Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 1 of 25

UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS
MIDLAND/ODESSA DIVISION

VIRTAMOVE, CORP.,
Plaintiff,
V.
GOOGLE LLC

Defendant.

Case No. 7:24-CV-00033-ADA-DTG

PLAINTIFF’S RESPONSIVE
CLAIM CONSTRUCTION BRIEF

Google Exhibit 1103
Google v. VirtaMove

L.

II.

w >

WU 0

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 2 of 25

TABLE OF CONTENTS

Terms Primarily Appearing in U.S. Patent No. 7,519,814cccccovriiniriiniinieienieeen 4
“SErVers” (814 Claim 1)oouiiiiiiiiiiiieeee e s 4
“operating system” (’814 claims 1, 10; *058 claim 1) “kernel”/“operating system
kernel” (’814 claim 1; 058 Claim 1)....c..cceiuiiiiiiiiieiie e 7
“disparate computing environments” (*814 claim 1)........cccocevieiiiriiiiniiniiiieeieeeeee, 8
“service” (P814 claims 1, 14) c..oei i 9
“container” (814 claims 1, 2,4, 6,9, 10, 13, 14)...cccviieiieeieeeeeeee e 10

“at least some of the different operating systems/at least some of the plurality of
different operating systems” (’814 claim 1)

“memory accessible to at least some of the servers” (814 claim 1)ccceevueenneennn. 12
“local kernel residing permanently on one of the servers” ("814 cl. 1)cccccvvueveennee. 13
“secure containers of application software” (814 claim 1).........ccccevevieviiniinninennnne. 14
“an operating system’s root file system” (’814 claim 1)ccccoooeeviiiiniiiniininienceens 15
U.S. Patent NO. 7,784,058.......eueeeeeeeieeiieiieiieeieieeiieeeeeeeeaasesaaesaassasesssaaaaeaa—————————————————————————— 16
“critical system elements” (Claim 1)c.cccceviiieriiiiiiiinieeiieeee e 16
“shared Ibrary” (Claim 1)c.cooieiiieieie e 18

“some of the SLCSEs stored in the shared library....are accessible to some of the
plurality of software applications / accessed by one or more of the plurality of
software applications it” (‘058 CL 1)...ceiiiiiiiiiieiieie e 20

“functional replicas of OSCSES” (claim 1)ccooiiviiiiieiiieiieeiieeeeeeee e 22

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 3 of 25

TABLE OF AUTHORITIES

Cases
i4i Ltd. v. Microsoft Corp.,

598 F.3d 831 (Fed. Cir. 2010).uuii ittt ettt e e e e e e e 13
Interval Licensing LLC v. AOL, Inc.,

766 F.3d 1364 (Fed. Cir. 2014).....uiiiiieeeeeeee ettt et et 22
JVW Enters., Inc. v. Interact Accessories,

424 F.3d 1324 (Fed. Cir. 2005)......uiiiiiieeie ettt s e et e e eaae e eaaeeeraeeeavee s 6
02 Micro Int’l Ltd. v. Beyond Innovation Tech. Co.,

521 F.3d 1351 (Fed. Cir. 2008).....uuiiiiiieeiieeeiie ettt ettt etae e e aae e e aae e saaeeeraeesaneeas 8
OSRAM GmbH v. Int'l Trade Comm ’n,

505 F.3d 1351 (FEA.Cir.2007)...cccuieeeiiee ettt ettt etae e e aae e etae e e e e eaneeenanas 17
Phillips v. AWH Corp.,

415 F.3d 1303 (Fed. Cir. 2005).. ..ttt e e 9,17
Provisur Techs., Inc. v. Weber, Inc.,

No. 2021-1851, 2022 WL 17688071 (Fed. Cir. Dec. 15, 2022)...cccvvieciieeieeeieeeeeeeeeeeen 13
Sonix Tech. Co. v. Publications Int’l, Ltd.,

844 F.3d 1370 (Fed. Cir. 2017) cumiiiiiieeeiie ettt ettt et e e e eaae e e nae e enaeeeanee s 22
Thorner v. Sony Computer Ent. Am. LLC,

669 F.3d 1362 (Fed. Cir. 2012)..uuiiiiiiieeeeeeeee ettt s 6,11
Statutes
B ULSiC. § 12, 0ottt ettt et ettt e et e et e s s e ebeeenbeenbeeenbeesaenabaens 23

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 4 of 25

VirtaMove and Google offer not just competing claim-construction proposals, but very
different approaches to claim construction. In a case involving two patents and 15 asserted claims,
Google demands construction of a matrix of 13 individual claim terms. In some cases, Google
proposes inserting dozens of words taken from a popular dictionary, with no basis in the intrinsic
record. In other cases, Google asserts indefiniteness, without providing clear and convincing
evidence of invalidity as required by Federal Circuit law. In other cases, Google cherry-picks
“lexicography” from the patent specification, distorting the patentee’s good faith efforts to inform
the scope and meaning of the invention. In each case, Google’s proposal should be rejected.

I. Terms Primarily Appearing in U.S. Patent No. 7,519,814

A. “servers” (’814 claim 1)

Plaintiff’s Proposed Construction Defendant’s Proposed Construction

No construction necessary; plain and ordinary | physical servers
meaning.

The parties dispute whether the term “server” extends to all computers that a POSITA
would describe as a “server”—i.e., the term’s plain and ordinary meaning—or whether the term
somehow excludes servers that incorporate virtual machine technology. See Dkt. 63 at 3-4 (arguing
against an infringement theory where containers run on “virtual machines”). VirtaMove believes
that no construction is necessary for two reasons.

First, the claim already makes clear that the claimed “servers” are hardware (because they
include hardware components such as a “processor”). Specifically, the claim recites “a plurality of
servers... wherein each server includes a processor....” *814 Patent at cl. 1. A “virtual” system
cannot include hardware “a processor,” such that construing “server” to mean “physical server” is

simply redundant with other claim requirements.

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 5 of 25

Second, Google’s attempt to exclude a system where a container is running on a virtual
machine (even where that virtual machine is implemented on a physical server) is unsupported by
either the claim language or any other evidence. Google’s implied “no virtual machines”
construction has no basis in the intrinsic or extrinsic record and should be rejected.

Google’s key, if not only, evidence is the following passage from the patent specification:

There are existing solutions that address the single use nature of computer systems.
These solutions each have limitations, some of which this invention will address.
Virtual Machine technology, pioneered by VmWare, offers the ability for multiple
application/operating system images to effectively co-exist on a single compute
platform. The key difference between the Virtual Machine approach and the
approach described herein is that in the former an operating system, including files
and a kernel, must be deployed for each application while the latter only requires
one operating system regardless of the number of application containers deployed.
The Virtual Machine approach imposes significant performance overhead.
Moreover, it does nothing to alleviate the requirement that an operating system
must be licensed, managed and maintained for each application. The invention
described herein offers the ability for applications to more effectively share a
common compute platform, and also allow applications to be easily moved between
platforms, without the requirement for a separate and distinct operating system
for each application.

’814 Patent at 1:51-2:3.! This passage does not support Google’s conclusion. The specification
describes the inability of conventional virtual machine technology, on its own, to solve the
problem of containerizing application sets. Specifically, putting each application set in its own
virtual machine, as was conventional, has significant downsides, including the requirement to
include an entire operating system for each individual application. The patented invention, on the
other hand, allows the use of “one operating system regardless of the number of application
containers deployed.” Id. at 2:60-61.

These are the distinctions over conventional virtual machine technology that are claimed

in the *814 Patent. In particular, claim 1 requires that each claimed server has an operating system

I All emphasis added unless otherwise noted.

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 6 of 25

with an operating system kernel, that each secure container of application software comprises
application software for use with a local kernel residing permanently on one of the servers, and—
critically—that the containers of application software cannot include a kernel. These limitations
exclude the conventional virtual machine solution described at 1:51-2:3, because in the
conventional solution each virtual machine contains its own operating system and its own kernel
and thus cannot be a “secure container of application software” as claimed.

But it is not prohibited for the server to contain its own operating system, and indeed that
is required. Nothing in the claim language or the specification precludes an embodiment where the
claimed server corresponds to a computer using virtual machine technology, with a processor and
operating system and kernel as claimed, and where a plurality of secure containers of application
software as claimed (without their own operating system and kernel, also as claimed) are stored
within the server’s memory. Such an embodiment is entirely consistent with the claim context and
the specification, because it continues to exclude the need for a separate and distinct operating
system for each application, application set, or container. And even if this embodiment does not
use a virtual machine, that incidental aspect of the embodiment cannot become a claim limitation
without lexicography or disclaimer, which are absent here. JV'W Enters., Inc. v. Interact
Accessories, 424 F.3d 1324, 1335 (Fed. Cir. 2005) (Without clear and unambiguous disclaimer or
lexicography, courts “do not import limitations into claims from examples or embodiments
appearing only in a patent’s written description, even when a specification describes very specific
embodiments of the invention or even describes only a single embodiment.”). “Mere criticism of
a particular embodiment encompassed in the plain meaning of a claim term is not sufficient to rise
to the level of clear disavowal” sufficient to define claim scope. Thorner v. Sony Computer Ent.

Am. LLC, 669 F.3d 1362, 1366 (Fed. Cir. 2012).

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 7 of 25

Google also states that the specification teaches that virtual machine technology “provides
virtual hardware.” Dkt. 63 at 3. This statement has no textual support. The phrase “virtual
hardware” does not appear in the patent, nor is there any plausible reference to “virtual hardware”
in the cited passage or anywhere else in the specification. Again, the parties agree that a physical
processor is required. In sum, Google does not and cannot explain why the inclusion of additional
virtual machine technology in its servers negates infringement. Notably, Google does not allege
that any of the intrinsic evidence it relies on constitutes disclaimer, which would be required for
Google’s attempt to deviate from plain and ordinary meaning in contending that if a container is
implemented on a virtual machine which is itself implemented by a server, that container does not
reside on any “server.”

B. “operating system” (’814 claims 1, 10; 058 claim 1)
“kernel”/“operating system kernel” (’814 claim 1; *058 claim 1)

Plaintiff’s Defendant’s Proposed Construction
Proposed
Construction

No construction | “operating system”: “The software that controls the allocation and usage of
necessary; plain | hardware resources such as memory, central processing unit (CPU) time,
and ordinary disk space, and peripheral devices.”

meaning. “kernel”/“operating system kernel”: “The core of an operating system—
the portion of the system that manages memory, files, and peripheral
devices; maintains the time and date; launches applications; and allocates
system resources.”

Each of these terms has a plain and ordinary meaning, and the specification and claims of
both the *814 and *058 Patents uses the terms in their plain and ordinary sense. Google admits that
“the asserted patents use ‘operating system’ and ‘kernel’/‘operating system kernel’ according to
their conventional meanings.” Dkt. 63 at 4. There is no reason to engage in redundant, unhelpful

construction of these terms.

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 8 of 25

Google’s basic argument is that construction is necessary because VirtaMove does not
agree to Google’s demand to insert additional, redundant, confusing language glossed from a
Microsoft publication. That is not the law. The Court’s obligation is to resolve actual disputes
“regarding the proper scope of these claims.” O2 Micro Int’l Ltd. v. Beyond Innovation Tech. Co.,
521 F.3d 1351, 1360 (Fed. Cir. 2008) (emphasis added). Google does not and cannot identify any
dispute regarding the scope of either of these terms. VirtaMove opposes construction because these
are poor definitions that will be confusing, not helpful, to a jury. For example, the extraneous non-
limiting examples (“such as...”; “memory, files, and peripheral devices...”) provide, at best,
context rather than defining the metes and bounds of the claim scope. As another example, it is
well known that software other than operating systems can “control the allocation and usage of
hardware resources such as memory,” as it is common for individual applications to have their
own memory management capabilities. Because these terms have a plain meaning, and further
because Google’s proposals fail to accurately capture this plain meaning, Google’s proposed

constructions should be rejected.

C. “disparate computing environments” (’814 claim 1)

Plaintiff’s Proposed Construction Defendant’s Proposed Construction

Environments run by standalone or unrelated | indefinite
computers

Google argues that this phrase is indefinite because the definition refers to “unrelated”
computers while the claim requires, in Google’s own contention, the computers must be “related,”
creating a contradiction. This does not show indefiniteness.

As Google acknowledges, the claim context does not allow for two computers to be
“unrelated” because they must be “part of a single ‘system.’” In other words, Google acknowledges

that the “unrelated” portion of the specification’s description of “disparate computing

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 9 of 25

environments” cannot fit into the broader context of the claim language. Because the claim as a
whole undisputedly cannot extend to “unrelated” computers, only the “standalone” portion of that
description could be relevant to the scope of the claims as a whole. See Phillips v. AWH Corp.,
415 F.3d 1303, 1313 (Fed. Cir. 2005) (“Importantly, the person of ordinary skill in the art is
deemed to read the claim term ... in the context of the particular claim in which the disputed term
appears....”).

Accordingly, the only relevant inquiry (in the context of the claim as a whole) is whether
environments run by standalone computers is indefinite. Google presents no evidence that a
POSITA would be unable to understand the boundaries of standalone computers, which is a
common phrase used to indicate the ability of computers to operate independently of each other.
Google’s narrow focus on computers being “unrelated” (a scenario that Google acknowledges is
simply inapplicable in the context of the asserted claims) ignores whether “standalone” computers
can be understood to a POSITA, and Google presents no evidence at all that standalone computers
would not be understood.

D. “service” (’814 claims 1, 14)

Plaintiff’s Proposed Construction Defendant’s Proposed Construction

No construction necessary; plain and ordinary | “specialized, software-based functionality
meaning. provided by network servers and comprised
of one or more applications”

As with “operating system,” Google again simply demands to insert a redundant definition
of the ordinary word “service,” taken from a commercial publication from Microsoft, without
identifying any reason for the construction.

“specialized”: There is no basis to limit the scope of “service” to only “specialized”
services. It is not clear what Google believes “specialized” means here, but the patent specification

plainly discloses that the invention extends to all services, not merely specialized services. The

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 10 of 25

patent specification states that “Examples of specific services include but are not limited to CRM
(Customer Relation Management) tools, Accounting, and Inventory” (’814 Patent at 7:16-51);
other examples in the specification include the remote login service “ssh” (id. at 10:49-50), and an
“accounting/payroll service” (id. at 16:11-16). None of these are necessarily “specialized.”

“provided by network servers”: This phrase is confusing at best. “Servers” is a claim term,
and the existing claim language recites a specific relationship between servers, containers,
applications, and services.

“comprised of one or more applications”: Setting aside the nonstandard usage “comprised
of,” this phrase confuses the claimed relationship between applications and services. The claim
recites that each container comprises one or more executable applications, that the applications are
“related to a service,” and that the applications “each include an object executable... for
performing a task related to the service.” 814 Patent cl. 1. It is the container, not the service, that
comprises applications.

E. “container” (’814 claims 1, 2, 4, 6, 9, 10, 13, 14)

Plaintiff’s Proposed Defendant’s Proposed Construction
Construction

An aggregate of files required | An aggregate of files required to successfully execute a set
to successfully execute a set of | of software applications on a computing platform is referred
software applications on a to as a container. A container is not a physical container
computing platform. Each but a grouping of associated files, which may be stored in
container for use on a server is | a plurality of different locations that is to be accessible to,
mutually exclusive of the other | and for execution on, one or more servers. Each container
containers, such that read/write | for use on a server is mutually exclusive of the other

files within a container cannot containers, such that read/write files within a container

be shared with other containers. | cannot be shared with other containers; or above and 2:32-
42

The *814 Patent specification includes a broad explanation of how a “container” fits within
the context of the claimed invention. Although described as a “definition,” in substance the

patentee provided an encyclopedia entry, which cannot reasonably be interpreted as pure

10

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 11 of 25

lexicography, and which would serve only to confuse the jury by substituting a single word in a
claim with nearly 100 words of redundant examples of how containers may be implemented.
Indeed, Google itself omits entire sentences from the supposed “definition” set forth in the
specification, confirming that a POSITA would not understand the entirety of its discussion of
“container” to be lexicography.

Nor could Google have shown that the “exacting” standard for lexicography is met. “To
act as its own lexicographer, a patentee must ‘clearly set forth a definition of the disputed claim
term’ other than its plain and ordinary meaning.” Thorner v. Sony Computer Ent. Am. LLC, 669
F.3d 1362, 1365 (Fed. Cir. 2012). And “[t]he standard for disavowal of claim scope is similarly
exacting. /d. The fact that high bar for lexicography is not met here is confirmed not only by the
non-definitional nature of the specification’s discussion of a “container,” but also by the fact that
two different defendants attempt to apply the alleged “lexicography” in completely different ways.

In particular, the Amazon defendants apply the alleged “lexicography” of the specification
to provide a substantially different proposed “definition” of “container.” VirtaMove Corp. vs.
Amazon.com, Inc, et al., Case No. 7:24-cv-00030-DC-DTG, Dkt. No. 71 at 5-6 (W.D. Tex. Oct.
22, 2024). The only overlap between Google’s and Amazon’s proposed constructions is the first
sentence “An aggregate of files...” and the sentence “Each container for use on a server is mutually
exclusive....” Id. These disagreements confirm that the entire specification’s explanation of
containers need not be part of the construction of “container” Regardless of how the Court
construes “container,” Plaintiff requests that the Court enter identical constructions in both the
Google and Amazon actions. Plaintiff believes that the plain and ordinary meaning of “container”
applies and is generally consistent with the only two sentences that both Google and Amazon have

both proposed as being definitional.

11

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 12 of 25

Google also argues that, without construction, “container” could include ‘“operating
systems, kernels, or, by its terms, any files that are collectively needed to run any set of applications
on a computer. Dkt. 63 at 10. That is textually false. Claim 1 expressly recites “the containers of
application software excluding a kernel,” which specifically prevents identifying either a kernel

or an operating system (which, by definition, includes a kernel) as the claimed “container.” *814

Patent cl. 1.
F. “at least some of the different operating systems/at least some of the plurality
of different operating systems” (’814 claim 1)
“memory accessible to at least some of the servers” (814 claim 1)
Term Plaintiff’s Proposed Defendant’s Proposed
Construction Construction
At least some of the No construction necessary; at least two or more of the
different operating plain and ordinary meaning. different operating systems / at
systems/At least some of least two or more of the
the plurality of different plurality of different operating
operating systems systems
Memory accessible to at | memory that at least some of memory that at least two or
least some of the servers | the servers can read from or more of the servers can read
write to from or write to

Google’s own dictionary definition of the pronoun “some” confirms its plain and ordinary
meaning as “an indefinite quantity or indefinite number of people or things.” Dkt. 63-7 at 6.
“Indefinite quantity” does not mean “a quantity of two or more.” Furthermore, the same dictionary
entry, under the adjectival sense of the word, confirms that “some” modifies “a person or persons
not specified” or “one or several of a number of unspecified alternatives,” expressly confirming
the basic understanding that “some” means “one or more,” not “two or more.” /d.

Rejecting the plain and ordinary meaning of “some,” Google seeks to limit the claim scope
to “two or more.” This narrowing is unsupported. Google seizes on a statement in the specification

that the invention beneficially allows portability between platforms. Dkt. 63 at 11 (quoting *814

12

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 13 of 25

Patent at 1:65-2:3). But it is black-letter law that “not every benefit flowing from an invention is a
claim limitation.” i4i Ltd. v. Microsoft Corp., 598 F.3d 831, 843 (Fed. Cir. 2010). And specifically,
statements in the specification “touting the benefits of the invention” cannot limit the claim scope
unless they “provide a definition or constitute a clear and unmistakable disclaimer.” Provisur
Techs., Inc. v. Weber, Inc., No. 2021-1851, 2022 WL 17688071, at *3 (Fed. Cir. Dec. 15, 2022).
Google does not contend, and cannot show, that the specification excerpt provides a definition of
“some” or constitutes clear and unmistakable disclaimer.

G. “local kernel residing permanently on one of the servers” (814 cl. 1)

Plaintiff’s Proposed Construction Defendant’s Proposed Construction

No construction necessary; plain and ordinary | local kernel in one of the server’s memory
meaning. that is not lost when power is removed from it

Again, here Google seeks to add extraneous words and concepts that are not present in the
claim language or specification. Google’s repeated reference to “the intrinsic evidence” merely
highlights that Google does not and cannot identify any actual intrinsic support for its construction.
See Dkt. 63 at 12-13 (no citations to the patent, file history, etc.). Google does not even use a
dictionary definition of “permanent,” instead making up an attorney-drafted pseudo-definition
without either intrinsic or extrinsic support (“persistent or nonvolatile memory”, id. at 13) and then
looking to unrelated dictionary definitions to shore up its creativity. The concept of removing
power from a server’s memory appears nowhere in the patent claims or specification; nor do the
terms or concepts “volatile” and “nonvolatile.” The claims do not recite any “server’s memory”’;
is Google referring to the claimed “memory accessible to at least some of the servers”? If not,
Google is apparently inserting a new structural limitation. “Permanent” is a plain and ordinary

word used in its plain and ordinary sense, and it does not need redefinition.

13

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 14 of 25

Moreover, Google’s definition potentially requires some prediction about what will happen
when “power is removed” from a system, with no guidance as to how the power is removed or
under what circumstances. As Google’s own evidence shows, a POSITA would generally know

the difference between “permanent” and “temporary” storage, such that the plain meaning of

“permanently residing” should be applied.

H. “secure containers of application software” (814 claim 1)

Plaintiff’s Proposed Construction

Defendant’s Proposed Construction

Containers where each application set
appears to have individual control of some
critical system resources and/or where data
within each application set is insulated from
effects of other application sets

environments where each application set
appears to have individual control of some
critical system resources and/or where data
within each application set is insulated from
effects of other application sets

The phrase “secure containers of application software” provides the antecedent basis for
all appearances of “container” throughout the claims. Google demands to replace the word
“container” with “environment.” But “container” is also itself a claim term that Google is asking
the Court to construe. If a “secure container” is not a “container,” then the Court should not
construe “container” at all; and if the Court construes “container,” it should not remove that word
from the claim.

Google’s appeal to lexicography does not require the Court to introduce a new textual
inconsistency into the claim. The parties agree on the substance of the lexicography, i.e., the
patent’s description about control of resources and insulation from the effects of other containers.
And in context, a “secure application container” is certainly a type of “container.” The patentee
defined a “secure application container” as a particular type of environment, i.e., an environment
where application sets have certain relationships. This simply confirms that a secure application
container is a fype of environment, consistent with the rest of the specification and claim language;

it does not mean that a secure application container is not a container. Consider a counterfactual

14

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 15 of 25

definition of “secure operating system” as “software where security breaches are prevented.”
Clearly “software” is broader than “operating system,” but that does not mean that a “secure
operating system” can be satisfied by software that is not an operating system.

I. “an operating system’s root file system” (814 claim 1)

Plaintiff’s Proposed Construction Defendant’s Proposed Construction

No construction necessary; plain and ordinary | Indefinite
meaning.

The claim recites “In a system having a plurality of servers with operating systems that
differ... each of the containers ha[ving] a unique root file system that is different than an operating
system’s root file system.” As VirtaMove explained during the meet and confer with Google, this
term only has one possible meaning—it means that the root file system of each container must be
different than each operating system’s root file system.

This is the only plausible interpretation of the claim language because a POSITA would
readily understand that each operating system has a different root file system. For example, five
different operating systems might have root file systems “A,” “B,” C,” “D,” and “E,” respectively.
If we ask whether a given container has a root file system different from any of those root file
systems A-E, the answer will always be “yes.” For example, if the container had root file system
“A,” it would be different from root file systems B-E. Likewise, if the container had root file
system “E,” it would be different from root file systems A-D. And if the container had root file
system “F,” it would be different from root file systems A-E.

A POSITA would readily understand, in context, that if a container’s unique root file
system is the same as an operating system’s root file system” (i.e., it is the same as any operating
system’s root file system), that container’s root file system is not “different from an operating

system’s root file system.” This is the only way to give meaning to this limitation. For example,

15

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 16 of 25

Google does not allege that the claims identify a single operating system’s root file system that
must be examined. And Google cannot dispute that if a container’s root file system had to be
different from “at least one” of an operating system’s root file system, then that limitation would
always be satisfied. Accordingly, this claim term is not indefinite. If the Court believes a
construction is necessary, it should be construed to mean “each of the containers has a unique root
file system that is not the same as any operating system’s root file system.”

1. U.S. Patent No. 7,784,058

A. “critical system elements” (claim 1)

Plaintiff’s Proposed Construction Defendant’s Proposed Construction

Any service or part of a service, “normally” supplied | Indefinite
by an operating system, that is critical to the operation
of a software application.

Contrasting with Google’s other “lexicography” proposals, the ’058 Patent does provide
an unambiguous definition of the phrase “critical system element[s],” stating what a CSE is rather
than providing examples or embodiments. There are two elements: that the CSE is “‘normally’
supplied by an operating system” and that it is “critical to the operation of a software application.”

Regarding “normal,” the patent specification provides further context, explaining: “It is
traditionally the task of an operating system to provide mechanisms to safely and effectively
control access to shared resources. In some instances the centralized control of elements, critical
to software applications, hereafter called critical system elements (CSEs)[,] creates a limitation
caused by conflicts for shared resources.” 058 Patent at 1:22-27. This illustrates the conventional
arrangement wherein CSEs are “normally” provided by an operating system (i.e., they are provided
by the operating system if the structure of the operating system is not modified beyond its default
operation). The specification also provides contrasting examples of the “invention,” consistent

with the claims, where “some system elements that are critical to the operation of a software

16

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 17 of 25

application are replicated from kernel mode, into user mode.... These system elements are
contained in a shared library.” Id. at 9:15-19 (emphasis added). The specification parallels the
claim requirements and confirms that the OSCSEs recited in limitation 1(b) generally correspond
to the operation of a conventional system (where the operating system provides the critical system
elements), whereas the SLCSEs of limitation 1(c) generally correspond to a non-conventional
aspect of the claimed invention (where the critical system elements are stored in a shared library,
outside of the operating system).

Second, Google’s attack on the word “critical” fails. Google provides no evidence on this
point. The Court should look to the text of the patent specification itself, the intrinsic evidence that
is the best guide to the patent’s meaning. See, e.g., Phillips v. AWH Corp., 415 F.3d 1303, 1319
(Fed. Cir. 2005) (extrinsic evidence, such as expert reports, “is unlikely to result in a reliable
interpretation of patent claim scope unless considered in the context of the intrinsic evidence.”);
OSRAM GmbH v. Int'l Trade Comm’n, 505 F.3d 1351, 1356 (Fed.Cir.2007) (“The patent
specification is the primary resource for determining how an invention would be understood by
persons experienced in the field.”).

The ’058 Patent provides numerous examples of critical system elements, more than
sufficient to illustrate what elements are “critical.” First, the specification discusses “a TCP/IP
stack,” which a POSITA would readily recognize as the core network protocols used for Internet
communication. *058 Patent at 5:41-53. The TCP/IP stack is plainly critical to any application that
uses Internet communication. The next examples are additional network services, “including
TCP/IP, Bluetooth, ATM; or message passing protocols.” Id. at 6:11-13. The specification goes
on to provide specific examples of CSEs that represent extensions or optimizations to file system

or network functionalities, such as services to “[a]ccess files that reside in different locations” and

17

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 18 of 25

network optimizations including “[m]Jodified protocol processing for custom hardware services.”
Id. at 6:14-28. In each case, software designed to rely on these services plainly would not function
in its intended manner without them.

All of this intrinsic evidence guides a POSITA’s understanding of what services are
“critical” and confirms the definiteness of the claim scope. Google points to no evidence that any
other understanding of “critical” would even be considered by a POSITA in the context of the 058
Patent and the above-cited intrinsic evidence. At the very least, Google’s failure even to mention
this evidence confirms that Google cannot prove indefiniteness by clear and convincing evidence,
as required.

B. “shared library” (claim 1)

Plaintiff’s Proposed Construction Defendants’ Proposed Construction
An application library occupying a code space | An application library code space shared
shared among all user mode applications, among all user mode applications. The code
which is different than the code space space is different than that occupied by the
occupied by the kernel and its associated files | kernel and its associated files. The shared
and is accessible to multiple applications. library files are placed in an address space
In the alternative: An application library that is accessible to multiple applications.

whose code space is shared among all user
mode applications.

The term “shared library” appears throughout the specification and claims of the *058
Patent. It has a plain and ordinary meaning that is confirmed by the claim context and by the
specification. For example, the patent specification makes clear that “code space” refers to where
a library is located, not to the library itself. See, e.g., 058 Patent at 3:39-45 (“the same set of
instructions in the same physical memory space, that is, shared code space...”); id. at 6:54-55
(“Static library: An application whose code space is contained in a single application”); id. at 7:3-
5 (“[W]hat is commonly done is to provide an application library in shared code space, which

multiple applications can access.”). This usage, which reflects the plain and ordinary meaning of

18

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 19 of 25

“code space” to a POSITA, contradicts the notion that a shared library is defined as “an application
library code space” as Google requests.

There is a simple explanation for the confusing construction, though: the patent applicant
obviously introduced a pair of typographical errors into the definition of “Shared library.” The
original version of this definition, in the provisional application to which the *058 Patent claims
priority, is shorter: “An application library whose code space is shared among all user mode
applications.” Ex. 1 (Provisional Patent Application No. 60/504,213) at 9. That definition cleanly
flowed from the definition of “Application library” above it, and paralleled the definition of “Static
library” below it, confirming that the key difference between a shared library and a static library

is whether the code space is contained in a single application or shared among applications:

Application library: A collection of functions in an archive
format that is combined with an application to export system

elements.

Shared library: An application library whose code space is

shared among all user mode applications.

Static library: An application library whose code space is

contained in a single application.

1d.

When the applicant revised the provisional specification to form the non-provisional
application, additional detail was added to the definition, but the words “whose” and “is” were
removed. Those words were not deleted from the definition of “Static library,” which retains the
same definition in the final specification. The new language includes “The code space is different

than that occupied by the kernel,” confirming that “code space” is a space occupied by code, not

code itself. This confirms that the deletion of “whose” was unintentional, and that the correct

19

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 20 of 25

interpretation should retain the original language of the provisional. A POSITA reading the
specification would readily understand that this is the correct interpretation.

In the co-pending action against the Amazon defendants, VirtaMove has proposed “An
application library whose code space is shared among all user mode applications” for this term.
For consistency across the two actions, VirtaMove proposes the same construction here. This
construction more accurately reflects the intended lexicography, as described above. Therefore, if
the extent the Court believes construction is necessary, the correct definition without the
typographical errors should be included: “An application library whose code space is shared
among all user mode applications.”

The other sentences requested by Google are both duplicative of existing claim limitations.
Claim 1 already requires the shared library to be “in user mode,” as distinguished from “kernel
mode.” And both the claim context and the first sentence of the lexicography already require the
shared library to be accessible by multiple applications. Although these sentences are redundant,
VirtaMove has proposed a compromise proposal that adapts them to the claim scope.

C. “some of the SLCSEs stored in the shared library....are accessible to some of

the plurality of software applications / accessed by one or more of the plurality
of software applications it” (‘058 cl. 1)

Plaintiff’s Proposed Construction

Defendants’ Proposed Construction

Plain and ordinary meaning. In the
alternative: wherein some of the plurality of
the software applications can use SLCSEs
stored in the shared library/used by one or
more of the plurality of software applications

wherein two or more of the plurality of the
software applications can read SLCSEs
stored in the shared library/read by one or
more of the plurality of software applications

As to “some” vs. “two or more,” Google is wrong for the same reasons discussed above in

section L.F above. Also, here Google does not even attempt to show intrinsic support for its “two

or more” construction.

20

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 21 of 25

As to “read/read,” Google again entirely ignores the intrinsic record, providing no citations
to the 058 Patent and instead substituting attorney characterization and commercial dictionary
definitions. Equating “access” with merely reading memory would render numerous portions of
the 058 Patent specification, and even the claims, nonsensical. For example, claims 4 and 9 both
recite different ways to “access” services provided by the operating system, either “using system
calls” or using “a function overlay.” The specification provides an exemplary embodiment of
accessing services using system calls at 8:46-53. There is no suggestion that accessing services
means reading the services from memory. Likewise, the specification provides an exemplary
embodiment of accessing services using a function overlay at 8:62-9:13. This embodiment also
uses function calls and operating system functionalities for substituting libraries, not just memory
reads, for access. In either case, a narrow interpretation of “access” to exclusively mean reading
memory is contrary to both plain meaning and the specification.

Furthermore, the description of a preferred embodiment expressly describes that, in the
case where a SLCSEs is a “replica” or “substantial functional equivalent” of a kernel function, it
“can be directly called by the applications 42 and as such can be run in the same context as the
applications 42.” Id. at 8:28-36. This directly corresponds to the disputed claim limitation 1(c)(i),
which claims “some of the SLCSEs stored in the shared library are functional replicas of OSCSEs
and are accessible to some of the plurality of software applications.” This passage confirms that
“accessing” can be performed not only by reading, but also by calling or by running.

VirtaMove’s proposed construction “use” more accurately captures the plain and ordinary
meaning of “access” as used in the specification. VirtaMove also believes that the original claim

language, “are accessible to” / “accessed by,” is readily understandable both to a POSITA and to

21

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 22 of 25

a jury, and construing the term as “plain and ordinary meaning” would also resolve the parties’
dispute by rejecting Google’s request to narrow the scope of the claim to “read.”

D. “functional replicas of OSCSEs” (claim 1)

Plaintiff’s Proposed Construction Defendant’s Proposed Construction

Substantial functional equivalents or Indefinite
replacements of kernel functions

Google argues that “replica” has a lexicographic definition, i.e. “a CSE having similar
attributes to, but not necessarily and preferably not an exact copy of a CSE in the operating system
(OS),” and that definition is indefinite as a term of degree because of the words “substantial” and
“similar.” Dkt. 63 at 18-19. This argument fails at both steps.

The Federal Circuit has explained that “[b]ecause language is limited, we have rejected the
proposition that claims involving terms of degree are inherently indefinite.” Sonix Tech. Co. v.
Publications Int’l, Ltd., 844 F.3d 1370, 1377 (Fed. Cir. 2017). “Thus, a patentee need not define
his invention with mathematical precision in order to comply with the definiteness requirement.”
Id. (internal quotation marks omitted). “Claim language employing terms of degree has long been
found definite where it provided enough certainty to one of skill in the art when read in the context
of the invention.” Interval Licensing LLC v. AOL, Inc., 766 F.3d 1364, 1370 (Fed. Cir. 2014). In
determining whether the patent has provided sufficient guidance for a term of degree, a reviewing
court should “look to the written description for guidance.” /d. at 1371.

First, Google’s focus on a single sentence from the patent specification ignores the claim
context and the full disclosure of the patent specification. In particular, the claim term is
“functional replica,” not “replica.” Even if the generic description of “replica” were indefinite (it

is not), the limitation to functional replicas provides important clarification.

22

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 23 of 25

The specification contains an additional description of the scope of “the term replica”
specifically in the context of functional replicas: “The CSE library includes replicas or substantial
functional equivalents or replacements of kernel functions. The term replica, shall encompass any
of these meanings, and although not a preferred embodiment, may even be a copy of a CSE that is
part of the OS.” 058 Patent at 8:27-32; see also id. at 9:52-56 (“The term replication means that
like services are supplied [i.e., that] essentially a same functionality is provided.”). These sentences
explicitly state what scope is “encompass[ed]” by “the term replica™: (1) substantial functional
equivalents of kernel functions; (2) replacements of kernel functions; and (3) copies of OSCSEs
(i.e., kernel functions). Of these three categories, “substantial functional equivalents” is logically
the broadest, since either a replacement or a copy of a kernel function/OSCSE would necessarily
also be functionally equivalent.

Accordingly, the phrase “functional replica” does not require mere similarity, but rather (at
a minimum) “substantial functional equivalen[ce].” 058 Patent at 8:27-32. Google’s suggestion
that determining substantial functional equivalence of two CSEs is indefinite fails. Juries are
regularly required to determine functional equivalence in the context of the Doctrine of
Equivalents or in the context of 35 U.S.C. § 112, 9 6. As to “substantial,” Google provides no
evidence or explanation whatsoever why “substantial” is indefinite here, other than generic and
inapposite case citations. It is Google’s burden to prove indefiniteness by clear and convincing

evidence, and Google has completely failed to meet that burden as to “substantial.”

Dated: November 12, 2024 Respectfully submitted,

/s/ Reza Mirzaie

Reza Mirzaie

CA State Bar No. 246953
Marc A. Fenster

23

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 24 of 25

CA State Bar No. 181067
Neil A. Rubin

CA State Bar No. 250761
Amy E. Hayden

CA State Bar No. 287026
Jacob R. Buczko

CA State Bar No. 269408
James S. Tsuei

CA State Bar No. 285530
James A. Milkey

CA State Bar No. 281283
Christian W. Conkle

CA State Bar No. 306374
Jonathan Ma

CA State Bar No. 312773
Daniel Kolko

CA State Bar No. 341680
RUSS AUGUST & KABAT
12424 Wilshire Boulevard, 12th Floor
Los Angeles, CA 90025
Telephone: 310-826-7474
Email: rmirzaie@raklaw.com
Email: mfenster@raklaw.com
Email: nrubin@raklaw.com
Email: ahayden@raklaw.com
Email: jbuczko@raklaw.com
Email: jtsuei@raklaw.com
Email: jmilkey@raklaw.com
Email: cconkle@raklaw.com
Email: jma@raklaw.com
Email: dkolko@raklaw.com

Qi (Peter) Tong

4925 Greenville Ave., Suite 200
Dallas, TX 75206

Email: ptong@raklaw.com

ATTORNEYS FOR PLAINTIFF
VIRTAMOVE, CORP.

24

Case 7:24-cv-00033-DC-DTG Document 65 Filed 11/12/24 Page 25 of 25

CERTIFICATE OF SERVICE

I certify that this document is being served upon counsel of record for Defendants on

November 12, 2024 via electronic service.

/s/ Christian W. Conkle

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 1 of 32

Exhibit 1

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 2 of 32

22/60

£0/

— “ . -
5 W .
= g
===
= Please type a plus sign (+) inside this box =———+ PTO/SB/16 (8-00)
== Approved for use through10/31/2002. OMB 06510032
—— U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
== W Under the Paperwork Reduction Act of 1895, no persons are required to respond to a collection of information unless it displays a valid OMB control number.
——
—— —
=23 PROVISIONAL APPLICATION FOR PATENT COVER SHEET e =
=0 This is a request for filing a PROVISIONAL APPLICATION FOR PATENT und r 37 CFR 1.53(c). “'2 = @
3 =0
v INVENTOR(S) qg =
Residence uw _%‘1
Given Name (first and middle {if any]) Family Name or Sumame (City and either State or Foreign Country) BE___U‘
Donn Rochette Fenton, lowa, USA o =0
Dean Huffman Kanata, Ontario, Canada -
Paul O'Leary Kanata, Ontario, Canada

D Additional inventors are being named on the

separately numbered sheets attached hereto

TITLE OF THE INVENTION (280 characters max)

USER MODE CRITICAL SYSTEM ELEMENTS AS SHARED LIBRARIES

Direct all correspondence to:

CORRESPONDENCE ADDRESS

& Customer Number

000293

———p

Piace Customer Number
Bar Code Label here

m'.

OR Type Customer Number here
Firm or
Individual Name
Address
}-Address
City State ZIpP
Country Telephone| Fax

ENCLOSED APPLICATION PARTS (check all that apply)

fotiow
~/«7 -

g Specification Number of Pages

& Drawing(s) Number of Sheets
[] Aplication Data Sheet. See 37 CFR 1.76

[2z]
[e]

D CD(s), Number

D Other (specify)

L]

/Y-

X
O

METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one)
Applicant claims small entity status. See 37 CFR 1.27.
A check or money order is enclosed to cover the filing fees

The Commissioner is hereby authorized to charge filing r| 04-1577 J
fees or credit any overpayment to Deposit Account Numbe 3

Payment by credit card. Form PTO-2038 is attached.

FILING FEE
AMOUNT ($)

$80.00

United States Government.

No.

D Yes, the name of the U.S. Government agency and the Government contract number are;

The invention was made by an agency of the United States Government or under a contract with an agency of the

eWE(8) _S. /. /(€10

The PTO did

)
-— s A
Respectfully submittegy 4
SIGNATURE

TYPED or PRINTED NAME Ralph A. Dowell

TELEPHONE

(703) 415-2555

Date 09/17/03
REGISTRATION NO. | 26,868 |
(if appropriate)
Docket Number: l / y 4 s/ /y Ro J

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional
application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including
gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any
comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief
Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR
COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C.

P19SMALL/REVOS

Voo

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 3 of 32

50357-3
-1 -

USER MODE CRITICAL SYSTEM ELEMENTS AS SHARED LIBRARIES

Field of the Invention

The invention relates to computer software, and more
specifically to software that affects and extends services

exported through application libraries.

Background of the Invention

Computer systems are designed in such a way that
software application programs share common resources. It is
traditionally the task of the operating system to provide
mechanisms to safely and effectively control access to shared

resources.

In some cases the centralized control of elements
critical to software applications creates a limitation caused
by conflicts for shared resources. Two software applications
that require the same file, yet each require a different
version of the file will conflict. 1In the same manner two
applications that require independent access to specific
network services will conflict. The common solution to these
situations is to place software applications that may

potentially conflict on separate compute platforms.

Current state of the art defines two architectural
approaches to the migration of system elements from an
operating system into an application context. In one
architectural approach, a single server operating system places
critical system elements in the same process. Despite the
flexibility offered, the system elements continue to represent
a centralized control point. In the other architectural
approach, a multiple server operating system places critical

system elements in separate processes. While offering even

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 4 of 32

-

50357-3
-2 -

greater options this architecture has suffered performance and

operational differences.
Summary of the Invention

In accordance with a first broad aspect, the
invention provides a computing architecture that has an
operating system kernel having critical system elements and
adapted to run in kernel mode; and a shared library adapted to
store replicas of at least some of the critical system
elements, for use by the software applications in user mode
executing in the context of the application. The critical

system elements are run in a context of a software application.

In some embodiments, the computing architecture has
application libraries accessible by the software applications

and augmented by the shared library.

In some embodiments, the critical system elements are

left in the operating system kernel.

In some embodiments, the critical system elements use

system calls to access services in the operating system kernel.

In some embodiments, the operating system kernel has
a kernel module adapted to serve as an interface between a
service in the context of an application program and a device

driver.

In some embodiments, the critical system elements in
the context of an application program use system calls to

access services in the kernel module.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 5 of 32

50357-3
- 3 -

In some embodiments, the kernel module is adapted to provide a
notification of an interruption to a service in the context of

an application program.

In some embodiments, the operating system kernel is
adapted to provide interrupt handling capabilities to user mode

CSEs.

In some embodiments, the interrupt handling

capabilities are initialized through a system call.

In some embodiments, the kernel module comprises a

handler which is installed for a specific device interrupt.

In some embodiments, the handler is called when an

interrupt request is generated by a hardware device.

In some embodiments, the handler notifies the service
in the context of an application through the use of an up call

mechanism.

In some embodiments, function overlays are used to
intercept software application accesses to operating system

services.

In some embodiments, the operating system kernel is

enabled when the software application is loaded into memory.

In some embodiments, the critical system elements
stored in the shared library are linked to the software

applications as the software applications are loaded.

In some embodiments, in a native form the critical

system elements rely on kernel services supplied by the

10

15

20

25

Case 7:24-cv-00033-DC-DTG . Document 65-1 Filed 11/12/24 Page 6 of 32
50357-3

operating system kernel for device access, interrupt delivery,

and virtual memory mapping.

In scme embodiments, the kernel services are
replicated in user mode and contained in the shared library

with the critical system elements.

In some embodiments, the kernel services comprise

memory allocation, synchronization and device access.

In some embodiments, the kernel services that are

platform specific are not replicated.

In some embodiments, the kernel services which are
platform specific are called by a critical system element

running in user mode.

In some embodiments, a user process running under the
computing architecture has a respective one of the software
applications, the application libraries, the shared library and
the critical system elements all of which are operating in user

mode.

In some embodiments, the software applications are
provided with respective versions of the critical system

elements.

In some embodiments, the system elements which are
application specific reside in user mode, while the system
elements which are platform specific reside in the operating

system kernel.

In some embodiments, a control code is placed in

kernel mode.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 7 of 32

50357-3
5

In some embodiments, the kernel module is adapted to
enable data exchange between the critical service elements in

user mode and a device driver in kernel mode.

In some embodiments, the data exchange uses mapping
of virtual memory such that data is transferred both from the
critical service elements in user mode to the device driver in
kernel mode and from the device driver in kernel mode to the

critical service elements in user mode.

In some embodiments, the kernel module is adapted to

export services for device interface.

In some embodiments, the export services comprise
initialization to establish a channel between a critical system
element of the critical system elements in user mode and a

device.

In some embodiments, the export services comprise
transfer of data from a critical system element of the critical
system elements in user mode to a device managed by the

operating system kernel.

In some embodiments, the export services include
transfer of data from a device to a critical system element of

the critical system elements in user mode.

According to a second broad aspect, the invention
provides an operating system comprising the above computing

architecture.

According to a third broad aspect, the invention
provides a computing platform comprising the above operating
system and computing hardware capable of running under the

operating system.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 8 of 32

50357-3
- 6 -

According to a fourth broad aspect, the invention
provides a shared library accessible to software applications
in a user mode, the shared library being adapted to store
system elements which are replicas of systems elements of an
operating system kernel and which are critical to the software

applications.

According to a fifth broad aspect, the invention
provides an operating system kernel having systems elements and
adapted to run in a kernel mode and to replicate, for storing
in a shared library which is accessible by software
applications in user mode, system elements of the system

elements which are critical to the software applications.

According to a sixth broad aspect, the invention
provides an article of manufacture comprising a computer usable
medium having computer readable program code means embodied
therein for a computing architecture. The computer readable
code means in said article of manufacture has computer readable
code means for running an operating system kernel having
critical system elements in kernel mode; and computer readable
code means for storing in a shared library replicas of at least
some of the critical system elements, for use by software
applications in user mode. The critical system elements are

run in a context of a software application.

Accordingly, elements critical to a software
application are migrated from centralized control in an

operating system into the same context as the application.

Advantageously, the invention allows specific
operating system services to efficiently operate in the same

context as a software application.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 9 of 32

50357-3
-7 -

Critical system elements normally embodied in an
operating system are exported to software applications through
shared libraries. The shared library services provided in an
operating system are used to expose these additional system

elements.
Brief Description of the Drawings

Preferred embodiments of the invention will now be

described with reference to the attached drawings in which:

Figure 1 is an architectural view of the traditional

monolithic operating system;

Figure 2 is an architectural view of a multi-server
operating system in which some critical system elements are
removed from the operating system kernel and are placed in

multiple distinct processes or servers;

Figure 3 1is an architectural view of an embodiment of

the invention;

Figure 4 is a functional view showing how critical

system elements exist in the same context as an application;

Figure 5 is a block diagram showing a kernel module

provided by an embodiment of the invention; and

Figure 6 shows how interrupt handling occurs in an

embodiment of the invention.

Detailed Description of the Preferred Embodiments

Embodiments of the invention enable the replication

of critical system elements normally found in an operating

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 10 of 32
50357-3

system kernel to run in the context of a software application.
Critical system elements are replicated through the use of
shared libraries. Replication implies that system elements are
not replaced from an operating system, rather they become

separate extensions accessed through shared libraries.

By way of introduction, a number of terms will now be

defined.

‘Critical System Element (CSE): Any service or part of a

service, normally supplied by an operating system, that is

critical to the operation of a software application.

Compute platform: The combination of computer hardware and a

single instance of an operating system.

User mode: The context in which applications execute.
Kernel mode: The context in which the kernel portion of an
operating system executes. 1In conventional systems, there is a

physical separation enforced by hardware between user mode and

kernel mode. Application code cannot run in kernel mode.

Application Programming Interface (API): An API refers to the
operating system and programming language specific functions
used by applications. These are typically supplied in
libraries which applications link with either when the
application is created or when the application is loaded by the
operating system. The interfaces are described by header files
provided with an operating system distribution. In practice,
system APIs are used by applications to access operating system

services.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 11 of 32

50357-3
- 9 -

Application library: A collection of functions in an archive
format that is combined with an application to export system

elements.

Shared library: An application library whose code space 1is

shared among all user mode applications.

Static library: An application library whose code space is

contained in a single application.

Kernel module: A set of functions that reside and execute in
kernel mode as extensions to the operating system kernel. It
is common in most systems to include kernel modules which

provide extensions to the existing operating system kernel.

Up call mechanism: A means by which a service in kernel mode
calls a function in a user mode application context. It is
common to provide an up call mechanism within an operating

system kernel.

Figure 1 shows a conventional architecture where
critical system elements execute in kernel mode. Critical
system elements are contained in the operating system kernel.
Applications access system elements through application

libraries.

In order for an application of Figure 1 to make use
of a critical system element in the kernel, the application
makes a call to the application libraries. It is impractical

to write applications which handle CPU specific/operating

specific issues directly. As such, what is commonly done is to

provide an application library in shared code space which
multiple applications can access. This provides a platform
independent interface where applications can access critical

system elements. When the application makes a call to a

10

15

20

25

30

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 12 of 32

50357-3
- 10 -

critical system element through the application library, a
system call may be used to transition from user mode to kernel
mode. The application stops running as the hardware enters
kernel mode. The operating system kernel then provides the
required functionality. It is noted that each oval in Figure 1
represents a different context. There are two application
contexts in the illustrated example and the operating system

context is not shown as an oval but also has its own context.

Figure 2 shows a system architecture where critical
system elements execute in user mode but in a distinct context
from applications. Some critical system elements are removed
from the operating system kernel. They reside in multiple
distinct processes or servers as discussed in United States
Provisional Patent Application entitled “Drag & Drop
Application Management” which is incorporated herein by
reference. The servers that export critical system elements
execute in a context distinct from the operating system kernel
and applications. These servers operate at a peer level with
respect to other applications. Applications access system
elements through application libraries. The libraries in this
case communicate with multiple servers in order to access
critical system elements. Thus in the illustrated example,
there are two application contexts and two critical system
element contexts. When an application needs to make use of a
critical system element which is being run in user mode, a
rather convoluted sequence of events must take place.
Typically the application first makes a platform independent
call to the application library. The application library in
turn makes a call to the operating system kernel. The
operating system kernel then schedules the server with the
critical system element in a different user mode context.
After the server completes the operation, a switch back to

kernel mode is made which then responds back to the application

10

15

20

25

30

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 13 of 32

50357-3
- 11 -

through the application library. Due to this architecture,
such implementations may result in poor performance. Ideally,
an application which runs on the system of Figure 1 should be
able to run on the system of Figure 2 as well. However, in
practice it is difficult to maintain the same characteristics

and performance using such an architecture.

The invention is contrasted with both of these
architectures in that critical system elements are not isolated
in the operating system kernel in the case of a monolithic
architecture (Figure 1), also they are not removed from the
context of an application as is the case with a multi-server
architecture (Figure 2). Rather they are replicated and

embodied in the context of an application.

Figure 3 shows an architectural view of the overall
operation of the invention. Multiple user processes execute
above a single instance of an operating system. Software
applications utilize shared libraries as is done in United
States Provisional Patent Application entitled “SOFTWARE SYSTEM
FOR CONTAINERIZATION OF APPLICATION SETS” which is incorporated
herein by reference. The standard libraries are augmented by
an extension which contains critical system elements. Extended
services are similar to those that appear in the context of the

operating system kernel.

Figure 4 shows functionality above the operating
system kernel all of which is run in user mode while the
operating system kernel itself runs in kernel mode. The user
mode functionality includes the user applications, the standard
application libraries, and a new extended shared library
provided by an embodiment of the invention. The extended
shared library includes replicas of kernel functions. These

functions can be directly called by the applications and as

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 14 of 32

50357-3
- 12 -

such can be run in the same context as the applications. In
preferred embodiments, the kernel functions which are included
in the extended shared library are also included in the
operating system kernel. Furthermore, there might be different
versions of a given critical system element forming part of the
extended shared library with different applications accessing

these different versions within their respective context.

In preferred embodiments, the platform specific
aspects of the critical system element are left in the
operating system kernel, for example certain system calls.
Then the critical system elements which are included in the
extended shared library may still make use of the operating

system kernel to implement these platform specific functions.

Figure 5 represents the function of the kernel module
(described in more detail below). A critical system element in
the context of an application program uses system calls to
access services in the kernel module. The kernel module serves
as an interface between a service in the application context
and a device driver. Specific device interrupts are vectored
to the kernel module. A service in the context of an

application is notified of an interrupt by the kernel module.

Figure 6 represents interrupt handling. Interrupt
handling is initialized through a system call. A handler
contained in the kernel module is installed for a specific
device interrupt. When an interrupt request is generated by a
hardware device the handler contained in the kernel module will
be called. The handler notifies a service in the context of an

application through the use of an up call mechanism.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 15 of 32

50357-3
- 13 -

Function Overlays

A function overlay occurs when the implementation of
a function that would normally be called is replaced such that
an extension or replacement function is called instead. The
invention uses function overlays to intercept software
application accesses to operating system services. The overlay
is accomplished by use of an ability supplied by the operating
system to allow a library to be preloaded before other
libraries are loaded. Such an ability is used to cause the
loading process (performed by the operating system) to link the
application to a library extension supplied by the invention

rather than to the library that would otherwise be used.

The functions overlaid by the invention serve as
extensions to operating system services. When a function is
overlaid in this manner it enables the service defined by the
API to be exported in an alternate manner than that provided by

the operating system in kernel mode.
Critical System Elements

According - to the invention, some system elements that
are critical to the operation of a software application are
replicated from kernel mode, by the operating system, into user

mode in the same context as that of the application.

These system elements are contained in a shared
library. As such they are linked to a software application as
the application is loaded. Figure 3 shows that an extension

library is utilized.

In its native form, as it exists in the operating
system kernel, a CSE uses services supplied by the operating.

system kernel. In order for the CSE to be migrated to user

10

15

20

25

30

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 16 of 32

50357-3
- 14 -

mode and operate effectively, the services that the CSE uses
from the operating system kernel are replicated in user mode
and contained in the shared library with the CSE itself.
Services of the type referred to here include, but are not
limited to, memory allocation, synchronization and device
access. Preferably, as discussed above, platform specific
services are not replicated, but rather are left in the
operating system kernel. These will then be called by the

critical system element running in user mode.

Figure 4 shows that the invention allows for critical
system elements to exist in the same context as an application.
These services exported by library extensions do not replace
those provided in an operating system kernel. Thus, in Figure
4 the user process is shown to include the application itself,
the regular application library, the extended library and the
critical system element all of which are operating in user
mode. The operating system kernel is also shown to include
critical system elements. In preferred embodiments, the
critical system elements which are included in user mode are
replicas of elements which are still included in the operating

system kernel.

As discussed previously, different applications may
be provided with their own versions of the critical system
elements. Advantageously, this can make it appear that
multiple applications running on a given platform have their
own operating system. However in reality, there is only one
operating system with application specific components in user
mode, and with non-application specific components only
residing in the kernel mode. It is noted that this allows
different applications running on a given platform to operate
in secure separation without clashing for resources and without

versioning problems of libraries. Previous attempts to address

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 17 of 32

50357-3
- 15 -

this problem have included building hardware that is capable of
running multiple versions of an operating system, and building
a virtual machine in software which effectively allows each
service to have its own operating system, but in software. The
new solution provided by this embodiment of the invention
yields the same benefits of these two other solutions, but

without the requirement from multiple operating systems.

Kernel module

In some embodiments, control code is placed in kernel
mode as shown in Figure 4. Figure 5 shows that a kernel module

is used to augment device access and interrupt notification.

As a device interface the kernel module enables data
exchange between a user mode CSE and a device driver in kernel
mode. The exchange uses mapping of virtual memory such that

data is transferred in both directions without a copy.

Services exported for device interface typically

include:
©® Initialization. Establish a channel between a CSE in user
mode and a specific device. Informs the interrupt service

that this CSE requires notification.

©® Write data. Transfer data from a CSE to a device. User mode
virtual addresses are converted to kernel mode virtual

addresses.

©® Read data. Transfer data from a device to a CSE. Kernel

mode data is mapped into virtual addresses in user mode.

During initialization, interrupt services are

informed that for specific interrupts, they should call a

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 18 of 32

50357-3
- 16 -

handler in the kernel module. The kernel module handles the

interrupt by making an up call to the critical system element.

Interrupts related to a device being serviced by a
CSE in user mode are extended such that notification is given

to the CSE in use.

As shown in Figure 6 a handler is installed in the
path of an interrupt. The handler uses an up call mechanism to

inform the affected services in user mode.

A user mode service enables interrupt notification

through the use of an initialization function.

The general system configuration of the present
invention discloses one possible implementation of the

invention.

In some embodiments, the 'C' programming language is

used but other languages can alternatively be employed.

Function overlays have been implemented through
application library pre-load. A library supplied with the
invention is loaded before the standard libraries, using
standard services supplied by the operating system. This
allows specific functions (APIs) used by an application to be

overlaid or intercepted by services supplied by the invention.

Access from a user mode CSE to the kernel module, for
device I/O and registration of interrupt notification, is
implemented by allowing the application to access the kernel
module through standard device interfaces defined by the
operating system. The kernel module is installed as a normal

device driver. Once installed applications are able to open a

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 19 of 32

50357-3
- 17 -

device that corresponds to the module allowing effective

communication as with any other device or file operation.

Numerous modifications and variations of the present
invention are possible in light of the above teachings. It is
therefore to be understood that within the scope of the
appended claims, the invention may be practiced otherwise than

as specifically described herein.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 20 of 32

50357-3
- 18 -
WE CLAIM:
1. A computing architecture comprising:

an operating system kernel having critical system

elements and adapted to run in kernel mode; and

a shared library adapted to store replicas of at
least some of the critical system elements, for use by software

applications in user mode;

wherein the critical system elements are run in a

context of a software application.

2. A computing architecture according to claim 1
comprising application libraries accessible by the software

applications and augmented by the shared library.

3. A computing architecture according to claim 1 wherein
the critical system elements are left in the operating system

kernel.

4. A computing architecture according to claim 1 wherein
the critical system elements use system calls to access

services in the operating system kernel.

5. A computing architecture according to claim 1 wherein
the operating system kernel comprises a kernel module adapted
to serve as an interface between a service in the context of an

application program and a device driver.

6. A computing architecture according to claim 5 wherein
the critical system elements in the context of an application
program use system calls to access services in the kernel

module.

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 21 of 32

50357-3
- 19 -

7. A computing architecture according to claim 5 or 6
wherein the kernel module is adapted to provide a notification
of an interruption to a service in the context of an

application program.

8. A computing architecture according to any one of
claims 5 to 7 wherein the operating system kernel is adapted to

provide interrupt handling capabilities to user mode CSEs.

9. A computing architecture according to claim 8 wherein
the interrupt handling capabilities are initialized through a

system call.

10. A A computing architecture according to claim 9 wherein
the kernel module comprises a handler which is installed for a

specific device interrupt.

11. A computing architecture according to claim 10
wherein the handler is called when an interrupt request is

generated by a hardware device.

12. A computing architecture according to claim 11
wherein the handler notifies the service in the context of an

application through the use of an up call mechanism.

13. A computing architecture according to any one of
claims 1 to 12 wherein function overlays are used to intercept

software application accesses to operating system services.

14. A computing architecture according to any one of
claims 1 to 13 wherein the critical system elements stored in
the shared library are linked to the software applications as

the software applications are loaded.

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 22 of 32

50357-3
- 20 -

15. A computing architecture according to any one of
claims 1 to 14 wherein in a native form the critical system
elements rely on kernel services supplied by the operating
system kernel for device access, interrupt delivery, and

virtual memory mapping.

"16. A computing architecture according to claim 15
wherein the kernel services are replicated in user mode and
contained in the shared library with the critical system

elements.

17. A computing architecture according to claim 15 or 16
wherein the kernel services comprise memory allocation,

synchronization and device access.

18. A computing architecture according to any one of
claims 15 to 17 wherein the kernel services that are platform

specific are not replicated.

19. A computing architecture according to claim 18
wherein the kernel services which are platform specific are

called by a critical system element running in user mode.

20. A computing architecture according to claim 2 wherein
a user process running under the computing architecture
comprises a respective one of the software applications, the
application libraries, the shared library and the critical

system elements all of which are operating in user mode.

21. A computing architecture according to any one of
claims 1 to 20 wherein the software applications are provided

with respective versions of the critical system elements.

22. A computing architecture according to claim 21

wherein the system elements which are application specific

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 23 of 32

50357-3
- 21 -

reside in user mode, while the system elements which are

platform specific reside in the operating system kernel.

23. A computing architecture according to any one of

claims 1 to 22 wherein a control code is placed in kernel mode.

24. A computing architecture according to claim 5 wherein
the kernel module is adapted to enable data exchange between
the critical service elements in user mode and a device driver

in kernel mode.

25. A computing architecture according to claim 24
wherein the data exchange uses mapping of virtual memory such
that data is transferred both from the critical service
elements in user mode to the device driver in kernel mode and
from the device driver in kernel mode to the critical service

elements in user mode.

26. A computing architecture according to claim 24 or 25
wherein the kernel module is adapted to export services for

device interface.

27. A computing architecture according to claim 26
wherein the export services comprise initialization to
establish a channel between a critical system element of the

critical system elements in user mode and a device.

28. A computing architecture according to claim 26
wherein the export services comprise transfer of data from a
critical system element of the critical system elements in user

mode to a device managed by the operating system kernel.

29. A computing architecture according to claim 26

wherein the export services comprise transfer of data from a

10

15

20

25

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 24 of 32

50357-3
- 22 -

device to a critical system element of the critical system

elements in user mode.

30. A operating system comprising the computing

architecture of any one of claims 1 to 29.

31. A computing platform comprising the operating system
of claim 30 and computing hardware capable of running under the

operating system.

32. A computing architecture according to any one of

Figure 1 to 3.

33. A shared library accessible to software applications
in a user mode, the shared library being adapted to store
system elements which are replicas of systems elements of an
operating system kernel and which are critical to the software

applications.

34. An operating system kernel having systems elements
and adapted to run in a kernel mode and to replicate, for
storing in a shared library which is accessible by software
applications in user mode, system elements of the system

elements which are critical to the software applications.

35. A computing architecture according to claim 13
wherein the operating system kernel is enabled when the

software application is loaded into memory.
36. An article of manufacture comprising:

a computer usable medium having computer readable
program code means embodied therein for a computing
architecture, the computer readable code means in said article

of manufacture comprising:

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 25 of 32

50357-3
- 23 -

computer readable code means for running an operating
system kernel having critical system elements in kernel mode;

and

computer readable code means for storing in a shared
library replicas of at least some of the critical system

elements, for use by software applications in user mode;

wherein the critical system elements are run in a

context of a software application.

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 26 of 32

1/6

APPLICATION. APPLICATION

APPLICATION LIBRARIES

CRITICAL SYSTEM OPERATING SYSTEM
ELEMENTS KERNEL

COMPUTER H/W

FIG. 1

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 27 of 32

2/6

o) G @D @
A\ O |

3: @/ APPI\CATION LIBRARIES

ol / & /O

l / v /
OPERATING SYSTEM KERNEL

COMPUTER H/W

FIG. 2

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 28 of 32

3/6
USER PROCESS APPLICATION) (APPLICATION
APPLICATION LIBRARIES EXTENDED SHARED LIBRARIES
OPERATING SYSTEM KERNEL
COMPUTER H/W

FI1G. 3

ce

«

il

LY

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 29 of 32

4/6

USER | APPLICATION
PROCESS

EXTENDED

APPLICATION LIBRARY
LIBRARY

CRITICAL
SYSTEM
ELEMENTS

CRITICAL SYSTEM KERNEL OPERATING SYSTEM
ELEMENTS MODULE KERNEL -
COMPUTER H/W

FI1G. 4

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 30 of 32

5/6

APPLICATION

CRITICAL
SYSTEM
ELEMENTS

A

1

A
SYSTEM KERNEL
CALLS MODULE
‘ OPERATING SYSTEM
KERNEL

INTERRUPTS DEVICES

_ i v

A
COMPUTER H/W

FIG. S

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 31 of 32

6/6

APPLICATION

CRITICAL
SYSTEM
ELEMENTS

A

“SYSTEM KERNEL
CALLS - MODULE
T | OPERATING SYSTEM
| KERNEL
INTERRUPTS

COMPUTER HIW

FIG. 6

Case 7:24-cv-00033-DC-DTG Document 65-1 Filed 11/12/24 Page 32 of 32

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

09/25/2003 EFLORES 00000027 60504213
01 FC:2005 80.00 0P

PTO-1556
(5/87)

*U'S. Govemment Printing Office: 2002 — 489-267/69033

	65
	65-1
	293_60504213_09-22-2003_Transmittal of New Application
	293_60504213_09-22-2003_Specification
	293_60504213_09-22-2003_Claims
	293_60504213_09-22-2003_Drawings-only black and white line drawings
	293_60504213_09-22-2003_Fee Worksheet (SB06)

