
EXHIBIT 1019

Webgroup CZ a.s. Ex. 1019, Page 1 of 10

PALS: Peer-to-Peer Adaptive Layered Streaming

Reza Rejaie Antonio Ortega
Department of Computer Science Integrated Media Systems Center

University of Oregon University of Southern California
reza@cs.uoregon.edu ortega@sipi.usc.edu

ABSTRACT
This paper presents a new framework for Peer-to-Peer Adaptive
Layered Streaming, called PALS. PALS is a receiver-driven ap-
proach for quality adaptive playback of layer encoded streaming
media from a group of congestion controlled sender peers to a sin-
gle receiver peer. Since the effective throughput from each sender
is variable and not known a priori, it is challenging to coordinate
delivery among active senders. In PALS, the receiver orchestrates
coordinated delivery among active senders by adaptively determin-
ing: 1) a subset of senders that maximize overall throughput, 2)
overall quality (i.e. number of layers) that can be delivered from
these senders as well as distribution of overall throughput among
active layers, and most importantly 3) required packets to be de-
livered by each active sender in order to effectively cope with any
sudden change in throughput from individual senders. We describe
PALS framework, identify key components of the framework and
their interesting design challenges, present sample solution for the
key components, and present our preliminary results.

Categories and Subject Descriptors
C.2 [Computer-Communications Networks]: Distributed Systems-
Distributed Applications.

General Terms
Design, Performance, Measurement.

Keywords
Peer-to-peer networks, Congestion control, Quality Adaptive stream-
ing, Layered encoding.

1. INTRODUCTION
Peer-to-peer (P2P) networks are becoming increasingly popu-

lar as an alternative communication paradigm to traditional client-
server architecture. Most of the research on P2P networks has fo-
cused on two questions: “how to form a network of cooperative
peers?” and “how to locate a piece of content among in such a
network?” (e.g., [1],[2]). Since most applications in P2P networks
exchange files among peers (e.g., Napster), the actual delivery of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’03, June 1–3, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-694-3/03/0006 ...$5.00.

content in a P2P network has received little attention, because it
simply requires a file transfer between two (or more) peers. How-
ever streaming realtime multimedia (audio, video) content in P2P
networks is a challenging problem because a single peer may not
be willing or able to commit sufficient resources (i.e., bandwidth
or CPU) to stream a media file to another peer. Therefore, it is
more likely that several peers collectively stream requested content
to another peer. This approach should result in a better load bal-
ancing among sender peers and less congestion across the network.
Furthermore, assuming receiver’s access link is not the bottleneck,
a group of sender peers is more likely to provide a higher overall
throughput to the receiver peer and thus deliver a higher quality
stream.

To enable streaming of content from multiple peers several chal-
lenging issues should be addressed: First, there should be a mech-
anism to identify a subset of available peers with the desired con-
tent, that can provide maximum overall throughput to the receiver
peer. Note that the overall throughput of a group of sender peers
may not increase when additional senders are added, because mul-
tiple senders may reside behind the same bottleneck. Second, each
sender peer should perform TCP-friendly congestion control (CC)
such as RAP [3] or TFRC [4]. This implies that the throughput
available from each sender is not known a priori and could sig-
nificantly change during a session. Furthermore, because of the
Internet heterogeneity, characteristics (e.g., bandwidth and RTT)
of connections from different senders could be significantly differ-
ent. Therefore, any delivery mechanism designed to operate from
multiple senders should be quality adaptive, i.e., it should be able
to adjust smoothly the quality (and thus the bandwidth) of the de-
livered stream, as the overall throughput changes. Third, given a
subset of sender peers, the main problem is how to coordinate a
group of active senders so that they can cooperate in streaming
the maximum deliverable quality that can be supported with the
given overall throughput?. For example, when three peers are co-
operatively streaming a video they need to coordinate which peer
would be responsible for in time delivery of each segment of the
video. Fourth, since each sender peer can potentially leave during
a session, any delivery mechanism should be able to cope with the
dynamics of peer participation and minimize any negative impact
of such dynamics on delivered quality.

In this paper, we present a new framework for streaming in P2P
networks that is called P2P Adaptive Layered Streaming or PALS.
PALS is a receiver-driven approach that allows a receiver to orches-
trate the adaptive delivery of stored layer encoded streams from
multiple sender peers to a single receiver. Given a set of sender
peers, PALS progressively evaluates various combinations of senders
to determine a subset of the senders that can collectively provide
maximum throughput. Once such a subset of senders is selected,

Webgroup CZ a.s. Ex. 1019, Page 2 of 10

the receiver monitors the overall throughput and periodically de-
termines what is the target overall quality (i.e., the total number of
coding layers) that can be delivered from all senders. Then, the
receiver determines a proper distribution of the overall throughput
among active layers (i.e., what portion of the overall throughput
should be allocated for delivery of each layer), and finally divides
allocated bandwidth to each layer among active senders (i.e., which
segments of each layer should be delivered by each sender) in or-
der to effectively cope with any sudden change in throughput of
individual senders.

PALS is built on our previous work on the design of a quality
adaptation (QA) mechanism for congestion controlled playback of
layer encoded video over the Internet [5]. While the goal of PALS
is in essence similar to our previous work, there are a few key dif-
ferences between PALS and the unicast QA mechanism: 1) PALS
performs QA across multiple independent connections, with po-
tentially different characteristics, rather than a single connection,
2) PALS is receiver-driven rather than sender driven. A receiver-
driven approach to QA should address two new problems: First, the
receiver may not have any information about patterns of change in
overall throughput. Second, the receiver should effectively monitor
and manage the delivery of segments from multiple senders, which
requires several other mechanisms besides the receiver-driven QA.
These differences introduce a new set of challenges that do not ex-
ist in a unicast QA mechanism. The main contribution of PALS
is a receiver-driven coordination and adaptation framework for
streaming from multiple, congestion-controlled, sender peers that
is able to cope with unpredictable variations in throughput from
each sender peer, as well as with dynamics of peer participation.
Although we motivated the PALS framework for streaming in P2P
networks, one can use PALS framework for streaming multimedia
content from a potentially distributed group of multimedia servers
across a best-effort network to a single client.

Our main goals in this paper are: 1) to describe the framework
and its key components, i.e., the required mechanisms for coordi-
nation among senders and adaptation of delivered quality to dy-
namics of both network connection and peer participation, 2) to
provide sample mechanisms for the key components, 3) to discuss
interesting challenges that arise in the design of such mechanisms
and present our preliminary results. In this paper, however, we do
not discuss how an initial set of sender peers is identified. This
issue appears to be similar for both realtime and non-realtime con-
tent and can be achieved in different ways, such as by contacting
a server (e.g., [6]) or using a hash function (e.g., [1]). A detailed
analysis of the various design issues, including the analysis of more
general mechanisms to address the key challenges, and a more ex-
tensive evaluation of PALS remain as future work.

The rest of this paper is organized as follows: In Section 2, we
present related work. We justify our two key design choices in
Section 3. Section 4 describes the PALS framework, its key com-
ponents and sample solutions for each component. We present our
preliminary result in Section 5. Finally, Section 6 concludes the
paper and presents our future plans.

2. RELATED WORK
The basic idea of streaming from multiple servers to a single

client is not new. Apostolopoulos et al. [7] proposed a mecha-
nism for streaming from multiple servers using multiple description
(MD) encoding. They presented a distortion model for MD encod-
ing and used this model to study the effect of server and content
placement on delivered quality of both MD and single description
(SD) encodings. They did not consider variations of throughput
from each sender to the receiver and focused on content placement

and server selection mechanisms. Nguyen et al. [8] presented a
mechanism for delivery of streaming media from multiple mirror
servers to a single client. They assumed that different flows do
not share any bottleneck and overall bandwidth from all servers is
always higher than stream bandwidth. In their proposed solution,
the receiver periodically reports throughput and delay of all senders
back to them using control packets. Then, senders run a distributed
algorithm to determine which one should send each packet. The
main difference between their approach and PALS is that PALS
is receiver-driven and adapts the quality of delivered stream with
variations of overall throughput.

There has been some related work on streaming in P2P networks.
CoopNet[6] is a mechanism for distributing MD encoded streams
among peers in both live and on-demand sessions that is able to
cope with flash-crowd. CoopNet leverages MD encoding to send
different description to separate tree of interested peers. For on-
demand sessions, a new client contacts a single sender peer from a
set of candidate peers, and this peer is asked to deliver the content.
If that sender peer is unavailable or unwilling to serve, the client
contacts another peer until a sender peer is found. There are several
systems such as Abacast[9], Chaincast [10], Allcast [11], vTrails
[12] that form a distribution tree from the participating clients sim-
ilar to CoopNet. However, there is not sufficient information about
these systems for comparison. Tran et al. [13] presented a tech-
nique called ZIGZAG, for building and maintaining an efficient
single-source media distribution tree. A key distinction of our work
is that we present a quality adaptive delivery mechanism from mul-
tiple congestion controlled senders.

Finally, both PALS and RLM [14] are receiver-driven mecha-
nisms that leverage layered encoding, however there are a few fun-
damental differences between them. In RLM, the receiver can ad-
just number of delivered layers by joining a different number of
multicast sessions. This allows the receiver to regulate overall in-
coming throughput (and thus overall delivered quality) at the level
that does not cause congestion in the network, i.e., the receiver im-
plements some type of congestion control mechanism by regulating
incoming throughput. In the PALS framework, all flows are uni-
cast, and a unicast congestion control mechanism is implemented
at each sender. Therefore, the overall incoming throughput at the
receiver is the aggregate congestion controlled bandwidth from all
senders. The receiver does not control overall incoming through-
put, instead it controls the quality of the stream that is being deliv-
ered through the incoming throughput from multiple senders.

3. JUSTIFYING DESIGN CHOICES
Before describing details of PALS, we need to justify our two

key design choices, 1) adopting a receiver-driven adaptation and
coordination, and 2) using layered (or hierarchical) encoding.

First, the coordination and adaptation machinery for cooperative
playback from multiple senders can be implemented at a receiver or
at the senders. We believe that the receiver-driven approach is the
natural solution since the receiver is the only permanent member
of the many-to-one session that has complete knowledge about 1)
which packets have been successfully delivered, 2) the current sub-
set of active sender peers, and 3) the available throughput from each
sender peer. This puts the receiver in a unique position to orches-
trate delivery from the senders. While the receiver cannot predict
the future available throughput for each sender, it should be able to
leverage a degree of multiplexing among senders to its advantage.
Another advantage of the receiver-driven approach is that it does
not require a significant processing overhead at the senders, since
coordination and adaptation is primarily done by the receiver.

The receiver-driven approach introduces a network overhead for

Webgroup CZ a.s. Ex. 1019, Page 3 of 10

coordination messages that should be periodically sent from the re-
ceiver to all active senders. However, this overhead should not be
higher than associated overhead for any conceivable sender-driven
coordination approach that uses unicast messaging 1. The receiver-
driven approach may require the availability of some detailed meta-
data about each requested stream (e.g., variations of stream band-
width for VBR streams). This information could be provided by
either a central server or by the sender peers, and can be used to
perform encoding-specific packet scheduling (e.g., [15, 16, 17]).
Obtaining this information before content delivery starts leads to
a small overhead with respect to sender-driven approaches, but we
believe that the benefits of using a receiver-driven approach out-
weigh this drawback.

Second, a layered organization of data streams presents a use-
ful structure for cooperative playback from multiple senders. Both
layer encoding and Multiple Description encoding provide such or-
ganization. We selected layered encoding since it often achieves a
higher compression efficiency than MD. Layer encodings are less
resilient to losses in lower layers (specially in the base layer) in
comparing to MD. However, as we describe in the following sec-
tion, in PALS lost packets can be retransmitted within a window of
time. Note that PALS can accommodate both types of data repre-
sentations. For example, in a purely layered representation a spe-
cific packet is present in all servers but is only requested from one.
If additional robustness is desired, however, it would be possible
to request the same packet from more than one server. Taking this
approach one step further it is possible to incorporate MD formats
as well, where the receiver can request two redundant (but not iden-
tical) versions of a stream from different servers.

4. P2P ADAPTIVE LAYERED STREAMING
(PALS)

In this section, we describe the PALS framework in more detail.
After presenting our target environment and assumptions in sub-
section 4.1, we provide an overview of the PALS framework and
identify three key components in subsection 4.2. Then, design is-
sues for these key components along with their sample solutions
are discussed in subsections 4.3, 4.4 and 4.5.

4.1 Target Environment
Figure 1 shows our target environment, where several sender

peers (SPAL) across the Internet cooperatively playback a requested
stream to a receiver peer (RPAL). Each peer is expected to perform
TCP-friendly congestion control. Therefore, throughput from each
sender peer can co-exist in a fair way with other outgoing traffic
from that sender (e.g., providing different contents for other peers).
Sender peers are potentially scattered across the Internet, therefore
connection to one sender peer could exhibit significantly different
characteristics (i.e., bandwidth and RTT) from connections to other
senders. PALS should be able to work with any arbitrary set of
sender peers across the network as long as the overall throughput
of all senders is higher than the bandwidth of a single layer.

We currently assume that a requested stream is entirely available
at each sender peer. For clarity of the discussion, we also assume
that all layers have the same constant-bit-rate (i.e., C). However,
neither of these assumptions is required for PALS. General infor-
mation about a requested stream (e.g., number of layers, layer band-
width distribution, stream length) can be provided to the receiver
along with the initial list of sender peers by the original server (or

1Multicast messaging may reduce coordination overhead in a
sender-driven approach but in our judgment other benefits of the
receiver-driven approach still outweighs this potential benefit.

SPAL

SPAL

SPAL
bw3

bw2

bw1

bw0

buf3

buf2

buf1

buf0 D
e

c
o

d
e

r

C

C

C

C

RPAL

Internet

De
mu

x

SPAL: PALS Sender
RPAL: PALS Receiver

Figure 1: End-to-end Architecture in PALS

any other mechanism that is used to locate sender peers) during the
initial setup phase. Table 4.2 summarizes our notation throughout
this paper.

4.2 An Overview of PALS Framework
The primary goal of PALS is to stream the maximum quality

that can be delivered by a set of available sender peers to a sin-
gle receiver peer. The key challenge is that the available through-
put from each sender is not known a priori, and can significantly
change during a session. This implies that PALS should be able
to gracefully cope with any sudden decrease in throughput while
effectively leveraging sudden increases in overall throughput. The
basic idea of PALS is simple and intuitive. The receiver periodi-
cally sends an ordered list of packets to each sender. Each sender
simply transmits the requested packets in the given order at the rate
that is determined by its CC mechanism. Using ordered lists pro-
vides several benefits: 1) it allows the receiver to better control
delivered packets from each sender, 2) it ensures graceful degra-
dation in quality when throughput of a sender suddenly decreases
by ordering the list based on importance of packets, and 3) it en-
ables different receivers to implement different quality adaptation
algorithms for delivery of the same stream. The requests for each
sender can be piggy-backed with the CC feedbacks that are period-
ically sent to that sender or can be sent separately.

The machinery of PALS protocol is mostly implemented at the
receiver. The receiver keeps track of the Exponentially Weighted
Moving Average (EWMA) of overall throughput (Tewma). At a
given point in time, the receiver assumes that the current value of
Tewma will remain unchanged for a period ∆ and estimates the to-
tal number of incoming packets (K) during this period as follows:
K = Tewma∗∆

PktSize
. The Quality Adaptation (QA) mechanism at the

receiver distributes these K packets among active layers based on
the overall throughput and receiver’s buffer state (buf0, buf1, ..,
bufN). For example, if the receiver expects to receive 50 pack-
ets during a period (K = 50) and four layers are currently being
played, the QA mechanism may allocate k0 = 20, k1 = 15, k2 =
10, k3 = 5 packets to layer L0 .. L3, respectively. By controlling
the distribution of incoming packets among layers, the receiver es-
sentially allocates the distribution of overall throughput among ac-
tive layers (bw0, bw1, .. ,bwN) during one period, which in turn
determines evolution of receiver’s buffer state. Given the distri-
bution of total packets among layers for a given period (k0, k1, ..
kn), the Packet Assignment (PA) mechanism at the receiver maps
a subset of these packets (possibly from different layers) to each
sender and sends a request that contains a list of assigned packets
to each sender. This packet assignment strategy allows the receiver
to loosely control allocation of each sender’s throughput among

Webgroup CZ a.s. Ex. 1019, Page 4 of 10

sj Sender j

Li Layer i

n No. of Active layers
N Max. number of layers
Tewma EWMA overall Throughput
T j

ewma EWMA Throughput from sj

bufi Buffered data for Li

bwi Allocated BW for Li

BUF [i] Target buffer for Li

PktSize Packet Size
SRTTj EWMA RTT from sj

SRTTmax Max. value among SRTTj

∆ interval between requests
K Estimated no. of incoming Packets during ∆

Table 1: Summary of Notation

active layers. The number of assigned packets to each sender is
proportional to the expected contribution of that sender’s through-
put to the overall throughput. For example, if sender si provides
50% of overall throughput, half of the overall packets during one
interval are assigned to si.

Once the receiver initiates playback, there needs to be a mecha-
nism at the receiver to keep senders loosely synchronized with the
receiver. More specifically, playout time of the requested packets
should be determined with respect to actual playout time of the on-
going session at the receiver in order to ensure “in-time” delivery
of requested packets. PALS employs two complementary mech-
anisms to achieve this goal. First, PALS uses a Sliding Window
(SW) approach that is shown in Figure 2. For each interval, the
receiver only considers packets with playout time higher than tmin

where tmin = tp + τ . The window should slide forward as playout
time proceeds so that it always remains sufficiently ahead of the
playout time. Furthermore, the SW mechanism should ensure that
each sender always has outstanding packets to deliver, otherwise
the sender may become idle and its throughput may drop below its
congestion controlled limit, which would not be desirable. Second,
any new list of requested packets from the receiver overwrites

any outstanding list that is being delivered by a sender, i.e., when
a sender receives a new list of requested packets from the receiver,
it starts delivery of packets from the new list and abandons any
pending packet from the previous list. This overwriting mechanism
keeps slow senders loosely synchronized with receivers’ playout.
Finally, the receiver requires a Peer Selection (PS) mechanism in
order to periodically examine other available peers and add them
to the subset of active sender peers if their participation in delivery
increases overall throughput of the session.

In summary, a PALS receiver requires the following four key
components: Quality Adaptation, Packet Assignment, Sliding Win-
dow, and Peer Section. We discuss the design issues for each one of
these components and present some sample mechanism in the fol-
lowing subsections, but we primarily focus on the first three com-
ponents.

4.3 Quality Adaptation
The main goal of a QA mechanism is to maximize overall de-

livered quality while minimizing variations in playback quality de-
spite unpredictable changes in available bandwidth. The key de-
sign issue is to manage the receiver’s buffer state in order to effec-
tively absorb short-term mismatch between stream’s consumption
rate (n∗C) and available network bandwidth. The receiver’s buffer
state can be controlled by proper allocation of available bandwidth

among active layers. In our earlier work [5], we designed a sender-
based QA mechanism for client-server streaming where the receiver
reports its buffer state to the sender, and the sender regulates inter-
layer bandwidth allocation on a per-packet basis to keep receiver’s
buffer state close to the optimal state. The optimal buffer state de-
pends on the pattern of variations in bandwidth (e.g., Additive In-
crease/Multiplicative Increase) which is known to the sender. We
follow the same design philosophy to design QA mechanism for
PALS. However there are several important differences between
QA in PALS and in unicast streaming, which require a new ap-
proach to QA for PALS. First, the QA mechanism is implemented
at the receiver, this adds a delay to the control loop because the
QA mechanism at the receiver should determine and control inter-
layer bandwidth allocation for each sender’s throughput. Second,
the receiver should deal with multiple independent senders with
potentially different variations in bandwidth. Furthermore, the re-
ceiver does not have any knowledge about pattern of changes in
overall throughput which could be used to derive optimal buffer
distribution. Third, performing a receiver-based QA mechanism
on a per-packet basis (i.e., sending a new request for each packet)
would be really expensive, therefore the QA mechanism should be
invoked periodically. In the remaining of this subsection, we sketch
a receiver-driven QA mechanism for PALS.

The QA mechanism has two degrees of control, 1) it can effec-
tively control distribution of total buffered data among active lay-
ers (buf0, buf1, .., bufn) by proper allocation of overall throughput
among active layers (i.e., by controlling [bw0, bw1, ... , bwn] where� n

i=0
bwi = Tewma); 2) it can change the number of playing layers

by adding/dropping the top layer (i.e., adjusting quality and thus
bandwidth of delivered stream). Short-term changes in through-
put are absorbed by buffered data whereas long-term changes in
throughput trigger adjustment in stream’s quality. When overall
throughput is higher than stream bandwidth (Tewma >= n ∗ C),
receiver can utilize the excess bandwidth to fill its buffers. We call
this filling phase. Once receiver’s buffers are filled to the appropri-
ate level, the receiver can increase stream’s bandwidth by adding
a new layer. In contrast, when overall throughput is lower than
stream bandwidth (Tewma < n∗C), the receiver can drain buffered
data to compensate the bandwidth deficit. If total buffered data (or
its distribution) is not sufficient to absorb the bandwidth deficit dur-
ing a draining phase, the receiver can drop the top layer to avoid
buffer underflow for buffered data for other layers.

The key observation is that not only the total amount of buffered
data but also its distribution across active layers is crucial to effec-
tively absorb variations in throughput. To illustrate this observa-
tion, assume a scenario where 4 layers are being played in Figure 1.
Note that buffered data for each layer can not be drained faster than

∆

τ

Time

a Packet

p t

L0
L1
L2

t

Playout Time

min

Figure 2: Sliding window scheme for loose synchronization of
requested packets with playout time

Webgroup CZ a.s. Ex. 1019, Page 5 of 10

its consumption rate (C). This implies that buffered data for each
layer can at most compensate up to C bps deficit in throughput.
Therefore, the bigger the deficit in throughput, the larger the total
required buffering, and the larger the number of buffering layers
that should be drained simultaneously to compensate the deficit in
throughput. More specifically, the minimum number of buffering
layers (nbuf) can be determined as nbuf = n∗C−Tewma

C
. Figure

3 illustrates this requirement for two different draining scenarios
with different pattern of changes in overall throughput. Although
both scenarios require roughly the same amount of total buffering,
scenario I requires buffered data with proper distribution across at
least 3 layers whereas deficit in throughput for scenario II can be
absorbed by buffering only for one layer. This observation suggests
that even distribution of buffered data among active layer should
be appropriate. However, we note that once a layer is dropped
the amount of buffered data for that layer can not be leveraged
for absorbing future variations in throughput which in turn leads
to lower buffering efficiency. Therefore, given an expected band-
width deficit in the future, the optimal buffer distribution is the one
that distributes buffered data among minimum number of required
buffering layers in a skewed fashion by allocating the maximum
amount of data that can be drained from a buffer during a draining
phase to buf0, the next such a maximum to buf1, and so on.

The optimal buffer distribution directly depends on the pattern of
variations in the overall throughput. As we mentioned earlier, this
is one of the challenges in the receiver-based QA since the receiver
does not have sufficient (if any) information about the pattern of
changes in overall throughput. Therefore, we considered two alter-
native solutions to determine a proper buffer distribution: 1) the re-
ceiver should be able to use a measurement-based technique to pro-
gressively derive the pattern of changes in overall throughput from
the incoming stream and determine the new optimal buffer distribu-
tion accordingly, or 2) the receiver can use a pre-specified and fixed
buffer distribution. Currently, we use the second approach with a
linear buffer distribution for PALS and we call this target buffer
state, i.e., BUF [i] = BUF [i − 1] + α * SRTTmax where α is a
configuration parameter that determines the slope of linear increase
in buffering per layer. Given a target buffer state, the target amount
of buffering for layer i when n layers are active can be specified
as bufi = BUF [n − i − 1]. Although this approach is static and
not optimal, it can still be effective. Design of measurement-based
techniques for deriving pattern of changes in overall throughput re-
mains as future work.

Given a target buffer distribution, every time the QA mechanism
is invoked, it goes through the following steps to keep the buffer
state as close as possible to the target buffer state. First, it compares
overall throughput with stream’s bandwidth to determine whether
it is in a filling or a draining phase, and then implements the corre-
sponding mechanisms as follows:

C

C

C
4C

Scenario I Scenario IIT

Figure 3: Impact of pattern of variations in throughput on
inter-layer buffer distribution

• Filling Phase: If it is in a filling phase with n layers, the
receiver tries to fill its buffers up to the target state with n

layers. Towards this end, it starts from the base layer and se-
quentially determines the number of packets that each layer
requires to reach its target buffer level at the end of this in-
terval, until all packets are allocated or all layers have reach
their target buffer levels. This algorithm is described in the
following pseudo code:

Filling Phase

/* fill all layers up to target state */
i = 0
WHILE (i < n AND K > 0) {

IF (BUF [n − i − 1] > bufi)
bufdeficit = BUF [n − i − 1] - bufi

ELSE

bufdeficit = 0
kcons = C∗∆

PktSize

ki =
bufdeficit

PktSize
+ kcons

K = K - ki

i = i + 1
}

kcons denotes the number of packets that are consumed by
a layer during one period, and ki is the number of allocated
packets to Li. Once buffered data for all n layers reach their
target levels, if more packets are available, the QA mecha-
nism repeats the same algorithm to fill all active layers up
to their target level with (n + 1) layers. This fills buffers of
all existing layers up to the point to add a new layer. Once
all layers are filled up to this level and more packets are still
available, a new layer can be added if available throughput
is higher than stream’s bandwidth with an additional layer
((n + 1) ∗ C <= Tewma).

• Draining Phase: If the receiver is in a draining phase, first
it determines how many active layers can be sustained dur-
ing one interval with the current buffer state. If total amount
of buffered data or its distribution is not sufficient to com-
pensate the deficit in overall throughput, the QA mechanism
progressively drops the top layer until the buffer state for
the remaining layers is sufficient to compensate the deficit
in overall throughput. Then, the QA mechanism essentially
reverses its filling algorithm. More specifically, it tries to
drain all layers towards the last target level starting from the
top layer. If more data needs to be drained, the top layer is
dropped, and the receiver repeats the above steps toward the
previous target state with n − 1 layers.

In summary, there are two key differences between the receiver-
driven QA mechanism for PALS and the sender-based QA mecha-
nism for unicast streaming. The QA mechanism for PALS should
determine inter-layer bandwidth allocation for a period of time rather
than on a per-packet basis. Moreover, this mechanism should some-
how determine a proper client buffer distribution without any knowl-
edge about pattern of changes in overall throughput.

We expect that the effect of any change in the number of sender
peers (due to departing of an existing sender peer or availability of
a new sender peer) would be similar to a sudden decrease or in-
crease in throughput. Therefore, the QA mechanism reacts to both
events the same way.

Webgroup CZ a.s. Ex. 1019, Page 6 of 10

4.4 Sliding Window
The sliding window (SW) mechanism has two goals: 1) it should

keep all senders loosely synchronized with the playout time at the
receiver in order to prevent senders from sending packets whose
playout time has already passed, and 2) it should ensure that all
senders always have packets to send so they do not become idle.
PALS achieves the first goal by using a sliding window coupled
with the overwriting mechanism. As shown in Figure 2, the re-
ceiver maintains a window that is periodically slided forwarded ev-
ery ∆ seconds in order to stay τ seconds ahead of the playout time.
If the receiver overestimates throughput from a sender, the win-
dow slides forward after ∆ seconds and the receiver sends another
request to the sender. This timer-driven approach (along with over-
writing) prevents a sender from falling behind the ongoing session.

To achieve the second goal, the receiver keeps track of the num-
ber of delivered packets from each sender during each interval. If
the number of pending packets at a sender goes below a thresh-
old (kthresh), the receiver sends another request to the sender. This
mechanism reacts to a sudden increase in the throughput of a sender
and triggers transmission of another request before the sender be-
comes idle. We call this mechanism Reverse Flow Control (RFC)
because the receiver tries to ensure that the sender’s buffer (i.e.,
list of pending packets) does not underflow. One key parameter in
the RFC mechanism is its threshold.This threshold for each sender
should be specified as a portion of SRTT for that sender (δ). For ex-
ample, setting δ to 0.5 for a sender means that a new request should
be sent to a sender when it has less than half a SRTT worth of pack-
ets to deliver. The threshold can be translated into the maximum
number of remaining packets that can trigger RFC mechanism as
follows:

krfc = δ∗SRTT
ipgi

where ipgi = PktSize

T i
ewma

Using a small threshold results in a late reaction to a sudden in-
crease in a sender’s throughput which may cause a sender to be-
come idle. In contrast, if δ is set to a large value, RFC always
sends a new request to a sender too early and frequently overwrites
previous list of the sender. We call this an overwriting effect. The
larger the threshold for RFC, the larger the portion of each list that
is being overwritten, and thus the larger the number of packets that
are ignored during one interval. Note that underlivered packets due
to overwriting can be requested (from the same or other senders)
and be delivered during the following intervals.

A key design question is “how to couple the QA mechanism with
the receiver’s requests to different senders?”. If throughput of all
senders is overestimated or all senders finish close to the end of an
interval, the receiver can invoke the QA mechanism once at the end
of each interval to determine required packets for the next interval
based on overall throughput, then send new request to all senders
simultaneously at the beginning of the new interval. However, in
practice, it is very likely that throughput of one sender suddenly
increases during an interval, and the RFC mechanism triggers the
receiver to send a new request to this fast sender. The key issue is
to determine when a new request should be sent to other (slower)
senders. One could devise two different approaches to address this
issue as follows:

• Synchronized Requesting: A new request can be sent to all
senders at the same time once per interval. This synchronized
approach is simple because it tightly couples sliding window
mechanism with QA mechanism. The window can be slided
forward after ∆ seconds or as soon as RFC mechanism is
triggered for the fastest sender. The receiver invokes the QA

mechanism once per window to determine required packets
from all senders based on the overall throughput, and sends
a new request to all senders simultaneously. In this approach
the QA mechanism does not require to factor in throughput
from individual senders.

• Asynchronous Requesting: The receiver can send new re-
quests to different senders in an asynchronous fashion. A
new request is sent to each fast sender as soon as its RFC
mechanism is triggered whereas new request to other senders
are sent at the end of one interval after sliding the window.
This approach does not suffer from the overwriting effect.
However, in this approach the sliding mechanism is decou-
pled from the QA mechanism and thus complicates coupling
of the QA mechanism with outgoing requests. If the QA
mechanism is invoked only once per interval to determine all
packets for one interval based on the overall throughput, a
request might be sent to a sender up to one interval later than
the execution of the QA mechanism. Since network condi-
tions might significantly change during one interval, this ap-
proach could lead to a poor performance (e.g., frequent layer
add/drop) for the QA mechanism. Alternatively, the receiver
can invoke the QA mechanism before sending a request to
each sender (or sending a batch of concurrent requests to a
subset of senders). In this case, the QA mechanism should
work in an incremental fashion - that means at each execution
time in needs to send a request to a sender, the QA mecha-
nism should not only consider the recently requested packets
from other senders but it should also factor in variations in
throughput for individual senders. This clearly adds to the
complexity of the QA mechanism because it needs to cope
with higher degree of network dynamics. We plan to explore
new techniques for incremental QA in our future work.

The basic configuration parameter for the SW mechanism is the
window size (∆). Since the dynamics of variations in through-
out from a sender depend on its SRTT, the length of each interval
should be a function of SRTT. In the synchronized requesting ap-
proach, since the same interval is used for all senders, it must be se-
lected in order to accommodate all senders. ∆ directly controls re-
sponsiveness of the QA mechanism as well as frequency (and thus
network overhead) of receiver’s requests to senders. Using a small
window allows the QA to quickly react to changes in throughput
and maintain the buffer state closer to the target buffer state. How-
ever, if the window is too small, it could cause the QA mechanism
to oscillate due to the delay in the control loop between the receiver
and each sender. Obviously, if SRTT from different senders span a
wide range, it would be difficult to set the window in order to satisfy
above considerations for all senders. In the asynchronous request-
ing approach, however, the receiver can potentially use a separate
interval for each sender. This scheme allows the receiver to control
each sender with a separate frequency. This in turn shifts complex-
ity to the design of QA mechanism for the asynchronous approach
as we mentioned earlier. In summary, ∆ should be chosen in or-
der to achieve a proper balance between responsiveness for the QA
mechanism, and network load for receiver’s requests. In the cur-
rent version of PALS, we use a synchronized requesting approach
and set ∆ to 4 to 6 SRTTmax where SRTTmax is the maximum
SRTT among active senders at the beginning of each window.

4.5 Adaptive Packet Assignment
If the QA mechanism determines an ordered list of packets to be

requested from multiple senders (e.g., it is invoked once per RTT), a
packet assignment mechanism is needed to properly distribute these

Webgroup CZ a.s. Ex. 1019, Page 7 of 10

packets among active senders. We note that total required packets
for one window may include a different number of packets from
various layers. For example, the QA mechanism may require 10,
8, 5 and 6 packets for L0, L1, L2 and L3, respectively. The num-
ber of assigned packets to each sender should be proportional to its
expected throughput during a window so that all senders could de-
liver their assigned packets at relatively the same time. To achieve
this, the receiver keeps track of short-term EWMA of per-window
throughput for each active sender (T i

ewma) and uses this to deter-
mine the number of requested packets from each sender as follows:

ki = T i
ewma∗K

Tewma
where

Tewma =
� M

i=0
T i

ewma and K =
� n

i=0
ki.

Then, the packet assignment mechanism should assign ki specific
packets from the total list of required packets to each sender while
it tries to satisfy the following goals: First, it tries to assign all re-
quired packets of a layer to a single sender whenever possible. This
strategy reduces the size of request messages, and thus requires less
network bandwidth for sending request messages. Second, a more
important consideration is to distribute packets among senders in
order to minimize any negative impact on delivered quality due to
a sudden change in a sender’s throughput. We discuss two basic
examples to illustrate the impact of packet assignment strategies on
overall behavior of PALS framework.
Coping with Slow Senders: if the receiver overestimates through-
put of one or more senders, those senders can not deliver all the
assigned packets within the current window. The main goal of
the packet assignment mechanism is to ensure that the available
throughput is used to deliver the most important packets. Since the
receiver does not know a priori which sender might be slow, as-
signing all packets of a layer to a single sender does not achieve
this goal. However, the following packet assignment strategy can
cope with slow senders: once the number of packets assigned to
each sender (ki) is determined based on its throughput, the ordered
list of packets is distributed among active senders in a weighted
round-robin fashion. For example, if three senders s0, s1 and s2

contribute 50%, 30% and 20% the overall throughput, the ordered
list of packets is divided among them in a round-robin fashion -
that means we repeatedly assign rrbase*0.5 packets to s0, next
rrbase*0.3 packets to s1, and next rrbase*0.2 packets to s2. This
strategy attempts to proportionally distribute less important packets
(i.e., packets of higher layers with higher timestamp) at the end of
all lists. These packets might have more opportunity to be deliv-
ered during the following windows if excess throughput becomes
available. rrbase is a configuration parameter for the packet as-
signment mechanism that controls size of a batch of packets that
is being distributed among the senders in each round. The larger
rrbase, the smaller the amount of control information, the smaller
the number of senders that deliver packets of a given layer, and the
more likely it is that the undelivered packets are the more important
ones.
Limiting Overwriting Effect: The overwriting effect could affect
slow senders when the synchronized requesting approach is used.
If we use the above round-robin packet assignment strategy with
the synchronized requesting approach, requested packets of higher
layers are frequently overwritten (i.e., ignored) which could lead
to starvation of higher layers. To limit the negative impact of the
overwriting effect, the above packet assignment strategy can be ex-
tended as follows: a window can be partitioned to two smaller win-
dows with the length equal to r−1

r
and 1

r
portions of the original

window, then we can sequentially apply the weighted round-robin
packet assignment strategy on the smaller windows with the or-

∆

(1-r)∗∆ r*∆

L0

L1

L2

L3

Figure 4: An example of window partitioning for packet assign-
ment

der shown in Figure 4. The example in Figure 4 shows a scenario
where a window of packets for all layers (i.e., 10,8,5,6) was parti-
tioned into two windows (8,6,4,5) and (2,2,1,1) where r = 0.2. In
this approach the negative impact of overwriting affects all layers
proportionally, thus the QA mechanism has a better control on the
buffer state. r is a configuration parameter called partitioning fac-
tor and should be set based on the expected level of overwriting.

4.6 Peer Selection
As we mentioned earlier, increasing the number of sender peers

does not monotonically increase their overall effective throughput
because two or more senders may share a bottleneck. PALS lever-
ages this observation and uses a simple iterative mechanism to iden-
tify a subset of senders that maximize overall throughput as fol-
lows. The receiver starts with a randomly selected peer from the list
of available peers. Then it periodically adds another random peer
from the list of available peers to the subset of active senders while
monitoring variations of both overall throughput and throughput
of individual senders. If the overall throughput increases, the new
sender is kept. Otherwise, the receiver drops the new sender and
tries another random peer after a period. The impact of a new
sender on overall throughput should be monitored over a suffi-
ciently long period period in order to avoid reacting to other ar-
tifacts such as a transient congestion due to the startup phase, or
similar peer selection experiments by other co-located receivers.
Clearly, if the access link of the receiver is the bottleneck, changing
the number of sender peers does not improve overall throughput.

5. EVALUATION
We have conducted preliminary evaluations of the PALS pro-

tocol using ns2 [18] simulation and present our initial results in
this section. In our simulations, we have used a version of PALS
with synchronized requesting approach and window partitioning
for packet assignment. We have also simplified PALS by ignor-
ing time-stamp of individual packets. For each period, either RFC
or sliding window mechanism triggers QA to determine number
of packets that should be delivered for each layer (rather than spe-
cific time-stamp) and uses the packet assignment mechanism to dis-
tribute required packets among senders. While our simulations can
demonstrate dynamics of quality adaptation, packet assignment and
sliding window mechanisms, they do not allow us to keep track of
duplicate and late packets. Configuration parameters for PALS re-
ceiver are summarized in Table 5.

Figure 5 depicts our simulation scenario for a PALS session with

Webgroup CZ a.s. Ex. 1019, Page 8 of 10

5 Mbps
20 ms

SPAL0

SPAL1

SPAL2

10Mbps
5ms

RPAL0

TCP0 TCP9. . .

TCP Cross traffic

Sink0 Sink9. . .

15ms

25ms

10Mbps

10Mbps

10ms

Figure 5: Simulation Setup

EWMA Factor 0.25
C 50 KByte/sec
PktSize 1000 Byte
∆ 4*SRTT
r 0.1
δ 0.2
α 2
rrbase 1000

Table 2: PALS Configuration Parameters

3 sender peers who cooperatively deliver a layered stream to a sin-
gle receiver peer. Each sender uses RAP [3] for congestion control
and has a different RTT to the receiver. Figure 6 shows the PALS
mechanism in action when three sender peers share a bottleneck
link with 10 TCP flows. The line with the most variations in Fig-
ure 6 is per-RTT average of overall throughput from all sender, a
smoother line is EWMA of overall throughput and the step-wise
line is the number of played back layers (i.e., delivered quality) as
a function of time. Furthermore, throughput of individual senders
are also shown in this figure. Despite rather wide variations in per-
RTT average of overall throughput, the QA mechanism manages
to rapidly increase the number of playing layers up to 4 layers and
then smoothly adjusts the delivered quality with variations of the
overall throughput.

To examine the behavior of the QA mechanism in the presence
of major changes in overall throughput, we repeated the previous
simulation but added a CBR flow that starts at t=30sec and stops at
t=60sec, and consumes 3 Mbps bandwidth of the bottleneck link.
Figure 7 depicts the behavior of QA in PALS in the presence of
the CBR source. This figure clearly shows that the throughput of
sender peers (i.e., bandwidth of RAP flows) quickly decreases in
response to change in network condition. This in turn triggers the
QA mechanism to quickly adjust the delivered quality by dropping
all layers except the base layer. Once the CBR source stops and
the bandwidth becomes available, the QA mechanism detects this
changes and rapidly increases number of layers up to the previous
level.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a new receiver-driven framework for

P2P adaptive layered streaming, called PALS, where a receiver co-
ordinates delivery of layer encoded stream from multiple senders.
We described the framework, discussed the key components of the
framework for coordination and adaptation, and addressed various
design issues and tradeoffs. We also identified several challenging
problems that arise in the design of such a receiver-driven mecha-
nism for quality adaptive streaming.

This is obviously a starting point for our work on PALS. We plan
to pursue this work in several directions. We are currently conduct-
ing extensive and detailed simulations to obtain a deeper under-

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
(B

yt
e/

se
c)

Time(sec)

Behavior of Quality Adaptation Mechanism in PALS

Delivered Quality(layers)
per-RTT Average Throughput

EWMA Overall Throughput
bw(0)
bw(1)
bw(2)

Figure 6: QA in PALS in the presence of TCP background traf-
fic

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
(B

yt
e/

se
c)

Time(sec)

Behavior of Quality Adaptation Mechanism in PALS

Delivered Quality(layers)
per-RTT Average Throughput

EWMA Overall Throughput
bw(0)
bw(1)
bw(2)

Figure 7: QA in PALS with major variations in background
traffic

standing of the dynamics of different mechanisms in PALS, effect
of various configuration parameters, and interactions among key
components. In particular, we plan to explore various techniques
to perform asynchronous requesting and incremental quality adap-
tation. We are also working on measurement-based techniques to
derive pattern of variations in overall throughput from the incoming
packets. We plan to examine our proposed peer selection mecha-
nism. Once a peer selection mechanism is added to PALS, we can
examine the impact of dynamics of peer participations on PALS
performance. Finally, we plan to extend PALS to support delivery
of VBR layered encoded as well as MD encoded streams.

Acknowledgments

We would like to thank the anonymous NOSSDAV reviewers for
their feedback.

7. REFERENCES
[1] S. Ratnasamy, P. Francis, M. Handley, and S. Shenker, “A

scalable content-addresable network,” in Proceedings of the
ACM SIGCOMM, Aug. 2001.

[2] I. Stoica, R. Morris, D. Krager, F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup

Webgroup CZ a.s. Ex. 1019, Page 9 of 10

service for internet applications,” in Proceedings of the ACM
SIGCOMM, Aug. 2001.

[3] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end
rate-based congestion control mechanism for realtime
streams in the internet,” in Proceedings of the IEEE
INFOCOM, New York, NY., Mar. 1999.

[4] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
“Equation-based congestion control for unicaqt
applications,” in Proceedings of the ACM SIGCOMM, 2000.

[5] R. Rejaie, M. Handley, and D. Estrin, “Quality adaptation for
congestion controlled playback video over the internet,” in
Proceedings of the ACM SIGCOMM, Cambridge, MA., Sept.
1999.

[6] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanidkulchai, “Distributing streaming media content
using cooperative networking,” in Workshop on Network and
Operating System Support for Digital Audio and Video,
Miami Beach, FL, 2002.

[7] J. Apostolopoulos, T. Wong, W-T. Tan, and S. Wee, “On
multiple description streaming with content delivery
networks,” in Proceedings of the IEEE INFOCOM, 2002.

[8] T. Nguyen and A. Zakhor, “Distributed video streaming over
the internet,” in SPIE Multimedia Computing and
Networking, Jan. 2002.

[9] “Abacast,” http://www.abacast.com.
[10] “chaincast,” http://www.chaincast.com.
[11] “allcast,” http://www.allcast.com.
[12] “vtrails,” http://www.vtrails.com.
[13] D. A. Tran, K. A. Hua, and T. Do, “Zigzag: An efficient

peer-to-peer scheme for media streaming,” in Proceedings of
the IEEE INFOCOM, 2003.

[14] S. McCanne, V. Jacobson, and M. Vettereli, “Receiver-driven
layered multicast,” in Proceedings of the ACM SIGCOMM,
Stanford, CA., Aug. 1996, pp. 117–130.

[15] Z. Miao and A. Ortega, “Expected run-time distortion based
scheduling for delivery of scalable media,” in Proc. of Packet
Video Workshop 2002, Pittsburgh, PA, Apr. 2002.

[16] H. Wang and A. Ortega, “Robust video communication by
combining scalability and multiple description coding
techniques,” in EI 2003, San Jose, CA, Jan. 2003.

[17] P. A. Chou and Z. Miao, “Rate-distortion optimized
streaming over best-effort networks,” in Submitted toIEEE
Transactions on Multimedia, 2001.

[18] “Network simulator - ns(version 2),” Software on-line, 2002,
http://www.isi.edu/nsnam/ns/.

Webgroup CZ a.s. Ex. 1019, Page 10 of 10

