0 A O

United States Patent [(11 Patent Number: 5,481,706
Peek 1451 Date of Patent: Jan. 2, 1996
[54] SYSTEM AND METHOD FOR CREATING 5,353,418 10/1994 Nikhil €t al. ..overreerermeerrrssneenns 395/375
THREAD-SAFE SHARED LIBRARIES 5,375,241 12/1994 Walsh 395/700
[75] Inventor: Jeffrey S. Peek, Austin, Tex. OTHER PUBLICATIONS
. “Memory Protection Software Facility for OS/2 Shared Data
[73] Assignee: International Business Machines Applications”, IBM Technical Disclosure Bulletin, vol. 34,
Corporation, Armonk, N.Y. No. 4A, Sep. 1991, pp. 81-89.
. Primary Examiner—Kevin A. Kriess
(21] Appl. No.: 143,586 Assistant Examiner—Majid A. Banankhah
[22] Filed: Nov. 1, 1993 Attorney, Agent, or Firm—Robert M. Carwell
[51] Int. CLS ... GOGF 13/00; GOG6F 15/16 [57] ABSTRACT
[52] US. Cl coereeenne oy 395/659; 395/49.1; 395/472; Libraries for use in a multithreaded computer environment
. 395/700; 364/245.3; 364/228; 364/228.1 which must be thread-safe and cannot be recoded are iden-
[58] Field of Search ..o 305/425, 375, tified. Such libraries, after identification, are repackaged.
395/650, 700, 725; 364/200 Export routines for such libraries will thereby acquire a front
. end which effects several steps. First a write-exclusive lock
[56] References Cited for a particular called function of one of the libraries is
U.S. PATENT DOCUMENTS generically acquired. A call is then made to the underlying
function whose name has been remapped. Upon return from
igg;;gz 3; gg; Iggéwara ‘l‘-: atlal ----------------------- 364/200 the real routine, the write-exclusive lock is unlocked and a
y s TINArcK €l . 3
5047919 9/1991 Storling ot al, . return to the user is execut_ed. Tl}e system ar_ld mt?thod ensure
51 . correct functioning and integrity of the identified library
,109,511 4/1992 Nitta et al.
5226143 7/1993 Baird et al. 305/425 functions accessible by multiple threads, as well as provid-
5230070 7/1993 Lin 395/425 ing for' creation of rr_mlnt.hread-safe shared }1bra1_1es without
5,305,448 4/1994 Insalaco et al.veeommeeerne 395/425 ~ Decessitating extensive library source modifications.
5,339,415 8/1994 Strout, II et al. ... 395/650
5,339,427 8/1994 EIKO €t al. ooceeceerrrmenncssnnrene 395/725 6 Claims, 4 Drawing Sheets
74

A

IDENTIFY SHARED LIBRARY
FUNCTIONS NOT TO BE RE-CODED.

!

EXTRACT EXPORT LIST FROM
SHARED LIBRARY(IES).

!

COPY FILE DESCRIPTORS
CORRESPONDING TO EACH FUNCTION. ™

'

GENERATE WRAPPER FOR EACH
FUNCTION WITH GLOBAL LOCK.

!

CREATE MODIFIED FILE DESCRIPTOR
FOR EACH FILE DESCRIPTOR WITH
ADDRESS OF CORRESPONDING
WRAPPER ENTRY POINT.

&

'

MODIFY TABLE OF CONTENTS TO
SHARED LIBRARY(IES) SO POINTER
RETURNED IN RESPONSE TO FUNCTION
GALL IS TO MODIFIED FILE DESCRIPTOR
RATHER THAN ORIGINAL FILE
DESCRIPTOR.

l

.

Google Exhibit 1010
Google v. VirtaMove

U.S. Patent Jan. 2, 1996 Sheet 1 of 4 5,481,706

/ /
PROCESS A PROCESS B

THREAD t 416 18~ THREAD 1

THREAD 2 f—17 THREAD 2

THREAD 3 THREAD 3

14

20 / 22

H D LIBR
v/v SHARED LIBRARY v/v
24'\
- DATA >
PROCESS A - EXPORTLIST| g PROCESS B -
PRIVATECOPYOF |1 PRIVATE COPY OF
SHARED LIBRARY | ! SHARED LIBRARY
DATA ! CODE |_—~23! DATA
: {_— COLLECTION OF
------------------- WRAPPERS AROUND
INDIVIDUAL
FUNCTIONS

FIG. 1
PRIOR ART

U.S. Patent Jan. 2, 1996 Sheet 2 of 4 5,481,706

10
/ "
28 TABLEOF 36 /
) CONTENTS(T00)) gyncriow 5
—<1 [Fooruncron]~~"-> DESCRIPTOR 48 /
| »| DESCRIPTOR'] —~34
CALL ADDRESS OF FOO
ADDRES® ENTRYPOINT |~~~ ~77" > cope [
. {42
ADDRESS OF
INDEX
DATA | 46
66 ~—

38
30 ‘

FUNCTION 6/2
M 68

DESCRIPTOR' 8
ADDRESS OF / WRAPPER /

52~ WRAPPERS |— CODE

ENTRY POINT
LOCK
54~_| ADDRESS OF
TOC FUNCTION | |
‘ DESCRIPTOR |
s~ O 80 UNLOCK
AY
72

FIG. 2

U.S. Patent Jan. 2, 1996 Sheet 3 of 4 5,481,706

=

Y

IDENTIFY SHARED LIBRARY 7__6
FUNCTIONS NOT TO BE RE-CODED.

'

EXTRACT EXPORT LIST FROM 78
SHARED LIBRARY(IES). o

'

COPY FILE DESCRIPTORS 80
CORRESPONDING TO EACH FUNCTION.

!

GENERATE WRAPPER FOR EACH 82
FUNCTION WITH GLOBAL LOCK. -

'

CREATE MODIFIED FILE DESCRIPTOR 84
FOR EACH FILE DESCRIPTORWITH ™
ADDRESS OF CORRESPONDING
WRAPPER ENTRY POINT.

T

MODIFY TABLE OF CONTENTS TO 86
SHARED LIBRARY(IES) SO POINTER
RETURNED IN RESPONSE TO FUNCTION
CALL IS TO MODIFIED FILE DESCRIPTOR
RATHER THAN ORIGINAL FILE
DESCRIPTOR.

l
C =)

FIG. 3

U.S. Patent

Jan. 2, 1996 Sheet 4 of 4

2)
l

FUNCTION CALLTO EXECUTE FUNCTION
OF SHARED LIBRARY. 92

l

RETRIEVE FROM TABLE OF CONTENTS
CORRESPONDING TO FUNCTION 94
POINTER TO MODIFIED FILE -
DESCRIPTOR.

'

RETRIEVE FROM MODIFIED FILE 96
DESCRIPTOR POINTER TO WRAPPER
CORRESPONDING TO THE FUNCTION.

!

EXECUTE WRAPPER CODE IN RESPONSE
TO MODIFIED FUNCTION DESCRIPTOR
POINTER (LOCK ON FUNCTION). b

<©
[s~]

'

EXECUTE FUNCTION AND RETURN. 100

'

EXECUTE WRAPPER CODE IN 102
RESPONSE TO RETURN (UNLOCK
FUNCTION IN RESPONSE TO RETURN).

'

RETURN CONTROL TO APPLICATION 104
PROGRAM ’ _

l
=)

FIG. 4

5,481,706

5,481,706

1

SYSTEM AND METHOD FOR CREATING
THREAD-SAFE SHARED LIBRARIES

TECHNICAL FIELD

This invention relates to systems and methods for man-
aging shared resources in a computer system, and, more
particularly, to shared resource management techniques in
multithread environments.

BACKGROUND OF THE INVENTION

In order to better understand the background of the
subject invention, explanation of some of the terminology
utilized hereinafter will first be provided. A term well known
in the art as a symmetric multiprocessor (SMP) refers to an
aspect of hardware in a computing system and, more par-
ticularly, relates to the physical layout and design of the
processor planar itself. Such multiple processor units have,
as one characteristic, the sharing of global memory as well
as equal access to I/O in such a typical SMP system.

Yet another such term which will be hereinafter used and
commonly associated with modern complex computing sys-
tems is a “thread”. The term thread in a general sense refers
merely to a simple execution path through application
software and the kernel of an operating system executing
with the computer. As is also well understood in the art, it is
commonplace for multiple such threads to be allowed per a
single process image.

Yet another concept which will be utilized hereinafter in
describing the invention is one of “locks” or “mutexes”. It
is typical in modern computing systems to have critical
sections of code or shared data structures such as in shared
libraries whose integrity is extremely important to the cor-
rect operation of the system. Such locks/mutexes are devices
employed in software (and hardware) to “serialize” access to
these critical sections of code and/or shared data structures.

Two types of locks are typically encountered in the art,
namely blocking locks and simple or “spin” locks. Blocking
locks are of the form which cause a thread requesting the
lock to cease being executable, e.g. to go to “sleep™ as the
term is employed in the art, if the lock is currently held by
another thread. Spin locks, in contrast, do not put waiting
threads to “sleep”, but rather, the waiting threads execute a
spin loop, and thus repeatedly continue to request the lock
until it is freed by the current thread “owner”. Blocking
locks are typically used for large critical sections of code or
if the operating system kernel must differentiate between
threads requiring data structure read-only capability and
threads requiring the capability to modify the data struc-
ture(s). This latter read-write type lock may be found
implemented, for example, in the current OSF/1 operating
system release of the Open Software Foundation (OSF).

One other term utilized hereinafter is the concept of code
being multithread-safe. Such code is considered to be
thread/MP-safe if multiple execution threads contending for
the same resource or routine are serialized such that data
integrity is ensured for all such threads. One way of effecting
this is by means of the aforementioned locks.

In modern uniprocessor, single process model systems
employing shared libraries, routines in such shared libraries
do not require any form of hereinbefore noted serialization
with respect to other routines in the library or multiple
callers of the same routine. There is thus no problem with
respect to shared or global data structures requiring use of
locks or mutexes to prevent conception.

—

5

20

25

50

60

2

Moreover, even as between processes in multiprocessor
systems, data corruption problems are typically avoided
where private/local copies are data are maintained by the
respective processes.

As a specific example of the foregoing, in version 3.2 of
the AIX(tm) operating system of the IBM Corporation,
shared libraries shipped for execution on compatible
machines have to only run in a single process model on a
uniprocessor system. Accordingly, there is no need for
utilizing locks or mutexes to serialize access to shared or
global data structures. However, in contrast, with respect to
subsequent releases of the aforesaid operating system such
as that employing Distributed Computing Environment
(DCE) functionality, the process model has been changed
from a single process to multiple threads per process. There
are several benefits to this extension, not the least of which
is concurrent programming.

However, such improvements in operating system tech-
nology have given rise to the problem addressed by the
instant invention. With the advent of multithreaded systems,
the requirement has arisen that the libraries associated
therewith must be modified to either be thread-efficient or at
the very least thread-safe. The added complexity of multi-
processor forms of such systems only exacerbates the prob-
lem of maintaining system integrity.

Applications which have been bound unshared with
libraries do not require changes to the libraries inasmuch as
they will maintain the single process model (e.g. a single
thread, single process model). However, in other cases
wherein the process model changes from a single thread
single process to multiple threads per process, methods and
systems were required to be devised which could render
such libraries effectively thread-efficient or at least thread-
safe. The practical constraint of programming resources
simply renders it impractical to thread-safe all library rou-
tines in a2 modern multithreaded system. Thus, systems and
methods were needed to enable the creation of multithread-
safe shared libraries without the necessity for source code
modifications of the library itself.

By way of further background, a typical multiprocessor
environment with shared resource management may be seen
described in U.S. Pat. No. 5,109,511 entitled ‘Shared
Resource Managing Method and System”. However, in this
system no lock operations are provided for. In yet another
reference, U.S. Pat. No. 4,847,754, there is disclosed another
multiprocessor environment providing for serialization of
access to shared resources among concurrent processes
which does call for a lock mechanism. However the system
provides for a two-step serialization process requiring an
access initiation operation followed by an access completion
operation.

Yet another shared resource system for concurrent pro-
cesses in a multi-process environment may be seen in
“Memory Protection Software Facility for OS/2 Shared Data
Application”, IBM Technical Disclosure Bulletin, Vol. 34,
No. 4A, 9/91. This reference describes a technique for
isolating memory areas in, for example, Intel 386 architected
systems wherein a facility is provided for dynamic link
libraries (DLLs) to protect their critical shared global data
regions. However, no protection is provided for the DLLs
from each other, the technique disclosed requires altered
process address spaces, and, moreover, has undesirable
hardware dependencies.

Several approaches to addressing the specific problem
met by the subject invention are available, all of which
include concomitant and very undesirable drawbacks.

5,481,706

3

As but one example, in seeking to effect multithreaded
and multiprocessor shared libraries which are thread-safe,
one approach is to simply rewrite all libraries to add locks.
As a practical matter, a modern complex computing system
may involve numerous such libraries. In the case of the
aforesaid AIX system, there are in excess of 70 libraries
including, for example, a socket library in excess of one
megabyte. Obviously, to rewrite all such libraries would
entail a resource commitment far in excess of that which is
practical to maintain a commercially viable system.

Yet another approach is simply to do nothing with respect
to the existing libraries in terms of rewriting code, but rather
simply to document libraries which are not thread-safe. This
approach obviously has serious drawbacks itself, not the
least of which is maintaining the accuracy of such docu-
mentation and the impact on system integrity from errors in
documentation.

From the foregoing it may be readily understood that lack
of a system and method for creating thread-safe shared
libraries has created serious problems with respect to mod-
ern complex computing environments, and thus a solution
was sorely needed in the industry.

It is accordingly an object of the invention to provide
systems and methods for creating thread-safe shared librar-
ies; it is yet a further object of the invention to provide for
such shared libraries and their nsage without the necessity
for source-code modifications of the library. .

These and other objects have been fully met by the subject
invention, a description of which hereinafter follows which
may be more easily understood with reference to the fol-
lowing drawings wherein:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of the structural compo-
nents of a representative multithreaded computer system
which may advantageously employ the computer system;

FIG. 2 is a more detailed illustration of a portion of the
system of FIG. 1, depicting aspects of the shared resource
components of FIG. 1;

FIG. 3 is a flow diagram illustrating the method for
creating thread-safe libraries in accordance with the inven-
tion.

FIG. 4 is a flow diagram illustrating the thread-safe usage
of shared libraries in accordance with the invention.

SUMMARY OF THE INVENTION

Libraries for use in a multithreaded computer environ-

15

30

35

40

45

ment which must be thread-safe and cannot be recoded are

identified. Such libraries, after identification, are repack-
aged. Export routines for such libraries will thereby acquire
a front end which effects several steps. First a write-
exclusive lock for a particular called function of one of the
libraries is generically acquired. A call is then made to the
underlying function whose name has been remapped. Upon
return from the real routine, the write-exclusive lock is
unlocked and a return to the user is executed. The system
and method ensure correct functioning and integrity of the
identified library functions accessible by multiple threads, as
well as providing for creation of multithread-safe shared
libraries without necessitating extensive library source
modifications.

In a preferred embodiment for generating thread-safe
functions, shared library functions not to be modified are
identified and an export list of external functions extracted.
Function descriptors corresponding to each function are
saved, and a wrapper generated for each function with a
global lock and further having a corresponding one of the

50

55

60

65

4

saved function descriptors. Modified function descriptors
are created for each function descriptor, each having an
address of a corresponding wrapper entry point. The table of
contents to the shared library is modified so that a pointer is
returned in response to a function call to the modified
function descriptor rather than to the original function
descriptor. The corresponding wrapper to which the modi-
fied function descriptor pointer points includes, in the copy
of the function descriptor contained therein, a pointer to the
same function as the original function descriptor. This
pointer invokes a lock on the function, whereupon the
function code executes and issues a return, whereupon the
lock is released. The pointer in the copy of the function
descriptor in the wrapper is identical to that of the original
function descriptor.

Also in a preferred embodiment of the invention for
invoking shared library functions in a thread-safe manner, a
call is issued to execute a function of a shared library. A
pointer is retrieved from a table of contents of the shared
library in response to the function call pointing to a modified
function descriptor. A pointer is retrieved from the modified
function descriptor, in turn pointing to a wrapper corre-
sponding to the function. The wrapper contains a substantial
copy of the original function descriptor, and, in particular,
includes the same pointer as the original function descriptor
to the executable function code. Upon invoking the wrapper
code, this pointer causes execution of a lock on the function
and subsequent execution of the function itself. Upon return
of the function, the wrapper code, in response, releases the
lock and returns control for invocation of a next thread and
corresponding function.

Wrappers are provided for each externalized function of
the shared library whereby, in combination, they effect a
wrapper around the executable shared library code. In this
manner, due to the lock invoked when wrapper code corre-
sponding to a given function is executed, the function is
thereby made thread-safe. Data associated with the function
thus may not be corrupted by a call by a subsequent thread,
and the memory associated with the data is not released until
the lock is released.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 depicts a multithread computer system with mul-
tiple processes sharing a shared library in accordance with
the prior art. Accordingly, multiple processes A and B as
shown are reference numerals 10, 12, respectively, and a
shared library 14. It will be recalled from the foregoing that
in single threaded process models of the prior art, corrupting
library data was not a problem since a process would have
its own copy of data, such as the copy of data 24 shown at
reference numeral 20 or 22. A given process thus did not
have access to the data 24 of the shared library 14 and only
one thread, such as thread 1 shown at reference numeral 16
of process A, was permitted to access the copy 20 of the data
at a given time.

In contrast, still referring to FIG. 1, in a multithread
application such as that shown, if multiple such threads
(such as threads 1 and 2 shown at reference numeral 16 and
17) are permitted to access the data 24 of the shared library
14 at the same time, corruption of the data will result. In
systems such as those shown in FIG. 1, the multiple threads
(such as threads 16 and 17 of one process such as process A,
reference numeral 10), have access to their own copy 20 of
the shared library data 24 but cannot access the shared

5,481,706

5

library data 24 or the other process private copy 22 of the
data corresponding to process B at reference numeral 12.

The conventional way to access data 24 in a shared library
14 is through routines or code 23 provided by the shared
library 14. This code 23 will change shared library data 24
and generate pointers and the like thereby managing the data
copies 20 and 24 with local and global variables, tables,
hashing queues, and the like.

The multiple processes such as process A and B usually do
not access the data 24, but rather go through the shared
library routines of code 23, which duplicate the data 24 of
the shared library and pass back information to respective
processes based upon what the shared library code 23 did
during such management. As noted, the data from the shared
library must thus be unique per process, e.g. a pristine copy
of the data 24 must be provided as in copies 20 and 22 to
each respective process 10, 12, whereby the multiple pro-
cesses and threads will not corrupt the data 24 of the shared
library 14 itself. It will be noted, in passing, that in some
cases, the routine or function call generated from the shared
library code 23 will indicate that it is using a piece of data
24 for some working storage space. In these instances it will
pass back an exact address of the data 24 in the shared
library 14 to the calling thread from the particular process.

To illustrate the specific problem of data corruption which
can arise from multithread processes such as those shown in
FIG. 1, it will first be noted that it is typical for function calls
from processes to a shared library 14 to utilize global data.
An example of this is the well known printf function which
will have a global data area wherein modifications are
performed on a data stream which is desired to be printed
out. It is important to note that conventionally only one such
global data area for printf is provided per process. It will be
readily apparent then, that if multiple threads 16, 17, for
example, of a process A, reference numeral 10, call the same
function, (e.g. printf) at the same time, each thread will be
attempting to use the identical global data area, thereby
corrupting it with the inputs of the differing threads resulting
in invalid outputs.

Numerous solutions to the aforementioned problems have
been attempted. One approach is to rewrite the entirety of
the functions of a library such as the aforementioned printf
as well as its corresponding underlying routines to be
thread-safe. This entails allocating unique portions of data
storage such as at reference numeral 20, so that when a
‘thread 17 calls a given function, such as printf or malloc, the
thread of the function will use a different section of memory
than that employed by a prior thread calling the same
function.

Yet another approach is to provide a lock on the global
data area of the particular function such as printf or malloc.
In summary then, there are differing ways to make library
routines thread-safe such as providing locks, having the
functions pass the data area, utilizing a unique data area,
having the function lock and unlock a common data area and
provide returns giving the status of the lock. However, all of
these approaches require extra work and coding such as
recoding the actual library functions as previously men-
tioned in a manner to render them thread-safe.

Thus, not only were such prior art attempts to solve the
problem impractical in terms of the resources required for
recoding, but further undesirable results occur from these
approaches. For example, it is highly undesirable for end
users to assume the responsibility of modifying library
source inasmuch as such code changes can easily result in

. source compatibility problems. Requiring changes of code

20

25

35

40

45

50

60

65

6

in the shared library 14 or applications (e.g. those invoking
multiple processes such as process A and B) to fix the
problem was highly undesirable, as it is much more prefer-
able to facilitate the continued use of existing libraries and
avoiding the necessity of code changes.

Turning to FIG. 2 now, a description will be provided of
the system and method of the invention for solving the
aforementioned problems. The solution essentially entails
placing a wrapper around the code 23 of the shared library
14 (rather than the data 24) in a manner to be detailed.

Library functions in a given shared library have corre-
sponding routines and function names which the given
shared library “exports”, i.e. which are available to an end
user or application to call. A representative such export list
for shared library 14 is shown at reference numeral 26 of
FIG. 1. It is conventional that when applications are built,
the application is able to locate a symbol in corresponding
function code of a given shared library because of the export
list 26 providing the information of what the external
function calls are which are available outside the shared
library for use by an application. An example of such an
entry in the export list would be the aforementioned printf or
malloc external interface function names. More particularly,
it is conventional to have a library file such as lib.exp as part
of the shared library which is simply an ASCII file or string
of all symbols exported from the shared library (such as
malloc, free, printf . . .).

The concept of the invention entails, in part, employing
this export list of all exported function names from a given
library and placing “wrappers” around each such function. A
wrapper is simply code extending around the instantiation of
the call of the given corresponding function. If, for example,
a thread calls a malloc function, in providing a “wrapper” for
the particular function, this simply means placing another
malloc (e.g. the wrapper) on top of the pre-existing function
call such as malloc and renaming the underlying one. Thus,
when a user or thread calls a function such as malloc, the
wrappered underlying version of malloc is called from the
wrapper on top of the renamed underlying version. The
underlying version will then obtain a lock, which in turn
recalls the underlying malloc function to do the real memory
allocation function of the malloc function, The actual real
malloc function then returns back to the wrapper which
completes the wrappered functions necessary to complete
the desired action, such as unlocking the lock, freeing data,
and the like. Thus, a wrapper will be seen to be an individual
piece of code placed around a corresponding individual
function call or routine which is exported from the shared
library.

By doing so, the invention thereby protects all the func-
tion calls within the shared library from each other (e.g.
separate calls to different functions from different multiple
threads attempting to use the same data area) and further
protects the calls from themselves (e.g. multiple calls from
multiple threads to the same function such as printf, attempt-
ing to use again, the same data area for both such calls).

The aforementioned locks associated with the individual
wrappers for each function will in actuality be the same
global lock which each function will sequentially obtain at
a given time upon execution of its corresponding wrapper
code. For example, since a system does not know what given
library routines are using for their global data areas and what
memory they are accessing, this global lock will prevent
malloc from potentially overriding or otherwise corrupting
the data area currently being employed by printf inasmuch
as printf will acquire the lock, thus locking out malloc from

5,481,706

7

corrupting that area until printf frees the lock. Thus it will be
seen that all wrappers will obtain the same lock providing
for relatively coarse serialization but nevertheless effecting
the objects of the invention in preventing data corruption.

From the foregoing, it is apparent that when wrapper code
for a given function is invoked, the same lock will be locked
no matter what the routine is that is being called through the
particular wrapper function. In response, after effecting the
lock, the real code of the routine will then be called and
executed, whereupon after a return is received from the
routine, the wrapper’s lock is unlocked, thereby freeing the
data area for use by a call from a subsequent thread.

‘When a wrapper around each of the externalized functions
of the given shared library has thus been provided, the
library may thus be thought of as being thread-safe by means
of this collection of wrappers. It will be recalled that there
are instances wherein the actual library functions themselves
simply cannot be recoded individually to provide a similar
thread-safe characteristic. For example, an end user may
have received an application shipped with a prior version of
an operating system who now wants to run the application
on a new version of the operating system but does not have
access to the source code, does not want to repurchase it or
have the vendor re-port it. In other words, in such instances
the end user, even if he otherwise had the resources to recode
the functions, could not do so without access to the source
to recode the shared libraries or application. The user would
thus lave a problem in assuring thread-safe operation unless
the vendor could be persuaded to either ship a thread-safe
version of the shared library or to otherwise permit the end
user to effect this through recoding (which can be prohibi-
tively expensive as well as giving rise to source incompat-
ibilities as previously noted).

In accordance with the invention, by provision for the
aforesaid wrappers, there is, in a limited sense, a necessity
to nevertheless modify the shared library code. However an
important distinction is to note that in accordance with the
invention, the internal functions (binary or source code)
need not themselves be recoded or altered. Thus the reshap-
ing or medification of the shared library may be thought of
as actually essentially occurring on top of or on the outer
portion of the shared library, giving rise to the notion of a
collection of “wrappers” around the code 23 of FIG. 1. In
essence, then, it will be seen that the “old” binary of the
shared library prior to rendering it thread-safe in accordance
with the invention may be saved off. This is because the
changes entailed by the invention are beyond the binary
image of the library and are effected by adding wrappers
around the individual routines in the rebuilding of the
library. The invention only modifies the entry points to the
shared library to now point to the wrappers, without neces-
sitating modifying the internal function calls and function
code as was the case in the prior art.

The initial build of the shared library will include creation
of the aforementioned export list 26. In accordarice with the
invention, then, this export list is then extracted from the
shared library, yielding alist of all the exported symbols, e.g.
externalizing function call names in the shared library. They
are then essentially renamed whereby an identical function
either before or after modifications in accordance with
invention will nevertheless be executed by the same call.
The identical function name will essentially invoke a pointer
in a table of contents not to the old function descriptor
existing prior to the modifications of the invention, but
rather to a new function descriptor which, in turn, contains
a pointer to the wrapper code corresponding to the function
thus called.

20

30

40

45

50

55

60

65

8

Turning now to FIG. 2, an explanation will be provided of
the functional blocks depicted therein implementing the
invention.

First it will be recalled that the export list 26 of FIG. 1 has
been previously generated as a part of the prior shared
library and is extracted therefrom. It is conventionally
simply in ASCII format inside the shared library, and the
extraction comprises locating it in the memory of the shared
library, e.g. where all the names of exported functions
corresponding to the shared library exist (e.g. those exter-
nalized by the library and accessible by the user).

Once this export list of externalized function calls has
been obtained, they are renamed through the process of
adding and building new wrapper modules with correspond-
ing names from the export list. These modules are thence
placed back in the existing library in a manner to be
described.

With continued reference to FIG. 2, each function such as
“foo” in a given library has an associated function call 28
with'a corresponding associated entry point in a table of
contents 30. This is essentially a pointer or address of an
entry point, e.g. in the example under consideration a
descriptor address 34 of the foo function which points to a
function descriptor 32. The function descriptor, in conven-
tional operation, contains the address of the entry point, 42,
of the corresponding function or routine, e.g. the foo code
50. In this manner, accessing the function descriptor 32 by
means of the foo call 28 will cause a pointer 48 to be invoked
to the foo code 50 whereupon the desired library routine or
foo code will execute. The function descriptor 32 will also,
conventionally, contain the address and memory, 44, of the
table of contents 30, as well as data 46. Typically, also, one
such table of contents 30 exists per shared library 14. In
essence, in order to rename the function as previously
described, this simply entails changing the symbol and
storing off the function pointer. More particularly, a new
function descriptor 38 is created, and the descriptor address
34 of the table of contents 30 is modified to point to this new
function descriptor as shown by the arrow 40. Thus, in
response to a function call 28, the table of contents 30, and,
more particularly, the particular function’s descriptor
address 34, will now cause a pointing to the new or modified
function descriptor 38 shown by arrow 40, rather than to the
prior function descriptor 32 shown by the dotted arrow 36.
In other words, the entry point of this new or modified
function descriptor 38 is actually what is replaced into the
address 34 of the table of contents in place of that or the prior
function descriptor 32.

Continuing with FIG. 2, this new function descriptor 38,
in comparison with the function descriptor 32, will be seen
to be essentially a copy of the prior function descriptor 32,
containing the same address of table of contents 54, and data
56. However, the significant difference between the two
descriptors is that in the case of the address of the entry
point, whereas the address or re-entry point 42 of the
function descriptor 32 pointed to the actual routine code 50,
the address of the modified function descriptor 38 shown at
reference numeral 52 is now modified to be the address of
the wrapper’s entry point for the wrapper code 62. Thus, in
response to the function call 28, the function descriptor 38
is invoked, whereupon the address of the wrapper’s entry
point 52 is, in turn, utilized to effect the pointer 58 to
wrapper code 62.

Continuing with FIG. 2, the wrapper code 62 for each
function 28 will include code necessary to invoke the
locking and unlocking of the previously described global
lock, shown in the wrapper code as lock 68 and unlock 72.
When the wrapper code 62 is invoked by use of the pointer
58, the lock is locked by means of the execution of the lock

5,481,706

9

code 68, whereupon the function descriptor 70 of the wrap-
per code 62 is employed. It is important to note that this
function descriptor 70 is essentially identical to that of the
prior function descriptor 32. More particularly and more
importantly, however, the address of the entry point 42 in the
function descriptor 32 is identical to that of the function
descriptor 70. This will cause a pointing (schematically
shown by pointer 64) to the actual executable code of the
library routine such as foo code 50 in the identical manner
that the address of the entry point 42 of the function
descriptor 32, by means of the pointer 48, also caused
execution of such library routine code 50 prior to provision
of the function descriptor 38 and wrapper code 62.

When the foo code 50 completes executing, a return
(shown as reference numeral 66) to the wrapper code 62
thereafter causes invocation of unlock code 72 to free the
lock on the address space previously being utilized by
execution of the particular library function. After this
unlocking, this effects a return 60 to, ultimately, permit a
function call by a next thread wherein the previous process
is repeated. When the next call from a next thread sequen-
tially is presented, in like manner, it will result in a pointer
from the table of contents 30 to its corresponding function
descriptor (which will differ for each of the functions in the
library), in which case the previously described functions
will again be replicated to cause execution of the actual
library routine corresponding to this new function call from
the next thread.

In summary, then, it is a significant feature of the inven-
tion to provide for new creation of these function descriptors
38, each cormresponding to a function descriptor 32. Each
prior function descriptor 32 is saved off for use in the
wrapper code module 62 (as shown by function descriptor
70), wherein each wrapper code module corresponds to one
of the function descriptors 32, a corresponding one of the
function descriptors 38, and a corresponding function in the
shared library. The table of contents 30 is modified and,
more particularly, the function’s entry in the table of con-
tents is modified to now point to the new function descriptor
38.

‘When the user binds the new library, the table of contents
is modified to call ultimately these wrapper routines (rep-
resented by wrapper code 62) and not the “old” or prior
function descriptor 32 and routine code. If the latter were to
happen, it will be readily apparent that the library function
50 would not be thread-safe inasmuch as no lock would have
been provided. A subsequent function call from a next thread
could then destroy data integrity. However, in accordance
with the invention, the wrapper code 62 causes obtaining of
the lock and calling of the actal underlying function
previously in the library which is thus protected.

Rebuilding of the prior shared library essentially entails,

20

40

45

50

in addition to creating the new function descriptors 38 and

wrapper code 62, modifying the table of contents 30 to point
to these new functions descriptors 38. Also, the “renaming”
of the old modules (such as foo code 50) really simply
entails changing how they are accessed. Now, they are
accessed actually by invoking the wrapper code 62. It will
be appreciated from the foregoing that path length has thus
been increased arising from the addition of the wrapper code
62, the lock and unlock functions, and the extra function call
(e.g. calling of the renamed function and the calling of the
actual function itself). However, the effecting of a thread-
safe shared library has thus nevertheless been implemented
affording the other benefits not present in prior art
approaches.

35

60

65

10

Referring now to FIG. 3, a flow diagram is shown
illustrating the steps of creating the thread-safe library. The
process is entered at 74, whereupon shared library functions
which are not to be re-coded are identified, 76. From the
shared library or libraries, an export list is extracted listing
all the symbols of the corresponding functions in the given
library or libraries which are not to be recoded. Once this
export list has been extracted, 78, the prior function descrip-
tors corresponding to each function are saved off, 80. Next
a wrapper is generated for each such function which will
activate and deactivate a global lock, 82. A modified func-
tion descriptor for each prior function descriptor is con-
structed with an address or pointer to a corresponding
wrapper entry point for the wrapper generated at reference
numeral 82, This step of creating the modified function
descriptors is shown at reference numeral 84. The table of
content(s) is then modified to the shared library or libraries
so that a pointer is now returned, in response to a given
function call, to a corresponding modified function descrip-
tor rather than the original function descriptor.

Referring now to FIG. 4, a simplified flow diagram is
shown of the sequence of operation in accordance with the
invention whereby a function from a multithread process is
invoked (whereby the corresponding library routine is
executed in a thread-safe manner in accordance with the
invention). The sequence is entered at 90 whereupon a
function call is issued to execute a function in the shared
library, 92. In response to this call, a pointer to a modified
function descriptor is retrieved from the table of contents of
the shared library corresponding to the function thus-called,
94. A pointer is thereafter retrieved from the modified
function descriptor to a wrapper corresponding to the func-
tion in the modified function descriptor, 96.

The wrapper code is thence executed as a result of
obtaining this pointer, e.g. in response to the modified
function descriptor pointer, whereupon a lock is obtained on
the function which is desired to be executed, 98. The
particular function thereafter executes whereby, as a result of
the lock, data corruption is avoided by calls from any thread
occurring after the one which invoked the function’s execu-
tion, shown at reference numeral 100. Upon return of the
function, wrapper code executes in response to the return to
thereby unlock the global lock which locked the function,
102. After the lock has been released, return of control is
provided to the application program to permit execution of
a subsequent call caused by a next thread, 104, whereupon
the previously described sequence of events has thus been
terminated, 106.

While the invention has been shown and described with
reference to particular embodiments thereof, it will be
understood by those skilled in the art that the foregoing and
other changes in form and detail may be made therein
without departing from the spirit and scope of the invention.

What is claimed is:

1. A method for use in a multithread computer system
employing a pre-existing shared library having a pre-exist-
ing function descriptor, a pointer to said function descriptor
and a corresponding at least one function which is not
multithread-safe when used in said system having a corre-
sponding underlying call associated therewith exported from
said library to render said shared library multithread-safe
when used in said system, comprising:

creating a wrapper for said function comprised of pro-

gram code extending around instantiation of said
underlying call said wrapper being responsive to a call
corresponding to said underlying call, said creating
including the steps of

5,481,706

1

storing said pre-existing function descriptor there-
within, and creating a lock to said function; and
rebinding said pre-existing shared library with said wrap-
per including the steps of
creating a modified function descriptor including
creating a pointer to said wrapper and
creating a copy of said function descriptor with said
pointer to said wrapper
in said modified function descriptor being substi-
tuted for ‘said pointer to said function in said
function descriptor during said rebinding; and
substituting a pointer to said modified pointer descrip-
tor for said pointer to said function descriptor.

2. The method of claim 1 wherein calling said function
before and after said rebinding invokes said pointer to said
function descriptor and said pointer to said modified func-
tion descriptor, respectively.

3. The method of claim 2 wherein said function descriptor
includes a pointer to a routine corresponding to said func-
tion.

4. A method for modifying a multithread shared library
computer system in which an underlying function call
exported from said shared library invokes a pointer to a
function descriptor which, in turn, invokes a pointer to a
corresponding routine of said shared library thereby causing
execution of said routine, whereby multithread safe use of
said shared library is facilitated said method comprising:

providing a wrapper including a lock being comprised of
program code extending around instantiation of said
underlying function call, said wrapper being responsive
to a call corresponding to-said underlying call and
including a lock for said routine, said wrapper further
including said function descriptor;

providing a substitute function descriptor with a pointer to
said wrapper;

changing said pointer to said function descriptor into a
pointer to said substitute function descriptor;

invoking said pointer to said substitute function descrip-
tor;

invoking with said pointer to said substitute function
descriptor said pointer to said wrapper; and

invoking with said pointer to said wrapper execution of
said wrapper including

10

15

20

25

30

35

40

12

executing said routine from said function call sequen-
tially through said substitute function descriptor and
then through said wrapper including said function
descriptor;

executing a lock on said routine;

invoking said pointer of said function descriptor in said
wrapper to said routine thereby causing its execu-
tion; and

unlocking said lock on said routine in response to a
return to said wrapper from said routine.

5. The method of claim 4 wherein said lock and said
unlocking precludes and permits, respectively, execution of
said routine from a subsequent said function call from
another of said multiple threads while said routine is execut-
ing.

6. A system for use in a multithread computer system
employing a pre-existing shared library having a pre-exist-
ing function descriptor, a pointer to said function descriptor,
and a corresponding at least one function which is not
multithread-safe when used in said system having a corre-
sponding underlying call associated therewith exported from
said library to render said shared library multithread-safe
when used in said system, comprising:

means for creating a wrapper for said function comprised

of program code extending around instantiation of said
underlying call, said wrapper being responsive to a call
corresponding to said underlying call, said means for
creating a wrapper further including
means for storing said pre-existing function descriptor
therewithin; and)
means for creating a lock to said function; and
means for rebinding said pre-existing shared library with
said wrapper said means for rebinding including
means for creating a modified function descriptor
including
means for creating a pointer to said wrapper and
means for creating a copy of said function descriptor
with said pointer to said wrapper in said modified
function descriptor, being substituted for said
pointer to said function in said function descriptor
during said rebinding; and
means for substituting a pointer to said modified
pointer descriptor for said pointer to said function
descriptor.

