
EXHIBIT 1004 

Webgroup CZ a.s. Ex. 1004, Page 1 of 17



(12) United States Patent 
Leaning et al. 

US007.447791 B2 

(10) Patent No.: US 7.447,791 B2 
(45) Date of Patent: Nov. 4, 2008 

(54) TRANSMISSION AND RECEPTION OF 
AUDIO AND/OR VIDEO MATERAL 

(75) Inventors: Anthony R Leaning, Ipswich (GB); 
Richard J Whiting, Ipswich (GB) 

(73) Assignee: British Telecommunications public 
limited company, London (GB) 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 908 days. 

(21) Appl. No.: 10/433,259 

(22) PCT Filed: Dec. 14, 2001 

(86). PCT No.: PCT/GBO1ADSS43 

S371 (c)(1), 
(2), (4) Date: Jun. 2, 2003 

(87) PCT Pub. No.: WO02/49343 

PCT Pub. Date: Jun. 20, 2002 

(65) Prior Publication Data 

US 2004/0064573 A1 Apr. 1, 2004 

(30) Foreign Application Priority Data 

Dec. 15, 2000 (GB) ................................. OO3O7O6.6 
Mar. 30, 2001 (GB) ... ... O1080944 
Nov. 19, 2001 (GB) ..................... PCT/GBO1/05090 

(51) Int. Cl. 
G06F 5/16 (2006.01) 

(52) U.S. Cl. ........................ 709/231: 709/232; 709/233 

(58) Field of Classification Search ......... 709/230 237, 
709/203, 217 219 

See application file for complete search history. 
(56) References Cited 

U.S. PATENT DOCUMENTS 

5,608.450 A * 3/1997 Agarwal et al. .......... 348/14.15 
5,610,841 A 3/1997 Tanaka et al. ............... 725,115 

(Continued) 
FOREIGN PATENT DOCUMENTS 

EP O669587 8, 1995 

(Continued) 
OTHER PUBLICATIONS 

Avaro et al. “The MPEG-4 Systems and Description Languages: A 
Way Ahead in Audio Visual Information Representation'. Signal 
Processing, Image Communication, NL, Elsevier Science Publish 
ers, Amsterdam, vol. 9, No. 4. May 1, 1997, pp. 385-431. 
XPOO4O75337. 

(Continued) 
Primary Examiner Thuha T. Nguyen 
Assistant Examiner Brendan Y Higa 
(74) Attorney, Agent, or Firm Nixon & Vanderhye, PC 

(57) ABSTRACT 

Delivery of recorded audio or video material over a telecom 
munications link from a server is accomplished by dividing 
the material into a sequence of sub-files each of which is 
independently requested by the terminal, which thereby has 
control of the rate of delivery. Provision may be made for 
Switching between alternative Sub-file sets representing alter 
native delivery modes or data rates. 

38 Claims, 3 Drawing Sheets 

Terminal 

  

Webgroup CZ a.s. Ex. 1004, Page 2 of 17



US 7.447,791 B2 
Page 2 

U.S. PATENT DOCUMENTS EP 669587 A2 * 8, 1995 
EP 0812112 A2 12/1997 

5,701,582 A * 12/1997 DeBey ....................... 725 103 EP O924934 A 6, 1999 
5,732,216 A 3, 1998 Logan et al. WO WO 97.222O1 6, 1997 
5,835,495 A * 1 1/1998 Ferriere ...................... 370/465 WO WO99,22563 5, 1999 
5,956,716 A 9, 1999 Kenner et al. WO WO99,34291 7, 1999 
6,002.440 A * 12/1999 Dalby et al. ........... 375,240.12 WO WO99,52228 10, 1999 
6,016,166 A * 1, 2000 Huang et al. ................ 348,515 WO WOOOf 42773 T 2000 
6,032,189 A 2/2000 Jinzenji et al. 
6,118,790 A * 9/2000 Bolosky et al. ............. 370/468 
6,452,943 B1 9/2002 Furuya OTHER PUBLICATIONS 
6,760,808 B2 T/2004 Peters et al. ................ 711 114 Ramjee et al. "Adaptive Playout Mechanisms For Packetized Audio 
6,857,130 B2 2/2005 Srikantan et al. .............. 725.93 Applications in Wide-Area Networks', IEEE Comp. Soc. Press, US, 
6,993,788 B1* 1/2006 Lawrence et al. ........... 725,102 Jun. 12, 1994 pp. 680-688, XPOOO496524. 

2 year 22 “International Standard ISO/IEC 14772-1; 1997 Virtual Reality 
2002.0062391 A1 5/2002 Densmore ................... 709/245 Modeling Language (VRML97)” 'Online, 1997, pp. 1-236. 

FOREIGN PATENT DOCUMENTS XP002133320, URL: www.vrml.org/specifcations/VRML97. 

EP O669587 A 8, 1995 * cited by examiner 

  

Webgroup CZ a.s. Ex. 1004, Page 3 of 17



U.S. Patent Nov. 4, 2008 Sheet 1 of 3 US 7.447,791 B2 

Fig.1. 

Terminal 

  

Webgroup CZ a.s. Ex. 1004, Page 4 of 17



Webgroup CZ a.s. Ex. 1004, Page 5 of 17



U.S. Patent Nov. 4, 2008 Sheet 3 of 3 US 7.447,791 B2 

Fig.4. 
B1 B2 B3 B4 

4 Sec 4 Sec 4 SeC 

4.075 SeC it loss. Sec 
N--- 

N-- 

39 39 
Frames Frames 

  

Webgroup CZ a.s. Ex. 1004, Page 6 of 17



US 7,447,791 B2 
1. 

TRANSMISSION AND RECEPTION OF 
AUDIO AND/OR VIDEO MATERAL 

This application is the US national phase of international 
application PCT/GB01/05543 filed 14 Dec. 2001 which des 
ignated the U.S. 

BACKGROUND 

1. Technical Field 
The present invention is concerned with the delivery, over 

a telecommunications link, of digitally coded material for 
presentation to a user. 

2. Related Art 
In known systems of this type, a special server—often 

called a “streamer, controls delivery of material to a user 
terminal. Often, in the server, an item of material to be trans 
mitted is stored as a single file; though U.S. Pat. No. 5,610, 
841 describes a video server which stores the material seg 
mented into “media segment files'. Another such system is 
described in published European patent application EP-A- 
669587, where network congestion is accommodated by the 
terminal monitoring the contents of its receive buffer and, 
where appropriate, requesting the server to adjust its video 
data rate. 

BRIEF SUMMARY 

According to one aspect of the invention there is provided 
a terminal for playing audio or video material which is stored 
on a remote server as a set of files representing Successive 
temporal portions of the said material, the terminal compris 
ing: 
a telecommunications interface for communication with the 

server; 
a buffer for receiving the files from the telecommunications 

interface; 
means for playing the contents of the buffer, and 
control means responsive to the state of the buffer to generate 

request messages for further files for replenishment of the 
buffer. 
In another aspect, the invention provides a method of trans 

mitting digitally coded audio or video material comprising: 
partitioning the material into a plurality of discrete files each 

representing Successive temporal portions of the said mate 
rial; 

storing the files at a first station; and 
at a second station— 

a) transmitting to the first station requests for Successive 
respective ones of the files; 

b) receiving the files; and 
c) decoding the files for replay of the material. 
Other, optional, aspects of the invention are set out in the 

Sub-claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Some embodiments of the present invention will now be 
described, with reference to the accompanying drawings, in 
which: 

FIG. 1 is a diagram illustrating the overall architecture of 
the systems to be described: 

FIG. 2 is a block diagram of a terminal for use in such a 
system; 

FIG.3 shows the contents of a typical index file; 
FIG. 4 is a timing diagram illustrating a modified method 

of Sub-file generation; and 
FIG. 5 is a diagram illustrating a modified architecture. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
DETAILED DESCRIPTION OF EXEMPLARY 

EMBODIMENTS 

The system shown in FIG. 1 has as its object the delivery, 
to a user, of digitally coded audio signals (for example, of 
recorded music or speech) via a telecommunications network 
to a user terminal where the corresponding Sounds are to be 
played to the user. However, as will be discussed in more 
detail below, the system may be used to convey video signals 
instead of, or in addition to, audio signals. In this example, the 
network is the internet or other packet network operating in 
accordance with the Hypertext Transfer Protocol (see RFCs 
1945/2068 for details), though in principle other digital links 
or networks can be used. It is also assumed that the audio 
signals have been recorded in compressed form using the ISO 
MPEG-1 Layer III standard (the “MP3 standard'); howeverit 
is not essential to use this particular format. Nor, indeed, is it 
necessary that compression be used, though naturally it is 
highly desirable, especially if the available bit-rate is 
restricted or storage space is limited. In FIG. 1, a server 1 is 
connected via the internet 2 to user terminals 3, only one of 
which is shown. The function of the server 1 is to store data 
files, to receive from a user terminal a request for delivery of 
a desired data file and, in response to Such a request, to 
transmit the file to the user terminal via the network. Usually 
Such a request takes the form of a first part indicating the 
network delivery mechanism (e.g. http:// or file:// for the 
hypertext transfer protocol or file transfer protocol respec 
tively) followed by the network address of the server (e.g. 
www.server 1.com) suffixed with the name of the file that is 
being requested. Note that, in the examples given, such names 
are, for typographical reasons, shown with the "// replaced 
by “\\". 

In these examples, the use of the hypertext transfer protocol 
is assumed; this is not essential, but is beneficial in allowing 
use of the authentication and security features (such as the 
Secure Sockets Layer) provided by that protocol. 

Conventionally, a server for delivery of MP3 files takes the 
form of a so-called streamer which includes processing 
arrangements for the dynamic control of the rate at which data 
are transmitted depending on the replay requirements at the 
user terminal, for the masking of errors due to packet loss and, 
if user interaction is allowed, the control of the flow of data 
between server and client; here however the server 1 need 
contain no such provision. Thus it is merely an ordinary “web 
Server'. 
The manner in which the data files are stored on the server 

1 will now be explained. Suppose that an MP3-format file has 
been created and is to be stored on the server. Suppose that it 
is a recording of J. S. Bach's Toccata and Fugue in D minor 
(BWV 565) which typically has a playing time of 9 minutes. 
Originally this would have been created as a single data file, 
and on a conventional streamer would be stored as this one 
single file. Here, however, the file is divided into smaller files 
before being stored on the server 1. We prefer that each of 
these Smaller files is of a size corresponding to a fixed playing 
time, perhaps four seconds. With a compressed format Such as 
MP3 this may mean that the files will be of different sizes in 
terms of the number of bits they actually contain. Thus the 
Bach file of 9 minutes duration would be divided into 135 
Smaller files each representing four seconds playing time. In 
this example these are given file names which include a serial 
number indicative of their sequence in the original file, for 
example: 

Webgroup CZ a.s. Ex. 1004, Page 7 of 17



US 7,447,791 B2 

OOOOOObin 

OOOOO1bn 

OOOOO2bn. 

OOOOO3bn. 

000134bin 

The partitioning of the file into these smaller sub-files may 
typically be performed by the person preparing the file for 
loading onto the web server 1. (The expression “sub-files' is 
used here to distinguish them from the original file containing 
the whole recording: it should however be emphasised that, as 
far as the server is concerned, each “sub-file' is just a file like 
any other file). The precise manner of their creation will be 
described more fully below. Once created, these sub-files are 
uploaded onto the server in a conventional manner just like 
any other file being loaded onto a web server. Of course the 
filename could also contain characters identifying the par 
ticular recording (the sub-file could also be “tagged with 
additional information when you play an MP3 file you get 
information on the author, copyright etc), but in this example 
the sub-files are stored on the server in a directory or folder 
specific to the particular recording—e.g. mp3 bw V565. Thus 
a Sub-file, when required, may be requested in the form: 

http:\www.server1.com/mp3 bw v565/000003.bin 
where “wvw.server1.com is the URL of the server 1. 

It is also convenient for the person preparing the Sub-files 
for loading onto the server to create, for each recording, a link 
page (typically in html format) which is also stored on the 
server (perhaps with filename mp3 bw V565/link.htm), the 
structure and purpose of which will be described later. 

It is also convenient that the web server stores one or more 
(html) menu pages (e.g. menu.htm) containing a list of 
recordings available, with hyperlinks to the corresponding 
link pages. 

Turning now to the terminal, this may typically take the 
form of a conventional desktop computer, with, however, 
additional software for handling the reception of the audio 
files discussed. If desired, the terminal could take the form of 
a handheld computer, or even be incorporated into a mobile 
telephone. Thus FIG. 2 shows such a terminal with a central 
processor 30, memory 31, a disk store 32, a keyboard 33. 
video display 34, communications interface 35, and audio 
interface (“sound card') 36. For video delivery, a video card 
would be fitted in place of, or in addition to, the card 36. In the 
disk store are programs which may be retrieved into the 
memory 31 for execution by the processor 30, in the usual 
manner. These programs include a communications program 
37 for call-up and display of html pages—that is, a “web 
browser program such as Netscape Navigator or Microsoft 
Explorer, and a further program 38 which will be referred to 
here as “the player program’ which provides the functionality 
necessary for the playing of audio files inaccordance with this 
embodiment of the invention. Also shown is a region 39 of the 
memory 31 which is allocated as a buffer. This is a decoded 
audio buffer containing data waiting to be played (typically 
the playout time of the buffer might be 10 seconds). The audio 
interface or sound card 36 can be a conventional card and 
simply serves to receive PCM audio and convert it into an 
analogue audio signal, e.g. for playing through a loudspeaker. 
Firstly, we will give a brief overview of the operation of the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
terminal for the retrieval and playing of the desired recording 
when using the HTTP and an embedded or “plugin' client 

1. The user uses the browser to retrieve and display the 
menu page menu.htm from the server 1. 

2. The user selects one of the hyperlinks within the menu 
page which causes the browser to retrieve from the 
server, and display, the link page for the desired record 
ing in this example the file mp3 bw V565 link.htm. 
The actual display of this page is unimportant (except 
that it may perhaps contain a message to reassure the 
user that the system is working correctly). What is 
important about this page is that it contains a command 
(or “embed tag') to invoke in the processor 30 a second 
ary process in which the player program 37 is executed. 
The invocation of a secondary process in this manner is 
well-known practice (Such a process is known in 
Netscape systems as a “plug-in” and in Microsoft Sys 
tems as 'ActiveX'). Such commands can also contains 
parameters to be passed to the secondary process and in 
the system of FIG. 1 the command contains the server 
URL of the recording, which, for the Bach piece, would 
be http:\www.server1.com/mp3 bw V565. 

3. The player program 37 includes an MP3 decoder, the 
operation of which is, in itself, conventional. Of more 
interest in the present context are the control functions of 
the program which are as follows. 

4. The player program, having received the URL, adds to 
this the filename of the first sub-file, to produce a com 
plete address for the sub-file i.e. www.server1.com/ 
mp3 bw v565/000000.bin. It will be observed that this 
system is organised on the basis that the sub-files are 
named in the manner indicated above, so that the termi 
nal does not need to be informed of the filenames. The 
program constructs a request message for the file having 
this URL and transmits it to the server 1 via the commu 
nications interface 35 and the internet 2. (Processes for 
translating the URL into an IP address and for error 
reporting of invalid, incomplete or unavailable URLs are 
conventional and will not therefore be described). We 
envisage that the player program would send the 
requests directly to the communications interface, rather 
than via the browser. The server responds by transmit 
ting the required Sub-file. 

5. The player program determines from the file the audio 
encoding used in this sub-file and decodes the file back 
to raw PCM values in accordance with the relevant stan 
dard (MP3 in this example), making a note of the play 
time of this sub-file. Generally an audio file contains an 
identifier at the beginning of the file which states the 
encoding used. The decoded audio data is then stored in 
the audio buffer 38. 

6. The player program has a parameter called the playout 
time T. In this example it is set at 10 seconds (it could be 
made user-selectable, if desired). It determines the 
degree of buffering that the terminal performs. 

7. The player program increments the filename to 
000001.bin and requests, receives, decodes and stores 
this second sub-file as described in (4) and (5) above. It 
repeats this process until the contents of the buffer reach 
or exceed the playout time T. Note that it is not actually 
essential that the decoding occurs before the buffer but it 
simplifies matters as since the audio is decoded back to 
raw PCM then the duration of the buffered material is 
then explicitly known. It simplifies the control of the 
audio buffer if each of the sub-files is the same audio 
playback size. 

Webgroup CZ a.s. Ex. 1004, Page 8 of 17



US 7,447,791 B2 
5 

8. Having reached the playout threshold T, the decoded 
data are sent from the buffer to the audio interface 36 
which plays the Sound through a loudspeaker (not 
shown). 

9. Whilst playing the sounds as in (8) above, the player 
program continually monitors the state of buffer fullness 
and whenever this falls below T, it increments the file 
name again and obtains a further Sub-file from the server. 
This process is repeated until a “file not found error” is 
returned. 

10. If, during this process, the buffer becomes empty, the 
player program simply ceases playing until further data 
arrives. 

The Sub-file naming convention used here, of a simple 
fixed length sequence of numbers starting with Zero, is pre 
ferred as it is simple to implement, but any naming convention 
can be used provided the player program either contains (or is 
sent) the name of the first Sub-file and an algorithm enabling 
it to calculate Succeeding ones, or alternatively is sentalist of 
the filenames. 

It will have been observed that the system described above 
offers the user no opportunity to intervene in the replay pro 
cess. Nor does it offer any remedy for the possibility of buffer 
underflow (due for example to network congestion). There 
fore a second, more Sophisticated embodiment of the inven 
tion, now to be described, offers the following further fea 
tures: 

a) the server stores two or more versions of the recording, 
recorded at different compression rates (for example at 
compressions corresponding to (continuous) data rates 
of 8, 16, 24 and 32 kbit/s respectively) and the player 
program is able to switch automatically between them. 

b) the player program displays to the user a control panel 
whereby the user may start the playing, pause it, restart 
it (from the beginning, or from the point at which it 
paused), or jump to a different point in the recording 
(back or forward). 

Note that these features are not interdependent, in that user 
control could be provided without rate-switching, or vice 
WSa. 

In order to provide for rate Switching, the person preparing 
the file for loading onto the server prepares several source 
files—by encoding the same PCM file several times at differ 
ent rates. He then partitions each Source file into Sub-files, as 
before. These can be loaded onto the server in separate direc 
tories corresponding to the different rate, as in the following 
example structure, where “008 k”, “024 k” in the directory 
name indicates a rate of 8 kbit/s or 24 kbit/s and so on. 
He also creates an index file (e.g. index.htm) the primary 

purpose of which is to provide a list of the data rates that are 
available. 

Directory Subdirectory Filename 

link.htm 
index.htm 
000000.bin 
000001.bin 
000002.bin 
000003.bin 

mp3 bwv565 Ole 

mp3 bwv565 008k 11 m 

000134.bin 
000000.bin 
000001.bin 
000002.bin 

mp3 bwv565 O16k 11 m 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 

-continued 

Directory Subdirectory Filename 

000003.bin 

000134.bin 
000000.bin 
000001.bin 
000002.bin 
000003.bin 

mp3 bwv565 018k 11 s 

000134.bin 
000000.bin 
000001.bin 
000002.bin 
000003.bin 

mp3 bwv565 024k 11 S 

000134.bin 
000000.bin 
000001.bin 
000002.bin 
000003.bin 

mp3 bwv565 O32k 11 s 

000134.bin 

Note that because the length of a sub-file corresponds, as 
explained earlier, to a fixed length of time, the number of 
sub-files is the same for each directory. The subdirectory 
names comprise the data rate in kbit/s (three digits) plus the 
letter "k'; in this example indications of the audio sampling 
rate (11.025 kHz) and a mono-stereo flag are appended, for 
Verification purposes. 
The index file would thus contain a statement of the form: 
<!--Audio="024k 11 S 032k 11 S 018k S 016k 11 m 
008 11 m”--> 

(The <!-- . . . --> simply indicates that the statement is 
embedded as a comment in an html file (or a simple text file 
could be used)). A typical index file is shown in FIG. 3 where 
other information is included: LFI is the highest sub-file 
number (i.e. there are 45 sub-files) and SL is the total playing 
time (178 seconds). “Mode” indicates “recorded (as here) or 
“live' (to be discussed below). The other entries are either 
self-explanatory, or standard html commands. 

Initially the player program will begin by requesting, from 
the directory specified in the link file, the index file, and stores 
locally a list of available data rates for future reference. (It 
may explicitly request this file or just specify the directory: 
most servers default to index.htm if a filename is not speci 
fied.) It then begins to request the audio sub-files as described 
earlier, from the first-mentioned “rate directory in the index 
file viz. 024k 11 s (or the terminal could override this by 
modifying this to a default rate set locally for that terminal). 
The process from then on is that the player program measures 
the actual data rate being received from the server, averaged 
over a period of time (for example 30 seconds). It does this by 
timing every URL request; the transfer rate achieved (number 
of bits per second) between the client and server is deter 
mined. The accuracy of this figure improves as the number of 
requests goes up. The player maintains two stored parameters 
which indicate, respectively, the current rate, and the mea 
Sured rate. 

Webgroup CZ a.s. Ex. 1004, Page 9 of 17



US 7,447,791 B2 
7 

The initiation of a rate change is triggered: 
a) if the buffer ever empties AND the measured rate is less 

than the current rate AND the measured Buffer Low 
Percentage exceeds a Step Down Threshold (as 
described below), reduce the current rate; (changing at a 
time when the buffer is already empty is advantageous as 
the sound card is not playing anything and it may be 
necessary to reconfigure it if the audio sampling rate, 
stereo-mono setting or bit width (number of bits per 
sample) has changed). 

b) if the measured rate exceeds not only the current rate but 
also the next higher rate for a given period of time (e.g. 
120 seconds: this could if desired be made adjustable by 
the user) increase the current rate 

The Buffer Low Percentage is the percentage of the time 
that the buffer contents represent less than 25% of the playout 
time (i.e. the buffer is getting close to being empty). If the Step 
DownThreshold is set to 0% then when the buffer empties the 
system always steps down when the other conditions are 
satisfied. Setting the Step DownThreshold to 5% (this is our 
preferred default value) means that if the buffer empties but 
the measured Buffer Low Percentage is greater than 5% it will 
not step down. Further buffer empties will obviously cause 
this measured rate to increase and will eventually empty the 
buffer again with a Buffer Low Percentage value exceeding 
5% if the rate can not be sustained. Setting the value to 100% 
means the client will never step down. 
The actual rate change is effected simply by the player 

program changing the relevant part of the Sub-file address for 
example, changing “008k” to "024k” to increase the data rate 
from 8 to 24 kbit/s, and changing the current rate parameter to 
match. As a result, the next request to the server becomes a 
request for the higher (or lower) rate, and the sub-file from the 
new directory is received, decoded and entered into the buffer. 
The process just described is Summarised in the following 
flowchart: 

User Terminal Server 

Select Menu 
page 

Request http:WServer1.com/menu.htm 
Send 
http:\\ 
server1.com 
menu.htm 

Display menu.htm 
Select item 
from Menu 
(Bach) 

Extract hyperlink URL from menu.htm 
(mp3 bw v565/link.htm) 
Request 
http:\\server1.com/mp3 bw v565/link.htm 

Send http:\\ 
server1.com 
mp3 
bwyS6S 
link.htm 

Display link.htm 
Execute secondary process (player program) 
specified in link.htm with parameters 
specified in link.htm (http:\\server1. 
mp3 bwv565) 
Set Stem to that specified 
Set URL = Stem + “index.htm 
Request this URL 

Send 
requested 
file 

Set Rate List to rates specified in index.htm 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

User 

Input of user 
commands 

8 

-continued 

Terminal 

Set LFI to value specified in index.htm 
Set StemC = Stem + “f” + Rate List(item 1) 
Set CurrentRate = rate specified in RateList 
(item 1) 
Set RateU = next higher rate in list or zero if 
Ole 

Set StemO = Stem + “f + item in rate list 
corresponding to this rate; 
Set RateD = next lower rate in list or zero if 
Ole 

Set StemD = Stem + “f + item in rate list 
corresponding to this rate; 
Set Current Subfile = 000000.bin 
J1: Set URL = StemC + Current Subfile 
Request this URL 

ferror message received, Stop 
Decode received subfile 
Write to buffer 
1A: If Buffer Fullness >Tp seconds go to 
Step J3 
2: Increment Current Subfile 
Go to Step J1 
3: Begin continue playing of buffer contents 

via sound card 
4: If Buffer Fullness & 
Tp seconds go to Step 
2 
fBufferFullness = 0 
AND Mrate < CurrentRate 

AND BufferLow % > Tod go to 
Stepdown 
fMRates NextRate AND NextRate <> 0 
goto Stepup 
fUserCommand = Pause then: 
Stop reading from buffer; 
Loop until Usercommand = Resume: 
go to J3 
fUserCommand = Jump (%)then: 

Clear buffer; 
Set CurrentSubfile = 
Integer (LFI--1)/100; 
go to Step J1 

o Step J1A 

RateD = RateC 
Set StemD = StemC 

RateC = RateU 
Set StemC = Stem 

Set RateU = next higher rate in list or zero if 
Ole 

Set StemO = Stem + “f + item in rate list 
corresponding to this rate 
Go to Step J1A 
Stepdown: 
Clear Buffer 
Set RateU = RateC 
Set Stem = StemC 
Set RateC = RateD 
Set StemC = StemD 
Set RateD = next lowerr rate in list or zero if 
Ole 

Set StemD = Stem + “f + item in rate list 
corresponding to this rate 
Go to Step J1A 

Server 

If requested 
Subfile ex 
ists, Send 
requested 
subfile; 
otherwise 
send error 
message 

Webgroup CZ a.s. Ex. 1004, Page 10 of 17



US 7,447,791 B2 

The user control is implemented by the user being offered 
on the screen the following options which he can select using 
the keyboard or other input device such as a mouse: 

a) Start: implement the numbered steps given above, from 
step 4. Whether, when a recording is first selected, it 
begins to play automatically, or requires a Start instruc 
tion from the user, is optional; indeed, if desired, the 
choice may be made by means of an additional 
“autoplay” parameter in the link file. 

b) Pause: implemented by an instruction to the MP3 
decoder to suspend reading data from the buffer; 

c) Resume: implemented by an instruction to the MP3 
decoder to resume reading data from the buffer; 

d) Jump: implemented by the user indicating which part of 
the recording he wishes to jump to for example by 
moving a cursor to a desired point on a displayed bar 
representing the total duration of the recording; the 
player then determines that this point is X% along the bar 
and calculates the number of the next sub-file needed, 
which is then used for the next request. In the Bach 
example with 125 sub-files then a request to play from a 
point 20% into the recording would result in a request for 
the 26th sub-file i.e. 000025.bin. It will be apparent 
that this calculation is considerably simplified if each 
sub-file corresponds to the same fixed duration. We pre 
fer, in the case of the jump, to suspend decoding and 
clear the buffer so that the new request is sent immedi 
ately, but this is not actually essential. 

Alternatively, the user may be presented with a list of text 
labels or indices which may be selected (e.g. by means of a 
mouse) to initiate a jump. This might be implemented as 
follows: 
The index.htm file held by the terminal, in memory, con 

tains lines of the form (assuming that this information is 
embedded as comments within the document. 

<--Odbits: Index='0:01:44 Wireless-->. 

where where “Odbits:” is a keyword indicating to the player 
program that the following text is to be processed by a pro 
gram, “Index indicates the function that the player program 
is to perform, and the text with the quotation marks consists of 
the time (hours:minutes:seconds) from the beginning of the 
recording at which playing is to commence. 
The player program reads the index.htm file and if it rec 

ognises an index command it generates a message (“an 
event') to the link.htm page which contains commands (typi 
cally written in Javascript) to handle such an event by dis 
playing the labels at a desired place on the displayed page and 
respond to selection of those commands by generating a jump 
(containing the corresponding time) to the player program. 

It is of interest to discuss further the process of partitioning 
the original file into sub-files. First, it should be noted that if 
(as in the first version described above), there is no expecta 
tion that a sub-file will be followed by a sub-file other than 
that which immediately follows it in the original sequence, 
then it matters little where the boundaries between the sub 
files are located. In that case the sub-file size can be a fixed 
number of bits, or a fixed playing time length (or neither of 
these)—the only real decision is how big the sub-files should 
be. Where jumps are envisaged (in time, or between different 
data rates) there are other considerations. Where, as with 
many types of speech or audio coding (including MP3), the 
signal is coded in frames, a Sub-file should contain a whole 
number of frames. In the case of rate Switching, it is, if not 
actually essential, highly desirable that the sub-file bound 
aries are the same for each rate, so that the first sub-file 
received for a new rate continues from the same point in the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
recording that the last sub-file at the old rate ended. To arrange 
that every sub-file should represent the same fixed time period 
(e.g. the 4 seconds mentioned above) is not the only way of 
achieving this, but it is certainly the most convenient. Note 
however that, depending on the coding system in use, the 
requirement that a sub-file should contain a whole number of 
frames may mean that the playing duration of the Sub-files 
does vary slightly. Note that in this embodiment of the inven 
tion, the available data rates, though they use different 
degrees of quantisation, and differ as to whether they encode 
in mono or stereo, all use the same audio sampling rate and in 
consequence the same frame size. Issues that need to be 
addressed when differing frame sizes are used are discussed 
below. 
As for the actual sub-file length, excessively short sub-files 

should preferably be avoided because (a) they create extra 
network traffic in the form of more requests, and (b) oncertain 
types of packet networks—including IP networks—they are 
wasteful in that they have to be conveyed by smaller packets 
so that overhead represented by the requesting process and 
the packet header is proportionately greater. On the other 
hand, excessively large Sub-files are disadvantageous in 
requiring a larger buffer and in causing extra delay when 
starting play and/or when jumps or rate changes are invoked. 
A sub-file size of between 30% and 130% of the playout time, 
or preferably around half the playout time (as in the examples 
given above), is found to be satisfactory. 
The actual process of converting the Sub-files can be imple 

mented by means of a computer programmed in accordance 
with the criteria discussed. Probably it will be convenient to 
do this on a separate computer, from which the Sub-files can 
be uploaded to the server. 

Another refinement that can be added is to substitute a 
more complex sub-file naming convention so as to increase 
security by making it more difficult for an unauthorised per 
son to copy the sub-files and offer them on another server. 
One example is to generate the filenames using a pseudo 
random sequence generator, e.g. producing filenames of the 
form: 

O13O254613464367753.4543,134 bin 
94.5434.5234543.4533452134565bn 

In this case the player program would include an identical 
pseudo-random sequence generator. The server sends the first 
filename, or a "seed of perhaps four digits, and the generator 
in the player can then synchronise its generator and generate 
the required Sub-file names in the correct sequence. 

In the above example of rate-switching, all the data rates 
used had the same frame size, specifically they used MP3 
coding of PCM audio sampled at 11.025 KHZ and a (PCM) 
frame size of 1152 samples. If it is desired to accomplish rate 
switching between MP3 (or other) recordings having differ 
ent frame sizes, problems arise due to the requirement that a 
sub-file should contain a whole number of frames, because 
the frame boundaries do not then coincide. This problem can 
be solved by the following modified procedure for creating 
the sub-files. It should be noted particularly that this proce 
dure can be used in any situation where rate Switching is 
required and is not limited to the particular method of delivery 
discussed above. 

FIG. 4 shows diagrammatically a sequence of audio 
samples, upon which Successive four-second segments are 
delineated by boundary marks (in the figure) B1, B2 etc. At 
11.025 KHZ, there are 44,100 samples in each segment. 
1. Encode the audio, starting at boundary B1, frame by frame, 

to create an MP3 sub-file, continuing until a whole number 
of frames having a total duration of at least four seconds 

Webgroup CZ a.s. Ex. 1004, Page 11 of 17



US 7,447,791 B2 
11 

has been encoded. With a frame size of 1152 samples, four 
seconds corresponds to 38.3 frames, so a sub-file S1 rep 
resenting 39 frames will actually be encoded, representing 
a total duration of 4.075 seconds. 

2. Encode the audio, in the same manner, starting at boundary 5 
B2. 

3. Repeat, starting each time at a 4-second boundary, so that 
in this way a set of overlapping Sub-files is generated for the 
whole audio sequence to be coded. The last segment 
(which may well be shorter than four seconds) has of 10 
course nothing following it, and is padded with Zeroes (i.e. 
silence). 
Coding of the other data rates using different frame sizes 

proceeds in the same manner. 
At the terminal, the control mechanisms are unchanged, 15 

but the decoding and buffering process is modified: 
1. Receive sub-file S1; 
2. Decode sub-file S1; 
3. Write into the buffer only the first four seconds of the 

decoded audio samples (discard the remainder): 2O 
4. Receive sub-file S2. 
5. Decode sub-file S2: 
6. Write into the buffer only the first four seconds of the 

decoded audio samples: 25 
7. Continue with Sub-file S3 etc. 
In this way, it is ensured that the sub-file sets for all rates 

have sub-file boundaries which correspond at the same points 
in the original PCM sample sequence. 

Thus, each four-second period except the last is, prior to so 
encoding, "padded with audio samples from the next four 
second period so as to bring the Sub-file size up to a whole 
number of MP3 frames. If desired, the padding samples could 
be taken from the end of the preceding four-second period 
instead of (or as well as) the beginning of the following one. 

Note that the MP3 standard allows (by a scheme known as 
“bit reservoir') certain information to be carried over from 
one audio frame to another. In the present context, while this 
is acceptable within a sub-file, it is not acceptable between 
Sub-files. However, since naturally the standard does not 40 
allow Such carry-over at the end or beginning of a recording, 
this problem is easily solved by encoding each Sub-file sepa 
rately, as if it were a single recording. 

Changes of sampling rate (and indeed Switching between 
mono and Stereo operation) have some practical implications 45 
for operation of the audio interface 36. Many conventional 
Sound cards, although capable of operation at a range of 
different settings, require re-setting in order to change Sam 
pling rate, and necessarily this causes an interruption in its 
audio output. Thus in a further modification, we propose that 50 
the sound card could be run continuously at the highest Sam 
pling rate envisaged. When the player program is Supplying, 
to the buffer, data at a lower sampling rate, this data is then 
up-sampled to this highest rate before or after the buffer. 
Similarly, if the card is always operated in Stereo mode, 55 
decoded mono signals can be fed in parallel so feed both the 
left and right channels of the Sound card input. Again, if the 
number of bits per sample of the decoded signal is lower than 
expected by the card, the number of bits can be increased by 
padding with Zeros. 60 

Recollecting that the criteria discussed earlier for auto 
matic data rate Switching downwards envisaged a rate reduc 
tion only in cases of buffer underflow (involving therefore 
interruptions in the output), we note that with this modifica 
tion such interruption can be avoided and therefore it is pref- 65 
erable to employ a criterion which anticipates underflow and 
avoids it in the majority of cases. In this case the first of the 

12 
three AND conditions mentioned above (namely, that the 
buffer is empty) would be omitted. 

Another feature that may be provided in the context of the 
system described is the display of visual information Such as 
subtitles, or still pictures (in the nature of a slide show) to 
accompany the Sound. 

This might be implemented as follows: 
(a) the document (link.htm)y being displayed contains for 

matting information specifying the location in the page at 
which the visual information is to appear; 

(b) the file index.htm contains lines of the form (assuming 
that this information is embedded as comments with the 
document. 

<!--Odbits: Subtitle='0:1:01 Subtitle text--> 
<!--Odbits: Image="0:2:04 http://.../picture.jpg'--> 

where "Odbits: is a keyword indicating to the player pro 
gram that the following text is to be processed by a program, 
“Subtitle' or “Image' indicates the function that the player 
program is to perform, and the text with the quotation marks 
consists of the time (hours:minutes:seconds) from the begin 
ning of the recording at which the corresponding display is to 
commence, followed by the actual subtitle or the URL of the 
desired image, as the case may be. 

(c) the player program computes the actual time, being the 
product of the current subfile index and the subfile length, 
incremented by the time the current subfile has been playing. 

(d) the player program compares the actual time with the 
times embedded in the index.htm file and in the event of a 
match returns a message to the link.htm page (which invoked 
the player originally). Such a message is referred to as an 
“event. How the link.htm page handles the event is at the 
discretion of the person writing the link.htm page. Typically 

(e) for a Subtitle, the link.htm page contains executable 
commands (typically written in JavaScript) which respond to 
the event by reading the subtitle text from the index.htm file 
and displaying it at the desired place. 

(f) for an image, the link.htm page contains such com 
mands to respond to the event by reading the URL of the 
image from the index.htm file, generating a request message 
for downloading the image file having that URL and display 
ing it at the desired place on the page. This downloading could 
occur at the time that the image is required: alternatively the 
user could be offered the option of having the image files 
pre-loaded. If he accepts this option then the player program 
would, prior to any audio replay, download all the image files 
listed and store them in a local cache. 
The same principle may be applied to the delivery of video 

recordings, or of course, video recordings with an accompa 
nying soundtrack. In the simpler version, where there is only 
one recording, the system differs from the audio version only 
in that the file is a video file (e.g. in H.261 or MPEG format) 
and the player program incorporates a video decoder. The 
manner of partitioning the file into Sub-files is unchanged. 
As in the audio case, there may be two or more recordings 

corresponding to different data rates, selected by the control 
mechanism already described. Also one can provide addi 
tional recordings corresponding to different replay modes 
such as fast forward or fast reverse which can be selected by 
an extension of the user control facilities already described. 
Again, a systematic convention for file and directory naming 
can be followed so that the player program can respond 
to—for example—a fast forward command by amending the 
sub-file address. 
The delivery of video recordings does however have fur 

ther implications for file partitioning if switching or jumps are 
to be permitted. In the case of recordings where each frame of 

Webgroup CZ a.s. Ex. 1004, Page 12 of 17



US 7,447,791 B2 
13 

a picture is coded independently, it is sufficient that a sub-file 
contains a whole number of frames of a picture. If compres 
sion involving inter-frame techniques is in use, however, the 
situation is more complex. Some Such systems (for example 
the MPEG standards) generate a mixture of independently 
coded frames (“intra-frames') and predictively coded 
frames; in this case each sub-file should preferably begin with 
an intra-frame. 

In the case of inter-frame coding systems such as the ITU 
H.261 standard, which do not provide for the frequent, regu 
lar inclusion of intra-frames, this is not possible. This is 
because—taking rate-switching as an example, if one were to 
request sub-file in of a higher bit rate recording followed by 
sub-file n+1 of a lower bit-rate recording, the first frame of the 
lower bit-rate sub-file would have been coded on an inter 
frame basis using the last decoded frame of sub-file in of the 
lower rate recording, which of course the terminal does not 
have at its disposal it has the last decoded frame of sub-file 
n of the higher rate recording. Thus serious mistracking of the 
decoder would occur. 

In the case of Switching between normal play and a fast 
play mode, the situation is in practice slightly different. On 
fast forward play at, for example, 5 times normal speed, one 
encodes only every 5' frame. In consequence the inter-frame 
correlation is much reduced and inter-frame coding becomes 
unattractive, so one would generally prefer to encode a fast 
play sequence as intra-frames. Switching from normal to fast 
then presents no problem, as the intra-frames can be decoded 
without difficulty. However, when reverting to normal play, 
the mistracking problem again occurs because the terminal is 
then presented with a predictively coded frame for which it 
does not have the preceding frame. 

In either case the problem can be solved by using the 
principle described in our international patent application No. 
WO98/26604 (issued in USA as U.S. Pat. No. 6,002.440). 
This involves the encoding of an intermediate sequence of 
frames which bridges the gap between the last frame of the 
preceding sequence and the first frame of the new sequence. 
The operation of this will now be described in the context 

of fast forward operation (fast rewind being similar but in 
reverse). In this example we assume that a 9 minute video 
sequence has been encoded at 96 kbit/s according to the 
H.261 Standard, and again at 5 times normal rate entirely at 
H.261 infra-frames, and that the resulting files have each been 
partitioned into four-second sub-files. Here, four seconds 
refers to the duration of the original video signal, not to the 
fast forward playing time. Following a naming convention 
similar to that employed above, the sub-files might be: 

Directory Subdirectory Filename 

mpg name O96k X1 000000.bin 
000001.bin 

000134.bin 
O96k X5 000000.bin 

000134.bin 

where “name' is a name to identify the particular record 
ing, “x1 indicates normal rate and "X5’ indicates five times 
normal rate—i.e. fast forward. 

To switch from normal play to fast forward is only neces 
sary for the player program to modify the sub-file address to 
point to the fast forward sequence—e.g. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
Request mpg name/096k X1/000055.bin 
is followed by 
Request mpg name/096K X5/000056.bin 
In order to construct the bridging sequences for Switching 

back to normal play it is necessary to construct a bridging 
sub-file for each possible transition. As described in our inter 
national patent application mentioned above, a sequence of 
three or four frames is generally Sufficient for bridging, so a 
simple method of implementation is to construct bridging 
Sub-files of only 4 frames duration—e.g. 

Directory Subdirectory Filename 

mpg name O96K 5 - 1 0000001.bin 

000133.bin 

So that the switching is accomplished by a series of 
requests such as: 

Request mpg name/096k X5/000099.bin 
Request mpg name/096k 5>1/000099.bin 
Request mpg name/096k X1/000100.bin 
The bridging sub-file is generated as follows: 
Decode the fast forward sequence to obtain a decoded 

version of the last frame of sub-file 99, (at 25 frames per 
second this will be frame 100,000 of the original video 
signal). 

Decode the normal sequence to obtaina decoded version of 
the first frame of sub-file 100 (i.e. frame 100,001). Re 
encode this one frame four times using H.261 inter 
frame coding based on the decoded frame 100,000 as the 
initial reference frame. 

Thus, when the decoder has decoded the fast forward Sub 
file, followed by the bridging sub-file it will have recon 
structed frame 100,000 correctly and will be ready to 
decode the normal (X 1) frames. Incidentally, the reason 
that one encodes the same frame several times in this 
procedure is that doing so merely once, would produce 
poor picture quality due to the quantisation characteris 
tics of H.261. 

Exactly the same process could be used for rate-switching 
(albeit that now bridging sub-files are required in both direc 
tions). However, it will be observed that, as described, the 
bridging Sub-file results in a freezing of the picture for a 
period of four frames—i.e. (at 25 frames per second) 160 ms. 
In Switching from fast to normal play this is acceptable— 
indeed one would probably choose to clear the buffer at this 
point. It may or may not be subjectively acceptable on rate 
switching. An alternative therefore would be to construct a 
four-second bridging sequence. The request series would 
then look like: 
mpg name/096k X1/000099.bin 
mpg name/096/128 x1/000100.bin 
mpg name/128k X1/000101.bin 
The bridging sub-file would in that case be constructed 

either by recoding the fifth decoded frame of the decoded 128 
kbit/s sequence four times starting with decoded 96 kbit/s 
frame 100,000 as the reference frame, or coding the first four 
frames of the decoded 128 kbit/s sequence starting with 
decoded 96 kbit/s frame 100,000 as the reference frame. In 
both cases the remaining 96 frames of the bridging sub-file 
would be a copy of the 128 kbit/s sub-file. 
The files to be delivered have been referred to as "record 

ings'. However, it is not necessary that the entire audio or 
Video sequence should have been encoded—or even exist— 

Webgroup CZ a.s. Ex. 1004, Page 13 of 17



US 7,447,791 B2 
15 

before delivery is commenced. Thus a computer could be 
provided to receive a live feed, to code it using the chosen 
coding scheme, and generate the Sub-files "on the fly' and 
upload them to the server, so that, once a few sub-files are 
present on the server, delivery may commence. 
One application of this delivery system would be for a 

Voice-messaging system, as illustrated in FIG. 5 where the 
server 1, network 2 and terminal 3 are again shown. A Voice 
messaging interface 4 serves to receive telephone calls, for 
example via the public switched telephone network (PSTN) 
5, to record a message, encode it, partition it into Sub-files, 
and upload them to the server 1, where they can be accessed 
in the manner described earlier. Alternatively a second inter 
face 6 could be provided, operating in a similar manner to the 
terminal 3 but controlled remotely via the PSTN by a remote 
telephone 5, to which the replayed audio signals are then sent. 

The same system can be used for a live audio (or video) 
feed. It is in a sense still “recorded the difference being 
primarily that delivery and replay commence before record 
ing has finished, although naturally there is an inherent delay 
in that one must wait until at least one sub-file has been 
recorded and loaded onto the server 1. 
The system can proceed as described above, and would be 

quite satisfactory except for the fact that replay would start at 
the beginning whereas what the user will most probably want 
is for it to start now i.e. with the most recently created 
sub-file. 

With a lengthy audio sequence one may choose to delete 
the older Sub-files to save on storage: with a continuous feed 
(i.e. 24 hours a day) this will be inevitable and moreover one 
would need to reuse the sub-file names (in our prototype 
system we use 000000.bin to 009768.bin and then start again 
at 000000.bin), so that the older sub-files are constantly over 
written with the new ones. A simple method of ensuring 
delivery starting with the most recent sub-file would be to 
include in the index file an extra command instructing the 
player program to start by requesting the appropriate Sub-file. 
This however has the disadvantage that the index file has to be 
modified very frequently ideally every time a new sub-file 
is created. Therefore we propose a method whereby the 
player program scans the server to find the starting Sub-file, as 
follows. In the index file, the Mode parameter is set to “live' 
to trigger the player program to invoke this method. LFI is set 
to indicate the maximum number of sub-files that may be 
stored—say 9768. The method involves the following steps 
and presupposes that (as is conventional) each Sub-file’s “last 
modified time and date has been determined. When using the 
HTTP protocol this can be achieved using a HEAD request 
which results not in delivery of the requested sub-file but only 
of header information indicating the time that the sub-file was 
written to the server, or Zero if the sub-file does not exist. This 
time is represented below as GetURL(Livendex) where 
Livelindex is the sequence number of the Sub-file in question. 
Comments are preceded by “//. 

1 LFI = 9768 read from the index.htm file 
LiveLindex = LFI 2 
StepSize = LFI / 2 
LiveIndexModifiedAt = 0; if the beginning of time. 
ThisIndexWasMOdified.At = GetURL(LiveIndex): 
If (StepSize = 1) 
{ 
if LiveLindexModifiedAt contains the time the file was written or 0 
if no file 
if has been found. Livendex contains the index. 
goto 30 

10 
2O 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 

-continued 

StepSize = StepSize / 2 
if (ThisIndexWasMOdified.At > LiveIndexModifiedAt) 
{ 
LiveIndexModifiedAt = ThisIndexWasNodifiedAt; 
LiveIndex = LiveIndex + StepSize 

else 

LiveIndex = LiveIndex - StepSize 

Goto 10 
30 FINISH 

Having found the LiveIndex it is prudent to step back the T. 
(playout time) and start to make the requests to fill the audio 
buffer from there. Playing may commence in the normal way. 
Once the recording has actually finished, the index file can 

if desired be modified to set Mode to “recorded, and any 
length parameters. 

If desired the player program could check periodically to 
see whether the index file has changed from “live' to 
“recorded' mode and if so to switch to “recorded mode 
playing. 
A simpler and much faster method of the identification of 

the “latest” sub-file will now be described, assuming, first of 
all, a single continuous Sub-file numbering sequence. 

1. Terminal issues a HEAD request for the first sub-file 
(e.g. 000000.bin). 

2. The server replies by sending the header of this file and 
includes the date and time the file was last modified (MOD 
TIME) and the date and time at which this reply was sent 
(REPLYTIME) (both of these are standard http. fields). 

3. The terminal calculates the elapsed time (ELTIME) by 
subtracting the two (ELTIME=REPLYTIME-MODTIME), 
and divides this by the playing duration of a sub-file (4 sec 
onds, in these examples) to obtain LIVEINDEX=ELTIME/4. 

4. The terminal calculates the filename of the sub-file hav 
ing this index. 

5. The terminal issues a HEAD request with this filename 
and if necessary each Subsequent filename until it receives 
Zero (file not found) whereupon it regards the latest sub-file 
which is found as the “Current sub-file’. 

6. The terminal begins requesting files, starting at point J1: 
of the flowchart given earlier. 

This method is considerably faster than that described 
above for the cyclically numbered sub-files. Note that older 
Sub-files may still be deleted, to reduce storage requirement, 
as long as the starting Sub-file is kept. The method can how 
ever be modified to accommodate filename re-use (cyclic 
addresses), but would require: 

(i) That the starting sub-file name (e.g. 000000.bin) is not 
re-used so that it is always available to supply the header 
information at Step 2. Thus, with wrapping at 009768.bin, 
sub-file 009768.bin would be followed by sub-file 
000001.bin. 

(ii) The calculated LIVEINDEX at Step 3 is taken Modulo 
9768 (i.e. the remainder when ELTIME/4 is divided by 9768). 

(iii) Sub-file deletion always leads the creation of new 
sub-files so that a few file-names between the newest sub-file 
and the oldest undeleted sub-file do not exist, in order that the 
expected “file not found response occurs at Step 5. 

There may be a danger of the playing operation running 
slightly faster or slower than the recording operation. To 
guard against the former it may be arranged that the player 
program checks each Sub-file it receives to ascertain whether 

Webgroup CZ a.s. Ex. 1004, Page 14 of 17



US 7,447,791 B2 
17 

it is marked with a later time than the previous one: if not the 
Sub-file is discarded and repeated requests made (perhaps 
three times) followed by a check of the index file if these 
requests are unsuccessful. 

If the playing lags behind the recording process this can be 
identified by the player program occasionally checking the 
server for the existence of a significant number of sub-files 
more recent than those currently being requested, and if Such 
Sub-files do exist, initiating a "catching up' process—e.g. by 
regularly discarding a small amount of data. 
What is claimed is: 
1. A terminal for playing audio or video material which is 

stored on a remote server as a set of files representing Succes 
sive temporal positions of said material, the terminal com 
prising: 
A telecommunications interface for communication with 

the server; 
A buffer for receiving the files from the telecommunica 

tions interface; 
Means for playing the contents of the buffer; 
Control means to determine addresses of further files to be 

requested and in response to the state of the buffer to 
generate request messages, containing Such addresses, 
fur further files for replenishment of the buffer; and 

Means for identifying a starting file for decoding by an 
iterative process of trial requests comprising generating 
a trial request for a first file, receiving a rely indicating 
whether the requested file exists, if the requested file 
exists generating a trial request for a later file, or if it does 
not exist, generating a trial request for an earlier file. 

2. A terminal according to claim 1 arranged in operation to 
decode the files before storing them in the buffer. 

3. A terminal according to claim 1 in which the files are 
allocated addresses according to a predetermined algorithm 
and the terminal includes means operable for a said request 
message to calculate, in accordance with said algorithm, an 
address for inclusion in the request message. 

4. A method of transmitting digitally coded audio or video 
material, said method comprising: 

partitioning the material into a plurality of discrete files 
each representing Successive temporal portions of the 
said material; 

storing the files at a first station; and 
at a second station 

a) transmitting to the first station requests for Successive 
respective ones of the files: 

b) receiving the files: 
c) decoding the files for replay of the material; 
d) generating a trial request for a first file, 
e) receiving from the first station a reply including data 

representing the original time of the first file and the 
time of said reply, and 

f) estimating from these data an estimated identity of a 
most recent file at the first station. 

5. A method according to claim 4 in which the material is 
stored in a buffer and the request messages are generated in 
dependence on the state of the buffer. 

6. A method according to claim 5 in which the material is 
stored in the buffer after decoding. 

7. A method according to claim 6 in which said material is 
audio material, in which: 

a) the files are encoded using an audio coding method 
having a frame structure; 

b) the step of partitioning the material into a plurality of 
discrete files comprises notionally dividing the material 
into a plurality oftemporal portions and generating each 
said file, other than the last, by coding one respective 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
temporal portion and an initial part of the following 
portion Such that the portions together representa whole 
number of frames; 

c) after decoding, that part of the decoded material which 
corresponds to said initial part of the following portion is 
discarded and 

wherein that part of the decoded material which corre 
sponds to said initial part of the following portion is not 
stored in the buffer. 

8. A method according to claim 4 of transmitting digitally 
coded audio or video material, said method comprising: 

partitioning the material into a plurality of discrete files 
each representing Successive temporal portions of the 
said material; 

storing the files at a first station; and 
at a second station 

a) transmitting to the first station requests for Successive 
respective ones of the files: 

b) receiving the files; and 
c) decoding the files for replay of the material; 

including storing a plurality of sets of files, which sets 
correspond to respective different delivery modes, and 
including, at the second station, effecting mode Switch 
ing by providing that Subsequent request messages shall 
request files from a set different from the set to which the 
immediately preceding request related. 

9. A method according to claim 8 in which at least some of 
said sets of files correspond to respective different data rates, 
including: 

monitoring the received data rate at the second station; and 
in the event that the measured rate is below that needed for 

the set to which the currently requested field belongs, 
performing mode Switching to provide that Subsequent 
said request messages shall request files from a set cor 
responding to a lower data rate. 

10. A method according to claim 8 in which at least some of 
said sets of files correspond to respective different data rates, 
including: 

monitoring the received data rate at the second station; and 
in the event that the measured rate is sufficient to support 

delivery of files of a higher data rate than that of the set 
to which the currently requested file belongs, perform 
ing mode Switching to provide that Subsequent said 
request messages shall request files from a set corre 
sponding to a higher data rate. 

11. A method according to claim 8 in which at least some of 
said sets of files correspond to respective different playing 
modes, in which: 

the second station includes means to receive commands 
from a user of the second station to perform said mode 
Switching from a current playing mode to a desired 
playing mode corresponding to that command; and 

the mode Switching means is operable, upon receipt of the 
command, to provide that Subsequent said request mes 
Sages shall request files from a set corresponding to said 
desired playing mode. 

12. A method according to claim 8 in which said material is 
in the form of video recordings, at least some of said files 
having been encoded using, for at least some frames thereof, 
inter-frame coding, and including, at the second station, 
before generating the request message for a file from a dif 
ferent set, generating a request message for a file for correc 
tion of decoder tracking. 

13. A method according to claim 8 in which each said 
address has a first part and a second part, wherein all files of 
a given mode have the same first part and wherein files that are 
of different modes but correspond to the same temporal por 

Webgroup CZ a.s. Ex. 1004, Page 15 of 17



US 7,447,791 B2 
19 

tion of said audio or video material have the same second part, 
whereby mode Switching may be effected by changing the 
first part of the address. 

14. A method according to claim 4 in which said material is 
audio material, in which: 

a) the files are encoded using an audio coding method 
having a frame structure; 

b) the step of partitioning the material into a plurality of 
discrete files comprises notionally dividing the material 
into a plurality oftemporal portions and generating each 
said file, other than the last, by coding one respective 
temporal portion and an initial part of the following 
portion Such that the portions together representa whole 
number of frames; 

c) after decoding, that part of the decoded material which 
corresponds to said initial part of the following portion is 
discarded. 

15. A method according to claim 14 in which said sets 
comprise a first set and a second set for which the frame 
length is different from that used for encoding the second set, 
and the division into temporal portions is the same for both 
SetS. 

16. A method according to claim 4 in which said material is 
audio material, in which: 

a) the files are encoded using an audio coding method 
having a frame structure; 

b) the step of partitioning the material into a plurality of 
discrete files comprises notionally dividing the material 
into a plurality of temporal portions and generating at 
least Some of said files by coding one respective tempo 
ral portion and so much of the end of the immediately 
preceding temporal portion and/or the beginning of the 
immediately following temporal portion as to constitute 
with said one respective said temporal portion, a whole 
number of frames of said frame structure; and 

c) after decoding, that part of the decoded material which 
corresponds to said end of the immediately preceding 
temporal portion and/or beginning of the immediately 
following temporal portion is discarded. 

17. A method according to claim 4 in which the files are 
allocated addresses according to a predetermined algorithm, 
the method including calculating, at the second station in 
accordance with said algorithm, an address for inclusion in a 
request message. 

18. A method according to claim 17 in which the algorithm 
generates the addresses in accordance with a key, including 
the step of transmitting the key to the second station for use in 
calculating the addresses. 

19. A method according to claim 18 in which the algorithm 
generates the addresses in accordance with a pseudo-random 
Sequence. 

20. A method according to claim 19 in which the algorithm 
generates the addresses in accordance with a pseudo-random 
sequence and the key is a seed value for setting the start point 
of the pseudo-random sequence. 

21. A method according to claim 4 including, at the second 
station: 

(a) receiving from the first station a list containing times 
and data defining actions to be performed at those times; 

(b) computing a time, relative to the beginning of the mate 
rial, represented by the current playing point; 

(c) comparing the computed time with the times in the list 
and, in the event of a match generating a command 
containing the respective data for initiation of the action. 

22. A method according to claim 21 in which the actions 
include the display of a subtitle. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
23. A method according to claim 21 in which the actions 

include the display of an image. 
24. A method according to claim 23 including transmitting 

to the first station a request for images identified by the said 
data, and storing the images at the second station until 
required for display. 

25. A method, of transmitting digitally coded audio or 
Video material, said method comprising: 

partitioning the material into a plurality of discrete files 
each representing Successive temporal portions of the 
said material; 

storing the files at a first station; and 
at a second station 

a) transmitting to the first station requests for Successive 
respective ones of the files: 

b) receiving the files; and 
c) decoding the files for replay of the material; 
d) wherein the second station identifies a starting file for 

decoding by an iterative process of trial requests com 
prising generating a trial request for a first file, receiving 
from the first station a reply indicating whether the 
requested file exists, if the requested file exists, generat 
ing a trial request for a later file or, if it does not exist, 
generating a trial request for an earlier file. 

26. A method according to claim 25 in which the material 
is stored in a buffer and the request messages are generated in 
dependence on the state of the buffer. 

27. A method according to claim 26 in which the material 
is stored in the buffer after decoding. 

28. A method according to claim 27 in which said material 
is audio material, in which: 

a) the files are encoded using an audio coding method 
having a frame structure; 

b) the step of partitioning the material into a plurality of 
discrete files comprises notionally dividing the material 
into a plurality oftemporal portions and generating each 
said file, other than the last, by coding one respective 
temporal portion and an initial part of the following 
portion Such that the portions together representa whole 
number of frames; 

c) after decoding, that part of the decoded material which 
corresponds to said initial part of the following portion is 
discarded and 

wherein that part of the decoded material which corre 
sponds to said initial part of the following portion is not 
stored in the buffer. 

29. A method according to claim 25 in which said material 
is audio material, in which: 

a) the files are encoded using an audio coding method 
having a frame structure; 

b) the step of partitioning the material into a plurality of 
discrete files comprises notionally dividing the material 
into a plurality oftemporal portions and generating each 
said file, other than the last, by coding one respective 
temporal portion and an initial part of the following 
portion Such that the portions together representa whole 
number of frames; 

c) after decoding, that part of the decoded material which 
corresponds to said initial part of the following portion is 
discarded. 

30. A method according to claim 25 in which said material 
is audio material, in which: 

a) the files are encoded using an audio coding method 
having a frame structure; 

b) the step of partitioning the material into a plurality of 
discrete files comprises notionally dividing the material 
into a plurality of temporal portions and generating at 

Webgroup CZ a.s. Ex. 1004, Page 16 of 17



US 7,447,791 B2 
21 

least Some of said files by coding one respective tempo 
ral portion and so much of the end of the immediately 
preceding temporal portion and/or the beginning of the 
immediately following temporal portion as to constitute 
with said one respective said temporal portion, a whole 
number of frames of said frame structure; and 

c) after decoding, that part of the decoded material which 
corresponds to said end of the immediately preceding 
temporal portion and/or beginning of the immediately 
following temporal portion is discarded. 

31. A method according to claim 30 in which said sets 
comprise a first set and a second set for which the frame 
length is different from that used for encoding the second set, 
and the division into temporal portions is the same for both 
SetS. 

32. A method according to claim 25 in which the files are 
allocated addresses according to a predetermined algorithm, 
the method including calculating, at the second station in 
accordance with said algorithm, an address for inclusion in a 
request message. 

33. A method according to claim32 in which the algorithm 
generates the addresses in accordance with a key, including 
the step of transmitting the key to the second station for use in 
calculating the addresses. 

34. A method according to claim 33 in which the algorithm 
generates the addresses in accordance with a pseudo-random 
Sequence. 

35. A method according to claim 34 in which the algorithm 
generates the addresses in accordance with a pseudo-random 

10 

15 

25 

22 
sequence and the key is a seed value for setting the start point 
of the pseudo-random sequence. 

36. A terminal for playing audio or video material which is 
stored on a remote server as a set of files representing Succes 
sive temporal positions of the said material, the terminal 
comprising: 
A telecommunications interface for communication with 

the server; 
a buffer for receiving the files from the telecommunica 

tions interface; 
means for playing the contents of the buffer; and 
control means to determine the addresses of further files to 

be requested and to determine the addresses of further 
files to be requested and in response to the state of the 
buffer to generate request messages, containing Such 
addresses, for further files for replenishment of the 
buffer, wherein said control means further generating a 
trial request for a first file, receiving a reply including 
data representing the original time of the first file and the 
time of said reply: 

and estimating from these data an estimated identity of the 
most recent file. 

37. A terminal according to claim 36 arranged in operation 
to decode the files before storing them in the buffer. 

38. A terminal according to claim 36 in which the files are 
allocated addresses according to a predetermined algorithm 
and the terminal includes means operable for a said request 
message to calculate, in accordance with said algorithm, an 
address for inclusion in the request message. 

k k k k k 

Webgroup CZ a.s. Ex. 1004, Page 17 of 17




