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Abstract
Anticancer drugs are combined in an effort to treat a heterogeneous tumor or to maximize the

pharmacodynamic effect. The development of combination regimens, while desirable, poses unique

challenges. These include the selection of agents for combination therapy that may lead to improved

efficacywhilemaintaining acceptable toxicity, the design of clinical trials that provide informative results for

individual agents and combinations, and logistic and regulatory challenges. The phase I trial is often the

initial step in the clinical evaluation of a combination regimen. In view of the importance of combination

regimens and the challenges associated with developing them, the Clinical Trial Design (CTD) Task Force of

theNationalCancer Institute InvestigationalDrug SteeringCommittee developed a set of recommendations

for the phase I development of a combination regimen. The first two recommendations focus on the

scientific rationale and development plans for the combination regimen; subsequent recommendations

encompass clinical design aspects. TheCTDTask Force recommends that selection of theproposed regimens

be based on a biologic or pharmacologic rationale supported by clinical and/or robust and validated

preclinical evidence, and accompanied by a plan for subsequent development of the combination. The

design of the phase I clinical trial should take into consideration the potential pharmacokinetic and

pharmacodynamic interactions as well as overlapping toxicity. Depending on the specific hypothesized

interaction, the primary endpoint may be dose optimization, pharmacokinetics, and/or pharmacodynam-

ics (i.e., biomarker). Clin Cancer Res; 20(16); 4210–7. �2014 AACR.
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Learning Objectives
Upon completion of this activity, the participant should be able to describe what is required to justify phase I evaluation of a combination

of drugs. In addition, the participant should be able to determine whether a combination of drugs needs a formal phase I evaluation or a
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Introduction
In most tumors, no single pathway has been identified

that uniquely drives the malignant process. A more favor-
able therapeutic response may be obtained by combining
drugs that target multiple pathways and/or inhibit resis-
tance mechanisms (e.g., pharmacodynamic modulation).
The past decade has seen the development of a vast array
of new drugs focusing predominantly on specific molec-
ular targets or pathways of interest. Perhaps the greatest
clinical benefit from this approach has been demonstrat-
ed in malignancies driven predominantly by an identifi-
able molecular aberration (1–5). However, resistance
usually develops (6–10). Conversely, in tumors that are
genetically diverse (multiple "driver" mutations/altera-
tions), focusing on a single target in an unselected pop-
ulation has had modest results (11–16). Combining
molecularly targeted and/or cytotoxic drugs may be one
strategy to overcome these limitations and improve effi-
cacy (17).
The design and conduct of the phase I combination trial

present specific challenges, such as the optimum selection
of agents to combine among the range of possible combi-
nations; the selection of the appropriate dose and schedule
(includingwhich drug or drugs to dose escalate); drug–drug
interactions; overlapping toxicities; and logistic and regu-
latory challenges. To address these challenges, the Investi-
gational Drug Steering Committee (IDSC) of the National
Cancer Institute (NCI) appointed a Clinical Trial Design
(CTD) Task Force composed of academics, pharmaceutical
industry representatives, and patient advocates, to develop
recommendations (Table 1) similar to those developed
previously for phase I and II clinical trials (18, 19). The
CTD Task Force focused on development of combinations
of systemic agents (marketed or investigational), with con-
sideration of the proposed mechanism of action, pharma-
cokinetics, and expected toxicities. The recommendations
provide pragmatic clinical guidelines rather than a rigid set
of rules and do not encompass in-depth details of study
designs or regulatory or logistic challenges of combination
regimens. The consensus recommendations were reviewed

and approved by the IDSC on March 13, 2012 (Fig. 1;
ref. 20).

Consensus Recommendations
Recommendation 1

All phase I combination trials should state an explicit or
implicit hypothesis justifying the combination, including a phar-
macologic or biologic rationale that includes at least one of the
following: in vitro data, in vivo data, or clinical data. The
rationalemay extrapolate from results with similar drugs andmay
be based on in silico analyses. The hypothesis supporting the
combination should be clearly stated in the protocol.

Given the vast number of combinations of anticancer
drugs that could be evaluated (21), priority should be
given to those combinations that are based on the stron-
gest rationale and are most likely to result in clinically
significant therapeutic advances. The phase I study
should, therefore, have a clearly referenced rationale
justifying evaluation of the combination. The overarching
hypothesis to combine anticancer drugs is to enhance
antitumor effects (Table 2). The underlying hypothesis
should include a pharmacologic and biologic rationale
supported by at least one of the following: in vitro data, in
vivo data, or clinical data.

The level of preclinical data required topredict a benefit in
clinical trials is currently unknown, because preclinical
studies do not generally predict success of clinical trials
(22–24). Preclinical data may help in the prioritization of
combinations to advance to clinical trials and in the design
of the subsequent clinical trial (see recommendations 3 and
4; ref. 25). Poor therapeutic indices may be associated with
the high attrition rates found in oncology drug develop-
ment, yet seem tobe infrequently evaluated (26). Preclinical
models have been shown to predict some non hematologic
toxicities in humans, including skin toxicity and gastroin-
testinal toxicities associated with EGFR inhibitors (27).
Toxicities such as myalgias, arthralgias, and headaches are
not detectable in preclinical studies.

The additive or synergistic effects of a drug combi-
nation can be evaluated in cell line assays; however,

Table 1. Past and present members of the of the IDSC Clinical Trial Design Task Force

Position Name

Co-chairs Mark J. Ratain, Michael L. LeBlanc
Members Laurence H. Baker, Penelope A. Bradbury, Lee M. Ellis, Elizabeth Garrett-Mayer,

Richard Gaynor, Gary Gordon, Susan Groshen, Robert Iannone, Patricia Keegan,
Patricia M. LoRusso, Stuart Lutzker, Channing J. Paller, Gary L. Rosner, Larry Rubinstein,
Daniel J. Sargent, Lalitha K. Shankar, Manish Sharma, Anthony Shields, David R. Spriggs

NCI liaison S. Percy Ivy
Past chair and co-chair Lesley Seymour, Donald Berry
Nonvoting members Rajeev Agarwal, Lori Minasian, Peter Ujhazy
IDSC patient advocate Deborah Collyar
Past members John Crowley, Afshin Dowlati, Jeffrey Humphrey, Mario Sznol,

Miguel Villalona-Calero, Siu-Long Yao
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determining synergy in vivo is complex, standard defi-
nitions of synergy in vivo do not exist, and such standard
definitions are used exclusively with in vitro models
(28). Another consideration is the potential for antag-
onistic effects of agents when combined and the effect
of sequence, rarely tested preclinically. The addition of
gefitinib or erlotinib to chemotherapy has not confer-
red a demonstrable clinical benefit. Subsequent preclin-
ical studies demonstrated that concurrent administra-
tion of an EGFR TKI with standard chemotherapy in
non–small cell lung cancer may be antagonistic, whereas

sequential administration may have improved activity
(29–31). This potential can be explored using preclinical
models and may inform the design of schedules in the
clinical trials. The IDSC has outlined some considera-
tions about the selection of agents to take forward into
clinical trials (18). However, negative preclinical results
may not be reported because of publication bias, lim-
iting relevant evidence, and possibly contributing to
high failure rates in oncology drug development. Pub-
lication of negative results through journals such as
the Journal of Negative Results in BioMedicine (32, 33)
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© 2014 American Association for Cancer Research

4a. Use a formal phase I

evaluation with success/

failure criteria stated a priori.

4b. Use a formal drug–drug

interaction design—primary

endpoint PK.

4c. No formal phase I required.

Consider “tolerability” as first

phase (run-in) of the phase II study.

3c. If no plausible basis

for PK or PD interaction

3b. If no overlapping DLT and

no plausible PD, but plausible

basis for PK interaction

3a. If overlapping DLT(s)

or plausible basis for

PD leading to DLT(s)

2. State potential clinical results from

phase I and hypotheses for future

studies.

1. Provide explicit or implicit hypothesis

justifying the combination, including a

pharmacologic or biologic rationale.

Figure 1. Process for
determination of the phase I
combination trial design. PD,
pharmacodynamic; PK,
pharmacokinetic.

Table 2. Hypotheses justifying combination trials

Target Tumor type Examples

Target multiple mechanisms
of action

Gastric, colorectal,
and NSCLC

Addition of HER-2 (22), EGFR (23), or VEGF (46–48, 60)
pathway inhibitors broadened anticancer activity of
standard chemotherapy while minimizing cross-resistance

Optimize the inhibition of a
specific target or pathway

Melanoma Combination of CTLA-4 and PD-1 receptor inhibitors resulted
in tumor regression beyond that expected from monotherapy (61)

Target a potential resistance
mechanism (bypass pathway)

Breast, melanoma,
and NSCLC

Addition of an mTOR inhibitor to antiestrogens (62), a MEK
inhibitor to a BRAF kinase inhibitor (34), or an EGFR inhibitor to
a MET inhibitor (49, 63) results in restoration of sensitivity and
decreased proliferation in cell lines and, for patients with NSCLC,
to increased progression-free survival

Abbreviations: CTLA-4, cytotoxic T lymphocyte–associated antigen 4; NSCLC, non–small cell lung cancer; PD-1, programmed
death 1.
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may provide important information for the combina-
tion trial design.

Recommendation 2
The potential results and next steps of the development plan of

the combination should be clearly described. The description
should include two parts: the rationale for why the biologic or
pharmacologic interactions should translate into clinical effects,
and one ormore examples of phase II studies to test the hypothesis.
The phase II example(s) should follow the guidelines of the Phase
II Consensus Recommendations of the NCI’s IDSC CTD Task
Force.
In addition to a robust underlying hypothesis outlining

why specific agents should be combined (recommendation
1), a clearly defined plan of how the combination will be
evaluated in phase I and II clinical studies (recommenda-
tions 3 and 4), and the anticipated outcome of those trials,
should be outlined. The trial design may aim to optimize
a toxicity endpoint, pharmacodynamic biomarker or be
descriptive and exploratory. As there are an infinite number
ofmaximally tolerated doses for a drug combination, which
may also be the case when optimizing a pharmacodynamic
biomarker, the recommendation is not intended to be
restrictive in nature. However, the rationale for the design
should consider future trials. For example, a three-part
phase I/II trial explored the potential for an MEK inhibitor
to delay the resistance to BRAF inhibition and the safety of
the combination: (part A) determined potential pharma-
cokinetic interactions; (part B) evaluated toxicity, safety,
and pharmacokinetics of escalating doses of both agents;
and (part C) proof-of-principle in the randomized phase II
study evaluating progression-free survival (PFS; ref. 34). If
the development plan for a combination is unclear or not
feasible, it calls into question the rationale for undertaking
the phase I trial in the first place. Furthermore, specific
criteria, including decision rules for success (e.g., a regimen
that can be moved forward in development) and failure

(e.g., a regimen that is too toxic for further evaluation),
should be defined and fully developed in the clinical pro-
tocol (Table 3). Trametinib and dabrafenib were success-
fully combined with no significant incremental toxicity and
fewer squamous cell carcinomas than for patients receiving
monotherapy, and proof-of-principle was demonstrated
with an improvement in PFS with the combination (34).
In contrast, when low-dose sorafenib and bevacizumab
were combined, the tolerated doses of both agents were a
quarter to half the single-agent dose used in other solid
tumor studies because of unexpectedly severe toxicities,
including hand–foot syndrome, hypertension, proteinuria,
and thrombocytopenia (35).

Recommendation 3
The design of combination phase I studies should address the

following three factors: overlapping dose-limiting toxicities
(DLT); a plausible mechanistic basis for a pharmacodynamic
interaction leading to DLTs; and a plausible mechanistic basis for
a pharmacokinetic interaction.

Because of the differences in pharmacology, mechanism
of action, and toxicity of individual agents, the design of the
phase I combination study should be tailored to the specific
drugs to be combined. This may involve a formal phase I
dose escalation trial (36), a pharmacokinetic endpoint (37),
or a safety run-in to a phase II study. Three important
considerations are (i) the potential for overlapping DLTs,
(ii) pharmacodynamic interactions, and (iii) pharmacoki-
netic interactions.

Overlapping DLTs may limit escalation of doses to levels
required for optimal activity ormay affect dose intensity due
to dose reductions when a regimen is administered chron-
ically. Even when overlapping DLTs do not exist, pharma-
codynamic interactions may result in toxicity and affect
dose. Combining bevacizumab and sorafenib (35, 38) or
sunitinib (39) resulted in proteinuria and thrombocytope-
nia, requiring modification of dosing and scheduling. The

Table 3. Selected pharmacokinetic interactions

Drug–drug or drug–food combination PK interaction Mechanism

Gefitinib with bexarotene Plasma levels of gefitinib significantly
reduced (64, 65)

Gefitinib is metabolized by multiple
cytochrome P450 enzymes,
including bexarotene

Temsirolimus with lenalidomide Administration of temsirolimus
increased maximum concentration
and area under the concentration-time
curve of lenalidomide (43)

Lenalidomide is P-glycoprotein substrate

Imatinib, dasatinib, and nilotinib
with high-fat meals

AUC increased by 82% when nilotinib
was given 30 minutes after a
high-fat meal (66)

Oral TKIs have a high risk of PK interactions
when administered in conjunction
with high-fat meals

Imatinib, dasatinib, and nilotinib
with ketoconazole, levothyroxine,
and verapamil

Imatinib exposure increased following
ketoconazole coadministration (67)

Oral TKIs such as have a high risk of
drug interactions when administered
with drugs affecting CYP3A4

Abbreviations: AUC, area under the curve; CYP3A4, cytochrome P450 3A4; PK, pharmacokinetic; TKI, tyrosine kinase inhibitors.
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additive effects of mild overlapping adverse events may
impair tolerance, particularly for drugs that are intended
to be administered chronically (28).

Pharmacokinetic interactions may alter the absorption,
distribution, metabolism, and excretion of one or both
drugs (Table 3). However, pharmacokinetic assessments of
drug–drug interaction should be routinely included in the
phase I trial design onlywhen scientific justification for such
interactions, at pharmacologically achievable drug concen-
trations, has been identified (40). We recommend com-
pleting an initial pharmacokinetic analysis of the individual
drug before initiating the next drug to increase the reliability
of evidence for or against an interaction (37, 41, 42), rather
than performing pharmacokinetic studies of all drugs in the
combination and comparing the results to historical con-
trols (43).

Combining agents with conflicting requirements with
respect to the timing ofmeals adds challenges. Understand-
ing these potential interactions will help generate hypoth-
eses to be addressed in the phase I clinical trial, which will
then influence the subsequent clinical trial design. Explicit
instructions to trial participants are critical to ensure careful
treatment selection for future trials.

Drug scheduling of combinations may affect additive or
synergistic effects on efficacy, toxicity, or both. Combining
drugswith on-off scheduling, such as sunitinib (4weeks on,
2 weeks off is standard) and capecitabine (2 weeks on, 1
week off), will require the evaluation of sequences different
from those used when the drugs are administered as single
agents. If drug–drug interactions affect exposure to either
drug or their metabolites, then applying common single-
agent, on-off schedulesmay result in variable drug exposure
(21). Preclinical studies could identify alternate schedules
that result in more consistent drug exposures. Similar
scheduling and sequencing issues may arise when intrave-
nously administered drugs are combined with oral agents.
Drug sequencing may also be a design issue when combin-
ing drugs with pharmacokinetic or pharmacodynamic
interactions and short half-lives. Scheduling and dosing
decisions also affect toxicities, and novel schedules such as
alternating administration of the drugsmay allow extended
administration when concurrent administration is too
toxic (44).

Recommendation 4
Selection of the clinical trial design should be based on the

scientific rationale, underlying data and hypothesis for the com-
bination, and the intended development plan for the combination
(recommendations 1–3). Recommendation 4 is not intended to
be prescriptive, but to provide pragmatic guidelines on the selec-
tion of the phase I trial design for a drug combination.

No single standard exists for the phase I trial design for
combinations, but the design should address the specific
hypothesis (recommendation 1) and subsequent devel-
opment plans for the combination (recommendation 2).
The classic DLT-driven cohort expansion design (3þ3)
has most commonly been used (45). To date, most
combinations have added one or more investigational

agents to a standard backbone already in clinical practice
(34, 46–49). One challenge is the need to distinguish the
incremental toxicity of the combination. Hamberg and
colleagues propose some solutions, including a 3þ3þ3
design, which may reduce the chance of falsely declaring
that the maximum tolerated dose (MTD) has been
reached (when in fact observed DLTs might be due to
the standard therapy alone; ref. 21). Another alternative is
to include controls in phase I trials, either an intrapatient
control (e.g., by introducing the novel agent after the
standard backbone has been started) or the randomiza-
tion of patients to commence the combination up front
or in a staggered approach (21). Mathematical modeling
can also be used to refine dose escalation based on data
that emerge during the trial. A Bayesian approach has
been proposed to address background toxicity that arises
when a new agent is added to standard treatment (21).
In addition, if the combination is intended to be devel-
oped in several disease settings with different backbones,
multiarm studies may also be more efficient than a series
of separate single-agent trials (50–52). Furthermore, a
phase I trial may fail to reflect optimal dose relationships.
Thus, investigators may need to compare alternate doses
and schedules in subsequent trials (21). Although there
may be multiple appropriate phase I design options, the
proposed design should be fully specified in the protocol
as an algorithm, including any stage-wise decision rules,
so that the statistical properties of the proposed phase I
design can be evaluated under hypothesized outcome
probability models.

Recommendation 4A
Combination therapies with overlapping DLTs or a plausible

basis for a pharmacodynamic interaction leading to DLTs require
formal phase I evaluation. The selected doses to be studied should
be justified on the basis of the specific phase II plans.

Where overlapping DLTs exist or where pharmacody-
namic interaction may be anticipated, a formal phase I
design is required to evaluate toxicity, and to explore the
recommended phase II doses and possibly the optimal
schedule of the combination. The selection of doses to be
evaluated should be justified on the basis of the preclin-
ical data, nature of interaction of the study drugs, and
dependence of the target for DLTs versus efficacy. In
addition, the criteria for success and failure of a combi-
nation should be defined. An inability to escalate one or
more drugs such that the combined dose would be
expected to have greater efficacy than the single-agent
counterparts may mean the combination is not suitable
for progressing to a phase II study. In addition, DLTs
occurring after the first cycle can prevent administration of
subsequent cycles and should be factored into determi-
nation of recommended phase II dosing. Finally, toxicity
may be unacceptable in the population for which the
combination is planned to be developed.

When considering dose escalation for both agents, a
model-based approach can be very helpful, particularly
when it considers both toxicity and efficacy (53–55). When

Paller et al.
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one of the agents hasmarkedly less single-agent activity or is
being added primarily as a modulator, the agent with
greater single-agent activity should, in general, be main-
tained at or near its single-agent dose (MTD), while grad-
ually titrating the second agent.

Recommendation 4B
Combinations without overlapping DLTs and without a plau-

sible basis for pharmacodynamic interaction, but with a plausible
pharmacokinetic interaction, should be studied using a formal
drug–drug interaction design. The primary endpoint is pharma-
cokinetics. The crossover design is often optimal.
In phase I trials in which pharmacokinetic interactions

are anticipated (e.g., drugs metabolized by the same path-
way; ref. 56), a drug–drug interaction design should be
considered. This would facilitate pharmacokinetic analyses
for both single agents and the combination. A common
method of assessing pharmacokinetic interaction uses
crossover study designs that limit the number of patients
required and allow testing for different effects based upon
different sequential ordering of the agents. Statistical anal-
ysis using repeated measures over the same patient
can account for interpatient variability for some of the
endpoints and thereby increases statistical power. Combi-
nations involving drugs with long half-lives, such as vismo-
degib, require phase I designs with pharmacokinetic wash-
out periods (57). Crossover studies may use randomized
designs in which drug 1 is followed by drug 1 and drug 2, or
drug 1 and drug 2 are followed by drug 1, with a washout
period, with extensive pharmacokinetic sampling during
both the single-agent and combination phases. An alterna-
tive is the single sequence crossover design in which drug 1
plus drug 2 always follows drug 1, or the reverse (58). In
both of these designs, both interpatient and intrapatient
variability may need to be considered.
Where pharmacokinetic interactions could lead to drug

accumulation, washout periods and/or low initial doses
should be considered. The decision to escalate to the next
dose would be based on interim pharmacokinetic results
in which the predefined dose-escalation rule might be "If
the drug A level at steady-state increases less than x% over
the previous level, and no DLT is present, then use dose B,
otherwise use dose C." In situations in which CYP3A4
interactions are expected, for example, this pharmacoki-
netic-informed dose escalation method is appropriate.
The hypothesis-driven development plan performed in
recommendation 2, in case of clinically significant phar-
macokinetic interactions, must be based upon a reason-
able assurance that any dose reductions in individual
agents, necessitated by the need to maintain acceptable
toxicity, preserves the expectation of superior efficacy for
the combination (59).

Recommendation 4C
Combinations without overlapping toxicities, without a plau-

sible basis for a pharmacodynamic interaction leading to a DLT,
andwithout a plausible basis for a pharmacokinetic interaction do
not require a formal phase I study. A pilot or safety run-in for
tolerability can be conducted as an initial step of a phase II study.

If a combination regimen is not anticipated to have
overlapping toxicity, pharmacodynamic or pharmacokinet-
ic interaction, a formal phase I trial may not be required.
Instead, a short pilot or safety run-in period may be under-
taken as the initial part of a phase II trial to explore a limited
number of dose levels (for example, clinicaltrials.gov iden-
tifier NCT01839487 or NCT01708993), or to evaluate an
anticipated recommended phase II dose directly before
enrolling patients in the phase II portion of the trial. If this
approach is chosen, the phase II design could include an
early safety interim analysis to ensure the regimen is toler-
able (21). However, before determining that a formal phase
I trial is not required, consideration should be given to
involving pharmacokinetics, pharmacodynamics, and data
safety experts.

Summary
The CTD Task Force formulated recommendations for

the design of early-phase combination trials of anticancer
agents based on consensus developed with members of the
IDSC, the Task Force, and external experts. The selection of
the proposed regimens is based on a biologic or pharma-
cologic rationale supported by clinical and preclinical data,
accompanied by a plan for subsequent development of the
combination trials. The potential pharmacokinetic and
pharmacodynamic interactions, as well as overlapping toxi-
cities, should be considered. Depending on the specific
hypothesized interaction, the primary endpoint may be
dose optimization, pharmacokinetics, and/or pharmaco-
dynamics. The rationale and design of combination clinical
trials should be carefully evaluated. Additional guidance
may be obtained by consulting with regulatory authorities
(e.g., the FDA and/or the European Medicines Agency)
before trial initiation. These recommendations comple-
ment consensus guidelines on the design of phase I and II
clinical trials testing cancer therapeutics (18, 19), and were
reviewed and formally approved by the IDSC.
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