
204 THE DATA LINK LAYER CHAP. 3

network layer in the same order that they were passed to the data link layer on the
sending machine. Nor have we changed the requirement that the physical com­
munication channel is "wire-like," that is, it must deliver all frames in the order
sent.

The sequence numbers within the sender's window represent frames sent but
as yet not acknowledged. Whenever a new packet arrives from the network layer,
it is given the next highest sequence number, and the upper edge of the window is
advanced by one. When an acknowledgement comes in, the lower edge is
advanced by one. In this way the window continuously maintains a list of unack­
nowledged frames.

Seodec ,ffi 1 ,ffi 1 ,ffi 1 '07 o . 1

sV 2 sV 2 sV 2 s . 2
4 3 4 3 4 3 4 3

Receiver

,ffi, ,ffi , '07 0

1 6
~

1

sV 2 sV 2 s . 2 sy 2
4 3 4 3 4 3 4 3

(a) (b) (c) (d)

Fig. 3-12. A sliding window of size 1, with a 3-bit sequence number.
(a) Initially. (b) After the first frame has been sent. (c) After the first frame has
been received. (d) After the first acknowledgement has been received.

Since frames currently within the sender's window may ultimately be lost or
damaged in transit, the sender must keep all these frames in its memory for possi­
ble retransmission. Thus if the maximum window size is n, the sender needs n
buffers to hold the unacknowledged frames. If the window ever grows to its max­
imum size, the sending data link layer must forcibly shut off the network layer
until another buff er becomes free.

The receiving data link layer's window corresponds to the frames it may
accept. Any frame falling outside the window is discarded without comment.
When a frame whose sequence number is equal to the lower edge of the window
is received, it is passed to the network layer, an acknowledgement is generated,
and the window is rotated by one. Unlike the sender's window, the receiver's

SEC. 3.4 SLIDING WINDOW PROTOCOLS 205

I* Protocol 4 (sliding window) is bidirectional and is more robust than protocol. 3. *I
#define MA)LSEQ 1 /* must be 1 for protocol 4 */
typedef enulTi {frame_arrival, cksum_err, timeout} evenUype;
#include "protocol.h"

void protocol4 (void)
{

seq_nr nexLframe_to_send;
seq_nr frame_expected;
framer, s;
packet buffer;
evenUype event;

nexUrame_to_send = O;
frame_expected = O;
from_network_layer(&buffer);
s.info = buffer;
s.seq = nexUrame_to_send;
s.ack = 1 - frame_expected;
to_physicaUayer(&s);
starUimer(s.seq);

while (true) {

I* 0 or 1 only */
I* 0 or 1 only */
I* scratch variables *I
I* current packet being sent *I

I* next frame on the outbound stream *I
I* number of frame arriving frame expected *I
I* fetch a packet from the network layer *I
I* prepare to send the initial frame *I
I* insert sequence number into frame *I
I* piggybacked ack *I
f* transmit the frame *I
I* start the timer running *I

waiLfor_event(&event); I* frame_arrival, cksum_err, or timeout *I
if (event== frame_arrival) {/*a frame has arrived undamaged. *I

}

from_physicaUayer(&r); I* go get it *I

if (r.seq == frame_expected) {

}

I* Handle inbound frame stream. */
to_network_layer(&r.info); I* pass packet to network layer *I
inc(frame_expected); f* invert sequence number expected next *I

if (r.ack == nexUrame_to_send) {/*handle outbound frame stream. *I
from_networlLlayer(&buffer); I* fetch new pkt from network layer *I
inc(nexLframe_to_send); I* invert sender's sequence number *I

s.info = buffer; I* construct outbound frame *I
s.seq = nexUrame_to_send;
s.ack = 1 - frame_expected;
to_physicaUayer(&s);
starUimer(s.seq);

I* insert sequence number into it *I
I* seq number of last received frame *I
I* transmit a frame *I
I* start the timer running *I

}
}

Fig. 3-13. A 1-bit sliding window protocol.

206 THE DATA LINK LA YER CHAP. 3

window always remains at its initial size. Note that a window size of 1 means
that the data link layer only accepts frames in order, but for larger windows this is
not so. The network layer, in contrast, is always fed data in the proper order,
regardless of the data link layer's window size.

Figure 3-12 shows an example with a maximum window size of 1. Initially,
no frames are outstanding, so the lower and upper edges of the sender's window
are equal, but as time goes on, the situation progresses as shown.

3.4.1. A One Bit Sliding Window Protocol

Before tackling the general case, let us first examine a sliding window proto­
col with a maximum window size of 1. Such a protocol uses stop-and-wait, since
the sender transmits a frame and waits for its acknowledgement before sending
the next one.

Figure 3-13 depicts such a protocol. Like the others, it starts out by defining
some variables. Next_frame_to_send tells which frame the sender is trying to
send. Similarly, frame_expected tells which frame the receiver is expecting. In
both cases, 0 and 1 are the only possibilities.

Normally, one of the two data link layers goes first. In other words, only one
of the data link layer programs should contain the to_physicaLlayer and
start_timer procedure calls outside the main loop. In the event both data link
layers start off simultaneously, a peculiar situation arises, which is discussed later.
The starting machine fetches the first packet from its network layer, builds a
frame from it, and sends it. When this (or any) frame arrives, the receiving data
link layer checks to see if it is a duplicate, just as in protocol 3. If the frame is the
one expected, it is passed to the network layer and the receiver's window is slid
up.

The acknowledgement field contains the number of the last frame received
without error. If this number agrees with the sequence number of the frame the
sender is trying to send, the sender knows it is done with the frame stored in
buffer and can fetch the next packet from its network layer. If the sequence
number disagrees, it must continue trying to send the same frame. Whenever a
frame is received, a frame is also sent back.

Now let us examine protocol 4 to see how resilient it is to pathological
scenarios. Assume that A is trying to send its frame O to B and that B is trying to
send its frame Oto A. Suppose that A sends a frame to B, but A's timeout interval
is a little too short. Consequently, A may time out repeatedly, sending a series of
identical frames, all with seq = 0 and ack = l.

When the first valid frame arrives at B, it will be accepted, and
frame_expected will be set to 1. All the subsequent frames will be rejected,
because B is now expecting frames with sequence number 1, not 0. Furthermore,
since all the duplicates have ack = l and B is still waiting for an acknowledge­
ment of 0, B will not fetch a new packet from its network layer.

SEC. 3.4 SLIDING WINDOW PROTOCOLS 207

After every rejected duplicate comes in, B sends A a frame containing seq = 0
and ack = 0. Eventually, one of these arrives correctly at A , causing A to begin
sending the next packet. No combination of lost frames or premature timeouts
can cause the protocol to deliver duplicate packets to either network layer, or to
skip a packet, or to get into a deadlock.

However, a peculiar situation arises if both sides simultaneously send an ini­
tial packet. This synchronization difficulty is illustrated by Fig. 3-14. In part (a),
the normal operation of the protocol is shown. In (b) the peculiarity is illustrated.
If B waits for A's first frame before sending one of its own, the sequence is as
shown in (a), and every frame is accepted. However, if A and B simultaneously
initiate communication, their first frames cross, and the data link layers then get
into situation (b). In (a) each frame arrival brings a new packet for the network
layer; there are no duplicates. In (b) half of the frames contain duplicates, even
though there are no transmission errors. Similar situations can occur as a result of
premature timeouts, even when one side clearly starts first. In fact, if multiple
premature timeouts occur, frames may be sent three or more times.

A sends (0, 1, AO) ------
8 gets (0, 1, AO)*

____- B sends (0, 0, BO)

A gets (0, 0, BO)*
A sends (1 , 0, A1)--

B gets (1, O, A1)*
-- Bsends(1 , 1, B1)

A gets (1, 1, 81)*
A sends (0, 1, A2)----

B gets (0, 1, A2)*
-- B sends (0, 0, 82)

A gets (0, o, 82)*
A sends (1 , 0, A3)----

B gets (1 , 0, A3)*
B sends (1 , 1, 83)

(a)
Time

A sends (0, 1, AO)// B gets (0, 1, BO)
B gets (0, 1, AO)*
B sends (0, o, BO)

A gets (0, 1, BO)*
A sends (0, 0, AO

A gets (0, 0, BO)~
A sends (1, 0, A1)

A gets (1 , O, 81)"
A sends (1, 1, A1)----

(b)

B gets (0, 0, AO)
B sends (1 , 0, 81)

B gets (1, O, A1)*
B sends (1 , 1, 81)

B gets (1 , 1, A 1)
B sends (0, 1, 82)

Fig. 3-14. Two scenarios for protocol 4. The notation is (seq, ack, packet
number). An asterisk indicates where a network layer accepts a packet.

3.4.2. A Protocol Using Go Back n

Until now we have made the tacit assumption that the transmission time
required for a frame to arrive at the receiver plus the transmission time for the
acknowledgement to come back is negligible. Sometimes this assumption is
clearly false. In these situations the long round-trip time can have important
implications for the efficiency of the bandwidth utilization. As an example,

208 THE DATA LINK LAYER CHAP. 3

consider a 50-kbps satellite channel with a 500-msec round-trip propagation
delay. Let us imagine trying to use protocol 4 to send 1000-bit frames via the
satellite. At t = 0 the sender starts sending the first frame. At t = 20 msec the
frame has been completely sent. Not until t = 270 msec has the frame fully
arrived at the receiver, and not until t = 520 msec has the acknowledgement
arrived back at the sender, under the best of circumstances (no waiting in the
receiver and a short acknowledgement frame). This means that the sender was
blocked during 500/520 or 96 percent of the time (i.e., only 4 percent of the avail­
able bandwidth was used). Clearly, the combination of a long transit time, high
bandwidth, and short frame length is disastrous in terms of efficiency.

Time---

(a)

(b)

Fig. 3-1S. (a) Effect of an error when the receiver window size is 1. (b) Effect
of an error when the receiver window size is large.

The problem described above can be viewed as a consequence of the rule
requiring a sender to wait for an acknowledgement before sending another frame.
If we relax that restriction, much better efficiency can be achieved. Basically the
solution lies in allowing the sender to transmit up to w frames before blocking,
instead of just 1. With an appropriate choice of w the sender will be able to

SEC. 3.4 SLIDING WINDOW PROTOCOLS 209

continuously transmit frames for a time equal to the round-trip transit time
without filling up the window. In the example above, w should be at least 26.
The sender begins sending frame Oas before. By the time it has finished sending
26 frames, at t = 520, the acknowledgement for frame 0 will have just arrived.
Thereafter, acknowledgements will arrive every 20 msec, so the sender always
gets permission to continue just when it needs it. At all times, 25 or 26 unack­
nowledged frames are outstanding. Put in other terms, the sender's maximum
window size is 26.

This technique is known as pipelining. If the channel capacity is b bits/sec,
the frame size l bits, and the round-trip propagation time R sec, the time required
to transmit a single frame is lib sec. After the last bit of a data frame has been
sent, there is a delay of R/2 before that bit arrives at the receiver, and another
delay of at least R/2 for the acknowledgement to come back, for a total delay of
R. In stop-and-wait the line is busy for lib and idle for R, giving a line utilization
of ll(l + bR). If l < bR the efficiency will be less than 50 percent. Since there is
always a nonzero delay for the acknowledgement to propagate back, in principle
pipelining can be used to keep the line busy during this interval, but if the interval
is small, the additional complexity is not worth the trouble.

Pipelining frames over an unreliable communication channel raises some seri­
ous issues. First, what happens if a frame in the middle of a long stream is dam­
aged or lost? Large numbers of succeeding frames will arrive at the receiver
before the sender even finds out that anything is wrong. When a damaged frame
arrives at the receiver, it obviously should be discarded, but what should the
receiver do with all the correct frames following it? Remember that the receiving
data link layer is obligated to hand packets to the network layer in sequence.

There are two basic approaches to dealing with errors in the presence of pipe­
lining. One way, called go back n, is for the receiver simply to discard all subse­
quent frames, sending no acknowledgements for the discarded frames . This strat­
egy corresponds to a receive window of size 1. In other words, the data link layer
refuses to accept any frame except the next one it must give to the network layer.
If the sender's window fills up before the timer runs out, the pipeline will begin to
empty. Eventually, the sender will time out and retransmit all unacknowledged
frames in order, starting with the damaged or lost one. This approach, shown in
Fig. 3-15(a) can waste a lot of bandwidth if the error rate is high.

The other general strategy for handling errors when frames are pipelined,
called selective repeat, is to have the receiving data link layer store all the correct
frames following the bad one. When the sender finally notices that something is
wrong, it just retransmits the one bad frame, not all its successors, as shown in
Fig. 3-15(b). If the second try succeeds, the receiving data link layer will now
have many correct frames in sequence, so they can all be handed off to the net­
work layer quickly and the highest number acknowledged.

This strategy corresponds to a receiver window larger than 1. Any frame
within the window may be accepted and buffered until all the preceding ones have

210 THE DATA LINK LA YER CHAP. 3

I* Protocol 5 (pipelining) allows multiple outstanding frames. The sender may transmit up
to MAX_SEQ frames without waiting for an ack. In addition, unlike the previous protocols,
the network layer is not assumed to have a new packet all the time. Instead, the
network layer causes a network_layer_ready event when there is a packet to send. *I

#define MAX_SEQ 7 I* should be 2An - 1 */
typedef enum {frame_arrival, cksum_err, timeout, networlLlayer_ready} evenUype;
#include "protocol.h"

static boolean between(seq_nr a, seq_nr b, seq_nr c)
{
I* Return true if (a <=b < c circularly; false otherwise. *I

}

if (((a<= b) && (b < c)) II ((c < a) && (a<= b)) II ((b < c) && (c < a)))
return(true);

else
return(false);

static void send_data(seq_m frame_nr, seq_nr frame_expected, packet buffer□)
{
I* Construct and send a data frame. *I

frames; I* scratch variable *I

s.info = buffer[frame_nr]; I* insert packet into frame *I
s.seq = frame_nr; I* insert sequence number into frame *I
s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1);/* piggyback ack *I
to_physicaUayer(&s); I* transmit the frame *I
starUimer(frame_nr); I* start the timer running */

}

void protocoI5(void)
{
seq_nr nexUrame_to_send;

seq_nr aclLexpected;
seq_nr frame_expected;
framer;
packet buffer[MAX_SEQ];
seq_nr nbuffered;
seq_nr i;
evenLtype event;

enable_network_layer();
aclLexpected = O;
nexUrame_to_send = O;
frame_expected = O;
nbuffered = O;

I* MAX_SEQ > 1; used for outbound stream *I
I* oldest frame as yet unacknowledged *I
I* next frame expected on inbound stream *I
I* scratch variable *I
I* buffers for the outbound stream *I
I* # output buffers currently in use */
I* used to index into the buffer array *I

I* allow network_layer_ready events *I
I* next ack expected inbound *I
I* next frame going out *I
I* number of frame expected inbound *I
I* initially no packets are buffered *I

SEC. 3.4 SLIDING WINDOW PROTOCOLS 211

while (true) {

}
}

waiUor _event(&event); I* four possibilities: see evenUype above *I

switch(event) {
case network__layer_ready: I* the network layer has a packet to send *I

I* Accept, save, and transmit a new frame. *I
from_network_layer(&buffer[nexLframe_to_send]) ; I* fetch new packet *I
nbuffered = nbuffered + 1; /* expand the sender's window *I
send_data(nexLframe_to_send, frame_expected, buffer);/* transmit the frame *I
inc(nexLframe_to_send); I* advance sender's upper window edge *I

case frame_arrival: I* a data or control frame has arrived *I
f rom_physicaLlayer(&r); I* get incoming frame from physical layer *I

if (r.seq == frame_expected) {
I* Frames are accepted only in order. */
to_network_layer(&r.info); I* p'ass packet to network layer *I
inc(frame_expected); I* advance lower edge of receiver's window *I

I* Ack n implies n - 1, n - 2, etc. Check for this. *I
while (between(ack__expected, r.ack, nexUrame_to_send)) {

I* Handle piggybacked ack. *I

}

nbuffered = nbuffered - 1; /* one frame fewer buffered *I
stop_timer(ack_expected); I* frame arrived intact; stop timer *I
inc(ack__expected); I* contract sender's window *I

case cksum_err: ; I* just ignore bad frames .*I

case timeout: I* trouble; retransmit all outstanding frames *I
nexUrame_to_send = act<__expected; I* start retransmitting here *I
for (i = 1; i <= nbuffered; i++) {

send_data(nexLframe_to_send, frame_expected, buffer);/* resend 1 frame *I
inc(nexUrame_to_send); I* prepare to send the next one *I

if (nbuffered < MAX_SEQ)
enable_network_layer();

else
disable_network_layer();

Fig. 3-16. A sliding window protocol using go back n.

212 THE DATA LINK LA YER CHAP. 3

been passed to the network layer. This approach can require large amounts of
data link layer memory if the window is large.

These two alternative approaches are trade-offs between bandwidth and data
link layer buff er space. Depending on which resource is more valuable, one or
the other can be used. Figure 3-16 shows a pipelining protocol in which the
receiving data link layer only accepts frames in order; frames following an error
are discarded. In this protocol, for the first time, we have now dropped the
assumption that the network layer always has an infinite supply of packets to
send. When the network layer has a packet it wants to send, it can cause a
network_layer _ready event to happen. However, in order to enforce the flow con­
trol rule of no more than MAX-5EQ unacknowledged frames outstanding at any
time, the data link layer must be able to prohibit the network layer from bothering
it with more work. The library procedures enable_network_layer and
disable_network_layer perform this function.

Note that a maximum of MAX-5EQ frames and not MAXSEQ + 1 frames
may be outstanding at any instant, even though there are MAX-5EQ + 1 distinct
sequence numbers: 0, 1, 2, ... , MAX-5EQ. To see why this restriction is
needed, consider the following scenario with MAX-5EQ = 7.

1. The sender sends frames O through 7.

2. A piggybacked acknowledgement for frame 7 eventually comes back
to the sender.

3. The sender sends another eight frames, again with sequence numbers
0 through 7.

4. Now another piggybacked acknowledgement for frame 7 comes in.

The question is: Did all eight frames belonging to the second batch arrive success­
fully, or did all eight get lost (counting discards following an error as lost)? In
both cases the receiver would be sending frame 7 as the acknowledgement. The
sender has no way of telling. For this reason the maximum number of outstanding
frames rriust be restricted to MAX-5EQ.

Although protocol 5 does not buffer the frames arriving after an error, it does
not escape the problem of buffering altogether. Since a sender may have to
retransmit all the unacknowledged frames at a future time, it must hang on to all
transmitted frames until it knows for sure that they have been accepted by the
receiver. When an acknowledgement comes in for frame n, frames n - 1, n - 2,
and so on, are also automatically acknowledged. This property is especially
important when some of the previous acknowledgement-bearing frames were lost
or garbled. Whenever any acknowledgement comes in, the data link layer checks
to see if any buffers can now be released. If buffers can be released (i.e., there is
some room available in the window), a previously blocked network layer can now
be allowed to cause more network_layer _ready events.

SEC. 3.4 SLIDING WINDOW PROTOCOLS 213

Because this protocol has multiple outstanding frames, it logically needs mul­
tiple timers, one per outstanding frame. Each frame times out independently of all
the other ones. All of these timers can easily be simulated in software, using a
single hardware clock that causes interrupts periodically. The pending timeouts
form a linked list, with each node of the list telling how many clock ticks until the
timer goes off, the frame being timed, and a pointer to the next node.

Real

/time

Pointer to next timeout

Frame being timed

Ticks to go

(a)

Fig. 3-17. Simulation of multiple timers in software.

(b)

As an illustration of how the timers could be implemented, consider the exam­
ple of Fig. 3-17. Assume that the clock ticks once every 100 msec. Initially the
real time is 10:00:00.0 and there are three timeouts pending, at 10:00:00.5,
10:00:01.3, and 10:00:01.9. Every time the hardware clock ticks, the real time is
updated and the tick counter at the head of the list is decremented. When the tick
counter becomes zero, a timeout is caused and the node removed from the list, as
shown in Fig. 3-17(b). Although this organization requires the list to be scanned
wheri start_Jimer or stop.Jimer is called, it does not require much work per tick.
In protocol 5, both of these routines have been given a parameter, indicating
which frame is to be timed.

3.4.3~ A Protocol Using Selective Repeat

Protocol 5 works well if errors are rare, but if the line is poor it wastes a lot of
bandwidth on retransmitted frames. An alternative strategy for handling errors is
to allow the receiver to accept and buffer the frames following a damaged or lost
one. Such a protocol does not discard frames merely because an earlier frame
was damaged or lost.

In this protocol, both sender and receiver maintain a window of acceptable
sequence numbers. The sender's window size starts out at 0 and grows to some
predefined maximum, MAJLSEQ. The receiver's window, in contrast, is always
fixed in size and equal to MAX...SEQ. The receiver has a buffer reserved for each

·'

214 THE DATA LINK LA YER CHAP. 3

sequence number within its window. Associated with each buffer is a bit
(arrived) telling whether the buffer is full or empty. Whenever a frame arrives,
its sequence number is checked by the function between to see if it falls within the
window. If so, and if it has not already been received, it is accepted and stored.
This action is taken without regard to whether or not it contains the next packet
expected by the network layer. Of course, it must be kept within the data link
layer and not passed to the network layer until all the lower numbered frames
have already been delivered to the network layer in the correct order. A protocol
using this algorithm is given in Fig. 3-18.

Nonsequential receive introduces certain problems not present in protocols in
which frames are only accepted in order. We can illustrate the trouble most easily
with an example. Suppose that we have a 3-bit sequence number, so that the
sender is permitted to transmit up to seven frames before being required to wait
for an acknowledgement. Initially the sender and receiver's windows are as
shown in Fig. 3-19(a). The sender now transmits frames 0 through 6. The
receiver's window allows it to accept any frame with sequence number between 0
and 6 inclusive. All seven frarries arrive correctly, so the receiver acknowledges
them and advance its window to allow receipt of 7, 0, 1, 2, 3, 4, or 5, as shown in
Fig. 3-19(b). All seven buffers are marked empty.

It is at this point that disaster strikes in the form of a lightning bolt hitting the
telephone pole and wiping out all the acknowledgements. The sender eventually
times out and retransmits frame 0. When this frame arrives at the receiver, a
check is made to see if it is within the receiver's window. Unfortunately, in
Fig. 3-19(b) frame 0 is within the new window, so it will be accepted. The
receiver sends a piggybacked acknowledgement for frame 6, since 0 through 6
have been received.

The sender is happy to learn that all its transmitted frames did actually arrive
correctly, so it advances its window and immediately sends frames 7, 0, 1, 2, 3, 4,
and 5. Frame 7 will be accepted by the receiver and its packet will be passed
directly to the network layer. Immediately thereafter, the receiving data link,layer
checks to see if it has a valid frame 0 already, discovers that it does, and passes
the embedded packet to the network layer. Consequently, the network layer gets
an incorrect packet, and the protocol fails.

The essence of the problem is that after the receiver advanced its window, the
new range of valid sequence numbers overlapped the old one. The following
batch of frames might be either duplicates (if all the acknowledgements were lost)
or new ones (if all the acknowledgements were received). The poor receiver has
no way of distinguishing these two cases.

The way out of this dilemma lies in making sure that after the receiver has
advanced its window, there is no overlap with the original window. To ensure
that there is no overlap, the maximum window size should be at most half the
range of the sequence numbers, as is done in Fig. 3-19(c) and Fig. 3-19(d). For
example, if 4 bits are used for sequence numbers, these will range from Oto 15.

-.

' .

SEC. 3.4 SLIDING WINDOW PROTOCOLS 215

Only eight unacknowledged frames should be outstanding at any instant. That
way, if the receiver has just accepted frames O through 7 and advanced its window
to permit acceptance of frames 8 through 15, it can unambiguously tell if subse­
quent frames are retransmissions (0 through 7) or new ones (8 through 15). In
general, the window size for protocol 6 will be (MAJLSEQ + 1)/2.

An interesting question is: How many buffers must the receiver have? Under
no conditions will it ever accept frames whose sequence numbers are below the
lower edge of the window or frames whose sequence numbers are above the upper
edge of the window. Consequently, the number of buffers needed is equal to the
window size, not the range of sequence numbers. In the above example of a 4-bit
sequence number, eight buffers, numbered O through 7, are needed. When frame i
arrives, it is put in buffer i mod 8. Notice that although i and (i + 8) mod 8 are
"competing" for the same buffer, they are never within the window at the same
time, because that would imply a window size of at least 9.

For the same reason, the number of timers needed is equal to the number of
buffers, not the size of the sequence space. Effectively, there is a timer associated
with each buffer. When the timer runs out, the contents of the buffer are
retransmitted.

In protocol 5, there is an implicit assumption that the channel is heavily
loaded. When a frame arrives, no acknowledgement is sent immediately. Instead,
the acknowledgement is piggybacked onto the next outgoing data frame. If the
reverse traffic is light, the acknowledgement will be held up for a long period of
time. If there is a lot of traffic in one direction and no traffic in the other direc­
tion, only MAX_SEQ packets are sent, and then the protocol blocks.

In protocol 6 this problem is fixed. After an in-sequence data frame arrives,
an auxiliary timer is started by start_.ack_timer. If no reverse traffic has presented
itself before this timer goes off, a separate acknowledgement frame is sent. An
interrupt due to the auxiliary timer is called an ack_timeout event. With this
arrangement, one-directional traffic flow is now possible, because the lack of
reverse data frames onto which acknowledgements can be piggybacked is no
longer an obstacle. Only one auxiliary timer ·exists, and if start_ack_timer is
called while the timer is running, it is reset to a full acknowledgement timeout
interval.

It is essential that the timeout associated with the auxiliary timer be appreci­
ably shorter than the timer used for timing out data frames. This condition i
required to make sure that the acknowledgement for a correctly received frame
arrives before the sender times out and retransmits the frame.

Protocol 6 uses a more efficient strategy than protocol 5 for dealing with
errors. Whenever the receiver has reason to suspect that an error has occurred, it
sends a negative acknowledgement (NAK) frame back to the sender. Such a frame
is a request for retransmission of the frame specified in the NAK. There are two
cases when the receiver should be suspicious: a damaged frame has arrived or a
frame other than the expected one arrived (potential lost frame). To avoid making

...

216 THE DATA LINK LA YER CHAP. 3

f* Protocol 6 (nonsequential receive) accepts frames out of order, but passes packets to the
network layer in order. Associated with each outstanding frame is a tjmer. When the timer
goes off, only that frame is retransmitted, not all the outstanding frames, as in protocol 5. *f

#define MAX_SEQ 7 f* should be 2·n - 1 *f
#define NR_BUFS ((MAX_SEQ + 1)/2)
typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready, ack .. Jirneout} evenLtype;
#include "protocol.h"
boolean no_nak = true; f* no nak has been sent yet *f

static boolean between(seq_nr a, seq_nr b, seq_nr c)
{
f* Same as between in protocol5, but shorter and more obscure. *f

return ((a<= b) && (b < c)) II ((c < a) && (a<= b)) II ((b < c) && (c < a)) ;
}

static void send_frame(frame_kind fk, seq_nr frame_nr, seq_nr frame_expected, packet buffer[])
{
f* Construct and send a data, ack, or nak frame. *I

frame s; f* scratch variable *f

s.kind = fk; f* kind == data, ack, or nak *f
if (fk == data) s.info = buffer[frarne_nr % NR_BUFS];
s.seq = frame_nr; f* only meaningful for data frames •/
s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1);
if (fk == nak) no_nak = false; /• one nak per frame, please •/
to_physicaLlayer(&s); /• transmit the frame *f
if (fk == data) starLtimer(frame_nr % NR_BUFS);
stop_ack .. Jimer(); f* no need for separate ack frame •/

}

void protocol6(void)
{

seq_nr ack_expected;
seq_nr nexUrame_to_send;
seq_nr frame_:_expected;
seq_nr too_far;
seq_nr oldesUrame;
inti;
framer;
packet ouLbuf[NR_BU FS];
packet in_buf[NR_BUFS];
boolean arrived[NR_BUFS];
seq_nr nbuffered;
evenLtype event;

enable_network_layer() ;
ack_expected = O;
nexUrame_to_send = O;
frame_expected = O;
too_far = NR_BUFS;
nbuffered = O;

for (i = O; i < NR_BUFS; i++) arrived[i] = false;

I

/• lower edge of sender's window •/
f* upper edge of sender's window + 1 •/
f* lower edge of receiver's window *f
/• upper edge of receiver's window + 1 *f
/• which frame timed out? •/
/• index into buffer pool •/
f* scratch variable •I
f* buffers for the outbound stream *f
/• buffers for the inbound stream •I
f* inbound bit map •/
/• how many output buffers currently used *f

/• initialize •/
f* next ack expected on the inbound stream *f
I* number of next outgoing frame *f

f* initially no packets are buffered *f

'.

'.

SEC. 3.4 SLIDING WINDOW PROTOCOLS 217

}

waiLfor_event(&event); f* five possibilities: see evenLtype above *f
switch(event) {

case networlLlayer_ready: f* accept, save, and transmit a new frame *f
nbuffered = nbuffered + 1; f* expand the window *f
from_network_layer(&out_buf[nexLframe_to_send % NR_BUFS]); f* fetch new packet *f
send_frame(data, nexLframe_to_send, frame_expected, ouLbuf};/* transmit the frame *f
inc(nexLframe_to_send); f* advance upper window edge *f

case frame_arrival:
from_physicaLlayer(&r);
if (r.kind == data) {

f* a data or control frame has arrived *f
f* fetch incoming frame from physical layer *f

}

f* An undamaged frame has arrived. *f
if ((r.seq != frame_expected} && no_nak)

send_frame(nak, 0, frame_expected, ouLbuf}; else starLaclLtimer();
if {between(frame_expected, r.seq, too_far) && (arrived[r.seq%NR_BUFS] == false)) {

f* Frames may be accepted in any order. *f
arrived[r.seq % NR_BUFS] = true; f* mark buffer as full *f
in_buf[r.seq % NR_BUFS] = r.info; f* insert data into buffer *f
while (arrived[frame_expected % NR_BUFS]) {

f* Pass frames and advance window. *f
to_network_layer(&in_buf[frame_expected % NR_BUFS]);
no_nak = true;
arrived[frame_expected % NR_BUFS] = false;
inc(frame_expected}; f* advance lower edge of receiver's window *f
inc(too_far); f* advance upper edge of receiver's window *f
starLaclLtimer(); f* to see if a separate ack is needed *f

if({r.kind==nak) && between(aclLexpected,(r.ack+ 1)%(MAX_SEQ+ 1),next_frame_to_send}}
send_frame(data, (r.ack+1) % (MAX_SEQ + 1), frame_expected, ouLbuf);

while {between(aclLexpected, r.ack, nexLframe_to_send)) {
nbuffered = nbuffered - 1; f* handle piggybacked ack *f
stop_timer(ack_expected % NR_BUFS); f* frame arrived intact *f
inc(ack_expected}; f* advance lower edge of sender's window *f

case cksum_err:
if (no_nak) sencUrame(nak, 0, frame_expected, ouLbuf);/* damaged frame *f

case timeout:
send_frame{data, oldesUrame, frame_expected, ouLbuf);/* we timed out *f

case aclLtimeout:
send_frame(ack,0,frame_expected, ouLbuf); f* ack timer expired; send ack *f

if (nbuffered < NR_BUFS) enable_networUayer(); else disable_network_layer();
}

Fig. 3-18. A sliding window protocol using selective repeat.

. ...

218 THE DATA LINK LAYER CHAP. 3

multiple requests for retransmission of the same lost frame, the receiver should
keep track of whether a NAK has already been sent for a given frame. The vari­
able noJ1ak in protocol 6 is true if no NAK has been sent yet for frame_expected.
If the NAK gets mangled or lost, no real harm is done, since the sender will even­
tually time out and retransmit the missing frame anyway. If the wrong frame
arrives after a NAK has been sent and lost, noJ1ak will be true and the auxiliary
timer will be started. When it goes off, an ACK will be sent to resynchronize the
sender to the receiver's current status.

Sender 1 o 1 2 3 4 5 617 1 o 1 2 3 4 5 617 8456 8 4567

Receiver I o 1 2 3 4 5 617 I o 1 2 3 4 5'61j 8456 0 1 238

(a) (b) (c) (d)

Fig. 3-19. (a) Initial situation with a window of size seven. (b) After seven
frames have been sent and received but not acknowledged. (c) Initial situation
with a window size of four. (d) After four frames have been sent and received
but not acknowledged.

In some situations, the time required for a frame to propagate to the destina­
tion, be processed there, and have the acknowledgement come back is (nearly)
constant. In these situations, the sender can adjust its timer to be just slightly
larger than the normal time interval expected between sending a frame and receiv­
ing its acknowledgement. However, if this time is highly variable, the sender is
faced with the choice of either setting the interval to a small value and risking
unnecessary retransmissions, thus wasting bandwidth, or setting it to a large value,
going idle for a long period after an error, thus also wasting bandwidth. If the
reverse traffic is sporadic, the time before acknowledgement will be irregular,
being shorter when there is reverse traffic and longer when there is not. Variable
processing time within the receiver can also be a problem here. In general, when­
ever the standard deviation of the acknowledgement interval is small compared to
the interval itself, the timer can be set "tight" and NAKs are not useful. Other­
wise, the timer must be set "loose," and NAKs can appreciably speed up
retransmission of lost or damaged frames.

Closely related to the matter of timeouts and NAKs is the question of deter­
mining which frame caused a timeout. In protocol 5 it is always ack_expected,
because it is always the oldest. In protocol 6, there is no trivial way to determine
who timed out. Suppose that frames O through 4 have been transmitted, meaning
that the list of outstanding frames is 01234, in order from oldest to youngest.
Now imagine that O times out, 5 (a new frame) is transmitted, 1 times out, 2 times

,-

·· ..

SEC. 3.4 SLIDING WINDOW PROTOCOLS 219

out, and 6 (another new frame) is transmitted. At this point the list of outstanding
frames is 3405126, from oldest to youngest. If all inbound traffic is lost for a
while, the seven outstanding frames will time out in that order. To keep the
example from getting even more complicated than it already is, we have not
shown the timer administration. Instead, we just assume that the variable
oldest_frame is set upon timeout to indicate which frame timed out.

3.5. PROTOCOL SPECIFICATION AND VERIFICATION

Realistic protocols, and the programs that implement them, are often quite
complicated. Consequently, much research has been done trying to find formal,
mathematical techniques for specifying and verifying protocols. In the following
sections we will look at some models and techniques. Although we are looking at
them in the context of the data link layer, they are also applicable to other layers.

3.5.1. Finite State Machine Models

A key concept used in many protocol models is the finite state machine.
With this technique, each protocol machine (i.e., sender or receiver) is always in
a specific state at every instant of time. Its state consists of all the values of its
variables, including the program counter.

In most cases, a large number of states can be grouped together for purposes
of analysis. For example, considering the receiver in protocol 3, we could
abstract out from all the possible states two important ones: waiting for frame O or
waiting for frame 1. All other states can be thought of as transient, just steps on
the way to one of the main states. Typically, the states are chosen to be those
instants that the protocol machine is waiting for the next event to happen [i.e.,
executing the procedure call wait(event) in our examples]. At this point the state
of the protocol machine is completely determined by the states of its variables.
The number of states is then 2n, where n is the number of bits needed to represent
all the variables combined.

The state of the comp~,ete system is the combination of all the states of the two
protocol machines and the channel. The state of the channel is determined by its
contents. Using protocol 3 again as an example, the channel has four possible
states: a zero frame or a one frame moving from sender to receiver, an acknowl­
edgement frame going the other way, or an empty channel. If we model the
sender and receiver as each having two states, the complete system has 16 distinct
states.

A word about the channel state is in order. The concept of a frame being "on
the channel" is an abstraction, of course. What we really mean is that a frame has
been partially transmitted, partially received, but not yet processed at the

220 THE DATA LINK LA YER CHAP. 3

destination. A frame remains "on the channel" until the protocol machine exe­
cutes FromPhysicalLa,yer and processes it.

From each state, there are zero or more possible transitions to other states.
Transitions occur when some event happens. For a protocol machine a transition
might occur when a frame is sent, when a frame arrives, when a timer goes off,
when an interrupt occurs, etc. For the channel, typical events are insertion of a
new frame onto the channel by a protocol machine, delivery of a frame to a proto­
col machine, or loss of a frame due to a noise burst. Given a complete description
of the protocol machines and the channel characteristics, it is possible to draw a
directed graph showing all the states as nodes and all the transitions as directed
arcs.

One particular state is designated as the initial state. This state corresponds
to the description of the system when it starts running, or some convenient starting
place shortly thereafter. From the initial state, some, perhaps all, of the other
states can be reached by a sequence of transitions. Using well-known techniques
from graph theory (e.g., computing the transitive closure of a graph), it is possible
to determine which states are reachable a:nd which are not. This technique is
called reachability analysis (Lin et al., 1987). This analysis can be helpful in
determining if a protocol is correct or not.

Formally, a finite state machine model of a protocol can be regarded as a qua­
druple (S, M, I, T) where:

S is the set of states the processes and channel can be in.

M is the set of frames that can be exchanged over the channel.

I is the set of initial states of the processes.

Tis the set of transitions between states.

At the beginning of time, all processes are in their initial states. Then events
begin to happen, such as frames becoming available for transmission or timers
going off. Each event may cause one of the processes or the channel to take an
action and switch to a new state. By carefully enumerating each possible succes­
sor to each state, one can build the reachability graph and analyze the protocol.

Reachability analysis can be used to detect a variety of errors in the protocol
specification. For example, if it is possible for a certain frame to occur in a cer­
tain state and the finite state machine does not say what action should be taken,
the specification is in error (incompleteness). If there exists a set of states from
which there is no exit and from which no progress can be made (correct frames
received), we have another error (deadlock). A less serious error is protocol
specification that tells how to handle an event in a state in which the event cannot
occur (extraneous transition). Other errors can also be detected.

As an example of a finite state machine model, consider Fig. 3-20(a). This
graph corresponds to protocol 3 as described above: each protocol machine has

SEC. 3.5 PROTOCOL SPECIFICATION AND VERIFICATION 221

two states and the channel has four states. A total of 16 states exist, not all of
them reachable from the initial one. The unreachable ones are not shown in the
figure. Each state is labeled by three characters, XfZ, where X is O or 1,
corresponding to the frame the sender is trying to send; Y is also O or 1,
corresponding to the frame the receiver expects, and Z is 0, 1, A, or empty (-),
corresponding to the state of the channel. In this example the initial state has been
chosen as (000). In other words, the sender has just sent frame 0, the receiver
expects frame 0, and frame O is currently on the channel.

0

8 (~
To

Who Frame Frame network

¥.
Transition runs? accepted emitted layer

0

- -- ---
(frame lost)

0 5

1 R 0 A Yes
2 s A 1

2 3 R 1 A Yes
3 4 s A 0

10A 5 R 0 A No

6/ 0 6 R 1 A No
0 7 s (timeout) 0

~
8 s (timeout) 1

8
(a) (b)

Fig. 3-20. (a) State diagram for protocol 3. (b) Transitions.

Nine kinds of transitions are shown in Fig. 3-20. Transition O consists of the
channel losing its contents. Transition 1 consists of the channel correctly deliver­
ing packet O to the receiver, with the receiver then changing its state to expect
frame 1 and emitting an acknowledgement. Transition 1 also corresponds to the
receiver delivering packet O to the network layer. The other transitions are listed
in Fig. 3-20(b). The arrival of a frame with a checksum error has not been shown
because it does not change the state (in protocol 3).

During normal operation, transitions 1, 2, 3, and 4 are repeated in order over
and over. In each cycle, two packets are delivered, bringing the sender back to
the initial state of trying to send a new frame with sequence number 0. If the
channel loses frame 0, it makes a transition from state (000) to state (00-). Even­
tually, the sender times out (transition 7) and the system moves back to (000).
The loss of an acknowledgement is more complicated, requiring two transitions, 7
and 5, or 8 and 6, to repair the damage.

One of the properties that a protocol with a 1-bit sequence number must have
is that no matter what sequence of events happens, the receiver never delivers two
odd packets without an intervening even packet, and vice versa. From the graph
of Fig. 3-20 we see that this requirement can be stated more formally as "there

222 THE DATA LINK LAYER CHAP. 3

must not exist any paths from the initial state on which two occurrences of transi­
tion 1 occur without an occurrence of transition 3 between them, or vice versa."
From the figure it can be seen that the protocol is correct in this respect.

Another, similar requirement is that there not be any paths on which the
serrder changes state twice (e.g., from 0 to 1 and back to 0) while the receiver
state remains constant. Were such a path to exist, then in the corresponding
sequence of events two frames would be irretrievably lost, without the receiver
noticing. The packet sequence delivered would have an undetected gap of two
packets in it.

Yet another important property of a protocol is the absence of deadlocks. A
deadlock is a situation in which the protocol can make no more forward progress
(i.e., deliver packets to the network layer) no matter what sequence of events hap­
pen. In terms of the graph model, a deadlock is characterized by the existence of
a subset of states that is reachable from the initial state and which has two proper­
ties:

1. There is no transition out of the subset.

2. There are no transitions in the subset that cause forward progress.

Once in the deadlock situation, the protocol remains there forever. Again, it is
easy to see from the graph that protocol 3 does not suffer from deadlocks.

Now let us consider a variation of protocol 3, one in which the half-duplex
channel is replaced by a full-duplex channel. In Fig. 3-21 we show the states as
the product of the states of the two protocol machines and the states of the two
channels. Note that the forward channel now has three states: frame 0, frame 1, or
empty, and the reverse channel has two states, A or empty. The transitions are the
same as in Fig. 3-20(b), except that when a data frame and an acknowledgement
are on the channel simultaneously, there is a slight peculiarity. The receiver can­
not remove the data frame by itself, because that would entail having two
acknowledgements on the channel at the same time, something not permitted in
our model (although it is easy to devise a model that does allow it). Similarly, the
sender cannot remove the acknowledgement, because that would entail emitting a
second data frame before the first had been accepted. Consequently, both events
must occur together, for example, the transition between state (000A) and state
(11 lA), labeled as 1 + 2 in the figure.

In Fig. 3-2l(a) there exist paths that cause the protocol to fail. In particular,
there are paths in which the sender repeatedly fetches new packets, even though
the previous ones have not been delivered correctly. The problem arises because
it is now possible for the sender to time out and send a new frame without disturb­
ing the acknowledgement on the reverse channel. When this acknowledgement
arrives, it will be mistakenly regarded as referring to the current transmission and
not the previous one.

One state sequence causing the protocol to fail is shown in Fig. 3-21(b). In

I

' .

SEC. 3.5 PROTOCOL SPECIFICATION AND VERIFICATION

2 4

3

0

1 + 2

3+4

(a)

(0 0 0 -), (0 1 - A), (0 1 0 A) , (1 1 1 A), (1 1 - A), (0 1 0 -), (0 1 - A), (1 1 1 -)

(b)

Fig. 3-21. (a) State graph for protocol 3 and a full-duplex channel.
(b) Sequence of states causing the protocol to fail.

223

2+5

the fourth and sixth states of this sequence, the sender changes state, indicating
that it fetches a new packet from the network layer, while the receiver does not
change state, that is, does not deliver any packets to the network layer.

3.5.2. Petri Net Models

The finite state machine is not the only technique for formally specifying pro­
tocols. In this section we will describe another technique, the Petri Net
(Danthine, 1980). A Petri net has four basic elements: places, transitions, arcs,
and tokens. A place represents a stat~ which (part of) the system may be in. Fig­
ure 3-22 shows a Petri net with two places, A and B, both shown as circles. The

I

224 THE DATA LINK LA YER CHAP. 3

system is currently in state A, indicated by the token (heavy dot) in place A. A
transition is indicated by a horizontal or vertical bar. Each transition has zero or
more input arcs, coming from its input places, and zero or more output arcs,
going to its output places.

Fig. 3-22. A Petri net with two places and two transitions.

A transition is enabled if there is at least one input token in each of its input
places. Any enabled transition may fire at will, removing one token from each
input place and depositing a token in each output place. If the number of input
arcs and output arcs differ, tokens will not be conserved. If two or more transi­
tions are enabled, any one of them may fire. The choice of a transition to fire is
indeterminate, which is why Petri nets are useful for modeling protocols. The
Petri net of Fig. 3-22 is deterministic and can be used to model any two-phase
process (e.g., the behavior of a baby: eat, sleep, eat, sleep, and so on). As with all
modeling tools, unnecessary detail is suppressed.

Figure 3-23 gives the Petri net model of Fig. 3-21. Unlike the finite state
machine model, there are no composite states here; the sender's state, channel
state, and receiver' s state are represented separately. Transitions 1 and 2
correspond to transmission of frame Oby the sender, normally, and on a timeout
respectively. Transitions 3 and 4 are analogous for frame 1. Transitions 5, 6, and
7 correspond to the loss of frame 0, an acknowledgement, and frame 1, respec­
tively. Transitions 8 and 9 occur when a data frame with the wrong sequence
number arrives at the receiver. Transitions 10 and 11 represent the arrival at the
receiver of the next frame in sequence and its delivery to the network layer.

Petri nets can be used to detect protocol failures in a way similar to the use of
finite state machines. For example, if some firing sequence included transition 10
twice without transition 11 intervening, the protocol would be incorrect. The con­
cept of a deadlock in a Petri net is also similar to its finite state machine counter­
part.

Petri nets can be represented in convenient algebraic form resembling a gram­
mar. Each transition contributes one rule to the grammar. Each rule specifies the
input and output places of the transition, for example, transition 1 in Fig. 3-23 is
BD ➔ AC. The current state of the Petri net is represented as an unordered col­
lection of places, each place represented in the collection as many times as it has
tokens. Any rule all of whose left-hand side places are present, can be fired,
removing those places from the current state, and adding its output places to the
current state. The marking of Fig. 3-23 is ACG, so rule 10 (CG ➔ DF) can be
applied but rule 3 (AD ➔ BE) cannot be applied.

' ·

SEC. 3.6

EmitO

Wait
for
AckO

Emit 1

Wait
for
Ack 1

Sender's
state

EXAMPLE DATA LINK PROTOCOLS

C: Seq O on the line
D: Ack on the line
E: Seq 1 on the line

Channel

Fig. 3-23. A Petri net model for protocol 3.

3.6. EXAMPLE DATA LINK PROTOCOLS

225

Process 0

Expect 1

11 Process 1

Receiver's
state

ExpectO

In the following sections we will examine several widely-used data link proto­
cols. The first one, HDLC, is common in X.25 and many other networks. After
that, we will examine data link protocols used in the Internet and A TM networks,
respectively. In subsequent chapters, we will also use the Internet and ATM as
running examples as well.

3.6.1. HDLC-High-level Data Link Control

In this section we will examine a group of closely related protocols that are a
bit old but are still heavily used in networks throughout the world. They are all
derived from the data link protocol used in IBM's SNA, called SDLC

226 THE DATA LINK LAYER CHAP. 3

(Synchronous Data Link Control protocol). After developing SDLC, IBM sub­
mitted it to ANSI and ISO for acceptance as U.S. and international standards,
respectively. ANSI modified it to become ADCCP (Advanced Data Communi­
cation Control Procedure), and ISO modified it to become HDLC (High-level
Data Link Control). CCITT then adopted and modified HDLC for its LAP
(Link Access Procedure) as part of the X.25 network interface standard but later
modified it again to LAPB, to make it more compatible with a later version of
HDLC. The nice thing about standards is that you have so many to choose from.
Furthermore, if you do not like any of them, you can just wait for next year's
model.

All of these protocols are based on the same principles. All are bit-oriented,
and all use bit stuffing for data transparency. They differ only in minor, but
nevertheless irritating, ways. The discussion of bit-oriented protocols that follows
is intended as a general introduction. For the specific details of any one protocol,
please consult the appropriate definition.

All the bit-oriented protocols use the frame structure shown in Fig. 3-24. The
Address field is primarily of importance on lines with multiple terminals, where it
is used to identify one of the terminals. For point-to-point lines, it is sometimes
used to distinguish commands from responses.

Bits 8 8 8 16 8

I O 1 1 1 1 1 1 O I Address Control Data Checksum O 1 1 1 1 1 1 O

Fig. 3-24. Frame format for bit-oriented protocols.

The Control field is used for sequence numbers, acknowledgements, and other
purposes, as discussed below.

The Data field may contain arbitrary information. It may be arbitrarily long,
although the efficiency of the checksum falls off with increasing frame length due
to the greater probability of multiple burst errors.

The Checksum field is a minor variation on the well-known cyclic redundancy
code, using CRC-CCITT as the generator polynomial. The variation is to allow
lost flag bytes to be detected.

The frame is delimited with another flag sequence (01111110). On idle
point-to-point lines, flag sequences are transmitted continuously. The minimum
frame contains three fields and totals 32 bits, excluding the flags on either end.

There are three kinds of frames: Information, Supervisory, and Unnum­
bered. The contents of the Control field for these three kinds are shown in
Fig. 3-25. The protocol uses a sliding window, with a 3-bit sequence number. Up
to seven unacknowledged frames may be outstanding at any instant. The Seq field
in Fig. 3-25(a) is the frame sequence number. The Next field is a piggybacked

: ..

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 227

acknowledgement. However, all the protocols adhere to the convention that
instead of piggybacking the number of the last frame received correctly, they use
the number of the first frame not received (i.e., the next frame expected). The
choice of using the last frame received or the next frame expected is arbitrary; it
does not matter which convention is used, provided that it is used consistently.

Bits 1 3 3

(a) I 0 Seq P/F Next

(b) I 0 Type P/F Next

(c) I 1 1 I Type P/F Modifier

Fig. 3-25. Control field of (a) an information frame, (b) a supervisory frame,
(c) an unnumbered frame.

The PIF bit stands for Poll/Final. It is used when a computer (or concentra­
tor) is polling a group of terminals. When used as P, the computer is inviting the
terminal to send data. All the frames sent by the terminal, except the final one,
have the PIF bit set to P. The final one is set to F.

In some of the protocols, the PIF bit is used to force the other machine to send
a Supervisory frame immediately rather than waiting for reverse traffic onto
which to piggyback the window information. The bit also has some minor uses in
connection with the Unnumbered frames.

The various kinds of Supervisory frames are distinguished by the Type field.
Type O is an acknowledgement frame (officially called RECEIVE READY) used to
indicate the next frame expected. This frame is used when there is no reverse
traffic to use for piggybacking.

Type 1 is a negative acknowledgement frame (officially called REJECT). It is
used to indicate that a transmission error has been detected. The Next field indi­
cates the first frame in sequence not received correctly (i.e., the frame to be
retransmitted). The sender is required to retransmit all outstanding frames starting
at Next. This strategy is similar to our protocol 5 rather than our protocol 6.

Type 2 is RECEIVE NOT READY. It acknowledges all frames up to but not
including Next, just as RECEIVE READY, but it tells the sender to stop sending.
RECEIVE NOT READY is intended to signal certain temporary problems with the
receiver, such as a shortage of buffers, and not as an alternative to the sliding win­
dow flow control. When the condition has been repaired, the receiver sends a
RECEIVE READY, REJECT, or certain control frames.

Type 3 is the SELECTIVE REJECT. It calls for retransmission of only the frame
specified. In this sense it is like our protocol 6 rather than 5 and is therefore most

228 THE DAT A LINK LA YER CHAP. 3

useful when the sender's window size is half the sequence space size, or less.
Thus if a receiver wishes to buffer out of sequence frames for potential future use,
it can force the retransmission of any specific frame using Selective Reject.
HDLC and ADCCP allow this frame type, but SDLC and LAPB do not allow it
(i.e., there is no Selective Reject), and type 3 frames are undefined.

The third class of frame is the Unnumbered frame. It is sometimes used for
control purposes but can also be used to carry data when unreliable connectionless
service is called for. The various bit-oriented protocols differ considerably here,
in contrast with the other two kinds, where they are nearly identical. Five bits are
available to indicate the frame type, but not all 32 possibilities are used.

All the protocols provide a command, DISC (DISConnect), that allows a
machine to announce that it is going down (e.g., for preventive maintenance).
They also have a command that allows a machine that has just come back on-line
to announce its presence and force all the sequence numbers back to zero. This
command is called SNRM (Set Normal Response Mode). Unfortunately, "Normal
Response Mode" is anything but normal. It is an unbalanced (i.e., asymmetric)
mode in which one end of the line is the master and the other the slave. SNRM

dates from a time when data communication meant a dumb terminal talking to a
computer, which clearly is asymmetric. To make the protocol more suitable when
the two partners are equals, HDLC and LAPB have an additional command, SABM

(Set Asynchronous Balanced Mode), which resets the line and declares both par­
ties to be equals. They also have commands SABME and SNRME, which are the
same as SABM and SNRM, respectively, except that they enable an extended frame
fonnat that uses 7-bit sequence numbers instead of 3-bit sequence numbers.

A third command provided by all the protocols is FRMR (FRaMe Reject), used
to indicate that a frame with a correct checksum but impossible semantics arrived.
Examples of impossible semantics are a type 3 Supervisory frame in LAPB, a
frame shorter than 32 bits, an illegal control frame, and an acknowledgement of a
frame that was outside the window, etc. FRMR frames contain a 24-bit data field
telling what was wrong with the frame. The data include the control field of the
bad frame, the window parameters, and a collection of bits used to signal specific
errors.

Control frames may be lost or damaged, just like data frames, so they must be
acknowledged too. A special control frame is provided for this purpose, called UA

(Unnumbered Acknowledgement). Since only one control frame may be out­
standing, there is never any ambiguity about which control frame is being
acknowledged.

The remaining control frames deal with initialization, polling, and status
reporting. There is also a control frame that may contain arbitrary information, UI

(Unnumbered Information). These data are not passed to the network layer but
are for the receiving data link layer itself.

Despite its widespread use, HDLC is far from perfect. A discussion of a
variety of problems associated with it can be found in (Fiorini et al., 1995).

...

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 229

3.6.2. The Data Link Layer in the Internet

The Internet consists of individual machines (hosts and routers), and the com­
munication infrastructure that connects them. Within a single building, LANs are
widely used for interconnection, but most of the wide area infrastructure is built
up from point-to-point leased lines. In Chap. 4, we will look at LANs; here we
will examine the data link protocols used on point-to-point lines in the Internet.

In practice, point-to-point communication is primarily used in two situations.
First, thousands of organizations have one or more LANs, each with some number
of hosts (personal computers, user workstations, servers, and so on) along with a
router (or a bridge, which is functionally similar). Often, the routers are intercon­
nected by a backbone LAN. Typically, all connections to the outside world go
through one or two routers that have point-to-point leased lines to distant routers.
It is these routers and their leased lines that make up the communication subnets
on which the Internet is built.

The second situation where point-to-point lines play a major role in the Inter­
net is the millions of individuals who have home connections to the Internet using
modems and dial-up telephone lines. Usually, what happens is that the user's
home PC calls up an Internet provider, which includes commercial companies
like America Online, CompuServe, and the Microsoft Network, but also many
universities and companies that provide home Internet connectivity to their stu­
dents and employees. Sometimes the home PC just functions as a character­
oriented termi_nal logged into the Internet service provider's timesharing system.
In this mode, the user can type commands and run programs, but the graphical
Internet services, such as the World Wide Web, are not available. This way of
working is called having a shell account.

Alternatively, the home PC can call an Internet service provider's router and
then act like a full-blown Internet host. This method of operation is no different
than having a leased line between the PC and the router, except that the connec­
tion is terminated when the user ends the session. With this approach, all Internet
services, including the graphical ones, become available. A home PC calling an
Internet service provider is illustrated in Fig. 3-26.

For both the router-router leased line connection and the dial-up host-router
connection, some point-to-point data link protocol is required on the line for fram­
ing, error control, and the other data link layer functions we have studied in this
chapter. Two such protocols are widely used in the Internet, SLIP and PPP. We
will now examine each of these in tum.

SLIP-Serial Line IP

SLIP is the older of the two protocols. It was devised by Rick Adams in 1984
to connect Sun workstations to the Internet over a dial-up line using a modem.
The protocol, which is described in RFC 1055, is very simple. The workstation

230 THE DATA LINK LAYER CHAP. 3

User's home Internet provider's office r----------------- --- ------ ------ - ,
I I ·-----------------------,

: Modems ------: :Pc I
I I
I I

t r--......-- I
I I

I ------- !
I I

' I
' ' ' I

·;·-------7 ---
: TCP/IP connection
: using SLIP or PPP
I ________________________________ _ _ J

Fig. 3-26. A home personal computer acting as an Internet host.

process

just sends raw IP packets over the line, with a special flag byte (OxCO) at the end
for framing. If the flag byte occurs inside the IP packet, a form of character stuff­
ing is used, and the two byte sequence (OxDB, OxDC) is sent in its place. If OxDB
occurs inside the IP packet, it, too, is stuffed. Some SLIP implementations attach
a flag byte to both the front and back of each IP packet sent.

More recent versions of SLIP do some TCP and IP header compression.
What they do is take advantage of the fact that consecutive packets often have
many header fields in common. These are compressed by omitting those fields
that are the same as the corresponding fields in the previous IP packet. Further­
more, the fields that do differ are not sent in their entirety, but as increments to the
previous value. These optimizations are described in RFC 1144.

Although it is still widely used, SLIP has some serious problems. First, it
does not do any error detection or correction, so it is up to higher layers to detect
and recover from lost, damaged, or merged frames.

Second, SLIP supports only IP. With the growth of the Internet to encompass
networks that do not use IP as their native language (e.g., Novell LANs), this res­
triction is becoming increasingly serious.

Third, each side must know the other's IP address in advance; neither address
can be dynamically assigned during setup. Given the current shortage of IP
addresses, this limitation is a major issue as it is impossible to give each home
Internet user a unique IP address.

Fourth, SLIP does not provide any form of authentication, so neither party
knows whom it is really talking to. With leased lines, this is not an issue, but with
dial-up lines it is.

Fifth, SLIP is not an approved Internet Standard, so many different (and
incompatible) versions exist. This situation does not make interworking easier.

I
I
I
I
I
I

I

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 231

PPP-Point-to-Point Protocol

To improve the situation, the IETF set up a group to devise a data link proto­
col for point-to-point lines that solved all these problems and that could become
an official Internet Standard. This work culminated in PPP (Point-to-Point Pro­
tocol); which is defined in RFC 1661 and further elaborated on in several other
RFCs (e.g., RFCs 1662 and 1663). PPP handles error detection, supports multiple
protocols, allows IP addresses to be negotiated at connection time, permits
authentication, and has many other improvements over SLIP. While many Inter­
net service providers still support both SLIP and PPP, the future clearly lies with
PPP, not only for dial-up lines, but also for leased router-router lines.

PPP provides three things:

1. A framing method that unambiguously delineates the end of one
frame and the start of the next one. The frame format also handles
error detection.

2. A link control protocol for bringing lines up, testing them, negotiat­
ing options, and bringing them down again gracefully when they are
no longer needed. This protocol is called LCP (Link Control Pro­
tocol).

3. A way to negotiate network-layer options in a way that is indepen­
dent of the network layer protocol to be used. The method chosen is
to have a different NCP (Network Control Protocol) for each net­
work layer supported.

To see how these pieces fit together, let us consider the typical scenario of a
home user calling up an Internet service provider to make a home PC a temporary
Internet host. The PC first calls the provider's router via a modem. After the
router's modem has answered the phone and established a physical connection,
the PC sends the router a series of LCP packets in the payload field of one or
more PPP frames. These packets, and their responses, select the PPP parameters
to be used.

Once these have been agreed upon, a series of NCP packets are sent to config­
ure the network layer. Typically, the PC wants to run a TCP/IP protocol stack, so
it needs an IP address. There are not enough IP addresses to go around, so nor­
mally each Internet provider gets a block of them and then dynamically assigns
one to each newly attached PC for the duration of its login session. If a provider
owns n IP addresses, it can have up to n machines logged in simultaneously, but
its total customer base may be many times that. The NCP for IP is used to do the
IP address assignment.

At this point, the PC is now an Internet host and can send and receive IP pack­
ets, just as hardwired hosts can. When the user is finished, NCP is used to tear
down the network layer connection and free up the IP address. Then LCP is used

232 THE DATA LINK LAYER CHAP. 3

to shut down the data link layer connection. Finally, the computer tells the
modem to hang up the phone, releasing the physical layer connection.

The PPP frame format was chosen to closely resemble the HDLC frame for­
mat, since there was no reason to reinvent the wheel. The major difference
between PPP and HDLC is that the former is character oriented rather than bit
oriented. In particular, PPP, like, SLIP, uses character stuffing on dial-up modem
lines, so all frames are an integral number of bytes. It is not possible to send a
frame consisting of 30.25 bytes, as it is with HDLC. Not only can PPP frames be
sent over dial-up telephone lines, but they can also be sent over SONET or true
bit-oriented HDLC lines (e.g., for router-router connections). The PPP frame for­
mat is shown in Fig. 3-27.

Bytes

Flag
01111110

Address
11111111

Control
00000011

1 or 2 Variable 2 or4

Protocol Checksum

Fig. 3-27. The PPP full frame format for unnumbered mode operation.

Flag
01111110

All PPP frames begin with the standard HDLC flag byte (01111110), which is
character stuffed if it occurs within the payload field. Next comes the Address
field, which is always set to the binary value 11111111 to indicate that all stations
are to accept the frame. Using this value avoids the issue of having to assign data
link addresses.

The Address field is followed by the Control field, the default value of which
is 00000011. This value indicates an unnumbered frame. In other words, PPP
does not provide reliable transmission using sequence numbers and acknowledge­
ments as the default. In noisy environments, such as wireless networks, reliable
transmission using numbered mode can be used. The exact details are defined in
RFC 1663.

Since the Address and Control fields are always constant in the default
configuration, LCP provides the necessary mechanism for the two parties to nego­
tiate an option to just omit them altogether and save 2 bytes per frame.

The fourth PPP field is the Protocol field. Its job is to tell what kind of packet
is in the Payload field. Codes are defined for LCP, NCP, IP, IPX, AppleTalk, and
other protocols. Protocols starting with a O bit are network layer protocols such as
IP, IPX, OSI CLNP, XNS. Those starting with a 1 bit are used to negotiate other
protocols. These include LCP and a different NCP for each network layer proto­
col supported. The default size of the Protocol field is 2 bytes, but it can be nego­
tiated down to 1 byte using LCP.

The Payload field is variable length, up to some negotiated maximum. If the
length is not negotiated using LCP during line setup, a default length of 1500
bytes is used. Padding may follow the payload if need be.

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 233

After the Payload field comes the Checksum field, which is normally 2 bytes,
but a 4-byte checksum can be negotiated.

In summary, PPP is a multi protocol framing mechanism suitable for use over
modems, HDLC bit-serial lines, SONET, and other physical layers. It supports
error detection, option negotiation, header compression, and optionally, reliable
transmission using HDLC framing.

Let us now tum from the PPP frame format to the way lines are brought up
and down. The (simplified) diagram of Fig. 3-28 shows the phases that a line
goes through when it is brought up, used, and taken down again. This sequence
applies both to modem connections and to router-router connections.

Carrier
detected

Dead

Carrier
dropped

Both sides
agree on options

Establish

Failed

Authenticate

Failed

Open

Authentication
successful

Network

NCP
configuration

Fig. 3-28. A simplified phase diagram for bringing a line up and down.

When the line is DEAD, no physical layer carrier is present and no physical
layer connection exists. After physical connection is established, the line moves
to ESTABLISHED. At that point LCP option negotiation begins, which, if suc­
cessful, leads to AUTHENTICATE. Now the two parties can check on each
other's identities, if desired. When the NETWORK phase is entered, the appropri­
ate NCP protocol is invoked to configure the network layer. If the configuration
is successful, OPEN is reached and data transport can take place. When data
transport is finished, the line moves into the TERMINATE phase, and from there,
back to DEAD when the carrier is dropped.

LCP is used to negotiate data link protocol options during the ESTABLISH
phase. The LCP protocol is not actually concerned with the options themselves,
but with the mechanism for negotiation. It provides a way for the initiating pro­
cess to make a proposal and for the responding process to accept or reject it, in
whole or in part. It also provides a way for the two processes to test the line

234 THE DATA LINK LAYER CHAP. 3

quality, to see if they consider it good enough to set up a connection. Finally, the
LCP protocol also allows lines to be taken down when they are no longer needed.

Eleven types of LCP packets are defined in RFC 1661. These are listed in
Fig. 3-29. The four Configure- types allow the initiator (I) to propose option
values and the responder (R) to accept or reject them. In the latter case, the
responder can make an alternative proposal or announce that it is not willing to
negotiate certain options at all. The options being negotiated and their proposed
values are part of the LCP packets.

Name Direction Description

Configure-request l ➔ R List of proposed options and values

Configure-ack lf--R All options are accepted

Configure-nak If-- R Some options are not accepted

Configure-reject If-- R Some options are not negotiable

Terminate-request l ➔ R Request to shut the line down

Terminate-ack If-- R OK, line shut down

Code-reject If-- R Unknown request received

Protocol-reject If-- R Unknown protocol requested

Echo-request l ➔ R Please send this frame back

Echo-reply If-- R Here is the frame back

Discard-request l ➔ R Just discard this frame (for testing)

Fig. 3-29. The LCP packet types.

The Terminate- codes are used to shut a line down when it is no longer
needed. The Code-reject and Protocol-reject codes are used by the responder to
indicate that it got something that it does not understand. This situation could
mean that an undetected transmission error has occurred, but more likely it means
that the initiator and responder are running different versions of the LCP protocol.
The Echo- types are used to test the line quality. Finally, Discard-request is used
for debugging. If either end is having trouble getting bits onto the wire, the pro­
grammer can use this type for testing. If it manages to get through, the receiver
just throws it away, rather than taking some other action, which might confuse the
person doing the testing.

The options that can be negotiated include setting the maximum payload size
for data frames, enabling authentication and choosing a protocol to use, enabling
line quality monitoring during normal operation, and selecting various header
compression options.

There is little to say about the NCP protocols in a general way. Each one is
specific to some network layer protocol and allows configuration requests to be

: ..

'·

: ..

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 235

made that are specific to that protocol. For IP, for example, dynamic address
assignment is the most important possibility.

3.6.3. The Data Link Layer in A TM

It is now time to begin our journey up through the A TM protocol layers of
Fig. 1-30. The ATM physical layer covers roughly the OSI physical and data link
layers, with the physical medium dependent sublayer being functionally like the
OSI physical layer and the transmission convergence (TC) sublayer having data
link functionality. There are no physical layer characteristics specific to A TM.
Instead, ATM cells are carried by SONET, FDDI, and other transmission systems.
Therefore we will concentrate here on the data link functionality of the TC sub­
layer, but we will discuss some aspects of the interface with the lower sublayer
later on.

When an application program produces a message to be sent, that message
works its way down the A TM protocol stack, having headers and trailers added
and undergoing segmentation into cells. Eventually, the cells reach the TC sub­
layer for transmission. Let us see what happens to them on the way out the door.

Cell Transmission

The first step is header checksumming. Each cell contains a 5-byte header
consisting of 4 bytes of virtual circuit and control information followed by a 1-
byte checksum. Although the contents of the header are not relevant to the TC
sublayer, curious readers wishing a sneak preview should tum to Fig. 5-62. The
checksum only covers the first four header bytes, not the payload field. It consists
of the remainder after the 32 header bits have been divided by the polynomial
:X- 8 + x 2 + x + l. To this the constant 01010101 is added, to provide robustness in
the face of headers containing mostly O bits.

The decision to checksum only the header was made to reduce the probability
of cells being delivered incorrectly due to a header error, but to avoid paying the
price of checksumming the much larger payload field. It is up to higher layers to
perform this function, if they so desire. For many real-time applications, such as
voice and video, losing a few bits once in a while is acceptable (although for some
compression schemes, all frames are equal but some frames are more equal).
Because it covers only the header, the 8-bit checksum field is called the HEC
(Header Error Control).

A factor that played a major role in this checksumming scheme is the fact that
ATM was designed for use over fiber, and fiber is highly reliable. Furthermore, a
major study of the U.S. telephone network has shown that during normal opera­
tion 99.64 percent of all errors on fiber optic lines are single-bit errors (AT&T and
Bellcore, 1989). The HEC scheme corrects all single-bit errors and detects many

236 THE DATA LINK LA YER CHAP. 3

multibit errors as well. If we assume that the probability of a single-bit error is
10-8 , then the probability of a cell containing a detectable multibit header error is
about 10-13 . The probability of a cell slipping through with an undetected header
error is about 10-20

, which means that at OC-3 speed, one bad cell header will get
through every 90.000 years. Although this may sound like a long time, once the
earth has, say, 1 billion A TM telephones, each used 10 percent of the time, over
1000 bad cell headers per year will go undetected.

For applications that need reliable transmission in the data link layer, Shae­
ham and McKenney (1990) have developed a scheme in which a sequence of con­
secutive cells are EXCLUSIVE ORed together. The result, an entire cell, is
appended to the sequence. If one cell is lost or badly garbled, it can be recon­
structed from the available information.

Once the HEC has been generated and inserted into the cell header, the cell is
ready for transmission. Transmission media come in two categories: asynchro­
nous and synchronous. When an asynchronous medium is used, a cell can be sent
whenever it is ready to go. No timing restrictions exist.

With a synchronous medium, cells must be transmitted according to a prede­
fined timing pattern. If no data cell is available when needed, the TC sublayer
must invent one. These are called idle cells.

Another kind of nondata cell is the OAM (Operation And Maintenance)
cell. OAM cells are also used by the ATM switches for exchanging control and
other information necessary for keeping the system running. OAM cells also have
some other special functions. For example, the 155.52-Mbps OC-3 speed matches
the gross data rate of SONET, but an STM-1 frame has a total of 10 columns of
overhead out of 270, so the SONET payload is only 260/270 x 155.52 Mbps or
149.76 Mbps. To keep from swamping SONET, an ATM source using SONET
would normally put out an OAM cell as every 27th cell, to slow the data rate
down to 26/27 of 155.52 Mbps and thus match SONET exactly. The job of
matching the ATM output rate to the rate of the underlying transmission system is
an important task of the TC sublayer.

On the receiver's side, idle cells are processed in the TC sublayer, but OAM
cells are given to the ATM layer. OAM cells are distinguished from data cells by
having the first three header bytes be all zeros, something not allowed for data
cells. The fourth byte describes the nature of the OAM cell.

Another important task of the TC sublayer is generating the framing informa­
tion for the underlying transmission system, if any. For example, an ATM video
camera might just produce a sequence of cells on the wire, but it might also pro­
duce SONET frames with the ATM cells embedded inside the SONET payload.
In the latter case, the TC sublayer would generate the SONET framing and pack
the ATM cells inside, not entirely a trivial business since a SONET payload does
not hold an integral number of 53-byte cells.

Although the telephone companies clearly intend to use SONET as the under­
lying transmission system for ATM, mappings from ATM onto the payload fields

,.

. ·•.

' .

------------- -

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 237

of other systems have also been defined, and new ones are being worked on. In
particular, mappings onto Tl, T3, and FDDI also exist.

Cell Reception

On output, the job of the TC sublayer is to take a sequence of cells, add a
HEC to each one, convert the result to a bit stream, and match the bit stream to
the speed of the underlying physical transmission system by inserting OAM cells
as filler. On input, the TC sublayer does exactly the reverse. It takes an incoming
bit stream, locates the cell boundaries, verifies the headers (discarding cells with
invalid headers), processes the OAM cells, and passes the data cells up to the
ATM layer.

The hardest part is locating the cell boundaries in the incoming bit stream. At
the bit level, a cell is just a sequence of 53 x 8 = 424 bits. No 01111110 flag
bytes are present to mark the start and end of a cell, as they are in HDLC. In fact,
there are no markers at all. How can cell boundaries be recognized under these
circumstances?

In some case, the underlying physical layer provides help. With SONET, for
example, cells can be aligned with the synchronous payload envelope, so the SPE
pointer in the SONET header points to the start of the first full cell. However,
sometimes the physical layer provides no assistance in framing. What then?

The trick is to use the HEC. As the bits come in, the TC sublayer maintains a
40-bit shift register, with bits entering on the left and exiting on the right. The TC
sublayer then inspects the 40 bits to see if it is potentially a valid cell header. If it
is, the rightmost 8 bits will be valid HEC over the leftmost 32 bits. If this condi­
tion does not hold, the buffer does not hold a valid cell, in which case all the bits
in the buffer are shifted right one bit, causing one bit to fall off the end, and a new
input bit is inserted at the left end. This process is repeated until a valid HEC is
located. At that point, the cell boundary is known because the shift register con­
tains a valid header.

The trouble with this heuristic is that the HEC is only 8 bits wide. For any
given shift register, even one containing random bits, the probability of finding a
valid HEC is 1/256, a moderately large value. Used by itself, this procedure
would incorrectly detect cell headers far too often.

To improve the accuracy of the recognition algorithm, the finite state machine
of Fig. 3-30 is used. Three states are used: HUNT, PRESYNCH, and SYNCH. In
the HUNT state, the TC sublayer is shifting bits into the shift registers one at a
time looking for a valid HEC. As soon as one is found, the finite state machine
switches to PRESYNCH state, meaning that it has tentatively located a cell boun­
dary. It now shifts in the next 424 bits (53 bytes) without examining them. If its
guess about the cell boundary was correct, the shift register should now contain
another valid cell header, so it once again runs the HEC algorithm. If the HEC is

238 THE DATA LINK LA YER CHAP. 3

incorrect, the TC goes back to the HUNT state and continues to search bit-by-bit
for a header whose HEC is correct.

Bit-by-bit
check

incorrect
HECs

Cell-by-cell
check

correct
HECs

Fig. 3-30. The cell delineation heuristic.

On the other hand, if the second HEC is also correct, the TC may be onto
something, so it shifts in another 424 bits and tries again. It continues inspecting
headers in this fashion until it has found 8 correct headers in a row, at which time
it assumes that it is synchronized and moves into the SYNCH state to start normal
operatio□ . ote that the probability of getting into SYNCH tate by accident with
a purely random bit tream is z-86 which can be made arbitrarily mall by choos­
ing a large enough 8. The price paid for a large 8, however, is a longer time to
synchronize.

In addition to resynchronizing after losing synchronization (or at startup), the
TC sublayer needs a heuristic to determine when it has lost synchronization, for
example after a bit has been inserted or deleted from the bit stream. It would be
unwise to give up if just one HEC was incorrect, since most errors are bit inver­
sions, not insertions or deletions. The wisest course here is just to discard the cell
with the bad header and hope the next one is good. However, if a HECs in a row
are bad, the TC sublayer has to conclude that it has lost synchronization and must
return to the HUNT state.

Although unlikely, it is conceivable that a malicious user could try to spoof
the TC sublayer by inserting a data pattern into the payload field of many con­
secutive cells that imitates the HEC algorithm. Then, if synchronization were
ever lost, it might be regained in the wrong place. To make this trick much
harder, the payload bits are scrambled on transmission and descrambled on recep­
tion.

Before leaving the TC sublayer, one comment is in order. The mechanism
chosen for cell delineation requires the TC sublayer to understand and use the
header of the A TM layer above it. Having one layer make use of the header of a
higher layer is in complete violation of the basic rules of protocol engineering.
The idea of having layered protocols is to make each layer be independent of the

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 239

ones above it. It should be possible, for example, to change the header format of
the ATM layer without affecting the TC sublayer. However due to the way cell
delineation is accomplished, making such a change is not possible.

3.7. SUMMARY

The task of the data link layer is to convert the raw bit stream offered by the
physical layer into a streain of frames for use by the network layer. Various fram­
ing methods are used, including character count, character stuffing, and bit stuff­
ing. Data link protocols can provide error control to retransmit damaged or lost
frames. To prevent a fast sender from overrunning a slow receiver, the data link
protocol can also provide flow control. The sliding window mechanism is widely
used to integrate error control and flow control in a convenient way.

Sliding window protocols can be categorized by the size of the sender's win­
dow and the size of the receiver's window. When both are equal to 1, the proto­
col is stop-and-wait. When the sender's window is greater than 1, for example to
prevent the sender from blocking on a circuit with a long propagation delay, the
receiver can be programmed either to discard all frames other than the next one in
sequence (protocol 5) or buffer out of order frames until they are needed (protocol
6).

Protocols can be modeled using various techniques to help demonstrate their
correctness (or lack thereof). Finite state machine models and Petri net models
are commonly used for this purpose.

Many networks use one of the bit-oriented protocols-SDLC, HDLC,
ADCCP; or LAPB-at the data link level. All of these protocols use flag bytes to
delimit frames, and bit stuffing to prevent flag bytes from occurring in the data.
All of them also use a sliding window for flow control. The Internet uses SLIP
and PPP as data link protocols. A TM systems have their own simple protocol;
Which does a bare minimum of error checking and no flow control.

PROBLEMS

1. An upper layer message is split into 10 frames, each of which has an 80 percent
chance of arriving undamaged. If no error control is done by the data link protocol,
how many times must the message be sent on the average to get the entire thing
through?

2. The following data fragment occurs in the middle of a data stream for which the
character-stuffing algorithm described in the text is used: DLE, STX, A, DLE, B,
DLE, ETX. What is the output after stuffing?

3. If the bit string O 111101111101111110 is bit stuffed, what is the output string?

240 THE DATA LINK LAYER CHAP. 3

4. When bit stuffing is used, is it possible for the loss, insertion, or modification of a sin­
gle bit to cause an error not detected by the checksum? If not, why not? If so, how?
Does the checksum length play a role here?

5. Can you think of any circumstances under which an open-loop protocol, (e.g., a Ham­
ming code) might be preferable to the feedback type protocols discussed throughout
this chapter?

6. To provide more reliability than a single parity bit can give, an error-detecting coding
scheme uses one parity bit for checking all the odd numbered bits and a second parity
bit for all the even numbered bits. What is the Hamming distance of this code?

7. One way of detecting errors is to transmit data as a block of n rows of k bits per row
and adding parity bits to each row and each column. Will this scheme detect all single
errors? Double errors? Triple errors?

8. A block of bits with n rows and k columns uses horizontal and vertical parity bits for
error detection. Suppose that exactly 4 bits are inverted due to transmission errors.
Derive an expression for the probability that the error will be undetected.

9. What is the remainder obtained by dividing x 7 + x 5 + 1 by the generator polynomial
x 3 + I?

10. Data link protocols almost always put the CRC in a trailer, rather than in a header.
Why?

11. A channel has a bit rate of 4 kbps and a propagation delay of 20 msec. For what range
of frame sizes does stop-and-wait give an efficiency of at least 50 percent?

12. A 3000-km long Tl trunk is used to transmit 64-byte frames using protocol 5. If the
propagation speed is 6 µsec/km, how many bits should the sequence numbers be?

13. Imagine a sliding window protocol using so many bits for sequence numbers that
wraparound never occurs. What relations must hold among the four window edges
and the window size?

14. If the procedure between in protocol 5 checked for the condition a ::;; b ::;; c instead of
the condition a::;; b < c, would that have any effect on the protocol's correctness or
efficiency? Explain your answer.

15. In protocol 6, when a data frame arrives, a check is made to see if the sequence
number differs from the one expected and NoNak is true. If both conditions hold, a
NAK is sent. Otherwise, the auxiliary timer is started. Suppose that the else clause
were omitted. Would this change affect the protocol's correctness?

16. Suppose that the three-statement while loop near the end of protocol 6 were removed
from the code. Would this affect the correctness of the protocol or just the perfor­
mance? Explain your answer.

17. Suppose that the case for checksum errors were removed from the switch statement of
protocol 6. How would this change affect the operation of the protocol?

18. In protocol 6 the code for FrameArrival has a section used for NAKs. This section is
invoked if the incoming frame is a NAK and another condition is met. Give a scenario
where the presence of this other condition is essential.

'.

CHAP. 3 PROBLEMS 241

19. Imagine that you are writing the data link layer software for a line used to send data to
you, but not from you. The other end uses HDLC, with a 3-bit sequence number and a
window size of seven frames. You would like to buffer as many out of sequence
frames as possible to enhance efficiency, but you are not allowed to modify the
software on the sending side. Is it possible to have a receiver window greater than
one, and still guarantee that the protocol will never fail? If so, what is the largest win­
dow that can be safely used?

20. Consider the operation of protocol 6 over a 1-Mbps error-free line. The maximum
frame size is 1000 bits. New packets are generated about 1 second apart. The timeout
interval is 10 msec. If the special acknowledgement timer were eliminated, unneces­
sary timeouts would occur. How many times would the average message be transmit­
ted?

21. In protocol 6 MaxSeq = 2n - I. While this condition is obviously desirable to make
efficient use of header bits, we have not demonstrated that it is essential. Does the
protocol work correctly for MaxSeq = 4, for example?

22. Frames of 1000 bits are sent over a 1-Mbps satellite channel. Acknowledgements are
always piggybacked onto data frames. The headers are very short. Three-bit
sequence numbers are used. What is the maximum achievable channel utilization for
(a) Stop-and-wait.
(b) Protocol 5.
(c) Protocol 6.

23. Compute the fraction of the bandwidth that is wasted on overhead (headers and
retransmissions) for protocol 6 on a heavily loaded 50-kbps satellite channel with data
frames consisting of 40 header and 3960 data bits. ACK frames never occur. NAK

frames are 40 bits. The error rate for data frames is 1 percent, and the error rate for
NAK frames is negligible. The sequence numbers are 8 bits.

24. Consider an error-free 64-kbps satellite channel used to send 512-byte data frames in
one direction, with very short acknowledgements coming back the other way. What is
the maximum throughput for window sizes of 1, 7, 15, and 127?

25. A 100 km long cable runs at the Tl data rate. The propagation speed in the cable is
2/3 the speed of light. How many bits fit in the cable?

26. Redraw Fig. 3-21 for a full-duplex channel that never loses frames. Is the protocol
failure still possible?

27. Give the firing sequence for the Petri net of Fig. 3-23 corresponding to the state
sequence (000), (01A), (01-), (010), (0lA) in Fig. 3-20. Explain in words what the
sequence represents.

28. Given the transition rules AC ➔ B, B ➔ AC, CD ➔ E, and E ➔ CD, draw the Petri
net described. From the Petri net, draw the finite state graph reachable from the initial
state ACD. What well-known computer science concept do these transition rules
model?

29. PPP is based closely on HDLC, which uses bit stuffing to prevent accidental flag bytes
within the payload from causing confusion. Give at least one reason why PPP uses
character stuffing instead.

242 THE DATA LINK LAYER CHAP. 3

30. What is the minimum overhead in sending an IP packet using PPP? Count only the
overhead introduced by PPP itself, not the IP header overhead.

31. Consider the ATM cell delineation heuristic with a.= 5, 8 = 6, and a per-bit error rate
of 10-5 • Once the system is synchronized, how long will it remain so, despite occa­
sional header bit errors? Assume the Line is running at OC-3.

32. Write a program to stochastically simulate the behavior of a Petri net. The program
should read in the transition rules as well as a list of states corresponding to the net­
work link layer issuing a new' packet or the accepting a new packet. From the initial
state, also read in, the program should pick enabled transitions at random and fire
them, checking to see if a host ever accepts two messages without the other host emit­
ting a new one in between.

4
THE MEDIUM ACCESS SUBLAYER

As we pointed out in Chap. 1, networks can be divided into two categories:
those using point-to-point connections and those using broadcast channels. This
chapter deals with broadcast networks and their protocols.

In any broadcast network, the key issue is how to determine who gets to use
the channel when there is competition for it. To make this point clearer, consider
a conference call in which six people, on six different telephones, are all con­
nected together so that each one can hear and talk to all the others. It is very
likely that when one of them stops speaking, two or more will start talking at
once, leading to chaos. In a face-to-face meeting, chaos is avoided by external
means, for example, at a meeting, people raise their hands to request permission
to speak. When only a single channel is available, determining who should go
next is much harder. Many protocols for solving the problem are known and form
the contents of this chapter. In the literature, broadcast channels are sometimes
referred to as multiaccess channels or random access channels.

The protocols used to determine who goes next on a multiaccess channel
belong to a sublayer of the data link layer called the MAC (Medium Access Con­
trol) sublayer. The MAC sublayer is especially important in LANs, nearly all of
which use a multiaccess channel as the basis of their communication. WAN s, in
contrast, use point-to-point links, except for satellite networks. Because multiac­
cess channels and LANs are so closely related, in this chapter we will discuss
LANs in general, as well as satellite and some other broadcast networks.

243

244 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Technically, the MAC sublayer is the bottom part of the data link layer, so
logically we should have studied it before examining all the point-to-point proto­
cols in Chap. 3. Nevertheless, fm: most people, understanding protocols involving
multiple parties is easier after two-party protocols are well understood. For that
reason we have deviated slightly from a strict bottom-up order of presentation.

4.1. THE CHANNEL ALLOCATION PROBLEM

The central theme of this chapter is how to allocate a single broadcast channel
among competing users. We will first look at static and dynamic schemes in gen­
eral. Then we will examine a number of specific algorithms.

4.1.1. Static Channel Allocation in LANs and MANs

The traditional way of allocating a single channel, such as a telephone trunk,
among multiple competing users is Frequency Division Multiplexing (FDM). If
there are N users, the bandwidth is divided into N equal sized portions (see Fig.
2-24), each user being assigned one portion. Since each user has a private fre­
quency band, there is no interference between users. When there is only a small
and fixed number of users, each of which has a heavy (buffered) load of traffic
(e.g., carriers' switching offices), FDM is a simple and efficient allocation
mechanism.

However, when the number of senders is large and continuously varying, or
the traffic is bursty, FDM presents some problems. If the spectrum is cut up into
N regions, and fewer than N users are currently interested in communicating, a
large piece of valuable spectrum will be wasted. If more than N users want to
communicate, some of them will be denied permission, for lack of bandwidth,
even if some of the users who have been assigned a frequency band hardly ever
transmit or receive anything.

However, even assuming that the number of users could somehow be held
constant at N, dividing the single available channel into static subchannels is
inherently inefficient. The basic problem is that when some users are quiescent,
their bandwidth is simply lost. They are not using it, and no one else is allowed to
use it either. Furthermore, in most computer systems, data traffic is extremely
bursty (peak traffic to mean traffic ratios of 1000: 1 are common). Consequently,
most of the channels will be idle most of the time.

The poor performance of static FDM can easily be seen from a simple queue­
ing theory calculation. Let us start with the mean time delay, T, for a channel of
capacity C bps, with an arrival rate of A frames/sec, each frame having a length
drawn from an exponential probability density function with mean 1/µ bits/frame:

T = 1
µC-A

Now let us divide the single channel up into N independent subchannels, each

·· ..

. • .

SEC. 4.1 THE CHANNEL ALLOCATION PROBLEM 245

with capacity C IN bps. The mean input rate on each of the subchannels will now
be VN. Recomputing T we get

T - 1
FDM - µ(CIN) - ()..,IN)

N = NT
µC-A

(4-1)

The mean delay using FDM is N times worse than if all the frames were somehow
magically arranged orderly in a big central queue.

Precisely the same arguments that apply to FDM also apply to time division
multiplexing (TDM). Each user is statically allocated every Nth time slot. If a
user does not use the allocated slot, it just lies fallow. Since none of the tradi­
tional static channel allocation methods work well with bursty traffic, we will now
explore dynamic methods.

4.1.2. Dynamic Channel Allocation in LANs and MANs

Before we get into the first of the many channel allocation methods to be dis­
cussed in this chapter, it is worthwhile carefully formulating the allocation prob­
lem. Underlying all the work dorie in this area are five key assumptions,
described below.

1. Station model. The model consists of N independent stations (com­
puters, telephones, personal communicators, etc.), each with a pro­
gram or user that generates frames for transmission. The probability
of a frame being generated in an interval of length lit is AM, where A
is a constant (the arrival rate of new frames). Once a frame has been
generated, the station is blocked and does nothing until the frame has
been successfully transmitted.

2. Single Channel Assumption. A single channel is available for all
communication. All stations can transmit on it and all can receive
from it. As fat as the hardware is concerned, all stations are
equivalent, although protocol software may assign priorities to them.

3. Collision Assumption. If two frames are transmitted simultane­
ously, they overlap in time and the resulting signal is garbled. This
event is called a collision. All stations can detect collisions. A col­
lided frame must be transmitted again later. There are no errors
other than those generated by collisions.

4a. Continuous Time. Frame transmission can begin at any instant.
There is no master clock dividing time into discrete intervals.

4b. Slotted Time. Time is divided into discrete intervals (slots). Frame
transmissions always begin at the start of a slot. A slot may contain
0, 1, or more frames, corresponding to an idle slot, a successful
transmission, or a collision, respectively.

246 THE MEDIUM ACCESS SUBLAYER CHAP. 4

5a. Carrier Sense. Stations can tell if the channel is in use before trying
to use it. If the channel is sensed as busy, no station will attempt to
use it until it goes idle.

Sb. No Carrier Sense. Stations cannot sense the channel before trying
to use it. They just go ahead and transmit. Only later can they deter­
mine whether or not the transmission was successful.

Some discussion of these assumptions is in order. The first one says that sta­
tions are independent, and that work is generated at a constant rate. It also implic­
itly assumes that each station only has one program or user, so while the station is
blocked, no new work is generated. More sophisticated models allow multipro­
grammed stations that can generate work while a station is blocked, but the
analysis of these stations is much more complex.

The single channel assumption is the heart of the matter. There are no exter­
nal ways to communicate. Stations cannot raise their hands to request that the
teacher call on them.

The collision assumption is also basic, although in some systems (notably
spread spectrum), this assumption is relaxed, with surprising results. Also, some
LAN s, such as token rings, use a mechanism for contention elimination that elim­
inates collisions.

There are two alternative assumptions about time. Either it is continuous or it
is slotted. Some systems use one and some systems use the other, so we will dis­
cuss and analyze both. Obviously, for a given system, only one of them holds.

Similarly, a network can either have carrier sensing or not have it. LANs gen­
erally have carrier sense, but satellite networks do not (due to the long propaga­
tion delay). Stations on carrier sense networks can terminate their transmission
prematurely if they discover that it is colliding with another transmission. Note
that the word "carrier" in this sense refers to an electrical signal on the cable and
has nothing to do with the common carriers (e.g., telephone companies) that date
back to the Pony Express days.

4.2. MULTIPLE ACCESS PROTOCOLS

Many algorithms for allocating a multiple access channel are known. In the
following sections we will study a representative sample of the more interesting
ones and give some examples of their use.

4.2.1. ALOHA

In the 1970s, Norman Abramson and his colleagues at the University of
Hawaii devised a new and elegant method to solve the channel allocation prob­
lem. Their work has been extended by many researchers since then (Abramson,

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 247

1985). Although Abramson's work, called the ALOHA system, used ground­
based radio broadcasting, the basic idea is applicable to any system in which
uncoordinated users are competing for the use of a single shared channel.'

We will discuss two versions of ALOHA here: pure and slotted. They differ
with respect to whether or not time is divided up into discrete slots into which all
frames must fit. Pure ALOHA does not require global time synchronization; slot­
ted ALOHA does.

Pure ALOHA

The basic idea of an ALOHA system is simple: let users transmit whenever
they have data to be sent. There will be collisions, of course, and the colliding
frames will be destroyed. However, due to the feedback property of broadcasting,
a sender can always find out whether or not its frame was destroyed by listening
to the channel, the same way other users do. With a LAN, the feedback is
immediate; with a satellite, there is a delay of 270 msec before the sender knows
if the transmission was successful. If the frame was destroyed, the sender just
waits a random amount of time and sends it again. The waiting time must be ran­
dom or the same frames will collide over and over, in lockstep. Systems in which
multiple users share a common channel in a way that can lead to conflicts are
widely known as contention systems.

A sketch of frame generation in an ALOHA system is given in Fig. 4-1. We
have made the frames all the same length because the throughput of ALOHA sys­
tems is maximized by having a uniform frame size rather than allowing variable
length frames.

User

A DD

B D

c D D D

o DD D D

ED D D D

Time ---

Fig. 4-1. In pure ALOHA, frames are transmitted at completely arbitrary times.

Whenever two frames try to occupy the channel at the same time, there will
be a collision and both will be garbled. If the first bit of a new frame overlaps
with just the last bit of a frame almost finished, both frames will be totally

248 THE MEDIUM ACCESS SUBLAYER CHAP. 4

destroyed, and both will have to be retransmitted later. The checksum cannot
(and should not) distinguish between a total loss and a near miss. Bad is bad.

A most interesting question is: What is the efficiency of an ALOHA channel?
That is, what fraction of all transmitted frames escape collisions under these
chaotic circumstances? Let us first consider an infinite collection of interactive
users sitting at their computers (stations). A user is always in one of two states:
typing or waiting. Initially, all users are in the typing state. When a line is fin­
ished, the user stops typing, waiting for a response. The station then transmits a
frame containing the line and checks the channel to see if it was successful. If so,
the user sees the reply and goes back to typing. If not, the user continues to wait
and the frame is retransmitted over and over until it has been successfully sent.

Let the "frame time" denote the amount of time needed to transmit the stand­
ard, fixed-length frame (Le., the frame length divided by the bit rate). At this
point we assume that the infinite population of users generates new frames
according to a Poisson distribution with mean S frames per frame time. (The
infinite-population assumption is needed to ensure that S does not decrease as
users become blocked.) If S > 1, the user community is generating frames at a
higher rate than the channel can handle, and nearly every frame will suffer a colli­
sion. For reasonable throughput we would expect O < S < 1.

In addition to the new frames, the stations also generate retransmissions of
frames that previously suffered collisions. Let us further assume that the proba­
bility of k transmission attempts per frame time, old and new combined, is also
Poisson, with mean G per frame time. Clearly, G ~ S. At low load (i.e., S;:: 0),
there will be few collisions, hence few retransmissions, so G ;:: S. At high load
there will be many collisions, so G > S. Under all loads, the throughput is just the
offered load, G, times the probability of a transmission being successful-that is,
S = GP 0 , where P 0 is the probability that a frame does not suffer a collision.

A frame will not suffer a collision if no other frames are sent within one
frame time of its start, as shown in Fig. 4-2. Under what conditions will the
shaded frame arrive undamaged? Let t be the time required to send a frame. If
any other user has generated a frame between time t O and t O + t, the end of that
frame will collide with the beginning of the shaded one. In fact, the shaded
frame's fate was already sealed even before the first bit was sent, but since in pure
ALOHA a station does not listen to the channel before transmitting, it has no way
of knowing that another frame was already underway. Similarly, any other frame
started between t O + t and t O + 2t will bump into the end of the shaded frame.

The probability that k frames are generated during a given frame time is given
by the Poisson distribution:

(4-2)

so the probability of zero frames is just e -G. In an interval two frame times long,
the mean number of frames generated is 2G. The probability of no other traffic

•. ·

: .. .

. . ..

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS

Collides with ---~~~
the start of I I

I I

the shaded I I ,- 1-,
I I
I I frame
I I
I I
I I
I I
I I
I I

Collides with
the end of
the shaded

frame

~ t.,+ t t.,+ 2t

1---- Vulnerable ----1
t., 3t Time -

Fig. 4-2. Vulnerable period for the shaded frame.

249

being initiated during the entire vulnerable period is thus given by Po= e-w_
Using S = GP 0 , we get

S = Ge-20

The relation between the offered traffic and the throughput is shown in
Fig. 4-3. The maximum throughput occurs at G = 0.5, with S = l/2e, which is
about 0.184. In other words, the best we can hope for is a channel utilization of
18 percent. This result is notvery encouraging, but with everyone transmitting at
will, we could hardly have expected a 100 percent success rate.

~ 0.40
e!
'i 0.30
C.

~ 0.20
.c
C) e 0.10
.c
,t::.,

Cl)

0

Slotted ALOHA: S = Ge--0

0.5 1.0 1.5 2.0

G (attempts per packet time)

Fig. 4-3. Tirroughput versus offered traffic for ALOHA systems.

Slotted ALOHA

3.0

In 1972, Roberts published a method for doubling the capacity of an ALOHA
system (Roberts, 1972). His proposal was to divide time up into discrete inter­
vals, each interval corresponding to one frame. This approach requires the users
to agree of slot boundaries. One way to achieve synchronization would be to have
one special station emit a pip at the start of each interval, like a clock.

250 THE MEDIUM ACCESS SUBLAYER CHAP. 4

In Roberts' method, which has come to be known as slotted ALOHA, in con­
trast to Abramson's pure ALOHA, a computer is not permitted to send whenever
a carriage return is typed. Instead, it is required to wait for the beginning of the
next slot. Thus the continuous pure ALOHA is turned into a discrete one. Since
the vulnerable period is now halved, the probability of no other traffic during the
same slot as our test frame is e -G which leads to

(4-3)

As you can see from Fig. 4-3, slotted ALOHA peaks at G = 1, with a throughput
of S = 1/ e or about 0.368, twice that of pure ALOHA. If the system is operating
at G = 1, the probability of an empty slot is 0.368 (from Eq. 4-2). The best we
can hope for using slotted ALOHA is 37 percent of the slots empty, 37 percent
successes, and 26 percent collisions. Operating at higher values of G reduces the
number of empties but increases the number of collisions exponentially. To see
how this rapid growth of collisions with G comes about, consider the transmission
of a test frame. The probability that it will avoid a collision is e-G, the probabil­
ity that all the other users are silent in that slot. The probability of a collision is
then just 1 - e -G. The probability of a transmission requiring exactly k attempts,
(i.e., k - I collisions followed by one success) is

pk= e-Go - e-Gl- 1

The expected number of transmissions, E, per carriage return typed is then
00 00

E = I,kPk = I,ke--G(l - e-Gl- 1 = eG
k=l k=l

As a result of the exponential dependence of E upon G, small increases in the
channel load can drastically reduce its performance.

4.2.2. Carrier Sense Multiple Access Protocols

With slotted ALOHA the best channel utilization that can be achieved is 1/ e.
This is hardly surprising, since with stations transmitting at will, without paying
attention to what the other stations are doing, there are bound to be many colli­
sions. In local area networks, however it is possible for stations to detect what
other stations are doing, and adapt their behavior accordingly. These networks
can achieve a much better utilization than lie. In this section we will discuss
some protocols for improving performance.

Protocols in which stations listen for a carrier (i.e., a transmission) and act
accordingly are called carrier sense protocols. A number of them have been
proposed. Kleinrock and Tobagi (1975) have analyzed several such protocols in
detail. Below we will mention several versions of the carrier sense protocols.

;.

: ·-

I ,

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 251

Persistent and Nonpersistent CSMA

The first carrier sense protocol that we will study here is called I-persistent
CSMA (Carrier Sense Multiple Access). When a station has data to send, it first
listens to the channel to see if anyone else is transmitting at that moment. If the
channel is busy, the station waits until it becomes idle. When the station detects
an idle channel, it transmits a frame. If a collision occurs, the station waits a ran­
dom amount of time and starts all over again. The protocol is called I-persistent
because the station transmits with a probability of 1 whenever it finds the channel
idle.

The propagation delay has an important effect on the performance of the pro­
tocol. There is a small chance that just after a station begins sending, another sta­
tion will become ready to send and sense the channel. If the first station's signal
has not yet reached the second one, the latter will sense an idle channel and will
also begin sending, resulting in a collision. The longer the propagation delay, the
more important this effect becomes, and the worse the performance of the proto­
col.

Even if the propagation delay is zero, there will still be collisions. If two sta­
tions become ready in the middle of a third station's transmission, both will wait
politely until the transmission ends and then both will begin transmitting exactly
simultaneously, resulting in a collision. If they were not so impatient, there would
be fewer collisions. Even so, this protocol is far better than pure ALOHA,
because both stations have the decency to desist from interfering with the third
station's frame. Intuitively, this will lead to a higher performance than pure
ALOHA. Exactly the same holds for slotted ALOHA.

A second carrier sense protocol is nonpersistent CSMA. In this protocol, a
conscious attempt is made to be less greedy than in the previous one. Before
sending, a station senses the channel. If no one else is sending, the station begins
doing so itself. However, if the channel is already in use, the station does not con­
tinually sense it for the purpose of seizing it immediately upon detecting the end
of the previous transmission. Instead, it waits a random period of time and then
repeats the algorithm. Intuitively this algorithm should lead to better channel util­
ization and longer delays than 1-persistent CSMA.

The last protocol is p-persistent CSMA. It applies to slotted channels and
works as follows. When a station becomes ready to send, it senses the channel. If
it is idle, it transmits with a probability p. With a probability q = l - p it defers
until the next slot. If that slot is also idle, it either transmits or defers again, with
probabilities p and q. This process is repeated until either the frame has been
transmitted or another station has begun transmitting. In the latter case, it acts as
if there had been a collision (i.e., it waits a random time and starts again). If the
station initially senses the channel busy, it waits until the next slot and applies the
above algorithm. Figure 4-4 shows the throughput versus offered traffic for all
three protocols, as well as pure and slotted ALOHA.

252

1.0

0.9
ai'
:§ 0.8

j 0.7
g
a. 0.6
ai
a. 0.5
'5 _g- 0.4
Cl
5 0.3
.c
~ 0.2
(/)

0.1

THE MEDIUM ACCESS SUBLAYER CHAP. 4

0.01 persistent CSMA

Nonpersistent CSMA

0 OL _ _J___.=::r:::::::::::e-..L _ _j_-=::J====::±::::::==::d::=---L=:J
2 3 4 5 6 7 8 9

G (attempts per packet time)

Fig. 4-4. Comparison of the channel utilization versus load for various random
access protocols.

CSMA with Collision Detection

Persistent and nonpersistent CSMA protocols are clearly an improvement
over ALOHA because they ensure that no station begins to transmit when it
senses the channel busy. Another improvement is for stations to abort their
transmissions as soon as they detect a collision. In other words, if two stations
sense the channel to be idle and begin transmitting simultaneously, they will both
detect the collision almost immediately. Rather than finish transmitting their
frames, which are irretrievably garbled anyway, they should abruptly stop
transmitting as soon as the collision is detected. Quickly terminating damaged
frames saves time and bandwidth. This protocol, known as CSMA/CD (Carrier
Sense Multiple Access with Collision Detection), is widely used on LANs in the
MAC sublayer.

CSMA/CD, as well as many other LAN protocols, uses the conceptual model
of Fig. 4-5. At the point marked t0 , a station has finished transmitting its frame.
Any other station having a frame to send may now attempt to do so. If two or
more stations decide to transmit simultaneously, there will be a collision. Colli­
sions can be detected by looking at the power or pulse width of the received signal
and comparing it to the transmitted signal.

After a station detects a collision, it aborts its transmission, waits a random
period of time, and then tries again, assuming that no other station has started
transmitting in the meantime. Therefore, our model for CSMA/CD will consist of
alternating contention and transmission periods, with idle periods occurring when
all stations are quiet (e.g., for lack of work).

Now let us look closely at the details of the contention algorithm. Suppose

' .

, .

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 253

Contention
to slots

1 ~
Frame I IJ DD I Frame ID DD DI Frame DI Frame

"---v-------''--------v----' '--y-----1

Transmission Contention Idle
period period period

Time-

Fig. 4-5. CSMA/CD can be in one of three states: contention, transmission, or
idle.

that two stations both begin transmitting at exactly time t 0• How long will it take
them to realize that there has been a collision? The answer to this question is vital
to determining the length of the contention period, and hence what the delay and
throughput will be. The minimum time to detect the collision is then just the time
it takes the signal to propagate from one station to the other.

Based on this reasoning, you might think that a station not hearing a collision
for a time equal to the full cable propagation time after starting its transmission
could be sure it had seized the cable. By '.'seized," we mean that all other stations
knew it was transmitting and would not interfere. This conclusion is wrong. Con­
sider the following worst-case scenario. Let the time for a signal to propagate
between the two farthest stations be 't. At t0 , one station begins transmitting. At
't - E, an instant before the signal arrives at the most distant station, that station
also begins transmitting. Of course, it detects the collision almost instantly and
stops, but the little noise burst caused by the collision does not get back to the
original station until time 2-t - E. In other words, in the worst case a station can­
not be sure that it has seized the channel until it has transmitted for 2-t without
hearing a collision. For this reason we will model the contention interval as a
slotted ALOHA system with slot width 2-t. On a 1-km long coaxial cable,
't :::: 5 µsec. For simplicity we will assume that each slot contains just 1 bit. Once
the channel has been seized, a station can transmit at any rate it wants to, of
course, not just at 1 bit per 2-t sec.

It is important to realize that collision detection is an analog process. The
station's hardware must listen to the cable while it is transmitting. If what it reads
back is different from what it is putting out, it knows a collision is occurring. The
implication is that the signal encoding must allow collisions to be detected (e.g., a
collision of two 0-volt signals may well be impossible to detect). For this reason,
special encoding is commonly used.

CSMNCD is an important protocol. Later in this chapter we will study one
version of it, IEEE 802.3 (Ethernet), which is an international standard.

To avoid any misunderstanding, it is worth nothing that no MAC-sublayer

254 THE MEDIUM ACCESS SUBLAYER CHAP. 4

protocol guarantees reliable delivery. Even in the absence of collisions, the
receiver may not have copied the frame correctly due to various reasons (e.g., lack
of buffer space or a missed interrupt).

4.2.3. Collision-Free Protocols

Although collisions do not occur with CSMA/CD once a station ha unambig­
uously seized the channel, they can stiU occur during the contention period.
These collisions adversely affect th~ system performance, especially when the
cable is long (i .e., large -r) and the frames short As very long high-bandwidth
fiber optic networks come into use, the combination of large 't and short frames
will become an increasingly serious problem. In this section, we will examine
some protocols that resolve the contention for the channel without any collisions
at all, not even during the contention period.

In the protocols to be described, we make the assumption that there are N sta­
tions, each with a unique address from O to N - 1 "wired" into it. That some sta­
tions may be inactive part of the time does not matter. The basic question
remains: Which station gets the channel after a successful transmission? We con­
tinue using the model of Fig. 4-5 with its discrete contention slots.

A Bit-Map Protocol

In our first collision-free protocol, the basic bit-map method, each conten­
tion period consists of exactly N slots. If station O has a frame to send, it transmits
a 1 bit during the zeroth slot. No other station is allowed to transmit during this
slot. Regardless of what station O does, station 1 gets the opportunity to transmit a
1 during slot 1, but only if it has a frame queued. In general, station j may
announce the fact that it has a frame to send by inserting a 1 bit into slot j. After
all N slots have passed by, each station has complete knowledge of which stations
wish to transmit. At that point, they begin transmitting in numerical order (see
Fig. 4-6).

8 Contention slots 8 Contention slots d

01234567 01234567 0 1 2 3 4 5 6 7

Fig. 4-6. The basic bit-map protocol.

Since everyone agrees on who goes next, there will never be any collisions.
After the last ready station has transmitted its frame, an event all stations can
easily monitor, another N bit contention period is begun. If a station becomes

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 255

ready just after its bit slot has passed by, it is out of luck and must remain silent
until every station has had a chance and the bit map has come around again. Pro­
tocols like this in which the desire to transmit is broadcast before the actual
transmission are called reservation protocols.

Let us briefly analyze the performance of this protocol. For convenience, we
will measure time in units of the contention bit slot, with data frames consisting of
d time units. Under conditions of low load, the bit map will simply be repeated
over and over, for lack of data frames.

Consider the situation from the point of view of a low~numbered station, such
as O or 1. Typically, when it becomes ready to send, the "current" slot will be
somewhere in the middle of the bit map. On the average, the station will have to
wait N /2 slots for the current scan to finish and another full N slots for the follow­
ing scan to run to completion before it may begin transmitting.

The prospects for high-numbered stations are brighter. Generally, these will
only have to wait half a scan (N /2 bit slots) before starting to transmit. High­
m1mbered stations rarely have to wait for the next scan. Since low-numbered sta­
tions must wait on the average 1.5N slots and high-numbered stations must wait
on the average 0.5N slots, the mean for all stations is N slots. The channel effi­
ciency at low load is easy to compute. The overhead per frame is N bits, and the
amount of data is d bits, for an efficiency of dl(N + d).

At high load, when all the stations have something to send all the time, the N
bit contention period is prorated over N frames, yielding an overhead of only 1 bit
per frame, or an efficiency of d/(d + 1). The mean delay for a frame is equal to
the sum of the time it queues inside its station, plus an additional N(d + 1)/2 once
it gets to the head of its internal queue.

Binary Countdown

A problem with the basic bit-map protocol is that the overhead is 1 bit per sta­
tion. We can do better than that by using binary station addresses. A station
wanting to use the channel now broadcasts its address as a binary bit string, start­
ing with the high-order bit. All addresses are assumed to be the same length. The
bits in each address position from different stations are BOOLEAN ORed
together. We will call this protocol binary countdown. It is used in Datakit
(Fraser, 1987).

To avoid conflicts, an arbitration rule must be applied: as soon as a station
sees that a high-order bit position that is O in its address has been overwritten with
a 1, it gives up. For example, if stations 0010, 0100, 1001, and 1010 are all trying
to get the channel, in the first bit time the stations transmit 0, 0, 1, and 1, respec­
tively. These are ORed together to form a 1. Stations 0010 and 0100 see the 1
and know that a higher-numbered station is competing for the channel, so they
give up for the current round. Stations 1001 and 1010 continue.

256 THE MEDIUM ACCESS SUBLAYER CHAP. 4

The next bit is 0, and both stations continue. The next bit is 1, so station 1001
gives up. The winner is station 1010, because it has the highest address. After
winning the bidding, it may now transmit a frame, after which another bidding
cycle starts. The protocol is illustrated in Fig. 4-7

1 o o 1 o 1
1 o 1 o ol
11 o o 1 1

11 o 1 o 1

Bit time

0 1 2 3

0 - - -

0---

1 0 0 -

1 0 1 0

Result 1 0 1 o

/ \
Stations 0010 Station 1001

and 0100 see this sees this 1
1 and give up and gives up

Fig. 4-7. The binary countdown protocol. A dash indicates silence.

The channel efficiency of this method is dl(d + lnN). If, however, the frame
format has been cleverly chosen so that the sender's address is the first field in the
frame, even these ln N bits are not wasted, and the efficiency is 100 percent.

Mok and Ward (1979) have described a variation of binary countdown using a
parallel rather than a serial interface. They also suggest using virtual station
numbers, with the virtual station numbers from O up to and including the success­
ful station being circularly permuted after each transmission, in order to give
higher priority to stations that have been silent unusually long. For example, if
stations C, H, D, A, G, B, E, F have priorities 7, 6, 5, 4, 3, 2, 1, and 0, respec­
tively, then a successful transmission by D puts it at the end of the list, giving a
priority order of C, H, A, G, B, E, F, D. Thus C remains virtual station 7, but A
moves up from 4 to 5 and D drops from 5 to 0. Station D will now only be able to
acquire the channel if no other station wants it.

4.2.4. Limited-Contention Protocols

We have now considered two basic strategies for channel acqu1S1hon in a
cable network: contention, as in CSMA, and collision-free methods. Each stra­
tegy can be rated as to how well it does with respect to the two important perfor­
mance measures, delay at low load and channel efficiency at high load. Under
conditions of light load, contention (i.e., pure or slotted ALOHA) is preferable
due to its low delay. As the load increases, contention becomes increasingly less

' ·

, .

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 257

attractive, because the overhead associated with channel arbitration becomes
greater. Just the reverse is true for the collision-free protocols. At low load, they
have high delay, but as the load increases, the channel efficiency improves rather
than get worse as it does for contention protocols.

Obviously, it would be nice if we could combine the best properties of the
contention and collision-free protocols, arriving at a new protocol that used con­
tention at low loads to provide low delay, but used a collision-free technique at
high load to provide good channel efficiency. Such protocols, which we will call
limited contention protocols, do, in fact, exist, and will conclude our study of
carrier sense networks.

Up until now the only contention protocols we have studied have been sym­
metric; that is, each station attempts to acquire the channel with some probability,
p, with all stations using the same p. Interestingly enough, the overall system per­
formance can sometimes be improved by using a protocol that assigns different
probabilities to different stations.

Before looking at the asymmetric protocols, let us quickly review the perfor­
mance of the symmetric case. Suppose that k stations are contending for channel
access. Each has a probability p of transmitting during each slot. The probability
that some station successfully acquires the channel during a given slot is then
kp (1 - pl- 1. To find the optimal value of p, we differentiate with respect to p,
set the result to zero, and solve for p. Doing so, we find that the best value of p is
l/k. Substituting p = l/k we get

Pr[success with optimal p] = [l
k-1

k-I

k
(4-4)

This probability is plotted in Fig. 4-8. For small numbers of stations, the chances
of success are good, but as soon as the number of stations reaches even five, the
probability has dropped close to its asymptotic value of 1/ e.

From Fig. 4-8, it is fairly obvious that the probability of some station acquir­
ing the channel can be increased only by decreasing the amount of competition.
The limited-contention protocols do precisely that. They first divide the stations
up into (not necessarily disjoint) groups. Only the members of group O are per­
mitted to compete for slot 0. If one of them succeeds, it acquires the channel and
transmits its frame. If the slot lies fallow or if there is a collision, the members of
group 1 contend for slot 1, etc. By making an appropriate division of stations into
groups, the amount of contention for each slot can be reduced, thus operating each
slot near the left end of Fig. 4-8.

The trick is how to assign stations to slots. Before looking at the general case,
let us consider some special cases. At one extreme, each group has but one
member. Such an assignment guarantees that there will never be collisions,
because at most one station is contending per slot. We have seen such protocols
before (e.g., binary countdown). The next special case is to assign two station
per group. The probability that both will try to transmit during a slot is p 2 , which

258 THE MEDIUM ACCESS SUBLAYER CHAP. 4

1.0

(/)
(/) 0.8 Q)
u
u
::J
(/)

0.6 0
~
:c 0.4 ra
.0 e
Q.

0.2

0.00 5 10 15 20 25
Number of ready stations

Fig. 4-8. Acquisition probability for a symmetric contention channel.

for small p is negligible. As more and more stations are assigned to the same slot,
the probability of a collision grows, but the length of the bit-map scan needed to
give everyone a chance shrinks. The limiting case is a single group containing all
stations (i.e., slotted ALOHA). What we need is a way to assign stations to slots
dynamically, with many stations per slot when the load is low and few (or even
just one) station per slot when the load is high.

The Adaptive Tree Walk Protocol

One particularly simple way of performing the necessary assignment is to use
the algorithm devised by the U.S. Army for testing soldiers for syphilis during
World War II (Dorfman, 1943). In short, the Army took a blood sample from N
soldiers. A portion of each sample was poured into a single test tube. This mixed
sample was then tested for antibodies. If none were found, all the soldiers in the
group were declared healthy. If antibodies were present, two new mixed samples
were prepared, one from soldiers 1 through N 12 and one from the rest. The pro­
cess was repeated recursively until the infected soldiers were determined.

For the computer version of this algorithm (Capetanakis, 1979) it is con­
venient to think of the stations as the leaves of a binary tree, as illustrated in
Fig. 4-9. In the first contention slot following a successful frame transmission,
slot 0, all stations are permitted to try to acquire the channel. If one of them does
so, fine. If there is a collision, then during slot 1 only those stations falling under
node 2 in the tree may compete'. If one of them acquires the channel, the slot fol~
lowing the frame is reserved for those stations under node 3. If, on the other
hand, two or more stations under node 2 want to transmit, there will be a collision
during slot 1, in which case it is node 4' s turn during slot 2.

In essence, if a collision occurs during slot 0, the entire tree is searched, depth

'•

' .

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 259

-stations
A 8 C D E F G H

Fig. 4-9. The tree for eight stations.

first, to locate all ready stations. Each bit slot is associated with some particular
node in the tree. If a collision occurs, the search continues recursively with the
node's left and right children. If a bit slot is idle or if there is only one station that
transmits in it, the searching of its node can stop, because all ready stations have
been located. (Were there more than one, there would have been a collision.)

When the load on the system is heavy, it is hardly worth the effort to dedicate
slot Oto node 1, because that makes sense only in the unlikely event that precisely
one station has a frame to send. Similarly, one could argue that nodes 2 and 3
should be skipped as well for the same reason. Put in more general terms, at what
level in the tree should the search begin? Clearly, the heavier the load, the farther
down the tree the search should begin. We will assume that each station has a
good estimate of the number of ready stations, q, for example, from monitoring
recent traffic.

To proceed, let us number the levels of the tree from the top, with node 1 in
Fig. 4-9 at level 0, nodes 2 and 3 at level 1, etc. Notice that each node at level i
has a fraction Ti of the stations below it. If the q ready stations are uniformly
distributed, the expected number of them below a specific node at level i is just
ri q. Intuitively, we would expect the optimal level to begin searching the tree as
the one at which the mean number of contending stations per slot is 1, that is, the
level at which Ti q = l. Solving this equation we find that i = log2 q.

Numerous improvements to the basic algorithm have been discovered and are
discussed in some detail by Bertsekas and Gallager (1992). For example, con­
sider the case of stations G and H being the only ones wanting to transmit. _At
node 1 a collision will occur, so 2 will be tried and discovered idle. It is pointless
to probe node 3 since it is guaranteed to have a collision (we know that two or
more stations under 1 are ready and none of them are under 2 so they must all be
under 3). The probe of 3 can be skipped and 6 tried next. When this probe also
turns up nothing, 7 can be skipped and node G tried next.

260 THE MEDIUM ACCESS SUBLAYER CHAP. 4

4.2.5. Wavelength Division Multiple Access Protocols

A different approach to channel allocation is to divide the channel into sub­
channels using FDM, TDM, or both, and dynamically allocate them as needed.
Schemes like this are commonly used on fiber optic LANs in order to permit dif­
ferent conversations to use different wavelengths (i.e., frequencies) at the same
time. In this section we will examine one such protocol (Humblet et al., 1992).

A simple way to build an all-optical LAN is to use a passive star coupler (see
Fig. 2-10). In effect, two fibers from each station are fused to a glass cylinder.
One fiber is for output to the cylinder and one is for input from the cylinder.
Light output by any station illuminates the cylinder and can be detected by all the
other stations. Passive stars can handle hundreds of stations.

To allow multiple transmissions at the same time, the spectrum is divided up
into channels (wavelength bands), as shown in Fig. 2-24. In this protocol,
WDMA (Wavelength Division Multiple Access), each station is assigned two
channels. A narrow channel is provided as a control channel to signal the station,
and a wide channel is provided so the station can output data frames.

Station

m time slots
for control
,--A-....,

I I I
A I ~ li!I M 1M I li!I M 1M I I ••.

_-I I I I I Isl

n + 1 time slots for data

I I I

- I lxli<~I I !XIX! I I ~lx)i<j I ®xi · ·· B's control channel
B - B's data channel

- C's control channel
C - C's data channel

- D's control channel
D - D's data channel

Time-

l s I

A's control channel is
- used by other stations

to contact A

Used by B to
- transmit data

Fig. 4-10. Wavelength division multiple access.

Each channel is divided up into groups of time slots, as depicted in Fig. 4-10.
Let us call the number of slots in the control channel m and the number of slots in
the data channel n + 1, where n of these are for data and the last one is used by the
station to report on its status (mainly, which slots on both channels are free). On
both channels, the sequence of slots repeats endlessly, with slot O being marked in

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 261

a special way so latecomers can detect it. All channels are synchronized by a sin­
gle global clock.

The protocol supports three classes of traffic: (1) constant data rate
connection-oriented traffic, such as uncompressed video, (2) variable data rate
connection-oriented traffic, such as file transfer, and (3) datagram traffic, such as
UDP packets. For the two connection-oriented protocols, the idea is that for A to
communicate with B, it must first insert a CONNECTION REQUEST frame in a free
slot on B's control channel. If B accepts, communication can take place on A's
data channel.

Each station has two transmitters and two receivers, as follows:

1. A fixed-wavelength receiver for listening to its own control channel.

2. A tunable transmitter for sending on other station's control channel.

3. A fixed-wavelength transmitter for outputting data frames.

4. A tunable receiver for selecting a data transmitter to listen to.

In other words, every st~tion listens to its own control channel for incoming
requests but has to tune to the transmitter's wavelength to get the data.
Wavelength tuning is done by a Fabry-Perot or Mach-Zehnder interferometer that
filters out all wavelengths except the desired wavelength band.

Let us now consider how station A sets up a class 2 communication channel
with station B for, say, file transfer. First, A tunes its data receiver to B's data
channel and waits for the status slot. This slot tells which control slots are
currently assigned and which are free. In Fig. 4-10, for example, we see that of
B's eight control slots, 0, 4, and 5 are free. The rest are occupied (indicated by
crosses).

A picks one of the free control slots, say, 4, and inserts its CONNECTION

REQUEST message there. Since B constantly monitors its control channel, it sees
the request and grants it by assigning slot 4 to A. This assignment is announced in
the status slot of the control channel. When A sees the announcement, it knows it
has a unidirectional connection. If A asked for a two-way connection, B now
repeats the same algorithm with A.

It is possible that at the same time A tried to grab B's control slot 4, C did the
same thing. Neither will get it, and both will notice the failure by monitoring the
status slot in B's control channel. They now each wait a random amount of time
and try again later.

At this point, each party has a conflict-free way to send short control mes­
sages to the other one. To perform the file transfer, A now sends B a control mes­
sage saying, for example, "Please watch my next data output slot 3. There is a
data frame for you in it." When B gets the control message, it tunes its receiver to
A's output channel to read the data frame. Depending on the higher-layer proto­
col, B can use the same mechanism to send back an acknowledgement if it wishes.

262 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Note that a problem arises if both A and C have connections to Band each of
them suddenly tells B to look at slot 3. B will pick one of these at random, and the
other transmission will be lost.

For constant rate traffic, a variation of this protocol is used. When A asks for
a connection, it simultaneously says something like: Is it all right if I send you a
frame in every occurrence of slot 3? If Bis able to accept (i.e., has no previous
commitment for slot 3), a guaranteed bandwidth connection is established. If not,
A can try again with a different proposal, depending on which output slots it has
free.

Class 3 (datagram) traffic uses yet another variation. Instead of writing a
CONNECTION REQUEST message into the control slot it just found (4), it writes a
DATA FOR YOU IN SLOT 3 message. If B is free during the next data slot 3, the
transmission will succeed. Otherwise, the data frame is lost. In this manner, no
connections are ever needed.

Several variants of the entire protocol are possible. For example, instead of
giving each station its own control channel, a single control channel can be shared
by all stations. Each station is assigned a block of slots in each group, effectively
multiplexing multiple virtual channels onto one physical one.

It is also possible to make do with a single tunable transmitter and a single
tunable receiver per station by having each station' s channel be divided up into m
control slots followed by n + l data slots. The disadvantage here is that senders
have to wait longer to capture a control slot and consecutive data frames are
further apart because some control information is in the way.

Numerous other WDMA protocols have been proposed, differing in the
details. Some have one control channel, some have multiple control channels.
Some take propagation delay into account, others do not; some make tuning time
an explicit part of the model, others ignore it. The protocols also differ in terms
of processing complexity, throughput and scalability. For more information see
(Bogineni et al., 1993; Chen, 1994; Chen and Yum, 1991 ; Jia and Mukherjee,
1993; Levine and Akyildiz, 1995; and Williams et al., 1993).

4.2.6. Wireless LAN Protocols

As the number of portable computing and communication devices grows, so
does the demand to connect them to the outside world. Even the very first port­
able telephones had the ability to connect to other telephones. The first portable
computers did not have this capability, but soon afterward, modems became com­
monplace. To go on-line, these computers had to be plugged into a telephone wall
socket. Requiring a wired connection to the fixed network meant that the comput­
ers were portable, but not mobile.

To achieve true mobility, portable computers need to use radio (or infrared)
signals for communication. In this manner, dedicated users can read and send

, '

.. ··

: ..

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 263

email while driving or boating. A system of portable computers that communi­
cate by radio can be regarded as a wireless LAN. These LANs have somewhat
different properties than conventional LANs and require special MAC sublayer
protocols. In this section we will examine some of these protocols. More infor­
mation about wireless LANs can be found in (Davis and McGuffin, 1995; and
Nemzow, 1995).

A common configuration for a wireless LAN is an office building with base
stations strategically placed around the building. All the base stations are wired
together using copper or fiber. If the transmission power of the base stations and
portables is adjusted to have a range of 3 or 4 meters, then each room becomes a
single cell, and the entire building becomes a large cellular system, as in the tradi­
tional cellular telephony systems we studied in Chap. 2. Unlike cellular telephone
systems; each cell has only one channel, covering the entire available bandwidth.
Typically its bandwidth is 1 to 2 Mbps.

In our discussions below, we will make the simplifying assumption that all
radio transmitters have some fixed range. When a receiver is within range of two
active transmitters, the resulting signal will generally be garbled and useless (but
with certain exceptions to be discussed later). It is important to realize that in
some wireless LANs, not all stations are within range of one another, which leads
to a variety of complications. Furthermore, for indoor wireless LAN s, the pres­
ence of walls between stations can have a major impact on the effective range of
each station.

A naive approach to using a wireless LAN might be to try CSMA: just listen
for other transmissions and only transmit if no one else is doing so. The trouble
is, this protocol is not really appropriate because what matters is interference at
the receiver, not at the sender. To see the nature of the problem, consider Fig. 4-
11, where four wireless stations are illustrated. For our purposes, it does not
matter which are base stations and which are portables. The radio range is such
that A and B are within each other's range and can potentially interfere with one
another. C can also potentially interfere with both B and D, but not with A.

* Radio range

[fil [fil

(a) (b)

Fig. 4-11. A wireless LAN. (a) A transmitting. (b) B transmitting.

First consider what happens when A is transmitting to B, as depicted in
Fig. 4-1 l(a). If C senses the medium, it will not hear A because A is out of range,
and thus falsely conclude that it can transmit. If C does start transmitting, it will
interfere at B, wiping out the frame from A. The problem of a station not being

264 THE MEDIUM ACCESS SUBLAYER CHAP. 4

able to detect a potential competitor for the medium because the competitor is too
far away is sometimes called the hidden station problem.

Now let us consider the reverse situation: B transmitting to A, as shown in
Fig. 4-ll(b). If C senses the medium, it will hear an ongoing transmission and
falsely conclude that it may not send to D, when in fact such a transmission would
cause bad reception only in the zone between B and C, where neither of the
intended receivers is located. This situation is sometimes called the exposed sta­
tion problem.

The problem is that before starting a transmission, a station really wants to
know whether or not there is activity around the receiver. CSMA merely tells it
whether or not there is activity around the station sensing the carrier. With a wire,
all signals propagate to all stations so only one transmission can take place at once
anywhere in the system. In a system based on short-range radio waves, multiple
transmissions can occur simultaneously if they all have different destinations and
these destinations are out of range of one another.

Another way to think about this problem is to imagine an office building in
which every employee has a wireless portable computer. Suppose that Linda
wants to send a message to Milton. Linda's computer senses the local environ­
ment and, detecting no activity, starts sending. However, there may still be a col­
lision in Milton' s office because a third party may currently be sending to him
from a location so far from Linda that her computer could not detect it.

MACA and MACAW

An early protocol designed for wireless LANs is MACA (Multiple Access
with Collision Avoidance) (Kam, 1990). It was used as the basis for the IEEE
802.11 wireless LAN standard. The basic idea behind it is for the sender to stimu­
late the receiver into outputting a short frame, so stations nearby can detect this
transmission and avoid transmitting themselves for the duration of the upcoming
(large) data frame. MACA is illustrated in Fig. 4-12.

Let us consider how A sends a frame to B. A starts by sending an RTS

(Request To Send) frame to B, as shown in Fig. 4-12(a). This short frame (30
bytes) contains the length of the data frame that will eventually follow. Then B
replies with a CTS (Clear To Send) frame, as shown in Fig. 4-12(b). The CTS

frame contains the data length (copied from the RTS frame). Upon receipt of the
CTS frame, A begins transmission.

Now let us see how stations overhearing either of these frames react. Any
station hearing the RTS is clearly close to A and must remain silent long enough
for the CTS to be transmitted back to A without conflict. Any station hearing the
CTS is clearly close to B and must remain silent during the upcoming data
transmission, whose length it can tell by examining the CTS frame.

In Fig. 4-12, C is within range of A but not within range of B. Therefore it
hears the RTS from A put not the CTS from B. As long as it does not interfere with

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS

/ Range of A's transmitter

(a)

"-. Range of B's
transmitter

(b)

Fig. 4-12. The MACA protocol. (a) A sending an RTS to B. (b) B responding
with a crs to A.

265

the CTS, it is free to transmit while the data frame is being sent. In contrast, D is
within range of B but not A. It does not hear the RTS but does hear the CTS. Hear­
ing the CTS tips it off that it is close to a station that is about to receive a frame, so
it defers from sending anything until. that frame is expected to be finished. Station
E hears both control messages, and like D, must be silent until the data frame is
complete.

Despite these precautions, collisions can still occur. For example, B and C
could both send M'S frames to A at the same time. These will collide and be lost.
In the event of a collision, an unsuccessful transmitter (i.e., one that does not hear
a CTS within the expected time interval) waits a random amount of time and tries
again later. The algorithm used is binary exponential backoff, which we will
study when we come to the IEEE 802.3 LAN.

Based on simulation studies of MACA, Bharghavan et al. (1994) fine tuned
MACA to improve its performance and renamed their new protocol MACAW.
To start with, they noticed that without data link layer acknowledgements, lost
frames were not retransmitted until the transport layer noticed their absence, much
later. They solved this problem by introducing an ACK frame after each success­
ful data frame. They also observed that CSMA has some utility-namely to keep
a station from transmitting an RTS at the same time another nearby station is also
doing so to the same destination, so carrier sensing was added. In addition, they
decided to run the backoff algorithm separately for each data stream (source­
destination pair), rather than for each station. This change improves the fairness
of the protocol. Finally, they added a mechanism for stations to exchange infor­
mation about congestion, and a way to make the backoff algorithm react less
violently to temporary problems, to improve system performance.

266 THE MEDIUM ACCESS SUBLAYER CHAP. 4

4.2.7. Digital Cellular Radio

A second form of wireless networking is digital cellular radio, the successor
to the AMPS system we studied in Chap. 2. Digital cellular radio presents a
somewhat different environment than do wireless LAN s and uses different proto­
cols. In particular, it is oriented toward telephony, which requires connections
lasting for minutes, rather than milliseconds, so it is more efficient to do channel
allocation per call rather than per frame. Nevertheless, the techniques are equally
valid for data traffic. In this section we will look at three radically different
approaches to channel allocation for wireless digital radio systems, GSM, CDPD,
and CDMA.

GSM-Global System for Mobile Communications

The first generation of cellular phones were analog, as described in Chap. 2,
but the current generation is digital, using packet radio. Digital transmission has
several advantages over analog for mobile communication. First, voice, data, and
fax, can be integrated into a single system. Second, as better speech compression
algorithms are discovered, less bandwidth will be needed per channel. Third,
error-correcting codes can be used to improve transmission quality. Finally, digi-
tal signals can be encrypted for security. .

Although it might ha, e been nice if the whole world had adopted the same
digital standard, such is I ot the case. The U.S. system, IS-54, and the Japanese
system, JDC, have been designed to be compatible with each country's existing
analog system, so each AMPS channel could be used either for analog or digital
communication.

In contrast, the European digital system, GSM (Global System for Mobile
communications), has been designed from scratch as a fully digital system,
without any compromises for the sake of backward compatibility (e.g., having to
use the existing frequency slots). Since GSM is also further along than the U.S.
system and is currently in use in over 50 countries, inside and outside of Europe,
we will use it as an example of digital cellular radio.

GSM was originally designed for use in the 900-MHz band. Later, frequen­
cies were allocated at 1800 MHz, and a second system, closely patterned on
GSM, was set up there. The latter is called DCS 1800, but it is essentially GSM.

The GSM standard is over 5000 [sic] pages long. A large fraction of this
material relates to engineering aspects of the system, especially the design of
receivers to handle multipath signal propagation, and synchronizing transmitters
and receivers.

A GSM system has up to a maximum of 200 full-duplex channels per cell.
Each channel consists of a downlink frequency (from the base station to the
mobile stations) and an uplink frequency (from the mobile stations to the base sta­
tion). Each frequency band is 200 kHz wide as shown in Fig. 4-13 .

.
. ...

'.

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 267

~ Channel

959.8 MHz ._I I I __.__ I _._I _._1 1_._ I I I I_.I__.__ I I _.I_I I I I I ~j 124 }

1 :: ~:: I : ~ : : : : I : ~ : : : j I : ~ : : : : I : ~ : : : : j : =,;,.
~
C
Q)

g 914.8 MHz I I I I I I I I I I I I 1
124 } u:: '--'------'---''--'-........... _._ _._ _._ _._ _._ _._ _._

• Mobile

::~:: ~~:
1

: ~ : : : :
1

: ~ : : : : j : ~ : : : :
1

: ~ : : : :
1

~ to base

Time--

Fig. 4-13. GSM uses 124 frequency channels, each of which use an eight-slot
TDM system.

Each of the 124 frequency channels supports eight separate connections using
time division multiplexing. Each currently active station is assigned one time slot
on one channel. Theoretically, 992 channels can be supported in each cell, but
many of them are not available, to avoid frequency conflicts with neighboring
cells. In Fig. 4-13, the eight shaded time slots all belong to the same channel, four
of them in each direction. If the mobile station assigned to 890.4/935.4 MHz and
slot 2 wanted to transmit to the base station, it would use the lower four shaded
slots (and the ones following them in time), putting some data in each slot until all
the data had been sent.

The TDM slots shown in Fig. 4-13 are part of a complex framing hierarchy.
Each TDM slot has a specific structure, and groups of TDM slots form mul­
tiframes, also with a specific structure. A simplified version of this hierarchy is
shown in Fig. 4-14. Here we can see that each TDM slot consists of a 148-bit
data frame. Each data frame starts and ends with three O bits, for frame delinea­
tion purposes. It also contains two 57-bit Information fields, each one having a
control bit that indicates whether the following Information field is for voice or
data. Between the Information fields is a 26-bit Sync (training) field that is used
by the receiver to synchronize to the sender's frame boundaries. A data frame is
transmitted in 547 µsec, but a transmitter is only allowed to send one data frame
every 4.615 msec, since it is sharing the channel with seven other stations. The
gross rate of each channel is 270,833 bps, divided among eight users. Discount­
ing all the overhead. each connection can send one compressed voice signal or
9600 bps of data.

As can be seen from Fig. 4-14, eight data frames make up a TDM frame, and
26 TDM frames make up a 120-msec multiframe. Of the 26 TDM frames in a

268 THE MEDIUM ACCESS SUBLAYER CHAP. 4

---------32,500-Bit multiframe sent in 120 msec ---------­

C
0 1 2 3 4 5 6 7 8 9 10 11 T 13 14 15 16 17 18 19 20 21 22 23 24

L

--
- _.,,._ --"-~- ------- 1250-Bit TDM frame sent in 4.615 msec

---------------- ... _ Reserved
for future

--- use

,.._c.----0 ~I ~I : __ ~J ,~t_:~I ~5 1-6 1---=-7 --1
11

8.25-bit
// ',,_ - - (30 µsec)

/ ', guard time
_, /148-Bit data frame sent in 547 µse;',,, -
000 Information Sync Information 000

Bits 3 57 26 57 3
Voice/data bit

Fig. 4-14. A portion of the GSM framing structure.

multiframe, slot 12 is used for control and slot 25 is reserved for future use, so
only 24 are available for user traffic.

However, in addition to the 26-slot multiframe shown in Fig. 4-14, a 51-slot
multiframe (not shown) is also used. Some of these slots are used to hold several
control channels used to manage the system. The broadcast control channel is a
continuous stream of output from the base station containing its identity and the
channel status. All mobile stations monitor its signal strength to see when they
have moved into a new cell.

The dedicated control channel is used for location updating, registration,
and call setup. In particular, each base station maintains a database of mobile sta­
tions currently under its jurisdiction. Information needed to maintain this data­
base is sent on the dedicated control channel.

Finally, there is the common control channel, which is split up into three
logical subchannels. The first of these subchannels is the paging channel, which
the base station uses to announce incoming calls. Each mobile station monitors it
continuously to watch for calls it should answer. The second is the random
access channel, which runs a slotted ALOHA system to allow a mobile station to
request a slot on the dedicated control channel. Using this slot, the station can set
up a call. The assigned slot is announced on the third subchannel, the access
grant channel.

All in all, GSM is a fairly complex system. It handles channel access using a
combination of slotted ALOHA, FDM and TDM. For more information about
GSM, including aspects of the system that we have not discussed, for example,
the protocol layering architecture, see (Rahnema, 1993).

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 269

CDPD-Cellular Digital Packet Data

GSM is basically circuit switched. A mobile computer with a special modem
can place a call using a GSM telephone the same way it would place one on a
hardwired telephone. However, using this strategy is not without problems. For
one, handoffs between base stations are frequent, sometimes even with stationary
users (base stations can shuffle users around for load balancing), and each handoff
results in losing ca. 300 msec of data. For another, GSM can suffer from a high
error rate. Typing an "a" and having it echoed as an "m" gets tiresome quickly.
Finally, wireless calls are expensive, and costs mount quickly because the charge
is per minute of connect time, not per byte sent.

One approach to solving these problems is a packet-switched digital datagram
service called CDPD (Cellular Digital Packet Data). It is built on top of AMPS
(see Chap. 2) and entirely compatible with AMPS. Basically, any idle 30-kHz
channel can be temporarily grabbed for sending data frames at a gross rate of 19.2
kbps. Because· CDPD involves quite a bit of overhead, the net data rate is closer
to 9600 bps. Still, a connectionless, wireless datagram system for sending, for
example, IP packets, using the existing cellular phone system is an interesting
proposition for many users, so its use is growing rapidly.

CDPD follows the OSI model closely. The physical layer deals with the
details of modulation and radio transmission, which do not concern us here. Data
link, network, and transport protocols also exist but are not of special interest to us
either. Instead, we will give a general description of the system and then describe
the medium access protocol. For more information about the full CDPD system,
see (Quick and Balachandran, 1993).

A CDPD system consists of three kinds of stations: mobile hosts, base sta­
tions, and base interface stations (in CDPD jargon: mobile end systems, mobile
data base systems, and mobile data intermediate systems, respectively). These
stations interact with stationary hosts and standard routers, of the kind found in
any WAN. The mobile hosts are the users' portable computers. The base stations
are the transmitters that talk to the mobile hosts. The base interface stations are
special nodes that interface all the base stations in a CDPD provider's area to a
standard (fixed) router for further transmission through the Internet or other
WAN. This arrangement is shown in Fig. 4-15.

Three kinds of interfaces are defined in CDPD. The E-interface (external to
the CDPD provider) connects a CDPD area to a fixed network. This interface
must be well defined to allow CDPD to connect to a variety of networks. The I­
interface (internal to the CDPD provider) connects two CDPD areas together. It
must be standardized to allow users to roam between areas. The third one is the
A-interface, (air interface) between the base station and mobile hosts. This is the
most interesting one, so we will now examine it more closely.

Data over the air interface are sent using compression, encryption, and error
correction. Units of 274 compressed, encrypted data bits are wrapped in 378-bit

270

To fixed network

Base
interface

station

THE MEDIUM ACCESS SUBLAYER

To fixed network

~0
~Qi

~0
0~

station

r..l Mobile
l.'!'J-host

Fig. 4-15. An example CDPD system.

CHAP. 4

blocks using a Reed-Solomon error correcting code. To each RS block is added
seven 6-bit flag words, to form a total of 420-bit blocks. Each 420-bit block is
divided up into seven 60-bit microblocks, which are sent consecutively. Each
microblock has its own 6-bit flag word, used for indicating channel status. These
microblocks go over a 19.2-kbps downlink channel (from the base) or over a
second 19.2-kbps uplink channel (to the base), in full-duplex mode. In effect,
both the downlink and uplink channel are slotted in time, as a sequence of 60-bit
microblocks. Each microblock lasts for 3.125 msec.

Each CDPD cell has only one downlink/uplink pair available for data. The
downlink channel is easy to manage since there is only one sender per cell: the
base station. All frames sent on it are broadcast, with each mobile host selecting
out those destined for it or for everyone.

The tricky part is the uplink channel, for which all mobile hosts wishing to
send must contend. When a mobile host has a frame to send, it watches the down­
link channel for a flag bit telling whether the current uplink slot is busy or idle. If
it is busy, instead of just waiting for the next time slot, it skips a random number
of slots and tries again. If it again sees that the uplink channel is busy, it waits a
longer random time, and repeats the procedure. The statistically average waiting
time doubles with each unsuccessful attempt. When it finally finds the channel
supposedly idle, it begins transmitting its microblock.

The point of this algorithm, called DSMA (Digital Sense Multiple Access),
is to prevent all the mobile hosts from jumping on the uplink channel as soon it
goes idle. It som~what resembles the slotted p-persistent CSMA protocol we
mentioned earlier, since it, too, uses discrete time slots on both channels.

The trouble is, despite DSMA, a collision with another mobile host is still
possible, since two or more of them may pick the same time slot to starting send­
ing. To allow mobile hosts to discover whether or not they have suffered a colli­
sion, a flag bit in each microblock tells whether a previous microblock on the

, .

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 271

uplink channel was received correctly. Unfortunately, the base station cannot
make the determination instantly after a microblock terminates, so the
correct/incorrect reception of mictoblock n is delayed until microblock n + 2.

Since it cannot tell if its transmission was successful, if a sender has more
microblocks to send, it just goes ahead, without having to reacquire the channel.
If in the following time slot it sees that its previous transmission failed, it stops.
Otherwise it continues transmitting, up to a certain maximum number of Reed­
Solomon blocks, or until the base station sets a flag bit on the downlink channel to
indicate that it has heard enough from this partkular sender for the moment.

An additional property of CDPD is that data users are second-class citizens.
When a new voice call is about to be assigned to a channel currently in use for
CDPD, the base station sends a special signal on the downlink, closing down the
channel. If the base station already knows the number of the new CDPD channel,
it announces it. Otherwise, mobile hosts have to hunt around among a designated
set of potential CDPD channels to find it. In this way, CDPD can suck up any
idle capacity in a cell, without interfering with the big cash cow, voice.

It should be clear from this description that CDPD was added to the voice sys­
tem after the latter was already operational, and that its design was subject to the
constraint that no changes could be made to the existing voice system. Conse­
quently, when channel selection for voice calls occurs, the algorithm is not aware
of the existence of CDPD. This is the reason that the CDPD channel is sometimes
suddenly preempted. However, nothing in the _design prevents having dedicated
CDPD channels. As CDPD grows in popularity, providers are likely to reserve
channels exclusively for it.

CDMA-Code Division Multiple Access

GSM might be described as a brute force solution to channel allocation. It
uses a combination of practically every known technique (ALOHA, TDM, FDM)
intertwined in complex ways. CDPD for single-frame transmissions is fundamen­
tally nonpersistent CSMA. Now we will examine yet another method for allocat­
ing a wireless channel, CDMA (Code Division Multiple Access).

CDMA is completely different from all the other allocation techniques we
have studied so far. Some of these have been based on dividing the channel into
frequency bands and assigning those statically (FDM) or on demand (wavelength
division multiplexing), with the owner using the band indefinitely. Others allo­
cate the channel in bursts, giving stations the entire channel statically (TDM with
fixed time slots) or dynamically (ALOHA). CDMA allows each station to
transmit over the entire frequency spectrum all the time. Multiple simultaneous
transmissions are separated using coding theory. CDMA also relaxes the assump­
tion that colliding frames are totally garbled. Instead, it assumes that multiple sig­
nals add linearly.

Before getting into the algorithm, let us consider the cocktail party theory of

272 THE MEDIUM ACCESS SUBLAYER CHAP. 4

channel access. In a large room, many pairs of people are conversing. TDM is
when all the people are in the middle of the room, but they take turns speaking,
first one then another. FDM is when the people group into widely separated
clumps, each clump holding its own conversation at the same time as, but still
independent of, the others. CDMA is when they are all in the middle of the room
talking at once, but with each pair in a different language. The French-speaking
couple just hones in on the French, rejecting everything else as noise. Thus the
key to CDMA is to be able to extract the desired signal while rejecting everything
else as random noise.

In CDMA each bit time is subdivided into m short intervals called chips.
Typically there are 64 or 128 chips per bit, but in the example given below we
will use 8 chips/bit for simplicity.

Each station is assigned a unique m-bit code or chip sequence. To transmit a
1 bit, a station sends its chip sequence. To transmit a O bit, it sends the one's
complement of its chip sequence. No other patterns are permitted. Thus for
m = 8, if station A is assigned the chip sequence 00011011, it sends a 1 bit by
sending 00011011 and a Obit by sending 11100100.

Increasing the amount of information to be sent from b bits/sec to mb
chips/sec can only be done if the bandwidth available is increased by a factor of
m, making CDMA a form of spread spectrum communication (assuming no
changes in the ·modulation or encoding techniques). If we have a 1-MHz band
available for 100 stations, with FDM each one would have 10 kHz and could send
at 10 kbps (assuming 1 bit per Hz). With CDMA, each station uses the full 1
MHz, so the chip rate is 1 megachip per second. With fewer than 100 chips per
bit, the effective bandwidth per station is higher for CDMA than FDM, and the
channel allocation problem is also solved, as we will see shortly.

For pedagogical purposes, it is more convenient to use a bipolar notation, with
binary O being -1 and binary 1 being +l. We will show chip sequences in
parentheses, so a 1 bit for station A now becomes (-1 -1 -1 + 1 + 1 -1 + 1 + 1). In
Fig. 4-16(a) we show the binary chip sequences assigned to four example stations.
In Fig. 4-16(b) we show them in our bipolar notation.

Each station has its own unique chip s~uence. Let us use the symbol S to
indicate the m-chip vector for station S, and S for its negation. All chip sequences
are pairwise orthogonal, by which we mean that the normalized inner product of
any two distinct chip sequences, S and T (written as S•T) is 0. In mathematical
terms,

(4-5)

In plain English, as many pairs are the same as are different. Thi_s orthogonality
property will prove crucial later on. Note that if S•T = 0 then S•T is also 0. The
normalized inner product of any chip sequence with itself is 1:

l m l m 1 m
S•S = - Lsisi = - "12St = - '12(±1)2 = 1

m i=l m i=l m i=l

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS

A: 0 0 0 11 0 1 1
B: 0 0 1 0 1 1 1 0
C: 0 1 0 1 1 1 0 0
D: 0100001 0

(a)

Six examples:

--1- C
-11- B+C
10-- A+B
101- A+B+C

A: (-1 -1 -1 +1 +1 -1 +1 +1)
B: (-1-1 +1 -1 +1 +1 +1 -1)
C: (-1 +1 -1 +1 +1 +1 -1 -1)
D: (-1 +1-1 -1 -1-1 +1 -1)

(b)

1111 A+B+C+D

S1 = (-1 +1 -1 +1 +1 +1 -1 -1)
S2 = (-2 0 0 0 +2 +2 0-2)
S3 = (0 0 -2 +2 0 -2 0 +2)
S4 = (-1 +1-3 +3-1 -1 -1 +1)
S5 = (-4 0 -2 0 +2 0 +2 -2)
Ss = (-2 -2 0 -2 0 -2 +4 0) 1101 A+B+C+D

(c)

S1 •C=(1 +1 +1 +1 +1 +1 +1 +1)/8= 1
S2 • C = (2 +0 +O +O +2 +2 +O +2)/8 = 1
S3 • C = (0 +0 +2 +2 +0 -2 +0 -2)/8 = 0
S4 • C = (1 + 1 +3 +3 + 1 -1 + 1 -1)/8 = 1
S5 • C = (4 +0 +2 +0 +2 +0 -2 +2)/8 = 1
S6 • C= (2-2+0-2+0-2-4+0)/8=-1

(d)

Fig. 4-16. (a) Binary chip sequences for four stations. (b) Bipolar chip se­
quences. (c) Six examples of transmissions. (d) Recovery of station C's signal.

273

This follows because _each of the m terms in the inner product is 1, so the sum is
m. Also note that S•S = -1.

During each bit time, a station can transmit a 1 by sending its chip sequence,
it can transmit a 0 by sending the negative of its chip sequence, or it can be silent
and transmit nothing. For the moment, we assume that all stations are synchron­
ized in time, so all chip sequences begin at the same instant.

When two or more stations transmit simultaneously, their bipolar signals add
linearly. For example, if in one chip period three stations output +1 and one sta­
tion outputs -1, the result is +2. One can think of this as adding voltages: three
stations outputting + 1 volts and 1 station outputting -1 volts gives 2 volts.

In Fig. 4-16(c) we see six examples of one or more stations transmitting at the
same time. In the first example, C transmits a 1 bit, so we just get C's chip
sequence. In the second example, both B and C transmit 1 bits, so we get the sum
of their bipolar chip sequences, namely:

(-1-1+1-l+l+l+l-1)+(-1+1-l+l+l+l-1-1)=(-2 0 0 0+2+2 0-2)

In the third example, station A sends a 1 and station B sends a 0. The others are
silent. In the fourth example, A and C send a 1 bit while B sends a Obit. In the
fifth example, all four stations send a 1 bit. Finally, in the last example, A, B, and

274 THE MEDIUM ACCESS SUBLAYER CHAP. 4

D send a 1 bit, while C sends a O bit. Note that each of the six sequences S 1
through S 6 given in Fig. 4-16(c) represents only one bit time.

To recover the bit stream of an individual station, the receiver must know that
station's chip sequences in advance. It does the recovery by computing the nor­
malized inner product of the received chip sequence (the linear sum of all the sta­
tions that transmitted) and the chip sequence of the station whose bit stream it is
trying to recover. If the received chip sequence is S and the receiver is trying to
listen to a station whose chip sequence is C, it just computes the normalized inner
product, S•C.

To see why this works, imagine that two stations, A and C, both transmit a 1
bit at the same time that B transmits a O bit. The receiver sees the sum:
S = A + B + C and computes

S•C=(A+B+C)•C=A•C+B•C+C•C=0+0+ 1 = 1

The first two terms vanish because all pairs of chip sequences have been carefully
chosen to be orthogonal, as shown in Eq. (4-5). Now it should be clear why this
property must be imposed on the chip sequences.

An alternative way of thinking about this situation is to imagine that the three
chip sequences all came in separately, rather than summed. Then the receiver
would compute the inner product with each one separately and add the results.
Due to the orthogonality property, all the inner products except C•C would be 0.
Adding them and then doing the inner product is in fact the same as doing the
inner products and then adding those.

To make the decoding process more concrete, let us consider the six examples
of Fig. 4-16(d) again. Suppose that the receiver is interested in extracting the bit
sent by station C from each of the six sums S 1 through S 6 . It calculates the bit by
summing the pairwise products of the received S and the C vector of Fig. 4-16(b),
and then taking 1/8 of the result (since m = 8 here). As shown, each time the
correct bit is decoded. It is just like speaking French.

In an ideal, noiseless CDMA system, the capacity (i.e., number of stations)
can be made arbitrarily large, just as the capacity of a noiseless Nyquist channel
can be made arbitrarily large by using more and more bits per sample. In prac­
tice, physical limitations reduce the capacity considerably. First, we have
assumed that all the chips are synchronized in time. In reality, doing so is impos­
sible. What can be done is that the sender and receiver synchronize by having the
sender transmit a long enough known chip sequence that the receiver can lock
onto. All the other (unsynchronized) transmissions are then seen as random noise.
If there are not too many of them, however, the basic decoding algorithm still
works fairly well. A large body of theory exists relating the superposition of chip
sequences to noise level (Pickholtz et al., 1982). As one might expect, the longer
the chip sequence, the higher the probability of detecting it correctly in the pres­
ence of noise. For extra security, the bit sequence can use an error correcting
code. Chip sequences never use error correcting codes.

SEC. 4.2 MULTIPLE ACCESS PROTOCOLS 275

An implicit assumption in the above discussion is that the power levels of all
stations are the same as perceived by the receiver. CDMA is typically used for
wireless systems with a fixed base station and many mobile stations at varying
distances from it. The power levels received at the base station depend on how
far away the transmitters are. A good heuristic here is for each mobile station to
transmit to the base station at the inverse of the power level it receives from the
base station, so a mobile station receiving a weak signal from the base will use
more power than one getting a strong signal. The base station can also give expli­
cit commands to the mobile stations to increase or decrease their transmission
power.

We have also assumed that the receiver knows who the sender is. In princi­
ple, given enough computing capacity, the receiver can listen to all the senders at
once by running the decoding algorithm for each of them in parallel. In real life,
suffice it to say that this is easier said than done. CDMA also has many other
complicating factors that have been glossed over in this brief introduction.
Nevertheless, CDMA is a clever scheme that is being rapidly introduced for wire­
less mobile communication.

Readers with a solid electrical engineering background who want to gain a
deeper understanding of CDMA should read (Viterbi, 1995). An alternative
spreading scheme, in which the spreading is over time rather than frequency, is
described in (Crespo et al., 1995).

4.3. IEEE STANDARD 802 FOR LANS AND MANS

We have now finished our general discussion of abstract channel allocation
protocols, so it is time to see how these principles apply to real systems, in partic­
ular, LANs. As discussed in Sec. 1.7.2, IEEE has produced several standards for
LANs. These standards, collectively known as IEEE 802, include CSMA/CD,
token bus, and token ring. The various standards differ at the physical layer and
MAC sublayer but are compatible at the data link layer. The IEEE 802 standards
have been adopted by ANSI as American National Standards, by NIST as govern­
ment standards, and by ISO as international standards (known as ISO 8802).
They are surprisingly readable (as standards go).

The standards are divided into parts, each published as a separate book. The
802.1 standard gives an introduction to the set of standards and defines the inter­
face primitives. The 802.2 standard describes the upper part of the data link layer,
which uses the LLC (Logical Link Control) protocol. Parts 802.3 through 802.5
describe the three LAN standards, the CSMA/CD, token bus, and token ring
standards, respectively. Each standard covers the physical layer and MAC sub­
layer protocol. The next three sections cover these three systems. Additional
information can be found in (Stallings, 1993b).

.•

276 THE MEDIUM ACCESS SUBLAYER CHAP. 4

4.3.1. IEEE Standard 802.3 and Ethernet

The IEEE 802.3 standard is for a I-persistent CSMA/CD LAN. To review the
idea, when a station wants to transmit, it listens to the cable. If the cable is busy,
the station waits until it goes idle; otherwise it transmits immediately. If two or
more stations simultaneously begin transmitting on an idle cable, they will collide.
All colliding stations then terminate their transmission, wait a random time, and
repeat the whole process all over again.

The 802.3 standard has an interesting history. The real beginning was the
ALOHA system constructed to allow radio communication between machines
scattered over the Hawaiian Islands. Later, carrier sensing was added, and Xerox
PARC built a 2.94-Mbps CSMA/CD system to connect over 100 personal work­
stations on a 1-km cable (Metcalfe and Boggs, 1976). This system was called
Ethernet after the luminiferous ether, through which electromagnetic radiation
was once thought to propagate. (When the Nineteenth Century British physicist
James Clerk Maxwell discovered that electromagnetic radiation could be
described by a wave equation, scientists assumed that space must be filled with
some ethereal medium in which the radiation was propagating. Only after the
famous Michelson-Morley experiment in 1887, did physicists discover that elec­
tromagnetic radiation could propagate in a vacuum.)

The Xerox Ethernet was so successful that Xerox, DEC, and Intel drew up a
standard for a 10-Mbps Ethernet. This standard formed the basis for 802.3. The
published 802.3 standard differs from the Ethernet specification in that it
describes a whole family of I-persistent CSMA/CD systems, running at speeds
from 1 to 10-Mbps on various media. Also, the one header field differs between
the two (the 802.3 length field is used for packet type in Ethernet). The initial
standard also gives the parameters for a 10 Mbps baseband system using 50-ohm
coaxial cable. Parameter sets for other media and speeds came later.

Many people (incorrectly) use the name "Ethernet" in a generic sense to refer
to all CSMA/CD protocols, even though it really refers to a specific product that
almost implements 802.3. We will use the terms "802.3" and "CSMA/CD"
except when specifically referring to the Ethernet product in the next few para­
graphs.

802.3 Cabling

Since the name "Ethernet" refers to the cable (the ether), let us start our dis­
cussion there. Five types of cabling are commonly used, as shown in Fig. 4-17.
Historically, 10Base5 cabling, popularly called thick Ethernet, came first. It
resembles a yellow garden hose, with markings every 2.5 meters to show where
the taps go. (The 802.3 standard does not actually require the cable to be yellow,
but it does suggest it.) Connections to it are generally made using vampire taps,
in which a pin is carefully forced halfway into the coaxial cable's core. The

,.

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 277

notation 10Base5 means that it operates at 10 Mbps, uses baseband signaling, and
can support segments of up to 500 meters.

Name Cable Max. segment Nodes/seg. Advantages

10Base5 Thick coax 500m 100 Good for backbones

10Base2 Thin coax 200 m 30 Cheapest system

10Base-T Twisted pair 100 m 1024 Easy maintenance

10Base-F Fiber optics 2000m 1024 Best between buildings

Fig. 4-17. The most common kinds of baseband 802.3 LANs.

Historically, the second cable type was 10Base2 or thin Ethernet, which, in
contrast to the garden-hose-like thick Ethernet, bends easily. Connections to it are
made using industry standard . BNC connectors to form T jlinctions, rather than
using vampire taps. These are easier to use and more reiiable. Thin Ethernet is
much cheaper and easier to install, but it can run for only 200 meters and can han­
dle only 30 machines per cable segment.

Detecting cable breaks, bad taps, or loose connectors can be a major problem
with both media. For this reason, techniques have been developed to track them
down. Basically, a pulse of known shape is injected into the cable. If the pulse
hits an obstacle or the end of the cable, an echo will be generated and sent back.
By carefully timing the interval between sending the pulse and receiving the echo,
it is possible to localize the origin of the echo. This technique is called time
domain reflectometry.

The problems associated with finding cable breaks have driven systems
toward a different kind of wiring pattern, in which all stations have a cable run­
ning to a central bub. Usually, these wires are telephone company twisted pairs,
since most office buildings are already wired this way, and there are normally

. plenty of spare pairs available. This scheme is called lOBase-T.
These three wiring scheines are illustrated in Fig. 4-18. For 10Base5, a trans­

ceiver is clamped securely around the cable so that its tap makes contact with the
inner core. The transceiver contains the electronics that handle carrier detection
and collision detection. When a collision is detected, the transceiver also puts a
special irivalid signal on the cable to ensure that all other transceivers also realize
that a collision has occurred.

With 10Base5, a transceiver cable connects the transceiver to an interface
board in the computer. The transceiver cable may be up to 50 meters long and
contains five individually shielded twisted pairs. Two of the pairs are for data in
and data out, respectively. Two more are for control signals in and out. The fifth
pair, which is not always used, allows the computer to power the transceiver elec­
tronics. Some transceivers allow up to eight nearby computers to be attached to
them, to reduce the number of transceivers needed.

278 THE MEDIUM ACCESS SUBLAYER

Connector

(a) (b)

Hub

(c)

CHAP. 4

Fig. 4-18. Three kinds of 802.3 cabling. (a) 10Base5. (b) 10Base2. (c) lOBase-T.

The transceiver cable terminates on an interface board inside the computer.
The interface board contains a controller chip that transmits frames to, and
receives frames from, the transceiver. The controller is responsible for assem­
bling the data into the proper frame format, as well as computing checksums on
outgoing frames and verifying them on incoming frames. Some controller chips
also manage a pool of buffers for incoming frames, a queue of buffers to be
transmitted, DMA transfers with the host computers, and other aspects of network
management.

With 10Base2, the connection to the cable is just a passive BNC T-junction
connector. The transceiver electronics ate on the controller board, and each sta­
tion always has its own transceiver.

With l0Base-T, there is no cable at all, just the hub (a box full of electronics).
Adding or removing a station is simpler in this configuration, and cable breaks
can be detected easily. The disadvantage of lOBase-T is that the maximum cable
run from the hub is only 100 meters, maybe 150 meters if high-quality (category
5) twisted pairs are used. Also, a large hub costs thousands of dollars. Still,
lOBase-T is becoming steadily more popular due to the ease of maintenance that
it offers. A faster version of lOBase-T (lO0Base-T) will be discussed later in this
chapter.

A fourth cabling option for 802.3 is lOBase-F, which uses fiber optics. This
alternative is expensive due to the cost of the connectors and terminators, but it
has excellent noise immunity and is the method of choice when running between
buildings or widely separated hubs.

Figure 4-19 shows different ways of wiring up a building. In Fig. 4-19(a), a
single cable is snaked from room to room, with each station tapping onto it at the
nearest point. In Fig. 4- l 9(b), a vertical spine runs from the basement to the roof,

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 279

with horizontal cables on each floor connected to it by special amplifiers
(repeaters). In some buildings the horizontal cables are thin, and the backbone is
thick. The most general topology is the tree, as in Fig. 4-19(c), because a network
with two paths between some pairs of stations would suffer from interference
between the two signals.

A 8

A 8 C D ,c
Tap

D

--LI-o--Lo-L-
l

Repeater

Backbone-

(a) (b) (c) (d)

Fig. 4-19. Cable topologies. (a) Linear. (b) Spine. (c) Tree. (d) Segmented.

Each version of 802.3 has a maximum cable length per segment. To allow
larger networks, multiple cables can be connected by repeaters, as shown in
Fig. 4-19(d). A repeater is a physical layer device. It receives, amplifies, and
retransmits signals in both directions. As far as the software is concerned, a series
of cable segments connected by repeaters is no different than a single cable
(except for some delay introduced by the repeaters). A system may contain multi­
ple cable segments and multiple repeaters, but no two transceivers may be more
than 2.5 km apart and no path between any two transceivers may traverse more
than four repeaters.

Manchester Encoding

None of the versions of 802.3 use straight binary encoding with 0 volts for a 0
bit and 5 volts for a 1 bit because it leads to ambiguities. If one station sends the
bit string 0001000, others might falsely interpret it as 10000000 or 01000000
because they cannot tell the difference between an idle sender (0 volts) and a 0 bit
(0 volts).

What is needed is a way for receivers to unambiguously determine the start,
end, or middle of each bit without reference to an external clock. Two such
approaches are called Manchester encoding and differential Manchester
encoding. With Manchester encoding, each bit period is divided into two equal
intervals. A binary 1 bit is sent by having the voltage set high during the first
interval and low in the second one. A binary 0 is just the reverse: first low and
then high. This scheme ensures that every bit period has a transition in the mid­
dle, making it easy for the receiver to synchronize with the sender. A

280 THE MEDIUM ACCESS SUBLAYER CHAP. 4

disadvantage of Manchester encoding is that it requires twice as much bandwidth
as straight binary encoding, because the pulses are half the width. Manchester
encoding is shown in Fig. 4-20(b).

Bit stream

Binary encoding

Manchester encoding

Differential
Manchester encoding

0 0 0

Transition here
indicates a 0

0 0

Lack of transition here
indicates a 1

Fig. 4-20. (a) Binary encoding. (b) Manchester encoding. (c) Differential Man­
chester encoding.

Differential Manchester encoding, shown in Fig. 4-20(c), is a variation of
basic Manchester encoding. In it, a 1 bit is indicated by the absence of a transi­
tion at the start of the interval. A 0 bit is indicated by the presence of a transition
at the start of the interval. In both cases, there is a transition in the middle as well.
The differential scheme requires more complex equipment but offers better noise
immunity. All 802.3 baseband systems use Manchester encoding due to its sim­
plicity. The high signal is + 0.85 volts and the low signal is -0.85 volts, giving a
DC value of 0 volts.

The 802.3 MAC Sublayer Protocol

The 802.3 (IEEE, 1985a) frame structure is shown in Fig. 4-21. Each frame
starts with a Preamble of 7 bytes, each containing the bit pattern 10101010. The
Manchester encoding of this pattern produces a 10-MHz square wave for 5.6 µsec
to allow the receiver's clock to synchronize with the sender's. Next comes a Start
of frame byte containing 10101011 to denote the start of the frame itself.

The frame contains two addresses, one for the destination and one for the
source. The standard allows 2-byte and 6-byte addresses, but the parameters
defined for the 10-Mbps baseband standard use only the 6-byte addresses. The
high-order bit of the destination address is a 0 for ordinary addresses and 1 for
group addresses. Group addresses allow multiple stations to listen to a single
address. When a frame is sent to a group address, all the stations in the group
receive it. Sending to a group of stations is called multicast. The address con­
sisting of all 1 bits is reserved for broadcast. A frame containing all ls in the
destination field is delivered to all stations on the network.

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 281

Bytes 7 2 or6 2 or6 2 0-1500 0-46 4

Preamble
Destination Source + I Pad Checksum

address address

Start of Length of
frame delimiter data field

Fig. 4-21. The 802.3 frame format.

Another interesting feature of the addressing is the use of bit 46 (adjacent to
the high-order bit) to distinguish local from global addresses. Local addresses are
assigned by each network administrator and have no significance outside the local
network. Global addresses, in contrast, are assigned by IEEE to ensure that no
two stations anywhere in the world have the same global address. With
48 - 2 = 46 bits available, there are about 7 x 1013 global addresses. The idea is
that any station can uniquely address any other station by just giving the right 48-
bit number. It is up to the network layer to figure out how to locate the destina­
tion.

The Length field tells how many bytes are present in the data field, from a
minimum of 0 to a maximum of 1500. While a data field of 0 bytes is legal, it
causes a problem. When a transceiver detects a collision, it truncates the current
frame, which means that stray bits and pieces of frames appear on the cable all the
time. To make it easier to distinguish valid frames from garbage, 802.3 states that
valid frames must be at least 64 bytes long, from destination address to checksum.
If the data portion of a frame is less than 46 bytes, the pad field is used to fill out
the frame to the minimum size.

Another (and more important) reason for having a minimum length frame is to
prevent a station from completing the transmission of a short frame before the
first bit has even reached the far end of the cable, where it may collide with
another frame. This problem is illustrated in Fig. 4-22. At time 0, station A, at
one end of the network, sends off a frame. Let us call the propagation time for
this frame to reach the other end 't. Just before the frame gets to the other end
(i.e., at time 't - E) the most distant station, B, starts transmitting. When B detects
that it is receiving more power than it is putting out, it knows that a collision has
occurred, so it aborts its transmission and generates a 48-bit noise burst to warn
all other stations. At about time 21:, the sender sees the noise burst and aborts its
transmission, too. It then waits a random time before trying again.

If a station tries to transmit a very short frame, it is conceivable that a colli­
sion occurs, but the transmission completes before the noise burst gets back at 21:.
The sender will then incorrectly conclude that the frame was successfully sent.
To prevent this situation from occurring, all frames must take more than 21: to
send. For a 10-Mbps LAN with a maximum length of 2500 meters and four

282 THE MEDIUM ACCESS SUBLAYER CHAP. 4

~ Packetsrarts

~ ~
Packm aim"" ~

;at time 0 at B at-r-£ \

c::::J--, c::::J--,

(a) (b)

~~
Noise burst gets

~
~ ~ backtoA at2'

~
(c) Collision at

time-r -- (d)

Fig. 4-22. Collision detection can take as long as 2-r.

repeaters (from the 802.3 specification), the minimum allowed frame must take
51.2 µsec. This time corresponds to 64 bytes. Frames with fewer bytes are pad­
ded out to 64 bytes.

As the network speed goes up, the minimum frame length must go up or the
maximum cable length must come down, proportionally. For a 2500-meter LAN
operating at 1 Gbps, the minimum frame size would have to be 6400 bytes. Alter­
natively, the minimum frame size could be 640 bytes and the maximum distance
between any two stations 250 meters. These restrictions are becoming increas­
ingly painful as we move toward gigabit networks.

The final 802.3 field is the Checksum. It is effectively a 32-bit hash code of
the data. If some data bits are erroneously received (due to noise on the cable),
the checksum will almost certainly be wrong, and the error will be detected. The
checksum algorithm is a cyclic redundancy check of the kind discussed in Chap.
3.

The Binary Exponential Backoff Algorithm

Let us now see how randomization is done when a collision occurs. The
model is that of Fig. 4-5. After a collision, time is divided up into discrete slots
whose length is equal to the worst case round-trip propagation time on the ether
(2-r). To accommodate the longest path allowed by 802.3 (2.5 km and four
repeaters), the slot time has been set to 512 bit times, or 51.2 µsec.

After the first collision, each station waits either 0 or 1 slot times before try­
ing again. If two stations collide and each one picks the same random number,
they will collide again. After the second collision, each one picks either 0, 1, 2, or
3 at random and waits that number of slot times. If a third collision occurs (the
probability of this happening is 0.25), then the next time the number of slots to
wait is chosen at random from the interval 0 to 23 - 1 .

. . . .

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 283

In general, after i collisions, a random number between O and i - l is chosen,
and that number of slots is skipped. However, after ten collisions have been
reached, the randomization interval is frozen at a maximum of 1023 slots. After
16 collisions, the controller throws in the towel and reports failure back to the
computer. Further recovery is up to higher layers.

This algorithm, called binary exponential backoff, was chosen to dynami­
cally adapt to the number of stations trying to send. If the randomization interval
for all collisions was 1023, the chance of two stations colliding for a second time
would be negligible, but the average · wait after a collision would be hundreds of
slot times, introducing significant delay. On the other hand, if each station always
delayed for either zero or one slots, then if 100 stations ever tried to send at once,
they would collide over and over until 99 of them picked O and the remaining sta­
tion picked 1, or vice versa. This might take years. By having the randomization
interval grow exponentially as more and more consecutive collisions occur, the
algorithm ensures a low delay when only a few stations collide but also ensures
that the collision is resolved in a reasonable interval when many stations collide.

As described so far, CSMA/CD provides no acknowledgements. Since the
mere absence of collisions does not guarantee that bits were not garbled by noise
spikes on the cable, for reliable communication the destination must verify the
checksum, and if correct, send back an acknowledgement frame to the source.
Normally, this acknowledgement would be just another frame as far as the proto­
col is concerned and would have to fight for channel time just like a data frame.
However, a simple modification to the contention algorithm would allow speedy
confirmation of frame receipt (Tokoro and Tamaro, 1977). All that would be
needed is to reserve the first contention slot following successful transmission for
the destination station.

802.3 Performance

Now let us briefly examine the performance of 802.3 under conditions of
heavy and constant load, that is, k stations always ready to transmit. A rigorous
analysis of the binary exponential backoff algorithm is complicated. Instead we
will follow Metcalfe and Boggs (1976) and assume a constant retransmission pro­
bability in each slot. If each station transmits during a contention slot with proba­
bility p, the probability A that some station acquires the channel in that slot is

A = kp (l - pl- 1 (4-6)

A is maximized when p = Ilk, with A ➔ l/ e as k ➔ 00• The probability that the
contention interval has exactly j slots in it is A (1 - A y- 1

, so the mean number of
slots per contention is given by

!;jA(I -Ay- 1 = l_
·=0 A]-

Since each slot has a duration 2't, the mean contention interval, w, is 2't/A

284 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Assuming optimal p, the mean number of contention slots is never more than e,
sow is at most 2'te::: 5.4't.

If the mean frame takes P sec to transmit, when many stations have frames to
send, '-'

Channel efficiency = p
P + 2't/A

(4-7)

Here we see where the maximum cable distance between any two stations enters
into the performance figures, giving rise to topologies other than that of Fig. 4-
19(a). The longer the cable, the longer the contention interval. By allowing no
more than 2.5 km of cable and four repeaters between any two transceivers, the
round-trip time can be bounded to 51.2 µsec, which at 10 Mbps corresponds to
512 bits or 64 bytes, the minimum frame size.

It is instructive to formulate Eq. (4-7) in terms of the frame length, F, the net­
work bandwidth, B, the cable length, L, and the speed of signal propagation, c,
for the optimal case of e contention slots per frame. With P =FIB, Eq. (4-7)
becomes

1
Channel efficiency = -----

1 +2BLelcF
(4-8)

When the second term in the denominator is large, network efficiency will be low.
More specifically, increasing network bandwidth or distance (the BL product)
reduces efficiency for a given frame size. Unfortunately, much research on net­
work hardware is aimed precisely at increasing this product. People want high
bandwidth over long distances (fiber optic MANs, for example), which suggests
that 802.3 may not be the best system for these applications.

In Fig. 4-23, the channel efficiency is plotted versus number of ready stations
for 2't = 51.2 µsec and a data rate of 10 Mbps using Eq. (4-12). With a 64-byte
slot time, it is not surprising that 64-byte frames are not efficient. On the other
hand, with 1024-byte frames and an asymptotic value of e 64-byte slots per con­
tention interval, the contention period is 174 bytes long and the efficiency is 0.85.

To determine the mean number of stations ready to transmit under conditions
of high load, we can use the following (crude) observation. Each frame ties up
the channel for one contention period and one frame transmission time, for a total
of P + w sec. The number of frames per second is therefore 1/(P + w). If each
station generates frames at a mean rate of A. frames/sec, when the system is in
state k the total input rate of all unblocked stations combined is kA- frames/sec.
Since in equilibrium the input and output rates must be identical, we can equate
these two expressions and solve fork. (Notice that w is a function of k.) A more
sophisticated analysis is given in (Bertsekas and Gallager, 1992).

It is probably worth mentioning that there has been a large amount of theoreti­
cal performance analysis of 802.3 (and other networks). Virtually all of this work
has assumed that traffic is Poisson. As researchers have begun looking at real

SEC. 4.3

1.0

0.9

0.8

>- 0.7
0
C

-~ 0.6

= CD 0.5
"iii
C

~ 0.4
.c
u 0.3

0.2

0.1

0

IEEE ST AND ARD 802 FOR LANS AND MANS

~-------1_0_2_4_byt_e_fra_m_e_s

\ ~ 512 byte frames

256 byte frames

128 byte frames

64-byte frames

2 4 8 16 32 64 128 256
Number of stations trying to send

Fig. 4-23. Efficiency of 802.3 at 10 Mbps with 512-bit slot times.

285

data, it now appears that network traffic is rarely Poisson, but self-similar (Paxson
and Floyd, 1994; and Willinger et al., 1995). What this means is that averaging
over long periods of time does not smooth out the traffic. The average number of
packets in each minute of an hour has as much variance as the average number of
packets in each second of a minute. The consequence of this discovery is that
most models of network traffic do not apply to the real world and should be taken
with a grain (or better yet, a metric ton) of salt.

Switched 802.3 LANs

As more and more stations are added to an 802.3 LAN, the traffic will go up.
Eventually, the LAN will saturate. One way out is to go to a higher speed, say
from 10 Mbps to 100 Mbps. This solution requires throwing out all the 10 Mbps
adaptor cards and buying new ones, which is expensive. If the 802.3 chips are on
the computers' main circuit boards, it may not even be possible to replace them.

Fortunately, a different, less drastic solution is possible: a switched 802.3
LAN, as shown in Fig. 4-24. The heart of this system is a switch containing a
high-speed backplane and room for typically 4 to 32 plug-in line cards, each con­
taining one to eight connectors. Most often, each connector has a lOBase-T
twisted pair connection to a single host computer.

When a station wants to transmit an 802.3 frame, it outputs a standard frame
to the switch. The plug-in card getting the frame checks to see if it is destined for
one of the other stations connected to the same card. If so, the frame is copied

286

Connector

1 OBase-T __.­
connection

THE MEDIUM ACCESS SUBLAYER

Switch

802.3 LAN

To the host computers

Fig. 4-24. A switched 802.3 LAN.

CHAP. 4

To hosts

To hosts

To hosts

there. If not, the frame is sent over the high-speed backplane to the destination
station's card. The backplane typically runs at over 1 Gbps using a proprietary
protocol.

What happens if two machines attached to the same plug-in card transmit
frames at the same time? It depends on how the card has been constructed. One
possibility is for all the ports on the card to be wired together to form a local on­
card LAN. Collisions on this on-card LAN will be detected and handled the same
as any other collisions on a CSMA/DC network-with retransmissions using the
binary backoff algorithm. With this kind of plug-in card, only one transmission
per card is possible at any instant, but all the cards can be transmitting in parallel.
With this design, each card forms its own collision domain, independent of the
others.

With the other kind of plug-in card, each input port is buffered, so incoming
frames are stored in the card's on-board RAM as they arrive. This design allows
all input ports to receive (and transmit) frames at the same time, for parallel, full­
duplex operation. Once a frame has been completely received, the card can then
check to see if the frame is destined for another port on the same card, or for a
distant port. In the former case it can be transmitted directly to the destination. In
the latter case, it must be transmitted over the backplane to the proper card. With
this design, each port is a separate collision domain, so collisions do not occur.
The total system throughput can often be increased by an order of magnitude over
lOBase-5, which has a single collision domain for the entire system.

Since the switch just expects standard 802.3 frames on each input port, it is
possible use some of the ports as concentrators. In Fig. 4-24, the port in the upper
right-hand corner is connected not to a single station, but to a 12-port hub. As
frames arrive at the hub, they contend for the 802.3 LAN in the usual way,

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 287

including collisions and binary backoff. Successful frames make it to the switch,
and are treated there like any other incoming frames: they are switched to the
correct output line over the high-speed backplane. If all the input ports are con­
nected to hubs, rather than to individual stations, the switch just becomes an 802.3
to 802.3 bridge. We will study bridges later in this chapter.

4.3.2. IEEE Standard 802.4: Token Bus

Although 802.3 is widely used in offices, during the development of the 802
standard, people from General Motors and other companies interested in factory
automation had serious reservations about it. For one thing, due to the probabil­
istic MAC protocol, with a little bad luck a station might have to wait arbitrarily
long to send a frame (i.e., the worst case is unbounded). For another, 802.3
frames do not have priorities, making them unsuited for real-time systems in
which important frames should not be held up waiting for unimportant frames.

A simple system with a known worst ,case is a ring in which the stations take
turns sending frames. If there are n stations and it takes T sec to send a frame, no
frame will ever have to wait more than nT sec to be sent. The factory automation
people in the 802 committee liked the conceptual idea of a ring but did not like
the physical implementation because a break in the ring cable would bring the
whole network down. Furthermore, they noted that a ring is a poor fit to the linear
topology of most assembly lines. As a result, a new standard was developed, hav­
ing the robustness of the 802.3 broadcast cable, but the known worst-case
behavior of a ring.

Broadband
coaxial cable ~"~ ,

I
I

13 11 - 7
Direction of

token motion

Fig. 4-25. A token bus.

\ Logical ring
I
l
I

This station
not currently in

19 the logical ring

This standard, 802.4 (Dirvin and Miller, 1986; and IEEE, 1985b), describes a
LAN called a token bus. Physically, the token bus is a linear or tree-shaped cable
onto which the stations are attached. Logically, the stations are organized into a
ring (see Fig. 4-25), with each station knowing the address of the station to its
"left" and "right." When the logical ring is initialized, the highest number~ sta­
tion may send the first frame. After it is done, it passes permission to its immedi­
ate neighbor by sending the neighbor a special control frame called a token. The

288 THE MEDIUM ACCESS SUBLAYER CHAP. 4

token propagates around the logical ring, with only the token holder being permit­
ted to transmit frames. Since only one station at a time holds the token, collisions
do not occur.

An important point to realize is that the physical order in which the stations
are connected to the cable is not important. Since the cable is inherently a broad­
cast medium, each station receives each frame, discarding those not addressed to
it. When a station passes the token, it sends a token frame specifically addressed
to its logical neighbor in the ring, irrespective of where that station is physically
located on the cable. It is also worth noting that when stations are first powered
on, they will not be in the ring (e.g., stations 14 and 19 in Fig. 4-25), so the MAC
protocol has provisions for adding stations to, and deleting stations from, the ring.

The 802.4 MAC protocol is very complex, with each station having to main­
tain ten different timers and more than two dozen internal state variables. The
802.4 standard is much longer than 802.3, filling more than 200 pages. The two
standards are also quite different in style, with 802.3 giving the protocols as Pas­
cal procedure , whereas 802.4 gives them as finite state machines, with the

. . . Ad® act:J.ons wntten m a .
For the physical layer, the token bus uses the 75-ohm broadband coaxial cable

used for cable television. Both single- and dual-cable systems are allowed, with
or without head-ends. Three different analog modulation schemes are permitted:
phase continuous frequency shift keying, phase coherent frequency shift keying,
and multilevel duobinary amplitude modulated phase shift keying. Speeds of 1, 5,
and 10 Mbps are possible. Furthermore, the modulation schemes not only provide
ways to represent 0, 1, and idle on the cable, but also three other symbols used for
network control. All in all, the physical layer is totally incompatible with 802.3,
and a lot more complicated.

The Token Bus MAC Sublayer Protocol

When the ring is initialized, stations are inserted into it in order of station
address, from highest to lowest. Token passing is also done from high to low
addresses. Each time a station acquires the token, it can transmit frames for acer­
tain amount of time; then it must pass the token on. If the frames are short
enough, several consecutive frames may be sent. If a station has no data, it passes
the token immediately upon receiving it.

The token bus defines four priority classes, 0, 2, 4, and 6 for traffic, with 0 the
lowest and 6 the highest. It is easiest to think of each station internally being
divided into four substations, one at each priority level. As input comes in to the
MAC sublayer from above, the data are checked for priority and routed to one of
the four substations. Thus each substation maintains its own queue of frames to
be transmitted.

When the token comes into the station over the cable, it is passed internally to
the priority 6 substation, which may begin transmitting frames, if it has any.

SEC. 4.3 IEEE ST AND ARD 802 FOR LANS AND MANS 289

When it is done (or when its timer expires), the token is passed internally to the
priority 4 substation, which may then transmit frames until its timer expires, at
which point the token is passed internally to the priority 2 substation. This pro­
cess is repeated until either the priority O substation has sent all its frames or its
timer has expired. Either way, at this point the token is sent to the next station in
the ring.

Without getting into all the details of how the various timers are managed, it
should be clear that by setting the timers properly, we can ensure that a
guaranteed fraction of the total token-holding time can be allocated to priority 6
traffic. The lower priorities will have to live with what is left over. If the higher
priority substations do not need all of their allocated time, the lower priority sub­
stations can have the unused portion, so it is not wasted.

This priority scheme, which guarantees priority 6 traffic a known fraction of
the network bandwidth, can be used to implement real-time traffic. For example,
suppose the parameters of a SO-station network running at 10 Mbps have been
adjusted to give priority 6 traffic 1/3 of the bandwidth. Then each station has a
guaranteed 67 kbps for priority 6 traffic. This bandwidth could be used to syn­
chronize robots on an assembly line or carry one digital voice channel per station,
with a little left over for control information.

The token bus frame format is shown in Fig. 4-26. It is unfortunately dif­
ferent from the 802.3 frame format. The preamble is used to synchronize the
receiver's clock, as in 802.3, except that here it may be as short as 1 byte. The
Starting delimiter and Ending delimiter fields are used to mark the frame bound­
aries. Both of these fields contain analog encoding of symbols other than Os and
1 s, so that they cannot occur accidentally in the user data. As a result, no length
field is needed.

Bytes~ 1 1 1 2 or 6 2 or6 0-8182 4

Destination Source + I Checksum I
1
I address address

Frame control

Start delimiter End
Preamble delimiter

Fig. 4-26. The 802.4 frame format.

The Frame control field i~ used to distinguish data frames from control
frames. For data frames, it carries the frame ' s priority. It can also carry an indi­
cator requiring the destination station to acknowledge correct or incorrect receipt
of the frame. Without this indicator, the destination would not be allowed to send
anything because it does not have the token. This indicator turns the token bus
into something resembling the acknowledgement scheme of Tokoro and Tamaro.

For control frames, the Frame control field is used to specify the frame type.

290 THE MEDIUM ACCESS SUBLAYER CHAP. 4

The allowed types include token passing and various ring maintenance frames,
including the mechanism for letting new stations enter the ring, the mechanism for
allowing stations to leave the ring, and so on. Note that the 802.3 protocol does
not have any control frames. All the MAC layer does there is provide a way to
get frames onto the cable; it does not care what is in them.

The Destination address and Source address fields are the same as in 802.3
(yes, the two groups did talk to each other; no, they did not agree on very much).
As in 802.3, a given network must use all 2-byte addresses or all 6-byte addresses,
not a mixture on the same cable. The initial 802.4 standard allows either size.
The individual and group addressing and the local and global address assignments
are identical to 802.3.

The Data field may be up to 8182 bytes long when 2-byte addresses are used,
and up to 8174 bytes long when 6-byte addresses are used. This is more than five
times as long as the maximum 802.3 frame, which was made short to prevent one
station from hogging the channel too long. With the token bus, the timers can be
used as an antihogging measure, but it is nice to be able to send long frames when
real-time traffic is not an issue. The Checksum is used to detect transmission
errors. It uses the same algorithm and polynomial as 802.3.

The token bus control frames are shown in Fig. 4-27. They will be discussed
below. The only one we have seen so far is the token frame, used to pass the
token from station to station. Most of the rest relate to adding and deleting sta­
tions from the logical ring.

Frame control field Name Meaning

00000000 Claim_token Claim token during ring initialization

00000001 SoliciLsuccessor_ 1 Allow stations to enter the ring

00000010 SoliciLsuccessor -2 Allow stations to enter the ring

00000011 Who_follows Recover from lost token

00000100 Resolve_contention Used when multiple stations want to enter

00001000 Token Pass the token

00001100 SeLsuccessor Allow station to leave the ring

Fig. 4-27. The token bus control frames .

Logical Ring Maintenance

From time to time, stations are powered on and want to join the ring. Other
are turned off and want to leave. The MAC sublayer protocol provides a detailed
specification of exactly how this is done while maintaining the known worst case
bound on token rotation. Below we will just briefly sketch the mechanisms used.

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 291

Once the ring has been established, each station's interface maintains the
addresses of the predecessor and successor stations internally. Periodically, the
token holder sends one of the SOLICIT_SUCCESSOR frames shown in Fig. 4-27 to
solicit bids from stations that wish to join the ring. The frame gives the sender's
address and the successor's address. Stations inside that range may bid to enter
(to keep the ring sorted in descending order of station address).

If no station bids to enter within a slot time (2't, as in 802.3), the response
window is closed and the token holder continues with its normal business. If
exactly one station bids to enter, it is inserted into the ring and becomes the token
holder's successor.

If two or more stations bid to enter, their frames will collide and be garbled,
as in 802.3. The token holder then runs an arbitration algorithm, starting with the
broadcast of a RESOLVE_ CONTENTION frame. The algorithm is a variation of
binary countdown, using two bits at a time.

Furthermore, all station interfaces maintain two random bits inside. These
bits are used to delay all bids by 0, 1, 2, or 3 slot times, to further reduce conten­
tion. In other words, two stations only collide on a bid if the current two address
bits being used are the same and they happen to have the same two random bits.
To prevent stations that must wait 3 slot times from being at a permanent disad­
vantage, the random bits are regenerated every time they are used or periodically
every 50 msec.

The solicitation of new stations may not interfere with the guaranteed worst
case for token rotation. Each station has a timer that is reset whenever it acquires
the token. When the token comes in, the old value of this timer (i.e., the previous
token rotation time) is inspected just before the timer is reset. If it exceeds acer­
tain threshold value, there has been too much traffic recently, so no bids may be
solicited this time around. In any event, only one station may enter at each solici­
tation, to put a bound on how much time can be consumed in ring maintenance.
No guarantee is provided for how long a station may have to wait to join the ring
when traffic is heavy, but in practice it should not be more than a few seconds.
This uncertainty is unfortunate, making 802.4 less suitable for real-time systems
than its supporters often claim.

Leaving the ring is easy. A station, X, with successor S, and predecessor P,
leaves the ring, by sending P a SEL SUCCESSOR frame telling it that henceforth its
successor is S instead of X. Then X just stops transmitting.

Ring initialization is a special case of adding new stations. Consider an idle
system with all stations powered off. When the first station comes on-line, it
notices that there is no traffic for a certain period. Then it sends a CLAIM_ TOKEN

frame. Not hearing any competitors contending for the token, it creates a token
and sets up a ring containing only itself. Periodically, it solicits bids for new sta­
tions to join. As new stations are powered on, they will respond to these bids and
join the ring using the contention algorithm described above. Eventually, every
station that wants to join the ring will be able to do so. If the first two stations are

292 THE MEDIUM ACCESS SUBLAYER CHAP. 4

powered on simultaneously, the protocol deals with this by letting them bid for the
token using the standard modified binary countdown algorithm and the two ran­
dom bits.

Due to transmission errors or hardware failures, problems can arise with the
logical ring or the token. For example, if a station tries to pass the token to a sta­
tion that has gone down, what happens? The solution is straightforward. After
passing the token, a station listens to see if its successor either transmits a frame
or passes the token. If it does neither, the token is passed a second time.

If that also fails, the station transmits a WHO_FOLLOWS frame specifying 'the
address of its successor. When the failed station's successor sees a
WHO_FOLLOWS frame naming its predecessor, it responds by sending a
SET_ SUCCESSOR frame to the station whose successor failed, naming itself as the
new successor. In this way, the failed station is removed from the ring.

Now suppose that a station fails to pass the token to its successor and also
fails to locate the successor's successor, which may also be down. It adopts a new
strategy by sending a SOLICILSUCCESSOR._2 frame to see if anyone else is still
alive. Once again the standard contention protocol is run, with all stations that
want to be in the ring now bidding for a place. Eventually, the ring is re­
established.

Another kind of problem occurs if the token holder goes down and takes the
token with it. This problem is solved using the ring initialization algorithm. Each
station has a timer that is reset whenever a frame appears on the network. When
this timer hits a threshold value, the station issues a CLAIM_ TOKEN frame, and the
modified binary countdown algorithm with random bits determines who gets the
token.

Still another problem is multiple tokens. If a station holding the token notices
a transmission from another station, it discards its token. If there were two, there
would now be one. If there were more than two, this process would be repeated
sooner or later until all but one were discarded. If, by accident, all the tokens are
discarded, then the lack of activity will cause one or more stations to try to claim
the token.

4.3.3. IEEE Standard 802.5: Token Ring

Ring networks have been around for many years (Pierce, 1972) and have long
been used for both local and wide area networks. Among their many attractive
features is the fact that a ring is not really a broadcast medium, but a collection of
individual point-to-point links that happen to form a circle. Point-to-point links
involve a well-understood and field-proven technology and can run on twisted
pair, coaxial cable, or fiber optics. Ring engineering is also almost entirely digi­
tal, whereas 802.3, for example, has a substantial analog component for collision
detection. A ring is also fair and has a known upper bound on channel access.

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 293

For these reasons, IBM chose the ring as its LAN and IEEE has included the
token ring standard as 802.5 (IEEE, 1985c; Latif et al., 1992).

A major issue in the design and analysis of any ring network is the "physical
length" of a bit. If the data rate of the ring is R Mbps, a bit is emitted every
1/R µsec. With a typical signal propagation speed of about 200 m/µsec, each bit
occupies 200/R meters on the ring. This means, for example, that a I-Mbps ring
whose circumference is 1000 meters can contaiµ only 5 bits on it at once. The
implications of the number of bits on the ring will become clearer later.

As mentioned above, a ring really consists of a collection of ring interfaces
connected by point-to-point lines. Each bit arriving at an interface is copied into a
I-bit buffer and then copied out onto the ring again. While in the buffer, the bit
can be inspected and possibly modified before being written out. This copying
step introduces a 1-bit delay at each interface. A ring and its interfaces are shown
in Fig. 4-28.

1 bit Ring
delay interface

Unidirectional

To From To From
station station station station

(a) (b) (c)

Fig. 4-28. (a) A ring network. (b) Listen mode. (c) Transmit mode.

In a token ring a special bit pattern, called the token, circulates around the
ring whenever all stations are idle. When a station wants to transmit a frame, it is
required to seize the token and remove it from the ring before transmitting. This
action is done by inverting a single bit in the 3-byte token, which instantly
changes it into the first 3 bytes of a normal data frame. Because there is only one
token, only one station can transmit at a given instant, thus solving the channel
access problem the same way the token bus solves it.

An implication of the token ring design is that the ring itself must have a suf­
ficient delay to contain a complete token to circulate when all stations are idle.
The delay has two components: the 1-bit delay introduced by each station, and the
signal propagation delay. In almost all rings, the designers must assume that

294 THE MEDIUM ACCESS SUBLAYER CHAP. 4

stations may be powered down at various times, especially at night. If the inter­
faces are powered from the ring, shutting down the station has no effect on the
interface, but if the interfaces are powered externally, they must be designed to
connect the input to the output when power goes down, thus removing the 1-bit
delay. The point here is that on a short ring an artificial delay may have to be
inserted into the ring at night to ensure that a token can be contained on it.

Ring interfaces have two operating modes, listen and transmit. In listen
mode, the input bits are simply copied to output, with a delay of 1 bit time, as
shown in Fig. 4-28(b). In transmit mode, which is entered only after the token has
been seized, the interface breaks the connection between input and output, enter­
ing its own data onto the ring. To be able to switch from listen to transmit mode
in 1 bit time, the interface usually needs to buffer one or more frames itself rather
than having to fetch them from the station on such short notice.

As bits that have propagated around the ring come back, they are removed
from the ring by the sender. The sending station can either save them, to compare
with the original data to monitor ring reliability, or discard them. Because the
entire frame never appears on the ring at one instant, this ring architecture puts no
limit on the size of the frames. After a station has finished transmitting the last bit
of its last frame, it must regenerate the token. When the last bit of the frame has
gone around and come back, it must be removed, and the interface must switch
back into listen mode immediately, to avoid removing the token that might follow
if no other station has removed it.

It is straightforward to handle acknowledgements on a token ring. The frame
format need only include a 1-bit field for acknowledgements, initially zero. When
the destination station has received a frame, it sets the bit. Of course, if the
acknowledgement means that the checksum has been verified, the bit must follow
the checksum, and the ring interface must be able to verify the checksum as soon
as its last bit has arrived. When a frame is broadcast to multiple stations, a more
complicated acknowledgement mechanism must be used (if any is used at all).

When traffic is light, the token will spend most of its time idly circulating
around the ring. Occasionally a station will seize it, transmit a frame, and then
output a new token. However, when the traffic is heavy, so that there is a queue
at each station, as soon as a station finishes its transmission and regenerates the
token, the next station downstream will see and remove the token. In this manner
the permission to send rotates smoothly around the ring, in round-robin fashion.
The network efficiency can begin to approach 100 percent under conditions of
heavy load.

Now let us tum from token rings in general to the 802.5 standard in particular.
At the physical layer, 802.5 calls for shielded twisted pairs running at 1 or 4
Mbps, although IBM later introduced a 16-Mbps version. Signals are encoded
using differential Manchester encoding [see Fig. 4-20(c)] with high and low being
positive and negative signals of absolute magnitude 3.0 to 4.5 volts. Normally,
differential Manchester encoding uses high-low or low-high for each bit, but

. :

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 295

802.5 also uses high-high and low-low in certain control bytes (e.g., to mark the
start and end of a frame). These nondata signals always occur in consecutive
pairs so as not to introduce a DC component into the ring voltage.

One problem with a ring network is that if the cable breaks somewhere, the
ring dies. This problem can be solved very elegantly by the use of a wire center,
as shown in Fig. 4-29. While logically still a ring, physically each station is con­
nected to the wire center by a cable containing (at least) two twisted pairs, one for
data to the station and one for data from the station.

Station

-.___Cable

Bypass relay

Connector

Wire center

Fig. 4-29. Four stations connected via a wire center.

Inside the wire center are bypass relays that are energized by current from the
stations. If the ring breaks or a station goes down, loss of the drive current will
release the relay and bypass the station. The relays can also be operated by
software to permit diagnostic programs to remove stations one at a time to find
faulty stations and ring segments. The ring can then continue operation with the
bad segment bypassed. Although the 802.5 standard does not formally require
this kind of ring, often called a star~shaped ring (Saltzer et al., 1983), most 802.5
LANs, in fact, do use wire centers to improve their reliability and maintainability.

When a network consists of many clusters of stations far apart, a topology
with multiple wire centers can be used. Just imagine that the cable to one of the
stations in Fig. 4-29 were replaced by a cable to a distant wire center. Although
logically all the stations are on the same ring, the wiring requirements are greatly

296 THE MEDIUM ACCESS SUBLAYER CHAP. 4

reduced. An 802.5 ring using a wire center has a similar topology to an 802.3
l0Base-T hub-based network, but the formats and protocols are different.

The Token Ring MAC Sublayer Protocol

The basic operation of the MAC protocol is straightforward. When there is no
traffic on the ring, a 3-byte token circulates endlessly, waiting for a station to
seize it by setting a specific 0 bit to a 1 bit, thus converting the token into the
start-of-frame sequence. The station then outputs the rest of a normal data frame,
as shown in Fig. 4-30.

1 1 1

lsolAclEDI
(a)

Bytes 1 1 1 2 or6

Destination
address

Frame control
Access control

Starting delimiter

2 or6

Source
address

(b)

No limit 4 1 1

Checksum

Ending delimiter - --~

Frame status----~

Fig. 4-30. (a) Token format. (b) Data frame format.

Under normal conditions, the first bit of the frame will go around the ring and
return to the sender before the full frame has been transmitted. Only a very long
ring will be able to hold even a short frame. Consequently, the transmitting sta­
tion must drain the ring while it continues.to transmit. As shown in Fig. 4-28(c),
this means that the bits that have completed the trip around the ring come back to
the sender and are removed.

A station may hold the token for the token-holding time, which is 10 msec
unless an installation sets a different value. If there is enough time left after the
first frame has been transmitted to send more frames, these may be sent as well.
After all pending frames have been transmitted or the transmission of another
frame would exceed the token-holding time, the station regenerates the 3-byte
token frame and puts it out onto the ring.

The Starting delimiter and Ending delimiter fields of Fig. 4-30(b) mark the
beginning and ending of the frame. Each contains invalid differential Manchester
patterns (HH and LL) to distinguish them from data bytes. The Access control

- ----

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 297

byte contains the token bit, and also the Monitor bit, Priority bits, and Reservation
bits (described below). The · Frame control byte distinguishes data frames from
various possible control frames.

Next come the Destination address and Source address fields, which are the
same as in 802.3 and 802.4. These are followed by the data, which may be as
long as necessary, provided that the frame can still be transmitted within the
token-holding time. The Checksum field, like the destination and source
addresses, is also the same as 802.3 and 802.4.

An interesting byte not present in the other two protocols is the Frame status
byte. It contains the A and C bits. When a frame arrives at the interface of a sta­
tion with the destination address, the interface turns on the A bit as it passes
through. If the interface copies the frame to the station, it also turns on the C bit.
A station might fail to copy a frame due to lack of buffer space or other reasons.

When the sending station drains the frame from the ring, it examines the A
and C bits. Three combinations are possible:

l. A = 0 and C = 0: destination not present or not powered up.

2. A = l and C = 0: destination present but frame not accepted.

3. A= l and C = 1: destination present and frame copied.

This arrangement provides an automatic acknowledgement for each frame. If a
frame is rejected but the station is present, the sender has the option of trying
again in a little while. The A and C bits are present twice in the Frame status to
increase reliability inasmuch as they are not covered by the checksum.

The Ending delimiter contains an E bit which is set if any interface detects an
error (e.g., a non-Manchester pattern where that is not permitted). It also contains
a bit that can be used to mark the last frame in a logical sequence, sort of like an
end-of-file bit.

The 802.5 protocol has an elaborate scheme for handling multiple priority '
frames. The 3-byte token frame contains a field in the middle byte giving the
priority of the token. When a station wants to transmit a priority n frame, it must
wait until it can capture a token whose priority is less than or equal to n. Further­
more, when a data frame goes by, a station can try to reserve the next token by
writing the priority of the frame it wants to send into the frame's Reservation bits.
However, if a higher priority has already been reserved there, the station may not
make a reservation. When the current frame is finished, the next token is gen­
erated at the priority that has been reserved.

A little thought will show that this mechanism acts like a ratchet, always jack­
ing the reservation priority higher and higher. To eliminate this problem, the pro­
tocol contains some complex rules. The essence of the idea is that the station rais­
ing the priority is responsible for lowering the priority again when it is done.

Notice that this priority scheme is substantially different from the token bus
scheme, in which each station always gets its fair share of the bandwidth, no

298 THE MEDIUM ACCESS SUBLAYER CHAP. 4

matter what other stations are doing. In the token ring, a station with only low
priority frames may starve to death waiting for a low priority token to appear.
Clearly, the two committees had different taste when trading off good service for
high priority traffic versus fairness to all stations.

Ring Maintenance

The token bus protocol goes to considerable lengths to do ring maintenance in
a fully decentralized way. The token ring protocol handles maintenance quite dif­
ferently. Each token ring has a monitor station that oversees the ring. If the
monitor goes down, a contention protocol ensures that another station is quickly
elected as monitor. (Every station has the capability of becoming the monitor.)
While the monitor is functioning properly, it alone is responsible for seeing that
the ring operates correctly.

When the ring comes up or any station notices that there is no monitor, it can
transmit a CLAIM TOKEN control frame. If this frame circumnavigates the ring
before any other CLAIM TOKEN frames are sent, the sender becomes the new mon­
itor (each station has monitor capability built in). The token ring control frames
are shown in Fig. 4-31.

Control field Name Meaning

00000000 Duplicate address test Test it two stations have the same address

00000010 Beacon Used to locate breaks in the ring

00000011 Claim token Attempt to become monitor

00000100 Purge Reinitialize the ring

00000101 Active monitor present Issued periodically by the monitor

00000110 Standby monitor present Announces the presence of potential monitors

Fig. 4-31. Token ring control frames.

Among the monitor's responsibilities are seeing that the token is not lost, tak­
ing action when the ring breaks, cleaning the ring up when garbled frames appear,
and watching out for orphan frames. An orphan frame occurs when a station
tran_smits a short frame in its entirety onto a long ring and then crashes or is
powered down before the frame can be drained. If nothing is done, the frame will
circulate forever.

To check for lost tokens, the monitor has a timer that is set to the longest pos­
sible tokenless interval: each station transmitting for the full token-holding time.
If this timer goes off, the monitor drains the ring and issues a new token.

When a garbled frame appears, the monitor can detect it by its invalid format
or checksum, open the ring to drain it, and issue a new token when the ring has

.

J •

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 299

been cleaned up. Finally, the monitor detects orphan frames by setting the moni­
tor bit in the Access control byte whenever it passes through. If an incoming
frame has this bit set, something is wrong since the same frame has passed the
monitor twice without having been drained, so the monitor drains it.

One last monitor function concerns the length of the ring. The token is 24 bits
long, which means that the ring must be big enough to hold 24 bits. If the 1-bit
delays in the stations plus the cable length add up to less than 24 bits, the monitor
inserts extra delay bits so that a token can circulate.

One maintenance function that cannot be handled by the monitor is locating
breaks in the ring. When a station notices that either of its neighbors appears to
be dead, it transmits a BEACON frame giving the address of the presumably dead
station. When the beacon has propagated around as far as it can, it is then possi­
ble to see how many stations are down and delete them from the ring using the
bypass relays in the wire center, all without human intervention.

It is instructive to compare the approaches taken to controlling the token bus
and the token ring. The 802.4 committee was scared to death of having any cen­
tralized component that could fail in some unexpected way and take the system
down with it. Therefore they designed a system in which the current token holder
had special powers (e.g., soliciting bids to join the ring), but no station was other­
wise different from the others (e.g., currently assigned administrative responsibil­
ity for maintenance).

The 802.5 committee, on the other hand, felt that having a centralized monitor
made handling lost tokens, orphan frames and so on much easier. Furthermore, in
a normal system, stations hardly ever crash, so occasionally having to put up with
contention for a new monitor is not a great hardship. The price paid is that if the
monitor ever really goes berserk but continues to issue ACTIVE MONITOR PRESENT

control frames periodically, no station will ever challenge it. Monitors cannot be
impeached.

This difference in approach comes from the different application areas the
two committees had in mind. The 802.4 committee was thinking in terms of fac­
tories with large masses of metal moving around under computer control. Net­
work failures could result in severe damage and had to be prevented at all costs.
The 802.5 committee was interested in office automation, where a failure once in
a rare while could be tolerated as the price for a simpler system. Whether 802.4
is, in fact, more reliable than 802.5 is a matter of some controversy.

4.3.4. Comparison of 802.3, 802.4, and 802.5

With three different and incompatible LANs available, each with different
properties, many organizations are faced with the question: Which one should we
install? In this section we will look at all three of the 802 LAN standards, point­
ing out their strengths and weaknesses, comparing and contrasting them.

300 THE MEDIUM ACCESS SUBLAYER CHAP. 4

To start with, it is worth noting that the three LAN standards u.se roughly
similar technology and get roughly similar petformance. While computer scien­
tists and engineers can discuss the merits of coax versus twisted pair for hours on
end if given half a chance, the people in the marketing, personnel, or accounting
departments probably do not really care that much one way or the other.

Let us start with the advantages of 802.3. It is far and away the most widely
used type at present, with a huge installed base and considerable operational
experience. The protocol is simple. Stations can be installed on the fly, without
taking the network down. A passive cable is used and modems are not required.
Furthermore, the delay at low load is practically zero (stations do not have to wait
for a token; they just transmit immediately).

On the other hand, 802.3 has a substantial analog component. Each station
has to be able to detect the signal of the weakest other station, even when it itself
is transmitting, and all of the collision detect circuitry in the transceiver is analog.
Due to the possibility of having frames aborted by collisions, the minimum valid
frame is 64 bytes, which represents substantial overhead when the data consist-of
just a single character from a terminal.

Furthermore, 802.3 is nondeterministic, which is often inappropriate for real­
time work [although some real-time work is possible by simulating a token ring in
software (Venkatramani and Chiueh, 1995)]. It also has no priorities. The cable
length is limited to 2.5 km (at 10 Mbps) because the round-trip cable length deter­
mines the slot time, hence the petf ormance. As the speed increases, the efficiency
drops because the frame transmission times drop but the contention interval does
not (the slot width is 2-c no matter what the data rate is). Alternatively, the cable
has to be made shorter. Also, at high load, the presence of collisions becomes a
major problem and can seriously affect the throughput.

Now let us consider 802.4, the token bus. It uses highly reliable cable televi­
sion equipment; which is available off-the-shelf from numerous vendors. It is
more deterministic than 802.3, although repeated losses of the token at critical
moments can introduce more uncertainty than its supporters like to admit. It can
handle short minimum frames.

Token bus also supports priorities and can be configured to provide a
guaranteed fraction of the bandwidth to high-priority traffic, such as digitized
voice. It also has excellent throughput and efficiency at high load, effectively
becoming TDM. Finally, broadband cable can support multiple channels, not
only for data, but also for voice and television.

On the down side, broadband systems use a lot of analog engineering and
include modems and wideband amplifiers. The protocol is extremely complex
and has substantial delay at low load (stations must always wait for the token,
even in an otherwise idle system). Finally, it is poorly suited for fiber optic
implementations and has a small installed base of users.

Now consider the token ring. It uses point-to-point connections, meaning that
the engineering is easy and can be fully digital. Rings can be built using virtually

'.

: ..

.. . .

: ..

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 301

any transmission medium from carrier pigeon to fiber optics. The standard
twisted pair is cheap and simple to install. The use of wire centers make the token
ring the only LAN that can detect and eliminate cable failures automatically.

Like the token bus, priorities are possible, although the scheme is not as fair.
Also like the token bus, short frames are possible, but unlike the token bus, so are
arbitrarily large ones, limited only by the token-holding time. Finally, the
throughput and efficiency at high load are excellent, like the token bus and unlike
802.3.

The major minus is the presence of a centralized monitor function, which
introduces a critical component. Even though a dead monitor can be replaced, a
sick one can cause headaches. Furthermore, like all token passing schemes, there
is always delay at low load because the sender must wait for the token.

It is also worth pointing out that there have been numerous studies of all three
LANs. The principal conclusion we can draw from these studies is that we can
draw no conclusions from them. One can always find a set of parameters that
makes one of the LANs look better than the others. Under most circumstances,
all three perform well, so that factors other than the performance are probably
more important when making a choice.

4.3.-5. IEEE Standard 802.6: Distributed Queue Dual Bus

None of the 802 LANs we have studied so far are suitable for use as a MAN.
Cable length limitations and performance problems when thousands of stations
are connected limits them to campus-sized areas. For networks covering an entire
city, IEEE defined one MAN, called DQDB (Distributed Queue Dual Bus), as
standard 802.6. In this section we will examine how it works. For additional
information, see (Kessler and Train, 1992). A bibliography listing 171 papers
about DQDB is given in (Sadiku and Arvind, 1994).

The basic geometry of 802.6 is illustrated in Fig. 1-4. Two parallel, unidirec­
tional buses snake through the city, with stations attached to both buses in paral­
lel. Each bus has a head-end, which generates a steady stream of 53-byte cells.
Each cell travels downstream from the head-end. When it reaches the end, it falls
off the bus.

Each cell carries a 44-byte payload field, making it compatible with some
AAL modes. Each cell also holds two protocol bits, Busy, set to indicate that a
cell is occupied, and Request, which can be set when a station wants to make a
request.

To transmit a cell, a station has to know whether the destination is to the left
of it or to the right of it. If the destination is to the right, the sender uses bus A.
Otherwise, it uses bus B. Data are inserted onto either bus using a wired-OR cir­
cuit, so failure of a station does not take down the network.

Unlike all the other 802 LAN protocols, 802.6 is not greedy. In all the others,
if a station gets the chance to send, it will. Here, stations queue up in the order

302 THE MEDIUM ACCESS SUBLAYER CHAP. 4

they became ready to send and transmit in FIFO order. The interesting part about
the protocol is how it achieves FIFO order without having a central queue.

The basic rule is that stations are polite: they defer to stations downstream
from them. This politeness is needed to prevent a situation in which the station
nearest the head-end simply grabs all the empty cells as they come by and fills
them up, starving everyone downstream. For simplicity, we will only examine
transmission on bus A, but the same story holds for bus B as well.

To simulate the FIFO queue, each station maintains two counters, RC and
CD. RC (Request Counter) counts the number of downstream requests pending
until the station itself has a frame to send. At that point, RC is copied to CD, RC
is reset to 0, and now counts the number of requests made after the station became
ready. For example, if CD= 3 and RC= 2 for station k, the next three empty
cells that pass by station k are reserved for downstream stations, then station k
may send, then two more cells are reserved for downstream stations. For simpli­
city, we assume a station can have only one cell ready for transmission at a time.

To send a cell, a station must first make a reservation by setting the Request
bit in some cell on the reverse bus (i.e., on bus B for a transmission that will later
take place on bus A). As this cell propagates down the reverse bus, every station
along the way notes it and increments its RC. To illustrate this concept, we will
use an example. Initially, all the RC counters are 0, and no cells are queued up, as
shown in Fig. 4-32(a). Then station D makes a request, which causes stations, C,
B, and A, to increment their RC counters, as shown in Fig. 4-32(b). After that, B
makes a request, copying its current RC value into CD, leading to the situation of
Fig. 4-32(c).

At this point, the head-end on bus A generates an empty cell. As it passes by
B, that station sees that its CD > 0, so it may not use the empty cell. (When a sta­
tion has a cell queued, CD represents its position in the queue, with O being the
front of the queue.) Instead it decrements CD. When the still-empty cell gets to
B, that station sees that CD = 0, meaning that no one is ahead of it on the queue,
so it ORs its data into the cell and sets the Busy bit. After the transmissions are
done, we have the situation of Fig. 4-32(d).

When the next empty cell is generated, station D sees that it is now at the
head of the queue, and seizes the cell (by setting 1 bit), as illustrated in Fig. 4-
32(e). In this way, stations queue up to take turns, without a centralized queue
manager.

DQDB systems are now being installed by many carriers throughout entire
cities. Typically they run for up to 160 km at speeds of 44.736 Mbps (T3).

4.3.6. IEEE Standard 802.2: Logical Link Control

It is now perhaps time to step back and compare what we have learned in this
chapter with what we studied in the previous one. In Chap. 3, we saw how two
machines could communicate reliably over an unreliable line by using various

...

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS

,,,,-Head end
A bus

B bus

(a)

A Pkt

I REQ 1-------------------'
(b)

Pkt

(c)

Pkt

(d)

(e)

Fig. 4-32. (a) Initially the MAN is idle. (b) After D makes a request. (c) After
B makes a request. (d) After D transmits. (e) After B transmits.

303

Head
end

I

data link protocols. These protocols provided error control (using acknowledge­
ments) and flow control (using a sliding window).

In contrast, in this chapter, we have not said a word about reliable communi­
cation. All that the 802 LANs and MAN offer is a best-efforts datagram service.

304 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Sometimes, this service is adequate. For example, for transporting IP packets, no
guarantees are required or even expected. An IP packet can just be inserted into
an 802 payload field and sent on its way. If it gets lost, so be it.

Nevertheless, there are also systems in which an error-controlled, flow­
controlled data link protocol is desired. IEEE has defined one that can run on top
of all the 802 LAN and MAN protocols. In addition, this protocol, called LLC
(Logical Link Control), hides the differences between the various kinds of 802
networks by providing a single format and interface to the network layer. This
format, interface, and protocol are all closely based on OSI. LLC forms the upper
half of the data link layer, with the MAC sublayer below it, as shown in Fig. 4-33.

Network layer

t

Physical layer

(a)

I PacKet I

t
I LLC Packet

I MAC I LLC I Packet

Network

(b)

Fig. 4-33. (a) Position of LLC. (b) Protocol formats.

MAC

Typical usage of LLC is as follows. The network layer on the sending
machine passes a packet to LLC using the LLC access primitives. The LLC sub­
layer then adds an LLC header, containing sequence and acknowledgement
numbers. The resulting structure is then inserted into the payload field of an
802.x frame and transmitted. At the receiver, the reverse process takes place.

LLC provides three service options: unreliable datagram service, acknowl­
edged datagram service, and reliable connection-oriented service. The LLC
header is based on the older HDLC protocol. A variety of different formats are
used for data and control. For acknowledged datagram or connection-oriented
service, the data frames contain a source address, a destination address, a
sequence number, an acknowledgement number, and a few miscellaneous bits.
For unreliable datagram service, the sequence number and acknowledgement
number are omitted.

4.4. BRIDGES

Many organizations have multiple LANs and wish to connect them. LANs
can be connected by devices called bridges, which operate in the data link layer.
This statement means that bridges do not examine the network layer header and

, .
' .·

SEC. 4.4 BRIDGES 305

can thus copy IP, IPX, and OSI packets equally well. In contrast, a pure IP, IPX,
or OSI router can handle only its own native packets.

In the following sections we will look at bridge design, especially for connect­
ing 802.3, 802.4, and 802.5 LANs. For a comprehensive treatment of bridges and
related topics, see (Perlman, 1992). Before getting into the technology of bridges,
it is worthwhile taking a look at some common situations in which bridges are
used. We will mention six reasons why a single organization may end up with
multiple LANs. First, many university and corporate departments have their own
LANs, primarily to connect their own personal computers, workstations, and
servers. Since the goals of the various departments differ, different departments
choose different LANs, without regard to what other departments are doing.
Sooner or later, there is a need for interaction, so bridges are needed. In this
example, multiple LANs came into existence due to the autonomy of their own­
ers.

Second, the organization may be geographically spread over several buildings
separated by considerable distances. It may be cheaper to have separate LANs in
each building and connect them with bridges and infrared links than to run a sin­
gle coaxial cable over the entire site.

Work­
station

File
server

LAN

Bridge

Cluster on a
single LAN

Fig. 4-34. Multiple LANs connected by a backbone to handle a total load higher
than the capacity of a single LAN.

Third, it may be necessary to split what is logically a single LAN into
separate LANs to accommodate the load. At many universities, for example,
thousands of workstations are available for student and faculty computing. Files
are normally kept on file server machines, and are downloaded to users' machines
upon request. The enormous scale of this system precludes putting all the work­
stations on a single LAN-the total bandwidth needed is far too high. Instead
multiple LANs connected by bridges are used, as shown in Fig. 4-34. Each LAN

306 THE MEDIUM ACCESS SUBLAYER CHAP. 4

contains a cluster of workstations with its own file server, so that most traffic is
restricted to a single LAN and does not add load to the backbone.

Fourth, in some situations, a single LAN would be adequate in terms of the
load, but the physical distance between the most distant machines is too great
(e.g., more than 2.5 km for 802.3). Even if laying the cable is easy to do, the net­
work would not work due to the excessively long round-trip delay. The only solu­
tion is to partition the LAN and install bridges between the segments. Using
bridges, the total physical distance covered can be increased.

Fifth, there is the matter of reliability. On a single LAN, a defective node that
keeps outputting a continuous stream of garbage will cripple the LAN. Bridges
can be inserted at critical places, like fire doors in a building, to prevent a single
node which has gone berserk from bringing down the entire system. Unlike a
repeater, which just copies whatever it sees, a bridge can be programmed to exer­
cise some discretion about what it forwards and what it does not forward.

Sixth, and last, bridges can contribute to the organization's security. Most
LAN interfaces have a promiscuous mode, in which all frames are given to the
computer, not just those addressed to it. Spies and busybodies love this feature.
By inserting bridges at various places and being careful not to forward sensitive
traffic, it is possible to isolate parts of the network so that its traffic cannot escape
and fall into the wrong hands.

Host A Host B

l l

802.4 Pkt

Fig. 4-35. Operation of a LAN bridge from 802.3 to 802.4.

Having seen why bridges are needed, let us now turn to the question of how
they work. Figure 4-35 illustrates the operation of a simple two-port bridge. Host
A has a packet to send. The packet descends into the LLC sublayer and acquires

'.

SEC. 4.4 BRIDGES 307

an LLC header. Then it passes into the MAC sublayer and an 802.3 header is
prepended to it (also a trailer, not shown in the figure). This unit goes out onto
the cable and eventually is passed up to the MAC sublayer in the bridge, where
the 802.3 header is stripped off. The bare packet (with LLC header) is then
handed off to the LLC sublayer in the bridge. In this example, the packet is des­
tined for an 802.4 subnet connected to the bridge, so it works its way down the
802.4 side of the bridge and off it goes. Note that a bridge connecting k different
LANs will have k different MAC sublayers and k different physical layers, one for
each type.

4.4.1. Bridges from 802.x to 802.y

You might naively' think that a bridge from one 802 LAN to another one
would be completely trivial. Such is not the case. In the remainder of this section
we will point out some of the difficulties that will be encountered when trying to
build a bridge between the various 802 LANs.

Each of the nine combinations of 802.x to 802.y has its own unique set of
problems. However, before dealing with these one at a time, let us look at some
general problems common to all the bridges. To start with, each of the LANs uses
a different frame format (see Fig. 4-36). There is no valid technical reason for
this incompatibility. It is just that none of the corporations supporting the three
standards (Xerox, GM, and IBM) wanted to change theirs. As a result, any copy­
ing between different LANs requires reformatting, which takes CPU time,
requires a new checksum calculation, and introduces the possibility of undetected
errors due to bad bits in the bridge's memory. None of this would have been
necessary if the three committees had been able to agree on a single format.

802.3

802.5

Destination
and

Start Access Frame source
Preamble delimiter control control addresses Length Data

End Frame
Pad Checksum delimiter status

Fig. 4-36. The IEEE 802 frame formats.

A second problem is that interconnected LAN s do not necessarily run at the
same data rate. When forwarding a long run of back-to-back frames from a fast
LAN to a slower one, the bridge will not be able to get rid of the frames as fast as
they come in. It will have to buffer them, hoping not to run out of memory. The
problem also exists from 802.4 to 802.3 at 10 Mbps to some extent because some

308 THE MEDIUM ACCESS SUBLAYER CHAP. 4

of 802.3' s bandwidth is lost to collisions. It does not really have 10 Mbps,
whereas 802.4 really does (well, almost). Bridges that connect three or more
LAN s have a similar problem when several LAN s are trying to feed the same out­
put LAN at the same time.

A subtle, but important problem related to the bridge-as-bottleneck problem is
the value of timers in the higher layers. Suppose that the network layer on an
802.4 LAN is trying to send a very long message as a sequence of frames. After
sending the last one it starts a timer to wait for an acknowledgement. If the mes­
sage has to transit a bridge to a slower 802.5 LAN, there is a danger that the timer
will go off before the last frame has been forwarded onto the slower LAN. The
network layer will assume the problem is due to a lost frame and just retransmit
the entire sequence again. After n failed attempts it may give up and tell the
transport layer that the destination is dead.

A third, and potentially most serious problem of all, is that all three 802 LANs
have a different maximum frame length. For 802.3 it depends on the parameters
of the configuration, but for the standard 10-Mbps system the payload is a max­
imum of 1500 bytes. For 802.4 it is fixed at 8191 bytes. For 802.5 there is no
upper limit, except that a station may not transmit longer than the token-holding
time. With the default value of 10 msec, the maximum frame length is 5000
bytes.

An obvious problem arises when a long frame must be forwarded onto a LAN
that cannot accept it. Splitting the frame into pieces is out of the question in this
layer. All the protocols assume that frames either arrive or they do not. There is
no provision for reassembling frames out of smaller units. This is not to say that
such protocols could not be devised. They could be and have been. It is just that
802 does not provide this feature. Basically, there is no solution. Frames that are
too large to be forwarded must be discarded. So much for transparency.

Now let us briefly consider each of the nine cases of 802.x to 802.y bridges to
see what other problems are lurking in the shadows. From 802.3 to 802.3 is easy.
The only thing that can go wrong is that the destination LAN is so heavily loaded
that frames keep pouring into the bridge, but the bridge cannot get rid of them. If
this situation persists long enough, the bridge might run out of buffer space and
begin dropping frames. Since this problem is always potentially present when
forwarding onto an 802.3 LAN, we will not mention it further. With the other two
LAN s, each station, including the bridge is guaranteed to acquire the token
periodically and cannot be shut out for long intervals.

From 802.4 to 802.3 two problems exist. First, 802.4 frames carry priority
bits that 802.3 frames do not have. As a result, if two 802.4 LANs communicate
via an 802.3 LAN, the priority will be lost by the intermediate LAN.

The second problem is caused by a specific feature in 802.4: temporary token
handoff. It is possible for an 802.4 frame to have a header bit set to 1 to tem­
porarily pass the token to the destination, to let it send an acknowledgement
frame. However, if such a frame is forwarded by a bridge, what should the bridge

': .

SEC. 4.4 BRIDGES 309

do? If it sends an acknowledgement frame itself, it is lying because the frame
really has not been delivered yet. In fact, the destination may be dead.

On the other hand, if it does not generate the acknowledgement, the sender
will almost assuredly conclude that the destination is dead and report back failure
to its superiors. There does not seem to be any way to solve this problem.

From 802.5 to· 802.3 we have a similar problem. The 802.5 frame format has
A and C bits in the frame status byte. These bits are set by the destination to tell
the sender whether the station addressed saw the frame, and whether it copied it.
Here again, the bridge can lie and say the frame has been copied, but if it later
turns out that the destination is down, serious problems may arise. In essence, the
insertion of a bridge into the network has changed the semantics of the bits. It is
hard to imagine a proper solution to this problem.

From 802.3 to 802.4 we have the problem of what to put in the priority bits.
A good case can be made for having the bridge retransmit all frames at the highest
priority, because they have probably suffered enough delay already.

From 802.4 to 802.4 the only problem is what to do with the temporary token
handoff. At least here we have the possibility of the bridge managing to forward
the frame fast enough to get the response before the timer runs out. Still it is a
gamble. By forwarding the frame at the highest priority, the bridge is telling a lit­
tle white lie, but it thereby increases the probability of getting the response in
time.

From 802.5 to 802.4 we have the same problem with the A and C bits as
before. Also, the definition of the priority bits is different for the two LANs, but
beggars can't be choosers. At least the two LANs have the same number of prior­
ity bits. All the bridge can do is copy the priority bits across and hope for the
best.

From 802.3 to 802.5 the bridge must generate priority bits, but there are no
other special problems. From 802.4 to 802.5 there is a potential problem with
frames that are too long and the token handoff problem is present again. Finally,
from 802.5 to 802.5 the problem is what to do with the A and C bits again. Figure
4-37 summarizes the various problems we have been discussing.

When the IEEE 802 committee set out to come up with a LAN standard, it
was unable to agree on a single standard, so it produced three incompatible stand­
ards, as we have just seen in some detail. For this failure, it has been roundly cri­
ticized. When it was later assigned the job of designing a standard for bridges to
interconnect its three incompatible LANs, it resolved to do better. It did. It came
up with two incompatible bridge designs. So far nobody has asked it to design a
gateway standard to connect its two incompatible bridges, but at least the trend is
in the right direction.

This section has dealt with the problems encountered in connecting two IEEE
802 LANs via a single bridge. The next two sections deal with the problems of
connecting large intemetworks containing many LAN s and many bridges and the
two IEEE approaches to designing these bridges.

310

802.3

Source 802.4
LAN

802.5

THE MEDTTJM ACCESS SUBLAYER

Destination LAN

802.3 (CSMA/CD) 802.4 (Token bus) 802.4 (Token ring)

1, 4 1, 2, 4, 8

1, 5, 8, 9, 10 9 1, 2, 3, 8, 9, 10

1,2,5,6, 7, 10 1,2,3,6, 7 6, 7

Actions: ,
1. Reformat the frame and compute new checksum
2. Reverse the bit order.
3. Copy the priority, meaningful or not.
4. Generate a ficti<::ious priority.
5. Discard priority.
6. Drain the ring (somehow).
7. Set A and C bits (by lying) .
8. Worry about congestion (fast LAN to slow LAN).
9. Worry about token handoff ACK being delayed or impossible.

10. Panic if frame is too long for destination LAN.

Parameters assumed:
802.3: 1500-byte frames,
802.4: 8191-byte frames
802.5: 5000-byte frames

10 Mbps (minus collisions)
10 Mbps
4 Mbps

Fig. 4-37. Problems encountered in building bridges from 802.x to 802.y.

4.4.2. Transparent Bridges

CHAP. 4

The first 802 bridge is a transparent bridge or spanning tree bridge (Perl­
man, 1992). The overriding concern of the people who supported this design was
complete transparency. In their view, a site with multiple LANs should be able to
go out and buy bridges designed to the IEEE standard, plug the connectors into
the bridges, and everything should work perfectly, instantly. There should be no
hardware changes required, no software changes required, no setting of address
switches, no downloading of routing tables or parameters, nothing. Just plug in
the cables and walk away. Furthermore, the operation of the existing LAN s
should not be affected by the bridges at all. Surprisingly enough, they actually
succeeded.

A transparent bridge operates in promiscuous mode, accepting every frame
transmitted on all the LAN s to which it is attached. As an example, consider the
configuration of Fig. 4-38. Bridge Bl is connected to LANs 1 and 2, and bridge
B2 is connected to LANs 2, 3, and 4. A frame arriving at bridge B 1 on LAN 1
destined for A can be discarded immediately, because it is already on the right
LAN, but a frame arriving on LAN 1 for C or F must be forwarded.

When a frame arrives, a bridge must decide whether to discard or forward it,

SEC. 4.4 BRIDGES 311

LAN4

LAN 1 LAN2 LAN 3

Fig. 4-38. A configuration with four LANs and two bridges.

and if the latter, on which LAN to put the frame. This decision is made by look­
ing up the destination address in a big (hash) table inside the bridge. The table
can list each possible destination and tell which output line (LAN) it belongs on.
For example, B2's table would list A as belonging to LAN 2, since all B2 has to
know is which LAN to put frames for A on. That, in fact, more forwarding hap-
pens later is not of interest to it. .

When the bridges are first plugged in, all the hash tables are empty. None of
the bridges know where any of the destinations are; so they use the flooding algo­
rithm: every incoming frame for an unknown destination is output on all the
LANs to which the bridge is connected except the one it arrived on. As time goes
on, the bridges learn where destinations are, as described below. Once a destina­
tion is known, frames destined for it are put on only the proper LAN and are not
flooded.

The algorithm used by the transparent briqges is backward learning. As
mentioned above, the bridges operate in promiscuous mode, 'so they see every
frame sent on any of their LANs. By looking at the source address, they can tell
which machine is accessible on which LAN. For example, if bridge Bl in Fig. 4-
38 sees a frame on LAN 2 coming from C, it knows that C must be reachable via
LAN 2, so it makes an entry in its hash table noting that frames going to C should
use LAN 2. Any subsequent frame addressed to C coming in on LAN 1 will be
forwarded, but a frame for C coming in on LAN 2 will be discarded.

The topology can change as machines and bridges are powered up and down
and moved around. To handle dynamic topologies, whenever a hash table entry is
made, the arrival time of the frame is noted in the entry. Whenever a frame
whose destination is already in the table arrives, its entry is updated with the
current time. Thus the time associated with every entry tells the last time a frame
from that machine was seen.

Periodically, a process in the bridge scans the hash table and purges all entries
more than a few minutes old. In this way, if a computer is unplugged from its
LAN, moved around the building, and replugged in somewhere else, within a few
minutes it will be back in normal operation, without any manual intervention.
This algorithm also means that if a machine is quiet for a few minutes, any traffic
sent to it will have to be flooded, until it next sends a frame itself.

312 THE MEDIUM ACCESS SUBLAYER CHAP. 4

The routing procedure for an incoming frame depends on the LAN it arrives
on (the source LAN) and the LAN its destination is on (the destination LAN), as
follows:

1. If destination and source LAN s are the same, discard the frame.

2. If the destination and source LANs are different, forward the frame.

3. If the destination LAN is unknown, use flooding.

As each frame arrives, this algorithm must be applied. Special purpose VLSI
chips exist to do the lookup and update the table entry, all in a few microseconds.

To increase reliability, some sites use two or more bridges in parallel between
pairs of LANs, as shown in Fig. 4-39. This arrangement, however, also intro­
duces some additional problems because it creates loops in the topology.

Frame copied
by B1

Frame copied
/ byB2

F2 ~ LAN2------ ~-----,.,.-""------

°'--- Initial frame

Fig. 4-39. Two parallel transparent bridges.

A simple example of these problems can be seen by observing how a frame,
F, with unknown destination is handled in Fig. 4-39. Each bridge, following the
normal rules for handling unknown destinations, uses flooding, which in this
example, just means copying it to LAN 2. Shortly thereafter, bridge 1 sees F 2 , a
frame with an unknown destination, which it copies to LAN 1, generating F 3 (not
shown). Similarly, bridge 2 copies F 1 to LAN 1 generating F 4 (also not shown).
Bridge 1 now forwards F 4 and bridge 2 copies F 3 . This cycle goes on forever.

Spanning Tree Bridges

The solution to this difficulty is for the bridges to communicate with each
other and overlay the actual topology with a spanning tree that reaches every
LAN. In effect, some potential connections between LANs are ignored in the
interest of constructing a fictitious loop-free topology. For example, in Fig. 4-
40(a) we see nine LANs interconnected by ten bridges. This configuration can be

.·

'.

, .

SEC. 4.4 BRIDGES 313

abstracted into a graph with the LANs as the nodes. An arc connects any two
LAN s that are connected by a bridge. The graph can' be reduced to a spanning
tree by dropping the arcs shown as dotted lines in Fig. 4-40(b). Using this span­
ning tree, there is exactly one path from every LAN to every other LAN. Once
the bridges have agreed on the spanning tree, all forwarding between LANs fol­
lows the spanning tree. Since there is a unique path from each source to each des­
tination, loops are impossible.

(a)

LAN

Bridge that
is part of the

spanning tree

(b)

..

.. ····•~:·dge that is
· not part of the

9 spanning tree

Fig. 4-40. (a) Interconnected LANs. (b) A spanning tree covering the LANs.
The dotted lines are not part of the spanning tree.

To build the spanning tree, first the bridges have to choose one bridge to be
the root of the tree. They make this choice by having each one broadcast its serial
number, installed by the manufacturer, and guaranteed to be unique worldwide.
The bridge with the lowest serial number becomes the root. Next, a tree of shor­
test paths from the root to every bridge and LAN is constructed. This tree is the
spanning tree. If a bridge or LAN fails, a new one is computed.

The result of this algorithm is that a unique path is established from every
LAN to the root, and thus to every other LAN. Although the tree spans all the
LANs, not all the bridges are necessarily present in the tree (to prevent loops).
Even after the spanning tree has been established, the algorithm continues to run
in order to automatically detect topology changes and update the tree. The distri­
buted algorithm used for constructing the spanning tree was invented by Perlman
and is described in detail in (Perlman, 1992).

Bridges can also be used to connect LANs that are widely separated. In this
model, each site consists of a collection of LAN s and bridges, one of which has a
connection to a WAN. Frames for remote LANs travel over the WAN. The basic
spanning tree algorithm can be used, preferably with certain optimizations to
select a tree that minimizes the amount of WAN traffic.

314 THE MEDIUM ACCESS SUBLAYER CHAP. 4

4.4.3. Source Routing Bridges

Transparent bridges have the advantage of being easy to install. You just plug
them in and walk away. On the other hand, they do not make optimal use of the
bandwidth, since they only use a subset of the topology (the spanning tree). The
relative importance of these two (and other) factors led to a split within the 802
committees (Pitt, 1988). The CSMA/CD and token bus people chose the tran­
sparent bridge. The ring people (with encouragement from IBM) preferred a
scheme called source routing, which we will now describe. For additional
details, see (Dixon, 1987).

Reduced to its barest essentials, source routing assumes that the sender of
each frame knows whether or not the destination is on its own LAN. When send­
ing a frame to a different LAN, the source machine sets the high-order bit of the
source address to 1, to mark it. Furthermore, it includes in the frame header the
exact path that the frame will follow.

This path is constructed as follows. Each LAN has a unique 12-bit number,
and each bridge has a 4-bit number that uniquely identifies it in the context of its
LANs. Thus, two bridges far apart may both have number 3, but two bridges
between the same two LANs must have different bridge numbers. A route is then
a sequence of bridge, LAN, bridge, LAN, ... numbers. Referring to Fig. 4-38, the
route from A to D would be (Ll, B 1, L2, B2, L3).

A source routing bridge is only interested in those frames with the high-order
bit of the destination set to 1. For each such frame that it sees, it scans the route
looking for the number of the LAN on which the frame arrived. If this LAN
number is followed by its own bridge number, the bridge forwards the frame onto
the LAN whose number follows its bridge number in the route. If the incoming
LAN number is followed by the number of some other bridge, it does not forward
the frame.

This algorithm lends itself to three possible implementations:

1. Software: the bridge runs in promiscuous mode, copying all frames
to its memory to see if they have the high-order destination bit set to
1. If so, the frame is inspected further; otherwise it is not.

2. Hybrid: the bridge's LAN interface inspects the high-order destina­
tion bit and only accepts frames with the bit set. This interface is
easy to build into hardware and greatly reduces the number of frames
the bridge must inspect.

3. Hardware: the bridge's LAN interface not only checks the high-order
destination bit, but it also scans the route to see if this bridge must do
forwarding. Only frames that must actually be forwarded are given
to the bridge. This implementation requires the most complex
hardware but wastes no bridge CPU cycles because all irrelevant
frames are screened out.

SEC. 4.4 BRIDGES 315

These three implementations vary in their cost and perlormance. The first one has
no additional hardware cost for the interlace but may require a very fast CPU to
handle all the frames. The last one requires a special VLSI chip but offloads
much of the processing from the bridge to the chip, so that a slower CPU can be
used, or alternatively, the bridge can handle more LANs.

Implicit in the design of source routing is that every machine in the internet­
work knows, or can find, the best path to every other machine. How these routes
are discovered is an important part of the source routing algorithm. The basic
idea is that if a destination is unknown, the source issues a broadcast frame asking
where it is. This discovery frame is forwarded by every bridge so that it reaches
every LAN on the internetwork. When the reply comes back, the bridges record
their identity in it, so that the original sender can see the exact route taken and
ultimately choose the best route.

While this algorithm clearly finds the best route (it finds all routes), it suffers
from a frame explosion. Consider the configuration of Fig. 4-41, with N LANs
linearly connected by triple bridges. Each discovery frame sent by station 1 is
copied by each of the three bridges on LAN 1, yielding three discovery frames on
LAN 2. Each of these is copied by each of the bridges on LAN 2, resulting in
nine frames on LAN 3. By the time we reach LANN, 3N-I frames are circulat­
ing. If a dozen sets of bridges are traversed, more than half a million discovery
frames will have to be injected into the last LAN, causing severe congestion.

Stage 2

LAN

/ "'

3 4 N

Fig. 4-41. A series of LAN s connected by triple bridges.

A somewhat analogous process happens with the transparent bridge, only it is
not nearly so severe. When an unknown frame arrives, it is flooded, but only
along the spanning tree, so the total volume of frames sent is linear with the size
of the network, not exponential.

Once a host has discovered a route to a -certain destination, it stores the route
in a cache, so that the dis9overy process will not have to be run next time. While
this approach greatly limits the impact of the frame explosion, it does put some
administrative burden on all the hosts, and the whole algorithm is definitely not
transparent, which was one of the original goals, as we mentioned above.

316 THE MEDIUM ACCESS SUB LA YER CHAP. 4

4.4.4. Comparison of 802 Bridges

The transparent and source routing bridges each have advantages and disad­
vantages. In this section we will discuss some of the major ones. They are sum­
marized in Fig. 4-42 and covered in more detail in (Soha and Perlman, 1988; and
Zhang, 1988). Be warned, however, that every one of the points is highly con­
tested.

Issue Transparent bridge Source routing bridge

Orientation Connectionless Connection-oriented

Transparency Fully transparent Not transparent

Configuration Automatic Manual

Routing Suboptimal Optimal

Locating Backward learning Discovery frames

Failures Handled by the bridges Handled by the hosts

Complexity In the bridges In the hosts

Fig. 4-42. Comparison of transparent and source routing bridges.

At the heart of the difference between the two bridge types is the distinction
between connectionless and connection-oriented networking. The transparent
bridges have no concept of a virtual circuit at all and route each frame indepen­
dently from all the others. The source routing bridges, in contrast, determine a
route using discovery frames and then use that route thereafter.

The transparent bridges are completely invisible to the hosts and are fully
compatible with all existing 802 products. The source routing bridges are neither
transparent nor compatible. To use source routing, hosts must be fully aware of
the bridging scheme and must actively participate in it. Splitting an existing LAN
into two LANs connected by a source routing bridge requires making changes to
the host software.

When using transparent bridges, no network management is needed. The
bridges configure themselves to the topology automatically. With source routing
bridges, the network manager must manually install the LAN and bridge numbers.
Mistakes, such as duplicating a LAN or bridge number, can be very difficult to
detect, as they may cause some frames to loop, but not others on different routes.
Furthermore, when connecting two previously disjoint intemetworks, with tran­
sparent bridges there is nothing to do except connect them, whereas with source
routing, it may be necessary to manually change many LAN numbers to make
them unique in the combined internetwork.

One of the few advantages of source routing is that, in theory, it can use
optimal routing, whereas transparent bridging is restricted to the spanning tree.

.,

: ..

SEC. 4.4 BRIDGES 317

Furthermore, source routing can also make good use of parallel bridges between
two LANs to split the load. Whether actual bridges will be clever enough to make
use of these theoretical advantages is questionable.

Locating destinations is done using backward learning in the transparent
bridge and using discovery frames in source routing bridges. The disadvantage of
backward learning is that the bridges have to wait until a frame from a particular
machine happens to come along in order to learn where that machine is. The
disadvantage of discovery frames is the exponential explosion in moderate to
large internetworks with parallel bridges.

Failure handling is quite different in the two schemes. Transparent bridges
learn about bridge and LAN failures and other topology changes quickly and
automatically, just from listening to each other's control frames. Hosts do not
notice these changes at all.

With source routing, the situation is quite different. When a bridge fails,
machines that are routing over it initially notice that their frames are no longer
being acknowledged, so they time out and try over and over. Finally, they con­
clude that something is wrong, but they still do not know if the problem is with
the destination itself, or with the current route. Only by sending another
discovery frame can they see if the destination is available. Unfortunately, when
a major bridge fails, a large number of hosts will have to experience timeouts and
send new discovery frames before the problem is resolved, even if an alternative
route is available. This greater vulnerability to failures is one of the major
weaknesses of all connection-oriented systems.

Finally, we come to complexity and cost, a very controversial topic. If source
routing bridges have a VLSI chip that reads in only those frames that must be for­
warded, these bridges will experience a lighter frame processing load and deliver
a better performance for a given investment in hardware. Without this chip they
will do worse because the amount of processing per frame (searching the route in
the frame header) is substantially more.

In addition, source routing puts extra complexity in the hosts: they must store
routes, send discovery frames, and copy route information into each frame. All of
these things require memory and CPU cycles. Since there are typically one to two
orders of magnitude more hosts than bridges, it may be better to put the extra cost
and complexity into a few bridges, rather than in all the hosts.

4.4.S. Remote Bridges

A common use of bridges is to connect two (or more) distant LANs. For
example, a company might have plants in several cities, each with its own LAN.
Ideally, all the LANs should be interconnected, so the complete system acts like
one large LAN.

This goal can be achieved by putting a bridge on each LAN and connecting

318 THE MEDIUM ACCESS SUBLAYER CHAP. 4

the bridges pairwise with point-to-point lines (e.g., lines leased from a telephone
company). A simple system, with three LANs, is illustrated in Fig. 4-43. The
usual routing algorithms apply here. The simplest way to see this is to regard the
three point-to-point lines as hostless LAI'.fs. Then we have a normal system of six
LANS interconnected by four bridges. Nothing in what we have studied so far
says that a LAN must have hosts on· it.

Bridge

LAN 1

> Point-to-point line~

LAN 2

LAN3

Fig. 4-43. Remote bridges can be used to interconnect distant LANs.

Various protocols can be used on the p<>int-to-point lines. One possibility is
to choose some standard point-to-point data link protocol, putting complete MAC
frames in the payload field. This strategy works best if all the LANs are identical,
and the only problem is getting frames to the right LAN. Another option is to
strip off the MAC header ap.d trailer at the source bridge and put what is left in the
payload field of the point-to-point protocol. A new MAC header and trailer can
then be generated at the destination bridge. A disadvantage of this approach is
that the checksum that arrives at the destination host is not the one computed by
the source host, so errors caused by bad bits in a bridge's memory may not be
detected.

4.5. IDGH-SPEED LANS

The 802 LANs and MAN we have just studied are all based on one copper
wire (two copper wires for 802.6). For low speeds and short distances, this will
do just fine, but for high speeds and longer distances LANs must be based on fiber
optics or highly parallel copper networks. Fiber has high bandwidth, is thin ap.d
lightweight, is not affected by electromagnetic interference from heavy machinery
(important when cabling runs through elevator shafts), power surges, or lightning,
and has excellent security because it is nearly impossible to wiretap without
detection. Consequently, fast LANs often use fiber. In the following sections we
will look at some local area networks that use fiber optics, as well as one
extremely high-speed LAN that uses old fashioned copper wire (but lots of it).

,.

SEC. 4.5

4.5.1. FDDI

HIGH-SPEED LANS 319

FDDI (Fiber Distributed Data Interface) is a high~performance fiber optic
token ring LAN running at 100 Mbps over distances up to 200 km with up to 1000
stations connected (Black, 1994; Jain, 1994; Mirchandani and Khanna, 1993; Ross
and Hamstra, 1993; Shah and Ramakrishnan, 1994; and Wolter, 1990). It can be
used in the same way as any of the 802 LANs, but with its high bandwidth,
another common use is as a backbone to connect copper LAN s, as shown in
Fig. 4-44. FDDI-II is the successor to FDDI, modified to handle synchronous
circuit-switched PCM data for voice or ISDN traffic, in addition to ordinary data.
We will refer to both of them as just FDDI. This section deals with both the phy­
sical layer and the MAC sublayer of FDDI.

FDDI ring
Ethernet

Token ring

Ethernet

Fig. 4-44. An FDDI ring being used as a backbone to connect LANs and com­
puters.

FDDI uses multimode fibers because the additional expense of single mode
fibers is not needed for networks running at only 100 Mbps. It also uses LEDs
rather than lasers, not only due to their lower cost, but also because FDDI may
sometimes be used to connect directly to user workstations. There is a danger that
curious users may occasionally unplug the fiber connector and look directly into it
to watch the bits go by at 100 Mbps. With a laser the curious user might end up
with a hole in his retina. LEDs are too weak to do any eye damage but are strong
enough to transfer data accurately at 100 Mbps. The FDDI design specification
calls for no more than 1 error in 2.5 x 1010 bits. Many implementations do much
better.

The FDDI cabling consists of two fiber rings, one transmitting clockwise and
the other transmitting counterclockwise, as illustrated in Fig. 4-45(a). If either
one breaks, the other can be used as a backup. If both break at the same point, for

320 THE MEDIUM ACCESS SUBLAYER CHAP. 4

example, due to a fire or other accident in the. cable duct, the two rings can be
joined into a single ring approximately twice as long, as shown in Fig. 4-45(b).
Each station contains relays that can be used to join the two rings or bypass the
station in the event of station problems. Wire centers can also be used, as in
802.5.

(a) (b)

Fig. 4-45. (a) FDDI consists of two counterrotating rings. (b) In the event of
failure of both rings at one point, the two rings can be joined together to form a
single long ring.

FDDI defines two classes of stations, A and B. Class A stations connect to
both rings. The cheaper class B stations only connect to one of the rings.
Depending on how important fault tolerance is, an installation can choose class A
or class B stations, or some of each.

The physical layer does not use Manchester encoding because 100-Mbps
Manchester encoding requires 200 megabaud, which was deemed too expensive.
Instead a scheme called 4 out of S encoding is used. Each group of 4 MAC sym­
bols (Os, ls, and certain nondata symbols such as start-of-frame) are encoded as a
group of 5 bits on the medium. Sixteen of the 32 combinations are for data, 3 -are
for delimiters, 2 are for control, 3 are for hardware signaling, and 8 are unused
(i.e., reserved for future versions of the protocol).

The advantage of this scheme is that it saves bandwidth, but the disadvantage
is the loss of the self-clocking property of Manchester encoding. To compensate
for this loss, a long preamble is used to synchronize the receiver to the sender's
clock. Furthermore, all clocks are required to be stable to at least 0.005 percent.
With this stability, frames up to 4500 bytes can be sent without danger of the
receiver's clock drifting too far out of sync with the data stream.

The basic FDDI protocols are closely modeled on the 802.5 protocols. To
transmit data, a station must first capture the token. Then it transmits a frame and
removes it when it comes around again. One difference between FDDI and 802.5
is that in 802.5, a station may not generate a new token until its frame has gone all
the way around and come back. In FDDI, with potentially 1000 stations and 200
km of fiber, the amount of time wasted waiting for the frame to circumnavigate
the ring could be substantial. For this reason, it was decided to allow a station to

SEC. 4.5 HIGH-SPEED LANS 321

put a new token back onto the ring as soon as it has finished transmitting its
frames. In a large ring, several frames might be on the ring at the same time.

FDDI data frames are similar to 802.5 data frames . The FDDI format is
shown in Fig. 4-46. The Start delimiter and End delimiter fields mark the frame
boundaries. The Frame control field tells what kind of frame this is (data, con­
trol, etc.). The Frame status byte holds acknowledgement bits, similar to those of
802.5. The other fields are analogous to 802.5.

Bytes ~8 2 or 6 2 or 6 No limit 4 1 1

Preamble Destination Source + I Checksum I I I address address

t L_ Frame control f
1 Ending delimiter

Start delimiter Frame status

Fig. 4-46. FDDI frame format.

In addition to the regular (asynchronous) frames, FDDI also permits special
synchronous frames for circuit-switched PCM or ISDN data. The synchronous
frames are generated every 125 µsec by a master station to provide the 8000
samples/sec needed by PCM systems. Each of these frames has a header, 16
bytes of noncircuit-switched data, and up to 96 bytes of circuit-switched data (i.e.,
up to 96 PCM channels per frame).

The number 96 was chosen because it allows four Tl channels (4 x 24) at
1.544 Mbps or three CCITT El channels (3 x 32) at 2.048 Mbps to fit in a frame,
thus making it suitable for use anywhere in the world. One synchronous frame
every 125 µsec consumes 6.144 Mbps of bandwidth for the 96 circuit-switched
channels. A maximum of 16 synchronous frames every 125 µsec allows up to
1536 PCM channels and eats up 98.3 Mbps.

Once a station has acquired one or more time slots in a synchronous frame,
those slots are reserved for it until they are explicitly released. The total
bandwidth not used by the synchronous frames is allocated on demand. A bit
mask is present in each of these frames to indicate which slots are available for
demand assignment. The nonsynchronous traffic is divided into priority classes,
with the higher priorities getting first shot at the leftover bandwidth.

The FDDI MAC protocol uses three timers. The token holding timer deter­
mines how long a station may continue to transmit once it has acquired the token.
This timer prevents a station from hogging the ring forever. The token rotation
timer is restarted every time the token is seen. If this timer expires, it means that
the token has not been sighted for too long an interval. Probably it has been lost,
so the token recovery procedure is initiated. Finally, the valid transmission
timer is used to time out and recover from certain transient ring errors.

FDDI also has a priority algorithm similar to 802.4. It determines which

322 THE MEDIUM ACCESS SUBLAYER CHAP. 4

priority classes may transmit on a given token pass. If the token is ahead of
schedule, all priorities may transmit, but if it is behind schedule, only the highest
ones may send.

4.5.2. Fast Ethernet

FDDI was supposed to be the next generation LAN, but it never really caught
on much beyond the backbone market (where it continues to do fine). The station
management was too complicated, which led to complex chips and high prices.
The substantial cost of FDDI chips made workstation manufacturers unwilling to
make FDDI the standard network, so volume production never happened and
FDDI never broke through to the mass market. The lesson that should have been
learned here was KISS (Keep It Simple, Stupid).

In any event, the failure of FDDI to catch fire left a gap for a garden-variety
LAN at speeds above 10 Mbps. Many installations needed more bandwidth and
thus had numerous 10-Mbps LANs connected by a maze of repeaters, bridges,
routers, and gateways, although to the network managers it sometimes felt that
they were being held together by bubble gum and chicken wire.

It was in this environment that IEEE reconvened the 802.3 committee in 1992
with instructions to come up with a faster LAN. One proposal was to keep 802.3
exactly as it was, but just make it go faster. Another proposal was to redo it
totally, to give it lots of new features, such as real-time traffic and digitized voice,
but just keep the old name (for marketing reasons). After some wrangling, the
committee decided to keep 802.3 the way it was, but just make it go faster. The
people behind the losing proposal did what any computer-industry people would
have done under these circumstances-they formed their own committee and
standardized their LAN anyway (eventually as 802.12).

The three primary reasons that the 802.3 committee decided to go with a
souped-up 802.3 LAN were:

1. The need to be backward compatible with thousands of existing LANs.

2. The fear that a new protocol might have unforeseen problems.

3. The desire to get the job done before the technology changed.

The work was done quickly (by standards committees' norms), and the result,
802.3u, was officially approved by IEEE in June 1995. Technically, 802.3u is not
a new standard, but an addendum to the existing 802.3 standard (to emphasize its
backward compatibility). Since everyone calls it fast Ethernet, rather than
802.3u, we will do that, too.

The basic idea behind fast Ethernet was simple: keep all the old packet for­
mats, interfaces, and procedural rules, but just reduce the bit time from 100 nsec
to 10 nsec. Technically, it would have been possible to copy lOBase-5 or
lOBase-2 and still detect collisions on time by just reducing the maximum cable

. . .

SEC. 4.5 HIGH-SPEED LANS 323

length by a factor of ten. However, the advantages of lOBase-T wiring were so
overwhelming, that fast Ethernet is based entirely on this design. Thus all fast
Ethernet systems use hubs; multidrop cables with vampire taps or BNC connec­
tors are not permitted.

Nevertheless, some choices still had to be made, the most important of which
was which wire types to support. One contender was category 3 twisted pair. The
argument for it was that practically every office in the Western world has at least
four category 3 (or better) twisted pairs running from it to a telephone wiring
closet within 100 meters. sometimes two such cables exist. Thus using category
3 twisted pair would make it possible to wire up desktop computers using fast
Ethernet without having to rewire the building, an enormous advantage for many
organizations.

The main disadvantage of category 3 twisted pair is its inability to carry 200
megabaud signals (100 Mbps with Manchester encoding) 100 meters, the max­
imum computer-to-hub distance specified for lOBase-T (see Fig. 4-17). In con­
trast, category 5 twisted pair wiring can handle 100 meters easily, and fiber can go
much further. The compromise chosen was to allow all three possibilities, as
shown in Fig. 4-47, but to pep up the category 3 solution to give it the additional
carrying capacity needed.

Name Cable Max. segment Advantages

100Base-T4 Twisted pair 100 m Uses category 3 UTP

100Base-TX Twisted pair 100 m Full duplex at 100 Mbps

100Base-F Fiber optics 2000 m Full duplex at 100 Mbps; long runs

Fig. 4-47. Fast Ethernet cabling.

The category 3 UTP scheme, called 100Base-T4, uses a signaling speed of 25
MHz, only 25 percent faster than standard 802.3' s 20 MHz (remember that Man­
chester encoding, as shown in Fig. 4-20, requires two clock periods for each of the
10 million bits each second). To achieve the necessary bandwidth, 100Base-T4
requires four twisted pairs. Since standard telephone wiring for decades has had
four twisted pairs per cable, most offices are able to handle this. Of course, it
means giving up your office telephone, but that is surely a small price to pay for
faster email.

Of the four twisted pairs, one is always to the hub, one is always from the
hub, and other two are switchable to the current transmission direction. To get the
necessary bandwidth, Manchester encoding is not used, but with modern clocks
and such short distances, it is no longer needed. In addition, ternary signals are
sent, so that during a single clock period the wire can contain a 0, a 1, or a 2.
With three twisted pairs going in the forward direction and ternary signaling, any
one of 27 possible symbols can be transmitted, making it possible to send 4 bits

324 THE MEDIUM ACCESS SUBLAYER CHAP. 4

with some redundancy. Transmitting 4 bits in each of the 25 million clock cycles
per second gives the necessary 100 Mbps. In addition, there is always a 33.3
Mbps reverse channel using the remaining twisted pair. This scheme, known as
8B6T, (8 bits map to 6 trits) is not likely to win any prizes for elegance, but it
works with the existing wiring plant.

For category 5 wiring, the design, lOOBase-TX, is simpler because the wires
can handle clock rates up to 125 MHz and beyond. Only two twisted pairs per
station are used, one to the hub and one from it. Rather than just use straight
binary coding, a scheme called 4B5B is used at 125 MHz. Every group of five
clock periods is used to send 4 bits in order to give some redundancy, provide
enough transitions to allow easy clock synchronization, create unique patterns for
frame delimiting, and be compatible with FDDI in the physical layer. Conse­
quently, lO0Base-TX is a full-duplex system; stations can transmit at 100 Mbps
and receive at 100 Mbps at the same time. In addition, you can have two tele­
phones in your office for real communication in case the computer is fully occu­
pied with surfing the Web.

The last option, lOOBase-FX, uses two strands of multimode fiber, one for
each direction, so it, too, is full duplex with 100 Mbps in each direction. In addi­
tion, the distance between a station and the hub can be up to 2 km.

Two kinds of hubs are possible with 100Base-T4 and l00Base-TX, collec­
tively known as lOOBase-T. In a shared hub, all the incoming lines (or at least all
the lines arriving at one plug-in card) are logically connected, forming a single
collision domain. All the standard rules, including the binary backoff algorithm,
apply, so the system works just like old-fashioned 802.3. In particular, only one
station at a time can be transmitting.

In a switched hub, each incoming frame is buffered on a plug-in line card.
Although this feature makes the hub and cards more expensive, it also means that
all stations can transmit (and receive) at the same time, greatly improving the total
bandwidth of the system, often by an order of magnitude or more. Buffered
frames are passed over a high-speed backplane from the source card to the desti­
nation card. The backplane has not been standardized, nor does it need to be,
since it is entirely hidden deep inside the switch. If past experience is any guide,
switch vendors will compete vigorously to produce ever faster backplanes in order
to improve system throughput. Because lO0Base-FX cables are too long for the
normal Ethernet collision algorithm, they must be connected to buffered, switched
hubs, so each one is a collision domain unto itself.

As a final note, virtually all switches can handle a mix of 10-Mbps and 100-
Mbps stations, to make upgrading easier. As a site acquires more and more 100-
Mbps workstations, all it has to do is buy the necessary number of new line cards
and insert them into the switch.

More information about Fast Ethernet can be found in (Johnson, 1996). For a
comparison of high-speed local area networks, in particular, FDDI, fast Ethernet,
ATM, and VG-AnyLAN, see (Cronin et al., 1994).

SEC. 4.5 HIGH-SPEED LANS 325

4.5.3. HIPPI-High-Perfonnance Parallel Interface

During the Cold War, Los Alamos National Laboratory, the U.S.
government s nuclear weapon design center, routinely bought one of every
supercomputer offered for ale. LO Alamos also collected fancy peripheral
such as massive storage devices and special graphics workstations for scientific
visualization. At that time, each manufacturer had a different interface for con­
necting peripherals to its supercomputer, so it was not possible to share peri­
pherals among machines or to connect two supercomputers together.

In 1987, researchers at Los Alamos began work on a standard supercomputer
interface, with the intention of getting it standardized and then talking all the ven­
dors into using it. (Given the size of Los Alamos' computing budget, when it
talked, vendors listened.) The goal for the interface was an interface that every­
one could implement quickly and efficiently. The guiding principle was KISS:
Keep It Simple, Stupid. It was to have no options, not require any new chips to be
designed, and have the performance of a fire hose.

The initial specification called for a data rate of 800 Mbps, because watching
movies of bombs going off required frames of 1024 x 1024 pixels with 24 bits per
pixel and 30 frames/sec, for an aggregate data rate of 750 Mbps. Later, one
option crept in: a second data rate of 1600 Mbps. When this proposal, called
HIPPI (High Performance Parallel Interface) was later offered to ANSI for
standardization, the proposers were regarded as the lunatic fringe because LANs
in the 1980s meant IO-Mbps Ethernets.

HIPP! was originally designed to be a data channel rather than a LAN. Data
channels operate point-to-point, from one master (a computer) to one slave (a
peripheral), with dedicated wires and no switching. No contention is present and
the environment is entirely predictable. Later, the need to be able to switch a
peripheral from one supercomputer to another became apparent, and a crossbar
switch was added to the HIPP! design, as illustrated in Fig. 4-48.

In order to achieve such enormous performance using only off-the-shelf chips,
the basic interface was made 50 bits wide, 32 bits of data and 18 bits of control, so
the HIPP! cable contains 50 twisted pairs. Every 40 nsec, a word is transferred in
parallel across the interface. To achieve 1600 Mbps, two cables are used and two
words are transferred per cycle. All transfers are simplex. To get two-way com­
munication, two (or four) cables are needed. At these speeds, the maximum cable
length is 25 meters.

After it got over some initial shock, the ANSI X3T9.3 committee produced a
HIPPI standard based on the Los Alamos input. The standard covers the physical
and data link layers. Everything above that is up to the users. The basic protocol
is that to communicate, a host first asks the crossbar switch to set up a connection.
Then it (usually) sends a single message and releases the connection.

Me sages are structured with a control word, a header of up to 1016 bytes,
and a data part of up to 232 - 2 bytes. For flow control reasons, me sages are

326 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Super Massive
computer storage

1 device

Super Graphics
computer work-

2 4x4 station
Cross-

bar
Super switch Graphics

computer work-
3 station

Super ,__________ Cable containing Gigabit
computer 50or100 network

4 twisted pairs

Fig. 4-48. HIPPI using a crossbar switch.

broken up into frames of 256 words. When the receiver is able to accept a frame,
it signals the sender, which then sends a frame. Receivers can also ask for multi­
ple frames at once. Error control consists of a horizontal parity bit per word and a
vertical parity word at the end of each frame. Traditional checksums were
regarded as unnecessary and too slow.

HIPPI was quickly implemented by dozens of vendors and has been the super­
computer interconnect standard for years. For more information about it, see
(Hughes and Franta, 1994; Tolmie, 1992; and Tolmie and Renwick, 1993).

4.5.4. Fibre Channel

At the time HIPPI was designed, fiber optics was too expensive and not con­
sidered reliable enough, so the fastest LAN ever built was constructed from low­
grade telephone wire. As time went on, fiber became cheaper and more reliable,
so it was natural that there would eventually be an attempt to redo HIPPI using a
single fiber instead of 50 or 100 twisted pairs. Unfortunately, the discipline that
Los Alamos had in beating down proposed new features every time one reared its
ugly head was lost along the way. The successor to HIPPI, called fibre channel,
is far more complicated and more expensive to implement. Whether it will enjoy
HIPPI' s commercial success remains to be seen.

Fibre channel handles both data channel and network connections. In particu­
lar, it can be used to carry data channels including HIPPI, SCSI, and the multi­
plexor channel used on IBM mainframes. It can also carry network packets,
including IEEE 802, IP, and ATM. Like HIPP!, the basic structure of fibre

SEC. 4.5 HIGH-SPEED LANS 327

channel is a crossbar switch that connects inputs to outputs. Connections can be
established for a single packet or for a much longer interval.

Fibre channel supports three service classes. The first class is pure circuit
switching, with guaranteed delivery in order. The data channel modes use this
service class. The second class is packet switching with guaranteed delivery. The
third class is packet switching without guaranteed delivery.

Fibre channel has an elaborate protocol structure, as shown in Fig. 4-49. Here
we see five layers, which together cover the physical and data link layers. The
bottom layer deals with the physical medium. So far, it supports data rates of 100,
200, 400, and 800 Mbps. The second layer handles the bit encoding. The system
used is somewhat like FDDI, but instead of 5 bits being used to encode 16 valid
symbols, 10 bits are used to encode 256 valid symbols, providing a small amount
of redundancy. Together, these two layers are functionally equivalent to the OSI
physical layer.

Layer

FC-4

FC-3

FC-2

FC-1

FC-0

Data channels Networks

HIPPI I IBM I SCSI 11 802 I IP I ATM

Common services

Framing protocol

8/1 0 Encode/decode

100
I 200 I 400 I 800 I Future Mbps Mbps Mbps Mbps

l Data
link
layer

}

Physical
layer

Fig. 4-49. The fibre channel protocol layers.

The middle layer defines the frame layout and header formats. Data are
transmitted in frames whose payloads can be up to 2048 bytes. The next layer
allows common services to be provided to the top layer in the future, as required.
Finally, the top layer provides the interfaces to the various kinds of computers and
peripherals supported.

As an aside, although fibre channel was designed in the United States, the
spelling of the name was chosen by the editor of the standard, who was British.
Additional information about fibre channel can be found in (Tolmie, 1992). A
comparison of it with HIPPI and ATM is in (Tolmie, 1995).

4.6. SATELLITE NETWORKS

Although most multiple access channels are found in LAN s, one kind of
WAN also uses multiple access channels: communication satellite based W ANs.
In the following sections we will briefly study some of the problems that occur

328 THE MEDIUM ACCESS SUBLAYER CHAP. 4

with satellite-based wide area networks. We will also look at some of the proto­
cols that have been devised to deal with them.

Communication satellites generally have up to a dozen or so transponders.
Each transponder has a beam that covers some portion of the earth below it, rang­
ing from a wide beam 10,000 km across to a spot beam only 250 km across. Sta­
tions within the beam area can send frames to the satellite on the uplink fre­
quency. The satellite then rebroadcasts them on the downlink frequency. Dif­
ferent frequencies are used for uplink and downlink to keep the transponder from
going into oscillation. Satellites that do no on-board processing, but just echo
whatever they hear (most of them), are often called bent pipe satellites.

Each antenna can aim itself at some area, transmit some frames, and then aim
at a new area. Aiming is done electronically, but still takes some number of
microseconds. The amount of time a beam is pointed to a given area is called the
dwell time. For maximum efficiency, it should not be too short or too much time
will be wasted moving the beam.

Just as with LANs, one of the key design issues is how to allocate the tran­
sponder channels. However, unlike LANs, carrier sensing is impossible due to
the 270-msec propagation delay. When a station senses the state of a downlink
channel, it hears what was going on 270 msec ago. Sensing the uplink channel is
generally impossible. As a result, the CSMA/CD protocols (which assume that a
transmitting station can detect collisions within the first few bit times, and then
pull back if one is occurring) cannot be used with satellites. Hence the need for
other protocols.

Five classes of protocols are used on the multiple access (uplink) channel:
polling, ALOHA, FDM, TDM, and CDMA. Although we have studied each of
these already, satellite operation sometimes adds new twists. The main problem
is with the uplink channel, since the downlink channel has only a single sender
(the satellite) and thus has no channel allocation problem.

4.6.1. Polling

The traditional way to allocate a single channel among competing users is for
somebody to poll them. Having the satellite poll each station in tum to see if it
has a frame is prohibitively expensive, given the 270-msec time required for each
poll/response sequence.

However, if all the ground stations are also tied to a (typically low-bandwidth)
packet-switching network, a minor variation of this idea is conceivable. The idea
is to arrange all the stations in a logical ring, so each station knows its successor.
Around this terrestrial ring circulates a token. The satellite never sees the token.
A station is allowed to transmit on the uplink only when it has captured the token.
If the number of stations is small and constant, the token transmission time is
short, and the bursts sent on the uplink channel are much longer than the token
rotation time, the scheme is moderately efficient.

...

' .·.

SEC. 4.6 SATELLITE NETWORKS 329

4.6.2. ALOHA

Pure ALOHA is easy to implement: every station just sends whenever it
wants to. The trouble is that the channel efficiency is only about 18 percent.
Generally, such a low utilization factor is unacceptable for satellites that costs
tens of millions of dollars each.

Using slotted ALOHA doubles the efficiency but introduces the problem of
how to synchronize all the stations so they all know when each time slot begins.
Fortunately, the satellite itself holds the answer, since it is inherently a broadcast
medium. One ground station, the reference station, periodically transmits a spe­
cial signal whose rebroadcast is used by all the ground stations as the time origin.
If the time slots all have length !:!.T, each station now knows that time slot k begins
at a time k!:!.T after the time origin. Since clocks run at slightly different rates,
periodic resynchronization is necessary to keep everyone in phase. An additional
complication is that the propagation time from the satellite is different for each
ground station, but this effect can be corrected for.

To increase the utilization of the uplink channel above lie, we could go from
the single uplink channel of Fig. 4-50(a), to the dual uplink scheme of Fig. 4-
50(b). A station with a frame to transmit chooses one of the two uplink channels
at random and sends the frame in the next slot. Each uplink then operates an
independent slotted ALOHA channel.

Downlink Uplink One Two
channel channel downlink

~~~~, /; \ oha~ 

(a) (b) 

Fig. 4-50. (a) A standard ALOHA system. (b) Adding a second uplink channel. 

If one of the uplink channels contains a single frame, it is just transmitted in 
the corresponding downlink slot later. If both channels are successful, the satel­
lite can buffer one of the frames and transmit it during an idle slot later on. Work­
ing out the probabilities, it can be shown that given an infinite amount of buffer 
space, the downlink utilization can be gotten up to 0.736 at a cost of increasing 
the bandwidth requirements by one half. 



330 THE MEDIUM ACCESS SUBLAYER CHAP. 4 

4.6.3. FDM 

Frequency division multiplexing is the oldest and probably still the most 
widely used channel allocation scheme. A typical 36-Mbps transponder might be 
divided statically into 500 or so 64,000-bps PCM channels, each one operating at 
its own unique frequency to avoid interfering with the others. 

Although simple, FDM also has some drawbacks. First, guard bands are 
needed between the channels to keep the stations separated. This requirement 
exists because it is not possible to build transmitters that output all their energy in 
the main band and nothing in the side bands. The amount of bandwidth wasted in 
the guard bands can be a substantial fraction of the total. 

Second, the stations must be carefully power controlled. If a station puts out 
too much power in the main band, it will also automatically put out too much 
power in the side bands, spilling over into adjacent channels and causing interfer­
ence. Finally, FDM is entirely an analog technique and does not lend itself well 
to implementation in software. 

If the number of stations is small and fixed, the frequency channels can be 
allocated statically in advance. However, if the number of stations, or the load on 
each one can fluctuate rapidly, some form of dynamic allocation of the frequency 
bands is needed. One such mechanism is the SPADE system used on some early 
Intelsat satellites. Each SPADE transponder was divided into 794 simplex (64-
kbps) PCM voice channels, along with a 128-kbps common signaling channel. 
The PCM channels were used in pairs to provide full duplex service. The total 
transponder bandwidth used was 50 Mbps for the uplink portion and another 50 
Mbps for the downlink. 

The common signaling channel was divided into units of 50 msec. A unit 
contained 50 slots of 1 msec (128 bits). Each slot was "owned" by one of (not 
more than) 50 ground stations. When a ground station had data to send, it picked 
a currently unused channel at random and wrote the number of that channel in its 
next 128-bit slot. If the selected channel was still unused when the request was 
seen on the downlink, the channel was considered allocated and all other stations 
refrained from trying to acquire it. If two or more stations tried to allocate the 
same channel in the same frame, a collision occurred and they had to try again 
later. When a station was finished using its channel, it sent a deallocation mes­
sage in its slot on the common channel. 

4.6.4. TDM 

Like FDM, TDM is well understood and widely used in practice. It requires 
time synchronization for the slots, but this can be provided by a reference station, 
as described for slotted ALOHA above. Similarly to FDM, for a small and 
unvarying number of stations, the slot assignment can be set up in advance and 

'. 



SEC. 4.6 SATELLITE NETWORKS 331 

never changed, but for a varying number of stations, or a fixed number of stations 
with time-varying loads, time slots must be assigned dynamically. 

Slot assignment can be done in a centralized or a decentralized way. As an 
example of centralized slot assignment, let us consider the experimental ACTS 
(Advanced Communication Technology Satellite), which was designed for a 
few dozen stations (Palmer and White, 1990). ACTS was launched in 1992 and 
has four independent 110-Mbps TDM channels, two uplink and two downlink. 
Each channel is organized as a sequence of 1-msec frames, each frame containing 
1728 time slots. Each time slot has a 64-bit payload, allowing each one to hold a 
64-kbps voice channel. 

The beams can be switched from one geographical area to another, but since 
moving the beam takes several slot times, channels originating or terminating in 
the same geographic area are normally assigned to contiguous time slots to 
increase dwell time and minimize time lost to beam motion. Thus time slot 
management requires a thorough know ledge of station geography to minimize the 
number of wasted time slots. For this and other reasons, time slot management is 
done by one of the ground stations, the MCS (Master Control Station). 

The basic operation of ACTS is a continuous three-step process, each step 
taking 1 msec. In step 1, the satellite receives a frame and stores it in a 1728-
entry onboard RAM. In step 2, an onboard computer copies each input entry to 
the corresponding output entry (possibly for the other antenna). In step 3, the out­
put frame is transmitted on the downlink. 

Initially, each station is assigned at least one time slot. To acquire additional 
channels (for new voice calls), a station sends a short request message to the 
MCS. Similarly, it can release an existing channel with a message to the MCS. 
These messages make use of a small number of overhead bits and provide a spe­
cial control channel to the MCS with a capacity of about 13 messages/sec per sta­
tion. The channels are dedicated; there is no contention for them. 

Dynamic TDM slot allocation is also possible. Below we will discuss three 
schemes. In each of these, TDM frames are divided into time slots, with each slot 
having a (temporary) owner. Only the owner may use a time slot. 

The first scheme assumes that there are more slots than stations, so each sta­
tion can be assigned a home slot (Binder, 1975). If there are more slots than sta­
tions, the extra slots are not assigned to anyone. If the owner of a slot does not 
want it during the current group, it goes idle. An empty slot is a signal to every­
one else that the owner has no traffic. During the next frame, the slot becomes 
available to anyone who wants it, on a contention (ALOHA) basis. 

If the owner wants to retrieve "his" home slot, he transmits a frame, thus 
forcing a collision (if there was other traffic). After a collision, everyone except 
the owner must desist from using the slot in the next frame. Thus the owner can 
always begin transmitting within two frame times in the worst case. At low chan­
nel utilization the system does not perform as well as normal slotted ALOHA, 
since after each collision, the collidees must abstain for one frame to see if the 



332 THE MEDIUM ACCESS SUBLAYER CHAP. 4 

owner wants the slot back. Fig. 4-51(a) shows a frame with eight slots, seven of 
which are owned by G, A, F, E, B, C, and D, respectively. The eighth slot is not 
owned by anyone and can be fought over. 

Owner G A F E B C D R,se~aboo '"bslots TI 
Group 1 I G AIF s js C D B A F C G B I i D EI I I l 
Group 2 i G Al ] s C D B A G Bl ID EI I I I Ill 
Group 3 1 G AIA Els B A A G [ Jo I 111 11 111111 1 11111111111111 

Group 4 I G Al EIB B B A A _] lo ol I I I Ill 
(a) (b) c) 

Fig. 4-51. Reservation schemes. (a) Binder. (b) Crowther. (c) Roberts. The 
shaded boxes indicate collisions. For each of the three schemes, four consecu­
tive groups of slots are shown. 

A second scheme is applicable even when the number of stations is unknown 
and varying (Crowther et al., 1973). In this method, slots do not have permanent 
owners, as in Binder's. Instead, stations compete for slots using slotted ALOHA. 
Whenever a transmission is successful, the station making the successful 
transmission is entitled to that slot in the next frame as well. Thus, as long as a 
station has data to send, it can continue doing so indefinitely (subject to some 
"Please-do-not-be-a-pig" rules). In essence the proposal allows a dynamic mix of 
slotted ALOHA and TDM, with the number of slots devoted to each varying with 
demand. Fig. 4-5l(b) also shows a frame with eight slots. Initially, Eis using the 
last slot, but after two frames, it no longer needs it. It lies idle for one frame, and 
then D picks it up and keeps it until it is done. 

A third scheme, due to Roberts (1973), requires stations to make advance 
requests before transmitting. Each frame contains, say, one special slot [the last 
one in Fig. 4-51(c)] which is divided into V smaller subslots used to make reserva­
tions. When a station wants to send data, it broadcasts a short request frame in a 
randomly-chosen reservation subslot. If the reservation is successful (i.e., no col­
lision), then the next regular slot (or slots) is reserved. At all times everyone must 
keep track of the queue length (number of slots reserved), so that when any station 
makes a successful reservation it will know how many data slots to skip before 
transmitting. Stations need not keep track of who is queued up; they merely need 
to know how long the queue is. When the queue length drops to zero, all slots 
revert to reservation subslots, to speed up the reservation process. 

Although TDM is widely used, both with and without reservation schemes, it, 
too, has some shortcomings. For one, it requires all stations to synchronize in 
time, which is not entirely trivial in practice because satellites tend to drift in 



SEC. 4.6 SATELLITE NETWORKS 333 

orbit, which changes the propagation time to each ground station. It also :requires 
each ground station to be capable of extremely high burst speeds. For example, 
even though an ACTS station may have only one 64-kbps channel, it must be 
capable of putting out a 64-bit burst in a 578-nsec time slot. In other words, it 
must actually operate at 110 Mbps. In contrast, a 64-kbps FDM station really 
operates at 64 kbps. 

4.6.5. CDMA 

The final scheme is CDMA. CDMA avoids the time synchronization problem 
and also the channel allocation problem. It is completely decentralized and fully 
dynamic. 

However, it has three main disadvantages. First, the capacity of a CDMA 
channel in the presence of noise and uncoordinated stations is typically lower than 
what TDM can achieve. Second, with 128 chips/bit (a common value), although 
the bit rate may not be high, the chip rate will be, necessitating a fast (read: 
expensive) transmitter. Third, few practicing engineers actually understand 
CDMA, Which generally does not increase the chances of their using it, even if it 
is the best method for a particular application. Nevertheless, CDMA has been 
used by the military for decades and is now becoming more common in commer­
cial applications as well. 

4.7. SUMMARY 

Some networks have a single channel that is used for all communication. In 
these networks, the key design issue is the allocation of this channel among the 
competing stations wishing to use it. Numerous channel allocation algorithms 
have been devised. A summary of some of the more important channel allocation 
methods is given in Fig. 4-52. 

The simplest allocation schemes are FDM and TDM. These are efficient 
when the number of stations is small and the traffic is continuous. Both are 
widely used under these circumstances, for example, for dividing up the 
bandwidth in satellite links used as telephone trunks. 

When the number of stations is large and variable or the traffic bursty, FDM 
and TDM are poor choices. The ALOHA protocol, with and withqut slotting and 
control, has been proposed as an alternative. ALOHA and its many variants and 
derivatives have been widely discussed, analyzed, and used in real systems. 

When the state of the channel can be sensed, stations can avoid starting a 
transmission while another station is transmitting. This technique, carrier sensing, 
has led to a variety of protocols that can be used on LANs and MANs. 

A class of protocols that eliminate contention altogether, or at least reduce it 
considerably, is known. Binary countdown completely eliminates contention. 



334 THE MEDIUM ACCESS SUBLAYER CHAP. 4 

Method Description 

FDM Dedicate a frequency band to each station 

TOM Dedicate a time slot to each station 

Pure ALOHA Unsynchronized transmission at any instant 

Slotted ALOHA Random transmission in well-defined time slots 

1-persistent CSMA Standard carrier sense multiple access 

Nonpersistent CSMA Random delay when channel is sensed busy 

P-persistent CSMA CSMA, but with a probability of p of persisting 

CSMA/CD CSMA, but abort on detecting a collision 

Bit map Round robin scheduling using a bit map 

Binary countdown Highest numbered ready station goes next 

Tree walk Reduced contention by selective enabling 

Wavelength division A dynamic FDM scheme for fiber 

MAGA, MACAW Wireless LAN protocols 

GSM FDM plus TOM for cellular radio 

CDPD Packet radio within an AMPS channel 

CDMA Everybody speak at once but in a different language 

Ethernet CSMA/CD with binary exponential backoff 

Token bus Logical ring on a physical bus 

Token ring Capture the token to send a frame 

DQDB Distributed queuing on a two-bus MAN 

FDDI Fiber-optic token ring 

HIPPI Crossbar using 50-100 twisted pairs 

Fibre channel Crossbar using fiber optics 

SPADE FDM with dynamic channel allocation 

ACTS TOM with centralized slot allocation 

Binder TOM with ALOHA when slot owner is not interested 

Crowther ALOHA with slot owner getting to keep it 

Roberts Channel time reserved in advance by ALOHA 

Fig. 4-52. Channel allocation methods and systems for a common channel. 



SEC. 4.7 SUMMARY 335 

The tree walk protocol reduces it by dynamically dividing the stations into two 
disjoint groups, one of which is permitted to transmit and one of which is not. It 
tries to make the division in such a way that only one station that is ready to send 
is permitted to do so. 

Wireless LANs have their own problems and solutions. The biggest problem 
is caused by hidden stations, so CSMA does not work. One class of solutions, 
typified by MACA, attempts to stimulate transmissions around the destination, to 
make CSMA work better. 

For mobile computers and telephones, cellular radio is the up-and-coming 
technology. GSM, CDPD, and CDMA are widely used. 

The IEEE 802 LANs are: CSMA/CD, token bus, and token ring. Each of 
these has its own unique advantages and disadvantages, and each has found its 
own user community and will probably continue to serve that community for 
years to come. Convergence to a single. LAN standard is an unlikely event. A 
new addition to this family is DQDB, being sold as a MAN in many cities. 

An organization with multiple LANs often connects them with bridges. When 
a bridge connects two or more different kinds of LANs, new problems arise, some 
of them insoluble. 

While the 802 LANs are the work horses of the day, the race horses are 
FDDI, fast Ethernet, HIPP!, and fibre channel. All of these offer bandwidth in the 
100 Mbps range and up. 

Finally, satellite networks also use multiple access channels (for the uplink). 
Various channel allocation methods are used here, including ALOHA, FDM, 
TDM, and CDMA. 

PROBLEMS 

1. A group of N stations share a 56-kbps pure ALOHA channel. Each station outputs a 
1000-bit frame on an average of once every 100 sec, even if the previous one has not 
yet been sent (e.g., the stations are buffered). What is the maximum value of N? 

2. Consider the delay of pure ALOHA versus slotted ALOHA at low load. Which one is 
less? Explain your answer. 

3. Ten thousand airline reservation stations are competing for the use of a single slotted 
ALOHA channel. The average_ station makes 18 requests/hour. A slot is 125 µsec. 
What is the approximate total channel load? 

4. A large population of ALOHA users manages to generate 50 requests/sec, including 
both originals and retransmissions. Time is slotted in units of 40 insec. 
(a) What is the chance of success cin the first attempt? 
(b) What is the probability of exactly k collisions and then a success? 
( c) What is the expected number of transmission attempts needed? 



336 THE MEDIUM ACCESS SUBLAYER CHAP. 4 

5. Measurements of a slotted ALOHA channel with an infinite number of users show 
that 10 percent of the slots are idle. 
(a) What is the channel load, G? 
(b) What is the throughput? 
(c) Is the channel underloaded or overloaded? 

6. In an infinite-population slotted ALOHA system, the mean number of slots a station 
waits between a collision and .its retransmission is 4. Plot the delay versus throughput 
curve for this system. 

7. A LAN uses Mok and Ward's version of binary countdown. At a certain instant, the 
ten stations have the virtual station numbers 8, 2, 4, 5, 1, 7, 3, 6, 9, and 0. The next 
three stations to send are 4, 3, and 9, in that order. What are the new virtual station 
numbers after all three have finished their transmissions? 

8. Sixteen stations are contending for the use of a shared channel using the adaptive tree 
walk protocol. If all the stations whose addresses are prime numbers suddenly 
become ready at once, how many bit slots are needed to resolve the contention? 

9. A collection of 2n stations uses the adaptive tree walk protocol to arbitrate access to a 
shared cable. At a certain instant two of them become ready. What are the minimum, 
maximum, and mean number of slots to walk the tree if 2n » 1? 

10. The wireless LANs that we studied used protocols such as MACA instead of 
CSMA/CD. Under what conditions would it be possible to use CSMA/CD instead? 

11. What properties do the WDMA and GSM channel access protocols have in common? 

12. Using the GSM framing structure as given in Fig. 4-14, determine how often any 
given user may send a data frame. 

13. Suppose that A, B, and Care simultaneously transmitting Obits using a CDMA system 
with the chip s,equences of Fig. 4-16(b). What is the resulting chip sequence? 

14. In the discussion_ about orthogonality of CDMA chip sequences, it was stated that if 
S•T = 0 then S•T is also 0. Prove this. 

15. Consider a different way of looking at the orthogonality property of CDMA chip 
sequences. Each bit in a pair of sequence can match or not match. Express the ortho­
gonality property in terms of matches and mismatches. 

16. A CDMA receiver gets the following chips: (-1 +l -3 +l -1 -3 +l +l). Assuming 
the chip sequences defined in Fig. 4-16(b), which stations transmitted, and which bits 
did each one serid? 

17. A severi-story office building has 15 adjacent offices per floor. Each office contains a 
wall socket for a terminal in the front wall, so the sockets form a rectangular grid in 
the vertical plane, with a separation of 4 m between sockets, both horizontally and 
vertically. Assuming that it is feasible to run a straight cable between any pair of 
sockets, horizontally, vertically, or diagonally, how many meters of cable are needed 
to connect all sockets using 
(a) a star configuration with a single router in middle? 
(b) an 802.3 LAN? 
(c) a ring net (without a wire center)? 



CHAP. 4 PROBLEMS 337 

18. What is the baud rate of the standard 10-Mbps 802.3 LAN? 

19. A 1-km-long, 10-Mbps CSMA/CD LAN (not 802.3) has a propagation speed of 
200 m/µsec . Data frames are 256 bits long, including 32 bits of header, checksum, 
and other overhead. The first bit slot after a successful transmission is reserved for the 
receiver to capture the channel to send a 32-bit acknowledgement frame. What is the 
effective data rate, excluding overhead, assuming that there are no collisions? 

20. Two CSMA/CD stations are each trying to transmit long (multiframe) files. After 
each frame is sent, they contend for the channel using the binary exponential backoff 
algorithm. What is the probability that the contention ends on round k, and what is the 
mean number of rounds per contention period? 

21. Consider building a CSMA/CD network running at 1 Gbps over a 1-km cable with no 
repeaters. The signal speed in the cable is 200,000 km/sec. What is the minimum 
frame size? 

22. Sketch the Manchester encoding for the bit stream: 0001110101. 

23. Sketch the differential Manchester encoding for the bit stream of the previous prob­
lem. Assume the line is initially in the low state. 

24. A token bus system works like this. When the token arrives at a station, a timer is 
reset to 0. The station then begins transmitting priority 6 frames until the timer 
reaches T6. Then it switches over to priority 4 frames until the timer reaches T4. This 
algorithm is then repeated with priority 2 and priority 0. If all stations have timer 
values of 40, 80, 90, and 100 msec for T6 through TO, respectively, what fraction of 
the total bandwidth is reserved for each priority class? 

25. What happens in a token bus if a station accepts the token and then crashes immedi­
ately? How does the protocol described in the text handle this case? 

26. At a transmission rate of 5 Mbps and a propagation speed of 200 m/µsec, to how 
many meters of cable is the 1-bit delay in a token ring interface equivalent? 

27. Th~ delay around a token ring must be enough to contain the entire token. If the wire 
is not long enough, some artificial delay must be introduced. Explain why this extra 
delay is necessary in the content of a 24-bit token and a ring with only 16 bits of delay. 

28. A very heavily loaded I-km-long,. 10-Mbps token ring has a propagation speed of 
200 m/µsec . Fifty stations are uniformly spaced around the ring. Data frames are 256 
bits, including 32 bits of overhead. Acknowledgements are piggybacked onto the data 
frames and are thus included as spare bits within the data frames and are effectively 
free. The token is 8 bits. Is the effective data rate of this ring higher or lower than the 
effective data rate of a 10-Mbps CSMA/CD network? 

29. In a token ring the sender removes the frame. What modifications to the system 
would be needed to have the receiver remove the frame instead, and what would the 
consequences be? 

30. A 4-Mbps token ring has a token-holding timer value of 10 msec. What is the longest 
frame that can be sent on this ring? 

31. Does the use of a wire center have any influence on the performance of a token ring? 

} 



338 THE MEDIUM ACCESS SUBLAYER CHAP. 4 

32. A fiber optic token ring used as a MAN is 200 km long and runs at 100 Mbps. After 
sending a frame, a station drains the frame from the ring before regenerating the 
token. The signal propagation speed in the fiber is 200,000 km/sec and the maximum 
frame size is lK bytes. What is the maximum efficiency of the ring (ignoring all other 
sources of overhead)? 

33. In Fig. 4-32, station D wants to send a cell. To which station does it want to send it? 

34. The system of Fig. 4-32 is idle. A little later, stations C, A, and B become ready to 
send, in that order and in rapid succession. Assuming that no data frames are 
transmitted until all three have sent a request upstream, show the RC and CD values 
after each request and after the three data frames. 

35. Ethernet is sometimes said to be inappropriate for real-time computing because the 
worst case retransmission interval is not bounded. Under what circumstances can the 
same argument be leveled at the token ring? Under what circumstances does the 
token ring have a known worst case? Assume the number of stations on the token ring 
is fixed and known. 

36. Ethernet frames must be at least 64 bytes long to ensure that the transmitter is still 
going in the event of a collision at the far end of the cable. Fast Ethernet has the same 
64 byte minimum frame size, but can get the bits out ten times faster. How is it possi­
ble to maintain the same minimum frame size? 

37. Imagine two LAN bridges, both connecting a pair of 802.4 networks. The first bridge 
is faced with 1000 512-byte frames per second that must be forwarded. The second is 
faced with 200 4096-byte frames per second. Which bridge do you think will need the 
faster CPU? Discuss. 

38. Suppose that the two bridges of the previous problem each connected an 802.4 LAN 
to an 802.5 LAN. Would that change have any influence on the previous answer? 

39. A bridge between an 802.3 LAN and an 802.4 LAN has a problem with intermittent 
memory errors. Can this problem cause undetected errors with transmitted frames, or 
will these all be caught by the frame checksums? 

40. A university computer science department has 3 Ethernet segments, connected by two 
transparent bridges into a linear network. One day the network administrator quits 
and is hastily replaced by someone from the computer center, which is an IBM token 
ring shop. The new administrator, noticing that the ends of the network are not con­
nected, quickly orders a new transparent bridge and connects both loose ends to it, 
making a closed ring. What happens next? 

41. A large FDDI ring has 100 stations a d a token rotation time of 40 msec. The token­
holding time is 10 msec. What is the maximum achievable efficiency of the ring? 

42. Consider building a supercomputer interconnect using the HIPPI approach, but 
modern technology. The data path is now 64 bits wide, and a word can be sent every 
10 nsec. What is the bandwidth of the channel? 

43. In the text it was stated that a satellite with two uplink and one downlink slotted 
ALOHA channels can achieve a downlink utilization of 0.736, given an infinite 
amount of buffer space. Show how this result can be obtained. 

I • 



5 
THE NETWORK LA YER 

The network layer is concerned with getting packets from the source all the 
way to the destination. Getting to the destination may require making many hops 
at intermediate routers along the way. This function clearly contrasts with that of 
the data link layer, which has the more modest goal of just moving frames from 
one end of a wire to the other. Thus the network layer is the lowest layer that 
deals with end-to-end transmission. For more information about it, see (Huitema, 
1995; and Perlman, 1992). 

To achieve its goals, the network layer must know about the topology of the 
communication subnet (i.e., the set of all routers) and choose appropriate paths 
through it. It must also take care to choose routes to avoid overloading some of 
the communication lines and routers while leaving others idle. Finally, when the 
source and destination are in different networks, it is up to the network layer to 
deal with these differences and solve the problems that result from them. In this 
chapter we will study all these issues and illustrate them with our two running 
examples, the Internet and A TM. 

5.1. NETWORK LA YER DESIGN ISSUES 

In the following sections we will provide an introduction to some of the issues 
that the designers of the network layer must grapple with. These issues include 
the service provided to the transport layer and the internal design of the subnet. 

339 



340 THE NETWORK LA YER CHAP. 5 

5.1.1. Services Provided to the Transport Layer 

The network layer provides services to the transport layer at the network 
layer/transport layer interface. This interface is often especially important for 
another reason: it frequently is the interface between the carrier and the customer, 
that is, the boundary of the subnet. The carrier often has control of the protocols 
and interfaces up to and including the network layer. Its job is to deliver packets 
given to it by its customers. For this reason, this interface must be especially well 
defined. 

The network layer services have been designed with the following goals in 
mind. 

1. The services should be independent of the subnet technology. 

2. The transport layer should be shielded from the number, type, and 
topology of the subnets present. 

3. The network addresses made available to the transport layer should 
use a uniform numbering plan, even across LANs and WANs. 

Given these goals, the designers of the network layer have a lot of freedom in 
writing detailed specifications of the services to be offered to the transport layer. 
This freedom often degenerates into a raging battle between two warring factions. 
The discussion centers on the question of whether the network layer should pro­
vide connection-oriented service or connectionless service. 

One camp (represented by the Internet community) argues that the subnet's 
job is moving bits around and nothing else. In their view (based on nearly 30 
years of actual experience with a real, working computer network), the subnet is 
inherently unreliable, no matter how it is designed. Therefore, the hosts should 
accept the fact that it is unreliable and do error control (i.e., error detection and 
correction) and flow control themselves. 

This viewpoint leads quickly to the conclusion that the network service should 
be connectionless, with primitives SEND PACKET and RECEIVE PACKET, and little 
else. In particular, no packet ordering and flow control should be done, because 
the hosts are going to do that anyway, and there is probably little to be gained by 
doing it twice. Furthermore, each packet must carry the full destination address, 
because each packet sent is carried independently of its predecessors, if any. 

The other camp (represented by the telephone companies) argues that the sub­
net should provide a (reasonably) reliable, connection-oriented service. They 
claim 100 years of successful experience with the worldwide telephone system is 
a good guide. In this view, connections should have the following properties: 

1. Before sending data, a network layer process on the sending side 
must set up a connection to its peer on the receiving side. This con­
nection, which is given a special identifier, is then used until all the 
data have been sent, at which time it is explicitly released . 

. . . 
' .... . •. 



SEC. 5.1 NETWORK LA YER DESIGN ISSUES 

2. When a connection is set up, the two processes can enter into a nego­
tiation about the parameters, quality, and cost of the service to be 
provided. 

3. Communication is in both directions, and packets are delivered in 
sequence. 

4. Flow control is provided automatically to prevent a fast sender from 
dumping packets into the pipe at a higher rate than the receiver can 
take them out, thus leading to overflow. 

341 

Other properties, such as guaranteed delivery, explicit confirmation of delivery, 
and high priority packets are optional. As we pointed out in Chap. 1, connection­
less service is like the postal system, and connection-oriented service is like the 
telephone system. 

The argument petween connection-oriented and connectionless service really 
has to do with where to put the complexity. In the connection-oriented service, it 
is in the network layer (subnet); in the connectionless service, it is in the transport 
layer (hosts). Supporters of connectionless service say that user computing power 
has become cheap, so that there is no reason not to put the complexity in the hosts. 
Furthermore, they argue that the subnet is a major (inter)national investment that 
will last for decades, so it should not ,be cluttered up with features that may 
become obsolete quickly but will have to be calculated into the price structure for 
many years. Furthermore, some applications, such as digitized voice and real­
time data collection may regard speedy delivery as much more important than 
accurate delivery. 

On the other hand, supporters of connection-oriented service say that most 
users are not interested in running complex transport layer protocols in their 
machines. What they want is reliable, trouble-free service, and this service can be 
best provided with network layer connections. Furthermore, some services, such 
as real time audio and video are much easier to provide on top of a connection­
oriented network layer than on top of a connectionless network layer. 

Although it is rarely discussed in these terms, two separate issues are involved 
here. First, whether the network is connection-oriented (setup required) or con­
nectionless (no setup required). Second, whether it is reliable (no lost, duplicated, 
or garbled packets) or unreliable (packets can be lost, duplicated, or garbled). In 
theory, all four combinations exist, but the dominant combinations are reliable 
connection-oriented and unreliable connectionless, so the other two tend to get 
lost in the noise. 

These two camps are represented by our two running examples. The Internet 
has a connectionless network layer, and ATM networks have a connection­
oriented network layer. An obvious question arises about how the Internet works 
when it runs over an ATM-based, carrier-provided subnet. The answer is that the 
source host first establishes an A TM network layer connection to the destination 



342 THE NETWORK LA YER CHAP. 5 

host and then sends independent (IP) packets over it, as shown in Fig. 5-1. 
Although this approach works, it is inefficient because certain functionality is in 
both layers. For example, the ATM network layer guarantees that packets are 
always delivered in order, but the TCP code still contains the full mechanism for 
managing and reordering out-of-order packets. For more information about how 
to run IP over ATM, see RFC 1577 and (Armitage and Adams, 1995). 

Email I FTP I . .. 

TCP 

IP 

ATM 

Data link 

Physical 

Fig. 5-1. Running TCP/IP over an ATM subnet. 

5.1.2. Internal Organization of the Network Layer 

Having looked at the two classes of service the network layer can provide to 
its users, it is time to see how it works inside. There are basically two different 
philosophies for organizing the subnet, one using connections and the other work­
ing connectionless. In the context of the internal operation of the subnet, a con­
nection is usually called a virtual circuit, in analogy with the physical circuits set 
up by the telephone system. The independent packets of the connectionless 
organization are called datagrams, in analogy with telegrams. 

Virtual circuits are generally used in subnets whose primary service is 
connection-oriented, so we will describe them in that context. The idea behind 
virtual circuits is to avoid having to choose a new route for every packet or cell 
sent. Instead, when a connection is established, a route from the source machine 
to the destination machine is chosen as part of the connection setup and remem­
bered. That route is used for all traffic flowing over the connection, exactly the 
same way that the telephone system works. When the connection is released, the 
virtual circuit is also terminated. 

In contrast, with a datagram subnet no routes are worked out in advance, even 
if the service is connection-oriented. Each packet sent is routed independently of 
its predecessors. Successive packets may follow different routes. While 
datagram subnets have to do more work, they are also generally more robust and 
adapt to failures and congestion more easily than virtual circuit subnets. We will 
discuss the pros and cons of the two approaches later. 



SEC. 5.1 NETWORK LA YER DESIGN ISSUES 343 

If packets flowing over a given virtual circuit always take the same route 
through the subnet, each router must remember where to forward packets for each 
of the currently open virtual circuits passing through it. Every router must main­
tain a table with one entry per open virtual circuit passing through it. Each packet 
traveling through the subnet must contain a virtual circuit number field in its 
header, in addition to sequence numbers, checksums, and the like. When a packet 
arrives at a router, the router knows on which line it arrived and what the virtual 
circuit number is. Based on only this information, the packet must be forwarded 
on the correct output line. 

When~ a network connection is set up, a virtual circuit number not already in 
use on that machine is chosen as the connection identifier. Since each machine 
chooses virtual circuit numbers independently, these numbers have only local sig­
nificance. If they were globally significant over the whole network, it is likely 
that two virtual circuits bearing the same global virtual circuit number might pass 
through some intermediate router, leading to ambiguities. 

Because virtual circuits can be initiated from either end, a problem occurs 
when call setups are propagating in both directions at once along a chain of 
routers. At some point they have arrived at adjacent routers. Each router must 
now pick a virtual circuit number to use for the (full-duplex) circuit it is trying to 
establish. If they have been programmed to choose the lowest number not already 
in use on the link, they will pick the same number, causing two unrelated virtual 
circuits over the same physical line to have the same number. When a data packet 
arrives later, the receiving router has no way of telling whether it is a forward 
packet on one circuit or a reverse packet on the other. If circuits are simplex, 
there is no ambiguity. 

Note that every process must be required to indicate when it is through using a 
virtual circuit, so that the virtual circuit can be purged from the router tables to 
recover the space. In public networks, the motivation is the stick rather than the 
carrot: users are invariably charged for connect time as well as for data trans­
ported. In addition, some provision must be made for dealing with machines that 
terminate their virtual circuits by crashing rather than politely releasing them 
when done. 

So much for the use of virtual circuits internal to the subnet. The other possi­
bility is to use datagrams internally, in which case the routers do not h;we a table 
with one entry for each open virtual circuit. Instead, they have a table telling 
which outgoing line to use for each possible destination router. These tables are 
also needed when virtual circuits are used internally, to determine the route for a 
setup packet. 

Each datagram must contain the full destination address. For a large network, 
these addresses can be quite long (e.g., a dozen bytes or more). When a packet 
comes in, the router looks up the outgoing line to use and sends the packet on its 
way. Also, the establishment and release of network or transport layer connec­
tions do not require any special work on the part of the routers. 



344 THE NETWORK LAYER CHAP. 5 

5.1.3. Comparison of Virtual Circuit and Datagram Subnets 

Both virtual circuits and datagrams have their supporters and their detractors. 
We will now attempt to summarize the arguments both ways. The major issues 
are listed in Fig. 5-2, although purists could probably find a counterexample for 
everything in the figure. 

Issue Datagram subnet VC subnet 

Circuit setup Not needed Required . 
Addressing Each packet contains Each packet contains a 

the full source and short VC number 

destination address 

State information Subnet does not hold Each VC requires subnet 
state information table space 

Routing Each packet is Route chosen when VC 
routed independently is set up; all packets 

follow this route 

Effect of router failures None, except for packets All VCs that passed 

lost during the crash through the failed 

router are terminated 

Congestion control Difficult Easy if enough buffers 

can be allocated in 

advance for each VC 

Fig. 5-2. Compatjson of datagram and virtual circuit subnets. 

Inside the subnet, several trade-offs exist between virtual circuits and 
datagrams. One trade-off is between router memory space and bandwidth. Vir­
tual circuits allow packets to contain circuit numbers instead of full destination 
addresses. If the packets tend to be fairly short, a full destination address in every 
packet may represent a significant amount of overhead, and hence wasted 
bandwidth. The price paid for using virtual circuits internally is the table space 
within the routers. Depending upon the relative cost of communication circuits 
versus router memory, one or the other may be cheaper. 

Another trade-off is setup time versus address parsing time. Using virtual cir­
cuits requires a setup phase, which takes time and consumes resources. However, 
figuring out what to do with a data packet in a virtual circuit subnet is easy: the 
router just uses the circuit number to index into a table to find out where the 
packet goes. In a datagram subnet, a more complicated procedure is required to 
determine where the packet goes. 

Virtual circuits have some advantages in avoiding congestion within the 



SEC. 5.1 NETWORK LA YER DESIGN ISSUES 345 

subnet because resources can be reserved in advance, when the connection is 
established. Once the packets start arriving, the necessary bandwidth and router 
capacity will be there. With a datagram subnet, congestion avoidance is more dif­
ficult. 

For transaction processing systems (e.g., stores calling up to verify credit card 
purchases), the overhead required to set up and clear a virtual circuit may easily 
dwarf the use of the circuit. If the majority of the traffic is· expected to be of this 
kind, the use of switched virtual circuits inside the subnet makes little sense. On 
the other hand, permanent virtual circuits, which are set up manually and last for 
months or years, may be useful here. 

Virtual circuits also have a vulnerability problem. If a router crashes and 
loses its memory, even if it comes back up a second later, all the virtual circuits 
passing through it will have to be aborted. In contrast, if a datagram router goes 
down, only those users whose packets were queued up in the router at the time 
will suffer, and maybe not even all those, depending upon whether they have 
already been acknowledged or not. The loss of a communication line is fatal to 
virtual circuits using it but can be easily compensated for if datagrams are used. 
Datagrams also allow the routers to balance the traffic throughout the subnet, 
since routes can be changed halfway through a connection. 

It is worth explicitly pointing out that the service offered (connection-oriented 
or connectionless) is a separate issue from the subnet structure (virtual circuit or 
datagram). In theory, all four combinations are possible. Obviously, a virtual cir­
cuit implementation of a connection-oriented service and a datagram implementa­
tion of a connectionless service are reasonable. Implementing connections using 
datagrams also makes sense when the subnet is trying to provide a highly robust 
service. 

The fourth possibility, a connectionless service on top of a virtual circuit sup­
net, seems strange but certainly occurs. The obvious example is running IP over 
an ATM subnet. Here it is desired to run an existing connectionless protocol over 
a new connection-oriented network layer. As mentioned earlier, this is more of an 
ad hoc solution to a problem than a good design. In a new system designed to run 
over an ATM subnet, one would not normally put a connectionless protocol like 
IP over a connection-oriented network layer like A TM and then layer a 
connection-oriented transport protocol on top of the connectionless protocol. 
Examples of all four cases are shown in Fig. 5-3. 

5.2. ROUTING ALGORITHMS 

The main function of the network layer is routing packets from the source 
machine to the destination machine. In most subnets, packets will require multi­
ple hops to make the journey. The only notable exception is for broadcast 



346 THE NETWORK LA YER CHAP. 5 

Upper layer Type of subnet 
Datagram Virtual circuit 

UDP 
UDP over 

Connectionless over IP 
IP over 

ATM 

TCP ATM AAL1 
Connection-oriented over over 

IP ATM 

Fig. 5-3. Examples of different combinations of service and subnet structure. 

networks, but even here routing is an issue if the source and destination are not on 
the same network. The algorithms that choose the routes and the data structures 
that they use are a major area of network layer design. 

The routing algorithm is that part of the network layer software responsible 
for deciding which output line an incoming packet should be transmitted on. If 
the subnet uses datagrams internally, this decision must be made anew for every 
arriving data packet since the best route may have changed since last time. If the 
subnet uses virtual circuits internally, routing decisions are made only when a new 
virtual circuit is being set up. Thereafter, data packets just follow the previously 
established route. The latter case is sometimes called session routing, because a 
route remains in force for an entire user session (e.g., a login session at a terminal 
or a file transfer). 

Regardless of whether routes are chosen independently for each packet or 
only when new connections are established, there are certain properties that are 
desirable in a routing algorithm: correctness, simplicity, robustness, stability, fair­
ness, and optimality. Correctness and simplicity hardly require comment, but the 
need for robustness may be less obvious at first. Once a major network comes on 
the air, it may be expected to run continuously for years without systemwide 
failures. During that period there will be hardware and software failures of all 
kinds. Hosts, routers, and lines will go up and down repeatedly, and the topology 
will change many times. The routing algorithm should be able to cope with 
changes in the topology and traffic without requiring all jobs in all hosts to be 
aborted and the network to be rebooted every time some router crashes. 

Stability is also an important goal for the routing algorithm. There exist rout­
ing algorithms that never converge to equilibrium, no matter how long they run. 
Fairness and optimality may sound obvious-surely no one would oppose 
them-but as it turns out, they are often contradictory goals. As a simple example 
of this conflict, look at Fig. 5-4. Suppose that there is enough traffic between A 
and A', between Band B', and between C and C' to saturate the horizontal links. 
To maximize the total flow, the X to X' traffic should be shut off altogether. 



SEC. 5.2 ROUTING ALGORITHMS 347 . 
Unfortunately, X and X' may not see it that way. Evidently, some compromise 
between global efficiency and fairness to individual connections is needed. 

A B C 

X X' 

A' B' C' 

Fig. 5-4. Conflict between fairness and OJltimality. 

Before we can even attempt to find trade-offs between fairness and optimal­
ity, we must decide what it is we seek to optinuze. Minimizing mean packet 
delay is an obvious candidate, but so is maximizing total network throughput. 
Furthermore, these two goals are also in conflict, since operating any queueing 
system near capacity implies a long queueing delay. As a compromise, many net­
works attempt to minimize the number of hops a packet must make, because 
reducing the number of hops tends to improve the delay and als.o reduce the 
amount of bandwidth consumed, which tends to improve the throughput as well. 

Routing algorithms can be grouped into two major classes: nonadaptive and 
adaptive. Nonadaptive algorithms do not base their routing decisions on meas­
urements or estimates of the current traffic and topology. Instead, the choice of 
the route to use to get from I to J (for all/ and J) is computed in advance, off-line, 
and downloaded to the routers when the network is booted. This procedure is 
sometimes called static routing. 

Adaptive algorithms, in contrast, change their routing decisions to reflect 
changes in the topology, and usually the traffic as well. Adaptive algorithms 
differ in where they get their information (e.g., locally, from adjacent routers, or 
from all routers), when they change the routes (e.g., every t,,.T sec, when the load 
changes, or when the topology changes), and what metric is used for optimization 
(e.g., distance, number of hops, or estimated transit time). In the following sec­
tions we will discuss a variety of routing algorithms, both static and dynamic. 

5.2.1. The Optimality Principle 

Before getting into specific algorithms, it may be helpful to note that one can 
make a general statement about optimal routes without regard to network topol­
ogy or traffic. This statement is known as the optimality principle. It states that 
if router J is on the optimal path from router I to router K, then the optimal path 



348 THE NETWORK LA YER CHAP. 5 

from J to K also falls along the same route. To see this, call the part of the route 
from I to J r 1 and the rest of the route r 2. If a route better than r 2 existed from J 
to K, it could be concatenated with r 1 to improve the route from / to K, contra­
dicting our statement that r I r 2 is optimal. 

As a direct consequence of the optimality principle, we can see that the set of 
optimal routes from all sources to a given destination form a: tree rooted at the 
destination. Such a tree is called a sink tree and is illustrated in Fig. 5-5 where 
the distance metric is the number of hops. Note that a sink tree is not necessarily 
unique; other trees with the same path lengths may exist. The goal of all routing 
algorithms is to discover and use the sink trees for all routers. 

B 

M 

(a) 

K 

Fig. 5-5. (a) A subnet. (b) A sink tree for router B. 

M 

(b) 

N 

0 

Since a sink tree is indeed a tree, it does not contain any loops, so each packet 
will be delivered within a finite and bounded number of hops. In practice, life is 
not quite this easy. Links and routers can go down and come back up during 
operation, so different routers may have different ideas about the current topol­
ogy. Also, we have quietly finessed the issue of whether each router has to indivi­
dually acquire the information on which to base its sink tree computation, or 
whether this information is collected by some other means. We will come back to 
these issues shortly. Nevertheless, the optimality principle and the sink tree pro­
vide a benchmark against which other routing algorithms can be measured. 

In the next three sections, we will look at three different static routing algo­
rithms. After that we will move on to adaptive ones. 

5.2.2. Shortest Path Routing 

Let us begin our study of routing algorithms with a technique that is widely 
used in many forms because it is simple and easy to understand. The idea is to 
build a graph of the subnet, with each node of the graph representing a router and 

. ·•. 

'· 

'. 



SEC. 5.2 ROUTING ALGORITHMS 349 

each arc of the graph representing a communication line ( often called a link). To 
choose a route between a given pair of routers, the algorithm just finds the short­
est path between them on the graph. 

The concept of a shortest path deserves some explanation. One way of 
measuring path length is the number of hops. Using this metric, the paths ABC 
and ABE in Fig. 5-6 are equally long. Another metric is the geographic distance 
in kilometers, in which case ABC is clearly much longer than ABE (assuming the 
figure is drawn to scale). 

A 

A 

A 

B 7 C B (2, A) C(oo,-) 

D A 
2 

G H G(6,A) H (oo, -) 
(a) (b) 

B(2, A) C (9, B) B (2, A) C (9, B) 

D(oo,-) A 

G(6,A) H (oo, -) G (5, E) H (oo,-) 
(c) (d) 

B (2, A) C (9, B) B(2, A) C(9, B) 

D(oo,-) A 

G (5, E) H (9, G) 
(e) 

G (5, E) 
(f) 

/H(8,F) 

Fig. 5-6. The first five steps used in computing the shortest path from A to D. 
The arrows indicate the working node. 

D (oo, -) 

D (oo,1) 

D (oo,-) 

However, many other metrics are also possible besides hops and physical dis­
tance. For example, each arc could be labeled with the mean queueing and 
transmission delay for some standard test packet as determined by hourly test 
runs. With this graph labeling, the shortest path is the fastest path, rather than the 
path with the fewest arcs or kilometers. 

In the most general case, the labels on the arcs could be computed as a func­
tion of the distance, bandwidth, average traffic, communication cost, mean queue 
length, measured delay, and other factors. By changing the weighting function, 



350 THE NETWORK LA YER CHAP. 5 

the algorithm would then compute the "shortest" path measured according to any 
one of a number of criteria, or a combination of criteria. 

Several algorithms for computing the shortest path between two nodes of a 
graph are known. This one is due to Dijkstra (1959). Each node is labeled (in 
parentheses) with its distance from the source node along the best known path. 
Initially, no paths are known, so all nodes are labeled with infinity. As the algo­
rithm proceeds and paths are found, the labels may change, reflecting better paths. 
A label may be either tentative or permanent. Initially, all labels are tentative. 
When it is discovered that a label represents the shortest possible path from the 
source to ·that node, it is made permanent and never changed thereafter. 

To illustrate how the labeling algorithm works, look at the weighted, 
undirected graph of Fig. 5-6(a), where the weights represent, for example, dis­
tance. We want to find the shortest path from A to D. We start out by marking 
node A as permanent, indicated by a filled in circle. Then we examine, in tum, 
each of the nodes adjacent to A (the working node), relabeling each one with the 
distance to A. Whenever a node is relabeled, we also label it with the node from 
which the probe was made, so we can reconstruct the final path later. Having 
examined each of the nodes adjacent to A, we examine all the tentatively labeled 
nodes in the whole graph and make the one with the smallest label permanent, as 
shown in Fig. 5-6(b ). This one becomes the new working node. 

We now start at B, and examine all nodes adjacent to it. If the sum of the 
label on B and the distance from B to the node being considered is less than the 
label on that node, we have a shorter path, so the node is relabeled. 

After all the nodes adjacent to the working node have been inspected and the 
tentative labels changed if possible, the entire graph is searched for the tentatively 
labeled node with the smallest value. This node is made permanent and becomes 
the working node for the next round. Figure 5-6 shows the first five steps of the 
algorithm. 

To see why the algorithm works, look at Fig. 5-6(c). At that point we have 
just made E permanent. Suppose that there were a shorter path than ABE, say 
AXYZE. There are two possibilities: either node Z has already been made per­
manent, or it has not been. If it has, then E has already been probed ( on the round 
following the one when Z was made permanent), so the AXY2E path has not 
escaped our attention. 

Now consider the case where Z is still tentatively labeled. Either the label at 
Z is greater than or equal to that at E, in which case AXYZE cannot be a shorter 
path than ABE, or it is less than that of E, in which case Z and not E will become 
permanent first, allowing E to be probed from Z. 

This algorithm is given in Fig. 5-7. The only ciifference between the program 
and the algorithm described above is that in Fig. 5-7, we compute the shortest path 
starting at the terminal node, t, rather than at the source node, s. Since the shortest 
path from t to s in an undirecteci graph is the same as the shortest path from s to t, 
it does not matter at which end we begin (unless there are several shortest paths, 



SEC. 5.2 ROUTING ALGORITHMS 351 

in which case reversing the search might discover a different one). The reason for 
searching backward is that each node is labeled with its predecessor rather than its 
successor. When copying the final path into the output variable, path, the path is 
thus reversed. By reversing the search, the two effects cancel, and the answer is 
produced in the correct order. 

5.2.3. Flooding 

Another static algorithm is flooding, in which every incoming packet is sent 
out on every outgoing line except the one it arrived on. Flooding obviously gen­
erates vast numbers of duplicate packets, in fact, an infinite number unless some 
measures are taken to damp the process. One such measure is to have a hop 
counter contained in the header of each packet, which is decremented at each hop, 
with the packet being discarded when the counter reaches zero. Ideally, the hop 
counter should be initialized to the length of the path from source to destination. 
If the sender does not know how long the path is, it can initialize the counter to 
the worst case, namely, the full diameter of the subnet. 

An alternative technique for damming the flood is to keep track of which 
packet~ have been flooded, to avoid sending them out a second time. One way to 
achieve this goal is to have the source router put a sequence number in each 
packet it receives from its hosts. Each router then needs a list per source router 
telling which sequence numbers originating at that source have already been seen. 
If an incoming packet is on the list, it is not flooded. 

To prevent the list from growing without bound, each list should be aug­
mented by a counter, k, meaning that all sequence numbers through k have been 
seen. When a packet comes in, it is easy to check if the packet is a duplicate; if 
so, it is discarded. Furthermore, the full list below k is not needed, since k eff ec­
tively summarizes it. 

A variation of flooding that is slightly more practical is selective flooding. In 
this algorithm the routers do not send every incoming packet out on every line, 
only on those lines that are going approximately in the right direction. There is 
usually little point in sending a westbound packet on an eastbound line unless the 
topology is extremely peculiar. 

Flooding is not practical in most applications, but it does have some uses. For 
example, in military applications, where large numbers of routers may be blown 
to bits at any instant, the tremendous robustness of flooding is highly desirable. In 
distributed database applications, it is sometimes necessary to update all the data­
bases concurrently, in which case flooding can be useful. A third possible use of 
flooding is as a metric against which other routing algorithms can be compared. 
Flooding always chooses the shortest path, because it chooses every possible path 
in parallel. Consequently, no other algorithm can produce a shorter delay (if we 
ignore the overhead generated by the flooding process itself). 



352 THE NETWORK LAYER CHAP. 5 

#define MA)LNODES 1024 I* maximum number of nodes *I 
#define INFINITY 1000000000 /* a number larger than every maximum path *I 
int n, dist[MAX_NODES][MAX_NODES];/* dist[i][j] is the distance from i to j */ 

void shortesLpath(int s, int t, int path[]) 
{ struct state { / * the path being worked on *I 

int predecessor; I* previous node *I 
int length; I* length from source to this node *I 
enum {permanent, tentative} label; I* label state *I 

} state[MAX_NODES]; 

int i, k, min; 
struct state * 

p; 
for (p = &state[0]; p < &state[n]; p++) { /* initialize state *I 

p->predecessor = -1; 
p->length = INFINITY; 
p->label = tentative; 

} 
state[t].length = 0; state[t].labe·1 = permanent; 
k = t; /* k is the initial working node *I 
do { /* Is there a better path from k? *I 

for (i = 0; i < n; i++) I* this graph has n nodes *I 
if (dist[k][i] != 0 && state[i].label == tentative) { 

if (state[k].length + dist[k][i] < state[i].length) { 
state[i].predecessor = k; 
state[i].length = state[k].length + dist[k][i]; 

I* Find the tentatively labeled node with the smallest label. *I 
k = O; min = INFINITY; 
for (i = 0; i < n; i++) 

if (state[i].label == tentative && state[i].length < min) { 
min = state[i].length; 
k=i; 

} 
state[k].label = permanent; 

} while (k != s); 

I* Copy the path into the output array. *I 
i = O; k = s; 
do {path[i++] = k; k = state[k].predecessor; } while (k >= 0); 

} 

Fig. 5-7. Dijkstra's algorithm to compute the shortest path through a graph. 



SEC. 5.2 ROUTING ALGORITHMS 353 

5.2.4. Flow-Based Routing 

The algorithms studied so far take only the topology into account. They do 
not consider the load. If, for example, there is always a huge amount of traffic 
from A to B, in Fig. 5-6, then it may be better to route traffic from A to C via 
AGEFC, even though this path is much longer than ABC. In this section we will 
study a static algorithm that uses both topology and load for routing. It is called 
flow-based routing. 

In some networks, the mean data flow between each pair of nodes is relatively 
stable and predictable. For example, in a corporate network for a retail store 
chain, each store might send orders, sales reports, inventory updates, and other 
well-defined types of messages to known sites in a predefined pattern, so that the 
total volume of traffic varies little from day to day. Under conditions in which the 
average traffic from i to j is known in advance and, to a reasonable approxima­
tion, constant in time, it is possible to analyze the flows mathematically to optim­
ize the routing. 

The basic idea behind the analysis is that for a given line, if the capacity and 
average flow are known, it is possible to compute the mean packet delay on that 
line from queueing theory. From the mean delays on all the lines, it is straightfor­
ward to calculate a flow-weighted average to get the mean packet delay for the 
whole subnet. The routing problem then reduces to finding the routing algorithm 
that produces the minimum average delay for the subnet. Fig. 5-8. 

To use this technique, certain information must be known in advance. First 
the subnet topology must be known. Second, the traffic matrix, Fij, must be 
given. Third, the line capacity matrix, Cij, specifying the capacity of each line in 
bps must be available. Finally, a (possibly tentative) routing algorithm must be 
chosen. 

As an example of this method, consider the full-duplex subnet of Fig. 5-8(a). 
The weights on the arcs give the capacities, Cij, in each direction measured in 
kbps. The matrix of Fig. 5-8(b) has an entry for each source-destination pair. The 
entry for source i to destination j shows the route to be used for i-j traffic, and 
also the number of packets/sec to be sent from source i to destination j. For 
example, 3 packets/sec go from B to D, and they use route BFD to get there. 
Notice that some routing algorithm has already been applied to derive the routes 
shown in the matrix. 

Given this information, it is straightforward to calculate the total in line i, ')..i· 

For example, the B-D traffic contributes 3 packets/sec to the BF line and also 3 
packets/sec to the FD line. Similarly, the A-D traffic contributes 1 packet/sec to 
each of three lines. The total traffic in each eastbound line is shown in the ')..i 

column of Fig. 5-9. In this example, all the traffic is symmetric, that is, the XY 
traffic is identical to the YX traffic, for all X and Y. In real networks this condition 
does not always hold. The figure also shows the mean number of packets/sec on 
each line, µCi assuming a mean packet size of 1/µ = 800 bits. 



354 

A 

THE NETWORK LAYER CHAP. 5 

Destination 
A B C D E 

9 4 1 7 
A AB ABC ABFD AE 

9 8 3 2 
B 

B C BA BC BFD BFE 

Q) C 

D 
f= 
::J 
0 

(/) 

4 8 3 3 

CBA CB CD CE 
1 3 3 3 

D DFBA DFB DC DCE 
E 50 F 

7 2 3 3 
E 

(a) 
EA EFB EC ECO 
4 4 2 4 5 

F FEA FB FEC FD FE 

(b) 

Fig. 5-8. (a) A subnet with line capacities shown in kbps. (b) The traffic in 
packets/sec and the routing matrix. 

F 

4 

AEF 
4 

BF 
2 

CEF 
4 

DF 
5 

EF 

The next-to-last column of Fig. 5-9 gives the mean delay for each line derived 
from the queueing theory formula 

1 
T=---

µC-A 

where 1/µ is the mean packet size in bits, C is the capacity in bps, and A is the 
mean flow in packets/sec. For example, with a capacity µC = 25 packets/sec and 
an actual flow A= 14 packets/sec, the mean delay is 91 msec. Note that with 
A = 0, the mean delay is still 40 msec, because the capacity is 25 packets/sec. In 
other words, the "delay" includes both queueing and service time. 

To compute the mean delay time for the entire subnet, we take the weighted 
sum of each of the eight lines; with the weight being the fraction of the total 
traffic using that line. In this example, the mean turns out to be 86 msec. 

To evaluate a different routing algorithm, we can repeat the entire process, 
only with different flows to get a new average delay. If we restrict ourselves to 
only single path routing algorithms, as we have done so far, there are only a finite 
number of ways to route packets from each source to each destination. It is 
always possible to write a program 'to simply try them all, one after another, and 
find out which one has the smallest mean delay. Since this calculation can be 
done off-line in advance, the fact that it may be time consuming is not necessarily 
a serious problem. This one is then the best routing algorithm. Bertsekas and 
Gallager (1992) discuss flow-based routing in detail. 

. ·•. 

I , 



SEC. 5.2 ROUTING ALGORITHMS 355 

i Line Aj (pkts/sec) Ci (kbps) µCi (pkts/sec) Ti (msec) Weight 

1 

2 

3 

4 

5 

6 

7 

8 

AB 14 20 25 91 0.171 

BC 12 20 25 77 0.146 

CD 6 10 12.5 154 0.073 

AE 11 20 25 71 0.134 

EF 13 50 62.5 20 0.159 

FD 8 10 12.5 222 0.098 

BF 10 20 25 67 0.122 

EC 8 20 25 59 0.098 

Fig. 5-9. Analysis of the subnet of Fig. 5-8 using a mean packet size of 800 bits. 
The reverse traffic (BA, CB, etc.) is the same as the forward traffic. 

5.2.S. Distance Vector Routing 

Modem computer networks generally use dynamic routing algorithms rather 
than the static ones described above. Two dynamic algorithms in particular, dis­
tance vector routing and link state routing, are the most popular. In this section 
we will look at the former algorithm. In .the following one we will study the latter 
one. 

Distance vector routing algorithms operate by having each router maintain a 
table (i.e, a vector) giving the best known distance to each destination and which 
line to use to get there. These tables are updated by exchanging information with 
the neighbors. 

The distance vector routing algorithm is sometimes called by other names, 
including the distributed Bellman-Ford routing algorithm and the Ford­
Fulkerson algorithm, after the researchers who developed it (Bellman, 1957; and 
Ford and Fulkerson, 1962). It was the original ARPANET routing algorithm and 
was also used in the Internet under the name RIP and in early versions of DECnet 
and Novell's IPX. AppleTalk and Cisco routers use improved distance vector 
protocols. 

In distance vector routing, each router maintains a routing table indexed by, 
and containing one entry for, each router in the subnet. This entry contains two 
parts: the preferred outgoing line to use for that destination, and an estimate of the 
time or distance to that destination. The metric used might be number of hops, 
time delay in milliseconds, total number of packets queued along the path, or 
something similar. 

The router is assumed to know the "distance" to each of its neighbors. If the 
metric is hops, the distance is just one hop. If the metric is queue length, the 
router simply examines each queue. If the metric is delay, the router can measure 



356 THE NETWORK LA YER CHAP. 5 

it directly with special ECHO packets that the receiver just timestamps and sends 
back as fast as it can. 

As an example, assume that delay is used as a metric and that the router 
knows the delay to each of its neighbors. Once every T msec each router sends to 
each neighbor a list of its estimated delays to each destination. It also receives a 
similar list from each neighbor. Imagine that one of these tables has just come in 
from neighbor X, with Xi being X's estimate of how long it takes to get to router i. 
If the router knows that the delay to X is m msec, it also knows that it can reach 
router i via X in Xi + m msec via X. By performing this calculation for each 
neighbor, a router can find out which estimate seems the best and use that esti­
mate and the corresponding line in its new routing table. Note that the old routing 
table is not used in the calculation. · 

This updating process is illustrated in Fig. 5-10. Part (a) shows a subnet. The 
first four columns of part (b) show the delay vectors received from the neighbors 
of router J. A claims to have a 12-msec delay to B, a 25-msec delay to C, a 40-
msec delay to D, etc. Suppose that J has measured or estimated its delay to its 
neighbors, A, I, H, and K as 8, 10, 12, and 6 msec, respectively. 

E 

Router 

H 

J 
(a) 

New estimated 
delay from J 

To A H K ~ Line 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

0 24 
12 36 
25 18 
40 27 
14 7 
23 20 
18 31 
17 20 
21 0 
9 11 

24 22 
29 33 
JA JI 

delay delay 
is is 
8 10 

20 
31 

30 
19 
6 
0 
14 
7 
22 
9 

JH 
delay 

is 
12 

21 
28 
36 
24 
22 
40 
31 
19 
22 
10 
0 
9 

JK 
delay 

is 
6 

Vectors received from 
J's four neighbors 

(b) 

8 A 
20 A 
28 I 
20 H 
17 I 
30 I 
18 H 
12 H 
10 I 
0 -
6 K 
15 K 

'-y--' 
New 

routing 
table 
for J 

Fig. 5-10. (a) A subnet. (b),lnput from A, I, H, K, and the new routing table 
for]. 

Consider how J computes its new route to router G. It knows that it can get to 
A in 8 msec, and A claims to be able to get to G in 18 msec, so J knows it can 
count on a delay of 26 msec to G if it forwards packets bound for G to A. 



SEC. 5.2 ROUTING ALGORITHMS 357 

Similarly, it computes the delay to G via 1, H, and K as 41 (31 + 10), 18 (6 + 12), 
and 37 (31 + 6) msec respectively. The best of these values is 18, so it makes an 
entry in its routing t<!-ble that the delay to G is 18 msec, and that the route to use is 
via H. The same calculation is performed for all the other destinations, with the 
new routing table shown in the last column of the figure. 

The Count-to-Infinity Problem 

Distance vector routing works in theory but has a serious drawback in prac­
tice: although it converges to the correct answer, it may do so slowly. In particu­
lar, it reacts rapidly to good news, but leisurely to bad news. Consider a router 
whose best route to destination X is large. If on the next exchange neighbor A 
suddenly reports a short delay to X, the router just switches over to using the line 
to A to send traffic to X. In one vector exchange, the good news is processed. 

To see how fast good ~ews propagates, consider the five-node (linear) subnet 
of Fig. 5-11, where the delay metric is the number of hops. Suppose A is down 
initi~lly and all the other rou~rs know this. In other words, they have all recorded 
the cl.elay to A as infinity. · 

A B C D E A B C D E 
• • • • • • • • • • 

00 00 00 00 Initially 1 2 3 4 Initially 

00 00 00 After 1 exchange 3 2 3 4 After 1 exchange 

2 00 00 After 2 exchanges 3 4 3 4 After 2 exchanges 

2 3 00 After 3 ~xchanges 5 4 5 4 After 3 exchanges 

2 3 4 After 4 exc~anges 5 6 5 6 After 4 exchanges 

7 6 7 6 After 5 exchanges 

(a) 7 8 7 8 After 6 exchanges 

00 00 00 00 

(b) 

Fig. 5-11. The count-to-infinity problem. 

When A comes up, the other routers learn about it via the vector exchanges. 
For simplicity we will assume that there is a gigantic gong somewhere that is 
struck periodically to initiate a vector exchange at all routers simultaneously. At 
the time of the first exchange, B learns that * left neighbor has zero delay to A. B 
now makes an entry in its routing table that A is one hop away to the. left. All the 
other routers still think that A is down. At this point, the routing table entries for 
A are as shown in the second row of Fig. 5-ll(a). On the next exchange, C learns 
that B has a path of length 1 to A, so it updates its routing table to indicate a path 
of length 2, but D and E do not hear the good news until later. Clearly, the good 
riews is spreading at the rate of one hop per exchange. In a subnet whose longest 



358 THE NETWORK LA YER CHAP. 5 

path is of length N hops, within N exchanges everyone will know about newly 
revived lines and routers. 

Now let us consider the situation of Fig. 5-ll(b), in which all the lines and 
routers are initially up. Routers B, C, D, and E have distances to A of 1, 2, 3, and 
4, respectively. Suddenly A goes down, or alternatively, the line between A and B 
is cut, which is effectively the same thing from B's point of view. 

At the first packet exchange, B does not hear anything from A. Fortunately, C 
says "Do not worry. I have a path to A of length 2." Little does B know that C's 
path runs through B itself. For all B knows, C might have ten outgoing lines all 
with independent paths to A of. length 2. As a result, B now thinks it can reach A 
via C, with a path length of 3. D and E do not update their entries for A on the 
first exchange. 

On the second exchange, C notices that each of its neighbors claims to have a 
path to A of length 3. It picks one of the them at random and makes its new dis­
tance to A 4, as shown in the third row of Fig. 5-ll(b). Subsequent exchanges 
produce the history shown in the rest of Fig. 5-ll(b). 

From this figure, its should be clear why bad news travels slowly: no router 
ever has a value more than one higher than the minimum of all its neighbors. 
Gradually, all the routers work their way up to infinity, but the number of 
exchanges required depends on the numerical value used for infinity. For this rea­
son, it is wise to set infinity to the longest path plus 1. If the metric is time delay, 
there is no well-defined upper bound, so a high value is needed to prevent a path 
with a long delay from being treated as down. Not entirely surprisingly, this prob­
lem is known as the count-to-infinity problem. 

The Split Horizon Hack 

Many ad hoc solutions to the count-to-infinity problem have been proposed in 
the literature, each one more complkated and less useful than the one before it. 
We will describe just one of them here and then tell why it, too, fails. The split 
horizon algorithm works the same way as distance vector routing, except that the 
distance to Xis not reported on the line that packets for X are sent on (actually, it 
is reported as infinity). In the initial state of Fig. 5-ll(b), for example, C tells D 
the truth about the distance to A, but C tells B that its distance to A is infinite. 
Similarly, D tells the truth to E but lies to C. 

Now let us see what happens when A goes down. On the first exchange, B 
discovers that the direct line is gone, and C is reporting an infinite distance to A as 
well. Since neither of its neighbors can get to A, B sets its distance to infinity as 
well. On the next exchange, C hears that A is unreachable from both of its neigh­
bors, so it marks A as unreachable too. Using split horizon, the bad news prop­
agates one hop per exchange. This rate is much better than without split horizon. 

The real bad news is that split horizon, although widely used, sometimes fails. 

. .. 



SEC. 5.2 ROUTING ALGORITHMS 359 

Consider, for example, the four-node subnet of Fig. 5-12. Initially, both A and B 
have a distance 2 to D, and Chas a distance 1 there. 

A _ ___ B 

C -- Router 

D 

Fig. 5-12. An example where split horizon fails. 

Now suppose that the CD line goes down. Using split horizon, both A and B 
tell C that they cannot get to D. Thus C immediately concludes that Dis unreach­
able and reports this to both A and B. Unfortunately, A hears that B has a path of 
length 2 to D, so it assumes it can get to D via Bin 3 hops. Similarly, B concludes 
it can get to D via A in 3 hops. On the next exchange, they each set their distance 
to D to 4. Both of them gradually count to infinity, precisely the behavior we 
were trying to avoid. 

5.2.6. Link State Routing 

Distance vector routing was used in the ARPANET until 1979, when it was 
replaced by link state routing. Two primary problems caused its demise. First, 
since the delay metric was queue length, it did not take line bandwidth into 
account when choosing routes. Initially, all the lines were 56 kbps, so line 
bandwidth was not an issue, but after some lines had been upgraded to 230 kbps 
and others to 1.544 Mbps, not taking bandwidth into account was a major prob­
lem. Of course, it would have been possible to change the delay metric to factor 
in line bandwidth, but a second problem also existed, namely, the algorithm often 
took too long to converge, even with tricks like split horizon. For these reasons, it 
was replaced by an entirely new algorithm now called link state routing. Vari­
ants of link state routing are now widely used. 

The idea behind link state routing is simple and can be stated as five parts. 
Each router must 

1. Discover its neighbors and learn their network addresses. 

2. Measure the delay or cost to each of its neighbors. 

3. Construct a packet telling all it has just learned. 

4. Send this packet to all other routers. 

5. Compute the shortest path to every other router. 



360 THE NETWORK LA YER CHAP. 5 

In effect, the complete topology and all delays are experimentally measured and 
distributed to every router. Then Dijkstra's algorithm can be used to find the 
shortest path to every other router. Below we will consider each of these five 
steps in more detail. 

Learning about the Neighbors 

When a router is booted, its first task is to learn who its neighbors are. It 
accomplishes this goal by sending a special HELLO packet on each point-to-point 
line. The router on the other end is expected to send back a reply telling who it is. 
These names must be globally unique because when a distant router later hears 
that three routers are all connected to F, it is essential that it can determine 
whether or not all three mean the same F. 

When two or more routers are connected by a LAN, the situation is slightly 
more complicated. Fig. 5-13(a) illustrates a LAN to which three routers, A, C, 
and F, are directly connected. Each of these routers is connected to one or more 
additional routers, as shown. 

B D E 

D G H 
B 

A C 

F 

LAN N 

(a) (b) 

Fig. 5-13. (a) Nine routers and a LAN. (b) A graph model of (a), 

One way to model the LAN is to consider it as a node itself, as shown in 
Fig. 5-13(b). Here we have introduced a new, artificial node, N, to which A, C, 
and F are connected. The fact that it is possible to go from A to C on the LAN is 
represented by the path ANC here. 

Measuring Line Cost 

The link state routing algorithm requires each router to know, or at least have 
a reasonable estimate, of the delay to each of its neighbors. The most direct way 
to determine this delay is to send a special ECHO packet over the line that the other 

' . 



SEC. 5.2 ROUTING ALGORITHMS 361 

side is required to send back immediately. By measuring the round-trip time and 
dividing it by two, the sending router can get a reasonable estimate of the delay. 
For even better results, the test can be conducted several times, and the average 
used. 

An interesting issue is whether or not to take the load into account when 
measuring the delay. To factor the load in, the round-trip timer must be started 
when the ECHO packet is queued. To ignore the load, the timer should be started 
when the ECHO packet reaches the front of the queue. 

Arguments can be made both ways. Including traffic-induced delays in the 
measurements means that when a router has a choice between two lines with the 
same bandwidth, one of which is heavily loaded all the time and one of which is 
not, it will regard the route over the unloaded line as a shorter path. This choice 
will result in better performance. 

Unfortunately, there is also an argument against including the load in the 
delay calculation. Consider the subnet of Fig. 5-14, which is divided up into two 
parts, East and West, connected by two lines, CF and EI. Suppose that most of 
the traffic between East and West is using line CF, and as a result, this line is 
heavily loaded with long delays. Including queueing delay in the shortest path 
calculation will make EI more attractive. After the new routing tables have been 
installed, most of the East-West traffic will now go over EI, overloading this line. 
Consequently, in the next update, CF will appear to be the shortest path. As a 
result, the routing tables may oscillate wildly, leading to erratic routing and many 
potential problems. If load is ignored and only bandwidth is considered, this 
problem does not occur. Alternatively, the load can be spread over both lines, but 
this solution does not fully utilize the best path. 

West East 

B C 

A 
H 

D J 

Fig. 5-14. A subnet in which the East and West parts are connected by two lines. 



362 THE NETWORK LA YER CHAP. 5 

Building Link State Packets 

Once the information needed for the exchange has been collected, the next 
step is for each router to build a packet containing all the data. The packet starts 
with the identity of the sender, followed by a sequence number and age (to be 
described later), and a list of neighbors. For each neighbor, the delay to that 
neighbor is given. An example subnet is given in Fig. 5-15(a) with delays shown 
in the lines. The corresponding link state packets for all six routers are shown in 
Fig. 5-15(b). 

B 2 C 

E 8 F 

(a) 

D 

(b) 

Fig. 5-15. (a) A subnet. (b) The link state packets for this subnet. 

Building the link state packets is easy. The hard part is determining when to 
build them. One possibility is to build them periodically, that is, at regular inter­
vals. Another possibility is when some significant event occurs, such as a line or 
neighbor going down or coming back up again, or changing its properties appreci­
ably. 

Distributing the Link State Packets 

The trickiest part of the algorithm is distributing the link state packets reli­
ably. As the packets are distributed and installed, the routers getting the first ones 
will change their routes. Consequently, the different routers may be using dif­
ferent versions of the topology, which can lead to inconsistencies, loops, unreach­
able machines, and other problems. 

First we will describe the basic distribution algorithm. Later we will give 
some refinements. The fundamental idea is to use flooding to distribute the link 
state packets. To keep the flood in check, each packet contains a sequence 
number that is incremented for each new packet sent. Routers keep track of all 
the (source router, sequence) pairs they see. When a new link state packet comes 
in, it is checked against the list of packets already seen. If it is new, it is for­
warded on all lines except the one it arrived on. If it is a duplicate, it is discarded. 



SEC. 5.2 ROUTING ALGORITHMS 363 

If a packet with a sequence number lower than the highest one seen so far ever 
arrives, it is rejected as being obsolete. 

This algorithm has a few problems, but they are manageable. First, if the 
sequence numbers wrap around, confusion will reign. The solution here is to use 
a 32-bit sequence number. With one link state packet per second, it would take 
137 years to wrap around, so this possibility can be ignored. 

Second, if a router ever crashes, it will lose track of its sequence number. If it 
starts again at 0, the next packet will be rejected as a duplicate. 

Third, if a sequence number is ever corrupted and 65,540 is received instead 
of 4 (a 1-bit error), packets 5 through 65,540 will be rejected as obsolete, since the 
current sequence number is thought to be 65,540. 

The solution to all these problems is to include the age of each packet after 
the sequence number and decrement it once per second. When the age hits zero, 
the information from that router is discarded. Normally, a new packet comes in, 
say, every 10 minutes, so router information only times out when a router is down 
(or six consecutive packets have been lost, an unlikely event). The age field is 
also decremented by each router during the initial flooding process, to make sure 
no packet can get lost and live for an indefinite period of time (a packet whose 
age is zero is discarded). 

Some refinements to this algorithm make it more robust. When a link state 
packet comes in to a router for flooding, it is not queued for transmission immedi­
ately. Instead it is put in a holding area to wait a short while first. If another link 
state packet from the same source comes in before it is transmitted, their sequence 
numbers are compared. If they are equal, the duplicate is discarded. If they are 
different, the older one is thrown out. To guard against errors on the router-router 
lines, all link state packets are acknowledged. When a line goes idle, the holding 
area is scanned in round robin order to select a packet or acknowledgement to 
send. 

The data structure used by router B for the subnet shown in Fig. 5-15(a) is 
depicted in Fig. 5-16. Each row here corresponds to a recently arrived, but as yet 
not fully processed, link state packet. The table records where the packet orig­
inated, its sequence number and age, and the data. In addition, there are send and 
acknowledgement flags for each of B's three lines (to A, C, and F, respectively). 
The send flags mean that the packet must be sent on the indicated line. The 
acknowledgement flags mean that it must be acknowledged there. 

In Fig. 5-16, the link state packet from A arrived directly, so it must be sent to 
C and F and acknowledged to A, as indicated by the flag bits. Similarly, the 
packet from F has to be forwarded to A and C and acknowledged to F. 

However, the situation with the third packet, from E, is different. It arrived 
twice, once via EAB and once via EFB. Consequently, it has to be sent only to C, 
but acknowledged to both A and F, as indicated by the bits. 

If a duplicate arrives while the original is still in the buffer, bits have to be 
changed. For example, if a copy of C's state arrives from F before the fourth 



364 THE NETWORK LAYER CHAP. 5 

Send flags ACK flags 
~ ~ 

Source Seq. Age A C F A C F Data 

A 21 60 0 1 1 1 0 0 

F 21 60 1 1 0 0 0 1 

E 21 59 0 1 0 1 0 1 

C 20 60 1 0 1 0 1 0 

D 21 59 1 0 0 0 1 1 

Fig. 5-16. The packet buffer for router Bin Fig. 5-15. 

entry in the table has been forwarded, the six bits will be changed to 100011 to 
indicate that the packet must be.acknowledged to F but not sent there. 

Computing the New Routes 

Once a router has accumulated a full set of link state packets, it can construct 
the entire subnet graph because every link is represented. Every link is, in fact, 
represented twice, once for each direction. The two values can be averaged or 
used separately. 

Now Dijkstra's algorithm can be run locally to construct the shortest path to 
all possible destinations. The results of this algorithm can be installed in the rout­
ing tables, and normal operation resumed. 

For a subnet with n routers, each of which has k neighbors, the memory 
required to store the input data is proportional to kn. For large subnets, this can be 
a problem. Also, the computation time can be an issue. Nevertheless, in many 
practical situations, link state routing works well. 

However, problems with the hardware or software can wreak havoc with this 
algorithm (also with other ones). For example, if a router claims to have a line it 
does not have, or forgets a line it does have, the subnet graph will be incorrect. If 
a router fails to forward packets, or corrupts them while forwarding them, trouble 
will arise. Finally, if it runs out of memory or does the routing calculation wrong, 
bad things will happen. As the subnet grows into the range of tens or hundreds of 
thousands of nodes, the probability of some router failing occasionally becomes 
nonnegligible. The trick is to try to arrange to limit the damage when the inevit­
able happens. Perlman (1988) discusses these problems and their solutions in 
detail. 

Link state routing is widely used in actual networks, so a few words about 
some example protocols using it are in order. The OSPF protocol, which is 

, . '. 



SEC. 5.2 ROUTING ALGORITHMS 365 

increasingly being used in the Internet, uses a link state algorithm. We will 
describe OSPF in Sec. 5.5.5. 

Another important link state protocol i,s IS-IS (Intermediate System­
Intermediate System), which was designed for DECnet and later adopted by ISO 
for use with its connectionless network layer protocol, CLNP. Since then it has 
been modified to handle other protocols as well, most notably, IP. IS-IS is used in 
numerous Internet backbones (including the old NSFNET backbone), and in some 
digital cellular systems such as CDPD. Novell NetWare uses a minor variant of 
IS-IS (NLSP) for routing IPX packets. 

Basically IS-IS distributes a picture of the router topology, from which the 
shortest paths are computed. Each router announces, in its link state information, 
which network layer addresses it can reach directly. These addresses can be IP, 
IPX, AppleTalk, or any other addresses. IS-IS can even support multiple network 
layer protocols at the same time. 

Many of the innovations designed for IS-IS were adopted by OSPF (OSPF 
was designed several years after IS-IS). These include a self-stabilizing method 
of flooding link state updates, the concept of a designated router on a LAN, and 
the method of computing and supporting path splitting and multiple metrics. As a 
consequence, there is very little difference between IS-IS and OSPF. The most 
important difference is that IS-IS is encoded in such a way that it is easy and 
natural to simultaneously carry information about multiple network layer proto­
cols, a feature OSPF does not have. This advantage is especially valuable in large 
multiprotocol environments. 

5.2.7. Hierarchical Routing 

As networks grow in size, the router routing tables grow proportionally. Not 
only is router memory consumed by ever increasing tables, but more CPU time is 
needed to scan them and more bandwidth is needed to send status reports about 
them. At a certain point the network may grow to the point where it is no longer 
feasible for every router to have an entry for every other router, so the routing will 
have to be done hierarchically, as it is in the telephone network. 

When hierarchical routing is used, the routers are divided into what we will 
call regions, with each router knowing all the details about how to route packets 
to destinations within its own region, but knowing nothing. about the internal 
structure of other regions. When different networks are connected together, it is 
natural to regard each one as a separate region in order to free the routers in one 
network from having to know the topological structure of the other ones. 

For huge networks, a two-level hierarchy may be insufficient; it may be 
necessary to group the regions into clusters, the clusters into zones, the zones into 
groups, and so on, until we run out of names for aggregations. As an example of a 
multilevel hierarchy, consider how a packet might be routed from Berkeley, Cali­
fornia to Malindi, Kenya. The Berkeley router would know the detailed topology 



366 THE NETWORK LAYER CHAP. 5 

within California but would send all out-of-state traffic to the Los Angeles router. 
The Los Angeles router would be able to route traffic to other domestic routers, 
but would send foreign traffic to New York. The New York router would be pro­
grammed to direct all traffic to the router in the destination country responsible 
for handling foreign traffic, say in Nairobi. Finally, the packet would work its 
way down the tree in Kenya until it got to Malindi. 

Figure 5-17 gives a quantitative example of routing in a two-level hierarchy 
with five regions. The full routing table for router IA has 17 entries, as shown in 
Fig. 5-17(b). When routing is done hierarchically, as in Fig. 5-17(c), there are 
entries for all the local routers as before, but all other regions have been con­
densed into a single router, so all traffic for region 2 goes via the lB-2A line, but 
the rest bf the remote traffic goes via the 1 C-3B line. Hierarchical routing has 
reduced the table from 17 to 7 entries. As the ratio of the number of regions to the 
number of routers per region grows, the savings in table space increase. 

,,.,,,, ,.--

/ 3A 
I 
I 
\ 
\ 

I 
I , 

~S' 

', ..... _ __ ,,,.✓ 

(a) 

Region 2 

/2A-2Eh 
\ 

I I 
I f 
\ I 

',20 20' ..... ... __ ,,,, 

Full table for 1 A 

Dest. Line Hops 

1A 

1B 

1C 
2A 

2B 

2C 

2D 

3A 

3B 

4A 

4B 

4C 

SA 
SB 
SC 

SD 
SE 

-
1B 
1C 
1B 
1B 
1B 

1B 
1C 
1C 
1C 
1C 
1C 
1C 
1C 
1B 
1C 
1C 

-

1 
1 
2 

3 

3 

4 

3 

2 

3 

4 

4 

4 

s 
s 
6 

s 
(b) 

Fig. 5-17. Hierarchical routing. 

Hierarchical table for 1A 

Dest. Line Hops 

1A 

1B 
1C 

2 

3 

4 

s 

-
1B 
1C 
1B 

1C 
1C 
1C 

-

1 
1 
2 

2 

3 

4 

(c) 

Unfortunately, these gains in space are not free. There is a penalty to be paid, 
and this penalty is in the form of increased path length. For example, the best 
route from IA to SC is via region 2, but with hierarchical routing all traffic to 
region 5 goes via region 3, because that is better for most destinations in region 5. 

When a single network becomes very large, an interesting question is: How 
many levels should the hierarchy have? For example, consider a subnet with 720 

. ... 



SEC. 5.2 ROUTING ALGORITHMS 367 

routers. If there is no hierarchy, each router needs 720 routing table entries. If the 
subnet is partitioned into 24 regions of 30 routers each, each router needs 30 local 
entries plus 23 remote entries for a total of 53 entries. If a three-level hierarchy is 
chosen, with eight clusters, each containing 9 regions of 10 routers, each router 
needs 10 entries for local routers, 8 entries for routing to other regions within its 
own cluster, and 7 entries for distant clusters, for a total of 25 entries. Kamoun 
and Kleinrock (1979) have discovered that the optimal number of levels for an N 
router subnet is lnN, requiring a total of e lnN entries per router. They have also 
shown that the increase in effective mean path length caused by hierarchical rout­
ing is sufficiently small that it is usually acceptable. 

5.2.8. Routing for Mobile Hosts 

Millions of people have portable computers nowadays, and they generally 
want to read their email and access their normal file systems wherever in the 
world they may be. These mobile hosts introduce a new complication: to route a 
packet to a mobile host, the network first has to find it. The subject of incorporat­
ing mobile hosts into a network is very young, but in this section we will sketch 
some of the issues here and give a possible solution. 

The model of the world that network designers typically use is shown _in 
Fig. 5-18. Here we have a WAN consisting of routers and hosts. Connected to 
the WAN are LANs, MANs, and wireless cells of the type we studied in Chap. 2. 

Mobile host 

Foreign 1.. · 
agent"'- I 

Foreign LAN 

O _ Wireless 
cell 

7 
0 

7 

Home LAN 

MAN 

Fig. 5-18. A WAN to which LANs, MANs, and wireless cells are attached. 

Users who never move are said to be stationary. They are connected to the 
network by copper wires or fiber optics. In contrast, we can distinguish two other 
kinds of users. Migratory users are basically stationary users who move from one 
fixed site to another from time to time but use the network only when they are 



368 THE NETWORK LA YER CHAP. 5 

physically connected to it. Roaming users actually compute on the run and want 
to. maintain their connections as they move around. We will use the term mobile 
users to mean either of the latter two categories, that is, all users who are away 
from home. 

All users are assumed to have a permanent home location that never changes. 
Users also have a permanent home address that can be used to determine their 
home locations, analogous to the way the telephone number 1-212-5551212 indi­
cates the United States (country;code 1) and Manhattan (212). The routing goal in 
systems with mobile users is to make it possible to send packets to mobile users 
using their home addresses, and have the packets efficiently reach them wherever 
they may be. The trick, of course, is to find them. 

In the model of Fig. 5-18, the world is divided up (geographically) into small 
units. Let us call them areas, where an area is typically a LAN or wireless cell. 
Each area has one or more foreign agents, which keep track of all mobile users 
visiting the area. In addition, each area has a home agent, which keeps track of 
users whose home is in the area,, but who are currently visiting another area. 

When a new user enters an area, either by connecting to it (e.g., plugging into 
the LAN), or just wandering into the cell, his computer must register itself with 
the foreign agent there. The registration procedure typically works like this: 

1. Periodically, each fore,ign agent broadcasts a packet announcing its 
existence and address. A newly arrived mobile host may wait for 
one of these messages, but if none arrives quickly enough, the 
mobile host can broadcast a packet saying: "Are there any foreign 
agents around?" 

2. The mobile host registers with the foreign agent, giving its home 
address, current data link layer address, and some security informa­
tion. 

3. The foreign agent contacts the mobile host's home agent and says: 
"One of your hosts is over here." The message from the foreign 
agent to the home agent contains the foreign agent's network 
address. It also includes the security information, to convince the 
home agent that the mobile host is really there. 

4. The home agent examines the security information, which contains a 
timestamp, to prove that it was generated within the past few 
seconds. If it is happy, it tells the foreign agent to proceed. 

5. When the foreign agent gets the acknowledgement from the home 
agent, it makes an entry in its tables and informs the mobile host that 
it is now registered. 

Ideally, when a user leaves an area, that, too, should be announced to allow 
deregistration, but many users abruptly tum off their computers when done. 

• l 

. ·. 



SEC. 5.2 ROUTING ALGORITHMS 369 

When a packet is sent to a mobile user, it is routed to the user's home LAN 
because that is what the address says should be done, as illustrated in step 1 of 
Fig. 5-19. Packets sent to the mobile user on its home LAN are intercepted by the 
home agent. The home agent then looks up the mobile user's new (temporary) 
location and finds the address of the foreign agent handling the mobile user. The 
home agent then does two things. First, it encapsulates the packet in the payload 
field of an outer packet and sends the latter to the foreign agent (step 2 in Fig. 5-
19). This mechanism is called tunneling; we will look at it in more detail later. 
After getting the encapsulated packet, the foreign agent removes the original 
packet from the payload field and sends it to the mobile user as a data link frame. 

Second, the home agent tells the sender to henceforth send packets to the 
mobile host by encapsulating them in the payload of packets explicitly addressed 
to the foreign agent, instead of just sending them to the mobile user's home 
address (step 3). Subsequent packets can now be routed directly to th~ user via 
the foreign agent (step 4), bypassing the home location entirely . 

. Packet is sent to the 
obile host's home 

- 4. Subsequent packets are 
tunneled to the foreign agent 

Fig. 5-19. Packet routing for mobile users. 

The various schemes that have been proposed differ in several ways. First, 
there is the issue of how much of this protocol is carried out by the routers and 
how much by the hosts, and in the latter case, by which layer in the hosts. 
Second, a few schemes, routers along the way record mapped addresses so they 
can intercept and redirect traffic even before it gets to the home location. Third, 
in some schemes each visitor is given a unique temporary address; in others, the 
temporary address refers to an agent that handles traffic for all visitors. 



370 THE NETWORK LAYER CHAP. 5 

Fourth, the schemes differ in how they actually manage to arrange for packets 
that are addressed to one destination to be delivered to a different one. One 
choice is changing the destination address and just retransmitting the modified 
packet. Alternatively, the whole packet, home address and all, can be encapsu­
lated inside the payload of another packet sent to the temporary address. Finally, 
the schemes differ in their security aspects. In general, when a host or router gets 
a message of the form "Starting right now, please send all of Cay la's mail to me," 
it might have a couple of questions about whom it was talking to and whether or 
not this is a good idea. Several mobile host protocols are discussed and compared 
in (Ioannidis and Maguire, 1993; Myles and Skellern, 1993; Perkins, 1993; 
Teraoka et al., 1993; and Wada et al., 1993). 

5.2.9. Broadcast Routing 

For some applications, hosts need to send messages to many or all other hosts. 
For example, a service distributing weather reports, stock market updates, or live 
radio programs might work best by broadcasting to all machines and letting those 
that are interested read the data. Sending a packet to all destinations simultane­
ously is called broadcasting; various methods have been proposed for doing it. 

One broadcasting method that requires no special features from the subnet is 
for the source to simply send a distinct packet to each destination. Not only is the 
method wasteful of bandwidth, but it also requires the source to have a complete 
list of all destinations. In practice this may be the only possibility, but it is the 
least desirable of the methods. 

Flooding is another obvious candidate. Although flooding is ill-suited for 
ordinary point-to-point communication, for broadcasting it might rate serious con­
sideration, especially if none of the methods described below are applicable. The 
problem with flooding as a broadcast technique is the same problem it has as a 
point-to-point routing algorithm: it generates too many packets and consumes too 
much bandwidth. 

A third algorithm is multidestination routing. If this method is used, each 
packet contains either a list of destinations or a bit map indicating the desired des­
tinations. When a packet arrives at a router, the router checks all the destinations 
to determine the set of output lines that will be needed. (An output line is needed 
if it is the best route to at least one of the destinations.) The router generates a 
new copy of the packet for each output line to be used and includes in each packet 
only those destinations that are to use the line. In effect, the destination set is par­
titioned among the output lines. After a sufficient number of hops, each packet 
will carry only one destination and can be treated as a normal packet. Multidesti­
nation routing is like separately addressed packets, except that when several pack­
ets must follow the same route, one of them pays full fare and the rest ride free. 

A fourth broadcast algorithm makes explicit use of the sink tree for the router 
initiating the broadcast, or any other convenient spanning tree for that matter. A 



SEC. 5.2 ROUTING ALGORITHMS 371 

spanning tree is a subset of the subnet that includes all the routers but contains no 
loops. If each router knows which of its lines belong to the spanning tree, it can 
copy an incoming broadcast packet onto all the spanning tree lines except the one 
it arrived on. This method makes excellent use of bandwidth, generating the 
absolute minimum number of packets necessary to do the job. The only problem 
is that each router must have knowledge of some spanning tree for it to be appli­
cable. Sometimes this information is available (e.g., with link state routing) but 
sometimes it is not (e.g., with distance vector routing). 

Our last broadcast algorithm is an attempt to approximate the behavior of the 
previous one, even when the routers do not know anything at all about spanning 
trees. The idea is remarkably simple once it has been pointed out. When a broad­
cast packet arrives at a router, the router checks to see if the packet arrived on the 
line that is normally used for sending packets to the source of the broadcast. If so, 
there is an excellent chance that the broadcast packet itself followed the best route 
from the router and is therefore the first copy to arrive at the router. This being 
the case, the router forwards copies of it onto all lines except the one it arrived on. 
If, however, the broadcast packet arrived on a line other than the preferred one for 
reaching the source, the packet is discarded as a likely duplicate. 

E 

H 

B C 

H 

M M 
L 

(a) (b) (c) 

Fig. 5-20. Reverse path forwarding. (a) A subnet. (b) A spanning tree. (c) The 
tree built by reverse path forwarding. 

B 

An example of the algorithm, called reverse path forwarding, is shown in 
Fig. 5-20. Part (a) shows a subnet, part (b) shows a sink tree for router/ of that 
subnet, and part ( c) shows how the reverse path algorithm works. On the first 
hop, / sends packets to F, H, J, and N, as indicated by the second row of the tree. 
Each of these packets arrives on the preferred path to / ( assuming that the pre­
ferred path falls along the sink tree) and is so indicated by a circle around the 
letter. On the second hop, eight packets are generated, two by each of the routers 
that received a packet on the first hop. As it turns out, all eight of these arrive at 
previously unvisited routers, and all but one arrive along the preferred line. Of the 
nine packets generated on the third hop, only two arrive on the preferred path (at 



·' 

372 THE NETWORK LAYER CHAP. 5 

C and L), and so only these generate further packets. After five hops and 24 pack­
ets, the broadcasting terminates, compared with four hops and 14 packets had the 
sink tree been followed exactly. 

The principal advantage of reverse path forwarding is that it is both reason­
ably efficient and easy to implement. It does not require routers to know about 
spanning trees, nor does it have the overhead of a destination list or bit map in 
each broadcast packet as does multidestination addressing. Nor does it require 
any special mechanism to stop the process, as flooding does ( either a hop counter 
in each packet and a priori knowledge of the subnet diameter, or a list of packets 
already seen per source). 

5.2.10. Multicast Routing 

For some applications, widely-separated processes work together in groups, 
for example, a group of processes implementing a distributed database system. It 
frequently is necessary for one process to send a message to all the other members 
of the group. If the group is small, it can just send each other member a point-to­
point message. If the group is large, this strategy is expensive. Sometimes broad­
casting can be used, but using broadcasting to inform 1000 machines on a 
million-node network is inefficient because most receivers are not interested in 
the message ( or worse yet, they are definitely interested but are not supposed to 
see it). Thus we need a way to send messages to well-defined groups that are 
numerically large in size but small compared to the network as a whole. 

Sending a message to such a group is called multicasting, and its routing 
algorithm is called multicast routing. In this section we will describe one way of 
doing multicast routing. For additional information, see (Deering and Cheriton, 
1990; Deering et al., 1994; and Rajagopalan, 1992). 

To do multicasting, group management is required. Some way is needed to 
create and destroy groups, and for processes to join and leave groups. How these 
tasks are accomplished is not of concern to the routing algorithm. What is of con­
cern is that when a process joins a group, it informs its host of this fact. It is 
important that routers know which of their hosts belong to which groups. Either 
hosts must inform their routers about changes in group membership, or routers 
must query their hosts periodically. Either way, routers learn about which of their 
hosts are in which groups. Routers tell their neighbors, so the information prop­
agates through the subnet. 

To do multicast routing, each router computes a spanning tree covering all 
other routers in the subnet. For example, in Fig. 5-2l(a) we have a subnet with 
two groups, 1 and 2. Some routers are attached to hosts that belong to one or both 
of these groups, as indicated in the figure. A spanning tree for the leftmost router 
is shown in Fig. 5-21(b). 

When a process sends a multicast packet to a group, the first router examines 
its spanning tree and prunes it, removing all lines that do not lead to hosts that are 



SEC. 5.2 

1 
(c) 

ROUTING ALGORITHMS 

• 

• 
• 

2 

(b) 

• 
(d) 

Fig. 5-21. (a) A subnet. (b) A spanning tree for the leftmost router. (c) A multi­
cast tree for group 1. (d) A multicast tree for group 2. 

373 

• 

members of the group. In our example, Fig. 5-21(c) shows the pruned spanning 
tree for group L Similarly, Fig. 5-21(d) shows the pruned spanning tree for group 
2. Multicast packets are forwarded only along the appropriate spanning tree. 

Various ways of pruning the spanning tree are possible. The simplest one can 
be used if link state routing is used, and each router is aware of the complete sub­
net topology, including which hosts belong to which groups. Then the spanning 
tree can be pruned by starting at the end of each path and working toward the root, 
removing ali routers that do not belong to the group in question. _ 

Wit~ distance vector routing, a different pruning. strategy can be foliowed. 
The basic algorithm is reverse path forwarding. However, whenever a router with 
no hosts interested in a particular group and no connections to other routers 
receives a multicast message for that group, it responds with a PRUNE tn~ssage, 
telling the sender not to send it any tnore multicasts for that group. When a router 
with no group members among its own hosts has received such messages on all its 
lines, it, too, can respond with a PRUNE message. In this way, the subnet is recur­
sively pruned. 

One potential disadvantage of this algorithm is that it scales poorly to large 
networks. Suppose that a network has n groups, each with an average of m 



374 THE NETWORK LA YER CHAP. 5 

members. For each group, m pruned spanning trees must be stored, for a total of 
mn trees. When many large groups exist, considerable storage is needed to store 
all the trees. 

An alternative design uses core-base trees (Ballardie et al., 1993). Here, a 
single spanning tree per group is computed, with the root (the core) near the mid­
dle of the group. To send a multicast message, a host sends it to the core, which 
then does the multicast along the spanning tree. Although this tree will not be 
optimal for all sources, the reduction in storage costs from m trees to one tree per 
group is a major saving. 

5.3. CONGESTION CONTROL ALGORITHMS 

When too many packets are present in (a part of) the subnet, performance 
degrades. This situation is called congestion. Figure 5-22 depicts the symptom. 
When the number of packets dumped into the subnet by the hosts is within its car­
rying capacity, they are all delivered (except for a few that are afflicted with 
transmission errors), and the number delivered is proportional to the number sent. 
However, as traffic increases too far, the routers are no longer able to cope, and 
they begin losing packets. This tends to make matters worse. At very high 
traffic, performance collapses completely, and almost no packets are delivered. 

Perfect 

Maximum carrying__ / 
-o capacity of subnet r--~=====---­
~ 
Ql 
.::: 
<ii 
"O 
(/) 

~ 
~ 
a.. 

Desirable 

Packets sent 

Fig. 5-22. When too much traffic is offered, congestion sets in and performance 
degrades sharply. 

Congestion can be brought about by several factors. If all of a sudden, 
streams of packets begin arriving on three or four input lines and all need the 
same output line, a queue will build up. If there is insufficient memory to hold all 
of them, packets will be lost. Adding more memory may help up to a point, but 
Nagle (1987) discovered that if routers have an infinite amount of memory, 

, . 

' . 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 375 

congestion gets worse, not better, because by the time packets get to the front of 
the queue, they have already timed out (repeatedly), and duplicates have been 
sent. All these packets will be dutifully forwarded to the next router, increasing 
the load all the way to the destination. 

Slow processors can also cause congestion. If the routers' CPUs are slow at 
performing the bookkeeping tasks required of them (queueing buffers, updating 
tables, etc.), queues can build up, even though there is excess line capacity. Simi­
larly, low-bandwidth lines can also cause congestion. Upgrading the lines but not 
changing the processors, or vice versa, often helps a little, but frequently just 
shifts the bottleneck. Also, upgrading part, but not all, of the system, often just 
moves the bottleneck somewhere else. The real problem is frequently a mismatch 
between parts of the system. This problem will persist until all the components 
are in balance. 

Congestion tends to feed upon itself and become worse. If a router has no 
free buffers, it must ignore newly arriving packets. When a packet is discarded, 
the sending router (a neighbor) may time out and retransmit it, perhaps ultimately 
many times. Since it cannot discard the packet until it has been acknowledged, 
congestion at the receiver's end forces the sender to refrain from releasing a 
buffer it would have normally freed. In this manner, congestion backs up, like 
cars approaching a toll booth. 

It is worth explicitly pointing out the difference between congestion control 
and flow control, as the relationship is subtle. Congestion control has to do with 
making sure the subnet is able to carry the offered traffic. It is a global issue, 
involving the behavior of all the hosts, all the routers, the store-and-forwarding 
processing within the routers, and all the other factors that tend to diminish the 
carrying capacity of the subnet. 

Flow control, in contrast, relates to the point-to-point traffic between a given 
sender and a given receiver. Its job is to make sure that a fast sender cannot con­
tinually transmit data faster than the receiver can absorb it. Flow control nearly 
always involves some direct feedback from the receiver to the sender to tell the 
sender how things are doing at the other end. 

To see the difference between these two concepts, consider a fiber optic net­
work with a capacity of 1000 gigabits/sec on which a supercomputer is trying to 
transfer a file to a personal computer at 1 Gbps. Although there is no congestion 
(the network itself is not in trouble), flow control is needed to force the supercom­
puter to stop frequently to give the personal computer a chance to breathe. 

At the other extreme, consider a store-and-forward network with 1-Mbps lines 
and 1000 large computers, half of which are trying to transfer files at 100 kbps to 
the other half. Here the problem is not that of fast senders overpowering slow 
receivers, but simply that the total offered traffic exceeds what the network can 
handle. 

The reason congestion control and flow control are often confused is that 
some congestion control algorithms operate by sending messages back to the 



376 THE NETWORK LAYER CHAP. 5 

various sources telling them to slow down when the network gets into trouble. 
Thus a host can get a "slow down" message either because the receiver cannot 
handle the load, or because the network cannot handle it. We will come back to 
this point later. 

We will start our study of congestion control by looking at a general model 
for dealing with it. Then we will look at broad approaches to preventing it in the 
first place. After that, we will look at various dynamic algorithms for coping with 
it once it has set in. 

5.3.1. General Principles of Congestion Control 

Many problems in complex systems, such as computer networks, can be 
viewed from a control theory point of view. This approach leads to dividing all 
solutions into two groups: open loop and closed loop. Open loop solutions 
attempt to solve the problem by good design, in essence, to make sure it does not 
occur in the first place. Once the system is up and running, midcourse corrections 
are not made. 

Tools for doing open-loop control include deciding when to accept new 
traffic, deciding when to discard packets and which ones, and making scheduling 
decisions at various points in the network. All of these have in common the fact 
that they make decisions without regard to the current state of the network. 

In contrast, closed loop solutions are based on the concep~ of a feedback loop. 
This approach has three parts when applied to congestion control: 

1. Monitor the system to detect when and where congestion occurs. 

2. Pass this information to places where action can be taken. 

3. Adjust system operation to correct the problem. 

Various metrics can be used to monitor the subnet for congestion. Chief 
among these are the percentage of all packets discarded for lack of buffer space, 
the average queue lengths, the number of packets that time out and are retransmit­
ted, the average packet delay, and the standard deviation of packet delay. In all 
cases, rising numbers indicate growing congestion. 

The second step in the feedback loop is to transfer the information about the 
congestion from the point where it is detected to the point where something can be 
done about it. The obvious way is for the router detecting the congestion to send 
a packet to the traffic source or sources, announcing the problem. Of course, 
these extra packets increase the .load at precisely the moment that more load is not 
needed, namely, when the subnet is congested. 

However, other possibilities also exist. For example, a bit or field can be 
reserved in every packet for routers to fill in whenever congestion gets above 
some threshold level. When a router detects this congested state, it fills in the 
field in all outgoing packets, to warn the neighbors. 

... . 

. . , 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 377 

Still another approach is to have hosts or routers send probe packets out 
periodically to explicitly ask about congestion. This information can then be used 
to route traffic around problem areas. Some radio stations have helicopters flying 
around their cities to report on road congestion in the hope that their listeners will 
route their packets (cars) around hot spots. 

In all feedback schemes, the hope is that knowledge of congestion will cause 
the hosts to take appropriate action to reduce the congestion. To work correctly, 
the time scale must be adjusted carefully. If every time two packets arrive in a 
row, a router yells STOP, and every time a router is idle for 20 µsec it yells GO, 
the system will oscillate wildly and never converge. On the other hand, if it waits 
30 minutes to make sure before saying anything, the congestion control mechan­
ism will react too sluggishly to be of any real use. To work well, some kind of 
averaging is needed, but getting the time constant right is a nontrivial matter. 

Many congestion control algorithms are known. To provide a way to organize 
them in a sensible way, Yang and Reddy (1995) have developed a taxonomy for 
congestion control algorithms. They begin by dividing all algorithms into open 
loop or closed loop, as described above. They further divide the open loop algo­
rithms into ones that act at the source versus ones that act at the destination. The 
closed loop algorithms are also divided into two subcategories: explicit feedback 
versus implicit feedback. In explicit feedback algorithms, packets are sent back 
from the point of congestion to warn the source. In implicit algorithms, the source 
deduces the existence of congestion by making local observations, such as the 
time needed for acknowledgements to come back. 

The presence of congestion means that the load is (temporarily) greater than 
the resources (in part of the system) can handle. Two solutions come to mind: 
increase the resources or decrease the load. For example, the subnet may start 
using dial-up telephone lines to temporarily increase the bandwidth between cer­
tain points. In systems like SMDS (see Chap. 1), it may ask the carrier for addi­
tional bandwidth for a while. On satellite systems, increasing transmission power 
often gives higher bandwidth. Splitting traffic over multiple routes instead of 
always using the best one may als~ effectively increase the bandwidth. Finally, 
spare routers that are normally used only as backups (to make the system fault 
tolerant) can be put on-line to give more capacity when serious congestion 
appears. 

However, sometimes it is not possible to increase the capacity, or it has 
already been increased to the limit. The only way then to beat back the conges­
tion is to decrease the load. Several ways exist to reduce the load, including 
denying service to some users, degrading service to some or all users, and having 
users schedule their demands in a more predictable way. 

Some of these methods, which we will study shortly, can best be applied to 
virtual circuits. For subnets that use virtual circuits internally, these methods can 
be used at the network layer. For datagram subnets, they can nevertheless some­
times be used on transport layer connections. In this chapter, we will focus on 



378 THE NETWORK LA YER CHAP. 5 

their use in the network layer. In the next one, we will see what can be done at 
the transport layer to manage congestion. 

5.3.2. Congestion Prevention Policies 

Let us begin our study of methods to control congestion by looking at open 
loop systems. These systems are designed to minimize congestion in the first 
place, rather than letting it happen and reacting after the fact. They try to achieve 
their goal by using appropriate policies at various levels. In Fig. 5-23 we see dif­
ferent data link, network, and transport policies that can affect congestion (Jain, 
1990). 

Layer Policies 

Transport • Retransmission policy 

• Out-of-order caching policy 

• Acknowledgement policy 

• Flow control policy 

• Timeout determination 

Network • Virtual circuits versus datagram inside the subnet 

• Packet queueing and service policy 

• Packet discard policy 

• Routing algorithm 

• Packet lifetime management 

Data link • Retransmission policy 

• Out-of-order caching policy 

• Acknowledgement policy 

• Flow control policy 

Fig. 5-23. Policies that affect congestion. 

Let us start at the data link layer and work our way upward. The retransmis­
sion policy deals with how fast a sender times out and what it transmits upon 
timeout. A jumpy sender that times out quickly and retransmits all outstanding 
packets using go back n will put a heavier load on the system than a leisurely 
sender that uses selective repeat. Closely related to this is caching policy. If 
receivers routinely discard all out-of-order packets, these packets will have to be 
transmitted again later, creating extra load. 

Acknowledgement policy also affects congestion. If each packet is acknowl­
edged immediately, the acknowledgement packets generate extra traffic. How­
ever, if acknowledgements are saved up to piggyback onto reverse traffic, extra 
timeouts and retransmissions may result. A tight flow control scheme (e.g., a 
small window) reduces the data rate and thus helps fight congestion. 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 379 

At the network layer, the choice between virtual circuits and datagrams 
affects congestion, since many congestion control algorithms work only with vir­
tual circuit subnets. Packet queueing and service policy relates to whether routers 
have one queue per input line, one queue per output line, or both. It also relates to 
the order packets are processed (e.g., round robin, or priority based). Discard pol­
icy is the rule telling which packet is dropped when there is no space. A good 
policy can help alleviate congestion and a bad one can make it worse. 

The routing algorithm can help avoid congestion by spreading the traffic over 
all the lines, whereas a bad one can send too much traffic over already congested 
lines. Finally, packet lifetime management deals with how long a packet may live 
before being discarded. If it is too long, lost packets may clog up the works for a 
long time, but if it is too short, packets may sometimes time out before reaching 
their destination, thus inducing retransmissions. 

In the transport layer, the same issues occur as in the data link layer, but in 
addition, determining the timeout interval is harder because the transit time across 
the network is less predictable than the transit time over a wire between two 
routers. If it is too short, extra packets will be sent unnecessarily. If it is too long, 
congestion will be reduced, but the response time will suffer whenever a packet is 
lost. 

5.3.3. Traffic Shaping 

One of the main causes of congestion is that traffic is often bursty. If hosts 
could be made to transmit at a uniform rate, congestion would be less common. 
Another open loop method to help manage congestion is forcing the packets to be 
transmitted at a more predictable rate. This approach to congestion management 
is widely used in ATM networks and is called traffic shaping. 

Traffic shaping is about regulating the average rate (and burstiness) of data 
transmission. In contrast, the sliding window protocols we studied earlier limit 
the amount of data in transit at once, not the rate at which it is sent. When a vir­
tual circuit is set up, the user and the subnet (i.e., the customer and the carrier) 
agree on a certain traffic pattern (i.e., shape) for that circuit. As long as the custo­
mer fulfills her part of the bargain and only sends packets according to the agreed 
upon contract, the carrier promises to deliver them all in a timely fashion. Traffic 
shaping reduces congestion and thus helps the carrier live up to its promise. Such 
agreements are not so important for file transfers but are of great importance for 
real-time data, such as audio and video connections, which do not tolerate conges­
tion well. 

In effect, with traffic shaping the customer says to the carrier: "My transmis­
sion pattern will look like this. Can you handle it?" If the carrier agrees, the issue 
arises of how the carrier can tell if the customer is following the agreement, and 
what to do if the customer is not. Monitoring a traffic flow is called traffic polic­
ing. Agreeing to a traffic shape and policing it afterward are easier with virtual 



380 THE NETWORK LA YER CHAP. 5 

circuit subnets than with datagram subnets. However, even with datagram sub­
nets, the same ideas can be applied to transport layer connections. 

The Leaky Bucket Algorithm 

Imagine a bucket with a small hole in the bottom, as illustrated in Fig. 5-
24( a). No matter at what rate water enters the bucket, the outflow is at a constant 
rate, p, when there is any water in the bucket, and zero when the bucket is empty. 
Also, once the bucket is full, any additional water entering it spills over the sides 
and is lost (i.e., does not appear in the output stream under the hole). 

~ 

Water drips out of the 
hole at a constant rate - • 

(a) 

Interface 
containing -

a leaky bucket 

Host 
computer 

□---Packet 
D 

Unregulated 

□/flow 
D 
D The bucket 

holds 
packets 

D _Regulated 
D flow 
D 

Network 

(b) 

Fig. 5-24. (a) A leaky bucket with water. (b) A leaky bucket with packets. 

The same idea can be applied to packets, as shown in Fig. 5-24(b). Conceptu­
ally, each host is connected to the network by an interface containing a leaky 
bucket, that is, a finite internal· queue. If a packet arrives at the queue when it is 
full, the packet is discarded. In other words, if one or more processes within the 
host try to send a packet when the maximum number are already queued, the new 
packet is unceremoniously discarded. This arrangement can be built into the 
hardware interface or simulated by the host operating system. It was first pro­
posed by Turner (1986) and is called the leaky bucket algorithm. In fact, it is 
nothing other than a single-server queueing system with constant service time. 

The host is allowed to put one packet per clock tick onto the network. Again, 
this can be enforced by the interface card or by the operating system. This 

. ... 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 381 

mechanism turns an uneven flow of packets from the user processes inside the 
host into an even flow of packets onto the network, smoothing out bursts and 
greatly reducing the chances of congestion. 

When the packets are all the same size (e.g., ATM cells), this algorithm can 
be used as described. However, when variable-sized packets are being used, it is 
often better to allow a fixed number of bytes per tick, rather than just one packet. 
Thus if the rule is 1024 bytes per tick, a single 1024-byte packet can be admitted 
on a tick, two 512-byte packets, four 256-byte packets, and so on. If the residual 
byte count is too low, the next packet must wait until the next tick. 

Implementing the original leaky bucket algorithm is easy. The leaky bucket 
consists of a finite queue. When a packet arrives, if there is room on the queue it 
is appended to the queue; otherwise, it is discarded. At every clock tick, one 
packet is transmitted (unless the queue is empty). 

The byte-counting leaky bucket is implemented almost the same way. At 
each tick, a counter is initialized to n. If the first packet on the queue has fewer 
bytes than the current value of the counter, it is transmitted, and the counter is 
decremented by that number of bytes. Additional packets may also be sent, as 
long as the counter is high enough. When the counter drops below the length of 
the next packet on the queue, transmission stops until the next tick, at which time 
the residual byte count is overwritten and lost. 

As an example of a leaky bucket, imagine that a computer can produce data at 
25 million bytes/sec (200 Mbps) and that the network also runs at this speed. 
However, the routers can handle this data rate only for short intervals. For long 
intervals, they work best at rates not exceeding 2 million bytes/sec. Now suppose 
data comes in I-million-byte bursts, one 40-msec burst every second. To reduce 
the average rate to 2 MB/sec, we could use a leaky bucket with p = 2 MB/sec and 
a capacity, C, of 1 MB. This means that bursts of up to 1 MB can be handled 
without data loss, and that such bursts are spread out over 500 msec, no matter 
how fast they come in. 

In Fig. 5-25(a) we see the input to the leaky bucket running at 25 MB/sec for 
40 msec. In Fig. 5-25(b) we see the output draining out at a uniform rate of 2 
MB/sec for 500 msec. 

The Token Bucket Algorithm 

The leaky bucket algorithm enforces a rigid output pattern at the average rate, 
no matter how bursty the traffic is. For many applications, it is better to allow the 
output to speed up somewhat when large bursts arrive, so a more flexible algo­
rithm is needed, preferably one that never loses data. One such algorithm is the 
token bucket algorithm. In this algorithm, the leaky bucket holds tokens, gen­
erated by a clock at the rate of one token every !iT sec. In Fig. 5-26(a) we see a 
bucket holding three tokens, with five packets waiting to be transmitted. For a 
packet to be transmitted, it must capture and destroy one token. In Fig. 5-26(b) 



382 

(b) 

(c) 

(d) 

(e) 

(f) 

THE NETWORK LA YER CHAP. 5 

'·mnmrn I I . I I I I I I I I I I I I I I I I I I I i I I I I I I I : I I I 
Time (msec)'--- 500 

I I I I I I I I I I I I I : i I I I I I I i l I I I I I I ! I I I I m~oo~,.1111 
0 Time (msec) ---

~·= - 25 MB/sec for 11 msec 

2 MB/sec for 364 msec § 

0 Time (msec) ---

·± 
r.-1; !: ~ 25 MB/sec for 22 msec 

:::-

2 MB/sec for 228 msec 

0 Time (msec) ---

FE. 
·: .... 25 MB/sec for 33 msec 

~~ 2 MB7sec for 92 msec 

0 Time (msec) ---

1 O MB/s ec for 62 msec 

=.=r....: 2 MB/sec for 190 msec 

0 Time (msec) ---

Fig. 5-25. (a) Input to a leaky bucket. (b) Output from a leaky bucket. (c) - (e) 
Output from a token bucket with capacities of 250KB, 500KB, and 750KB. (f) 
Output from a 500KB token bucket feeding a 10 MB/sec leaky bucket. 

500 

§~ 

500 

500 

500 

500 

we see that three of the five packets have gotten through, but the other two are 
stuck waiting for two more tokens to be generated. 

The token bucket algorithm provides a different kind of traffic shaping than 
the leaky bucket algorithm. The leaky bucket algorithm does not allow idle hosts 

'· · 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 

token One 
is 

to the b 
eve 

added 
ucket 
ry Lff 

Host 
computer 

D 
D 
D 
D 
D 

"'f~jt 

Networks 

(a) 

T he bucket 
olds h 

to kens 

Host 
computer 

□ 
□ 

LJ 
□ 
□ 
□ 

Networks 

(b) 

Fig. 5-26. The token bucket algorithm. (a) Before. (b) After. 

383 

to save up permission to send large bursts later. The token bucket algorithm does 
allow saving, up to the maximum size of the bucket, n. This property means that 
bursts of up ton packets can be sent at once, allowing some burstiness in the out­
put stream and giving faster response to sudden bursts of input. 

Another difference between the two algorithms is that the token bucket algo­
rithm throws away tokens when the bucket fills up but never discards packets. In 
contrast, the leaky bucket algorithm discards packets when the bucket fills up. 

Here too, a minor variant is possible, in which each token represents the right 
to send not one packet, but k bytes. A packet can only be transmitted if enough 
tokens are available to cover its length in bytes. Fractional tokens are kept for 
future use. 

The leaky bucket and token bucket algorithms can also be used to smooth 
traffic between routers, as well as being used to regulate host output as in our 
examples. However, one clear difference is that a token bucket regulating a host 
can make the host stop sending when the rules say it must. Telling a router to stop 
sending while its input keeps pouring in may result in lost data. 

The implementation of the basic token bucket algorithm is just a variable that 
counts tokens. The counter is incremented by one every !).T and decremented by 
one whenever a packet is sent. When the counter hits zero, no packets may be 
sent. In the byte-count variant, the counter is increment by k bytes every !).T and 
decremented by the length of each packet sent. 



384 THE NETWORK LA YER CHAP. 5 

Essentially what the token bucket does is allow bursts, but up to a regulated 
maximum length. Look at Fig. 5-25(c) for example. Here we have a token 
bucket with a capacity of 250 KB. Tokens arrive at a rate allowing output at 2 
MB/sec. Assuming the token bucket is full when the 1-MB burst arrives, the 
bucket can drain at the full 25 MB/sec for about 11 msec. Then it has to cut back 
to 2 MB/sec until the entire input burst has been sent. 

Calculating the length of the maximum rate burst is sligqtly tricky. It is not 
just 1 MB divided by 25 MB/sec because while the burst is being output, more 
tokens arrive. If we call the burst length S sec, the token bucket capacity C bytes, 
the token arrival rate p bytes/sec, and the maximum output rate M bytes/sec, we 
see that an output burst contains a maximum of C + pS bytes. We also know that 
the number 9f bytes in a maximum-speed burst of length S seconds is MS. Hence 
we have 

C+pS=MS 

We can solve this equation to get S = C/(M - p). For our parameters of C = 250 
KB, M = 25 MB/sec, and p = 2 MB/sec, we get a burst time of about 11 msec. 
Figure 5-25(d) and Fig. 5-25(e) show the token bucket for capacities of 500-KB 
and 750 KB, respectively. 

A potential problem with the token bucket algorithm is that it allows large 
bursts again, even though the maximum burst interval can be regulated by careful 
selection of p and M. Frequently it is desirable to reduce the peak rate, but 
without going back to the low value of the original leaky bucket. 

One way to get smoother traffic is to put a leaky bucket after the token 
bucket. The rate of the leaky bucket should be higher than the token bucket's p 
but lower than the maximum rate of the network. Figure 5-25(f) shows the output 
for a 500 KB token bucket followed by a 10-MB/sec leaky bucket. 

Policing all these schemes can be a bit tricky. Essentially, the network has to 
simulate the algorithm and make sure that no more packets or bytes are being sent 
than are permitted. Excess packe~s are then discarded or downgraded, as dis­
cussed later. 

5.3.4. Flow Specifications 

Traffic shaping is most effective when the sender, receiver, and subnet all 
agree to it. To get agreement, it is necessary to specify the traffic pattern in a pre­
cise way. Such an agreement is called a flow specification. It consists of a data 
structure that describes both the pattern of the injected traffic and the quality of 
service desired by the applications. A flow specification can apply either to the 
packets sent on a virtual circuit, or to a sequence of datagrams sent between a 
source and a destination (or even to multiple destinations). 

In this section we will describe an example flow specification designed by 
Partridge (1992). It is shown in Fig. 5-27. The idea is that before a connection is 

: ·-



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 385 

established or before a sequence of datagrams are sent, the source gives the flow 
specification to the subnet for approval. The subnet can either accept it, reject it, 
or come back with a counterproposal ("I cannot give you 100 msec average delay; 
can you live with 150 msec?"). Once the sender and subnet have struck a deal, 
the sender can ask the receiver if it, too, agrees. 

Characteristics of the Input Service Desired 

Maximum packet size (bytes) Loss sensitivity (bytes) 

Token bucket rate (bytes/sec) Loss interval (µsec) 

Token bucket size (bytes) Burst loss sensitivity (packets) 

Maximum transmission rate (bytes/sec) Minimum delay noticed (µsec) 

Maximum delay variation (µsec) 

Quality of guarantee 

Fig. 5-27. An example flow specification. 

Let us now examine the parameters of our example flow specification starting 
with the traffic specification. The Maximum packet size tells how big packets 
may be. The next two parameters implicitly assume that traffic will be shaped by 
the token bucket algorithm working in bytes. They tell how many bytes are put 
into the token bucket per second, and how big the bucket is. If the rate is r 
bytes/sec and the bucket size is b bytes, then in any arbitrary time interval /J.t, the 
maximum number of bytes that may be sent is b + r 11t. Here the first term 
represents the maximum possible contents of the bucket at the start of the interval 
and the second one represents the new credits that come in during the interval. 
The Maximum transmission rate is the top rate the host is capable of producing 
under any conditions and implicitly specifies the shortest time interval in which 
the token bucket could be emptied. 

The second· column specifies what the application wants from the subnet. The 
first and second parameters represent the numerator and denominator of a fraction 
giving the maximum acceptable loss rate (e.g., 1 byte per hour). Alternatively, 
they can indicate that the flow is insensitive to packet loss. The Burst loss sensi­
tivity tells how many consecutive lost packets can be tolerated. 

The next two service parameters deal with delay. The Minimum delay noticed 
says how long a packet can be delayed without the application noticing. For a file 
transfer, it might be a second, but for an audio stream 3 msec might be the limit. 
The Maximum delay variation tries to quantify the fact that some applications are 
not sensitive to the actual delay but are highly sensitive to the jitter, that is, the 
amount of variation in the end-to-end packet transit time. It is two times the 
number of microseconds a packet's delay may vary from the average. Thus a 
value of 2000 means that a packet may be up to 1 msec early or late, but no more. 



386 THE NETWORK LA YER CHAP. 5 

Finally, the Quality of guarantee indicates whether or not the application 
really means it. On the one hand, the loss and delay characteristics might be ideal 
goals, but no harm is done if they are not met. On the other hand, they might be 
so important that if they cannot be met, the application simply terminates. Inter­
mediate positions are also possible. 

Although we have looked at the flow specification as a request from the appli­
cation to the subnet, it can also be a return value telling what the subnet can do. 
Thus it can potentially be used for an extended negotiation about the service level. 

A problem inherent with any flow specification is that the application may not 
know what it really wants. For example, an application program running in New 
York might be quite happy with a delay of 200 msec to Sydney, but most unhappy 
with the same 200-msec delay to Boston. Here the "minimum service" is clearly 
a function of what is thought to be possible. 

5.3.5. Congestion Control in Virtual Circuit Subnets 

The congestion control methods described above are basically open loop: they 
try to prevent congestion from occurring in the first place, rather than dealing with 
it after the fact. In this section we will describe some approaches to dynamically 
controlling congestion in virtual circuit subnets. In the next two, we will look at 
techniques that can be used in any subnet. 

One technique that is widely used to keep congestion that has already started 
from getting worse is admission control. The idea is simple: once congestion has 
been signaled, no more virtual circuits are set up until the problem has gone away. 
Thus, attempts to set up new transport layer connections fail. Letting more people 
in just makes matters worse. While this approach is crude, it is simple and easy to 
carry out. In the telephone system, when a switch gets overloaded, it also prac­
tices admission control, by not giving dial tones. 

An alternative approach is to allow new virtual circuits but carefully route all 
new virtual circuits around problem areas. For example, consider the subnet of 
Fig. 5-28(a), in which two routers are congested, as indicated. 

Suppose that a host attached to router A wants to set up a connection to a host 
attached to router B. Normally, this connection would pass through one of the 
congested routers. To avoid this situation, we can redraw the subnet as shown in 
Fig. 5-28(b ), omitting the congested routers and all of their lines. The dashed line 
shows a possible route for the virtual circuit that avoids the congested routers. 

Another strategy relating to virtual circuits is to negotiate an agreement 
between the host and subnet when a virtual circuit is set up. This agreement nor­
mally specifies the volume and shape of the traffic, quality of service required, 
and other parameters. To keep its part of the agreement, the subnet will typically 
reserve resources along the path when the circuit is set up. These resources can 
include table and buffer space in the routers and bandwidth on the lines. In this 

.. ... . . 

, . 

: .. 

... 
. . 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 

B ................. 

Virtual / '',,, 
circuit ' ... , ....... 

',, I , , 

(a) (b) 

Fig. 5-28. (a) A congested subnet. (b) A redrawn subnet that eliminates the 
congestion and a virtual circuit from A to B. 

387 

way, congestion is unlikely to occur on the new virtual circuits because all the 
necessary resources are guaranteed to be available. 

This kind of reservation can be done all the time as standard operating pro­
cedure, or only when the subnet is congested. A disadvantage of doing it all the 
time is that it tends to waste resources. If six virtual circuits that might use 1 
Mbps all pass through the same physical 6-Mbps line, the line has to be marked as 
full, even though it may rarely happen that all six virtual circuits are transmitting 
at the same time. Consequently, the price of the congestion control is unused 
bandwidth. 

5.3.6. Choke Packets 

Let us now tum to an approach that can be used in both virtual circuit and 
datagram subnets. Each router can easily monitor the utilization of its output lines 
and other resources. For example, it can associate with each line a real variable, 
u, whose value, between 0.0 and 1.0, reflects the recent utilization of that line. To 
maintain a good estimate of u, a sample of the instantaneous line utilization, f 
( either 0 or 1 ), can be made periodically and u updated according to 

Unew = au old+ (1 - a)f 

where the constant a determines how fast the router forgets recent history. 
Whenever u moves above the threshold, the output line enters a "warning" 

state. Each newly arriving packet is checked to see if its output line is in warning 
state. If so, the router sends a choke packet back to the source host, giving it the 
destination found in the packet. The original packet is tagged (a header bit is 
turned on) so that it will not generate any more choke packets further along the 
path and is then forwarded in the usual way. 



388 THE NETWORK LAYER CHAP. 5 

When the source host gets the choke packet, it is required to reduce the traffic 
sent to the specified destination by X percent. Since other packets aimed at the 
same destination are probably already under way and will generate yet more 
choke packets, the host should ignore choke packets referring to that destination 
for a fixed time interval. After that period has expired, the host listens for more 
choke packets for another interval. If one arrives, the line is still congested, so the 
host reduces the flow still more and begins ignoring choke packets again. If no 
choke packets arrive during the listening period, the host may increase the flow 
again. The feedback implicit in this protocol can help prevent congestion yet not 
throttle any flow unless trouble occurs. 

Hosts can reduce traffic by adjusting their policy parameters, for example, 
window size or leaky bucket output rate. Typically, the first choke packet causes 
the data rate to be reduced to 0.50 of its previous rate, the next one causes a 
reduction to 0.25, and so on. Increases are done in smaller increments to prevent 
congestion from reoccurring quickly. 

Several variations on this congestion control algorithm have been proposed. 
For one, the routers can maintain several thresholds. Depending on which thres­
hold has been crossed, the choke packet can contain a mild warning, a stem warn­
ing, or an ultimatum. 

Another variation is to use queue lengths or buffer utilization instead of line 
utilization as the trigger signal. The same exponential weighting can be used with 
this metric as with u, of course. 

Weighted Fair Queueing 

A problem with using choke packets is that the action to be taken by the 
source hosts is voluntary. Suppose that a router is being swamped by packets 
from four sources, and it sends choke packets to all of them. One of them cuts 
back, as it is supposed to, but the other three just keep blasting away. The result 
is that the honest host gets an even smaller share of the bandwidth than it had 
before. 

To get around this problem, and thus make compliance more attractive, Nagle 
(1987) proposed a fair queueing algorithm. The essence of the algorithm is that 
routers have multiple queues for each output line, one for each source. When a 
line becomes idle, the router scans the queues round robin, taking the first packet 
on the next queue. In this way, with n hosts competing for a given output line, 
each host gets to send one out of every n packets. Sending more packets will not 
improve this fraction. Some ATM switches use this algorithm. 

Although a start, the algorithm has a problem: it gives more bandwidth to 
hosts that use large packets than to hosts that use small packets. Demers et al. 
(1990) suggested an improvement in which the round robin is done in such a way 
as to simulate a byte-by-byte round robin, instead of a packet-by-packet round 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 389 

robin. In effect, it scans the queues repeatedly, byte-for-byte, until it finds the tick 
on which each packet will be finished. The packets are then sorted in order of 
their finishing and sent in that order. The algorithm is illustrated in Fig. 5-29. 

Packet Finishing time 

A 

B 

C 

D 

E 

C 

B 

0 D 

13 F E 

A 

(a) (b) 

Fig. 5-29. (a) A router with five packets queueq for line 0. (b) Finishing times 
for the five packets. 

8 

16 

17 

18 

20 

In Fig. 5-29(a) we see packets of length 2 to 6 bytes. At (virtual) clock tick 1, 
the first byte of the packet on line A is sent. Then goes the first byte of the packet 
on line B, and so on. The first packet to finish is C, after eight ticks. The sorted 
order is given in Fig: 5-29(b). In the absence of new arrivals, the packets will be 
sent in the order listed, from C to A. 

One problem with this algorithm is that it gives all hosts the same priority. In 
many situations, it is desirable to give the file and other servers more bandwidth 
than cli~nts, so they can be given two or more bytes per tick. This modified algo­
rithm is called weighted fair queueing and is widely used. Sometimes the 
weight is equal to the number of virtual circuits or flows coming out of a machine, 
so each process gets equal bandwidth. An efficient implementation of the algo­
rithm is discussed in (Shreedhar and Varghese, 1995). 

Hop-by-Hop Choke Packets 

At high speeds and over long distances, sending a choke packet to the source 
hosts does not work well because the reaction is so slow. Consider, for example, 
a host in San Francisco (router A in Fig. 5-30) that is sending traffic to a host in 
New York (router Din Fig. 5-30) at 155 Mbps. If the New York host begins to 
run out of buffers, it will take about 30 msec for a choke packet to get back to San 
Francisco to tell it to slow down. The choke packet propagation is shown as the 
second, third, and fourth steps in Fig. 5-30(a). In those 30 msec, another 4.6 
megabits (e.g., over 10,000 ATM cells) will have been sent. Even if the host in . . 

San Francisco completely shuts down immediately, the 4.6 megabits in the pipe 
will continue to pour in and have to be dealt with. Only in the seventh diagram in 
Fig. 5-30(a) will the New York router notice a slower flow. 



390 THE NETWORK LA YER CHAP. 5 

An alternative approach is to have the choke packet take effect at every hop it 
passes through, as shown in the sequence of Fig. 5-30(b). Here, as soon as the 
choke packet reaches F, F is required to reduce the flow to D. Doing so will 
require F to devote more buffers to the flow, since the source is still sending away 
at full blast, but it gives D immediate relief, like a headache remedy in a televi­
sion commercial. In the next step, the choke packet reaches E, which tells E to 
reduce the flow to F. This action puts a greater demand on E's buffers but gives 
F immediate relief. Finally, the choke packet reaches A and the flow genuinely 
slows down. 

The net effect of this hop-by-hop scheme is to provide quick relief at the point 
of congestion at the price of using up more buffers upstream. In this way conges­
tion can be nipped in the bud without losing any packets. The idea is discussed in 
more detail and simulation results are given in (Mishra and Kanakia, 1992). 

53. 7. Load Shedding 

When none of the above methods make the congestion disappear, routers can 
bring out the heavy artillery: load shedding. Load shedding is a fancy way of 
saying that when routers are being inundated by packets that they cannot handle, 
they just throw them away. The term comes from the world of electrical power 
generation where it refers to the practice of utilities intentionally blacking out cer­
tain areas to save the entire grid from collapsing on hot summer days when the 
demand for electricity greatly exceeds the supply. 

A router drowning in packets can just pick packets at random to drop, but usu­
ally it can do better than that. Which packet to discard may depend on the appli­
cations running. For file transfer, an old packet is worth more than a new one 
because dropping packet 6 and keeping packets 7 through 10 will cause a gap at 
the receiver that may force packets 6 through 10 to be retransmitted (if the 
receiver routinely discards out-of-order packets). In a 12-packet file, dropping 6 
may require 7 through 12 to be retransmitted, whereas dropping 10 may require 
only 10 through 12 to be retransmitted. In contrast, for multimedia, a new packet 
is more important than an old one. The former policy ( old is better than new) is 
often called wine and the latter (new is better than old) is often called milk. 

A step above this in intelligence requires cooperation from the senders. For 
many applications, some packets are more important than others. For example, 
certain algorithms for compressing video periodically transmit an entire frame and 
then send subsequent frames as differences from the last full frame. In this case, 
dropping a packet that is part of a difference is preferable to dropping one that is 
part of a full frame. As another example, consider transmitting a document con­
taining ASCII text and pictures. Losing a line of pixels in some image is far less 
damaging than losing a line of readable text. 

To implement an intelligent discard policy, applications must mark their pack­
ets in priority classes to indicate how important they are. If they do this, when 



SEC. 5.3 

Reduced 
flow 

B 

CONGESTION CONTROL ALGORITHMS 

C B C 

%ow is still 
at maximum rate 

(a) (b) 

Fig. 5-30. (a) A choke packet that affects only the source. (b) A choke packet 
that affects each hop it passes through. 

391 



392 THE NETWORK LA YER CHAP. 5 

packets have to be discarded, routers can first drop packets from the lowest class, 
then the next lowest class, and so on. Of course, unless there is some significant 
incentive to mark packets as anything other than VERY IMPORTANT-NEVER, 
EVER DISCARD, nobody will do it. 

The incentive might be in the form of money, with the low-priority packets 
being cheaper to send than the high-priority ories. Alternatively, priority classes 
could be coupled with traffic shaping. For example, there might be a rule saying 
that when the token bucket algorithm is being used and a packet arrives at a 
moment when no token is available, it may still be sent, provided that it is marked 
as the lowest possible priority, and thus subject to .discard the instant trouble 
appears. Under conditions of light load, users might be happy to operate in this 
way, but as the load increases and packets actually begin to be discarded, they 
might cut back and only send packets when tokens are available. 

Another option is to allow hosts to exceed the limits specified in the agree­
ment negotiated when the virtual circuit was .set up (e.g., use a higher bandwidth 
than allowed), but subject to the condition that all excess traffic be marked as low 
priority. Such a strategy is actually not a bad idea, because it makes more effi­
cient use of idle resources, allowing hosts to use thein as long as nobody else is 
interested, but without establishing a right to them when times get tough. 

Marking packets by class requires one or more header bits in which to put the 
priority. ATM cells have 1 bit reserved in the header for this purpose, so every 
ATM cell is labeled either as low priority or high priority. ATM switches indeed 
use this bit when making discard decisions. 

In some networks, packets are grouped together into larger units that are used 
for retransmission purposes. For example, in ATM. networks, what we have been 
calling "packets" are fixed-iength cells. These cells are just fragments of "mes­
sages." When a cell is dropped, ultimately the entire "message" will be 
retransmitted, not just the missing cell. Under these conditions, a router that drops 
a cell might as well drop all the rest of the cells in that message, since transmitting 
them costs bandwidth and wins nothing-even if they get through they will still 
be retransmitted later. 

Simulation results show that when a router senses trouble on the horizon, it is 
better off starting to discard packets early, rather than wait until it becomes com­
pletely clogged up (Floyd and Jacobson, 1993; Romanow and Floyd, 1994). 
Doing so may prevent the congestion from getting a foothold. 

5.3.8. Jitter Control 

For applications such as audio and video transmission, it does not matter 
much if the packets take 20 msec or 30 msec to be delivered, as long as the transit 
time is constant. Having some packets taking 20 msec and others taking 30 msec 
will give an uneven quality to the sound or image. Thus the agreement might be 
that 99 percent of the packets be delivered with a delay in the range of 24.5 msec 

, . 

' .·• 

' -· 



SEC. 5.3 CONGESTION CONTROL ALGORITHMS 393 

to 25.5 msec. The mean value chosen must be feasible, of course. In other words, 
an average amount of congestion must be calculated in. 

The jitter can be bounded by computing the expected transit time for each hop 
along the path. When a packet arrives at a router, the router checks to see how 
much the packet is behind or ahead of its schedule. This information is stored in 
the packet and updated at each hop. If the packet is ahead of schedule, it is held 
just long enough to get it back on schedule. If it is behind schedule, the router 
tries to get it out the door quickly. In fact, the algorithm for determining which of 
several packets competing for an output line should go next can always choose the 
packet furthest behind in its schedule. In this way, packets that are ahead of 
schedule get slowed down and packets that are behind schedule get speeded up, in 
both cases reducing the amount of jitter. 

5.3.9. Congestion Control for Multicasting 

All of the congestion control algorithms discussed so far deal with messages 
from a single source to a single destination. In this section we will describe a way 
of managing multicast flows from multiple sources to multiple destinations. For 
example, imagine several closed-circuit television stations transmitting audio and 
video streams to a group of receivers, each of whom can view one or more sta­
tions at once and are free to switch from station to station at will. An application 
of this technology might be a video conference, in which each participant could 
focus on the current speaker or on the boss' expression, as desired. 

In many multicast applications, groups can change membership dynamically, 
for example, as people enter a video conference or get bored and switch to a soap 
opera. Under these conditions, the approach of having the senders reserve 
bandwidth in advance does not work well, as it would require each sender to track 
all entries and exits of its audience and regenerate the spanning tree at each 
change. For a system designed to transmit cable television, with millions of sub­
scribers, it would not work at all. 

RSVP-Resource reSerVation PrQtocol 

One interesting solution that can handle this environment is the RSVP proto­
col (Zhang et al., 1993). It allows multiple senders to transmit to mµltiple groups 
of receivers, permits individual receivers to switch channels freely, and optimizes 
bandwidth use while at the same time eliminating congestion. 

In its simplest form, the protocol uses multicast routing using spanning trees, 
as discussed earlier. Each group is assigned a group address. To send to a group, 
a sender puts the group's address in its packets. The standard multicast routing 
algorithm then builds a spanning tree covering all group members. The routing 



394 THE NETWORK LAYER CHAP. 5 

algorithm is not part of RSVP. The only difference with normal multicasting is a 
little extra information that is multicast to the group periodically to tell the routers 
along the tree to maintain certain data structures in their memories. 

As an example, consider the network of Fig. 5-31(a). Hosts 1 and 2 are multi­
cast senders, and hosts 3, 4, and 5 are multicast receivers. In this example, the 
senders and receivers are disjoint, but in general, the two sets may overlap. The 
multicast trees for hosts 1 and 2 are shown in Fig. 5-31 (b) and Fig. 5-31 ( c ), 
respectively. 

/Senders\ 

Receivers 

(a) 

J 

B 

• 

E 

H 

(b) 

•F 
E 

H 

(c) 

Fig. 5-31. (a) A network. (b) The multicast spanning tree for host 1. (c) The 
multicast spanning tree for host 2. 

To get better reception and eliminate congestion, any of the receivers in a 
group can send a reservation message up the tree to the sender. The message is 
propagated using the reverse path forwarding algorithm discussed earlier. At each 
hop, the router notes the reservation and reserves the necessary bandwidth. If 
insufficient bandwidth is available, it reports back failure. By the time the mes­
sage gets back to the source, bandwidth has been reserved all the way from the 
sender to the receiver making the reservation request along the spanning tree. 

An example of such a reservation is shown in Fig. 5-32(a). Here host 3 has 
requested a channel to host 1. Once it has been established, packets can flow 
from 1 to 3 without congestion. Now consider what happens if host 3 next 
reserves a channel to the other sender, host 2, so the user can watch two television 

,I 



------------

SEC. 5.3 CONGESTION CONTROL ALGORITHMS 395 

programs at once. A second path is reserved, as illustrated in Fig. 5-32(b). Note 
that two separate channels are needed from host 3 to router E because two 
independent streams are being transmitted. 

.-- reserved for 
source 2 

•F D• •F 

Bandwidth reserved 
for source 1 

el Ge el 

K 

~ ~ L 

K 

~ ~ L 

(a) (b) (c) 

Fig. 5-32. (a) Host 3 requests a channel to host 1. (b) Host 3 then requests a 
second channel, to host 2. (c) Host 5 requests a channel to host 1. 

Finally, in Fig. 5-32(c), host 5 decides to watch the program being transmitted 
by host 1 and also makes a reservation. First, dedicated bandwidth is reserved as 
far as router H. However, this router sees that it already has a feed from host 1, so 
if the necessary bandwidth has already been reserved, it does not have to reserve 
any_ more. Note that hosts 3 and 5 might have asked for different amounts of 
bandwidth (e.g., 3 has a black-and-white television set, so it does not want the 
color information), so the capacity reserved must be large enough to satisfy the 
greediest receiver. 

When making a reservation, a receiver can (optionally) specify one or more 
sources that it wants to receive from. It can also specify whether these choices 
are fixed for the duration of the reservation, or whether the receiver wants to keep 
open the option of changing sources later. The routers use this information to 
optimize bandwidth planning. In particular, two receivers are only set up to share 
a path if they both agree not to change sources later on. 

The reason for this strategy in the fully dynamic case is that reserved 
bandwidth is decoupled from the choice of source. Once a receiver has reserved 
bandwidth, it can switch to another source and keep that portion of the existing 
path that is valid for the new source. If host 2 is transmitting several video 
streams, for example, host 3 may switch between them at will without changing 
its reservation: the routers do not care what program the receiver is watching. 



396 THE NETWORK LA YER CHAP. 5 

5.4. INTERNETWORKING 

Up until now, we have implicitly assumed that there is a single homogeneous 
network, with each machine using the same protocol in each layer. Unfortunately, 
this assumption is wildly optimistic. Many different networks exist, including 
LANs, MANs, and WANs. Numerous protocols are in widespread use in every 
layer. In the following sections we will take a careful look at the issues that arise 
when two or more networks are together to form an internet. 

Considerable controversy exists about the question of whether today's abun­
dance of network types is a temporary condition that will go away as soon as 
everyone realizes how wonderful [fill in your favorite network] is, or whether it is 
an inevitable, but permanent feature of the world that is here to stay. Having dif­
ferent networks invariably means having different protocols. 

We believe that a variety of different networks (and thus protocols) will 
always be around, for the following reasons. First of all, the installed base of dif­
ferent networks is large and growing. Nearly all UNIX shops run TCP/IP. Many 
large businesses still have mainframes running SNA. DEC is still developing 
DECnet. Personal computer LANs often use Novell NCP/IPX or AppleTalk. 
ATM systems are starting to be widespread. Finally, specialized protocols are 
often used on satellite, cellular, and infrared networks. This trend will continue 
for years due to the large number of existing networks and because not all vendors 
perceive it in their interest for their customers to be able to easily migrate to 
another vendor's system. 

Second, as computers and networks get cheaper, the place where decisions get 
made moves downward. Many companies have a policy to the effect that pur­
chases costing over a million dollars have to be approved by top management, 
purchases costing over 100,000 dollars have to be approved by middle manage­
ment, but purchases under 100,000 dollars can be made by department heads 
without any higher approval. This can easily lead to the accounting department 
installing an Ethernet, the engineering department installing a token bus, and the 
personnel department installing a token ring. 

Third, different networks (e.g., ATM and wireless) have radically different 
technology, so it should not be surprising that as new hardware developments 
occur, new software will be created to fit the new hardware. For example, the 
average home now is like the average office ten years ago: it is full of computers 
that do not talk to one another. In the future, it may be commonplace for the tele­
phone, the television set, and other appliances all to be networked together, so 
they can be controlled remotely. This new technology will undoubtedly bring 
new protocols. 

As an example of how different networks interact, consider the following 
example. At most universities, the computer science and electrical engineering 
departments have their own LANs, often different. In addition, the university 
computer center often has a mainframe and supercomputer, the former for faculty 

: .. 

'. 



SEC. 5.4 INTERNETWORK.ING 397 

members iii. the humanities who do not wish to get into the computer maintenance 
business, and the latter for physicists who want to crunch numbers. As a conse­
quence of these various networks and facilities, the foilowing scenarios are easy 
to imagine: 

1. LAN-LAN: A computer scientist downloading a file to engineering. 

2. LAN-WAN: A computer scientist sending mail to a distant physicist. 

3. WAN-WAN: Two poets exchanging sonnets. 

4. LAN-WAN-LAN: Engineers at different universities communicating. 

Figure 5-33 illustrates these four types of connections as dotted lines. In each 
case, it is necessary to insert a "black box" at the junction between two networks, 
to handle the necessary conversions as packets move from one network to the 
other. 

Bridge 

802.3 \ 802.4 
LAN LAN 

·- ....... 

LAN-LAN 

Multiprotocol 
route 

........................................... 71 
LAN-WAN LAN-WAN-LAN 

• . 

Fig. 5-33. Network interconnection. 

802.3 LAN 

The name used for the black box connecting two networks depends on the 
layer that does the work. Some common names are given below (although there 
is not much agreement on terminology in this area). 

Layer 1: Repeaters copy individual bits between cable segments. 

Layer 2: Bridges store and forward data link frames between LANs. 

Layer 3: Multiprotocol routers forward packets between dissimilar networks. 

Layer 4: Transport gateways connect byte streams in the transport layer. 

Above 4: Application gateways allow interworking above layer 4. 

For convenience, we will sometimes use the term "gateway" to mean any device 
that connects two or more dissimilar networks. 



398 THE NETWORK LAYER CHAP. 5 

Repeaters are low-level devices that just amplify or regenerate weak signals. 
They are needed to provide current to drive long cables. In 802.3, for example, 
the timing properties of the MAC protocol (the value of 't chosen) allow cables up 
to 2.5 km, but the transceiver chips can only provide enough power to drive 500 
meters. The solution is to use repeaters to extend the cable length where that is 
desired. 

Unlike repeaters, which copy the bits as they arrive, bridges are store-and­
forward devices. A bridge accepts an entire frame and passes it up to the data link 
layer where the checksum is verified. Then the frame is sent down to the physical 
layer for forwarding on a different network. Bridges can make minor changes to 
the frame before forwarding it, such as adding or deleting some fields from the 
frame header. Since they are data link layer devices, they do not deal with 
headers at layer 3 and above and cannot make changes or decisions that depend 
on them. 

Multiprotocol routers are conceptually similar to bridges, except that they 
are found in the network layer. They just take incoming packets from one line 
and forward them on another, just as all routers do, but the lines may belong to 
different networks and use different protocols (e.g., IP, IPX, and the OSI connec­
tionless packet protocol, CLNP). Like all routers, multiprotocol routers operate at 
the level of the network layer. 

Transport gateways make a connection between two networks at the trans­
port layer. We will discuss this possibility later when we come to concatenated 
virtual circuits. 

Finally, application gateways connect two parts of an application in the 
application layer. For example, to send mail from an Internet machine using the 
Internet mail format to an ISO MOTIS mailbox, one could send the message to a 
inail gateway. The mail gateway would unpack the message, convert it to MOTIS 
format, and then forward it on the second network using the network and transport 
protocols used there. 

When a gateway is between two WANs run by different organizations, possi­
bly in different countries, the joint operation of one workstation-class machine can 
lead to a lot of finger pointing. To eliminate these problems, a slightly different 
approach can be taken. The gateway is effectively ripped apart in the middle and 
the two parts are connected with a wire. Each of the halves is called a half­
gateway and each one is owned and operated by one of the network operators. 
The whole problem of gatewaying then reduces to agreeing to a common protocol 
to use on the wire, one that is neutral and does not favor either party. Figure 5-34 
shows both full and half-gateways. Either kind can be used in any layer (e.g., 
half-bridges also exist). 

That all said, the situation is murkier in practice than it is in theory. Many 
devices on the market combine bridge and router functionality. The key property 
of a pure bridge is that it examines data link layer frame headers and does not 
inspect or modify the network layer packets inside the frames. A bridge cannot 



SEC. 5.4 

Network 1 
packets here 

INTERNETWORKING 

Network 2 
packets here 

Full 
gateway 

Network 2 

399 

Ir Netwo'1< 2 
Network 2 

Network 1 

Network 1 packets here 

(a) (b) 

Half-gateway Neutral packets here 

Ea,> 1 w---------1-----+CQ- Neiw3 
(c) 

Fig. 5-34. (a) A full gateway between two WANs. (b) A full gateway between a 
LAN and a WAN. (c) Two half-gateways. 

tell and does not care whether the frame it is forwarding from an 802.x LAN to an 
802.y contains an IP, IPX, or CLNP packet in the payload field. 

A router, in contrast, knows -very well whether it is an IP router, an IPX 
router, a CLNP router, or all three combined. It examines these headers and 
makes decisions based on the addresses found there. On the other hand, when a 
pure router hands off a packet to the data link layer, it does not know or care 
whether it will be carried in an Ethernet frame or a token ring frame. That is the 
data link layer's responsibility. 

The confusion in the industry comes from two sources. First, functionally, 
bridges and routers are not all that different. They each accept incoming PDUs 
(Protocol Data Units), examine some header fields, and make decisions about 
where to send the PDUs based on header information and internal tables. 

Second, many commercial products are sold under the wrong label or com­
bine the functionality of both bridges and routers. For example, source routing 
bridges are not really bridges at all, since they involve a protocol layer above the 
data link layer to do their job. For an illuminating discussion of bridges versus 
routers, see Chap. 12 of (Perlman, 1992). 

5.4.1. How Networks Differ 

Networks can differ in many ways. In Fig. 5-35 we list some of the differ­
ences that can occur in the network layer. It is papering over these differences 
that make internetworking more difficult than operating within a single network. 



400 THE NETWORK LAYER CHAP. 5 

Item Some Possibilities 

Service offered Connection-oriented versus connectionless 

Protocols IP, IPX, CLNP, AppleTalk, DECnet, etc. 

Addressing Flat (802) versus hierarchical (IP) 

Multicasting Present or absent (also broadcasting) 

Packet size Every network has its own maximum 

Quality of service May be present or absent; many different kinds 

Error handling Reliable, ordered, and unordered delivery 

Flow control Sliding window, rate control, other, or none 

Congestion control Leaky bucket, choke packets, etc. 

Security Privacy rules, encryption, etc. 

Parameters Different timeouts, flow specifications, etc. 

Accounting By connect time, by packet, by byte, or not at all 

Fig. 5-35. Some of the many ways networks can differ. 

When packets sent by a source on one network must transit one or more 
foreign networks before reaching the destination network (which also may be dif­
ferent from the source network), mariy problems can occur at the interfaces 
between networks. To start with, when packets from a connection-oriented net­
work must transit a connectionless one, they may be reordered, something the 
sender does not expect and the receiver is not prepared to deal with. Protocol 
conversions will often be needed, which can be difficult if the required functional­
ity cannot be expressed. Address conversions will also be needed, which may 
require some kind of directory system. Passing multicast packets through a net­
work that does not support multicasting requires generating separate packets for 
each destination. 

The differing maximum packet sizes used by different networks is a major 
headache. How do you pass an 8000-byte packet through a network whose max­
imum size is 1500 bytes? Differing qualities of service is an issue when a packet 
that has real-time delivery constraints passes through a network that does offer 
any real-time guarantees. 

Error, flow, and congestion control frequently differ among different net­
works. If the source and destination both expect all packets to be delivered in 
sequence without error, yet an intermediate network just discards packets when­
ever it smells congestion on the horizon, or packets can wander around aimlessly 
for a while and then suddenly emerge and be delivered, many applications will 
break. Different security mechanisms, parameter settings, and accounting rules, 
and even national privacy laws also can cause problems. 

, . 



SEC. 5.4 INTERNETWORKING 401 

5.4.2. Concatenated Virtual Circuits 

Two styles of internetworking are common: a connection-oriented concatena­
tion of virtual circuit subnets, and a datagram internet style. We will now exam­
ine these in turn. In the concatenated virtual circuit model, shown in Fig. 5-36, a 
connection to a host in a distant network is s~t up in a way similar to the way con­
nections are normally established. The subnet sees that the destination is remote 
and builds a virtual circuit to the router nearest the destination network. Then it 
constructs a virtual circuit from that router to an external "gateway" (multiproto­
col router). This gateway records the existence of the virtual circuit in its tables 
and proceeds to build another virtual circuit to a router in the next subnet. This 
process continues until the destination host has been reached. 

SNA 

Fig. 5-36. Intemetworking using concatenated virtual circuits. 

Once data packets begin flowing along the path, each gateway relays incom­
ing packets, converting between packet formats and virtual circuit numbers as 
needed. Clearly, all data packets must traverse the same sequence of gateways, 
and thus arrive in order. 

The essential feature of this approach is that a sequence of virtual circuits is 
set up from the source through one or more gateways to the destination. Each 
gateway maintains tables telling which virtual circuits pass through it, where they 
are to be routed, and what the new virtual circuit number is. 

Although Fig. 5-36 shows the connection made with a full gateway, it could 
equally well be done with half-gateways. 

This scheme works best when all the networks have roughly the same proper­
ties. For example, if all of them guarantee reliable delivery of network layer 
packets, then barring a crash somewhere along the route, the flow from source to 
destination will also be reliable. Similarly, if none of them guarantee reliable 
delivery, then the concatenation of the virtual circuits is not reliable either. On 



402 THE NETWORK LAYER CHAP. 5 

the other hand, if the source machine is on a network that does guarantee reliable 
delivery, but one of the intermediate networks can lose packets, the concatenation 
has fundamentally changed the .nature of the service. 

Concatenated virtual circuits are also common in the transport layer. In par­
ticular, it is possible to build a bit pipe using, say, OSI, which terminates in a 
gateway, and have a TCP connection go from the gateway to the next gateway. In 
this manner, an end-to-end virtual circuit can be built spanning different networks 
and protocols. 

5.4.3. Connectionless Internetworking 

The alternative internetwork model is the datagram model, shown in Fig. 5-
37. In this model, the only service the network layer offers to the transport layer 
is the ability to inject datagrams into the subnet and hope for the best. There is no 
notion of a virtual circuit at all in the network layer, let alone a concatenation of 
them. This model does not require all packets belonging to one connection to 
traverse the same sequence of gateways. In Fig. 5-37 datagrams from host 1 to 
host 2 are shown taking different routes through the internetwork. A routing deci­
sion is made separately for each packet, possibly depending on the traffic at the 
moment the packet is sent. This strategy can use multiple routes and thus achieve 
a higher bandwidth than the concatenated virtual circuit model. On the other 
hand, there is no guarantee that the packets arrive at the destination in order, 
assuming that they arrive at all. 

Router 

Fig. 5-37. A connectionless internet. 

The model of Fig. 5-37 is not quite as simple as it looks. For one thing, if 
each network has its own network layer protocol, it is not possible for a packet 
from one network to transit another one. One could imagine the multiprotocol 
routers actually trying to translate from one format to another, but unless the two 



SEC. 5.4 INTERNETWORKING 403 

formats are close relatives with the same information fields, such conversions will 
always be incomplete and often doomed to failure. For this reason, conversion is 
rarely attempted. 

A second, and more serious problem, is addressing. Imagine a simple case: a 
host on the Internet is trying to send an IP packet to a host on an adjoining OSI 
host. The OSI datagram protocol, CLNP, was based on IP and is close enough to 
it that a conversion might well work. The trouble is that IP packets all carry the 
32-bit Internet address of the destination host in a header field. OSI hosts do not 
have 32-bit Internet addresses. They use decimal addresses similar to. telephone 
numbers. 

To make it possible for the multiprotocol router to convert between formats, 
someone would have to assign a 32-bit Internet address to each OSI host. Taken 
to the limit, this approach would mean assigning an Internet address to every 
machine in the world that an Internet host might want to talk to. It would also 
mean assigning an OSI address to every machine in the world that an OSI host 
might want to talk to. The same problem occurs with every other address space 
(SNA, AppleTalk, etc.). The problems here are insurmountable. In addition, 
someone would have to maintain a database mapping everything to everything. 

Another idea is to design a universal "internet" packet and have all routers 
recognize it. This approach is, in fact, what IP is-a packet designed to be carried 
through many networks. The only problem is that IPX, CLNP, and other "univer­
sal" packets exist too, making all of them less than universal. Getting everybody 
to agree to a singlt! format is just not possible. 

Let us now briefly recap the two ways internetworking can be attacked. The 
concatenated virtual circuit model has essentially the same advantages as using 
virtual circuits within a single subnet: buffers can be reserved in advance, 
sequencing can be guaranteed, short headers can be used, and the troubles caused 
by delayed duplicate packets can be avoided. 

It also has the same disadvantages: table space required in the routers for each 
open connection, no alternate routing to avoid congested areas, and vulnerability 
to router failures along the path. It also has the disadvantage of being difficult, if 
not impossible, to implement if one of the networks involved is an unreliable 
datagram network. 

The properties of the datagram approach to internetworking are the same as 
those of datagram subnets: more potential for congestion, but also more potential 
for adapting to it, robustness in the face of router failures, and longer headers 
needed. Various adaptive routing algorithms are possible in an internet, just as 
they are within a single datagram network. 

A major advantage of the datagram approach to internetworking is that it can 
be used over subnets that do not use virtual circuits inside. Many LAN s, mobile 
networks (e.g., aircraft and naval fleets), and even some WANs fall into this 
category. When an internet includes one of these, serious problems occur if the 
internetworking strategy is based on virtual circuits. 



404 THE NETWORK LAYER CHAP. 5 

5.4.4. Tunneling 

Handling the general case of making two different networks interwork is 
exceedingly difficult. However, there is a common special case that is manage­
able. This case is where the source and destination hosts are on the same type of 
network, but there is a different network in between. As an example, think of an 
international bank with a TCP/IP based Ethernet in Paris, a TCP/IP based Ether­
net in London, and a PTT WAN in between, as shown in Fig. 5-38. 

Acts like a serial line 

• I 
Ethernet in Paris 

@------►I 

Ethernet frame 

............ ...,,.____. 

IP packet inside payload 
field of the WAN packet 

Fig. 5-38. Tunneling a packet from Paris to London. 

Ethernet in London 

2 

Ethernet frame 

The solution to this problem is a technique called tunneling. To send an IP 
packet to host 2, host 1 constructs the packet containing the IP address of host 2, 
inserts it into an Ethernet frame addressed to the Paris multiprotocol router, and 
puts it on the Ethernet. When the multiprotocol router gets the frame, it removes 
the IP packet, inserts it in the payload field of the WAN network layer packet, and 
addresses the latter to the WAN address of the London multi protocol router. 
When it gets there, the London router removes the IP packet and sends it to host 2 
inside an Ethernet frame. 

The WAN can be seen as a big tunnel extending from one multiprotocol 
router to the other. The IP packet just travels from one end of the tunnel to the 
other, snug in its nice box. It does not have to worry about dealing with the WAN 
at all. Neither do the hosts on either Ethernet. Only the multiprotocol router has 
to understand IP and WAN packets. In effect, the entire distance from the middle 
of one multiprotocol router to the middle of the other acts like a serial line. 

An analogy may make tunneling clearer. Consider a person driving her car 
from Paris to London. Within France, the car moves under its own power, but 
when it hits the English Channel, it is loaded into a high-speed train and trans­
ported to England through the Chunnel (cars are not permitted to drive through the 
Chunnel). Effectively, the car is being carried as freight, as depicted in Fig. 5-39. 

'. 



-- ---=----

SEC. 5.4 INTERNETWORKING 405 

At the far end, the car is let loose on the English roads and once again continues 
to move under its own power. Tunneling of packets through a foreign network 
works the same way. 

English channel 

\ 
Railroad carriage 

I 

Fig. 5-39. Tunneling a car from France to England. 

5.4.5. Internetwork Routing 

Routing through an internetwork is similar to routing within a single subnet, 
but with some added complications. Consider, for example, the internetwork of 
Fig. 5-40(a) in which five networks are connected by six multiprotocol routers. 
Making a graph model of this situation is complicated by the fact that every rriul­
tiprotocol router can directly access (i.e., send packets to) every other router con­
nected to any network to which it is connected. For example, B in Fig. 5-40(a) 
can directly access A and C via network 2 and also D via network 3. This leads to 
the graph of Fig. 5-40(b ). 

A 

E 

(a) 

B 

F 

(b) 

Fig. 5-40. (a) An internetwork. (b) A graph of the internetwork. 

Once the graph has been constructed, known routing algorithms, such as the 
distance vector and link state algorithms, can be applied to the set of multiproto­
col routers. This gives a two-level routing algorithm: within each network an 
interior gateway protocol is used, but between the networks, an exterior gate­
way protocol is used ("gateway" is an older term for "router"). In fact, since 



406 THE NETWORK LA YER CHAP. 5 

each network is independent, they may all use different algorithms. Because each 
network in an internetwork is independent of all the others, it is often referred to 
as an Autonomous System (AS). 

A typical internet packet starts out on its LAN addressed to the local multipro­
tocol router (in the MAC layer header). After it gets there, the network layer code 
decides which multiprotocol router to forward the packet to, using its own routing 
tables. If that router can be reached using the packet's native network protocol, it 
is forwarded there directly. Otherwise it is tunneled there, encapsulated in the 
protocol required by the intervening network. This process is repeated until the 
packet reaches the destination network. 

One of the differences between internetwork routing and intranetwork routing 
is that internetwork routing often requires crossing international boundaries. 
Various laws suddenly come into play, such as Sweden's strict privacy laws about 
exporting personal data about Swedish citizens from Sweden. Another example is 
the Canadian law saying that data traffic originating in Canada and ending in 
Canada may not leave the country. This law means that traffic from Windsor, 
Ontario to Vancouver may not be routed via nearby Detroit. 

Another difference between interior and exterior routing is the cost. Within a 
single network, a single charging algorithm normally applies. However, different 
networks may be under different managements, and one route may be less expen­
sive than another. Simiiarly, the quality of service offered by different networks 
may be different, and this may be a reason to choose one route over another. 

In a large internetwork, choosing the best route may be a time-consuming 
operation. Estrin et al. (1992) have proposed dealing with this problem by 
precomputing routes for popular (source, destination) pairs and storing them in a 
database to be consulted at route selection time. 

5.4.6. Fragmentation 

Each network imposes some maximum size on its packets. These limits have 
various causes, among them: 

1. Hardware (e.g., the width of a TDM transmission slot). 

2. Operating system (e.g., all buffers are 512 bytes). 

3. Protocols ( e.g., the number of bits in the packet length field). 

4. Compliance with some (inter)national standard. 

5. Desire to reduce error induced retransmissions to some level. 

6. Desire to prevent one packet from occupying the channel too long. 

The result of all these factors is that the network designers are not free to choose 
any maximum packet size they wish. Maximum payloads range from 48 bytes 

. ••, 



SEC. 5.4 INTERNETWORKING 407 

(ATM cells) to 65,515 bytes (IP packets), although the payload size in higher 
layers is often larger. 

An obvious problem appears when a large packet wants to travel through a 
network whose maximum packet size is too small. One solution is to make sure 
the problem does not occur in the first place. In other words, the internet should 
use a routing algorithm that avoids sending packets through networks that cannot 
handle them. However, this solution is no solution at all. What happens if the 
original source packet is too large to be handled by the destination network? The 
routing algorithm can hardly bypass the destination. 

Basically, the only solution to the problem is to allow gateways to break pack­
ets up into fragments, sending each fragment as a separate internet packet. How­
ever, as every parent of a small child knows, converting a large object into small 
fragments is considerably easier than the reverse process. (Physicists have even 
given this effect a name: the second law of thermodynamics.) Packet-switching 
networks, too, have trouble putting the fragments back together again. 

Packet 

Network 1 

G1 fragments 
a large packet 

Packet 

G1 fragments 
a large packet 

G2 
reassembles 

the fragments 

(a) 

Network 2 

G3 fragments 
again 

The fragments are not reassembled 
until the final destination (a host) is reached 

(b) 

G4 
reassembles 

again 

Fig. 5-41. (a) Transparent fragmentation. (b) Nontransparent fragmentation. 

Two opposing strategies exist for recombining the fragments back into the 
original packet. The first strategy is to make fragmentation caused by a "small­
packet" network transparent to any subsequent networks through which the 
packet must pass on its way to the ultimate destination. This option is shown in 
Fig. 5-41(a). When an oversized packet arrives at a gateway, the gateway breaks 
it up into fragments. Each fragment is addressed to the same exit gateway, where 
the pieces are recombined. In this way passage through the small-packet network 
has been made transparent. Subsequent networks are not even aware that frag­
mentation has occurred. A TM networks, for example, have special hardware to 



408 THE NETWORK LAYER CHAP. 5 

provide transparent fragmentation of packets into cells and then reassembly of 
cells into packets. In the ATM world, fragmentation is called segmentation; the 
concept is the same, but some of the details are different. 

Transparent fragmentation is simple but has some problems. For one thing, 
the exit gateway must know when it has received all the pieces, so that either a 
count field or an "end of packet" bit must be included in each packet. For 
another thing, all packets must exit via the same gateway. By not allowing some 
fragments to follow one route to the ultimate destination, and other fragments a 
disjoint route, some performance may be lost. A last problem is the overhead 
required to repe<ltedly reassemble and then refragment a large packet passing 
through a series of small-packet networks. 

The other fragJ11entation strategy is to refrain from recombining fragments at 
any intermediate gateways. Once a packet has been fragmented, each fragment is 
treated as though it were an original packet. All fragments are passed through the 
exit gateway (or gateways), as shown in Fig. 5-4l(b). Recombination occurs only 
at the destination host. 

Nontransparent fragmentation also has some problems. For example, it 
requires every host to be able to do reassembly. Yet another problem is that when 
a large packet is fragmented the total overhead increases, because each fragment 
must have a header. Whereas in the first method this overhead disappears as soon 
as the small-packet network is exited, in this method the overhead remains for the 
rest of the journey. An advantage of this method, however, is that multiple exit 
gateways can now be used and higher performance can be achieved. Of course, if 
the concatenated virtual circuit model is being used, this advantage is of no use. 

When a packet is fragmented, the fragments must be numbered in such a way 
that the original data stream can be reconstructed. One way of numbering the 
fragments is to use a tree. If packet O must be split up, the pieces are called 0.0, 
0.1, 0.2, etc. If these fragments themselves must be fragmented later on, the 
pieces are numbered 0.0.0, 0.0.1, 0.0.2, ... , 0.1.0, 0.1.1, 0.1.2, etc. If enough 
fields have been reserved in the header for the worst case and no are duplicates 
generated anywhere, this scheme is sufficient to ensure that all the pieces· can be 
correctly reassembled at the destination, no matter what order they arrive in. 

However, if even one network loses or discards packets, there is a p.eed for 
end-to-end retransmissions, with unfortunate effects for the numbering system. 
Suppo~e that a 1024-bit packet is initially fragmented into four equal-sized frag­
ments, 0.0, 0.1, 0.2, and 0.3. Fragment 0.1 is lost, but the other parts arrive at the 
destination. Eventually, the source times out and retransmits the original packet 
again. Only this time the route taken passes through a network with a 512-bit 
limit, so two fragments are generated. When the new fragment 0.1 arrives at the 
destination, the receiver will think that all four pieces are now accounted for and 
reconstruct the packet incorrectly. 

A completely different (and better) numbering system is for the internetwork 
protocol to define an elementary fragment size small enough that the elementary 

... 

.. . . 



SEC. 5.4 INTERNETWORKING 409 

fragment can pass through every network. When a packet is fragmented, all the 
pieces are equal to the elementary fragment size except the last one, which may 
be shorter. An internet packet may contain several fragments, for efficiency rea­
sons. The internet header must provide the original packet number, and the 
number of the (first) elementary fragment contained in the packet. As usual, there 
must also be a bit indicating that the last elementary fragment contained within 
the internet packet is the last one of the original packet. 

This approach requires two sequence fields in the internet header: the original 
packet number, and the fragment number. There is clearly a trade-off between the 
size of the elementary fragment and the number of bits in the fragment number. 
Because the elementary fragment size is presumed to be acceptable to every net­
work, subsequent fragmentation of an internet packet containing several frag­
ments causes no problem. The ultimate limit here is to have the elementary frag­
ment be a single bit or byte, with the fragment number then being the bit or byte 
offset within the original packet, as shown in Fig. 5-42. 

Number of the first elementary fragment in this packet 

Packet j End of 
number packet bit 

I 
121 ! 0 I 1 I A I B C D 

Header 
(a) 

Header 
(b) 

j 21 j o jo I A j s I c [ o I E I 27 I 5 iol 
'--v---' '--v---' 

Header Header 

(c) 

E F G 

F G 

1 byte 
,----A--, 

H J 

J 

'--v---' 

Header 

H I 21 I 8 I 1 I 
'--v---' 

Header 

Fig. 5-42. Fragmentation when the elementary data size is· 1 byte. (a) Original 
packet, containing 10 data bytes. (b) Fragment after passing through a network 
wilh maximwn packet size of 8 bytes. (c) Fragments after passing through a 
size 5 gateway. 

J 

Some internet protocols take this method even further and consider the entire 
transmission on a virtual circuit to be one giant packet, so that each fragment con­
tains the absolute byte number of the first byte within the fragment. Some other 
issues relating to fragmentation are discussed in (Kent and Mogul, 1987). 



410 THE NETWORK LA YER CHAP. 5 

5.4.7. Firewalls 

The ability to connect any: computer, anywhere, to any other computer, any­
where, is a mixed blessing. For individuals at home, wandering around the Inter­
net is lots of fun. For corporate security managers, it is a nightmare. Most com­
panies have large amounts of confidential information on-line-trade secrets, 
product development plans, marketing strategies, financial analyses, etc. Disclo­
sure of this information to a competitor could have dire consequences. 

In addition to the danger of information leaking out, there is also a danger of 
information leaking in. In particular, viruses, worms, and other digital pests 
(Kaufman et al., 1995) can breach security, destroy valuable data, and waste large 
amounts of administrators' time trying to clean up the mess they leave. Often 
they are imported by careless employees who want to play some nifty new game. 

Consequently, mechanisms are needed to keep "good" bits in and "bad" bits 
out. One method is to use encryption. This approach protects data in transit 
between secure sites. We will study it in Chap. 7. However, encryption does 
nothing to keep digital pests and hackers out. To accomplish this goal, we need to 
look at firewalls (Chapman and Zwicky, 1995; and Cheswick and Bellovin, 1994). 

Corporate 
network 

Security 
perimeter 

Packet 
filtering 
router 

Inside 
LAN 

Application 
gateway 

Outside 
LAN 

Packet 
filtering 
router 

Firewall 

Fig. 5-43. A firewall consisting of two packet filters and an application gateway. 

Firewalls are just a modern adaptation of that old medieval security standby: 
digging a deep moat around your castle. This design forced everyone entering or 
leaving the castle to pass over a single drawbridge, where they could be inspected 
by the 1/0 police. With networks, the same trick is possible: a company can have 
many LAN s connected in arbitrary ways, but all traffic to or from the company is 
forced through an electronic drawbridge (firewall), as shown in Fig. 5-43 . 

• I 



SEC. 5.4 INTERNETWORKING 411 

The firewall in this configuration has two components: two routers that do 
packet filtering and an application gateway. Simpler configurations also exist, but 
the advantage of this design is that every packet must transit two filters and an 
application gateway to go in or out. No other route exists. Readers who think that 
one security checkpoint is enough clearly have not made an international flight on 
a scheduled airline recently. 

Each packet filter is a standard router equipped with some extra functional­
ity. The extra functionality allows every incoming or outgoing packet to be 
inspected. Packets meeting some criterion are forwarded normally. Those that 
fail the test are dropped. 

In Fig. 5-43, most likely the packet filter on the inside LAN checks outgoing 
packets and the one on the outside LAN checks incoming packets. Packets cross­
ing the first hurdle go to the application gateway for further examination. The 
point of putting the two packet filters on different LAN s is to ensure that no 
packet gets in or out without having to pass through the application gateway: there 
is no path around it. 

Packet filters are typically driven by tables configured by the system adminis­
trator. These tables list sources and destinations that are acceptable, sources and 
destinations that are blocked, and default rules about what to do with packets 
coming from or going to other machines. 

In the common case of a UNIX setting, a source or destination consists of an IP 
address and a port. Ports indicate which service is desired. For example, port 23 
is for Telnet, port 79 is for Finger, and port 119 is for USENET news. A com­
pany could block incoming packets for all IP addresses combined with one of 
these ports. In this way, no one outside the company could log in via Telnet, or 
look up people using the Finger daemon. Furthermore, the company would be 
spared from having employees spend all day reading USENET news. 

Blocking outgoing packets is trickier because although most sites stick to the 
standard port naming conventions, they are not forced to do so. Furthermore, for 
some important services, such as FfP (File Transfer Protocol), port numbers are 
assigned dynamically. In addition, although blocking TCP connections is diffi­
cult, blocking UDP packets is even harder because so little is known a priori about 
what they will do. Many packet filters simply ban UDP traffic altogether. 

The second half of the firewall mechanism is the application gateway. 
Rather than just looking at raw packets, the gateway operates at the application 
level. A mail gateway, for example, can be set up to examine each message going 
in or coming out. For each one it makes a decision to transmit or discard it based 
on header fields, message size, or even the content (e.g., at a military installation, 
the presence of words like "nuclear" or "bomb" might cause some special action 
to be taken). 

Installations are free to set up one or more application gateways for specific 
applications, but it is not uncommon for suspicious organizations to permit email 
in and out, and perhaps use of the World Wide Web, but ban everything else as 



412 THE NETWORK LAYER CHAP. 5 

too dicey. Combined with encryption and packet filtering, this arrangement offers 
a limited amount of security at the cost of some inconvenience. 

One final note concerns wireless communication and firewalls. It is easy to 
design a system that is logically completely secure, but which, in practice, leaks 
like· a sieve. This situation can occur if some of the machines are wireless and use 
radio communication, which passes right over the firewall in both directions. 

S.S. THE NETWORK LA YER IN THE INTERNET 

At the network layer, the Internet can be viewed as a collection of subnet­
works or Autonomous Systems (ASes) that are connected together. There is no 
real structure, but several major backbones exist. These are constructed from 
high-bandwidth lines and fast :routers. Attached to the backbones are regional 
(midlevel) networks, and attached to these regional networks are the LANs at 
many universities, companies, and Internet service providers. A sketch of this 
quasihierarchical organization is given in Fig. 5-44. 

Leased lines 
to Asia US backbone 

IP token ring LAN 

European backbone 

IP Ethernet 
LAN 

Fig. 5-44. The Internet is an interconnected collection of many networks. 

The glue that holds the Internet together is the network layer protocol, IP 
(Internet Protocol). Unlike most older network layer protocols, it was designed 
from the beginning with internetworking in mind. A good way to think of the net­
work layer is this. Its job is to provide a best-efforts way to transport datagrams 



SEC. 5.5 THE NETWORK LA YER IN THE INTERNET 413 

from source to destination, without regard to whether or not these machines are on 
the same network, or whether or not there are other networks in between them. 

Communication in the Internet works as follows. The transport layer takes 
data streams and breaks them up into datagrams. In theory, datagrams can be up 
to 64 Kbytes each, but in practice they are usually around 1500 bytes. Each 
datagram is transmitted through the Internet, possibly being fragmented into 
smaller units as it goes. When all the pieces finally get to the destination 
machine, they are reassembled by the network layer into the original datagram. 
This datagram is then handed to the transport layer, which inserts it into the 
receiving process' input stream. 

5.5.1. The IP Protocol 

An appropriate place to start our study of the network layer in the Internet is 
the format of the IP datagrams themselves. An IP datagram consists of a header 
part and a text part. The header has a 20-byte fixed part and a variable length 
optional part. The header format is shown in Fig. 5-45. It is transmitted in big 
endian order: from left to right, with the high-order bit of the Version field going 
first. (The SPARC is big endian; the Pentium is little endian.) On little endian 
machines, software conversion is required on both transmission and reception. 

- --- ---- --- --32 Bits---- --- --- ----­

! I I 

Version J IHL I Type of service Total length 

Identification Wl~I Fragment offset 

Time to live I Protocol Header checksum 

Source address 

Destination address 

~'"' ~ .... 

T 
Options (0 or more words) 

T 
Fig. 5-45. The IP (Internet Protocol) header. 

The Version field keeps track of which version of the protocol the datagram 
belongs to. By including the version in each datagram, it becomes possible to 
have the transi~ion between versions take months, or even years, with some 
machines running the old version and others running the new one. 

Since the header length is not constant, a field in the header, IHL, is provided 
to tell how long the header is, in 32-bit words. The minimum value is 5, which 




