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Abstract 

Streaming audio and video applications are becoming increasingly 
popular on the Internet, and the lack of effective congestion con- 
trol in such applications is now a cause for significant concern. 
The problem is one of adapting the compression without requir- 
ing video-servers to re-encode the data, and fitting the resulting 
stream into the rapidly varying available bandwidth. At the same 
time, rapid fluctuations in quality will be disturbing to the users 
and should be avoided. 

In this paper we present a mechanism for using layered video 
in the context of unicast congestion control. This quality adap- 
tation mechanism adds and drops layers of the video stream to 
perform long-term coarse-grain adaptation, while using a TCP- 
friendly congestion control mechanism to react to congestion on 
very short timescales. The mismatches between the two timescales 
are absorbed using buffering at the receiver. We present an ef- 
ficient.scheme for the distribution of buffering among the active 
layers. Our scheme allows the server to trade short-term improve- 
ment for long-term smoothing of quality. We discuss the issues in- 
volved in implementing and tuning such a mechanism, and present 
our simulation results. 

1 Introduction 

The Internet has been experiencing explosive growth of audio and 
video streaming. Most current applications involve web-based au- 
dio and video playback[6,14] where stored video is streamed from 
the server to a client upon request. This growth is expected to con- 
tinue, and such semi-realtime traffic will form a higher portion of 
the Internet load. Thus the overall behavior of these applications 
will have a significant impact on the Internet traffic. 

Since the Internet is a shared environment and does not cur- 
rently micro-manage utilization of its resources, end systems are 
expected to be cooperative by reacting to congestion properly and 
promptly[5]. Deploying end-to-end congestion control results in 
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higher overall utilization of the network and improves inter-protocol 
fairness. A congestion control mechanism determines the avail- 
able bandwidth based on the state of the network, and the appli- 
cation should then use this bandwidth efficiently to maximize the 
quality of the delivered service to the user. 

Currently, many of the commercial streaming applications do 
not perform end-to-end congestion control. This is mainly be- 
cause stored video has an intrinsic transmission rate. These rate- 
based applications either transmit data with a near-constant rate 
or loosely adjust their transmission rates on long timescales since 
the required rate adaptation for effective congestion control is not 
compatible with their nature. Large scale deployment of these ap- 
plications could result in severe inter-protocol unfairness against 
TCP-based traffic and possibly even congestion collapse. 

This paper is not about congestion control mechanisms. but 
about a complementary mechanism to adapt the quality of stream- 
ing video playback while performing congestion control. How- 
ever, to design an effective quality adaptation scheme, we need 
to know the properties of the deployed congestion control mech- 
anism. Our primary assumption is that the congestion control 
mechanism employs an additive increase, multiplicative decrease 
(AIMD) algorithm. 

We previously designed a simple TCP-friendly congestion con- 
trol mechanism, the Rate Adaptation Protocol (RAP)[17]. RAP is 
a rate-based congestion control mechanism and employs an AIMD 
algorithm in a manner similar to TCP. We assume RAP as the un- 
derlying congestion control mechanism because it’s properties are 
relatively simple to predict. However, our proposed mechanisms 
can be applied with any congestion control scheme that deploys 
an AIMD algorithm. 

Figure 1 shows the transmission rate of a.RAP source over 
time. Similar to TCP, it hunts around for a fair share of the band- 
width. However unlike TCP, RAP is not ACK-clocked and vari- 
ations of transmission rate have a more regular sawtooth shape. 
Bandwidth increases linearly for a period of time, then a packet is 
lost, and an exponential backoff occurs, and the cycle repeats. 

1.1 Target Environment 

Our target environment is a video server that simultaneously plays 
back different video streams on demand for many heterogeneous 
clients. As with current Internet video streaming, we expect the 
length of such streams to range from 30 second clips to full-length 
movies. The server and clients are connected through the Internet 
where the dominant competing traffic is TCP-based. Clients have 

189 

Webgroup CZ a.s. Ex. 1018, Page 2 of 13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F316188.316222&domain=pdf&date_stamp=1999-08-30
http://crossmark.crossref.org/dialog/?doi=10.1145%2F316188.316222&domain=pdf&date_stamp=1999-08-30


Figure I : Transmission rate of a single RAP flow 

heterogeneous network capacity and processing power. Users ex- 
pect startup playback latency to be low, especially for shorter clips 
played back as part of web surfing. Thus pre-fetching an entire 
stream before starting its playback is not an option. We believe 
that this scenario reasonably represents many current and antici- 
pated Internet streaming applications. 

1.2 Motivation 

If video for playback is stored at a single lowest - common - de- 
nominator encoding on the server, high-bandwidth clients will re- 
ccive poor quality despite availability of a large amount of band- 
width. However, if the video is stored at a single higher quality 
encoding (and hence higher data rate) on the server, there will 
be many low-bandwidth clients that cannot play back this stream. 
In the past, we have often seen RealVideo streams available at 
14.4 Kb/s and 28.8 Kb/s, where the user can choose their connec- 
tion speed. However, with the advent of ISDN, ADSL, and cable 
modems to the home, and faster access rates to businesses, the 
Internet is becoming much more heterogeneous. Customers with 
higher speed connections feel frustrated to be restricted to modem- 
speed playback. Moreover, the network bottleneck may be in the 
backbone, such as at provider interconnects or links to the server 
itself. In this case, the user cannot know the congestion level and 
congestion control mechanisms for streaming video playback are 
critical. 

Given the time varying bandwidth channel due to congestion 
control the server to be able to adjust the quality of the stream it 
plays back so that the perceived quality is as high as the available 
network bandwidth will permit. We term this quality adaptuhm. 

1.3 Quality Adaptation Mechanisms 

There are several ways to adjust the quality of a pre-encoded stored 
stream, including adaptive encoding: switching among multiple 
pre-encoded versions, and hierarchical encoding. 

One may re-quantize stored encodings on-the-fly based on net- 
work feedback[ I, 1.5, 201. However, since encoding is CPU - 
intensive, servers are unlikely to be able to do this for large num- 
bers of clients. Furthermore, once the original data has been stored 
compressed, the output rate of most encoders can not be changed 
over a wide range. 

In an alternative approach, the server keeps several versions 
of each stream with different qualities. As available bandwidth 

changes, the server plays streams of higher or lower quality as 
appropriate. 

With hierarchical encoding[8, 10, 12,211, the server maintains 
a layered encoded version of each stream. As more bandwidth 
becomes available, more layers of the encoding are delivered. If 
the average bandwidth decreases, the server may then drop some 
of the layers being transmitted. Layered approaches usually have 
the decoding constraint that a particular enhancement layer can 
only bc decoded if all the lower quality layers have been received. 

There is a duality between adding or dropping of layers in the 
layered approach and switching streams in the multiply-encoded 
approach. However the layered approach is more suitable for 
caching by a proxy for heterogeneous clients[ 181. In addition, it 
requires less storage at the server, and it provides an opportunity 
for selective retransmission of the more important information. 
The design of a layered approach for quality adaptation primar- 
ily entails the design of an efficient add and drop mechanism that 
maximizes quality while minimizing the probability of base-layer 
buffer underflow. 

The rest of this paper is organized as follows: first we provide 
an overview of the layered approach to quality adaptation and then 
explain coarse-grain adding and dropping mechanisms in section 
2. WC also discuss fine-grain inter-layer bandwidth allocation for a 
single backoff scenario. Section 3 motivates the need for smooth- 
ing in the presence of real loss patterns and discusses two possible 
approaches. In section 4, we sketch an efficient filling and drain- 
ing mechanism that not only achieves smoothing but is also able 
to cope efficiently with various pattcms of losses. We evaluate 
our mechanism through simulation in section 5. Section 6 briefly 
reviews related work. Finally, section 7 concludes the paper and 
addresses some of our future plans. 

2 Layered Quality Adaptation 

Hierarchical encoding provides an effective way that a video play- 
back server can coarsely adjust the quality of a video stream with- 
out transcoding the stored data. However, it does not provide fine- 
grained control over bandwidth, i.e. bandwidth changes at the 
granularity of a layer. Furthermore, there needs to be a quality 
adaptation mechanism to smoothly adjust the quality (i.e. number 
of layer) as bandwidth changes. Users will tolerate poor quality 
video, but rapid variations in quality are disturbing. 

Hierarchical encoding allows video quality adjustment over 
long periods of time, whereas congestion control changes the trans- 
mission rate rapidly over short time intervals (several round-trip 
times,(RTTs)). The mismatch between the two timescales is made 
up for by buffering data at the receiver to smooth the rapid varia- 
tions in available bandwidth and allow a near constant number of 
layers to be played. 

Figure 2 graphs a simple simulation of a quality adaptation 
mechanism in action. The top graph shows the available network 
bandwidth and the consumption rate at the receiver with no layers 
being consumed at startup, then one layer, and finally two layers. 
During the simulation, two packets are dropped and cause conges- 
tion control backoffs, when the transmission rate drops below the 
consumption rate for a period of time. The lower graph shows the 
playout sequence numbers of the actual packets against time. The 
horizontal lines show the period between arrival time and playout 
time of a packet. Thus it indicates the total amount of buffering for 
each layer. This simulation shows more buffered data for Layer 0 
(the base layer) than for Layer 1 (the enhancement layer). Af- 
ter the first backoff, the length of these lines decreases indicating 
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Figure 2: Layered Encoding with Receiver Buffering 

buffered data from Layer 0 is being used to compensate for the 
lack of available bandwidth. At the time of the second backoff, 
a little data has been buffered for Layer 1 in addition to the large 
amount for Layer 0. Thus data is drawn from both buffers properly 
to compensate for the lack of available bandwidth. 

The congestion control mechanism dictates the available band- 
width I. We cannot send more than this amount, and do not wish 
to send less’. In a real network even the average bandwidth of 
a congestion controlled llow changes over the session lifetime. 
Thus a quality adaptation mechanism must continuously evalu- 
ate the available bandwidth and adjust the number of active layers 
accordingly. 

In this paper WC assume that the layers arc linearly spaced - that 
is each layer has the same bandwidth. This simplifies the analysis, 
but is not a requirement. In addition, we assume each layer has a 
constant consumption rate over time. In practice this is unlikely in 
a real codec, but to a first approximation it is reasonable. It can be 
ignored by slightly increasing the amount of receiver buffering for 
all layers to absorb variations in consumption rate. 

Figure 3 shows a single cycle of the congestion control mech- 
anism. The sawtooth waveform is the instantaneous transmission 
rate. There are na active layers, each of which has a consumption 
rate of C. In the left hand side of the figure, the transmission rate 
is higher than the consumption rate, and this data will be stored 
temporarily in the receiver’s buffer. The total amount of stored 
data is equal to the area of triangle nbc. Such a period of time is 
known as aJilling phase. Then, at time tb, a packet is lost and the 
transmit rate is reduced multiplicatively. To continue playing out 
na layers when the transmission rate drops below the consumption 
rate, some data must be drawn from the receiver buffer until the 
transmission rate reaches the consumption rate again. The amount 
of data drawn from the buffer is shown in this figure as triangle 

‘Available bandwidth and transmission rate are used inter-changeably rhroughout 
this paper. 

‘For simplicity we ignore Row conrrol issues in this paper but implementations 
should not. However OUT final solutions generally require so little receiver buffering 
that this is not often an issue. 

Figure 3: Filling and draining phase 

cde. Such a period of time is known as a &king plme. 
Note that the quality adaptation mechanism can onlv adjust the 

number of active layers and their bandwidth share. This paper at- 
tempts to derive efficient behavior for these two key mechanisms: 

l A cotme-gmin mechanism for adding and dropping lay- 
ers. By changing the number of active layers, the server 
can perform coarse-grain adjustment on the total amount of 
receiver buffered data. 

l AJim-gmin inter-layer bandwidth allocation mechanism among 
the active layers. If there is receiver-buffered data avail- 
able for a layer, we can temporarily allocate less bandwidth 
than is being consumed while taking the remainder from the 
buffer. This smoothes out reductions in the available band- 
width. When spare bandwidth is available, we can send data 
for a layer at a rate higher than its consumption rate, and in- 
crease the data buffered for that layer at the receiver. 

In the next section, we present coarse-grain adding and dropping 
mechanisms as well as their relation to the fine-grain bandwidth 
allocation. Then we discuss the fine-grin bandwidth allocation in 
the subsequent sections. 

2.1 Adding a Layer 

A new layer can be added as soon as the instantaneous avail- 
able bandwidth exceeds the consumption rate (in the decoder) of 
the existing layers. The excess bandwidth could then be used to 
start buffering a new layer. However, this would be problematic 
as without knowing future available bandwidth we cannot decide 
when it will first be possible to start decoding the layer. The new 
layer’s plnyolct is decided by the inter-layer timing dependency 
between its data and that in the base layer. Therefore we cannot 
make a reasoned decision about which data from the new layer to 
actually send 3. 

A more practical approach is to start sending a new layer when 
the instantaneous bandwidth exceeds the consumption rate of the 
existing layers plus the new layer. In this approach the layer can 
start to play out immediately. In this case there is some excess 
bandwidth from the time the available bandwidth exceeds the con- 
sumption rate of the existing layers until the new layer is added. 
This excess bandwidth can be used to buffer data for existing lay- 
ers at the receiver. 

3Note that once the inter-layer riming for a new layer is adjusted, it is maintained 
as long as the buffer dots not dry out. 
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In practice, this bandwidth constraint for adding is still not con- 
servative enough, as it may result in several layers being added and 
dropped with each cycle of the congestion control sawtooth. Such 
rapid changes in quality would be disconcerting for the viewer. 
One way to prevent rapid changes in quality is to add a buffering 
condition such that adding a new layer does not endanger existing 
layers. Thus, the server may add a new layer when: 

1. The instantaneous available bandwidth is greater than the 
consumption rate of the existing layers plus the new layer, 
and, 

2. There is sufficient total buffering at the receiver to survive 
an immediate backoff and continue playing all the existing 
layers plus the new layer. 

To satisfy the second condition we assume (for now) that no addi- 
tional backoff will occur during the draining phase, and the slope 
of linear increase can be properly estimated. 

These are the minimal criteria for adding a new layer. If these 
conditions are held a new layer can be kept for a reasonable pe- 
riod of time during the normal congestion control cycles. We shall 
show later that we normally want to be more even conservative 
than this. Clearly we need to have sufficient buffering at the re- 
ceiver to smooth out variations in the available bandwidth so that 
the number of active layers does not change due to the normal 
hunting behavior of the congestion control mechanism. 

Expressing the adding conditions more precisely: 

Condition 1: R > (n, + l)C 
n,-1 

Condition 2: c bufi 1 
((n, + 1)C - G)” 

i=o 
2s 

where R is the current transmission rate 
no is the number of currently active layers 
bufi is the amount of buffered data for layer i 
S is the rate of linear increase in bandwidth 

(typically one packet per RlT) 

2.2 Dropping a Layer 

Once a backoff occurs, if the total amount of buffering at the re- 
ceiver is less than the estimated required buffering for recovery, 
(i.e, the area of triangle cde in figure 3), the correct course of 
action is to immediately drop the highest layer. This reduces the 
consumption rate (naC) and hence reduces the buffer requirement 
for recovery. If the buffering is still insufficient, the server should 
iteratively drop the highest layer until the amount of buffering is 
sufficient. This rule clearly doesn’t apply to the base layer which 
is always sent. 

The dropping mechanism more precisely: 

I I 

I 

I 
I n,-1 \ 

WHILE (n,c > R+ ,12S f3 buf;) 
I 

1 
\ v i=o / 

DOn,=n,-1 

This mechanism provides a coarse-grain criteria for dropping a 
layer. However, it may be insufficient to prevent buffer underflow 
during the draining phase for one of the following reasons: 

l We may suffer a further backoff before the current draining 

phase completes. 

l Our estimate of the slope of linear increase may be incorrect 
if the network RTT changes substantially. 

l There may be sufficient total data buffered, but it may be 
allocated among the different layers in a manner that pre- 
cludes its use to aid recovery. 

The first two situations are due to incorrect prediction of the amount 
of buffered data needed to recover, and we term such an event a 
critical situation. In such events, the only appropriate course of 
action is to drop additional layers as soon as the critical situation 
is discovered. 

The third situation is more problematic, and relates to the fine- 
grain bandwidth allocation among active layers during both filling 
and draining phases. We devote much of the rest of this paper to 
deriving and evaluating a near-optimal solution to this situation. 

2.3 Inter-layer Buffer Allocation 

Because of the decoding constraint in hierarchical coding, each 
additional layer depends on all the lower layers, and correspond- 
ingly is of decreasing value. Thus a buffer allocation mechanism 
should provide higher protection for lower layers by allocating a 
higher share of buffering for them. 

The challenge of inter-layer buffer allocation is to ensure the 
total amount of buffering is sufficient, and that is properly dis- 
tributed among active layers to effectively absorb the short-term 
reductions in bandwidth that might occur. The following two ex- 
amples illustrate ways in which improper allocation of buffered 
data might fail to compensate for the lack of available bandwidth. 

l Dropping layers with buffered data: A simple buffer al- 
location scheme might allocate an equal share of buffer to 
each layer. However, if the highest layer is dropped after a 
backoff, its buffered data is no longer able to assist the re- 
maining layers in the recovery. The top layer’s data will still 
be played out, but it is not providing buffering functional- 
ity. This implies that it is more beneficial to buffer data for 
lower layers. 

l Insufficient distribution of buffered data: An equally sim- 
ple buffer allocation scheme might allocate all the buffering 
to the base layer. Consider an example when three layers 
are playing, where a total consumption rate of 3C must 
be supplied for the receiver’s decoder. If the transmission 
rate drops to C, the base layer (LO) can be played from 
its buffer. Since neither L1 nor Lz has any buffering, they 
require transmission from the source. However available 
bandwidth is only sufficient to feed one layer. Thus LZ must 
be dropped even if the total buffering were su.cient for re- 
covery. 

In these examples, although buffering is available, it cannot be 
used to prevent the dropping of layers. This is ineficient use of the 
buffering. In general, we are striving for a distribution of buffering 
that is most ejjicient in the sense that it provides maximal protec- 
tion against dropping layers for any likely pattern of short-term 
reduction in available bandwidth. 

These examples reveal the following tradeoffs for inter-layer 
buffer allocations: 
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I Expressing this more precisely: 

l Allocating more buffering for the lower layers not only im- 
proves their protection but it also increases esJi&rzcy of buffer- 
ing. 

l Buffered data for each layer can not provide more than its 
consumption rate(i.e. C). Thus there is a minimum number 
of buffering layers that are needed to cope with short-term 
reductions in available bandwidth for successful recovery. 
This minimum is directly determined by the reduction in 
bandwidth that we intend to absorb by buffering. 

R 
nb =o; n, 5 - 

2c 
where nb is the minimum number of buffering layers 

R is the transmission rate (before a backoff) 

2.4 Optimal Inter-layer Buffer Allocation 

Given a draining phase following a single backoff, we can derive 
the optimal inter-layer buffer allocation that maximizes buffering 
efficiency. Figure 4 illustrates an optimal buffer allocation and 
its corresponding draining pattern for a draining phase. Here we 
assume that the total amount of buffering at the receiver at time tb 
is precisely sufficient for recovery(i.c. area of triangle afg) with 
no spare buffering available at the end of the draining phase. 

c- 

L.----t-.----i- 
‘b lie 

Figure 4: The optimal inter-layer buffer distribution 

To justify the optimahty of this buffer allocation, consider that 
the consumption rate of a layer must be supplied either from the 
network or from the buffer or a combination of the two. If it is 
supptied entirely from the buffer, that layer’s buffer is draining at 
consumption rate C. The area of quadrilateral defg in figure 4 
shows the maximum amount of buffer that can be drained from 
a single layer during this draining phase. If the draining phase 
ends as predicted, there is no preference as to buffer distribution 
among active layers as long as no layer has more than defg worth 
of buffered data. However, if the situation becomes critical due to 
further backoffs, layers must be dropped. Allocating area defg of 
buffering to the base layer would ensure that the maximum amount 
of the buffered data is still usable for recovery, and maximizes 
buffering efficiency. 

By similar reasoning, the next largest amount an additional 
layer’s buffer can contribute is quadrilateral bcde, and this por- 
tion of buffered data should be allocated to Lr , the first enhance- 
ment layer, and so on. This approach minimizes the amount of 
buffered data allocated for higher layers that might be dropped in a 
critical situation and consequently maximizes buffering efficiency. 

The optimal amount of buffering for layer i is: 

Bufi*opt = $(C(hx -2i-1)-R); i<nb-1 

Bnfi,opt =&.C - ; - dC)’ ; i=nt,-1 

Although we can calculate the optima1 allocation of bl Fered 
data for the active layers, a backoff may occur at any random time. 
To tackle this problem, during the filling phase, we incrementally 
adjust the allocation of buffered data so that the buffer state always 
remains as close as possible to an optimal state. 

’ Filling 
d-.Easc .- 

m&ii” ’ 
---.- 

, Available 

_-- /:.- 
Time 

Figure 5: Optimal Buffer sharing 

Toward that goal, we assume that a single backoff will occur 
immediately, and ask the question: “if we keep only the base layer, 
is there sufficient buffering to survive?‘. If there is not sufficient 
buffering, then we fill up the base layer’s buffer until it has enough 
buffering to survive a single backoff. Then we ask the question: “if 
we keep only two layers, is there enough buffering to survive with 
those buffers having optimal allocation?‘. If there is not enough 
base layer data, we fill the base layer’s buffer up to the optimal 
level. Then we start sending Li data until both layers have the 
optimal amount of buffering to survive. We repeat this process 
and increase the number of expected surviving layers until all the 
buffering layers are tilled up to an optimal level such that all active 
layers can survive from a single backoff. This approach results in 
a sequential filling pattern among buffering layers. 

Figure 5 illustrates the optimal filling and draining scheme for 
a single backoff. If a backoff occurs exactly at time tb, all Iayers 
can survive the backoff. Occurrence of a backoff earlier than tb 
results in dropping one or more active layers. However the buffer 
state is always as close as possible to the optimal state without 
those layers. If no backoff occurs until adding conditions (section 
2.1) are satisfied, a new layer is added and we repeat the sequential 
filling mechanism. 

It is worth mentioning that the server can control the filling and 
draining pattern by proper fine-grain bandwidth allocation among 
active layers. Figure 5 illustrates that at each point of time during 
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the draining phase, bandwidth share plus draining rate for each 
layer is equal to its consumption rate. Thus maximally efficient 
buffering results in the upper layers being supplied from the net- 
work during the draining phase while the lower layers are supplied 
from their buffers. For example, just after the backoff, layer 2 is 
supplied entirely frorn the buffer, but the amount supplied from the 
buffer decreases to zero as data supplied from the network takes 
over. Layers 0 and 1 are supplied from the buffer for longer peri- 
ods. 

3 Smoothness Constraints 

In the previous section, we derived an optimal filling and draining 
scheme based on the assumption that we only buffer to survive a 
single backoff with all the layers intact. However, examination of 
Internet traffic indicates that real networks exhibit near-random[2] 
loss patterns with frequent additional backoffs during a draining 
phase. Thus, aiming to survive only a single backoff is too aggres- 
sive and results in frequent adding and dropping of layers. 

3.1 Smoothing 

To achieve reasonable smoothing of the add and drop rate, an ob- 
vious approach is to refine our adding conditions (in section 2.1) 
to be more conservative. We have considered the following two 
mechanisms to achieve smoothing: 

l We may add a new layer if the average available bandwidth 
is greater than the consumption rate of the existing layers 
plus the new layer. 

l We may add a new layer if we have sufficient amount of 
buffered data to survive Kmaz backoffs with existing layers, 
where Km,, is a smoothing factor with value greater than 
one. 

Although each one of these mechanisms results in smoothing, the 
latter not only allows us to directly tie the adding decision to ap- 
propriate buffer state for adding, but it can also utilize limited 
bandwidth links effectively. For example, if there is sufficient 
bandwidth across a modem link to receive 2.9 layers, the aver- 
age bandwidth would never become high enough to add the third 
layer. In contrast, the latter mechanism would send 3 layers for 
90% of the time which is more desirable. For the rest of this pa- 
per we assume that the only condition for adding a new layer is 
availability of optimal buffer allocation for recovery from K,,,,, 
backoffs. 

Changmg K,,,,, allows us to tune the balance between maxi- 
mizing the short-term quality and minimizing the changes in qual- 
ity. An obvious question is “What degree of smoothing is ap- 
propriate?” In the absence of a specific layered codec and user- 
evaluation, K,,,,,: can not be analytically derived. Instead it should 
be set based on real-world user perception experiments to deter- 
mine the appropriate degree of smoothing that is not disturbing to 
the user. In practice, we probably also want to base K,,, on the 
average bandwidth and R’I’T since these determine the duration of 
a draining phase. 

3.2 Buffering Revisited 

If we delay adding a new layer to achieve smoothing, this affects 
the way we fill and drain the buffers. Figure 6 demonstrates this 
issue. 

Figure 6: Revised Draining Phase Algorithm 

Up until time ts, this is the same as figure 5. The second filling 
phase starts at time t3, and at t4 there is sufficient buffering to 
survive a backoff. However, for smoothing purposes, a new layer 
is not added at this point and we continue buffering data until a 
backoff occurs at ts, 

Note that as the available bandwidth increases, the total amount 
of buffering increases but the required buffering for recovery from 
a single backoff decreases. At time t5, we have more buffering 
than we need to survive a single backoff, but insufficient buffering 
to survive a second backoff before the end of the draining phase. 
We need to specify how we allocate the extra buffering after time 
t4, and how we drain these buffers after t5 while maintaining effi- 
ciency. 

Conceptually, during the filling phase, the server sequentially 
examines the following steps: 

Step 1: enough buffer for one backoff with LO intact. 
Step 2: enough buffer for one backoff with LO and L1. 

Step no : enough buffer for one backoff with LO through 
Ln,-l intact. 

Step na+l: enough buffer for one backoff with LO through 
layer L,, - 1 intact and two backoffs with LO intact. 

At any point in the filling phase we have satisfied one step and are 
working towards the next step. 

When a backoff occurs between steps, in this case between 
steps nrr and n, + 1, we essentially reverse the filling process. 
First we identify between which two steps we’re currently located. 
Then we traverse through the steps in the reverse order to deter- 
mine which layers must be drained and by how much. In essence, 
during consecutive filling and draining phases, we traverse this se- 
quence of steps (i.e. optimal buffer states) back and forth such 
that at any point of time the buffer state is as close to optimal as 
possible. In the next section, we describe this mechanism in more 
detail. 

4 Buffer Allocation with Smoothing 

To design an efficient filling and draining mechanisms in the pres- 
ence of smoothing, we need to know the optimal buffer alloca- 
tion among layers and the corresponding maximally efficient fill- 
ing and draining patterns for multiple-backoff scenarios. 

The optimal buffer allocation for a scenario with multiple back- 
offs is not unique because it depends on the time when the addi- 
tional backoffs occur during the draining phase. If we have knowl- 
edge of future loss distribution patterns it might, in principle, be 
possible to calculate the optimal buffer allocation. In practice such 
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a solution would be excessively complex for the problem it is try- 
ing to solve, and rapidly becomes intractable as the number of 
backoffs increases. Let us first assume that only one additional 
backoff occurs during the draining phase. The possible scenarios 
arc shown in figure 7. This figure illustrates that the optimal buffer 
allocation for each scenario depends on the time of the second 
backoff, the consumption rate, and the transmission rate before 
the first backoff. 

* Backoff 1 Backoff 1 Backaft 1 

- Available bandwidth 

r Data consumed from buffers 

Time 

Figure 7: Possible Double-backoff Scenarios 

We can extend the idea of optimal buffer allocation for a single 
backoff (section 2.4) to each individual scenario. Added com- 
plexity arises from the fact that different scenarios require differ- 
ent buffer allocations. For an equal amount of the total buffering 
needed for recovery, scenarios 1 and 2 are two extreme cases in 
the sense that they need the maximum and minimum number of 
buffering layers respectively. Thus addressing these two extreme 
scenarios should efficiently cover all the intermediate scenarios 
(e.g. scenario 3) as well. 

We need to decide which scenario to consider during the filling 
phase. We make a key observation here. If the total amount of 
buffering for scenarios 1 and 2 are equal, having the optimal buffer 
distribution for scenario I is sufficient for recovery from scenario 
2, although it is not maximally efficient. However, the converse is 
not feasible. The higher flexibility in scenario 1 comes from the 
fact that this scenario needs a larger number of buffering layers 
than does scenario 2. Thus, if we have a buffer distribution that 
can recover from a scenario 1, we will be able to cope with a 
scenario 2 that has the same total buffer requirement, but not vice 
versa. 

This suggests that during the filling phase for two backoff sce- 
narios, first we consider the optimal buffer allocation for scenario 
1 and fill up the buffers in a step by step sequential fashion as de- 
scribed in section 3.2. Once this is achieved, then we move on to 
consider scenario 2. 

4.1 Filling Phase with Smoothing 

To extend this idea to scenarios of k backoffs, we need to examine 
the optimal buffer allocation for scenario 1 and 2 for each suc- 
cessive value of k. Figure 8 illustrates the optimal buffer state, 
including the total buffer requirement and its optimal inter-layer 
allocation in scenario 1 and 2, for different values of k. Ideally, 
we would like to fill the buffers during the filling phase such that 
we traverse through these buffer states in turn. Once k exceeds 
K maz (the smoothing factor), then we add a new layer and start 
the process again with the new sets of optimal buffer states. 

Toward this goal, we order these different buffer states in in- 
creasing value of total amount of required buffering in figure 9. 
Thus by traversing this sequence of buffer states, we always work 
towards the next optimal state that requires more buffering. 

Figure 8: Buffer distributions for k backoffs 

Figure 9: Distributions in increasing order of buffering 

Unfortunately this requires us to occasionally drain an exist- 
ing buffer in order to reach the next state4. mo examples of this 
phenomenon are visible in figure 9: 

l Moving from the {scenario 2, k=2} case to the {scenario 1, 
k=2} case involves draining LO’S buffer. 

l Moving from the {scenario 1, k=4} case to the {scenario 2, 
k=3} case involves draining Lz’s buffer. 

We do not want to drain any layer’s buffer during the flling 
phase because that buffering provides protection for a previous 
scenario that we have already passed. Thus we seek the maxi- 
mally efficient sequence of buffer states that is consistent with rhe 
existing hffering. The total amount of required buffering and the 
per layer buffer requirement must be monotonically increasing as 
we go to the next buffer state. 

The key observation that we mentioned earlier allows us to cal- 
culate such a sequence. We recall that having the optimal buffer 
distribution for scenario I is sufficient for recovery from scenario 
2, although it is not maximally efficient. Given this flexibility, the 
solution is to constrain per layer buffer allocation in each scenario- 
2 state to be no less than the previous scenario- 1 state, and no more 
than the next scenario-1 state (in the sequence of states in figure 9). 
Figure 10 depicts a sequence of maximally efficient buffer states 
after applying the above constraints where each step in the filling 
process is numbered. By enforcing this constraint, we can traverse 
through the buffer states such that buffer allocation for each state 
satisfies the buffer requirement for all the previous states. This im- 
plies that both the total amount of buffering and the amount of per 
layer buffering monotonically increase. Thus the per layer buffcr- 
ing can always be used to aid recovery. Once we have sufficient 
buffering for recovery from Km,, backoffs in both scenarios, a 
new layer will bc added. 

“This means that the order of these states based on increasing value of total E- 
quired buffering is different from their order based on increasing value of per layer 
buffering. 
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Figure 10: Step-by-step buffer filling 

The following pseudo-code expresses our per-packet algorithm 
to ensure that buffer state remains maximally efficient during the 
tilling phase5: 

FUNCTION SendPacket 

WHILE (BufRcql < TorBufAvailuhle) AND (SlBackolYs < K,,.) 

INCREMENT SIBuck@3 

BujR~yl = TotalBufRequired(CurrmtRate, Scenoriu=l , 
SlBuckoflv, ActiveLuy.v) 

WHILE (BufReq2 < TotBufAvaiMh) 

INCREMENT S?Buckoffs 

BufReq2 = TotalBufRequired(C~trrenrRarr. Scenario=2, 
S2Bockoffs, ActiveL+m) 

FOR L.+w = I TO AaiveL+vrs 

L.uyrrBufl = ButRequired(CurrenlRure, Scenario=1 , 

SlBuckojjYs. L.+wr, Ache-L+m) 

hy~Br@ = BufRequired(CurrentR~~t~, Scenario=2. 
S2Bockoflr, Lqer, Aaivehyrs) 

IF (BujRrql < BujReq2) AND (SlBackoffs < K,,,) 
#We’re considering scenario I 

IF Ku.wrf?ufl > BufAvailable(Lu)er) 
SendPacketFromLayer(&vtv.) 

RETURN 

ELSE #We’re considering scenario 2 

IF (hyrBuJ2 > BufAvailabln(,Qzyer)) AND 

(WBocknffs > Km,,,) OR 

L!.uyerB~$/ < BufAvailable(Layer))) 

SendPacketFromLayer(~~w) 

RETURN 

K “la.7 is the smoothing factor, giving the number of backoffs 
for which we buffer data before adding a new layer. 

The function TotalBufRequired returns the total amount of required 
buffering for all layers in the scenario in question, given the cur- 
rent send rate, the number of active layers, and the number of 
backoffs being considered. 

‘The algorithm performs fine-grain bandwidth allocation by assigning the next 
transmitting packet to a particular layer. 

rotalBufRequired() 

Scenario I 

Bvftotal =o 

where k is the number of backoffs being considered 

Scenario 2 

B?Lftotal =O 

5; he function ButRequired returns the maximally efficient amount 
of required buffering for a particular layer in the scenario of the 
state we are currently working towards. The input parameters for 
this function are: the layer number, the current sending rate, the 
number of active layers, and the number of backoffs being consid- 
ered. 

3ufRequiredO 

Scenario I 

Buf;,,,t =0 ; k 5 log& 
a 

Buf;,,,t =$C(% -26-l)-&) 

k >log& ; O<i<nL 
a 

Scenario 2 

Bufi,opt =O ; k 5 log25 

Bufi,opt =g 
( 

(C(2n, P,i - 1) - &) 

+ (k - kl)C(n, - 2i - 1) 
> 

k >loga-& ; O<i<nb 
a 

4.2 Draining Phase with Smoothing 

As we traverse through the maximally efficient states, one or more 
backoffs eventually move us into a draining phase. Given that 
we incrementally traverse the maximally efficient path of buffer 
states during the filling phase, we would like to traverse the same 
path, but in the reverse direction, during the draining phase. This 
approach guarantees that the highest layer buffers are not drained 
until they are no longer required, and the lowest layer buffers are 
not drained too early. 

At the start of each step we have an efficient amount of pro- 
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tective buffering for one particular state, and regressively work to- 
ward the previous maximally efficient buffer state along the maxi- 
mally efficient path. However, there is an additional constraint that 
we can not drain a layer’s buffer faster than the layer consumption 
rate, C. 

To achieve such a draining pattern, we periodically calculate 
the draining pattern for a short period of time, during which we 
expect to drain a certain number of packets. This number is based 
on the current estimate of slope of linear increase and the current 
consumption rate. We then calculate (using an algorithm similar to 
the above pseudo-code) the previous optimal state along the maxi- 
mally efficient path that we can achieve with the current amount of 
buffering. Conceptually, then we consider draining data from each 
layer in turn, starting from the highest layer and working down- 
wards, such that each layer’s buffering does not drop below its 
buffer share at the previous optimal step we are draining towards. 
An added constraint is that we must limit the amount of drained 
data from a layer to the maximum amount that can be consumed 
during this period. If the buffer state reaches the previous opti- 
mal state being considered before we have allocated the number 
of packets that must be drained in this period, then we move on to 
consider the previous state along the maximally efficient path and 
so on. We repeat this process until a sufficient number of packets 
for draining during this period are identified. Then we allocate the 
bandwidth during the period such that each active layer receives 
the total amount of data that it must consume during this period, 
minus those packets we just allocated to drain during the period. 

5 Simulation 

We have evaluated our quality adaptation mechanism through sim- 
ulation using bandwidth traces obtained from RAP in the ns2 [3] 
simulator and real Internet experiments. 

Figure I 1 provides a detailed overview of the mechanisms in 
action. It shows a 40 second trace where the quality-adaptive RAP 
flow co-exists with 10 Sack-TCP Rows and 9 additional RAP flows 
through an 800 Kb/s bottleneck with 40ms RTT. The smoothing 
factor was set to 2 so that it provides enough receiver buffering 
for two backoffs before adding a new layer(K,,,,, = 2). The con- 
sumption rate of each layer(C) is equal to 10 KB/s. 

Figure 11 shows the lbllowing parameters: 

l The total transmission rate, illustrating the saw-tooth output 
of RAP. We have also overlaid the consumption rate of the 
active layers over the transmission rate to demonstrate the 
add and drop mechanism. 

l The transmission rate broken down into bandwidth per layer. 
This shows that most of the variation in available bandwidth 
is absorbed by changing the rate of the lowest layers (shown 
with the light-gray shading). 

l The individual bandwidth share per layer. Periods when a 
layer is being streamed above its consumption rate to build 
up receiver buffering are visible as spikes in the bandwidth. 

l The buffer drain rate per layer. Clearly visible are points 
where the buffers are used for playout because the band- 
width share is temporarily less than the layer consumption 
rate. 

l The accumulated buffering at the receiver for each active 
layer. 

Graphs in figure 11 demonstrate that the short-term variations in 
bandwidth caused by the congestion control mechanism can be 
effectively absorbed by receiver buffering. Furthermore playback 
quality is maximized without risking complete dropouts in the 
playback due to buffer underflow. 

Smoothing Factor 
To examine the impact of smoothing factor on the behavior, we 
repeated the previous simulation with different values of K,,,. 
Figure 12 shows the number of active layers and buffer alloca- 
tion across active layers for K,,,=2, h’,,,=3, and Km,,=4. As 
expected, higher values of K,,,,, reduce the number of changes 
in quality at the expense of increasing the time it takes to first 
achieve the best short-term quality. This manifests itself in two 
ways. As h’,,, increases, first the total amount of buffering is 
increased. Second, more of the buffering is allocated for higher 
layers to cope with the larger variations in available bandwidth as 
a result of successive backoffs. 

Responsiveness 
We have also explored the responsiveness of the quality adaptation 
mechanism to large step changes in available bandwidth. Figure 
13 depicts a RAP trace with the same parameters as figure 11 but a 
CBR source with a rate equal to half of the bottleneck bandwidth 
is started at t=30s and stopped at t=60s and K,,,=4. The RAP 
congestion control mechanism rapidly responds to these changes 
by reducing the average transmission rate. The quality adapta- 
tion mechanism closely follows the changes in bandwidth. La 
and then Lz are dropped when bandwidth reduces and then L2 is 
added when bandwidth becomes available again. Notice that every 
layer’s buffer is involved in this process, but the reception of the 
base layer is never jeopardized. Thus, we have satisfied our origi- 
nal design goal of providing smoothing of quality while providing 
protection to the most critical layers. 

Efficiency 
The performance of our algorithms can be examined from the ef- 
ficiency of the buffer allocation. The inter-layer buffer allocation 
is maximally efficient if the following conditions are both satis- 
lied: (i) no data is buffered for a layer that is dropped, and (ii) 
the layer is only dropped because the foral amount of buffering is 
insufficient. To quantify the efficiency of our scheme, we have cal- 
culated the percentage of remaining buffer for each dropped layer 
as follows: 

e= buftotnl-bufd,.op 
buftotar 

where buftotol and buf,+op denote the total buffering and the 
buffer share of the dropped layer. Then we averaged out the value 
of e across all drop events during the simulation tid use that as an 
evaluation metric for efliciency. 

Table 1 shows these efliciency values for different values of 
I~,,, during two test, Tl and T2. Tl is the 10 RAP, 10 TCP test 
depicted in figures 11 whereas T2 is the 10 RAP, 10 TCP test with 
a large CBR burst shown in figure 13. These results show that our 
scheme is very efficient - very little buffered data is still available 
in a layer that is dropped. 

11 Km,,=21 Km,,=31 Km,,=41 Km,,=51 Km,,=8 

1 
Tl II 99.77% I 99.97% 1 99.84% I 99.85% I 99.99% 
T2 11 99.15% 1 99.81% 1 99.92% 1 99.80% 1 96.07% 1 

Table 1: Efficiency of buffer allocation 
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Time 40s 
Total Transmit and Consumption Rates 

40 

30 

20 

C=,O 

Transmit Rate Breakdown by Layer 

Transmit Rate per Layer 

Drain Rate per Layer 

” 

Data Buffered per Layer 
Tulle 40s 

Figure I I : First 40 seconds of Km,,=2 trace 
Figure 12: Effect of IT,,, on buffering and quality 
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Total Transmit and Consomptlon Rates 

Transmit Rate per Layer 

81 
Layer 1 

Time 90s 

main Rate per Layer 

Figure 13: Effect of long-term changes in bandwidth 

Table 2 shows the percentage of drops due to poor buffer distri- 
bution in test Tl and T2. These are drops that would not have 
happened if the amount of buffered data that was at the receiver 
had been distributed differently. Our mechanism is completely 
efficient in this respect for the Tl tests, and performs fairly well 
for the T2 case. Clearly the mechanism becomes less efficient as 
K,,, increases. The higher the value of K,,,,, , the more buffer- 
ing is allocated for higher layers. Hence there is a higher probabil- 
ity of dropping the highest layer with some buffering particularly 
after sudden drops in available bandwidth such as when a CBR 
source appears. In essence, conservative buffering0.e. higher 
K,,,) enables the server to cope with wider variations in band- 
width. However sudden drops of bandwidth in these situations 
results in lower efficiency. 

11 K maz=21 Km,,=31 K,n,,=4~ K,,,=5] Km,,=8 
Tl II 0% I 0% I 0% I 0% I 0% 
T2 11 2.4% ) 0% ) 4.8% 1 11% 1 - 1 
Table 2: % drops due to poor buffer distribution 

6 Related Work 

Receiver-based layered transmission has been discussed in the con- 
text of multicast video[9, 11, 221 to accommodate heterogene- 
ity while performing coarse-gram congestion control. This dif- 
fers from our approach that allows fine-grain congestion control 
for unicast delivery with no step-function changes in transmission 
rate. 

Merz et al. [ 131 present au iterative approach for sending high 
bandwidth video through a low bandwidth channel. They suggest 
segmentation methods that provide the flexibility to playback a 
high quality stream over several iterations, allowing the client to 
trade startup latency for quality. 

Work in [7, 16, 191 discuss congestion control for streaming 
applications and focusing on rate adaptation. However, variations 
of transmission rate in a long-lived session could result in client 
buffer overflow or underflow. Quality adaptation is complemen- 
tary for these scheme because it prevents buffer underflow or over- 
flow while effectively utilizing the available bandwidth. 

Feng et al. [4] propose an adaptive smoothing mechanism 
combining bandwidth smoothing with rate adaptation. The send 
rate is shaped by dropping low-priority frames based on prior knowl- 
edge of the video stream. This is meant to limit quality degrada- 
tion caused by dropped frames but the quality variation cannot be 
predicted. 

Unfortunately, technical information for evaluation of popular 
applications such as RealVideo G2 [ 141 is unavailable. 

7 Conclusions and Future Work 

We have presented a quality adaptation mechanism to bridge the 
gap between short-term changes in transmission rate caused by 
congestion control and the need for stable quality in streaming ap- 
plications. We exploit the flexibility of layered encoding to adapt 
the quality along with long-term variations in available bandwidth. 
The key issue is appropriate buffer distribution among the active 
layers. We have described an efficient mechanism that dynam- 
ically adjusts the buffer distribution as the available bandwidth 
changes by carefully allocating the bandwidth among the active 
layers. Furthermore, we introduced a smoothing parameter that 
allows the server to trade short-term improvement for long-term 
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smoothing of quality. The strength of our approach comes from 
the fact that we did not make any assumptions about loss patterns 
or available bandwidth. The server adaptively changes the re- 
ceiver’s buffer state to incrementally improve its protection against 
short-term drops in bandwidth in an efficient fashion. Our simu- 
lation and experimental results reveal that with a small amount 
of buffering the mechanism can efficiently cope with short-term 
changes in bandwidth due to AIMD congestion control. The mech- 
anism can rapidly adjust the quality of the delivered stream to uti- 
lize the available bandwidth while preventing buffer overflow or 
underflow. Furthennore, by increasing the smoothing factor, the 
frequency of quality variation is effectively limited. 

Given that buffer requirements for quality adaptation are not 
large, we believe that these mechanisms can also be deployed for 
non-interactive live sessions where the client can tolerate a short 
delay in delivery. 

We plan to extend the idea of quality adaptation to other con- 
gestion control schemes that employ AIMD algorithms and inves- 
tigate the implications of the details of rate adaption on our mech- 
anism. We will also study quality adaptation with a non-linear 
distribution of bandwidth among layers. Another interesting issue 
is to use a measurement-based approach to adjust K,,, on-the-fly 
based on the recent history. 

Finally, quality adaptation provides a perfect opportunity for 
proxy caching of multimedia streams which we plan to examine. 
The proxy would cache each stream and missing pieces that are 
likely to be needed would be pre-fetched in a demand-driven fash- 
ion. 
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