
EXHIBIT 1018

Webgroup CZ a.s. Ex. 1018, Page 1 of 13

Quality Adaptation for Congestion Controlled Video Playback over the Internet *

Reza Rejaie Mark Handley
Information Sciences Institute AT&T Center of Internet Research

University of Southern California The International Computer Science Institute
reza@isi.edu mjh@aciri.org

Deborah Estrin
Information Sciences Institute

University of Southern California
estrin@isi.edu

Abstract

Streaming audio and video applications are becoming increasingly
popular on the Internet, and the lack of effective congestion con-
trol in such applications is now a cause for significant concern.
The problem is one of adapting the compression without requir-
ing video-servers to re-encode the data, and fitting the resulting
stream into the rapidly varying available bandwidth. At the same
time, rapid fluctuations in quality will be disturbing to the users
and should be avoided.

In this paper we present a mechanism for using layered video
in the context of unicast congestion control. This quality adap-
tation mechanism adds and drops layers of the video stream to
perform long-term coarse-grain adaptation, while using a TCP-
friendly congestion control mechanism to react to congestion on
very short timescales. The mismatches between the two timescales
are absorbed using buffering at the receiver. We present an ef-
ficient.scheme for the distribution of buffering among the active
layers. Our scheme allows the server to trade short-term improve-
ment for long-term smoothing of quality. We discuss the issues in-
volved in implementing and tuning such a mechanism, and present
our simulation results.

1 Introduction

The Internet has been experiencing explosive growth of audio and
video streaming. Most current applications involve web-based au-
dio and video playback[6,14] where stored video is streamed from
the server to a client upon request. This growth is expected to con-
tinue, and such semi-realtime traffic will form a higher portion of
the Internet load. Thus the overall behavior of these applications
will have a significant impact on the Internet traffic.

Since the Internet is a shared environment and does not cur-
rently micro-manage utilization of its resources, end systems are
expected to be cooperative by reacting to congestion properly and
promptly[5]. Deploying end-to-end congestion control results in

*This work was supported by DARPA under contract No. DABT63-95
COO95 and DABT63-96-C-0054 as part of SFT and VINT projects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCOMM ‘99 8/99 Cambridge, MA, USA
0 1999 ACM l-581 13-135s6/99/0008...$5.00

higher overall utilization of the network and improves inter-protocol
fairness. A congestion control mechanism determines the avail-
able bandwidth based on the state of the network, and the appli-
cation should then use this bandwidth efficiently to maximize the
quality of the delivered service to the user.

Currently, many of the commercial streaming applications do
not perform end-to-end congestion control. This is mainly be-
cause stored video has an intrinsic transmission rate. These rate-
based applications either transmit data with a near-constant rate
or loosely adjust their transmission rates on long timescales since
the required rate adaptation for effective congestion control is not
compatible with their nature. Large scale deployment of these ap-
plications could result in severe inter-protocol unfairness against
TCP-based traffic and possibly even congestion collapse.

This paper is not about congestion control mechanisms. but
about a complementary mechanism to adapt the quality of stream-
ing video playback while performing congestion control. How-
ever, to design an effective quality adaptation scheme, we need
to know the properties of the deployed congestion control mech-
anism. Our primary assumption is that the congestion control
mechanism employs an additive increase, multiplicative decrease
(AIMD) algorithm.

We previously designed a simple TCP-friendly congestion con-
trol mechanism, the Rate Adaptation Protocol (RAP)[17]. RAP is
a rate-based congestion control mechanism and employs an AIMD
algorithm in a manner similar to TCP. We assume RAP as the un-
derlying congestion control mechanism because it’s properties are
relatively simple to predict. However, our proposed mechanisms
can be applied with any congestion control scheme that deploys
an AIMD algorithm.

Figure 1 shows the transmission rate of a.RAP source over
time. Similar to TCP, it hunts around for a fair share of the band-
width. However unlike TCP, RAP is not ACK-clocked and vari-
ations of transmission rate have a more regular sawtooth shape.
Bandwidth increases linearly for a period of time, then a packet is
lost, and an exponential backoff occurs, and the cycle repeats.

1.1 Target Environment

Our target environment is a video server that simultaneously plays
back different video streams on demand for many heterogeneous
clients. As with current Internet video streaming, we expect the
length of such streams to range from 30 second clips to full-length
movies. The server and clients are connected through the Internet
where the dominant competing traffic is TCP-based. Clients have

189

Webgroup CZ a.s. Ex. 1018, Page 2 of 13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F316188.316222&domain=pdf&date_stamp=1999-08-30
http://crossmark.crossref.org/dialog/?doi=10.1145%2F316188.316222&domain=pdf&date_stamp=1999-08-30

Figure I : Transmission rate of a single RAP flow

heterogeneous network capacity and processing power. Users ex-
pect startup playback latency to be low, especially for shorter clips
played back as part of web surfing. Thus pre-fetching an entire
stream before starting its playback is not an option. We believe
that this scenario reasonably represents many current and antici-
pated Internet streaming applications.

1.2 Motivation

If video for playback is stored at a single lowest - common - de-
nominator encoding on the server, high-bandwidth clients will re-
ccive poor quality despite availability of a large amount of band-
width. However, if the video is stored at a single higher quality
encoding (and hence higher data rate) on the server, there will
be many low-bandwidth clients that cannot play back this stream.
In the past, we have often seen RealVideo streams available at
14.4 Kb/s and 28.8 Kb/s, where the user can choose their connec-
tion speed. However, with the advent of ISDN, ADSL, and cable
modems to the home, and faster access rates to businesses, the
Internet is becoming much more heterogeneous. Customers with
higher speed connections feel frustrated to be restricted to modem-
speed playback. Moreover, the network bottleneck may be in the
backbone, such as at provider interconnects or links to the server
itself. In this case, the user cannot know the congestion level and
congestion control mechanisms for streaming video playback are
critical.

Given the time varying bandwidth channel due to congestion
control the server to be able to adjust the quality of the stream it
plays back so that the perceived quality is as high as the available
network bandwidth will permit. We term this quality adaptuhm.

1.3 Quality Adaptation Mechanisms

There are several ways to adjust the quality of a pre-encoded stored
stream, including adaptive encoding: switching among multiple
pre-encoded versions, and hierarchical encoding.

One may re-quantize stored encodings on-the-fly based on net-
work feedback[I, 1.5, 201. However, since encoding is CPU -
intensive, servers are unlikely to be able to do this for large num-
bers of clients. Furthermore, once the original data has been stored
compressed, the output rate of most encoders can not be changed
over a wide range.

In an alternative approach, the server keeps several versions
of each stream with different qualities. As available bandwidth

changes, the server plays streams of higher or lower quality as
appropriate.

With hierarchical encoding[8, 10, 12,211, the server maintains
a layered encoded version of each stream. As more bandwidth
becomes available, more layers of the encoding are delivered. If
the average bandwidth decreases, the server may then drop some
of the layers being transmitted. Layered approaches usually have
the decoding constraint that a particular enhancement layer can
only bc decoded if all the lower quality layers have been received.

There is a duality between adding or dropping of layers in the
layered approach and switching streams in the multiply-encoded
approach. However the layered approach is more suitable for
caching by a proxy for heterogeneous clients[181. In addition, it
requires less storage at the server, and it provides an opportunity
for selective retransmission of the more important information.
The design of a layered approach for quality adaptation primar-
ily entails the design of an efficient add and drop mechanism that
maximizes quality while minimizing the probability of base-layer
buffer underflow.

The rest of this paper is organized as follows: first we provide
an overview of the layered approach to quality adaptation and then
explain coarse-grain adding and dropping mechanisms in section
2. WC also discuss fine-grain inter-layer bandwidth allocation for a
single backoff scenario. Section 3 motivates the need for smooth-
ing in the presence of real loss patterns and discusses two possible
approaches. In section 4, we sketch an efficient filling and drain-
ing mechanism that not only achieves smoothing but is also able
to cope efficiently with various pattcms of losses. We evaluate
our mechanism through simulation in section 5. Section 6 briefly
reviews related work. Finally, section 7 concludes the paper and
addresses some of our future plans.

2 Layered Quality Adaptation

Hierarchical encoding provides an effective way that a video play-
back server can coarsely adjust the quality of a video stream with-
out transcoding the stored data. However, it does not provide fine-
grained control over bandwidth, i.e. bandwidth changes at the
granularity of a layer. Furthermore, there needs to be a quality
adaptation mechanism to smoothly adjust the quality (i.e. number
of layer) as bandwidth changes. Users will tolerate poor quality
video, but rapid variations in quality are disturbing.

Hierarchical encoding allows video quality adjustment over
long periods of time, whereas congestion control changes the trans-
mission rate rapidly over short time intervals (several round-trip
times,(RTTs)). The mismatch between the two timescales is made
up for by buffering data at the receiver to smooth the rapid varia-
tions in available bandwidth and allow a near constant number of
layers to be played.

Figure 2 graphs a simple simulation of a quality adaptation
mechanism in action. The top graph shows the available network
bandwidth and the consumption rate at the receiver with no layers
being consumed at startup, then one layer, and finally two layers.
During the simulation, two packets are dropped and cause conges-
tion control backoffs, when the transmission rate drops below the
consumption rate for a period of time. The lower graph shows the
playout sequence numbers of the actual packets against time. The
horizontal lines show the period between arrival time and playout
time of a packet. Thus it indicates the total amount of buffering for
each layer. This simulation shows more buffered data for Layer 0
(the base layer) than for Layer 1 (the enhancement layer). Af-
ter the first backoff, the length of these lines decreases indicating

190

Webgroup CZ a.s. Ex. 1018, Page 3 of 13

Filling Phase _ _ Draining _ -Filling _ pminink Jlling

/?I
< -I- Phm - l’hxse - -Phnse - Phase

Figure 2: Layered Encoding with Receiver Buffering

buffered data from Layer 0 is being used to compensate for the
lack of available bandwidth. At the time of the second backoff,
a little data has been buffered for Layer 1 in addition to the large
amount for Layer 0. Thus data is drawn from both buffers properly
to compensate for the lack of available bandwidth.

The congestion control mechanism dictates the available band-
width I. We cannot send more than this amount, and do not wish
to send less’. In a real network even the average bandwidth of
a congestion controlled llow changes over the session lifetime.
Thus a quality adaptation mechanism must continuously evalu-
ate the available bandwidth and adjust the number of active layers
accordingly.

In this paper WC assume that the layers arc linearly spaced - that
is each layer has the same bandwidth. This simplifies the analysis,
but is not a requirement. In addition, we assume each layer has a
constant consumption rate over time. In practice this is unlikely in
a real codec, but to a first approximation it is reasonable. It can be
ignored by slightly increasing the amount of receiver buffering for
all layers to absorb variations in consumption rate.

Figure 3 shows a single cycle of the congestion control mech-
anism. The sawtooth waveform is the instantaneous transmission
rate. There are na active layers, each of which has a consumption
rate of C. In the left hand side of the figure, the transmission rate
is higher than the consumption rate, and this data will be stored
temporarily in the receiver’s buffer. The total amount of stored
data is equal to the area of triangle nbc. Such a period of time is
known as aJilling phase. Then, at time tb, a packet is lost and the
transmit rate is reduced multiplicatively. To continue playing out
na layers when the transmission rate drops below the consumption
rate, some data must be drawn from the receiver buffer until the
transmission rate reaches the consumption rate again. The amount
of data drawn from the buffer is shown in this figure as triangle

‘Available bandwidth and transmission rate are used inter-changeably rhroughout
this paper.

‘For simplicity we ignore Row conrrol issues in this paper but implementations
should not. However OUT final solutions generally require so little receiver buffering
that this is not often an issue.

Figure 3: Filling and draining phase

cde. Such a period of time is known as a &king plme.
Note that the quality adaptation mechanism can onlv adjust the

number of active layers and their bandwidth share. This paper at-
tempts to derive efficient behavior for these two key mechanisms:

l A cotme-gmin mechanism for adding and dropping lay-
ers. By changing the number of active layers, the server
can perform coarse-grain adjustment on the total amount of
receiver buffered data.

l AJim-gmin inter-layer bandwidth allocation mechanism among
the active layers. If there is receiver-buffered data avail-
able for a layer, we can temporarily allocate less bandwidth
than is being consumed while taking the remainder from the
buffer. This smoothes out reductions in the available band-
width. When spare bandwidth is available, we can send data
for a layer at a rate higher than its consumption rate, and in-
crease the data buffered for that layer at the receiver.

In the next section, we present coarse-grain adding and dropping
mechanisms as well as their relation to the fine-grain bandwidth
allocation. Then we discuss the fine-grin bandwidth allocation in
the subsequent sections.

2.1 Adding a Layer

A new layer can be added as soon as the instantaneous avail-
able bandwidth exceeds the consumption rate (in the decoder) of
the existing layers. The excess bandwidth could then be used to
start buffering a new layer. However, this would be problematic
as without knowing future available bandwidth we cannot decide
when it will first be possible to start decoding the layer. The new
layer’s plnyolct is decided by the inter-layer timing dependency
between its data and that in the base layer. Therefore we cannot
make a reasoned decision about which data from the new layer to
actually send 3.

A more practical approach is to start sending a new layer when
the instantaneous bandwidth exceeds the consumption rate of the
existing layers plus the new layer. In this approach the layer can
start to play out immediately. In this case there is some excess
bandwidth from the time the available bandwidth exceeds the con-
sumption rate of the existing layers until the new layer is added.
This excess bandwidth can be used to buffer data for existing lay-
ers at the receiver.

3Note that once the inter-layer riming for a new layer is adjusted, it is maintained
as long as the buffer dots not dry out.

191

Webgroup CZ a.s. Ex. 1018, Page 4 of 13

In practice, this bandwidth constraint for adding is still not con-
servative enough, as it may result in several layers being added and
dropped with each cycle of the congestion control sawtooth. Such
rapid changes in quality would be disconcerting for the viewer.
One way to prevent rapid changes in quality is to add a buffering
condition such that adding a new layer does not endanger existing
layers. Thus, the server may add a new layer when:

1. The instantaneous available bandwidth is greater than the
consumption rate of the existing layers plus the new layer,
and,

2. There is sufficient total buffering at the receiver to survive
an immediate backoff and continue playing all the existing
layers plus the new layer.

To satisfy the second condition we assume (for now) that no addi-
tional backoff will occur during the draining phase, and the slope
of linear increase can be properly estimated.

These are the minimal criteria for adding a new layer. If these
conditions are held a new layer can be kept for a reasonable pe-
riod of time during the normal congestion control cycles. We shall
show later that we normally want to be more even conservative
than this. Clearly we need to have sufficient buffering at the re-
ceiver to smooth out variations in the available bandwidth so that
the number of active layers does not change due to the normal
hunting behavior of the congestion control mechanism.

Expressing the adding conditions more precisely:

Condition 1: R > (n, + l)C
n,-1

Condition 2: c bufi 1
((n, + 1)C - G)”

i=o
2s

where R is the current transmission rate
no is the number of currently active layers
bufi is the amount of buffered data for layer i
S is the rate of linear increase in bandwidth

(typically one packet per RlT)

2.2 Dropping a Layer

Once a backoff occurs, if the total amount of buffering at the re-
ceiver is less than the estimated required buffering for recovery,
(i.e, the area of triangle cde in figure 3), the correct course of
action is to immediately drop the highest layer. This reduces the
consumption rate (naC) and hence reduces the buffer requirement
for recovery. If the buffering is still insufficient, the server should
iteratively drop the highest layer until the amount of buffering is
sufficient. This rule clearly doesn’t apply to the base layer which
is always sent.

The dropping mechanism more precisely:

I I

I

I
I n,-1 \

WHILE (n,c > R+ ,12S f3 buf;)
I

1
\ v i=o /

DOn,=n,-1

This mechanism provides a coarse-grain criteria for dropping a
layer. However, it may be insufficient to prevent buffer underflow
during the draining phase for one of the following reasons:

l We may suffer a further backoff before the current draining

phase completes.

l Our estimate of the slope of linear increase may be incorrect
if the network RTT changes substantially.

l There may be sufficient total data buffered, but it may be
allocated among the different layers in a manner that pre-
cludes its use to aid recovery.

The first two situations are due to incorrect prediction of the amount
of buffered data needed to recover, and we term such an event a
critical situation. In such events, the only appropriate course of
action is to drop additional layers as soon as the critical situation
is discovered.

The third situation is more problematic, and relates to the fine-
grain bandwidth allocation among active layers during both filling
and draining phases. We devote much of the rest of this paper to
deriving and evaluating a near-optimal solution to this situation.

2.3 Inter-layer Buffer Allocation

Because of the decoding constraint in hierarchical coding, each
additional layer depends on all the lower layers, and correspond-
ingly is of decreasing value. Thus a buffer allocation mechanism
should provide higher protection for lower layers by allocating a
higher share of buffering for them.

The challenge of inter-layer buffer allocation is to ensure the
total amount of buffering is sufficient, and that is properly dis-
tributed among active layers to effectively absorb the short-term
reductions in bandwidth that might occur. The following two ex-
amples illustrate ways in which improper allocation of buffered
data might fail to compensate for the lack of available bandwidth.

l Dropping layers with buffered data: A simple buffer al-
location scheme might allocate an equal share of buffer to
each layer. However, if the highest layer is dropped after a
backoff, its buffered data is no longer able to assist the re-
maining layers in the recovery. The top layer’s data will still
be played out, but it is not providing buffering functional-
ity. This implies that it is more beneficial to buffer data for
lower layers.

l Insufficient distribution of buffered data: An equally sim-
ple buffer allocation scheme might allocate all the buffering
to the base layer. Consider an example when three layers
are playing, where a total consumption rate of 3C must
be supplied for the receiver’s decoder. If the transmission
rate drops to C, the base layer (LO) can be played from
its buffer. Since neither L1 nor Lz has any buffering, they
require transmission from the source. However available
bandwidth is only sufficient to feed one layer. Thus LZ must
be dropped even if the total buffering were su.cient for re-
covery.

In these examples, although buffering is available, it cannot be
used to prevent the dropping of layers. This is ineficient use of the
buffering. In general, we are striving for a distribution of buffering
that is most ejjicient in the sense that it provides maximal protec-
tion against dropping layers for any likely pattern of short-term
reduction in available bandwidth.

These examples reveal the following tradeoffs for inter-layer
buffer allocations:

192

Webgroup CZ a.s. Ex. 1018, Page 5 of 13

I Expressing this more precisely:

l Allocating more buffering for the lower layers not only im-
proves their protection but it also increases esJi&rzcy of buffer-
ing.

l Buffered data for each layer can not provide more than its
consumption rate(i.e. C). Thus there is a minimum number
of buffering layers that are needed to cope with short-term
reductions in available bandwidth for successful recovery.
This minimum is directly determined by the reduction in
bandwidth that we intend to absorb by buffering.

R
nb =o; n, 5 -

2c
where nb is the minimum number of buffering layers

R is the transmission rate (before a backoff)

2.4 Optimal Inter-layer Buffer Allocation

Given a draining phase following a single backoff, we can derive
the optimal inter-layer buffer allocation that maximizes buffering
efficiency. Figure 4 illustrates an optimal buffer allocation and
its corresponding draining pattern for a draining phase. Here we
assume that the total amount of buffering at the receiver at time tb
is precisely sufficient for recovery(i.c. area of triangle afg) with
no spare buffering available at the end of the draining phase.

c-

L.----t-.----i-
‘b lie

Figure 4: The optimal inter-layer buffer distribution

To justify the optimahty of this buffer allocation, consider that
the consumption rate of a layer must be supplied either from the
network or from the buffer or a combination of the two. If it is
supptied entirely from the buffer, that layer’s buffer is draining at
consumption rate C. The area of quadrilateral defg in figure 4
shows the maximum amount of buffer that can be drained from
a single layer during this draining phase. If the draining phase
ends as predicted, there is no preference as to buffer distribution
among active layers as long as no layer has more than defg worth
of buffered data. However, if the situation becomes critical due to
further backoffs, layers must be dropped. Allocating area defg of
buffering to the base layer would ensure that the maximum amount
of the buffered data is still usable for recovery, and maximizes
buffering efficiency.

By similar reasoning, the next largest amount an additional
layer’s buffer can contribute is quadrilateral bcde, and this por-
tion of buffered data should be allocated to Lr , the first enhance-
ment layer, and so on. This approach minimizes the amount of
buffered data allocated for higher layers that might be dropped in a
critical situation and consequently maximizes buffering efficiency.

The optimal amount of buffering for layer i is:

Bufi*opt = $(C(hx -2i-1)-R); i<nb-1

Bnfi,opt =&.C - ; - dC)’ ; i=nt,-1

Although we can calculate the optima1 allocation of bl Fered
data for the active layers, a backoff may occur at any random time.
To tackle this problem, during the filling phase, we incrementally
adjust the allocation of buffered data so that the buffer state always
remains as close as possible to an optimal state.

’ Filling
d-.Easc .-

m&ii” ’
---.-

, Available

_-- /:.-
Time

Figure 5: Optimal Buffer sharing

Toward that goal, we assume that a single backoff will occur
immediately, and ask the question: “if we keep only the base layer,
is there sufficient buffering to survive?‘. If there is not sufficient
buffering, then we fill up the base layer’s buffer until it has enough
buffering to survive a single backoff. Then we ask the question: “if
we keep only two layers, is there enough buffering to survive with
those buffers having optimal allocation?‘. If there is not enough
base layer data, we fill the base layer’s buffer up to the optimal
level. Then we start sending Li data until both layers have the
optimal amount of buffering to survive. We repeat this process
and increase the number of expected surviving layers until all the
buffering layers are tilled up to an optimal level such that all active
layers can survive from a single backoff. This approach results in
a sequential filling pattern among buffering layers.

Figure 5 illustrates the optimal filling and draining scheme for
a single backoff. If a backoff occurs exactly at time tb, all Iayers
can survive the backoff. Occurrence of a backoff earlier than tb
results in dropping one or more active layers. However the buffer
state is always as close as possible to the optimal state without
those layers. If no backoff occurs until adding conditions (section
2.1) are satisfied, a new layer is added and we repeat the sequential
filling mechanism.

It is worth mentioning that the server can control the filling and
draining pattern by proper fine-grain bandwidth allocation among
active layers. Figure 5 illustrates that at each point of time during

193

Webgroup CZ a.s. Ex. 1018, Page 6 of 13

the draining phase, bandwidth share plus draining rate for each
layer is equal to its consumption rate. Thus maximally efficient
buffering results in the upper layers being supplied from the net-
work during the draining phase while the lower layers are supplied
from their buffers. For example, just after the backoff, layer 2 is
supplied entirely frorn the buffer, but the amount supplied from the
buffer decreases to zero as data supplied from the network takes
over. Layers 0 and 1 are supplied from the buffer for longer peri-
ods.

3 Smoothness Constraints

In the previous section, we derived an optimal filling and draining
scheme based on the assumption that we only buffer to survive a
single backoff with all the layers intact. However, examination of
Internet traffic indicates that real networks exhibit near-random[2]
loss patterns with frequent additional backoffs during a draining
phase. Thus, aiming to survive only a single backoff is too aggres-
sive and results in frequent adding and dropping of layers.

3.1 Smoothing

To achieve reasonable smoothing of the add and drop rate, an ob-
vious approach is to refine our adding conditions (in section 2.1)
to be more conservative. We have considered the following two
mechanisms to achieve smoothing:

l We may add a new layer if the average available bandwidth
is greater than the consumption rate of the existing layers
plus the new layer.

l We may add a new layer if we have sufficient amount of
buffered data to survive Kmaz backoffs with existing layers,
where Km,, is a smoothing factor with value greater than
one.

Although each one of these mechanisms results in smoothing, the
latter not only allows us to directly tie the adding decision to ap-
propriate buffer state for adding, but it can also utilize limited
bandwidth links effectively. For example, if there is sufficient
bandwidth across a modem link to receive 2.9 layers, the aver-
age bandwidth would never become high enough to add the third
layer. In contrast, the latter mechanism would send 3 layers for
90% of the time which is more desirable. For the rest of this pa-
per we assume that the only condition for adding a new layer is
availability of optimal buffer allocation for recovery from K,,,,,
backoffs.

Changmg K,,,,, allows us to tune the balance between maxi-
mizing the short-term quality and minimizing the changes in qual-
ity. An obvious question is “What degree of smoothing is ap-
propriate?” In the absence of a specific layered codec and user-
evaluation, K,,,,,: can not be analytically derived. Instead it should
be set based on real-world user perception experiments to deter-
mine the appropriate degree of smoothing that is not disturbing to
the user. In practice, we probably also want to base K,,, on the
average bandwidth and R’I’T since these determine the duration of
a draining phase.

3.2 Buffering Revisited

If we delay adding a new layer to achieve smoothing, this affects
the way we fill and drain the buffers. Figure 6 demonstrates this
issue.

Figure 6: Revised Draining Phase Algorithm

Up until time ts, this is the same as figure 5. The second filling
phase starts at time t3, and at t4 there is sufficient buffering to
survive a backoff. However, for smoothing purposes, a new layer
is not added at this point and we continue buffering data until a
backoff occurs at ts,

Note that as the available bandwidth increases, the total amount
of buffering increases but the required buffering for recovery from
a single backoff decreases. At time t5, we have more buffering
than we need to survive a single backoff, but insufficient buffering
to survive a second backoff before the end of the draining phase.
We need to specify how we allocate the extra buffering after time
t4, and how we drain these buffers after t5 while maintaining effi-
ciency.

Conceptually, during the filling phase, the server sequentially
examines the following steps:

Step 1: enough buffer for one backoff with LO intact.
Step 2: enough buffer for one backoff with LO and L1.

Step no : enough buffer for one backoff with LO through
Ln,-l intact.

Step na+l: enough buffer for one backoff with LO through
layer L,, - 1 intact and two backoffs with LO intact.

At any point in the filling phase we have satisfied one step and are
working towards the next step.

When a backoff occurs between steps, in this case between
steps nrr and n, + 1, we essentially reverse the filling process.
First we identify between which two steps we’re currently located.
Then we traverse through the steps in the reverse order to deter-
mine which layers must be drained and by how much. In essence,
during consecutive filling and draining phases, we traverse this se-
quence of steps (i.e. optimal buffer states) back and forth such
that at any point of time the buffer state is as close to optimal as
possible. In the next section, we describe this mechanism in more
detail.

4 Buffer Allocation with Smoothing

To design an efficient filling and draining mechanisms in the pres-
ence of smoothing, we need to know the optimal buffer alloca-
tion among layers and the corresponding maximally efficient fill-
ing and draining patterns for multiple-backoff scenarios.

The optimal buffer allocation for a scenario with multiple back-
offs is not unique because it depends on the time when the addi-
tional backoffs occur during the draining phase. If we have knowl-
edge of future loss distribution patterns it might, in principle, be
possible to calculate the optimal buffer allocation. In practice such

194

Webgroup CZ a.s. Ex. 1018, Page 7 of 13

a solution would be excessively complex for the problem it is try-
ing to solve, and rapidly becomes intractable as the number of
backoffs increases. Let us first assume that only one additional
backoff occurs during the draining phase. The possible scenarios
arc shown in figure 7. This figure illustrates that the optimal buffer
allocation for each scenario depends on the time of the second
backoff, the consumption rate, and the transmission rate before
the first backoff.

* Backoff 1 Backoff 1 Backaft 1

- Available bandwidth

r Data consumed from buffers

Time

Figure 7: Possible Double-backoff Scenarios

We can extend the idea of optimal buffer allocation for a single
backoff (section 2.4) to each individual scenario. Added com-
plexity arises from the fact that different scenarios require differ-
ent buffer allocations. For an equal amount of the total buffering
needed for recovery, scenarios 1 and 2 are two extreme cases in
the sense that they need the maximum and minimum number of
buffering layers respectively. Thus addressing these two extreme
scenarios should efficiently cover all the intermediate scenarios
(e.g. scenario 3) as well.

We need to decide which scenario to consider during the filling
phase. We make a key observation here. If the total amount of
buffering for scenarios 1 and 2 are equal, having the optimal buffer
distribution for scenario I is sufficient for recovery from scenario
2, although it is not maximally efficient. However, the converse is
not feasible. The higher flexibility in scenario 1 comes from the
fact that this scenario needs a larger number of buffering layers
than does scenario 2. Thus, if we have a buffer distribution that
can recover from a scenario 1, we will be able to cope with a
scenario 2 that has the same total buffer requirement, but not vice
versa.

This suggests that during the filling phase for two backoff sce-
narios, first we consider the optimal buffer allocation for scenario
1 and fill up the buffers in a step by step sequential fashion as de-
scribed in section 3.2. Once this is achieved, then we move on to
consider scenario 2.

4.1 Filling Phase with Smoothing

To extend this idea to scenarios of k backoffs, we need to examine
the optimal buffer allocation for scenario 1 and 2 for each suc-
cessive value of k. Figure 8 illustrates the optimal buffer state,
including the total buffer requirement and its optimal inter-layer
allocation in scenario 1 and 2, for different values of k. Ideally,
we would like to fill the buffers during the filling phase such that
we traverse through these buffer states in turn. Once k exceeds
K maz (the smoothing factor), then we add a new layer and start
the process again with the new sets of optimal buffer states.

Toward this goal, we order these different buffer states in in-
creasing value of total amount of required buffering in figure 9.
Thus by traversing this sequence of buffer states, we always work
towards the next optimal state that requires more buffering.

Figure 8: Buffer distributions for k backoffs

Figure 9: Distributions in increasing order of buffering

Unfortunately this requires us to occasionally drain an exist-
ing buffer in order to reach the next state4. mo examples of this
phenomenon are visible in figure 9:

l Moving from the {scenario 2, k=2} case to the {scenario 1,
k=2} case involves draining LO’S buffer.

l Moving from the {scenario 1, k=4} case to the {scenario 2,
k=3} case involves draining Lz’s buffer.

We do not want to drain any layer’s buffer during the flling
phase because that buffering provides protection for a previous
scenario that we have already passed. Thus we seek the maxi-
mally efficient sequence of buffer states that is consistent with rhe
existing hffering. The total amount of required buffering and the
per layer buffer requirement must be monotonically increasing as
we go to the next buffer state.

The key observation that we mentioned earlier allows us to cal-
culate such a sequence. We recall that having the optimal buffer
distribution for scenario I is sufficient for recovery from scenario
2, although it is not maximally efficient. Given this flexibility, the
solution is to constrain per layer buffer allocation in each scenario-
2 state to be no less than the previous scenario- 1 state, and no more
than the next scenario-1 state (in the sequence of states in figure 9).
Figure 10 depicts a sequence of maximally efficient buffer states
after applying the above constraints where each step in the filling
process is numbered. By enforcing this constraint, we can traverse
through the buffer states such that buffer allocation for each state
satisfies the buffer requirement for all the previous states. This im-
plies that both the total amount of buffering and the amount of per
layer buffering monotonically increase. Thus the per layer buffcr-
ing can always be used to aid recovery. Once we have sufficient
buffering for recovery from Km,, backoffs in both scenarios, a
new layer will bc added.

“This means that the order of these states based on increasing value of total E-
quired buffering is different from their order based on increasing value of per layer
buffering.

195

Webgroup CZ a.s. Ex. 1018, Page 8 of 13

Figure 10: Step-by-step buffer filling

The following pseudo-code expresses our per-packet algorithm
to ensure that buffer state remains maximally efficient during the
tilling phase5:

FUNCTION SendPacket

WHILE (BufRcql < TorBufAvailuhle) AND (SlBackolYs < K,,.)

INCREMENT SIBuck@3

BujR~yl = TotalBufRequired(CurrmtRate, Scenoriu=l ,
SlBuckoflv, ActiveLuy.v)

WHILE (BufReq2 < TotBufAvaiMh)

INCREMENT S?Buckoffs

BufReq2 = TotalBufRequired(C~trrenrRarr. Scenario=2,
S2Bockoffs, ActiveL+m)

FOR L.+w = I TO AaiveL+vrs

L.uyrrBufl = ButRequired(CurrenlRure, Scenario=1 ,

SlBuckojjYs. L.+wr, Ache-L+m)

hy~Br@ = BufRequired(CurrentR~~t~, Scenario=2.
S2Bockoflr, Lqer, Aaivehyrs)

IF (BujRrql < BujReq2) AND (SlBackoffs < K,,,)
#We’re considering scenario I

IF Ku.wrf?ufl > BufAvailable(Lu)er)
SendPacketFromLayer(&vtv.)

RETURN

ELSE #We’re considering scenario 2

IF (hyrBuJ2 > BufAvailabln(,Qzyer)) AND

(WBocknffs > Km,,,) OR

L!.uyerB~$/ < BufAvailable(Layer)))

SendPacketFromLayer(~~w)

RETURN

K “la.7 is the smoothing factor, giving the number of backoffs
for which we buffer data before adding a new layer.

The function TotalBufRequired returns the total amount of required
buffering for all layers in the scenario in question, given the cur-
rent send rate, the number of active layers, and the number of
backoffs being considered.

‘The algorithm performs fine-grain bandwidth allocation by assigning the next
transmitting packet to a particular layer.

rotalBufRequired()

Scenario I

Bvftotal =o

where k is the number of backoffs being considered

Scenario 2

B?Lftotal =O

5; he function ButRequired returns the maximally efficient amount
of required buffering for a particular layer in the scenario of the
state we are currently working towards. The input parameters for
this function are: the layer number, the current sending rate, the
number of active layers, and the number of backoffs being consid-
ered.

3ufRequiredO

Scenario I

Buf;,,,t =0 ; k 5 log&
a

Buf;,,,t =$C(% -26-l)-&)

k >log& ; O<i<nL
a

Scenario 2

Bufi,opt =O ; k 5 log25

Bufi,opt =g
(

(C(2n, P,i - 1) - &)

+ (k - kl)C(n, - 2i - 1)
>

k >loga-& ; O<i<nb
a

4.2 Draining Phase with Smoothing

As we traverse through the maximally efficient states, one or more
backoffs eventually move us into a draining phase. Given that
we incrementally traverse the maximally efficient path of buffer
states during the filling phase, we would like to traverse the same
path, but in the reverse direction, during the draining phase. This
approach guarantees that the highest layer buffers are not drained
until they are no longer required, and the lowest layer buffers are
not drained too early.

At the start of each step we have an efficient amount of pro-

196

Webgroup CZ a.s. Ex. 1018, Page 9 of 13

tective buffering for one particular state, and regressively work to-
ward the previous maximally efficient buffer state along the maxi-
mally efficient path. However, there is an additional constraint that
we can not drain a layer’s buffer faster than the layer consumption
rate, C.

To achieve such a draining pattern, we periodically calculate
the draining pattern for a short period of time, during which we
expect to drain a certain number of packets. This number is based
on the current estimate of slope of linear increase and the current
consumption rate. We then calculate (using an algorithm similar to
the above pseudo-code) the previous optimal state along the maxi-
mally efficient path that we can achieve with the current amount of
buffering. Conceptually, then we consider draining data from each
layer in turn, starting from the highest layer and working down-
wards, such that each layer’s buffering does not drop below its
buffer share at the previous optimal step we are draining towards.
An added constraint is that we must limit the amount of drained
data from a layer to the maximum amount that can be consumed
during this period. If the buffer state reaches the previous opti-
mal state being considered before we have allocated the number
of packets that must be drained in this period, then we move on to
consider the previous state along the maximally efficient path and
so on. We repeat this process until a sufficient number of packets
for draining during this period are identified. Then we allocate the
bandwidth during the period such that each active layer receives
the total amount of data that it must consume during this period,
minus those packets we just allocated to drain during the period.

5 Simulation

We have evaluated our quality adaptation mechanism through sim-
ulation using bandwidth traces obtained from RAP in the ns2 [3]
simulator and real Internet experiments.

Figure I 1 provides a detailed overview of the mechanisms in
action. It shows a 40 second trace where the quality-adaptive RAP
flow co-exists with 10 Sack-TCP Rows and 9 additional RAP flows
through an 800 Kb/s bottleneck with 40ms RTT. The smoothing
factor was set to 2 so that it provides enough receiver buffering
for two backoffs before adding a new layer(K,,,,, = 2). The con-
sumption rate of each layer(C) is equal to 10 KB/s.

Figure 11 shows the lbllowing parameters:

l The total transmission rate, illustrating the saw-tooth output
of RAP. We have also overlaid the consumption rate of the
active layers over the transmission rate to demonstrate the
add and drop mechanism.

l The transmission rate broken down into bandwidth per layer.
This shows that most of the variation in available bandwidth
is absorbed by changing the rate of the lowest layers (shown
with the light-gray shading).

l The individual bandwidth share per layer. Periods when a
layer is being streamed above its consumption rate to build
up receiver buffering are visible as spikes in the bandwidth.

l The buffer drain rate per layer. Clearly visible are points
where the buffers are used for playout because the band-
width share is temporarily less than the layer consumption
rate.

l The accumulated buffering at the receiver for each active
layer.

Graphs in figure 11 demonstrate that the short-term variations in
bandwidth caused by the congestion control mechanism can be
effectively absorbed by receiver buffering. Furthermore playback
quality is maximized without risking complete dropouts in the
playback due to buffer underflow.

Smoothing Factor
To examine the impact of smoothing factor on the behavior, we
repeated the previous simulation with different values of K,,,.
Figure 12 shows the number of active layers and buffer alloca-
tion across active layers for K,,,=2, h’,,,=3, and Km,,=4. As
expected, higher values of K,,,,, reduce the number of changes
in quality at the expense of increasing the time it takes to first
achieve the best short-term quality. This manifests itself in two
ways. As h’,,, increases, first the total amount of buffering is
increased. Second, more of the buffering is allocated for higher
layers to cope with the larger variations in available bandwidth as
a result of successive backoffs.

Responsiveness
We have also explored the responsiveness of the quality adaptation
mechanism to large step changes in available bandwidth. Figure
13 depicts a RAP trace with the same parameters as figure 11 but a
CBR source with a rate equal to half of the bottleneck bandwidth
is started at t=30s and stopped at t=60s and K,,,=4. The RAP
congestion control mechanism rapidly responds to these changes
by reducing the average transmission rate. The quality adapta-
tion mechanism closely follows the changes in bandwidth. La
and then Lz are dropped when bandwidth reduces and then L2 is
added when bandwidth becomes available again. Notice that every
layer’s buffer is involved in this process, but the reception of the
base layer is never jeopardized. Thus, we have satisfied our origi-
nal design goal of providing smoothing of quality while providing
protection to the most critical layers.

Efficiency
The performance of our algorithms can be examined from the ef-
ficiency of the buffer allocation. The inter-layer buffer allocation
is maximally efficient if the following conditions are both satis-
lied: (i) no data is buffered for a layer that is dropped, and (ii)
the layer is only dropped because the foral amount of buffering is
insufficient. To quantify the efficiency of our scheme, we have cal-
culated the percentage of remaining buffer for each dropped layer
as follows:

e= buftotnl-bufd,.op
buftotar

where buftotol and buf,+op denote the total buffering and the
buffer share of the dropped layer. Then we averaged out the value
of e across all drop events during the simulation tid use that as an
evaluation metric for efliciency.

Table 1 shows these efliciency values for different values of
I~,,, during two test, Tl and T2. Tl is the 10 RAP, 10 TCP test
depicted in figures 11 whereas T2 is the 10 RAP, 10 TCP test with
a large CBR burst shown in figure 13. These results show that our
scheme is very efficient - very little buffered data is still available
in a layer that is dropped.

11 Km,,=21 Km,,=31 Km,,=41 Km,,=51 Km,,=8

1
Tl II 99.77% I 99.97% 1 99.84% I 99.85% I 99.99%
T2 11 99.15% 1 99.81% 1 99.92% 1 99.80% 1 96.07% 1

Table 1: Efficiency of buffer allocation

197

Webgroup CZ a.s. Ex. 1018, Page 10 of 13

Time 40s
Total Transmit and Consumption Rates

40

30

20

C=,O

Transmit Rate Breakdown by Layer

Transmit Rate per Layer

Drain Rate per Layer

”

Data Buffered per Layer
Tulle 40s

Figure I I : First 40 seconds of Km,,=2 trace
Figure 12: Effect of IT,,, on buffering and quality

Webgroup CZ a.s. Ex. 1018, Page 11 of 13

Total Transmit and Consomptlon Rates

Transmit Rate per Layer

81
Layer 1

Time 90s

main Rate per Layer

Figure 13: Effect of long-term changes in bandwidth

Table 2 shows the percentage of drops due to poor buffer distri-
bution in test Tl and T2. These are drops that would not have
happened if the amount of buffered data that was at the receiver
had been distributed differently. Our mechanism is completely
efficient in this respect for the Tl tests, and performs fairly well
for the T2 case. Clearly the mechanism becomes less efficient as
K,,, increases. The higher the value of K,,,,, , the more buffer-
ing is allocated for higher layers. Hence there is a higher probabil-
ity of dropping the highest layer with some buffering particularly
after sudden drops in available bandwidth such as when a CBR
source appears. In essence, conservative buffering0.e. higher
K,,,) enables the server to cope with wider variations in band-
width. However sudden drops of bandwidth in these situations
results in lower efficiency.

11 K maz=21 Km,,=31 K,n,,=4~ K,,,=5] Km,,=8
Tl II 0% I 0% I 0% I 0% I 0%
T2 11 2.4%) 0%) 4.8% 1 11% 1 - 1
Table 2: % drops due to poor buffer distribution

6 Related Work

Receiver-based layered transmission has been discussed in the con-
text of multicast video[9, 11, 221 to accommodate heterogene-
ity while performing coarse-gram congestion control. This dif-
fers from our approach that allows fine-grain congestion control
for unicast delivery with no step-function changes in transmission
rate.

Merz et al. [131 present au iterative approach for sending high
bandwidth video through a low bandwidth channel. They suggest
segmentation methods that provide the flexibility to playback a
high quality stream over several iterations, allowing the client to
trade startup latency for quality.

Work in [7, 16, 191 discuss congestion control for streaming
applications and focusing on rate adaptation. However, variations
of transmission rate in a long-lived session could result in client
buffer overflow or underflow. Quality adaptation is complemen-
tary for these scheme because it prevents buffer underflow or over-
flow while effectively utilizing the available bandwidth.

Feng et al. [4] propose an adaptive smoothing mechanism
combining bandwidth smoothing with rate adaptation. The send
rate is shaped by dropping low-priority frames based on prior knowl-
edge of the video stream. This is meant to limit quality degrada-
tion caused by dropped frames but the quality variation cannot be
predicted.

Unfortunately, technical information for evaluation of popular
applications such as RealVideo G2 [141 is unavailable.

7 Conclusions and Future Work

We have presented a quality adaptation mechanism to bridge the
gap between short-term changes in transmission rate caused by
congestion control and the need for stable quality in streaming ap-
plications. We exploit the flexibility of layered encoding to adapt
the quality along with long-term variations in available bandwidth.
The key issue is appropriate buffer distribution among the active
layers. We have described an efficient mechanism that dynam-
ically adjusts the buffer distribution as the available bandwidth
changes by carefully allocating the bandwidth among the active
layers. Furthermore, we introduced a smoothing parameter that
allows the server to trade short-term improvement for long-term

199

Webgroup CZ a.s. Ex. 1018, Page 12 of 13

smoothing of quality. The strength of our approach comes from
the fact that we did not make any assumptions about loss patterns
or available bandwidth. The server adaptively changes the re-
ceiver’s buffer state to incrementally improve its protection against
short-term drops in bandwidth in an efficient fashion. Our simu-
lation and experimental results reveal that with a small amount
of buffering the mechanism can efficiently cope with short-term
changes in bandwidth due to AIMD congestion control. The mech-
anism can rapidly adjust the quality of the delivered stream to uti-
lize the available bandwidth while preventing buffer overflow or
underflow. Furthennore, by increasing the smoothing factor, the
frequency of quality variation is effectively limited.

Given that buffer requirements for quality adaptation are not
large, we believe that these mechanisms can also be deployed for
non-interactive live sessions where the client can tolerate a short
delay in delivery.

We plan to extend the idea of quality adaptation to other con-
gestion control schemes that employ AIMD algorithms and inves-
tigate the implications of the details of rate adaption on our mech-
anism. We will also study quality adaptation with a non-linear
distribution of bandwidth among layers. Another interesting issue
is to use a measurement-based approach to adjust K,,, on-the-fly
based on the recent history.

Finally, quality adaptation provides a perfect opportunity for
proxy caching of multimedia streams which we plan to examine.
The proxy would cache each stream and missing pieces that are
likely to be needed would be pre-fetched in a demand-driven fash-
ion.

8 Acknowledgments

We would like to thank Sally Floyd, Ted Faber, Joe Bannister,
John Heidemann, David J. Wetherall, Roger G. Kermode, Ahmed
Helmy, Haobo Yu, Art Mena, Hongsuda Tangmunarunkit, Mo-
hit Talwar and the anonymous reviewers for their thoughtful com-
ments on drafts of this paper.

References

[l] J. Bolot and T. Turletti. A rate control mechanism for packet
video in the intemet. Proc. IEEE Infocomm, pages 1216-
1223, June 1994.

[2] J. C. Bolot. Characterizing end-to-end packet delay and loss
in the internet. Journal of High Speed Networks, 2(3):289-
298, September 1993.

[3] S. Bajaj et al. Improving simulation for network research.
Technical Report 99-702, USC-CS, March 1999.

[4] W. Feng, M. Liu, B. Krishnaswami, and A. Prabhudev. A
priority-based technique for the best-effort delivery of stored
video. Proc. of Multimedia Computing and Networking, Jan-
uary 1999.

[S] S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the
intemet. Under submission, February 1998. http://www-
nrg.ee.lbl.gov/floyd/papers.html/end2end-papcr.html.

[6] Microsoft Inc. Netshow service, streaming media for busi-
ness.
http://www.microsoft.com/NTServer/Basics/NetShowServices.

[7] S. Jacobs and A. Eleftheriadis. Real-time dynamic rate shap-
ing and control for intemet video applications. Workshop on
Multimedia Signal Processing, pages 23-25, June 1997.

[8] Jae-Yong Lee, Tae-Hyun Kim, , and Sung-Jea Ko. Motion
prediction based on temporal layering for layered video cod-
ing. Proc. ITC-CSCC, 1:245-248, July 1998.

[9] X. Li, M. Ammar, and S. Paul. Layered video multicast with
retransmission(LVMR): Evaluation of hierarchical rate con-
trol. Proc. IEEE Infocom, March 1998.

[lo] S. McCanne. Scalable compression and transmission of in-
temet multicast video. Ph.D. thesis, University of California
Berkeley, UCBKSD-96-928, December 1996.

[l l] S. McCanne, V. Jacobson, and M. Vettereli. Receiver-driven
layered multicast. Proc. ACM SIGCOMM, August 1996.

[121 S. McCanne and M. Vetterli. Joint source/channel coding for
multicast packet video. Proc. IEEE International Conference
on Image Processing, pages 776-785, October 1995.

[13] M. Merz, K. Froitzheim, P Schulthess, and H. Wolf. Itera-
tive transmission of media streams. Proc. ACM Multimedia,
November 1997.

[141 Real Networks. Http versus realaudio client-server stream-
ing. http://www.realaudio.com/help/content/http-vs-ra.html.

[15] A. Ortega and M. Khansari. Rate control for video coding
over variable bit rate channels with applications to wireless
transmission. Proc. IEEE International Conference on Im-
age Processing, October 1995.

[16] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. TCP-
friendly rate adjustment protocol for continuous media flows
over best effort networks. Technical Report 98-l 1, UMASS
CMPSCI, 1998.

[17] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-
end rate-based congestion control mechanism for realtime
streams in the internet. Proc. IEEE lnfocom, March 1999.

[18] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching
mechanism for multimedia playback streams in the intemet.
Proc. International Web Caching Workshop, March 1999.

[19] D. Sisalem and H. Schulzrinne. The loss-delay based adjust-
ment algorithm: A TCP-friendly adaptation scheme. Work-
shop on Network and Operating System Support for Digital
Audio and Video, July 1998.

[20] W. Tan and A. Zakhor. Error resilient packet video for the in-
temet. Proc. IEEE International Conference on Image Pro-
cessing, October 1998.

[21] M. Vishwanath and P Chou. An efficient algorithm for hi-
erarchical compression of video. Proc. IEEE International
Conference on Image Processing, November 1994.

[22] L. Wu, R. Sharma, and B. Smith. Thin streams: An architec-
ture for multicasting layered video. Workshop on Network
and Operating System Support for Digital Audio and fideo,
May 1997.

200

Webgroup CZ a.s. Ex. 1018, Page 13 of 13

