• Unlike a linear lexicon, where the language model score can be applied when 
starting the acoustic search of a new word, the lexical tree representation has 
to delay the application of the language model probability until the leaf is 
reached. This may result in an increased search effort, because the pruning 
needs to be done on a less reliable measure, unless a factored language model 
is used, as discussed in Section I 3 .1.3. 

• Because of the delay of language model contribution by one word, we need to 
k~ep a separate copy of an entire lexical tree for each unique language model 
history. 

13.1.2. Multiple Copies of Pronunciation Trees 

A simp!e_ lexical tree is sufficient if no language model or a unigram is used. This is because 
the dec1s1on at time r d d ram . epen s on the current word only. However for higher-order n-g 
models, the lmguistic t t ' . f ch 
I s a e cannot be determined locally. A tree copy is reqmred or ea. 
anguage model state Fo b' . . d nus • r igrams, a tree copy 1s reqmred for each predecessor wor • 

may seem to be astonish· b abu-
1 . F mg, ecause the potential search space is increased by the voe 
ary size. ortunately e • · re-

qu . d b .' xpenmental results show only a small number of tree copies are 
ue , ecause efficient • 1 [321 

report that th prunmg can eliminate most of the unneeded ones. Ney et a • 
e search effort • b" . . h igrafll usmg 1grams 1s mcreased by only a factor of 2 over t e un 
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Se In general, when more detailed (better) acoustic and/or language d 
1 ca • . . mo e s are used the 

effect of a potentially increased search space is often compensated by a more focused b~am 
earch from the use of more accurate models. In other words although th t t" h s • . . , e s a 1c searc 

space might increase s1gn1fi~antly by usmg more accurate models, the dynamic search space 
an be under control (sometimes even smaller), thanks to improved evaluation "u t· c . [ 9 2 1 nc 10ns. 

To deal with tree copies 1 , 3, 37}, you can create redundant subtrees. When cop· s 
d d• b" ie 

of lexical trees are use to 1sam 1guate active linguistic contexts, many of the active state 
hypolheses correspond to the same redundant unigram state. due to the postponed applica­
tion of language models. To apply the language model sooner, and to eliminate redundant 
unigram state computations, a successor tree, I';_, can be created for each linguistic context i. 
r encodes the nonzero n-grams of the linguistic context i as an isomorphic subgraph of the 
u~igram tree, TQ. Figure 13.2 shows the organization of such successor trees and unigram 
tree for bigram search. For each word w a successor tree, T.. is created with the set of suc­
cessor words that have nonzero bigram probabilities. Suppose u is a successor of w; the bi­
gram probability P(u I w) is auached to the transition connecting the leaf corresponding to u 
in the successor tree T..,, with the root of the successor tree T,, . The unigram tree is a full­

size lexical tree and is shared by all words as the back-off lexical tree. Each leaf of the uni­
gram tree corresponds to one of IVI words in the vocabulary and is linked to the root of its 
bigram successor tree ( T,,) by an arc with the corresponding unigram probability P(u) . The 
backoff weight, cx(u) , of predecessor u is attached lo the arc which links the root of succes­
sor tree r. to the root of the unigram tree. 

a(u) 

bigram successor 
trees 

r ... 

T,. 

. . trees for bigram search (13]. 
Figure 13.2 Successor trees and unigram 
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A careful search organiz~tion is requi.red to avoid computational overhead and to 
guarantee a linear time complexity for explonng state hypotheses. In the following sectio 
we describe techniques to achieve efficient lexical tree recognizers. These techniques i~~ 
elude factorization of language model probabilities, tree optimization, and exploiting subtree 
dominance. 

13.1.3. Factored Language Probabilities 

As mentioned in Section 13. l .2, search is more efficient if a detailed knowledge source can 
be applied at an early stage. The idea of factoring the language model probabilities across 
the tree is one such example [4, 19]. When more than one word shares a phoneme arc, the 
upper bound of their probability can be associated to that arc.

2 
The factorization can be ap­

plied to both the full lexical tree (unigram) and successor trees (bigram or other higher-order 
language models). 

An unfactored tree only has language model probabilities attached to the leaf nodes, 
and all the internal nodes have probability 1.0. The procedure for factoring the probabilities 
across the tree computes the maximum of each node n in the tree according to Eq. (13.1). 

The tree can then be factored according to Eq. (13.2) so when you traverse the tree you can 
multiply p• (n) along the path to get the needed language probability. 

P•(n)= max P(x) 
>:echlld (n) 

(13.1) 

p•(n)= • p•(n) 
P (parent(n)) 

(I 3.2) 

An illustration of the factored probabilities is shown in Table 13.2. Using this lexicon, 
we create the tree depicted in Figure 13.3(a). In this figure the unlabeled internal nodes have 
a probability of 1.0. We distribute the probabilities according to Eq. (13.1) in Figure 13.3(b), 
which is factored according to Eq. (13.2), resulting in Figure l 3.3(c). 

Table 13.2 Sample probabilities P(w}and their pseudoword pronunciations (4]. 

WI Pronunciation P(w
1
) 

WO /ab cl 0.1 

w, /ab c/ 0.4 

w2 /a C z/ 0.3 

WJ Id el 0.2 

2 Th h • f • · · ·11 be chosen 
e c oice O upper bound 15 because ll ts W1 admissible estimate of the path no matter which wore! wi 

later. 
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0.4 
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0 .4 

(c) 

Figure 13.3 (a) Un factored lexical tree; (b) distributed probabilities with computed p· (n) ; 
(c) factored treeF·(n) (4]. 

Using the upper bounds in the factoring algorithm is not an approximation, since the 
correct language model probabilities are calculated by the product of values traversed along 
each path from the root to the leaves. However, you should note that the probabilities of all 
the branches of a node do not sum to one. This can solved by replacing the upper-hound 
(max) function in Eq. (13.1) with the sum. 

P'(n) = L, P(x) (13.3) 
:rechild(11) 

To guarantee that all the branches sum to one, Eq. (13.2) should also be replaced by 
the following equation: 

P
0

(n) F' (n) = __ ___:.__;__ _ _ 
L, P

0

(x) 
(13.4) 

:re child( porcn1(11)) 

b·r· • b • g sum instead of up-A new illustration of the distribution of LM proba I ihes Y usm . 
per bound is shown in Figure 13.4. Experimental results have shown that lhe factonng 
method with either sum or upper bound has comparable search performance. 

1.0 
1.0 

(c) 
(a) (b) 

F· . tree the corresponding (a) un-
igure 13.4 Using sum instead of upper bound wh_en factonngd p:(n) ; (c) factored tree with 

~actored lexi<;al tree; (b) distributed probabilities with compute 
0mputed F (n) [4]. 
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One interesting observation is that the language model score can be regarded as a heu­
ristic function to estimate the linguistic expectation of the current word to be searched. In a 
linear representation of the pronunciation lexicon, application of the linguistic expectation 
was straightforward, since each state is associated with a unique word. Therefore, given the 
context defined by the hypothesis under consideration, the expectation for the first phone of 
word w, is just P( w, I w;-1

) • After the first phone, the expectation for the rest of the phones 
becomes 1.0, since there is only one possible phone sequence when searching the word w, . 
However, for the tree lexicon, it is necessary to compute E(p I I Pt', w;-1

) , the expectation 
of phone pi given the phonetic prefix p;-' and the linguistic context w:-1

• Let qJ(j, l1,1 ) 

denote the phonetic prefix of lengthj for wk. Based on Eqs. (13.1) and (13.2), we can com­
pute the expectation as: 

E( I j - 1 w'-') = P(wr I w~-1) 
P1 P1 , 1 P(wP I w:-' ) 

(13.5) 

where c = argmax(wt I w;-1,¢(j, w1 ) = p{) and p = argmax(wk I w:-1,¢,(j-l, wk)= Pt'). Based 
t k • f on Eq. (13.5), an arbitrary n-gram model or even a stochastic context- ree grammar can be 

factored accordingly. 

13.1.3.1. Efficient Memory Organization of Factored Lexical Trees 

A major drawback to the use of successor trees is the large memory overhead required to 
store the additional information that encodes the structure of the tree and the factored lin­
guistic probabilities. For example, the 5.02 million bigrarns in the 1994 NABN (North 
American Business News) model require 18.2 million nodes. Given a compact binary tree 
representation that uses 4 bytes of memory per node, 72.8 million bytes are required to store 
the predecessor-dependent lexical trees. Furthermore, this tree representation is not as ame­
nable to data compression techniques as the linear bigram representation. 

The factored probability of successor trees can be encoded as efficiently as the n-gram 
model based on Algorithm 13.1 , i.e., one n-gram record results in one constant-sized record. 
Step 3 is illustrated in Figure 13.5(b), where the heavy line ends at the most recently visited 
node that is not a direct ancestor. The encoding result is shown in Table 13.3. 

ALGORITHM 13.1: ENCODING THE LEXICAL SUCCESSOR TREES (LST) 

For each linguistic context: 
Step 1: Distribute the probabilities according to Eq. (13.1 }. 
Step 2: Factor the probabilities according to Eq. (13.2). 
Step 3: Perform a depth-first traversal of the LST and encode each leaf record, 

(a) the depth of the most recently visited node that is not a direct ancestor, 
(b) the probability of the direct ancestor at the depth in (a}, 
(c) the word identity . ..__ ____________________________ _ 
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(a) (b) 

Figure 13.5 (a) Factored tree; (b) tree with common prefix-length annotation. 
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Clearly the new data structure meets the requirements set forth, and, in fact, it only re­
quires additional log(n) bits per record (n is the depth of the tree). These bits encode the 
common prefix length for each word. Naturally this requires some modification to the de­
coding procedure. In particular, the decoder must scan a portion of the n-gram successor list 
in order to detennine which tree nodes should be activated. Depending on the structure of 
the tree (which is detennined by the acoustic model, the lexicon, and language model), the 
tree structure can be interpreted at runtime or cached for rapid access if memory is available. 

Table 13.3 Encoded successor lexical tree; each record corresponds to one augmented factored 
n-gram. 

WI Depth r·cw;> 

w, 0 0.4 

Wo 4 0.25 

w_, 2 0.75 

W2 I 0.5 

13.1.4. Optimization of Lexical Trees 
W - k fi d by the multiple copies 

e now investigate ways to handle the huge search networ • orme . 
1 1 

es actually 
of lex· I f ·zation of lex1ca re 1

~3 trees in different linguistic contexts. The acton d I the intertree 
makes It easier to search. First after the factorization of the language mo tte 'ched because 
l!ansiti h . ' 1 e model scores a a 
th ons s own m Figure 13.2 no longer have the anguag M er as illustrated in 
p·ey are already applied completely before leaving the leaves. thoreo; h;ve an associated 
igure 13 3 d f • gle word pa no Ira • . • , many transitions toward the en o a sm . ~ . r that there could be many 

du n~illon probability that is equal to 1. This observauon imp ,es then be merged to save 
bo~icated subtrees in the network. Those duplicated subtrees can) state evaluation. Unlike 

Pru _space and computation by eliminating redundant (unnecess~ry-
1 

without introducing 
ning th ' . . ming pnnc1p e, an ' is saving is based on the dynanuc program 
Y i>Otential error. 
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13.1.4.1. Optimization of Finite State Network 

One way to compress the lexical tree network is to use a similar algorithm for optimizin th 
number of states in a deterministic finite state automaton. The optimization algorithg _e 

f 
. fi . m IS 

based on the indisti11guishable property o states m a mite state automaton. Suppose that s 
and s2 are the initial states for automata 7; and T2 • then s1 and s2 are said to be indisti,i'. 
guislzable if the languages accepted by automata 7; and T: are exactly the same. If we con­
sider our lexical tree network as a finite state automaton, the symbol emitted from the 
transition arc includes not only the phoneme identity, but also the factorized language model 
probability. 

The general set-partitioning algorithm [I] can be used for the reduction of finite state 
automata. The algorithm starts with an initial partition of the automaton states and iteratively 
refines the partition so that two states s, and s2 are put in the same block B, if and only if 
f (s1) and f (s2 ) are both in the same block Bi . For our purpose, f (s1) and f (s2 ) can be 
defined as the destination state given a phone symbol (in the factored trees, the pair <phone, 
LM-probability> can be used). Each time a block is partitioned, the smaller subblock is used 
for further partitioning. The algorithm stops when all the states that transit to some state in a 
particular block with arcs labeled with the same symbol are in the same block. When the 
algorithm halts, each block of the resulting partition is composed of indistinguishable states, 
and those states within each block can then be merged. The algorithm is guaranteed to find 
the automaton with the minimum number of states. The algorithm has a time complexity of 
O(MN log N), where M is the maximum number of branching (fan-out) factors in the lexi­
cal tree and N is the number of states in the original tree network. 

Although the above algorithm can give op.timaJ finite state networks in terms of num­
ber of states, such an optimized network may be difficult to maintain, because the original 
lexical tree structure could be destroyed and it may be troublesome to add any new word 

into the tree network [l]. 

13.1.4.2. Subtree Isomorphism 

The finite state optimization algorithm described above does not take advantage of the tree 
t f th fi . . • • m number 

s ructure o e 1mte state network, though it generates a network with a m1mmu. . _ 
of states. Since our finite state network is a network of trees, the indistinguishabihty ~rop 

• 11 are said to erty is actua Y the same as the definition of subtree isomorphism. Two subtrees 1 b • J • h • • h uccessors. 1 
e isomorp 11c to eac other 1f they can be made equivalent by permuting t es •. · 
h ld b • · d ly 1f their s ou e straightforward to prove that two states are indistinguishable, if an °0 

subtrees are isomorphic 
Th . • . rphic. for 

ere are efficient algorithms [I] to detect whether two subtrees are isomo e 
all possible pairs of states u and v, if the subtrees starting at u and v, ST(u) and ST(v)' dares 
• h' • • rnal no isomorp ic, v is merged into u and ST(v) can be eliminated. Note that only mte . Jgo· 
n_eed t_o be c~nsidered for subtree isomorphism check. The time complexity for this a 
nthm 1s O(N·) [I]. 
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A I., •ar tail in a lexical tree is defined as a subpath ending in a i~af d . h 111 • f "' an gomg t rou 0 h states 
"th a unique successor. It 1s o ten referred as a single-word s1tbi,atl I b 0 

w1 • • . • • . 1- t can e proved that 
ch a linear tail has umt prob.ib1hty attached to its arcs according to E ( 13 1) 

su b b't· f . . qs. • . and (13 ") 
Th·s -15 because LM pro a I ity actonzat1011 pushes fonmrd the LM b b.1. • ·- • 

1 . • • . . pro a I Hy attached to 
!he last arc of the linear t~tl, l~avmg arcs with unit probability. Since all the tails correspond-
·ng to the same word w m different successor trees are linked to the root of 1 • . . successor tree 
r.,' the subtree starting from the fu:st state of each linear tail is isomorphic 10 the subtree 
starting from one of _the states _forming the longest linear tail of w. A simple algorithm 10 

take advantage of this share-tail topology can be employed to reduce the lexical tree net­
work. 

Figure 13.6 and Figure 13.7 show a lexical tree network before and after shared-tail 
optimization. For each word, only the longest linear tail is kept. All other tails can be re­
moved by linking them to an appropriate state in the longest tail, as shown in Figure 13.7. 

Shared-tail optimization is not global optimization, because it considers only some 
special topology optimization. However, there are some advantages associated with shared­
tail optimization. First, in practice, duplicated linear tails account for most of the redundancy 
in lexical tree networks [12]. Moreover, shared-tail optimization has a nice property of 
maintaining the basic lexical tree structure for the optimized tree network. 

Tu = { u, y} 
T, = { y, z} 
T1 = { u} 

u = /ab/ 
y = /acd/ 
z = I ace/ 

~ -
: d 

e ---i 
.:-...:..a-b.J 

Figure . shared-tail optimization [I 2]. The 
v 13-6 An example of a lexical tree network without . sor trees for u, y, and 
ocabulary includes three words u v and z. T., T,., and T, are the succes 

t respectively [13]. ' '·' • 

;--
We¾ 

urne bigram is used in the discussion of ·'sharing tails." 
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Figure 13.7 The lexical tree network in Figure 13.6 after shared-tail optimization [12]. 

13.1.5. Exploiting Subtree Polymorphism 

The techniques of optimizing the network of successor lexical trees can only eliminate iden­
tical subtrees in the network. However, there are still many subtrees that have the same 
nodes and topology but with different language model scores attached to the arcs. Th~ 
acoustic evaluation for those subtrees is unnecessarily duplicated. In this section we exploit 
subtree dominance for additional saving. 

A subtree instance is dominated when the best outcome in that subtree is not better 
than the worst outcome in another instance of that su½tree. The evaluation becomes red0"i 
dant for the dominated subtree instance. Subtree isomorphism and shared-tail are cas~:d 
subtree dominance, but they require prearrangement of the lexical tree network as descn 
in the previous section. . al 

If we need to implement lexical tree search dynamically, the network optimiza~~n ~ 
gorithms are not suitable. Although subtree dominance can be computed using ~'.nun be 
search [35] during runtime, this requires that information regarding subtree isomorp t~t is 
available for all corresponding pairs of states for each successor tree T,, .. UnfortUnate y, 
not practical in terms of either computation or space. xt as· . . . . • stic conte 

In place of computing stnct subtree dominance, a polymorphic hngui d n local 
• d • cebase 0 

s1gnment to re uce redundancy is employed by estimating subtree domman ssign· 
. ~ . . . hi context a 
m1ormatton and 1gnonng the subgraph isomorphism problem. Polymorp c ume (he 

t • l k • · · h state to ass • men mvo ves eepmg a smgle copy of the lexical tree and allowing eac h • that 11 

l. . . f th. pproac is • mgmst1c context of the most promising history. The advantage o is a . th cree 1s 
l • h • · • h node in e emp oys maximum s anng of data structures and mformaaon, so eac 
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evaluated, at most, once._ H~wever, the use of local knowledge to determine the dominant 
context c~uld inlro~uce significant errors because of ~remature pruning. Whisper (4] reports 
3 65.7o/c increase m error rate when only the dominant context is kept, based on local 
knowledge. . 

To recover the errors created by usmg local linguistic information to estimate subtree 
dominance, you need to delay th~ decision regarding which linguistic context is most prom­
ising. This can be done by ~e~pmg a heap of contexts at each node in the tree. The heap 
maintains all contexts (lingu1st1c paths) whose probabilities are within a constant threshold 
E of that of the best global path. The effect of the E -heap is that more contexts are retained 
fo; high-probability states in the lexical tree. The pseudocode fragment in Algorithm 13.2 
[3) illustrates a transition from state s,, in context c to state s,,, . The terminology used in 
Algorithm 13.2 is listed as follows: 

• (-logP(sm ls,,,c)) is the cost associated with applying acoustic model 
matching and language model probability of state s., transited from s. in 
context c. 

• /nHeap(s.,,c) is true if context c is in the heap corresponding to state s.,. 

• Cost(s,,,,c) is the cost for context c in state s.,. 

• Statelnfo(s,,.,c) is the auxiliary state infonnation associated with context c in 
state s • . 

• Add(s.,,c) adds context c to the state s., heap. 

• Delete<..s.,c) deletes context c from state s., heap. 
• WorstContext(s,,,) retrieves the worst context from the heap of state s. • 

ALGORITHM 13.2: HANDLING MULTIPLE LINGUISTIC CONTEXTS 
IN A LEXICAL TREE 

1. d==Cost(s,,,c)+(-logP(s .. ls,,,c)) 
2. tt lnHe.ap(s,,, ,c) then 

If d <Cost(s.,,c) then 
Cost(s.,,c) = d 
Statelnfo(s ,c) = State/nfo(s,.,c) 

elseif d<BestCost(s,.,")+e then 
Add(s.,,c); Statelnfo(s,,,,c) = Statelnfo(s,.,c) 
Cosr(s.,,c) = d 
else 
w = WorstContext(s ) 
if d < Cost(s,,,, w) th;n 

Delete(_s , w) 
Add(s,,,,;); Statelnfo(s,,,,c)::: Statefnfo(s,,,c) 
Cost(s,,.,c) d 
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. When higher-order n-gram is used for lexical tree search, the potential heap size for 
lexical_ tree nodes (some also refer to prefix nodes) could be unmanageable. With decent 
acoust~c models ~nd effici:nt pruning, as illustrated in Algorithm 13.2, the average heap size 
for act!ve nodes _m the Iex~cal tree is actually very modest. For example, Whisper's average 
heap size for acttve nodes m the 20,000-word WSJ lexical tree decoder is only about 1.6 [3]. 

13.1.6. Context•Dependent Units and Inter•Word Triphones 

So far, we have implicitly assumed that context-independent models are used in the lexical 
tree search. When context-dependent phonetic or subphonetic models, as discussed in Chap­
ter 9, are used for better acoustic models, the construction and use of a lexical tree become 
more complicated. 

Since senones represent both subphonetic and context-dependent acoustic models, this 
presents additional difficulty for use in lexical trees. Let's assume that a three-state context­
dependent HMM is formed from three senones, one for each state. Each senone is context­
dependent and can be shared by different allophones. If we use allophones as the units for 
lexical tree, the sharing may be poor and fan-out unmanageable. Fortunately, each HMM is 
uniquely identified by the sequence of senones used to form the HMM. In this way, different 
context-dependent allophones that share the same senone sequence can be treated as the 
same. This is especially important for lexical tree search, since it reduces the order of the 
fan-out in the tree. 

Interword triphones that require significant fan-ins for the first phone of a word and 
fan-outs for the last phones usually present an implementation challenge for large­
vocabulary speech recognition. A common approach is to delay full interword modeling 
until a subsequent rescoring phase.4 Given a sufficiently rich lattice or word graph, this is a 
reasonable approach, because the static state space in the successive search has been reduced 
significantly. However, as pointed out in Section 13.1.2, the size of the dynamic state space 
can remain under control when detailed models are used to allow effective pruning. In addi­
tion, a multipass search requires an augmented set of acoustic models to effectively model 
the biphone contexts used at word boundaries for the first pass. Therefore, it might be desir­
able to use genuine interword acoustic models in the single-pass search. 

Instead of expanding all the fan-ins and fan-outs for inter-word context-dependent 
phone units in the lexical tree, three metaunits are created. 

I. The first metaunit, which has a known right context corresponding to the sec­
ond phone in the word, but uses open left context for the first phone of a 
word (sometimes referred to as the word-initial unit). In this way, the fan-in 
is represented as a subgraph shared by all words with the same initial left­
context-dependent phone. 

'Multipass search strategy is described in Section 13.3.S. 
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2_ Another metaunit, which has a known left context corresponding to the sec­
ond-to-last phon~ of the word, but uses open right context for the last phone 
of a word (sometimes referred to as the word-final unit). Again, the fan-out is 
represented as a subgraph shared by all words with the same final right­
context-dependent phone. 

3. The third metaunit, which has both open left and right contexts, and is used 
for single-phone word unit. 
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By using these metaunits we can keep the states for the lexical trees under control, because 
the fan-in and fan-out are now represented as a single node. 

During recognition, different left or right contexts within the same metaunit are han­
dled using Algorithm 13.2, where the different acoustic contexts are treated similarly as dif­
ferent linguistic contexts. The open left-context metaunit (fan-ins) can be dealt with in a 
straightforward way using Aglorithm 13.2, because the left context is always known (the last 
phone of the previous word) when it is initiated. On the other hand, the open right-context 
metaunit (fan-out) needs to explore all possible right contexts because the next word is not 
known yet. To reduce unnecessary computation, fast match algorithms (described in Section 
13.2.3) can be used to provide both expected acoustic and language scores for different coo­
text-dependent units to result in early pruning of unpromising contexts. 

13.2. OTHER EFFICIENT SEARCH TECHNIQUES 

Tree structured lexicon represents an efficient framework of manipulation of search space. 
In this section we present some additional implementation techniques, which can be use~ to 
funher improve the efficiency of search algorithms. Most of these techniques can be apphe_d 
10 both Viterbi beam search and stack decoding. They are essential ingreclients for a practi­
cal large-vocabulary continuous speech recognizer. 

13•2,1. Using Entire HMM as a State in Search 
The stat • 11- t r·on 1·s by definition, a e m state-search space based on HMM-tre 1s compu a 1 • . 

Markov state. Phonetic HMM models are the basic unit in most speech recogmzers. Ev~n 
th0ugh subphonetic HMMs like senones might be used for such a SYstem, the search is 
0~nb ' ' ased on phonetic HMMs. Th 
fi Treating the entire phonetic HMM as a state in state-search has many advantagles:th _e 
trst obvio d h ro2Tanl needs to dea w1 is 

5.,, 11 us a vantage is that the number of states the searc P O th mber of 
.. ,a er N t th M d t ·n effect reduce e nu 

Slates.· 0 e at using the entire phonetic HM oes no 1 'thin a phonetic 
li~.n. in the search. The entire search space is unchanged. All the_ stateks wt1 . the beam if 

"UV! are now b th II f them are either ep m ' 
the h undled together. This means at a O d For any given 
tin} 

1
~netic HMM is regarded as promising, or all of them are pru;~~:::·sed as the cost 

for th' e minimum cost among all the states within the phonetic d t rmine the promising 
e Phonef H th ' tis used to e e ic MM. For pruning purposes, 1s cos 
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degree of this phonetic HMM, i.e., the fate of all the states within t~is p?onetic HMM. Al-

th h this does not actually reduce the beam beyond nonnal prunmg. 1t has the effect of 
oug . th" I . 

processing fewer candidates in_ the be~m. In programmmg, 1s means ess checking and 
bookkeeping, so some computation savings can ?e expe~ted. . 

You might wonder if this organization might be ineffective for beam search, since it 
forces you to keep or prune all the states within a phonetic HMM. In theory, it is possible 
that only one or two states in the phonetic HMM need to be kept, while other states can be 
pruned due to high cost score. However, this is, in reality, very rare, since a phone is a small 
unit and all the states within a phonetic HMM should be relatively promising when the 
search is near the acoustic region corresponding to the phone. 

During the trellis computation, all the phonetic HMM states need to advance one time 
step when processing one input vector. By performing HMM computation for all states to­
gether, the new organization can reduce memory accesses and improve cache locality, since 
the output and transition probabilities are held in common by all states. Combining this or­
ganization strategy with lexical tree search further enhances the efficiency. In lexical tree 
search, each hypothesis in the beam is associated with a particular node in the lexical tree. 
These hypotheses are linked together in the heap structure described in Algorithm 13.2 for 
the purposes of efficient evaluation and heuristic pruning. Since the node corresponds to a 
phonetic HMM, the HMM evaluation is guaranteed to execute once for each hypothesis 
sharing this node. 

In summary, treating the entire phonetic HMM as a state in state-search space allows 
you to explore the effective data structure for better sharing and improved memory locality. 

13.2.2. Different Layers of Beams 

Because of the complexity of search, it often requires pruning of various levels of search to 
make search feasible. Most systems thus employ different pruning thresholds to control what 
states participate. The most frequently used thresholds are listed below: 

• f, controls what states (either phone states or senone states) to retain. This is 
the most fundamental beam threshold. 

• i-p controls whether the next phone is extended. Although this might not be 
necessary for both stack decoding and linear Viterbi beam search it is crucial 
for_lexical tree search, because pruning unpromising phonetic pr~fixes in the 
lexical trees could improve search efficiency significantly. 

• -r. con~ols whether hypotheses are extended for the next word. Since the 
~r~chmg factor for word boundaries is very large, we need this threshold to 
hm1t search to only the promising ones. 

• T~ controls where a linguistic context is created in a lexical tree search using 
higher-order language models. This is also known as e -heap in Algorithm 
13.2. 
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Pruning can introduce search errors if a state is pruned th I Id 
Th • • I i • a wou have been on the 

I bally best path. e prmc1p e app 1ed here is that the more const • • . 
g O • , • • . . rarnts you have available, 
ihe more aggressJ\ ely you decide whether this path will participate in the globally best ath 
I ·'iis case at the state level, you have the least constraints At the 1 . 1 P • n u ' • • p 1onet1c evel there are 
more, and rhe~e n~e the m~st at ~he word l~vel. ~n gen~ral, the number of word hypotheses 
iends 10 drop s1~mficantl~ at w01d boundanes. Different thresholds for different levels allow 
the search designer to fme-tune those thresholds for their tasks 10 achieve b t h 

· · · fi · . es searc perfonnance without s1gm 1cant increase m error rates. 

13.2.3. Fast Match 

As described in Chapter 12, fast match is a crucial part of stack decoding, which mainly 
reduces the number of possible word expansions for each path. Similarly, fast match can be 
applied to the most expensive part-extending the phone HMM fan-outs within or between 
lexical trees. Fast match is a method for rapidly deriving a list of candidates that constrain 
successive search phases in which a computationally expensive detailed match is perfonned. 
In this sense, fast match can be regarded as an additional pruning threshold to meet before a 
new word/phone can be started. 

Fast match is typically characterized by the approximations that are made in the acous­
tic/language models to reduce computation. The factorization of language model scores 
among tree branches in lexical trees described in Section 13. l .3 can be viewed as faS t match 
using a language model. The factorized method is also an admissible estima~e of the lan­
guage model scores for the future word. In this section we focus on acouSllc model fast 
match. 

lJ.2.3.1. Look-Ahead Strategy 

F • I lied look-ahead strategy. 
_ast match, when applied in time-synchronous search, is a so ca f t deter-

sin • b . arch by a few rames o ce It as1cally searches ahead of the time-synchronous se fi d 
mi · . all the look-ahead frames are ixe , 

ne which words or phones are likely to extend. Typic Y 'th ther specialized beam 
~d the ~ast match is also done in time-synchronous fashio~ wi ano I te HMMs or con-
ior effi • . . . d d Is Ji ke the one-s a 
1 . icient pruning. You can also use s1mphfie mo e ' . d to simplify the level of 
dextait~iln~ependent models [ 4, 32). Some systems [21, 221 h~ve tern several frames into one. 
e s in th • • • fonnat1on ,ro 

A . e mput feature vectors by aggregating m . kip every other frame of 
stra1ghtf; . fi stream 1s to s • 

sp 0rward way for compressing the eature d hile keeping computatJon 
unedech for fast match. This allows a longer-range look-ahea ,trweam instead of simplifying 

er contr I Th . . . h ·nput feature s 
the O • e approach of simphfymg t e 1 .1 d match 

acousr Its for deta1 e • . ic models can reuse the fast match resu . 1 tree search in which pron-
WJi· 1 h in lex1ca ' f I 

ing. isper [4] uses phoneme look-ahead fast mac 'bl hone fan-outs that may O -

lo is applied based on the estimation of the score of possi e Ph d synchronously with lhe 
w a g· t is searc e 

iven Phone. A context-independent phone-ne 
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h b t Offset N frames into the future. In practice, significant savings can be 
searc process u . . 
obtained in search efforts without increase m error rates. 

Th erfoimance of word and phoneme look-ahead clearly depends on the length of 
th l k-:tead frames. In general, the larger the look-ahead window, the longer is the com­
pu~a~~n and the shorter the word/phone A list. Empirical_ly? the window is a few tens of 
milliseconds for phone look-ahead and a few hundreds of m1lhseconds for word look-ahead. 

13.2.3.2. The Rich-Get-Richer Strategy 

For systems employing continuous-density HMMs, tens of mixtures of Gaussians are often 
used for the output probability distribution for each state. The computation of the mixtures is 
one of the bottlenecks when many context-dependent models are used. For example, Whis­
per uses about 120,000 Gaussians. In addition to using various beam pruning thresholds in 
the search, there could be significant savings if we have a strategy to limit the number of 

Gaussians to be computed. 
The Rich-Get-Richer (RGR) strategy enables us to focus on most promising paths and 

treat them with detailed acoustic evaluations and relaxed path-pruning thresholds. On the 
contrary, the less promising paths are extended with less expensive acoustic evaluations and 
less forgiving path-pruning thresholds. In this way, locally optimal candidates continue to 
receive the maximum attention while less optimal candidates are retained but evaluated us­
ing less precise (computationally expensive) acoustic and/or linguistic models. The RGR 
strategy gives us finer control in the creation of new paths that has potential to grow expo­
nentially. 

RGR is used to control the level of acoustic details in the search. The goal is to reduce 
the number of context-dependent senone probability (Gaussian) computations required. The 
context-dependent senones associated with a phone instance p would be evaluated according 
to the following condition: 

Min[ci(p)] • a+LookAhead[ci(p)] < threshold 

where Min [ci(p)] = m}n{ cost(s) Is e ci_phone(p)} 

and LookAhead [ ci(p)] = look-ahead estimate of ci(p) 

(13.6) 

These conditions state that the context-dependent senones associated with p should be 
evaluated if there exists a states corresponding top, whose cost in linear combination with a 
look-~he_ad cost score corresponding top falls within a threshold. In the event that p does not 
fall w1thm the threshold the s • · · h -. , enone scores corresponding to p are estimated usmg t e con 
text-mdependent senones c d' • e . orrespon mg top. This means the context-dependent senones ar 
evaluated only 1f the co d' • rt 

. . rrespon mg context-mdependent senones and the look-ahead sta 
showing promise RGR strat h ld • • 1 -. . • egy s ou save s1gmficant senone computation for clear Y un 
prom1smg paths Whisp [26] ·d d 
w· h . : . er reports that 80% of senone computation can be avoi e 

It out mtroducmg significant errors for a 20,000-word WSJ dictation task. 
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Ideally a search algorithm should consider all possible hypotheses based .fi d , . on a uni ,e prob-
abilistic framework that integrates all knowledge sources (KSs) •1 These KSs h . • , sue as acous-
tic models. language models, and lex,cal pronunciation models, can be integral d . 
HMM state search framework. It is desirable lo use the most detailed models suche 

10 
an . , uw~ 

text-dependent models: mterword context-dependent models, and high-order n-grams. in the 
search as early as possible. When the explored search space becomes unmanageable, due to 
the increasing size of vocabulary or highly sophisticated KSs, search might be infeasible to 
implement. 

As we develop more powerful lechniques, the complexity of models tends to increase 
dramatically. For example, language understanding models in Chapter 17 require long­
distance relationships. In addition, many of these techniques are not operating in a left-to­
right manner. A possible alternative is to perform a multipass search and apply several KSs 
at different stages, in the proper order to constrain the search progressively. In the initial 
pass, the most discriminant and computationally affordable KSs are used to reduce the num­
ber of hypotheses. In subsequent passes, progressively reduced sets of hypotheses are exam­
ined, and more powerful and expensive KSs are then used until the optimal solution is 
found. 

The early passes of multipass search can be considered fast match that eliminat~s 
those unlikely hypotheses. Multipass search is, in general, not admissible because the opti­
mal word sequence could be wrongly pruned premalurely, due to the fact that not aJI_ KSs are 
used in the earlier passes. However, for complicated tasks, the benefits of computation com­
plexity reduction usually outweigh the nonadmissibility. In practice, multipass search strat­
egy using progressive KSs could generate better results than a search algorithm forced to use 
less powerful models due to computation and memory constraints. 

Th • th called 11-best search para-e tnost straightforward multipass search strategy 1s e so-
d' • f st probable word se-igm. The idea is to use affordable KSs to first produce a hSt O 11 mo . d .1 d 
qu · cored using more eta, e ences m a reasonable time Then these 11 hypotheses are res . furth 
m d I • • f th n-best ltst can be er 0 es to obtain the most likely word sequence. The idea O e 

I 
d lattice or 

e~tended to create a more compact hypotheses representation-:--na~e ~th:~:s. N-best or 
~ra~h. A word lattice is a more efficient way to repi:esent altematl::c:~ition systems [20, 
au,ce search is used for many large-vocabulary conunuous speech g 

30, 44]. 
I . . . -best list and word lattice. Sev-
n this section we describe the representation of the 11 

. d 
er.11 alg • h . ct l ttice are d1scusse • ont ms to generate such an n-best-hst or wor a 

--- • • 'In --------- • raied network of vanous the field . . • search !hrough an m1eg 
kiiowr d of an1fic1al imelligence. the process of perfonnmg 

egcsou. 
recs 1s called constraint satisfaction. 
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13.3.1. N-best Lists and Word Lattices 

Table 13.4 shows an example n-best (I 0-best) list generated for a North American Business 
(NAB) sentence. N-best search framework is effective only for n of the order of tens or hun­
dreds. If the short n-best list that is generated by using less optimal models does not include 
the correct word sequence, the successive rescoring phases have no chance to generate the 
correct answer. Moreover, in a typical 11-best list like the one shown in Table 13.4, many of 
the diff erenl word sequences are just one-word variations of each other. This is not surpris­
ing, since similar word sequences should achieve similar scores. In general, the number of 11-

best hypotheses might grow exponentially with the length of the utterance. Word lattices and 
word graphs are thus introduced to replace 11-best list with a more compact representation of 
alternative hypotheses. 

Word lattices are composed by word hypotheses. Each word hypothesis is associated 
with a score and an explicit time interval. Figure 13.8 shows an example of a word lattice 
corresponding to then-best list example in Table 13.4. It is clear that a word lattice is more 
efficient representation. For example, suppose the spoken utterance contains IO words and 
there are 2 different word hypotheses for each word position. The n-best list would need to 
have 210 = 1024 different sentences to include all the possible permutations, whereas the 
word lattice requires only 20 different word hypotheses. 

Word graphs, on the other hand, resemble finite state automata, in which arcs are la­
beled with words. Temporal constraints between words are implicitly embedded in the to­
pology. Figure 13.9 shows a word graph corresponding to then-best list example in Table 
13.4. Word graphs in general have an explicit specification of word connections that don't 
allow overlaps or gaps along the time axis. Nonetheless, word lattices and graphs are simi­
lar, and we often use these terms interchangeably .6 Since an n-best list can be treated as a 
simple word lattice, word lattices are a more general representation of alternative hypothe­
ses. N-best lists or word lattices are generally evaluated on the following two parameters: 

Table 13.4 An example l 0-best list for a North American Business sentence. 

l. I will tell you would l think in my office 
2. I will tell you what I think in my office 
3. I will tell you when I think in my office 
4. I would sell you would I think in my office 
5. I would sell you what I think in my office 
6. I would sell you when I think in my office 
7. I will tell you would I think in my office 
8. I will tell you why I think in my office 
9. I will tell you what I think on my office 

IO. I Wilson you I think on my office 

• We will use the term word lllttice in the rest of this chapter .. 
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, Density: In the n-best case, it is measured by how many alternative word se­
quences are kept in the 11-best list. In the word lattice case, it is measured by 
the number of word hypotheses or word arcs per uttered word. Obviously, we 
want the density to be as small as possible for successive rescoring modules, 
provided the correct word sequence is included in the n-best list or word lat­
tice. 

, The lower bound word error ratt·: It is the lowest word error rate for any 
word sequence in the 11-best list or the word lattice. 

will tell you what think in my office 

would sell when 

Wilson why 

would 
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Figure 13.8 A word lattice example. Each word has an explicit time interval associated with iL 

...... 
_,, you 

office ;;"O 

l ·1sare 
Fi u -- . . ble 13.4. Temporal constram 
. g .re 13,9 A word graph example for the 11-best hS! in Ta 
11np1 • • 

•en in the topology. 
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Rescoring with highly similar 11-best alternatives duplicates computation on com 

parts. Th~ compact representation of word l_att_ices allows _both data structure and comp::~ 

tion sharmg of the common parts among s1m1lar alternative hypotheses, so it is generall 
computationally less expensive to rescore the word lattice. Y 

. . Figure 13. IO !llustrates the general n-best/lattice search framework. Those KSs pro­
v1dmg most constraints. at a lesser cost, are used first to generate the n-best list or word lat­

tice. The n-best list or word lattice is then passed to the rescoring module, which uses the 

remaining KSs to select the optimal path. You should note that the 11-best and word-lattice 

generators sometimes involve several phases of search mechanisms to generate the n-best 

list or word lattice. Therefore, the whole search framework in Figure 13. l O could involve 
several (> 2) phases of search mechanism. 

Does the compact n-best or word-lattice representation impose constraints on the 

complexity of the acoustic and language models applied during successive rescoring mod­

ules? The word lattice can be expanded for higher-order language models and detailed con­

text-dependent models, like inter-word triphone models. For example, to use higher-order 

language models for word lattice entails copying each word in the appropriate context of 
preceding words (in the trigram case, the two immediately preceding words). To use inter­

word triphone models entails replacing the triphones for the beginning and ending phone of 

each word with appropriate interword triphones. The expanded lattice can then be used with 

detailed acoustic and language models. For example, Murveit et al. [30) report this can 
achieve trigram search without exploring the enormous trigram search space. 

Soeech 
► 

Input 

KS Set l 

N-Best or 
Lattice Generator 

~ 

N-Best list Results 
Rescoring 

Word Lattice 

Figure 13.10 N-best/lattice search framework. The most discriminant and inexpensive know!-
• • kn wledge 

edge sources (KSs 1) are used first to generate the n-best/lattice. The remaining 0 

sources (KSs 2, usually expensive to apply~ ::re used in the rescoring phase to pick up !he op­

timal solution [40]. 

13.3.2. The Exact N-best Algorithm 

Stack decoding is the choice of generating n-best candidates because of its beSt·firSt pri;;~: 

pie. We can keep it generating results until it finds n complete paths; these n complete best 

tences form the n-best list. However, this algorithm usually cannot generat~ th: "earch 
candidates efficiently. The efficient n-best algorithm for time-synchronous ~iter 1/ time­
was first introduced by Schwartz and Chow [39]. It is a simple extension ; paths 
synchronous Viterbi search. The fundamental idea is to maintain separate record5 or 
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·w distinct histories. The history is defined as the whole word sequence up t th w1 . . . o e current 
time t and word w. This exact n-best algorithm 1s also called sentence-depende11t n-best al-
gorithm-When two or more pat~s come t~ _t~e same state at the same time. paths having the 
same history are m_erged and their probab1ltt1es are summed_ together; otherwise, only then­
best paths are retained for each state. As commonly used 111 speech recognition, a typical 
HMM state has 2 or 3 predecessor states within the word HMM. Thus, for each time frame 
and each state, the n-best search algorithm needs to compare and merge 2 or 3 sets of II paths 
into n new paths. At the end of the search, the n paths in the final state of the trellis are sim­
ply re-ordered to obtain then-best word sequences. 

This straightforward n-best algorithm can be proved to be admissible7 in normal cir­
cumstances [40]. The complexity of the algorithm is proportional to O(n), where II is the 
number of paths kept at each state. This is often too slow for practical systems. 

13.3.3. Word-Dependent N-best and Word-Lattice Algorithm 

Since many of the different entries in the n-best list are just one-word variations of each 
other, as shown in Table 13.4, one efficient algorithm can be derived from the nonnal I-best 
Viterbi algorithm to generate then-best hypotheses. The algorithm runs just like the normal 
time-synchronous Viterbi algorithm for all within-word transitions. However for each time 
frame t, and each word-ending state, the algorithm stores all the different words that can end 
at current time t and their corresponding scores in a traceback list. At the same time, the 
score of the best hypothesis at each grammar state is passed forward, as in the nonnal time­
synchronous Viterbi search. This obviously requires almost no extra computation above the 
nonnal time-synchronous Viterbi search. At the end of search, you can simply search 
through the stored traceback list to get all the permutations of word sequences with their 
corresponding scores. If you use a simple threshold, the traceback can be implemented very 
efficiently to only uncover the word sequences with accumulated cost scores below the 
threshold. This algorithm is often referred as traceback-based 11-best algorithm (29, 421 be-
cause of the use of the traceback list in the algorithm. . 

However, there is a serious problem associated with this algorithm. It could easily 
miss some low-cost hypotheses. Figure 13. J J illustrates an example in which ~0rd w1 can 
be preceded by two different words w and w . in different time frames. Assuming path w, -
ll>i has a lower cost than path w _ w 

1
when b~th paths meet during the trellis search of wk' 

the p th J k &'. fi d" the n-best word se-a Wr wt will be pruned away. During traceback lor m mg d 
quenc h . d • d by the best boun ary 
be 

es, 1 ere 1s only one best starting time for word wk , etennme 1 twe h th might have a very ow 
COst en,t e best preceding word w, and it. Even though pa ~/- wk com letely over-

I 
(let s say only marginally higher than that of w, - w* ), 11 could be p 

Ooked s· · · d ' ince the path has a different starting time for wor wk· 

'A ~-------- • • al cores for each lihoug1i . . h" ories have near idenuc s . 
lta•• ih one can show in the worst case when paths wuh different isl d ·ssi"bility Under this worst 

"'· e sc h ' • absolute a mi • 
Ctsc th arc actually needs lo keep all paths (> N) in order to guarantee ' th utterance since all pennuta-

, e admi ·b be f words ,or e • 
lions r 881 le algorithm is clearly exponential in the num r 0 

0 Word seq k uences for the whole sentence need to be epl. 
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1~ 
best path 
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w _;:.J.-- 2nd best path 

I 
I 

I Can only keep one 
path within a word so 

this path Is lost. 
I I , , I '--, ...__ 

' ' 

time 

Figure 13.11 Deficiency in traceback-based n-best aJgorithm. The best subpath, W; - w. , will 
prune away subpath w1 - wt while searching the word W.1 ; the second-best subpath cannot be 
recovered (40). 

t 
I 

1~ 
best path 

w 2nd best path with 
1 ..------ I different ending word 

I 

I Preceding word is 
different so both 
theories are kept. 

I I , ... I '--, 
'--

' ' ' ' ..... _, 
~ 

time ~ 

Figure 13.12 Word-dependent n-best aJgorithm. Both subpaths w; - w
1 

and w1 - wi are kept 
under the word-dependent assumption (40]. 
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The word-dependent n-best algorithm [38) can alleviate the deficiency of the tr _ 
. . h" h ace 

b ck-based n-besc algonthm, m w 1c only one staning time is kept for each word so th 
a d f h • ' e starting time is indep~n ent o t e _prec~dmg words. On the other hand, in the sentence-

dependent 11-best _algo_nthm, the startmg lime for a word depends on all the preceding words, 
since different h1stones are kept separately. A good compromise is the so-called word­
dependent assumption: The starting time of a word depends only on the immediate preced­
ing word. That is, given a word pair and its ending time, the boundary between these two 
words is independent of further predecessor words. 

In the word-dependent assumption, the history to be considered for a different path is 
no tonger the entire word sequence; instead, it is only the immediately preceding word. This 
allows you to keep k (<< n) different records for each state and each time frame in Viterbi 
search. Differing slightly from the exact n-best algorithm, a traceback must be perfonned to 
find the 11-best list at the end of search. The algorithm is illustrated in Figure 13. J 2. A word­
dependent n-best algorithm has a time complexity proportional to k. However, it is no longer 
admissible because of the word-dependent approximation. In general, this approximation is 
quite reasonable if the preceding word is long. The loss it entails is insignificant [6). 

13.3.3.1. One-Pass N-best and Word-Lattice Algorithm 

As presented in Section 13.1, one-pass Viterbi beam search can be implemented very effi­
ciently using a tree lexicon. Section 13. 1 .2 states that multiple copies of lexical trees are 
necessary for incorporating language models other than the unigram. When bigram is used 
in lexical tree search, the successor lexical tree is predecessor-dependent. This predecessor­
dependent property immediately translates into the word-dependent property/ as defined in 
Section 13.3.3, because the starting time of a word clearly depends on the immediately pre­
ceding word. This means that different word-dependent partial paths are automatically saved 
uoder the framework of predecessor-dependent successor trees. Therefore, one:pass prede­
cessor-dependent lexical tree search can be modified slightly to output n-beSl lists or word 
graphs. 

Ney et al. [31) used a word graph builder with a one-pass pre_dece~sor-dependent lexi­
cal tree search. The idea is to exploit the word-dependent property mhented from the prede­
ces~o_r-dependent lexical tree search. During predecessor-dependent lexical tree search, two 
additional quantities are s·aved whenever a word ending state is processed. 

r(t;w,,w)-Representing the optimal word boundary between wocd w, a
nd 

wi, given word w
1 

ending at time t. 
h(w1;T(t;w,.w.),t)=-logP(x' I w.)-Representing the cumulative cost that 
wo d 1 .. 1 

r 1111 produces acoustic vector x .. , xt+i , • • x, • 

;-----. 
When hi h--------- ·11 be ven more significant. For example, 

IYhcn . g er order n-gram models are used the boundary dependence WI ~ rds Since we generally 
lngrams ar ' d d on the previous two wo • n 

want a f c Used, the boundary for a word juncture epen s . d f higher order 11-gram 10 ge • 
1ratc w

0
:

1 m~lhod of generating word lanices/graphs, bigram is often used '"stea 
0 

latucestgraphs. 
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At the end of the utterance, the word lattice or n-best list is constructed by tracing back 
all the permutations of word pairs recorded during the search. The algorithm is summarized 
in Algorithm 13.3. 

ALGORITHM 13.3: ONE-PASS PREDECESSOR-DEPENDENT LEXICAL TREE 
SEARCH FOR N-BEST OR WORD-LA TT/CE CONSTRUCTION 

Step 1: For r = 1..T , 
1-best predecessor-dependent lexical tree search; 
'r/( 11';, w1 ) ending at t 

record word-dependent crossing time -r(t; w,, wi ) ; 

record cumulative word score h( w1 ;-r(t; w;, w1 ),t); 

Step 2: Output 1-best result; 
Step 3: Construct n-best or word-lattice by tracing back the word-pair records ( -r and h ). 

13.3.4. The Forward-Backward Search Algorithm 

As described Chapter 12, the ability to predict how well the search fares in the future for the 
remaining portion of the speech helps to reduce the search effort significantly. The one-pass 
search strategy, in general, has very little chance of predicting the cost for the portion that it 
has not seen. This difficulty can be alleviated by multipass search strategies. In successive 
phases the search should be able to provide good estimates for the remaining paths, since the 
entire utterance has been examined by the earlier passes. In this section we investigate a 
special type of multipass search strategy-forward-backward search. 

The idea is to first perform a forward search, during which partial forward scores a 
for each state can be stored. Then perform a second pass search backward-that is, the sec­
ond pass starts by taking the final frame of speech and searches its way back until it reaches 
the start of the speech. During the backward search, the partial forward scores a can be 
used as an accurate estimate of the heuristic function or the fast match score for the remain­
ing path. Even though different KSs might be used in forward and backward phases, this 
estimate is usually close to perfect, so the search effort for the backward phase can be sig­
nificantly reduced. 

The forward search must be very fast and is generally a time-synchronous Viterbi 
search. As in the multipass search strategy, simplified acoustic and language models are 
often used in forward search. For backward search, either time-synchronous search or time­
asynchronous A* search can be employed to find then-best word sequences or word lattice. 
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3 3 41 Forward-Backward Search 1 ...• 

Stack decoding. as described in Chapter 12, is based on the ad n· ·'bl A* 
. d . 1 •ss, e search so the first 

complete hypothesis foun with a cost below that of all the hypotl . 1 ' . 
. . 1eses m t 1e stack 1s guar-

anteed to be the best word sequence. It ts stra1ohtforward to extend st k d d' 
. . 

0 ac eco mg to pro-
duce the 11-best hypotheses by contmumg to extend the partial hypothese d' th . . . . s accor mg to e 
same A* cnte.non until II different hypotheses are found These 11 di'f"e 

I 
h h 

• 1, ren ypot eses are 
destined to be the n-best hypotheses under a proof similar to that presented in Ch t f? 

d
. . . . aper __ 

Therefore, stack deco in~ 1s a_ natural choice for producing the 11-best hypotheses. 
However, as described 111 Chapter 12, the difficulty of finding a good heuristic func­

tion that can accurately under-estimate the remaining path has limited the use of stack de­
coding. Fortunately, this difficulty can be alleviated by tree-trellis forward-bachvard search 
algorithms [41). First, the search perfo1ms a time-synchronous forward search. At each time 
frame t, it records the score of the final state of each word ending. The set of words whose 
final states are active (surviving in the beam) at time t is denoted as /:,.

1
• The score of the 

final state of each word w in ti, is denoted as a, ( w), which represents the sum of the cost 
of matching the utterance up to time t given the most likely word sequence ending with 
word w and the cost of the language model score for that word sequence. At the end of the 
forward search, the best cost is obtained and denoted as ar. 

After the forward pass is completed, the second search is run in reverse (backward), 
i.e., considering the last frame T as the beginning one and the first frame as the final one. 
Both the acoustic models and language models need to be reversed. The backward search is 
based on A* search. At each time frame t, the best path is removed from the stack and a list 
of possible one-word extensions for that path is generated. Suppose this best path at time tis 
ph..,,, where w1 is the first word of this partial path (the last expanded during backward A* 
search). The exit score of path ph.,. at time t, which now corresponds to the score of the 

initial state of the word HMM w1 , ii denoted as /3, (ph,,. ) • 
Let us now assume we are concerned about the one-word extension of wo_rd w, for 

path ph.,
1 

. Remember that there are two fundamental issue~ f~r the i?1plement~tion. of A: 
search algorithm-( I) finding an effective and efficient heunsttc function for eSlimatmg th 

fut . . . h b t ossing time between w and ure remammg input feature stream and (2) finding t e es er 1 

wJ. 
• • b h • es effectively and effi-

. -.. Jhe ~tored forward score a can be used for solving ot ,ssu f the best 
c1ently. For each time t the sum a ( w.) + /3i (ph . ) represents the cost score o 
co 1 ' ' ' 1 

" , h (w) clearly represents a very 
mp ete path including word w. and partial path P ,.., • a, 1 t'I the end of 

good h · . . ' . h t t of the utterance un 1 

h 
eunstic estimate of the remaimng path from I e s ar , d path 'or the same 

t e wo d . . . ted in the 1orwar 1' 
r w,, because 1t 1s mdeed the best score compu d can be easily com-

quantity M . . · • b tween w. an IV-• oreover, the opttmal crossing time t e ' ' 
PUted by th ti . . e ollowmg equal!on: 

,· == arg:Uin[ a, (w,.) + /3, (ph.,1)] 
( 13.7) 
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Finally, the new path ph', including the one-word ( w
1

) extension, is inserted into the stack, 
ordered by the cost score a. (w,)+ n. (ph ) . The heuristic function (forward scores a) 

I /Jr w, 

allows the backward A* search to concentrate search on extending only a few truly promis-
ing paths. 

As a matter of fact, if the same acoustic and language models are used in both the for­
ward and backward search, this heuristic estimate (forward scores a ) is indeed a perfect 
estimate of the best score the extended path will achieve. The first complete hypothesis 
generated by backward A* search coincides with the best one found in the time-synchronous 
forward search and is truly the best hypothesis. Subsequent complete hypotheses correspond 
sequentially to the n-best list, as they are generated in increasing order of cost. Under this 
condition, the size of the stack in the backward A* search need only be N. Since the estimate 
of future is exact, the (N + 1) ih path in the stack has no chance to become part of the 11-best 
list. Therefore, the backward search is executed very efficiently to obtain the n-best hy­
potheses without exploring many unpromising branches. Of course, tree-trellis forward­
backward search can also be used like most other multipass search strategies-inexpensive 
KSs are used in the forward search to get an estimate of a , and more expensive KSs are 
used in the backward A* search to generate the n-best list. 

The same idea of using forward score a can be applied to time-synchronous Viterbi 
search in the backward search instead of backward A* search [7, 34]. For large-vocabulary 
tasks, the backward search can run 2 to 3 orders of magnitude faster than a normal Viterbi 
beam search. To obtain the n-best list from time-synchronous forward-backward search, the 
backward search can also be implemented in a similar way as a time-synchronous word­
dependent n-best search. 

13.3.4.2. Word-Lattice Generation 

The forward-backward n-best search algorithm can be easily modified to generate word lat­
tices instead of n-best lists. A forward time-synchronous Viterbi search is performed first to 
compute a,(m), the score of each word (J) ending at time t. At the end of the search, this 
best score ar is also recorded to establish the global pruning threshold. Then, a backward 
time-synchronous Viterbi search is performed to compute /3, ( m), the score of each word a> 
beginning at time t. To decide whether to include word J·uncrure (J). -(J). in the word lat-

' J tice/graph at time t, we can check whether the forward-backward score is below a global 
pruning threshold. Specifically, supposed bigram probability P( (J)J I w,) is used, if 

(13.8) 

where 8 is the pruning threshold, we will include (J) - (J). in the word lattice/graph at time 
0 d • I J . 

t. nee wor Juncture (J)1 -(J)1 is kept, the search continues looking for the next word-pair, 
where the first word (J)1 will be the second word of the next word-pair. 
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The above formulation is based on the assumption of using the . same acoustic and Ian-
age models in both forward and backward search. If different KSs are used . f d gu . m orwar and 

backward search, the normalized a and /3 scores should be used instead. 

3 3 5 One-Pass vs. Multipass Search 1 ... 

Toere are several real-time one-pass search engines [ 4, 5]. Is it necessary to build a multi­
pass search engine based on n-best or word-lattice rescoring? We address this issue by dis­
cussing the disadvantages and advantages of multipass search strategies. 

One criticism of mullipass search strategies is that they are not suitable for real-time 
applications. No matter how fast the first pass is, the successive (backward) passes cannot 
slart until users finish speaking. Thus, the search results need to be delayed for at least the 
time required to execute the successive (backward) passes. This is why the successive passes 
must be extremely fast in order to shorten the delay. Fortunately, it is possible to keep the 
delays minimum (under one second) with clever implementation of multipass search algo­
rithms, as demonstrated by Nguyen et al. [18]. 

Another criticism for multipass search strategies is that each pass has the potential to 
introduce inadmissible pruning, because decisions made in earlier passes are based on sim­
plified models (KSs). Search is a constraint-satisfaction problem. When a pruning decision 
in each search pass is made on a subset of constraints (KSs), pruning error is inevitable and 
is unrecoverable by successive passes. However, inadmissible pruning, like beam pruning 
and fast match, is often necessary to implement one-pass search in order to cope with the 
large active search space caused jointly by complex KSs and large-vocabulary tasks. Thus, 
~e problem of inadmissibility is actually shared by both real-time one-pass search and mul­
bpass search for different reasons. Fortunately, in both cases, search errors can be reduced to 
a minimum by clever implementation and by empirically designing all the pruning thresh­
olds carefully, as demonstrated in various one-pass and multi pass systems [4, 5, _18~. 

Despite these concerns regarding multipass search strategies, they remam unportant 
components in developing spoken language systems. We list here several important aspects: 

I. It might be necessary to use multipass search strategies to incorporate very 
expensive KSs. Higher-order n-gram, long-distance context-depeildent mod­
elS, and natural language parsing are examples that make the . searc? space 
unmanageable for one-pass search. Multipass search strategies might be 
compelling even for some small-vocabulary tasks. For ex.amp)~, t~ere ~ 
only a couple of million legal credit card numbers for the authent~caaon tas 
of 16- · • . • sive to incorporate digit credit card numbers. However, 1t 1s very expen d 
all th . • mar To first re uce 

e legal numbers explicitly in the recogm~on gram . • t be a desirable 
search space down to an n-best list or word lattice/graph migh 
approach. 

2 M l . 11 • for spoken language 
• u lipass search strategies could be very compe mg I language 

unde tan . . • orate most natura rs dmg systems. It is problematic to mcorp 
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understanding technologies in one-pass search. On the other hand, 11-best lists 
or word lattices provide a trivial interface between speech recognition and 
natural language understanding modules. Such an interface also provides a 
convenient mechanism for integrating different KSs in a modular way. This is 
important because the KSs could come from different modalities (like video 
or pen) that make one-pass integration almost infeasible. This high degree of 
modality allows different component subsystems to be optimized and imple­
mented independently. 

3. N-best lists or word lattices are very powerful offline tools for developing 
new algorithms for spoken language systems. It is often a significant task to 
fully integrate new modeling techniques, such as segment models, into a one­
pass search. The complexity could sometimes slow down the progress of the 
development of such techniques, since recognition experiments are difficult 
to conduct. Rescoring of n-best list and lattice provides a quick and conven­
ient alternative for running recognition experiments. Moreover, the computa­
tion and storage complexity can be kept relatively constant for offline n-best 
or word lattice/graph search strategies even when experimenting with highly 
expensive new modeling techniques. New modeling techniques can be ex­
perimented with using 11-best/word-graph framework first, being integrated 
into the system only after significant improvement is demonstrated. 

4. Besides being an alternative search strategy, n-best generation is also essen­
tial for discriminant training. Discriminant training techniques, like MMIE, 
and MCE described in Chapter 4, often need to compute statistics of all pos­
sible rival hypotheses. For isolated word recognition using word models, it is 
easy to enumerate all the word models as the rival hypotheses. However, for 
continuous speech recognition, one needs to use an all-phone or all-word 
model to generate all possible phone sequences or all possible word se­
quences during training. Obviously, that is too expensive. Instead, one can 
use 11-best search to find all the near-miss sentence hypotheses that we want 
to discriminate against [15, 36]. 

13.4. SEARCH-ALGORITHM EVALUATION 

Throughout this chapter we are careful in following dynamic programming principles, using 
admissible criteria as much as possible. However, many heuristics are still unavoidable to 
implement large-vocabulary continuous speech recognition in practice. Those nonadmissible 
heuristics include: 

• Viterbi score instead of forward score described in Chapter 12. 

• Beam pruning or stack pruning described in Section 13.2.2 and Chapter 12. 
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• Subtree dominance pruning described in Section 13.1.5. 

• fast match pruning described in Section 13.2.3. 

• Rich-get-richer pnmin!! described in Section 13.:!.3.2. 

• Mulripass search srralt'·gie$ de:-cribed in Section 13.3.5. 
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Nonadmissible ~euristics _g~nerate :!>Uhoptimal Searches where the found path is nor 
necessarily !he p3th with the mm1mum cosL The question is. how diff erem is this subooti­
mal from the- true optimal path·~ l"nfonun:nely. there is no way to know rhe optimal path 
unkss an ex.hausti,·e se..lrch is conducted. The pr.1ctical question is whether the subomimaJ 
swrh burrs I.he search result. In a te5t condition where the true result is spe-.cifie.i. y~u can 
easily compare the search result with the rrue result to find whelher any error occurs. Errors 
could be due to inacci..;rate models tinduding acoustic and langua~e models 1. sub.:->Dtir..al 

.... - - ' 
search. or end-JX_lint det~ction. The error cause<l by a suboptimal se..:u-ch 2.lgorithm is refe:rej 
1oassearch error or pruning error. 

How C':Il we find out whether the search. commits a pruning error: One of me pr.'.\..."'e-­

dure5 most often used is srraightforward. Le.t W be the recognized worJ se.q'Jence f::-om ~ 
recognizer and \\' be !he true word se-quence. We n~-"'d to comp::.re ti"le cost for r:,"i~ :v.·o 
word 5eqnences: 
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threshold to retain the correct path. For example, one can adjust the pruning th h 
. - . h 1· . res old~ fast match if a word m W fails to appear on t e 1st supplied by the fast match. or 

13.5. CASE STUDY-MICROSOFT WHISPER 

We use the decoder of Microsoft's Whisper [26, 27) discussed in Chapter 9 as a ca . . . . se study 
for reviewing the search techmques we have presented m this chapter. Whisper can handle 
both context-free grammars for small-vocabulary tasks and n-gram language mod 1 , . . es ,or 
large-vocabulary tasks. We descnbe these two different cases. 

13.5.1. The CFG Search Architecture 

Although context-free grammars (CFGs) have the disadvantage of being too restrictive and 
unforgiving, particularly with novice users, they are still one of the most popular configura­
tions for building limited-domain applications because of the following advantages: 

• Compact representation results in a small memory footprint. 

• Efficient operation during decoding in tenns of both space and time. 

• Ease of grammar creation and modification for new tasks. 

As mentioned in Chapter 12, the CFG grammar consists of a set of productions or 
rules that expand nonterminals into a sequence of terminals and nontenninals. Nonterminals 
in the grammar tend to refer to high-level task-specific concepts such as dates, font names, 
and commands. The tenninals are words in the vocabulary. A grammar also has a nontermi­
nal designated as its start state. Whisper also allows some regular expression operators on 
the right-hand side of the production for notational convenience. These operators are: or _'I'; 
repeat zero or more times'*'; repeat one or more times'+'; and optional ([]).The following 
is a simple CFG example for binary number: 

%start BINARY_NUMBER 
BINARY_NUMBER: (zero I one)* 

. f se of implemen· 
Without losing generality, Whisper disallows the left recursion ore~ ~ t cur· 

tation [2]. The grammar is compiled into a binary linked list format. The binary o;abut is 
rently has a direct one-to-one correspc~der...,c with the text grammar compod~en The bi· 

• d ·ng deco mg. more compact. The compiled format is used by the search engme un ar fort11a! 
nary representation consists of variable-sized nodes linked together. Thefi g~3:11: rules. 
achieves sharing of subgrammars through the use of shared nonterminal de m,uo IZ) During 

The CFG search is conducted according to RTN framework (see Chapter ti!Tl~- A.sso-
d d' · th h th CFG at the same an ~co m~, the search engme pursues several paths roug . e tel hoW the path c. 
ciated with each of the paths is a grammar state that descnbes comple Y rd of a path, 11 

be extended further. When the decoder hypothesizes the end of the current wyo be several al· 
d There rna word 

asks the grammar module to extend the path further by one wor • 11 the successor 
ternative successor words for the given path. The decoder considers a 
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possibilities. This may cause the path to be extended to 
1 • h · generate several more paths to b 

considered, eac 1 wit rts own grammar state Also note th t th e 
- d · • a e same word might be under consideration by the ecoder Ill the context of different path d 

. s an grammar states at the same 
trme. 

The decoder uses beam search to prune unpromising paths ·th h d.f,. . wi t ree 1 1erent beam 
thresholds. The state prunmg threshold -r, and new phone pruning th h Id 

. . S . 13 2 2 W . ~ res o r ,, work as 
descnbed m ect1on • • • hen extending a path, if the score of the extended path does 
not exceed the threshold 'h, the path to be extended is put into a pool At h f & . . . eac rame, aor 
each word tn the vocabulary, a wmning path that extends to that word is picked from the 
~ool,_based on the score. ~II the rem~ining paths in the pool are pruned. This level of prun­
ing gives us finer control m the creation of new paths that have potential to grow exponen­
tially. 

When two paths representing different word sequences thus far reach the end of the 
current word with the same grammar state at the same time, only the better path of the two is 
allowed to continue on. This optimization is safe, except that it does not take into account 
the effect of different interword left acoustic contexts on the scores of the new word that is 
started. 

Besides beam pruning, the RGR strategy, described in Section I 3.2.3.2, is used to 
avoid unnecessary senone computation. The basic idea is to use the linear combination of 
context-independent senone score and context-independent look-ahead score to determine 
whether the context-dependent senone evaluation is worthwhile to pursue. 

All of these pruning techniques enable Whisper to perfonn typical I 00- to 200-word 
CFG tasks in real time running on a 486 PC with 2 MB RAM. Readers might think it is not 
critical to make CFG search efficient on such a low-end platfonn.

9 
However, it is indeed 

important to keep the CFG engine fast and lean. The speech recognition engine is eventually 
only part of an integrated application. The application will benefit if the resources (both 
CPU and memory) used by the speech decoder are kept as small as pos~i~le, so there ar:e 
more resources left for the application module to use. Moreover, in recognition server appli­
cations, several channels of speech recognition can be pe1formed on a single server platform 
if each speech recognition engine takes only a small portion of the total resources. 

13.S.2. The N-gram Search Architecture 

Th C . d and control applications. For 
e FG decoder is best suited for limited domam comman ·ct 

d' · • r such as ,z-grams provt es a ictation or natural conversational systems, a stochastic gramma 
m . 1 d large number of states to be con-
. ore natural choice. Using bigrams or tngrams ea s to a . 

s1dered by the search process, requiring an alternative search architecture. 

'Th . 1 am PC configuralion is an order of magni-
lud anlcs to lhe progress predicted by Moore"s law, the current m_:n; ~ RAM) in both speed nnd memory. 

e more powerful 1han 1he configuration we list here (486 PC w, 
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Whisper's n-gram search architecture is based on lexical tree search as described in 
Section 13.1. To keep the runtime memory'0 as small as possible, Whisper does not need to 
allocate the entire lexical tree network statically. Instead, it dynamically builds only the por­
tion that needs to be active. To cope with the problem of delayed application of language 
model scores, Whisper uses the factorization algorithm described in Section 13.1.3 to dis­
tribute the language model probabilities through the tree branches. To reduce the memory 
overhead of the factored language model probabilities, an efficient data structure is used for 
representing the lexical tree as described in Section I 3.1.3.1. This data structure allows 
Whisper to encode factored language model probabilities in no more than the space required 
for the original n-gram probabilities. Thus, there is absolutely no storage overhead for using 
factored lexical trees. 

The basic acoustic subword model in Whisper is a context-dependent senone. It also 
incorporates inter-word triphone models in the lexical tree search as described in Section 
13.1.6. Table J 3.5 shows the distribution of phoneme arcs for 20,000-word WSJ lexical tree 
using senones as acoustic models. Context-dependent units certainly prohibit more prefix 
sharing when compared with Table 13.1. However, the overall arcs in the lexical tree still 
represent quite a saving when compared with a linear lexicon with about 140,000 phoneme 
arcs. Most importantly, similar to the case in Table 13.1, most sharing is realized in the be­
ginning prefixes where most computation resides. Moreover, with the help of context­
dependent and interword senone models, the search is able to use more reliable knowledge 
to perform efficient pruning. Therefore, lexical tree with context-dependent models can still 
enjoy all the benefits associated with lexical tree search. 

The search organization is evaluated on the 1992 development test set for the Wall 
Street Jounzal corpus with a back-off trigram language model. The trigram language model 
has on the order of 107 linguistic equivalent classes, but the number of classes generated is 
far fewer due to the constraints provided by the acoustic model. Figure 13.13(a) illustrates 
that the relative effort devoted to the trigram, bigram, and unigram is constant regardless of 
total search effort, across a set of test utterances. This is because the ratio of states in the 
language model is constant. The language model is using ~2 xlOb trigrams, ~2 x 10& bi­
grams, and 6 x IO~ unigrams. Figure 13.13(b) illustrates different relative order when word 
hypotheses are considered. The most common context for word hypotheses is the unigram 
context, followed by the bigram and trigram contexts. The reason for the reversal from the 
state-level transitions is the partially overlapping evaluations required by each bigram con­
text. The trigram context is more common than the bigram context for utterances that gener­
ate few hypotheses overall. This is likely because the language model models those 
utterances well. 

"H h • ere t e runtime memory means the virtual memory for the decoder tbnt is the entire imnge of the decoder. 
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bl lJ.5 Configuration of the first seven levels of the 20,000-word WSJ (~ 11 S 
To e . . . f . d h a treet Jour-
ira/J ,ree; the large 1mt1al an-out 1s ue to t e use of context-dependent acoustic models (4 ). 

Tree Level Number or Nodes Fan-Out 
I 655 655.0 
2 3174 4.85 
3 9388 2.96 
4 D,703 1.46 
5 14,918 1.09 
6 13,907 0.93 
7 11,389 0.82 
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To improve efficiency in dealing with tree copies due to the use of higher-order n­
gram, one needs to reduce redundant computations in subtrees that are not explicitly part of 
the given linguistic context. One solution is to use successor trees to include only nonzero 
successors, as described in Section 13.1.2. Since Whisper builds the search space dynami­
cally, it is not effective for Whisper to use the optimization techniques of the successor-tree 
network, such as FSN optimization, subtree isomorphism, and sharing tail optimization. 
Instead, Whisper uses polymorphic linguistic context assignment to reduce redundancy, as 
described in Section 13.1.5. This involves keeping a single copy of the lexical tree, so that 
each node in the tree is evaluated at most once. To avoid early inadmissible pruning of dif­
ferent linguistic contexts, an e -heap of storing paths of different linguistic contexts is cre­
ated for each node in the tree. The operation of such e -heaps is in accordance with 
Algorithm 13.2. The depth of each heap varies dynamically according to a changing thresh­
old that allows more contexts to be retained for promising nodes. 
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Figure 13 d b number of active 
Slates. •13 (a) Search effort for different linguistic contexts meas~r; yh bi·oram then the 

tn each f h . . . Th eries is ior t e "' , 
unigram 0

_ t e three different lingmsuc contexts. e tops d is lotted on the sec-
ondary an~ trigram. The remaining series is the effort per utterance an th _P context. The 1op 
line is thY-axis. (b) The distribution of word hypotheses with respec~ ~o eirn·es is the average 

e unig . • The remammg se . ] nurnbe f ram context, then the b1gram and tngram. nd~n1 >•-axis [3 • 
r o hy th . 1 d on the seco '" J po eses per frame for each utterance and is P otte 
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Table 13.6 illustrates how the depth of lhe e -heap, the active states per frame of 
speech, word error rate, and search time change when the value of thresho]d e increases for 
the 20 000-word WSJ dicL1tion task. As we can see from the table, the average heap size for 
active 'nodes is only about 1.6 for the most accurate configuration. Figure l 3.14(a) illustrates 
the distribution of stack depths for a large data set, showing that the stack depth is small 
even for tree initial nodes. Figure 13.14(b) illustrates the profile of the average stack depth 
for a sample utterance, showing that the average stack depth remains smalJ across an utter-

ance. 
Whisper a]so employs look-ahead techniques to further reduce the search effort. The 

acoustic look-ahead technique described in Section 13.2.3.1 attempts to estimate the prob­
ability that a phonetic HMM will participate in the final result [3]. Whisper implements 
acoustic look-ahead by running a CI phone-net synchronously with the search process but 
offset N frames in the future. One side effect of the acoustic look-ahead is to provide infor­
mation for the RGR strategy, as described in Section 13.2.3.2, so the search can avoid un­
necessary Gaussian computation. Figure 13.15 demonstrates the effectiveness of varying the 
frame look-ahead from O to N frames in terms of states evaluated. 

When the look-ahead is increased from O to 3 frames, the search effort, in terms of real 
time, is reduced by -40% with no loss in accuracy; however, most of that is due to reducing 
the number of states evaluated per frame. There is no effect on the number of Gaussians 
evaluated per frame (the system using continuous density) untiJ we begin to negatively im­
pact error rate, indicating that the acoustic space represented by the pruned states is redun­
dant and adequately covered by the retained states prior to the introduction of search errors. 

With the techniques discussed here, Whisper is able to achieved real-time performance 
for the continuous WSJ dictation task (60,000-word) on Pentium-class PCs. The recognition 
accuracy is identical to that of a standard Viterbi beam decoder with a linear lexicon. 

Table 13.6 Effect of heap threshold on contexts/node, states/frame-of-speech (fos), word error 
rate, and search time [4). 

£ Context / node states /fos %error search time 
0 1.000 8805 16.4 I.Ox 

1.0 1.001 8808 15.5 I.Ox 
2.0 1.008 8898 14.4 I.Ox 
3.0 1.018 9252 12.4 l.07x 
4.0 1.056 10224 10.5 l.16x 
5.0 1.147 11832 10.3 l.36x 
6.0 1.315 13749 10.0 l.60x 
7.0 1.528 15342 9.9 l.81x 
8.0 1.647 15984 9.9 l.86x 
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13.6. HISTORICAL PERSPECTIVE AND FURTHER READING 

~ge-vocabula • • • • h•e syst ry contmuous speech recognition is a computallonally mtenstve task. Real· 
ti•e pea:: s<aned to emerge in the late 1980s. Before that, most systems achieved real· 
ind van ance with the help of special hardware [11, 16, 25, 28]. Thanks to Moore's law 

ous efficient a1· • 1 h. &enera1-pu search techniques, real-time systems became a re tty on a sing e-c 1p 

Com rpose P_ersonal computer in the 1990s [4, 34, 43]. 
COntinuo mon wisdom in 1980s saw stack decoding as more efficient for large-vocabulary 
search us speech recognition with higher-order n-grams. Time-synchronous Viterbi beam 

' as describ d · • h " e in Sections 13.l and 13.2, emerged as the most efficient searc 1rame-
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work. It has become the most widely used search technique today. The lexical tree represe _ 
tation was first used by IBM as part of its allophonic fast match system [10]. Ney propos;d 
the use of the lexical tree as the primary representation for the search space [32]. The ideas 
of language model factoring [4, 19] [5] and subtree poJymorphism [4] enabled real-time 
single-pass search with higher-order language models (bigrams and trigrams). Alleva [3) 
and Ney [33] are two excellent articles regarding the detailed Viterbi beam search algorithm 
with lexicaJ tree representation. 

As mentioned in Chapter 12, fast match was first invented to speed up stack decoding 
[8, 9]. Ney and Ortmanns [33] and Alleva [3) extended the fast match idea to phone look­
ahead in time-synchronous search by using context-independent model evaluation. In Haeb­
Umbach et al. [22), a word look-ahead is implemented for a l 2.3k-word speaker-dependent 
continuous speech recognition task. The look-ahead is performed on a lexical tree, with 
beam search executed every other frame. The results show a factor of 3-5 times of reduction 
for search space compared to the standard Viterbi beam search, while only I-2% extra er­
rors are introduced by word look-ahead. 

The idea of multipass search strategy has long existed for knowledge-based speech 
recognition systems [17], where first a phone recognizer is performed, then a lexicon hy­
pothesizer is used to locate all the possible words to form a word lattice, and finally a lan­
guage model is used to search for the most possible word sequence. However, HMM's 
popularity predominantly shifted the focus to the unified search approach to achieve global 
optimization. Computation concerns led many researchers to revisit the multipass search 
strategy. The first n-best algorithm, described in Section 13.3.2, was published by research­
ers at BBN [39]. Since then, n-best and word-lattice based multipass search strategies have 
become important search frameworks for rapid system deployment, research tools, and spo­
ken language understanding systems. Schwartz et al.'s paper [40] is a good tutorial on then­
best or word-lattice generation algorithms. Most of then-best search algorithms can be made 
to generate word lattices/graphs with minor modifications. Other excellent discussions of 
multipass seru-ch can be found in f]4, 24, 30]. 
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CHAPTER I 4 

Text and Phonetic Analysis 

codings . Text-to-speech can be viewed as a speech 
nexibirt~m that _yields an extremely high compression ratio coupled with a high degree of 
ofrrs

1 
thin choosing style, voice, rate, pitch range, and other playback effects. In this view 

rrs s b e text file that is input to a speech synthesizer is a form of coded speech. Thus, 
u sumes coding technologies discussed in Chapter 7 with the following goals: 

• ~mpres~ion ratios superior to digitized wave files-Compression yields 
nefits 10 many areas, including fast Internet transmission of spoken mes­

sages. 

' Flexib ·t · 1 tty m output characteristics-Flexibility includes easy change of 
g~

n
<ler, average pitch pitch range etc. enabling application developers to 

give th • ' ' • · • T al . eir systems' spoken output a unique individual personality. Flexibi ity 
so implies easy change of message content; it is generally easier to retype 

text than ·t • 1 is to record and deploy a digitized speech file . 
' Ability fi • f th or perfect indexing between text and speech /orms- Preservatton ° 

it correspondence between textual representation and the speech wave fonn 
: ows synchronization with other media and output modes, such as wocd-bY­

Ord reverse video highlighting in a literacy tutor reading aloud. 

689 
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Al t . ·cess 0,rrext content-ITS is the most effective alternative ac-• tema ive ac 'J . . 
cess of text for the blind, hands-free/eyes-free and d1splayless scenanos. 

At first sight, the process of converting text into speech looks strai~h~orw~r~. H~w-

h we analyze how complicated speakers read a text aloud, this s1mphst1c view ever, w en . . . 
quickly falls apart. First, we need to convert words m wntten forms mto speakable fonns. 
This process is clearly nontrivial. Second, to sound natur~I, the system needs to convey the 
intonation of the sentences properly. This second process is clearly an extremely challenging 
one. One good analogy is to think how difficult it is to drop a foreig~ accent when speaking 
a second language-a process still not quite understood by human beings. 

The ultimate goal of simulating the speech of an understanding, effective human 
speaker from plain text is as distant today as the corresponding Holy Grail goals of the fields 
of speech recognition and machine translation. This is because such humanlike rendition 
depends on common-sense reasoning about the world and the text's relation to it, deep 
knowledge of the language itself in all its richness and variability, and even knowledge of 
the actual or expected audience-its goals, assumptions, presuppositions, and so on. In typi­
cal audio books or recordings for the visually challenged today, the human reader has 
enough familiarity with and understanding of the text to make appropriate choices for rendi­
tion of emotion, emphasis, and pacing, as well as handling both dialog and exposition. 
While computational power is steadily increasing, there remains a substantial knowledge 
gap that must be closed before fully human-sounding simulated voices and renditions can be 
created. 

While no TIS system to date has approached optimal quality in the Turing test, 1 a 
large number of experimental and commercial systems have yielded fascinating insights. 
Even the relatively limited-quality TIS systems of today have found practical applications. 

The basic ITS system architecture is illustrated in Chapter 1. In the present chapter we 
discuss text analysis and phonetic analysis whose objective is to convert words into speak­
able phonetic representation. The techniques discussed here are relevant to what we dis­
cussed for language modeling in Chapter 11 (like text normalization before computing n­
g_ram) and for pronunciation modeling in Chapter 9. The next two modules-prosodic analy­
sis and speech synthesis-are treated in the next two chapters. 

14.1. MODULES AND DATA FLow 

The _te~t analysis component, guided by presenter controls, is typically responsible for de­
termmmg document structure, conversion of nonorthographic symbols, and parsing of lan­
guage structure an~ meaning. The phonetic analysis component converts orthographic words 
to phones (unambiguous speech sound symbols). Some ITS systems assume dependency 
between text analysis phoneti J • • · · • • c ana ys1s, prosodic analysis, and speech synthesis, particu-
larly systems based on very large d t b • - "fi d _____________ a a ases contammg long stretches of original, unmod1 1e 

A test proposed by British mathematician All T . 
perfonnance on a given h I an unng of the ability of a computer to flawlessly imitate human 

speec or anguage task [29). 
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digitized speech with their original pitch conto_urs. We discuss our high-level linguistic de­
scription of those modules, based on modularity, transparency, and reusability of compo-

1s although some aspects of text and phonetic analysis may be unnecessary for some nen , 
particular systems. . 

We assume that the entire text (word, sentence, paragraph, document) to be spoken is 
ntained in a single, wholly visible buffer. Some systems may be faced with special re­

c~irements for continuous flow-through or visibility of only small (word, phrase, sentence) 
;Jmnks at a time, or extremely complex timing and synchronization requirements. The basic 
functional processes within the text and phonetic analysis are shown schematically in Figure 
14.1. 

raw text 
or tagged text 

r---------------- --------------------- I 

Document Structure Detection 

Text Normalization 

Linguistic Analysis 

Text Analysis 

I 
I 
I 

-------------· 
----------------- -------------

tagged text -------------------r---------------- ------
Homograph Disambiguation 

Morphological Analysis 

L----,---~.PhonencAnalysis 

I 
I 

d Conversion Letter-to-Soun 
L _______ ________ _ --------------
ragged text & pho11es 

-------

Figure 14.1 Modularized functional blocks 

. analysis components. 
for text and phoneuc 

---· 
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The architecture in Figure 14.1 brings the stand_ard benefits of modularity and trans­
parency. Modularity in this case means that the ~nalys1s at each level can be supplied by the 
most expert knowledge source, or ~ variety ~f different sources, as long as the markup con­
ventions for expressing the analysis are umfonn. Transparency means that the results of 
each stage could be reused by other processes for other purposes. 

14.1.1. Modules 

The text analysis module (TAM) is responsible for indicating all knowledge about the text or 
message that is not specifically phonetic or prosodic in nature. Very simple systems do little 
more than convert nonorthographic items, such as numbers, into words. More ambitious 
systems attempt to analyze whitespaces and punctuations to determine document structure, 
and perfonn sophisticated syntax and semantic analysis on sentences to detennine attributes 
that help the phonetic analysis to generate correct phonetic representation and prosodic gen­
eration to construct superior pitch contours. As shown in Figure 14.1, text analysis for TIS 
involves three related processes: 

• Document structure detection-Document structure is important to provide a 
context for all later processes. In addition, some elements of document struc­
ture, such as sentence breaking and paragraph segmentation, may have direct 
implications for prosody. 

• Text normalization-Text normalization is the conversion from the variety of 
symbols, numbers, and other nonorthographic entities of text into a common 
orthographic transcription suitable for subsequent phonetic conversion. 

• Linguistic analysis-Linguistic analysis recovers the syntactic constituency 
and semantic features of words, phrases, clauses, and sentences, which is im­
portant for both pronunciation and prosodic choices in the successive proc­
esses. 

. The task ?f the phonetic analysis is to convert lexical orthographic symbols to phone­
mi~ representat1on along with possible diacritic information such as stress placement. Ph~­
n~~~ a~al~sis is thus often referred to as grapheme-to-phon~me conversion. The purpose is 
ouv ,ou,), smce phonemes are the basic units of sound as described in Chapter 2· Even 
tbough fu~re ITS systems might be based on word sou,nding units with increasing storage 
technologies homogra h d" b" . d ( "ther trUe ' . . P 1sam tguat:J.on and phonetic analysis for new wor s ei 
new words bemg invented over time or morphologically trarisformed words) are 51ill neces­
sary for systems to correctly utter every word. 

Grapheme-to-phonern , . . . . ·mple rela-
ti• h" b e conversion 1s tnv1al for languages where there 1s a si 

ons 1P etween ortho h . II cap· 
tured b h grap Y and phonology. Such a simple relationship can be we 
and ar:r:fe:!f~l of rules. L_anguages such as Spanish and Finnish bel_ong to this categ~~ 

0 as phonetic languages. English, on the other hand, 1s remote from p 
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. 1 gu:ige because English words often have many distinct origins It is gene 11 b neuc an , . • ra y e-
lieved that the following three services are necessary to produce accurate pronunciations. 

, Homograph di.mmbiguotion-It is important to disambiguate words with dif-
ferent senses to determine proper phonetic pronunciations, such as object (/ah 
b jh eh k ti) as a verb or as a noun (/aa b jh eh k ti). 

, Morphological a11alysis---Analyzing the component morphemes provides 
important cues to attain the pronunciations for inflectional and derivational 
words. 

, Lefler-to-sound conversion-The last stage of the phonetic analysis generally 
includes general letter-to-sound rules (or modules) and a dictionary lookup to 
produce accurate pronunciations for any arbitrary word. 

All the processes in text and phonetic analysis phases above need not to be determinis­
tic, although most TIS systems today have deterministic processes. What we mean by not 
detemiinistic is that each of the above processes can generate multiple hypotheses with the 
hope that the later process can disambiguate those hypotheses by using more knowledge. 
For example, often it might not be trivial to decide whether the punctuation "." is a sentence 
ending mark or abbreviation mark during document structure detection. The document struc­
ture detection process can pass both hypotheses to the later processes, and the decision can 
then be delayed until there is enough information to make an informed decision in later 
~odules, such as the text nonnalization or linguistic analysis phases. When generating mul­
~ple hy~theses, the process can also assign probabilistic information if it ~omprehe~ds the 
underlymg probabilistic structure. This flexible pipeline architecture avoids the miSta.kes 
made by early processes based on insufficient knowledge. 

Much of the work done by the text/phonetic analysis phase of a TIS system mirrors the 
processing attempted by natural language process (NLP) systems for other purposeS, such as 
automatic p f d' . . • d • and so on. Increas-. roo rea mg, machine translation, database document m exmg, . . . x 
tngly sophisticated NL analysis is needed to make certain TIS processing dectsmns •~ ~~ e_ -
:~ i~lu5tcated in Table 14.1. Ultimately all decisions are context driven aod probabillSllC 

10 

' since, for example, dogs might be cooked and eaten in some cultures. 

,_ Table 14 1 Examples of several ambiguous text normalization cases. 

Exarnples 
t---.:....: Alternatives Techniques 

Er· Smith . . I • case analysis -- doctor or drive? abbreviation ana Ys1s, 

~you go? yes-no or wh-question? syntactic analysis 
late a hot do semantic, verb/direct object likelihood 
~- accent on dog'? 
l saw a hot do;-- discourse, pragmatic analysis -

accent on dog? 
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M t TIS systems today employ specialized natural language processing modules for 
front-en~sanalysis. In the future, it is ~ikely that less emphasis will be pla~ed o~ construction 
of TIS-specific text/phonetic analysis components such as those descnbed m (27], while 

ore resources will likely go to general-purpose NLP systems with cross-functional poten­
:a1 [23]. In other words, a11 the modules above only perform simple proc_essing and pass all 
possible hypotheses to the later modules. At the end of the text/phonetic phase, a unified 
NLP module then performs extensive syntactic/semantic analysis for the best decisions. The 
necessity for such an architectural approach is already visible in markets where language 
issues have forced early attention to common lexical and tokenization resources, such as 
Japan. Japanese system services and applications can usually expect to rely on common 
cross-functional linguistic resources, and many benefits are reaped, including elimination of 
bulk, reduction of redundancy and development time, and enforcement of systemwide con­
sistent behavior. For example, under Japanese architectures, TIS, recognition, sorting, word 
processing, database, and other systems are expected to share a common language and 
dictionary service. 

14.1.2. Data Flows 

It is arguable that text input alone does not give the system enough information to express 
and render the intention of the text producer. Thus, more and more TIS systems focus on 
providing an infrastructure of standard set of markups (tags), so that the text producer can 
better express their semantic intention with these markups in addition to plain text. These 
kinds of markups have different levels of granularity, ranging from simple speed settings 
specified in words per minute up to elaborate schemes for semantic representation of con­
cepts that may bypass the ordinary text analysis module altogether.2 The markup can be 
d_one by internal proprietary conventions or by some standard markup, such as XML (Exten­
s_ible Markup Language (35]). Some of these markup capabilities will be discussed in Sec­
tions 14.3 and 14.4. 

For example, an application may know a lot about the structure and content of the text 
t? be spoken, an~ it can apply this knowledge to the text, using common markup conven­
tions, to ~eatly improve spoken output quality. On the other hand, some applications may 
?ave certain broad requirements such as rate, pitch, callback types, etc. For engines provid­
ing such supports, the text and/or phonetic analysis phase can be skipped, in whole or in 
part. Whelhe~ the application or the system has provided the text analysis markup, the strU_c­
tural conve~tions should be identical and must be sufficient to guide the phonetic analysis. 
!:1-e phoneti~ analysis module should be presented only with markup tags indicating strU~-

re or functions of textual chunks, and words in standard orthography The similar phonetic 
:;~~ could also be presented to the phonetic analysis module, ·the module could be 

, This latter type of system is somcti call . • described in 
Chapter 17 [t generaJl mes cd concept-to-speech or message-to-speech, which is r.d 10 the 
system. • y generates better speech rendering when domain-specific knowledge is provid 
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Inlemal architectures, data structures and • rf • mte aces may v . 
system. However, most modem TIS systems in·t· 11 ary widely from system to 

I ra y construct • I 
utterance or paragraph based on observable attrib t . a simp e description of an 
perhaps augmented by control annotations This u _e~, tylp~c~l!y text words and punctuation 

• mrorma rnitral rkel t . , 
wilh many layers of structure hypothesized by the TIS , • . e on is then augmented 
Beginning with a surface stream of words punctuat· syStem s rntemal analysis modules 

• 10n and oth b • 
detected structure that may be added include: • er sym ols, typical layers of 

• Phonemes 

• Syllables 

• Morphemes 

• Words derived from nonwords (such as dates like "9/10/99") 
• Syntactic constituents 

• Relative importance of words and phrases 

• Prosodic phrasing 

• Accentuation 

• Duration controls 

• Pitch controls 

We c_an now consider how the information needed to support synthesis of a sentence is 
developed_m processing an example sentence such as: "A skilled electrician reported." 

ln Figure 14.2, the infonnation that must be inferred from text is diagrammed. The 
now proceeds as follows: 

• W(ords) + 1:, C(ontro)s): the syllabic structure (1:) and the basic phonemic 
form of a word are derived from lexical lookup and/or the application of 
~les. The r tier shows the syllable divisions (written in text form for conven­
ience). The C tier, at this stage, shows the basic phonemic symbols for each 
word's syllables. 

• W(ords) + S(yntax/semantics): The word stream from text is used to infer 
a syntactic and possibly semantic structure (S tier) for an input sentence. Syn­
tactic and semantic structure above the word would include syntactic con­
stituents such as Noun Phrase (NP), Verb Phrase (VP), etc. and an~ semantic 
features that can be recovered from the current sentence or analysis of other 
contexts that may be available (such as an entire paragraph or document). 
The lower-level phrases such as NP and VP may be grouped_ into broader 
con5tituents such as Sentence (S), depending on the parsing archttecture. 

• S(yntax/semantics) + P(rosody): The P(rosodic) tier is al~o called the sym-· 
bolic prosodic module lf a word is semantically important m a senten~e, that 
• • • h • minence •mponance can be reflected in speech with a httle extra P onet_ic pro • 
called an accent. Some synthesizers begin building a prosodic structure by 
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placing metrical foot boundaries to the left of every accented syllable. The re­
sulting metrical foot structure is shown as Fl, F2, etc. in Figure 14.2 (some 
feet Jack an accented head and are 'degenerate'). Over the metrical foot struc­
ture, higher-order prosodic constituents, with their own characteristic relative 
pitch ranges, boundary pitch movements, etc. can be constructed, shown in 
the figure as intonational phrases IPI, IP2. The details of prosodic analysis, 
including the meaning of those symbols, are described in Chapter 15. 

The final phonetic form of the words to be spoken will reflect not only the original 
phonetics, but decisions made in the S and P tiers as well. For example, the P(rosody) tier 
adds detailed pitch and duration controls to the C(ontrol) specification that is passed to the 
voice synthesis component. Obviously, there can be a huge variety of particular architec­
tures and components involved in the conversion process. Most systems, however, have 
some analog to each of the components presented above. 

- s SI 11, 12, ... , In ] • NP[ 11, 12, ... ,In] VP[ f1, 12, ... , In] 

- w Wl W2 W3 W4 
,-

► l: A skilled e lee trl cian re por led 

... C ax s lh I I sh r p I 

... k eh r ax iy ao ax 
ih k ih n r d 
I 
d 

- p Fl F2 F3 F4 FS 

~ /Pf (11, 12, ... , In) !P2 [11, 12, ... , fn] 

U (11, 12, ... , In] 

Figure 14.2 Annotation tiers • d" 1· • • .. . . . m tea mg incremental analysis based on an input (text) sentence 
A skilled electncian reported " Fl f • • • • . · ow o mcremental annotation 1s mdicated by arrows on the 

left side. 

14.1.3. Localization Issues 

A major issue in the text and ph • 1 • • 
all

·zat· d 
1 1

. . onetic ana ys1s components of a ITS system is intemat1on-
1on an oca 1zat1on Wh"l f • 

are exemplified b En i· h I e moSt ? the la~guage _processing technologies in this b~ok 
minimal ex . y 

1 
g _is case studieS, an mtemauonalized TIS architecture enabhng 

pense m ocahzation is highl d • • th text conventions and . . Y esirab1e. From a technological point of view, . e 
arbitrary ~nt_mg syStems of language communities may differ substantially in 

ways, necess1tatmg serious eff; • b • 
Ort m oth specifying an internationalized arch1tec-
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lure for text and phonetic analysis, and localizing that architecture &or . 
1 1 1' any part1cu ar an-

guage. . . 
F~r example, m Ja~anese and Chmese, _the_ unit or word is not clearly identified by 

spaces m text. In French, mterword dependencies m pronunciation realization e'·1'st fl '• . ) • • • 1 & ,,, , m1son . 
Conventions for wnt111g numenca 1orms or dates times 111oney etc ma d"f& 1 , , . . y 1 1e.r across an-
guages. In F~ench, number gr~ups se~arated by spaces may need to be integrated as single 
amounts, which rarely occurs m Engltsh. Some of these issues may tie more suious forcer­
tain types of ITS architectures than others. In general, it is best to specify a rule architecture 
for text processing and phonetic analysis based on some fundamental formalism that allows 
for language-particular data tables, and which is powerful enough to handle a wide range of 
relations and altemath'es. 

14.2. LEXICON 

The most important resource for text and phonetic analysis is the TIS system lexicon (also 
referred to as a dictionary). As illustrated in Figure 14. l, the TIS system lexicon is shared 
with almost all components. The lexical service should provide the following kinds of con­
tent in order to support a TIS system: 

• Inflected forms of lexicon entries 
• Phonetic pronunciations (support multiple pronunciations), stress and syllabic 

structure features for each lexicon entry 

• Morphological analysis capability 
• Abbreviation and acronym expansion and pronunciation 
• Attributes indicating word status, including proper-name tagging, and other 

special properties 
. • I h racters Under modem op-• List of speakable names of all common smg e c a • 

erating systems, the characters should include all Unicode characters. 

• Word part-of-speech (POS) and other syntactic/semantic attributes 
• 1 d is to be accented, etc. • Other special features, e.g., how ltke y a wor . 

lexical service overlap heavily 
It_should be clear that the requirements for a TIS syStem 
with those for more general-purpose NLP. d . t"cular for orapheme-to-

Traditionally, TIS systems have been rule oriented 1~ /;{ ~Ies (described in detail 
phoneme conversion. Often tens of so called letter-to-smm ( . and the role of the lexi-
in Sect· ' honeme conversion, ion 14.8) are used first for grapheme-to-p . t'ons cannot be predicted on 
con h b . 1 • t whose pronuncta t b as een minimized as an exceptwu zs , . , role has increasingly een 
th~ basis of such LTS rules. However, this view of the lex1_co; s hi oh-quality ITS systems 
~dJUSled as the requirement of a sophisticated NLP analy~is . ~r a dictionary system. For a 
as become apparent. There are a number of ways to opttmiz 

good overview of lexical organization issues, please see {4]-
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To expose different contents a_bout a lexicon entry l_isted above for different ITS mod-

I •t lls for a consistent mechanism. It can be done either through a database query or a 
u e, 1 ca I h h • 
function call in which the caller sends a key (usual y t e ort ograph1c representation of a 

d) and the desired attribute. For example, a TIS module can use the following function wor . . . p 
call to look up a particular attribute (like phonetic pronunciations or OS) by passing the 
attribute att and the result will be stored in the pointe: val u~o~ successful lookup. More­
over. when the lookup is successful (the word is found m the d1ct1onary) the function returns 
true, otherwise it will retum false instead. 

BOOLEAN DictLookup (string word, ATTTYPE att, (VOID*) val) 

We should also point out that this functional view of dictionary could further expand 
the physical dictionary as a service. The morphological analysis and letter-to-sound modules 
(described in Sections 14.7 and 14.8) can all be incorporated into the same lexical service. 
That is, underneath dictionary lookup, operation and analysis is encapsulated from users to 
form a unifonn service. 

Another consideration in the system's runtime dictionary is compression. While many 
standard compression algorithms exist, and should be judiciously applied, the organization 
and extent of the vocabulary itself can also be optimized for small space and quick search. 
The kinds of American English vocabulary relevant to a TIS system include: 

• Grammatical function words (closed class)-about several hundred 

• Very common vocabulary-about 5,000 or more 

• College-level core vocabulary base forms-about 60,000 or more 

• College-level core vocabulary inflected form-about 120,000 or more 

• Scientific and technical vocabulary, by field-e.g., legal, medical, engineer-
ing, etc. 

• Personal names--e.g., family, given, male, female, national origin, etc. 

• Place names--e.g., countries, cities, rivers, mountains, planets, stars, etc. 
• Slang 

• Archaisms 

Tht "al· e ypic sizes of reasonably complete lists of the above types of vocabulary run 
f~om a few hu~dred function or closed-class words (such as prepositions and pronouns) to 
LO,OOO or so mflected fonns of college-level vocabulary items up to several million sur-
names and place nam c f 1 . ' . • . es. are u analysis of the likely needs of typical target apphcauons 
can potentially reduce the • f th . s terns . . size o e runtime dictionary In general most TT sys 
mamtam a syst d' • • • ' d 
t h I . . em ictionary with a size between 5000 and 200 000 entries. With advance 
ec no og1es m database a d h h' • ' k In 

add·t· . n as mg, search 1s typically a nonissue for dictionary Joo up. 
' ion, smce new form h as 

acronyms b . s are con5tant1y produced by various creative processes, sue. 
some m , orrf owmg: slang acceptance, compounding and morphological manipulatIO~, 

eans o analyzmg w d h ' . • h topic 
Of Sect. 14 7 or s t at have not been stored must be provided This 1s t e 

10ns . and 14.8. • 
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F r the purpose of discussion, we assume that all input to the TAM · XM 
o ts an L document 

[hough perhaps l~rgely unmarked, and the output is also a (more extensively marked) XML 
document. That 1s to say, all the knowledge recovered during the TAM h . . - . P ase 1s to be ex-
pressed as XML markup. This contmns the independence of the TAM f h . . . . . rom p onettc and 
prosodic cons1derat1ons, allowing a vanety of resources, some perhaps not crafted with TIS 
in mind, to be ~rought to bear by the TAM on the text. It also implies that that output of the 
TAM is pot~ntially usable ~y ?ther, n?n:TTS processes, such as normalization of language­
model training data for b~1ldmg stat1st1cal language models (see Chapter 11). This fully 
modular and transparent view of ITS allows the greatest flexibility in document analysis, 
provides for direct authoring of structure and other customization, while allowing a split 
between expensive, multipurpose natural language analysis and the core ITS functionality. 
Although other text format or markup language, such as Adobe Acrobat or Microsoft Word, 
can be used for the same purpose, the choice of XML is obvious because it is the widely 
open standard, particularly for the Internet. 

XML is a set of conventions for indicating the semantics and scope of various entities 
that combine to constitute a document. It is conceptually somewhat similar to Hypertext 
Markup Language (HTML), which is the exchange code for the World Wide Web. In these 
markup systems, properties are identified by tags with explicit scope. such as "<b>make 
this phrase bold< /b> 11 to indicate a heavy, dark print display. XML in particular 
anempts to enforce a principled separation between document structure and content, on one 
hand, and the detailed formatting or presentation requirements of various uses of documents, 
on the other. Since we cannot provide a tutorial on XML here, we freely introduce ~xa~~le 
tags that indicate document and linguistic structure. The interpretations of these are mt~ttive 
10 most readers though of course the analytic knowledge underlying decision~ to insert 
ta ' ' ' . • al TIS engines come gs may be very sophisticated It will be some time before commerct d 
10 a common understanding on ·the wide variety of text attributes that should be mar~ed, ; t 
accept a common set of conventions. Nevertheless, it is reasonable to adopt thh~ h, ea a_ 
TAM h • XML documents (w ic are ex 

s ould be independent and reusable, thus allowing d r • as indicated 
pected to proliferate) to function for speech just as for olher mo a ,ues, 
SChematicall • F 

. Yin 1gure 14.3. . the text analysis perhaps 
. rrs is regarded in Figure 14.3 as a factored process, with Th role of the TIS 

CilJTied out b h . lysis systems. e . 
engine Y uman editors or by natural lan~uage ana . f stroctural tags and provision 
of h pe~ s~ may eventually be reduced to the mterpretat1on ° t day are not structured 
wi! ;netic information. While commercial engines of lhe prese~kely to become increas­
ingly . ese assumptions in mind, modularity and transparency are 'derlying an XML docu-

1mPort • . f h basic ideas un fllent ant. The mcreasmg acceptance o t e be seen in the recent 
cemn • i TTS can f 

Prolifi . c approach to text and phonetic analysis or J While not presenting any 0 

these~ration of XML-like speech markup proposals [24, 33 • ti'ons that reflect and ex-
in deta·1 • • ' nnal conven f th tend th . 1

, m the discussion below we adopt tn10 . b the TIS systems o e 
eir basic assumptions. The structural markup exploited y 
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• XML thoring systems at document creation time, or may be 
future may ?e imposed by 1 • ~u edures. In any case the distinction between purely 
inserted by mdependent ana yt..1ca_ procd human annotation and authoring will increasingly 

• tu reation/detection an . . . 
autom~uc s~c rec . ua e translation and information retrieval domams, the d1stmc-
blur-Just as m na~uraJ landg dg ults and human-produced results has begun to blur. tion between machme-pro uce res 

Authoring 

Aural Stylcsheet 

Sound Docu- ,, 
ment (ITS) 

Automatic Language 
Generation 

LM stylesheet 

XML 
Document 

( ·~-LM_T_rai_·n_in_g_'l _ Doc (ASR) 

Automatic Structure 
Detection/creation 

Document 
Structure 

DB stylesheet 

Database Doc ) 
{IR) 

Figure 14.3 A documentcentric view of ITS. 

14.3.1. Chapter and Section Headers 

' 

Automatic 
Parsing 

Natural 
Language 
Structure 

Other 
Styleshects ... 

Print Doc, 
Screen Doc, 
Groupware 
Doc, etc. 

' 

, 

Section headers are a standard convention in XML document markup, and TIS systems can 
use the structural indications to contro] prosody and to regulate prosodic style, just as a pro­
fessional reader might treat chapter headings differently. Increasingly, a document created 
on computer or intended for any kind of e]ectronic circulation incorporates structural 
markup, and the TIS and audio human-computer-interface systems of the future leart_1 to 
exploit this (in longer documents, the document structure markup assists in audio naviga­
tion, speedup, and skipping). For example, the XML annotation of a book at a high l~vel 
might follow conventions as shown in Figure 14.4. Viewing a document in this way might 
lead a ITS system to insert pauses and emphasis correctly, in accordance with the StillCtUre 
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k d. Furthermore, an audio interface system would work jointly with a TIS system to 

~ar e easy navigation and orientation within such a structure. If future documents are 

rn:;ed up in this fashion, the concept of audio books. for example. would change to rely 

on unslnJctured prerecorded speech and more on smart, XML-aware, high-quality audio 
tess_ ation and TIS systems, with the output customization flexibility they provide. 
nav1g .th 1. • k • f • c • 

For documents w1 out exp 1c1t mar up m onnation tor section and chapter headers. it 

is in general a nontrivial task to detect them automatically. Therefore, most TIS systems 

today do not make such an attempt. 

<Book> 
<Title>The Pity of War</fitle> 

<Subtitle>Explaining World War !</Subtitle> 

<Author>Niall Ferguson</ Author> 
<TableOfContents> ... <ffableOfContents> 

<Introduction> 
<Para> . . . </Para> 

</Introduction> 
<Chapter> . 
<ChapterTitle>The Myths of Militarism</ChapterTttle> 

<Section> 
<SectionTitle>Prophets</SectionTitle> 

<Para> ... </Para> 

</Section> 
</Chapter> 

</Book> 

Figure 14.4 An example of the XML annotation of a book. 

14.3.2. Lists 
. nal contours to indicate aurally 

L. · d. • t ·ntonauo • 
ists or bulleted items may be rendered with isunc 1

. . d . XML as shown in Figure 
th · ·ght be indicate m k for 

eir special status. This kind of strocture mi . d of accepting such mar up 
t4.s. Again ITS engine designers need to get used to lhe 

1 
eda • ert such markup as needed 

inte • · th n detect an ins • h d s 
rpretation, or incorporating technologies at ca . . hapter and secuon ea er ' 

by the downstream phonetic processing modules. Simil~ tt~~ctures automatically. 
tnoSl TIS systems today do not make an attempt to detect 

15 
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<UL> 
<LI>compression</LI> 
<LI>flexibility</LI> 
<LI>text-waveform correspondence</LI> 
</UL> 
<Caption>The advantages of TTS</Caption> 

Figure 14.5 An example of a list marked by XML. 

14.3.3. Paragraphs 

The paragraph has been shown to have direct and distinctive implications for pitch assign­
ment in TIS [26). The pitch range of good readers or speakers in the first few clauses at the 
start of a new paragraph is typically substantially higher than that for mid-paragraph sen­
tences, and it narrows further in the final few clauses, before resetting for the next para­
graph. Thus, to mimic a high-quality reading style in future TIS systems, the paragraph 
structure has to be detected from XML tagging or inferred from inspection of raw fonnat­
ting. Obviously, relying on independently motivated XML tagging is, as always, the supe­
rior option, especially since this is a very common structural annotation in XML documents. 

In contrast to other document structure infonnation, paragraphs are probably among 
the easiest to detect automatically. The character <CR> (carriage return) or <NL> (new line) 
is usually a reliable clue for paragraphs. 

14.3.4. Sentences 

While sentence breaks are not nonnally indicated in XML markup today, there is no reason 
to exclude them, and knowledge of the sentence unit can be crucial for high-quality TIS. In 
fact, some XML-like conventions for text markup of documents to be rendered by synthe­
sizers (e.g., SABLE) provide for a DIV (division) tag that could take paragraph, sentence, 
clause, etc. as attribute [24). If we define sentence broadly as a primal linguistic unit _th~t 
makes up paragraphs, attributes could be added to a sent tag to express whatever lingui5t1c 

!<r10~·1Gcige exists about the type of the sentence as a whole: 

<Sent type="yes-no question"> 
ls life so dear, or peace so sweet, as to be purchased at the price of chains and slavery? 
</Sent> 

Again, as emphasized throughout this section, such annotation could be.either applied 
during creation of the XML documents (of the future) or inserted by independent process:

5
• 

Such structure-detection processes may be motivated by a variety of needs and may exiS
t 

outside the ITS system per se. 
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If no independent markup of sentence structure is available f . . . rom an external, inde-
pendently motivated document analysis or natural language system a ITS . . . . . . • , system typically 
relies on simple internal heunst1cs to guess at sentence divisions. In emat'l a d th 1 . . . n o er re a-
tively infonnal wntten commumcatrnns. sentence boundaries may be very hard t d I · b k' o etect. n conirast to En~hsh, se_ntence reu mg could be_ trivial for some other written languages. In 
Chinese, there 1s a designated symbol (a small circle n) for marking the end of a sentence so 
the sentence breaking could be done in a totally straightforward way. However, for n:ost 
Asian languages, such as Chinese, Japanese, and Thai, there is in general no space within a 
sentence. Thus, tokenization is an important issue for Asian languages. 

In more fonnal English writing, sentence boundaries are often signaled by terminal 
punctuation from the set: { . ! ? } followed by whitespaces and an upper-case initial word. 
Sometimes additional punctuation may trail the '?' and • !' characters, such as close 
quotation marks and/or close parenthesis. The character '.' is particularly troubling, because 
it is, in programming tenns, heavily overloaded. Apart from its uses in numerical 
expressions and Internet addresses, its other main use is as a marker of abbreviation, itself a 
difficult problem for text normalization (see Section 14.4). Consider this pathological 
jumble of potentially ambiguous cases: 

Mr. Smith came by. He knows that it costs $1.99, but I don't know when he'll be 
back (he didn't ask, "when should I return?")... His Web site is 
www.mrsmithhhhhh.com. The car is 72.5 in. long (we don't know which park­
ing space he'll put his car in.) but he said ·• . .. and the truth shall set you free," an 
interesting quote. 
Some of these can be resolved in the linguistic analysis module. However for some 

cases, only probabilistic guesses can be made, and even a human reader may have d_ifficulty. 
The ambiguous sentence breaking can also be resolved in an abbreviation-proc~ssmg mod­
ule (described in Section 14.4.l ). Any period punctuation that is not taken to signal an ab-
b . . d f sentence Of course, as we revia11on and is not part of a number can be taken as en -o - • d 
h .th d that can naturally en sen-ave seen above abbreviations are also confusable Wt wor s ( h k ' • • f the left context c ec -lences, e.g., "in." For the measure abbreviations, an exammat1on ~ f break1·ng • h plexity o sentence mg for numeric) may be sufficient. In any case, t e com knowledgeable ·11 d I tt'ng later, more 1 USlrates the value of passing multiple hypotheses an e I d · • Algorithm . . . d le) make ec1s1ons. 
modules (such as an abbreviation or linguistic analysis mo u bl t handle most cases. 
14•1 shows a simple sentence-breaking algorithm that sho~ld ~ a ef tho e following kinds of 

F d • ht d combmat1on o . or a vanced sentence breakers, a weig e . ina sentence boundanes 
considerations may be used in constructing algorithms for determm 0 

(ordered from easiest/most common to most sophiSticated): . 
• . . . . . essin is one of the most impor-

Abbreviation processmg-Abbreviation proc . gd. detail in Section 14.4. 
t . . . d ·11 be describe m ant tasks m text normahzauon an wi t structure b ed on- documen , 

• Rules or CART built (Chapter 4) upon features as • 
Whitespace, case conventions, etc. . 

• S · • • • I word likelihood tat1stical frequencies on sentence-m1t1a 
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• Statistical frequencies of typical lengths of sentences for various genres 

• Streaming syntactic/semantic (linguistic) analysis-Syntactic/semantic analy­
sis is also essential for providing critical information for phonetic and pro­
sodic analysis. Linguistic analysis will be described in Section 14.5. 

As you can see, a deliberate sentence breaking requires a fair amount of linguistic process­
ing, like abbreviation processing and syntactic/semantic analysis. Since this type of analysis 
is typically included in the later modules (text normalization or linguistic analysis), it might 
be a sensible decision to delay the decision for sentence breaking until later modules, either 
text normalization or linguistic analysis. In effect, this arrangement can be treated as the 
document structure module passing along multiple hypotheses of sentence boundaries, and it 
allows later modules with deeper linguistic knowledge (text normalization or linguistic 
analysis) to make more intelligent decisions. 

Finally, if a long buffer of unpunctuated words is presented, TIS systems may impose 
arbitrary limits on the length of a sentence for Jater processing. For example, the writings of 
the French author Marcel Proust contain some sentences that are several hundred words long 
(average sentence length for ordinary prose is about 15 to 25 words). 

ALGORITHM 14.1: A SIMPLE SENTENCE-BREAKING ALGORITHM 

1. If found punctuation ./!/? advance one character and goto 2. 
else advance one character and goto 1. 

2. If not found whitespace advance one character and goto 1. 
3. If the character is period(.) goto 4. 

else goto 5. 
4. Perform abbreviation analysis. 

If not an abbreviation goto 5. 
else advance one character and goto 1. 

5, Declare a sentence boundary and sentence type ./!/? 
Advance one character and goto 1. 

14.3.S. Email 
• an eyes-busy situation such as 

TIS could be ideal for reading email over the phone orl 1~ that XML-tagged email stroc-
h. le Here again we can specu a e h ality 

when driving a motor ve IC • . F 14 6 will be essential for big -qu 
ture, minimally somethin~ like the e;.'1~p!:~:ce1g::wi~~ skips and speedups ~f are;s ~: 

rosody and for controlling the au 10 m . , to announce the function o ea . 
~ser ha; defined as less critical, and allowm!!eo?:::1 certainly has a different sem:t~~ 
block. For example, the sig (signatur1 l:uld be clearly identified as such, or sti?:a~ed 
function than the main message text an_l stems are providing increasingly sop is 
the listener's discretion. Modem ema1 sy 
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Port for structure annotation such as that exemplified in Figure 
14 6 

Ob . 
sup b d . • • v1ously, the ail document structure can e etected only WHh appropriate tags (like XML) 

1 
. 

em d • . . t 1s very difficult for a TIS system to etect 1t automatically. 

<message> 
<header> 

<date> 11 June 1998</date> 
<from>Leslie</from> 
<to> J o</to> 
<subject>Surf s Up!</subject> 

</header> 
<body> ... </body> 

<sig>Freedom's just another word for nothing left to lose</sig> 
</message> 

Figure 14.6 An example of email marked by XML. 

14.3.6. Web Pages 

All the comments about ITS reliance on XML markup of document structure can be applied 1
~ !he case of HTML-marked Web page content as well. In addition to sections, headers, 

Us~, Paragraphs, etc., the ITS systems should be aware of XML/HTML conventions such 
as hnk~ (<~ href::" ••• ">link name<la>) and perhaps apply some distinctive voice quality or 
P:osodic PIich contour to highlight these. The size and color of the section of text also pro­
_v1des useful hints for emphasis. Moreover the TIS system should also integrate the render-
mg of d' ' · · 

au to and video contents on the Web page to create a genuine multimedia expenence 
:or tbe users. More could be said about the rendition of Web content, whether from unrlerly-1

•

08 
XML documents or HTML-marked documents prepared specifically for Web presenta­

~on. In addition, the World Wide Web Consortium has begun work on stan~ard~ fo~ au~ 5
tylesheets ,1. • • HTML 1 • de special d1recuon tn •uat can work m conjunction with standard O provi auraJ rendition [33]. 

14.3.7, 
Dialog Turns and Speech Acts 

Not all 1 . The more expressive 
11's s ext to be rendered by a ITS system is standard wntte? pros~. dialog in a spontane-
ous s~

ste
rns c~uld be tasked with rendering natural conversation ~ d by XML markup of 

its input:s. Wtlh Written documents, the TIS system has to :e g:e~) and speech acts (the 
lllood • artous systems for marking dialog turns (chang~ 0 spe nd these annotations 

and fun t' • ) J d for this purpose, a . 
IVilJ 1• c tonal intent of an utterance are use_ The speech act coding 

ngger Particular phonetic and prosodic rules m ITS systems. 

' Dialog lllodel' described in detail in Chapter 17. 
rng and the concepts of dialog mms and speech acts are 
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schemes can help, for example, in identifying the speaker's intent with respect to an utter­
ance, as opposed to the utterance's structural attributes. The prosodic contour and voice 
quality selected by the TIS system might be highly depe_ndent ?n this functional knowledge. 

For example, a syntactically well-fonned question might be used as information 
solicitation, with the typical utterance-final pitch upturn as shown in the following: 

<REQUEST _INFO>Can you hand me the wrench?<IREQUEST _INFO> 

But if the same utterance is used as a command, the prosody may change drastically. 

<DIRECTIVE>Can you hand me the wrench.<IDIRECTIVE> 

Research on speech act markup-tag inventories (see Chapter 17) and automatic meth­
ods for speech act annotation of dialog is ongoing, and this research has the property consid­
ered desirable here, in that it is independently motivated (useful for enhancing speech 
recognition and language understanding systems). Thus, an advanced TIS system should be 
expected to exploit dialog and speech act markups extensively. 

14.4. TEXT NORMALIZATION 

Text often include abbreviations (e.g., FDA for Food and Drug Administration) and acro­
nyms (SW AT for Special Weapons And Tactics). Novels and short stories may include spo­
ken dialog interspersed with exposition; technical manuals may include mathematical 
formulae, graphs, figures, charts and tables, with associated captions and numbers; email 
may require interpretation of special conventional symbols such as emoticons [e.g., :-) 
means smileys], as well as Web and Internet address formats, and special abbreviations 
(e.g., IMHO means in my humble opinion). Again, any text source may include part num­
bers, stock quotes, dates, times, money and currency, and mathematical expressions, as well 
as standard ordinal and cardinal fonnats. Without context analysis or prior knowledge, even 
a human reader would sometimes be hard pressed to give a perfect rendition of every se­
quence of nonalphabetic characters or of every abbreviation. Text normalization (TN) is the 
process of generating normalized orthography (or, for some systems, direct generation of 
phones) from text containing words, numbers, punctuation, and other symbols. For example, 
a simple example is given as follows: 

The 7% Solution ~ THE SEVEN PER CENT SOLUTION 

Text normalization is an essential requirement not only for TIS, but also for the 
pre~~ation of training text corpora for acoustic-model and language-model constructi?0 ·~ ~ 
addition, speech dictation systems face an analogous problem of inverse text normahzaao 
for docu~e~t creation from recognized words, and such systems may depend on knowle_dge 
s?urces similar to those described in this section. The example of an inverse text normallza­
t1on for the example above is given as follows: 

• For details of acoustic and language modeling, please refer to Chapters 9 and J I. 
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THE SEVEN PER CENT SOLUTION ➔ The 7% Solution 

Modular text normalization components, which may produce out t ,, 1 . k h pu 1or mu t1ple down-
stream consumers, mar up t e exemplary text along the following lines: 

The <tn snor="SEVEN PER CENT">7%</tn> Solution 

The snor tag stands for Standard Normafh.,d Orthograpli,·c Rni"r 1 ,· s F 
• • ~ , J esf!n a um. or 

TIS, input text ~ay include m~lt1sente~ce paragraphs, numbers, dates, times. punctuation, 
symbols of all kinds, ~s wel! as mterprettve annotations in a TIS markup language, such as 
tags for word emphasis or p,_tch range. Text analysis for ITS is the work of converting such 
text into a stream of normalized orthography, with all relevant input tagging preserved and 
new markup added to guide the subsequent modules. Such interpretive annotations added by 
text analysis are c1itical for phonetic and prosodic generation phases to produce desired out­
put. The output of the text normalizer may be deterministic, or may preserve a full set of 
interpretations and processing history with or without probabilistic information to be passed 
along to later stages. We once again assume that XML markup is an appropriate fonnat for 
expressing knowledge that can be created by a variety of external processes and exploited by 
a number of technologies in addition to TIS. 

Since today's TIS systems typically cannot expect that their input be independently 
marked up for text normalization, they incorporate internal technology to perform this func­
tion. Future systems may piggyback on full natural language processing solutions developed 
for independent purposes. Presently, many incorporate minimal, TIS-specific hand-written 
rules [l], while others are loose agglomerations of modular, task-specific statistical evalua­
tors [3]. 

For some purposes, an architecture that allows for a set or lattice of possible al_tema­
tive expansions may be preferable to detenninistic text normalization, like the n-~eS( hSls or 

d • ·b d • Chapter 13 Alternatives known wo~ graph offered by the speech recognizers descn e 10 • 

10 the system can be listed and ranked by probabilities that may be l_eamable from lddata. 
L . · h thesis) can either add know e ge ater stages of processing (linguistic analysts or speec syn . " 8 
I th . . "f ded Consider the fragment at 0 e lattice structure or recover the best alternative. 1 nee • . . . . . _ 

. ff th flex1b1hty of wntmg conven 
am I • •. ., in some informal writing such as email. iven e h ·c context seems to 
tions ~ . r d ·ther A M (t e numen 

o~ pronunciation, am could be rea 1ze as et . • ~Id be noted in a descriptive lat-
cue at ttmes) or the auxiliary verb am. Both alternatives c~ T bl l4 2) 
tic f ures ,f known ( a e • • e O covering interpretations, with confidence meas .. 

fragment "At 8 am I • • • • 
Tabl 14 2 T t rpretations for sentence e wo a temauve me 

At 8 am I .. . At <time> eight am <!time> I •• • 

At 8 am I ... At <number> eight </number> am I ••• -
:------------ -~ rm way of writing words and sentences 

SNOR, or Standard Nonnalized Orthographic Representation, is a uni o uired as reference material for many 
that nee texts are rcq red st::m-
Dc corresponds to spoken rendition. SNOR-format sente . f Standards and Technology-sponso 

fense Ad d N • al Insututes o d vanced Research Project Agency an auon 
an! speech technology evaluation procedures. 
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• 1 biguity in the interpretation of am in the above pair of examples is If the potentta am . . h • 
. d . d the alternatives retained rather than suppressed, L e choice can be made 

simply note , an . h "' f th ' 
f ·yntactic/semantic processmg. Note anot er 1eature o 1s example-the by a later stage o s • . . . . . . 

• 1 bbreviation form for antemend1an, wl11ch by prescriptive convention hopes rough irregu ar a . . . . 
h h. h i·ty ITS processing can rely entirely on standard stylistic conventions That t at 1g -qua 1 • . • ,, . • 

observation also applies to the obligatory use ot :1 :or all questions. 
s ecific architectures for the text normahzat1on component of TIS may be highly 

variubl: depending on the system architect's answers to the following questions: 

• Are cross-functional language processing resources mandated, or available? 
• If so, are phonetic forms, with stress or accent, and nonnalized orthography, 

available? 
• Is a full syntactic and semantic analysis of input text mandated, or available? 

• Can the presenting application add interpretive knowledge to structure the in­
put (text)? 

• · Are there interface or pipelining requirements that preclude lattice alterna­
tives at every stage? 

Because of this variability in requirements and resources, we do not attempt to for­
mally specify a single, all-purpose architectural solution here. Rather, we concentrate on 
describing the text normalization challenges any system has to face. We note where solu­
tions to these challenges are more readily realized under particular architectural assump­
tions. 

All text normalization consists of two phases: identification of type, and expansion to 
SNOR or other unambiguous representation. Much of the identification phase, dealing with 
phenomena of sentence boundary detennination, abbreviation expansion, number spell-out, 
etc., can be modeled as regular expression (see Chapter 11 ). This raises an interesting archi­
tectural issue. Imagine a system based entirely on regular finite state transducers (FST, see 
Cha~ter 11 ), as in [27], which enforces an appealing uniformity of processing mechanism 
and mte?1al structure description. The FST permits a lattice-style representation that does 
not requlfe premature resolution of any structural choice. An entire text analysis system can 
?e based on such a representation. However, as long as a system confines its attention to 
issues that commonly come under the heading of text normalization, such as number for­
mats, a~breviations, and sentence breaking, a simpler regular-expression-based unifonn 
mechanism for rule specification and structure representation may be adequate. 

Alternatively, ITS systems could make use of advanced tools such as, for example, 
the Jex and yacc tools [ 17], which provide frameworks for writing customized lexical ana­
lyze.rs ~nd context-free grammar parsers, respectively. In the discussion of typical text nor­
mahzat1on requirements below, examples will be provided and then a fracrment of Perl 
pattern- t h' · 0 _ . ma ~ mg code will be shown that allows matching of the examples given. Perl nota 
tion [3_61 15 _used as a convenient short-hand representing any equivalent regular 
expressmnparsmg system and can be regarded as a subset of the functionality provided by 
any regular expression, FST, or context-free grammar tool set that a TIS software architect 
may choose to employ. Only a small subset of the simple, fairly standard Perl conventions 



Ted Nor~alization 709 

to employ. Only ~ small subset of the simple, fairly stand~rd P~rl conventions for regular 
expression matching are used. and comments are provided m our discussion of text 

nonnalization. . . . . . . . 
A text nonnahznt1on system typically adds 1dent1ficat1on information to assist subse-

uent stages in their tasks. For example, if the TN subsystem has determined with some con­
fidence that a given digit string is a phone number, it can associate XML-like tags with its 
output, identifying the corresponding normalized orthographic chunk as a candidate for spe­
cial phone-number intonation. In addition, the identification tags can guide the lexical dis­
ambiguation of terms for other processes. like phonetic analysis in TIS systems and training 
data preparation for speech recognition. 

Table 14.3 shows some examples of input fragments with a relaxed form of output 
oo!lllalized orthography. It illustrates a possible ambiguity in TN output. In the (contrived) 
example, the ambiguity is between a place name and a hypothetical individual named per­
haps Stei•e or Samuel Asia. Two questions arise in such cases. The first is format of specifi­
cation. The data between submodules in a TIS system can be passed (or be placed in a 
centrally viewable blackboard location) as tagged text or in a binary format. This is an im­
plementation detail. Most important is that all possibilities known to the TN system be 
specified in the output, and that confidence measures from the TN, if any, be represented. 
For example, in many contexts, South Asia is the more likely spell-out of S. Asia, and this 
should be indicated implicitly by ordering output strings, or explicitly with probability num­
bers. The decision could then be delayed until one has enough info1111ation in the later mod­
ule (like linguistic analysis) to make the decision in an infonned manner. 

Table 14.3 Examples of the normalized output using XML-like tags for text normalization . 

. Dr.__ King <title> DOCTOR </title> KING 
7% <number>SEVEN <ratio> PER CENT </ratio> </number> 

S. Asia <toponym> SOUTH ASIA </toponym> 

- OR <psn name><initial>S</initial>ASIA</psn_name> 

14,4.1. Abbreviations and Acronyms 

As noted above, a period is an important but not completely reliable clue to the presence of 
: ~bbreviation. Periods may be omitted or misplaced in text for a varie~ of re~so_ns. :or 

milar reasons of stylistic variability and a writer's (lack of) care and skill, capitalization, 
~0ther potentially important clue can be variable as well. For example, all the representa­
tions of th . ' d • tual mail and . e abbreviation for post script listed below have been observe in ac 
email. A system must therefore combine knowledge from a variety of contextual sourceS, 
such as do . . 

cument structure and origin, when resolving abbrev1at1ons: 
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PS. Don 'tforget your hat. 
Ps. Don 't forget your hat. 

P.S. Don't forget your hat. 
P.s. Don 'tforget your hat. 

Text and Phonetic Analysis 

And P.S., when examined out of context, could be personal name initials as well. Of 
course, a given TIS system's user may be satisfied with the simple spoken output ,1, iy ae sf 

in cases such as the above, obviating the need for full interpretation. But at a minimum 
whenfallback to letter prommciatio11 is chosen, the TIS system must attempt to ensure tha~ 
some obvious spell-out is not being overlooked. For example, a system should not render the 
title in Dr. Jones as Jetter names Id iy aa rl. 

Actually, any abbreviation is potentially ambiguous, and there are several distinct 
types of ambiguity. For example, there are abbreviations, typically quantity and measure 
tenns, which can be realized in English as either plural or singular depending on their nu­
meric coefficient, such as mm for millimeter(s). This type of ambiguity can get especially 
tricky in the context of conventionally frozen items. For example, 9mm ammunition is typi­
cally spoken as nine millimeter ammu11ition rather than nine millimeters ammunition. 

Next, there are forms that can, with appropriate syntactic context, be interpreted either 
as abbreviations or as simple English words, such as in (inches), particularly at the end of 

sentences. 
Finally, many, perhaps most, abbreviations have entirely different abbreviation spell­

outs depending on semantic context, such as DC for direct current or District of Columbia. 
This variability makes it unlikely that any system ever performs perfectly. However, with 
sufficient training data, some statistical guidelines for interpretation of common abbrevia­
tions in context can be derived. Table 14.4 shows a few more examples of this most difficult 
type of ambiguity. 

An advanced ITS system should attempt to convert reliably at least the following ab-
breviations: 

• Title-Dr., MD, Mr., Mrs., Ms., St. (Saint), ... etc. 

• Measure-ft., in., mm, cm (centimeter), kg (kilogram), ... etc. 

• Place names-CO, LA, CA, DC, USA, St. (street), Dr. (drive), ... etc. 

Table 14.4 Some ambiguous abbreviations. 

co Colorado commanding officer 

conscientious objector carbon monoxide 

IRA Individual Retirement Account Irish Republican Anny 

MD Maryland doctor of medicine 

muscular dystrophy 
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Abl>reviation disambiguation usually can be resolved by POS (part-of-speech) analy­
. For ex.ample, whether Dr. is Doctor or D1fre can be resolved by examining the POS 

;;:rures of the previous and following words. ff the abbreviation is followed by a capitalized 
rsonal name, it can be expanded as Doctor. whereas if the abbreviation is preceded by a 

:pitalized place name, a number, or~ an alphanu1~eric (li~e 120'"). i~ ~ill be expanded as 
Drfre. Although the example above 1s resolved via a series of heunst1c rules, the disam­
biguation (POS analysis) can also be done by a statistical approach. In [6], the POS tags are 
delermined based on the most likely POS sequence using POS trigram and lexical-POS uni­
gram. Since an abbreviation can often be distinguished by its POS feature, the most likely 
POS sequence of the sentence discovered by the trigram search then provides the best guess 
of the P0S (thus the usage) for abbreviations. We describe POS tagging in more detail in 
Section 14.5. 

Other than POS information, the lexical entries for abbreviations should include all 
features and alternatives necessary to generate a lattice of possible analyses. For example, a 
typical abbreviation's entry might include information as to whether it could be a word (like 
in), whether period(s) are optional or required, whether plural variants must be generated 
and if so under what circumstances, whether numerical specification is expected or required, 
etc. 

Acronyms are words created from the first letters or pans of other words. For example, 
SCUBA is an acronym for selj:contained undenvater breathing apparatus. GeneraJJy, to 
qualify as a true acronym, a letter sequence should reflect nom1al language phonotactics, 
such as a reasonable alternation of consonants and vowels. From a TTS system's point of 
view, the distinctions between acronyms, abbreviations, and plain new or Wlknown words 
can be unclear. Many acronyms can be entered into the TIS system lexicon just as ordinary 
words would be. However, unknown acronyms (not listed in the lexicon) may occasionally 
~encountered. Although an acronym's case property can be a significant clue to identifica-
110 • • n, It 1s often unclear how to speak a given sequence of upper-case letters. Most TIS sys-
tems, failing to locate the sequence in the acronym dictionary, spell it out letter-by-letter. 
Olher SySrems attempt to detennine whether the sequence is inherently speakable. For ex­
ample, DEC might be inherently speakable, while FCC is not formed according to nonnal 
; 0rd phonotactics. When something speakable is found, it is processed via the normal letter­
o-sound rules, while something w1s1>eakable would be spelled out letter-by-letter. Yet 0ther 
~I • S • 
14 

em_s might simply feed the sequence directly to the letter-to-sound rules (see ecu~n 
.B), JUS! as they would any other unknown word. As with all such problems. a larger lexi-

con usuall . Y provides superior results. · · 
· The general al0 orithm for abbreviations and acronyms expansion in text normahzat~on 

h
is summarized in Al:or1'thm J 4 2 The algorithm assumes that tokenization and POS taggmg 
av be O • • ' • • • d b the POS ta e en done for the whole sentence. Abbreviation expansion is determine Y . 1 b 

ta~~ of the potential abbreviation candidates. Acronym expansion is don\ ext us;~: th~ 
a e lookup, and letter-by-letter spell-out is used when acronyms cannot e oun 
cronym table. 
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ALGORITHM 14.2: ABBREVIATIONS AND ACRONYMS EXPANSION 

1. If word token w is not in abbreviation table and w contains only capital letters goto 3. 
2. Abbreviation Expansion h 

If the POS tag of wand the correspondent abbreviation mate 
Abbreviation expansion by inserting SNOR and interpretive annotation tags 
Advance one word and goto 1. 

3. Acronym Expansion 
If w is in the predefined acronym table 
Acronym expansion by inserting SNOR and interpretive annotation tags 
according to acronym expansion table 
else spell out w letter-by-letter 

4. Advance one word and goto 1. 

14.4.2. Number Formats 

Numbers occur in a wide variety of formats and have a wide variety of contextually depend­
ent reading styles. For example, the digits 370 in the context of the product name IBM 370 
mainframe computer typically are read as three seventy, while in other contexts 370 would 
be read as three hundred seventy or three hundred and seventy. In a phone number, such as 
370-1111, the string would normally be read as three seven oh, while in still other contexts it 
might be rendered as three seven zero. A text analysis system can incorporate rules, perhaps 
augmented by probabilities, for these situations, but might never achieve perfection in all 
cases. Phone numbers are a practical place to start, and their treatment i11ustrates some of the 
general issues relevant to the other number fonnats which are covered below. 

14.4.2.1. Phone Numbers 

Phone numbers may include prefixes and area codes and may have dashes and parentheses 
as separators. Examples are shown in Table 14.5. 

The first two examples have prefix codes while the next four have area codes witb 
mmor formatting differences. The final two ;xamples are possible international-format 
phone numbers. A basic Perl regular expression pattern to subsume the commonality in all 
the local domestic numbers can be defined as follows: 

$us_basic = '{[0-9){3 }\-[0-9 ]{4 })'; 

This defines a pattern subpart to match 3 digits followed by a separator dash, fol-
lowed by another 4 di • t Th th ' gt s. en e pattern to match the prefix type would be: 

/{(0-9 ] fl})[\/-] ($us_basic)/ 
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Table 14.5 Some different written representations of phone numbers. 

9-999-4118 

9 345-5555 

(6 I 7) 932-9209 

(617) 932-9209 

716-123-4568 

409/845-2274 

+49 (228) 550-381 

+49-228-550-38 I 

In the first example above, this leaves the system pattern variable $1 (corresponding to 
the first set of capture parentheses in the pattern) set to 9, and $2 (the second set of capture 
parentheses) set to 999-4118. Then a separate set of tables, indexed by the rule name and the 
pattern variable contents, could provide orthographic spell-outs for the digits. Clearly a baJ­
ance has to be struck between the number of pattern variables provided in the expression and 
the overall complexity of the expression, vis-a-vis the complexity and sophistication of the 
indexing scheme of the spell-out tables. For example, the $us_basic could be defined to in­
corporate parentheses capture on the first three digits and the remaining four separately, 
which might lead to a simpler spell-out table in some cases. 

The pattern to match the area code types could be: 

/(\({0-9]{3}\)) [\/ -J ($us_basic)/ 

Th~se patterns could be endlessly refined, expanded, and layered to match stri~gs of ~l~oSl 
arbitrary complexity. A balance has to be struck between number and co~plexity_ of diSlmct 
patterns. In any case, no matter how sophisticated the matching mechanism, arbitrary or ~t 
beSt probabilistic decisions have to be made in constructing a TIS syStem. for exam~le, m 
matching an area code type the rule architect must decide how much aod what kind of 
whitespace separation the m~tching system tolerates between the area code and the rest of 
lhe number before a phone-number match is considered unlikely. Or, as another example, 
does the rule architect allow new lines or other formatting characters to apperu: ~etween ~e 
area code and the basic phone number? These kinds of decisions muSt be expilcitly consid-

d d • er documenta-
e_re • or made by default and should be specified to a reasonable egree 10 us d th 
hon Th ' d • ssues that are beyon e 

• ere are a great many other phone number formats an 1 

scope of this tre 
atment. . rmalized orthography, the 

Once a certain type of pattern requires a conversion to no t can be aligned 
quest' f . . Th version charac ers 

. 10n o how to perform the conversion anses. e con . th pattern matching 
With th ·d • . • • plicitly dunng e e I enttficatton so that convers10n occurs im . .fi • phase This may 
proces A ' • ti m the 1denu ,catton • 

s. nother way is to separate the conversion ro d d pending on the 
or may not lead to gains in efficiency and elimination of redun ancy, e 
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overall architecture of the system and whether and how components are expected to be re­

used. A version of this second approach is sketched here. 
S Pose that the pattern match variable $ I has been set to 617 by one of the identifica-

up . "d . 
tion-phase pattern matches described above. Another hst can prov1 e pointers to conversion 
tables, indexed by the rule name or number and the variable name. So for the rule that can 

match area codes, the relevant entry would be: 

Identification rule 
Area-Phone 

Variable 
$1 

Spellout table 
LITERAL_DIGIT 

The LJTERAL_DIGIT spe1l-out rule set, when presented with the 617 character se­
quence (the value of $ I), simply generates the nonnalized orthography six one seven, by 
table lookup. In this simple and straightforward approach, spe1l-out tables such as LIT­
ERAL_DIGIT can be reused for portions of a wide variety of identification rules. Other 
simple numeric spell-out tables would cover different styles of numeric reading, such as 
pairwise style (e.g., six seventeen), full decimal with tens, hundreds, thousands units (six 
hundred seventeen), and so on. Some spellout tables may require processing code to sup­
plement the basic table lookup. Additional examples of spell-out tables are not provided for 
the various other types of text normalization entities exemplified below, but would function 
similarly. 

14.4.2.2. Dates 

Dates may be specified in a wide variety of fonnats, sometimes with a mixture of ortho­
graphic and numeric forms. Note that dates in ITS suffer from a mild fonn of the century­
date-change uncertainty (the infamous Y2K bug), so a form such as 5nt31 may in the future 
be ambiguous, in its full fonn, between 1937 and 2037. The safest course is to say as little as 
possible, i.e., ''five seven thirty seven", or even "May seventh, thirty seven", rather than at­
tempt "May seventh, nineteen thirty seven". Table J 4.6 shows a variety of date formats and 
associated normalized orthography. 

Table 14.6 Various date fonnats. 

12/19/94 (US) December nineteenth ninety four 

19/12/94 (European) December nineteenth ninety four 

04/27/1992 April twenty seventh nineteen ninety two 
May 27, 1995 

May twenty seventh nineteen ninety five 
July 4, 94 

July fourth ninety four 
1,994 

one thousand nine hundred and ninety four 
1994 

nineteen ninety four 
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One issue that comes up with certain number formats, including dates •s h 
I 9/94 • b • I · , 1 range c eck-

·ng A fonn like I 3 I 1s as1ca ly uninterpretable as a date This ki"nd f h k. . 
1 • . . • . • o c ec tng, 1f 
included in the m1t1al pattern m_atchmg, may be slow and may increase formal requirements 
for pawer of the pattern matchmg system. Therefore, range checking can be don t 

11
_ 

d • 1· d e a spe 
out time (se~ below) unng norma 1z~ ~rthog~aphy generation, as Jong as a backtracking or 
redo option 1s p~esent. If range check mg is_ desired as part of the basic identification phase of 
text normalization, _some regular ~xpress1on matching systems allow for extensions. For 
example, the foll?wm~ pattern vana~le matches only numbers less than or equal 10 12, the 
valid month spec1fica11ons. It can be mcluded as part of a larger, more complex date match­
ing pa/fem: 

$month= '/(0( 123456789]/1(012]/' 

14.4.2.3. Times 

Times may include hours, minute, seconds, and duration specifications as shown in Table 
14.7. Time fonnats exemplify yet another area where linguistic concerns have to intersect 
with architecture. If simple, flat normalized orthography is generated during a te)(t normali­
zation phase, a later stage may still find a form like am ambiguous in pronunciation. If a 
lattice of alternative interpretations is provided, it should be supplemented with interpretive 
information on the linguistic status of the alternative text analyses. Alternatively, a single 
best guess can be made, but even in this case, some kind of interpretive information indicat­
ing the status of the choice as, e.g., a time expression, should be provided for later stages of 
syntac~ic, semantic, and prosodic interpretation. ~is reiterates the importance of TI~ tex: 
analysis systems to generate interpretive annotauons tags for subsequent mod~les us 
whenever possible as discussed in Section 14.4. In some cases, unique text formatting of the 
h ' Th • • me c oice, corresponding to the system• s lexical contents, may be sufficient. at_ is, 1,n so 

systems, generation of A.M., for example, may uniquely correspond to th~ l~x1con s entry 
for th t • . .fi h d • ed pronunc1at1on and gram-. a portion of a time expression, which spec1 1es t e esir 
ma1ical treatment. 

Table 14 7 Several examples for time expressions • . 
11:15 eleven fifteen 
8:30 pm eight thirty pm 

_?:20am five twenty am 

1-12:15:20 . d twenty seconds twelve hours fifteen minutes an 

07:55:46 . d forty-six seconds -._ seven hours fifty-five minutes an 
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14.4.2.4. Money and Currency 

As illustrated in Table 14.8, money and currency processing should correctly handle at least 
the currency indications $, £, DM, ¥, and €, standing for dollars, British pounds, deutsche 
marks, Japanese yen, and euros, respectively. In general, $ and £ have to precede the nu­
meral; DM, ¥, and € have to follow the numeral. Other currencies are often written in full 
words and have to follow the numeral, though abbreviations for these are sometimes found, 
such as J 00 francs and 20 lira. 

Table 14.8 Several money and currency expressions. 

$40 forty dollars 

£200 two hundred pounds 

5¥ five yen 

25DM twenty five deutsche marks 

300 € three hundred euros 

14.4.2.5. Account Nwnbers 

Account numbers may refer to bank accounts or social security numbers. Commercial prod­
uct part numbers often have these kinds of fonnats as well. In some cases these cannot be 
readily distinguished from mathematical expressions or even phone numbers. Some exam­
ples are shown below: 

123456-987-125456 
000-1254887-87 
049-85-5489 

The other popular number fonnat is that of credit card number, such as 

4446-2289-2465-7065 
3745-122267-22465 

To process fonnats like these, it may eventually be desirable for TIS systems to pro­
vide customization capabilities analogous to the pronunciation customization feature~ fol 
words found in current ITS systems. Regular expression formalisms of the type exemp!ifie 
above for phone number, would, if exposed to applications and developers through suitable 
editors, be adequate for most such needs. 
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14.4,2,6. Ordinal Numbers 

Ordinal numbers are those referring to rank or placement in • • E • a senes. xamples include: 

I• ?.i 3"' 4th 
, o·h 11 'h 12~· "O'h r o th 

, ~ , ' · ' • , ._ , 0 , I 000'", etc. 
lst, 2nd, 3rd, 4th, I 0th, 11th, 12th, 20th, 21st, 32nd, I OOth, I OOOth, etc. 

The system's ordinal processing may also be used t . " o generate the denominators of 
frac11ons, except ior halves, as shown in Table 14.9. Notice that the ordin 1 
for numerators other than I. a must be plural 

Table 14.9 Some examples of fractions. 

1/2 one half 

1/3 one third 

1/4 one quarter or one fourth 

1/10 one tenth 

3/10 three tenths 

14•4•2•7• Cardinal Numbers 

Cardinal numbers are, loosely speaking, those forms used in simple counting or the state-
ment of amou ts If • • • • abo . n • a given sequence of d1g1ts fatls to fit any of the more complex fonnats 

ve, •t may be a simple cardinal number. These may be explicitly negative or positive or 
~sumed positive. They may include decimal or fractional specifications. They may be read 
1~ several different styles, depending on context and/or aesthetic preferences. Table 14.!0 
gives some • h h examples of cardinal numbers and alternatives for normahzed ort ograp Y· 
th The number-expansion algorithm is summarized in Algorithm 14.3. In this algorithm 

e te~t normalization module maintains an extensive pattern table. Each pattern in the table 
contams · • • • h • t 
111 

. Its associated pattern in regular expression or Perl format along wit a pointer 
O 

a 
le in the co • • nvers1on table, which guides the expanswn process. 

Table 14 10 Some cardinal number types. ,_ 
123 

. one two three 
one hundred (and) twenty three 

i-.:__ 

~ one thousand two hundred (and) thirty -
2426 -

lwo four two six 
twenty four twenty six -

two thousand four hundred (and) twenty six 
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I ession to match well-formed cardinals with commas grouping chunks of A regu ar expr • h 
three digits of the type from 1,000,000 to 999,999,999 m1g t appear as: 

if ($item=~ /"([0-9){1 , 3}), ([0-9]{3}), ([0-9){3})/ 

{ $NewFrame-> {"millions"} = $1; 
$NewFrame->{"thousands"} = $2; 
$NewFrame->{"hundreds"} = $3; 

d d • 1 found $1"tem\n",· print "Groupe car 1na : 
return $NewFrame; } 

ALGORITHM 14.3: NUMBER EXPANSION 

1. Pattern Matching 
If a match is found goto 2. 
else goto 3. 

2. Number Expansion 
Insert SNOR and interpretive annotation tags according to the associated rule 
Advance the pointer to the right of the match pattern and goto 1. 

3. Finish 

14.4.3. Domain-Specific Tags 

In keeping with the theme of this section-that is, the increasing importance of independ• 
ently generated precise markup of text entities-we present a little-used but interesting ex­
ample. 

14.4.3.1. Mathematical Expressions 

Mathematical expressions are regarded by some systems as the domain of speciaJ-pu~ose 
processors. It is a serious question how far to go in mathematical expression parsing, smce 
providing some capability in this area may raise users' expectations to an unreali5ric level. 
The World Wide Web Consortium has developed MathML (mathematical markup language) 
[34] wh'ch ·ct • XML ' 1 provi es a standard way of describing math expressions. MathML 15 an 
extension for desc 'b• h . bl mathemat· . n mg mat emat1cal expression structure and content to ena e 
ics to be served, received, and processed on the Web similar to the function HTML has per~ 
formed for text As XML b . . ' d 'bly be use . . • ecomes mcreasmgly pervasive MathML coul P0551 'ble 
to guide interpretat' f . ' 2)2 poss1 
MathM t~n ° mathemat1cal expressions. For the notation (x . + a oke!l 

. . L representation such as that below might serve as an initial guide for a sp 
rendition. 
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<EXPR> 
<EXPR> 

X 

<PLUS/> 

2 
<:/EXPR> 
<POWER/> 

2 
</EXPR> 
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This might be generated by an application or by a specialized preprocessor within the ITS 
system itself. Prosodic rules or data tables appropriate for math expressions could then be 
triggered. 

14.4.3.2. Chemical Formulae 

As XML becomes increasingly common and exploitable by TIS text normalization, other 
areas follow. For example, Chemical Markup Language (CML {221) now provides a stan­
dard way to describe molecular structure or chemical formulae. CML is an example of how 
standard conventions for text markup are expected increasingly to replace ad hoc, TIS­
intemal heuristics. 

In CML, the chemical formula cpCOH~ would appear as: 

<FORMULA> 

<XVAR BUILTIN="STOICH"> 
CCOCOHHHH 
</XVAR> 

</FORMULA> 

I . f th f ture will be increasingly de-t seems reasonable to expect that TIS engines O e u . . th h 
voted to interpreting such precise conventions in high-quality speec~ rend1t1?ns thra _edr t t~tn 
endl I • th ceed in ouessmg e I en I y ess Y replicating NL heuristics that fail as often as ey sue 0 

of raw text strings. 

14•4•4• Miscellaneous Formats 
h• h En°lish-

A. rand · . f henomena for w ic an ° 
0

. om list tllustrating the range of other types O P d h raphy might include: 
nented ITS text analysis module must generate normalize ort og 

. a roximately before (Ara-
• ~pproximately/tilde: The symbol - 15 s~ok~ni::h::haracter named tilde. 

bic) numeral or currency amount, otherwise it 
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• Folding of accented Roman characters to nearest plain version: If the ITS 
system has no knowledge of dealing with foreign languages, like French or 
Gennan, a table of folding characters can be provided so that for a term such 
as Ober-mensch, rather than spell out the word Ober, or ignore it, the system 
can convert it to its nearest English-orthography equivalent: Uber. The ulti­
mate way to process such foreign words should integrate a language identifi­
cation module with a multi-lingual TIS system, so that language-specific 
knowledge can be utilized to produce appropriate text no,malization of all 
text. 

• Rather than simply ignore high ASCII characters in English (characters from 
128 to 255), the text analysis lexicon can incorporate a table that gives char­
acter names to all the printable high ASCII characters. These names are ei­
ther the full Unicode character names, or an abbreviated form of the Unicode 
names. This would allow speaking the names of characters like © (copyright 
sign), TM (trademark), @ (at), ® (registered mark), and so on. 

• Asterisk: in email, the symbol '*' may be used for emphasis and for setting 
off an item for special attention. The text analysis module can introduce a lit­
tle pause to indicate possible emphasis when this situation is detected. For the 
example of "Larry has *never* been here," this may be suppressed for aster­
isks spanning two or more words. In some texts, a word or phrase appearing 
completely in UPPER CASE may also be a signal for special emphasis. 

• Emoticons: There are several possible emoticons (emotion icons). 

I. :-)or:) 

2. :-(or:( 

3. ;-)or;) 

SMILEY FACE (humor, laughter, friendliness, sarcasm) 

FROWNING FACE (sadness, anger, or disapproval) 

WINKING SMILEY FACE (naughty) 

4. :-D OPEN-MOUTHED SMILEY FACE (laughing out loud) 

Smileys, of which there are dozens of types, may be tacked onto word start or word 
end or even occur interword without spaces, as in the following examples. 

:)hi! 

Hi:) 

Hi:)Hi! 

14.5. LINGIDSTIC ANALYSIS 

Linguistic analysis (sometimes also referred to as syntactic and semantic parsing) of natural 
language (NL) constitutes a major independent research field. Often commercial TIS sys­
tems incorporate some minimal parsing heuristics developed strictly for TIS. Alternatively, 
the ITS systems can also take advantage of independently motivated natural language proc-
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essing (NLP) systems, which can produce structural and semantic information about sen­
s. Such linguistically analyzed documents can be used for many purposes other than 1ence . 1 h' 1 . 'ITS-information retneva , ~ac me t~~ns ~t10n system training, etc. 
Provision of some parsmg capability 1s useful to ITS systems in several areas. Parsers 

may be used in _disambig~ating th~ text normalization alternatives described above. Addi­
tionally, syntacttc/semant1c analysis can help to resolve grammatical features of individual 
words that may vary in pronunciation according to sense or abstract inflection, such as read. 
Finally. parsing can lay a foundation for derivation of a prosodic structure useful in deter­
mining segmental duration and pitch contour. 

The fundamental types of infonnation desired for TIS from a parsing analysis are 
summarized below: 

• Word part of speech (POS) or word type, e.g., proper name or verb. 

• Word sense, e.g .. river bank vs. money bank. 
• Phrasal cohesion of words, such as idioms, syntactic phrases, clauses, sen-

tences. 

• Modification relations among words. 
• Anaphora (co-reference) and synonymy among words and phrases. 
• Syntactic type identification, such as questions, quotes, commands, etc. 

• Semantic focus identification (emphasis). 
• Semantic type and speech act identification, such as requesting, informing, 

narrating, etc. 

• Genre and style analysis. 

H . f . , t' n that a good parser could, ere we confine ourselves to discussion of the kmd o miorma 10 

in principle, provide to enable the TIS-specific functionality. . · bases The 
Linguistic analysis supports the phonetic analysis and prosod71c genderla4tt8on AP ling~istic 

d 1 • s • s 14 6 14 an • • mo u es of phonetic analysis are covered 10 ecuon • '. ( ~mbolic) phonetic forms 
parser can contribute in several ways to the process of generating. s rovide accurate part­
from orthographic words found in text. One function of a parser 

1
~ tt~o~ of several hundred 

of s h . . lving the pronuncia 1 • • peec (POS) labels. This can aid tn reso H raphs are discussed m Am • b • r and absent. omog • 1 encan English homographs, such as o !Jee . . . ntif in names and other specia 
greater detail in Section 14.6. Parsers can also aid_ 1~ ide 1 ~eJ may exist [32]. 
classes of vocabulary for which specialized pronunciationfru e ntal duration and pitch con-

p 'th ·gnment o segme • rosody generation deals mainly Wt assi . 1 cement) and accentuation. 
tour that have close relationship with prosodic phrasing (pauset_P :ype of an utterance. (e.g., 
Par • . ch as the syntac ic b th ar stn& can contribute useful information, su · contours, though O e 
Yes/no question contours typically differ from wh-que_st1on of synonymy, anaphora, and 
ma k d . antic relattons . aly r e simply by ' ?' in text) as well as sem . I ' nnation from discourse an -
f0cu th • ' die phrasing. nio • Further . s at may affect accentuation and proso nd voice quality settings. s1s a d . ff ct pitch range a n text genre characterization may a e 
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. • f the contribution of parsing specifically to prosodic phrasing, accentuation exammat1on o . . , 
and other prosodic interpretation is provided m_Chapter 15. . . 

As mentioned earlier, TIS can employ either a general-purpose NL analysis engme or 
• r e of a number of very narrowly targeted, special-purpose NL modules together for 

a pipe m h i J' . . . 
th equirement of TIS linguistic analysis. Althoug we ocus on mgmst1c information for 
su;;orting phonetic analysis and prosody gener~tion here, a lot of ~e ~nformati~n and ser­
vices are beneficial to document structure detection and text nonnahzat1on descnbed in pre-

vious sections. 
The minimum requirement for such a linguistic analysis module is to include a lexicon 

of the closed-class function words, of which only several hundred exist in English (at most), 
and perhaps homographs. In addition, a minimal set of modular functions or services would 

include: 

• Sentence breaking-Sentence breaking has been discussed in Section 14.3.4 
above. 

• POS tagging-POS tagging can be regarded as a two-stage process. The first 
is POS guessing, which is the process of determining, through a combination 
of a (possibly small) dictionary and some morphological heuristics or a spe­
cialized morphological parser, the POS categories that might be appropriate 
for a given input term in isolation. The second is POS choosing-that is, the 
resolution of the POS in context, via local short-window syntactic rules, per­
haps combined with probabilistic distribution for the POS guesses of a given 
word. Sometimes the guessing and choosing functions are combined in a sin­
gle statistical framework. In [6], lexical probabilities are unigrarn frequencies 
of assignments of categories to words estimated from corpora. In the original 
formulation of the model, the lexical probabilities [ P( c ; I w;) , where C; is the 
hypothesized POS for word w, ], were estimated from the hand-tagged Brown 
corpus [8]. For Example, the word see appeared 771 times as a verb and 
once as an interjection. Thus the probability that see is a verb is estimated to 
be 77Jn72 or 0.99. Trigrams are used for contextual probability 
[ P(c, I C1_,c,_2 ... c,) == P(c, I c,_1c;_2)]. Lexical probabilities and trigrams over 
category sequences are used to score all possible assignments of categories to 
w0 rcls for a given input word sequence. The entire set of possible assign­
ments of ~ategories to words in sequence is calculated, and the best-scoring 
sequence is used. Likewise, simple methods have been used to detect noun 
phrases (NPs), which can be useful in assigning pronunciation, stress, and 
pro~ody. The method described in [6J relies on a table of probabilities for in­
sertmg an NP begin bracket '[' between any two POS categories, and simi­
larly for an NP end bracket ')'. This was also trained on the POS-labeled 
Brown _c_orpus, with further augmentation for the NP labels. For example, tbe 
probability of inserting an NP begin bracket after an article was found to be 
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much lower than that of begin-bracket insertion between a verb and a n 
thus automatically replicating human intuition. oun, 

, Homograph disambiguation-Homograph disambiguation in general re~ 
. h h ers 

to the case of_ words wit t e_ same o~hographic representation (written form) 
but having d1ffere~t sen~a~t1c meanmgs and sometimes even different pro­
nunciations. Sometimes 1t 1s also r~ferred as sense disambiguation. Examples 
include "The boy used the bat to hit a home run" vs. "We saw a large bat in 
the zoo" (the pronunciation is the same for two bat) and "You record your 
voice" vs. "I'd like to buy that record'' (the pronunciations are different for 
the two record). The linguistic analysis module should at least try to resolve 
the ambiguity for the case of different pronunciations because it is absolutely 
required for correct phonetic rendering. Typically, the ambiguity can be re­
solved based on POS and lexical features. Homograph disambiguation is de­
scribed in detail in Section 14.6. 

• Noun phrase (NP) and clause detection-Basic NP and clause information 
could be critical for a prosodic generation module to generate segmental du­
rations. It also provides useful cues to introduce necessary pauses for intelli­
gibility and naturalness. Phrase and clause structure are well covered in any 
parsing techniques. 

• Sentence type identification-Sentence types (declarative, yes-no question, 
etc.) are critical for macro-level prosody for the sentence. Typical techniques 
for identifying sentence types have been covered in Section 14.3.4. 
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If a more sophisticated parser is available, a richer analysis can be derived. A so-called 
shallow parse is one that shows syntactic bracketing and phrase type, based on the POS of 
words contained in the phrases. A training corpus of shallow-parsed sentences has been cre­
ated for the Linguistic Data Consortium [ 16] The following example illuSlrates a shallow • · · • • the 
parse for sentence : "For six years, Marshall Hahn Jr. has made corporate acqmsitrnns m 
George Bush mode: kind and gentle." 

For/IN [six/CD years/NNS] / [T. /NNP Marshall/NNP . . 
H hn ' ' J qu1s1-a /NNp Jr./NNP]has/VBZ made/VBN[corporate/J ac 
tions/NNS]in/IN[the/DT George/NNP Bush/NNP mode/NN] 
:/: lkind/JJ] and/CC [gentle/JJ] . I. 
The POS . • Ch t 2 (Table 2.14). A TIS 

system labels used in this example are described in ap er . . s and to assign 
uses the POS 1 • ·ct I tive pronunciation . differi abe!s m the parse to dec1 e a terna . . ht assist in decid-

ing w;g degrees of prosodic prominence. Additionally, the bracketing ~~g·ncorporate more 
higher ered to place pauses for great intelligibility. A fuller parse wou e1 mantic analysis, 
. ·or er str . . . •fi t'on and more s includin ucture, mcludmg sentence type 1denu 1ca 1 • 

g co-reference. 
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14.6. HOMOGRAPH DISAMBIGUATION 

For written languages, sense ambiguities occur when words have different syntac­
tic/semantic meanings. Those words with different senses are called polysemous words. For 
example, bat could mean either a kind of animal or the_equi~ment to hit~ baseball. Since the 
pronunciations for the two different senses of bat are 1dent1cal, we are m general only con­
cernedb about the other type of polysemous words that are homographs (spelled alike but 
vary in pronunciation), such as bass for a kind of fish (lb ae sf) or an instrument (lb ey s/). 

Homograph variation can often be resolved on POS (grammatical) category. Examples 
include object, minute, bow, bass, absent, etc. Unfo11unately, correct determination of P0S 
(whether by a parsing system or statistical methods) is not always sufficient to resolve pro­
nunciation alternatives. For example, simply knowing that the form bow is a noun does not 
allow us to distinguish the pronunciation appropriate for the instrument of archery from that 
for the front part of a boat. Even more subtle is the pronunciation of read in "If you read the 
book, he'll be angry." Without contextual clues, even human readers cannot resolve the pro­
nunciation of read from the given sentence alone. Even though the past tense is more likely 
in some sense, deep semantic and/or discourse analysis would be required to resolve the 
tense ambiguity. 

Several hundred English homographs extracted from the I 974 Oxford Advanced 
Learners Dictionary are listed in [10]. Here are some examples: 

• Stress homographs: noun with front-stress vowel, verb with end-stress vowel 
"an absenr boy" vs. "Do you choose to absent yourself?" 

• Voicing: noun/verb or adjective/verb distinction made by voice final conso­
nant 

"They will abuse. him." vs. "They won't take abuse." 

• -ate words: noun/adjective sense uses schwa verb sense uses a full vowel 
"He will graduate." vs. "He is a graduate." ' 

• Double stress: front-stressed before noun, end-stressed when final in phrase 
"an overnight bag" vs. "Are you staying overnight?" 

• ~.ed a~jectives with matching verb past tenses 
He is a learned man." vs. "He lea med to play piano." 

• ~mbiguous abbreviations: already described in Section 14.4.1 
m, am, SAT (Saturday vs. Standard Aptitude Test) 

• B~rrowed words from other languages-They could sometimes be diSlin­
guishable based on capitalization 
"EI C • · • 
" . ammo Real road m California" vs. "real world" 
polish shoes" vs. "Polish accent" 

• Sometimes, a polysemous word with h . . . . n because 
different semantic properti'es Id h t e _same pronunciation could have impact for prosodic generauo m can 

cou ave diffe . . 1• TfS syste 
definitely be benefited fro d . rem accentuauon effects. Therefore, a high-qua 1ty • 

m wor -sense disamb· • 1guat1on beyond homograph disambiguation. 




