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Loss of Protein Structure Stability as a Major Causative
Factor in Monogenic Disease

Peng Yue1,2, Zhaolong Li1 and John Moult1*
1Center for Advanced Research
in Biotechnology, University of
Maryland Biotechnology
Institute, Rockville, MD 20850
USA

2Molecular and Cellular
Biology Program, University of
Maryland, College Park, MD
20742, USA
0022-2836/$ - see front matter q 2005 E

Abbreviations used: SVM, suppo
HGMD, Human Gene Mutation Da
Data Bank.
E-mail address of the correspond

moult@umbi.umd.edu
Themost common cause of monogenic disease is a single base DNAvariant
resulting in an amino acid substitution. In a previous study, we observed
that a high fraction of these substitutions appear to result in reduction of
stability of the corresponding protein structure. We have now investigated
this phenomenon more fully. A set of structural effects, such as reduction in
hydrophobic area, overpacking, backbone strain, and loss of electrostatic
interactions, is used to represent the impact of single residue mutations on
protein stability. A support vector machine (SVM) was trained on a set of
mutations causative of disease, and a control set of non-disease causing
mutations. In jack-knifed testing, the method identifies 74% of disease
mutations, with a false positive rate of 15%. Evaluation of a set of in vitro
mutagenesis data with the SVM established that the majority of disease
mutations affect protein stability by 1 to 3 kcal/mol. The method’s effective
distinction between disease and non-disease variants, strongly supports
the hypothesis that loss of protein stability is a major factor contributing to
monogenic disease. Mutant analysis is available (www.snps3d.org).
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Introduction

Over 1000 human genes have been identified
where one or more sequence modifications are
directly causative of disease.1 These mutations may
affect protein function through a number of
mechanisms, such as changes in transcription,
RNA processing, protein expression, folding of the
polypeptide chain, stability of the folded state, post-
translational modification, interactions with bind-
ing partners, and alterations to catalysis. An
analysis of the Human Gene Mutation Database
(HGMD)1 has shown that the vast majority of
known cases act through changes to the coding
sequence, with mis-sense mutations (a single base
change resulting in change of a single amino acid)
by far the most common effect, accounting for
greater than 60% of all monogenic disease
mutations. In a previous study, we investigated
the relationship between these mis-sense mutations
and disease, in terms of the effect of the resulting
lsevier Ltd. All rights reserve
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amino acid change on protein structure and
function.2 In that work, we concluded that the
most common mechanism (up to 80% of cases) by
which a non-synonymous base change results in
disease is destabilization of the protein structure,
relative to the unfolded state. A further approxi-
mately 10% of mis-sense mutations were seen to
affect some known aspect of molecular function,
and the remaining 10% to operate by other,
unidentified, mechanisms. That study relied
primarily on visual inspection of the effect of an
amino acid substitution on protein structure and
function.
Here, we have developed amore objective model,

focusing just on the role of destabilization of the
folded structure. The primary goals are to more
rigorously investigate the extent to which stability
is a common factor in causing monogenic disease,
and to provide a general and fully automatic
stability perturbation model that can be used for
analysis of the impact of non-synonymous single
nucleotide polymorphisms (SNPs) found in the
human population.
Two principal strategies have been developed for

identifying which mis-sense base changes are most
likely to be causative of disease. The most common
approach makes use of the fact that the more critical
d.
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460 Protein Variants in Monogenic Disease
a position in a protein sequence is to viability, the
more restricted are the residue types accepted there.
A number of different methods for assessing the
significance of amino acid conservation have been
developed.3–7 Methods that utilize sequence con-
servation have the advantage of including all kinds
of impact on protein viability. Also, the methods can
be used with any human protein for which a
suitable set of sequence relatives is known, and so
have wide applicability. The approach has the
disadvantage that it provides no direct insight into
the underlying mechanism. The second strategy is
to make use of knowledge of protein structure and
function. For instance, recognizing that a change
occurs in a key catalytic residue, or one involved in
ligand binding, or a target for post-translational
modification.

Wang & Moult2 used a structure-based model to
identify amino acid substitutions likely to signifi-
cantly affect protein stability as well as other
contributions to function. Stability impact was
assessed using a set of simple rules based on
changes in hydrophobic burial, backbone strain,
overpacking, and electrostatic interactions. That
work forms the foundation of the present study.
Other groups have combined sequence and struc-
ture strategies to varying degrees. Sunyaev4,5

predicted the effect of mis-sense mutations using
empirically derived rules which make use of a
variety of data, such as functional information,
hydrophobic propensity, side-chain volume change
and transmembrane location,8 together with
sequence information. The rules were tested against
disease causing mutations annotated by Swiss-Prot,
using the variation between human and other
species as a control. In Chasman’s6 method,
ANOVA and principal component analysis were
applied to a series of features that capture aspects of
structural and sequence context. Data on the
relationship between site-directed mutants and
changes in phenotype for a phage protein, T4
lysozyme, and a bacterial protein, Lac repressor,
were used as training and testing sets. Features
showing strong discrimination between mutations
affecting or not affecting the phenotype, such as the
relative residue temperature factor, relative surface
accessibility, relative phylogenetic entropy
(sequence conservation in the protein family) and
burial of charge, were selected, A probability model
was then constructed based on the selected features,
and used to estimate the likelihood that a given
mutation will affect function. A similar probability
approach has also been used to include function
effects.9 Krishnan & Westhead7 used two machine
learning methods, a decision tree and a support
vector machine, to predict the impact of single
amino acid changes based on a set of structural
(secondary structure and surface accessibility) and
sequence attributes, such as sequence conservation
score calculated using ScoreCons.10 Secondary
structure and surface accessibility data were taken
from the HSSP database11 or predicted using
PHD.12
The central hypothesis of the present work is that
moderate loss of stability of the folded state of a
protein molecule is frequently associated with
monogenic disease. To investigate this, we must
identify significant changes in the free energy
difference between the folded and unfolded states
of a protein molecule resulting from an amino acid
substitution. A theoretically rigorous approach
would be to use an appropriate integration of the
energy change as one amino acid is morphed into
another in the context of the protein structure. These
free energy perturbation techniques13 have been
incorporated in a number of the more widely used
molecular dynamics software packages. Issues of
conformational sampling, appropriate representation
of the unfolded state and force field accuracy have
generally resulted in poor accuracy.14 Recent results
show encouraging improvement, but require care
and method optimization in each case,15 restricting
large-scale application. Force field deficiencies may
be reduced by parameterizing using free energy
differences obtained from site-directed mutagenesis
experiments.16 The resulting model is effective at
predicting this type of stability change.

We have developed a knowledge-based method
that estimates whether or not an amino acid
substitution reduces protein structure stability
sufficiently to be potentially causative of monogenic
disease. As in the earlier work,2 we make use of the
extensive literature on the effect of amino acid
substitutions on protein stability, as well as knowl-
edge of the underlying factors affecting the free
energy of the folded state. We identify a set of 15
such factors that may contribute to a free energy
difference, through changes in interaction energy
between amino acids, effects on the entropy of the
system, and the local rigidity of the structure.
A machine learning technique (a support vector
machine, SVM17) is used to partition the 15-
dimensional space representing these factors into
two volumes, in such a way that, as far as possible,
disease causing mutations fall in one volume and
non-disease causing ones in the other. Any new
mutation may then be assigned a position in this
space. Mutations falling in one volume are pre-
dicted to significantly decrease protein stability, and
thus to be potentially disease causing. Those falling
in the other volume are considered non-disease
causing. Distance from the volume partitioning
surface provides an approximate measure of
confidence in the assignments.

The model is trained on a set of mis-sense
mutations that cause monogenic disease, extracted
from the HGMD.1 A control set of residue
substitutions not contributing to disease suscepti-
bility was based on inter-species differences.4

Stability effects are analyzed using available experi-
mental structures of human proteins, or reliable
comparative models. Jack-knifed testing shows that
this model does differentiate between disease and
non-disease mutations, validating the hypothesis
that stability effects play a major and quite general
role in monogenic disease.
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Figure 1. Examples of disease caused by structure destabilizing factors. For each case, bonds of wild-type side-chains
are shown purple, and bonds of the mutant side-chains are yellow. Atoms are colored by type. In a number of cases,
more than one factor is involved. The selected one is judged to be the most significant. The full model considers all
factors together. Disease associations are taken from the NCBI Refseq database. (a) Loss of polar–polar interactions.
L226P in galactose-1-phosphate uridylyltransferase (GALT, PDB code 1HXP_B), causing galactosemia. This mutant
introduces a proline into an a-helix, resulting in the loss of a main-chain hydrogen bond, as well as loss of hydrophobic
interactions of the side-chain. (b) Loss of hydrophobic interactions. F234S in GTP cyclohydrolase (GCH1, 1IR8_I),
causing dopamine-responsive dystonia. A large buried non-polar side-chain is replaced by a small polar one, reducing
the burial of non-polar area on folding. A cavity is also created, and there is a small gain in polar–polar energy. (c) Loss of
a salt-bridge. R382L in isovaleryl coenzyme A dehydrogenase (IVD, 1IVH_C), causing isovaleric acidemia. R382 forms a
salt-bridge (charge–charge interaction) in the wild-type protein, lost in this mutant. (d) Buried charge. G60D in
aspartylglucosaminidase (AGA, 1APY_A), causing aspartylglycosaminuria. G60D introduces a charge group into the
interior of the protein. It also causes over-packing. (e) Over-packing. C91Y acyl-coenzyme A dehydrogenase (ACADM,
1EGE_C), causing ACADM hereditary deficiency. C91Y introduces a bulky side-chain into the interior of the protein,
resulting in substantial over-packing. (f) Cavity formation. F411I in glucocerebrosidase (GBA, 1OGS_A), causing
Gaucher’s disease. F411I replaces a large buried non-polar side-chain with a smaller one, creating an internal cavity.
There is also a loss of hydrophobic interaction. (g) Electrostatic repulsion. G38D in guanine nucleotide binding protein
(GNAT1, 1TAG), causing night blindness. Introduction of the aspartic acid side-chain results in an unavoidable
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462 Protein Variants in Monogenic Disease
Results
Selection of data for analysis

As described in Materials and Methods, 10,263
disease causing mutations in 731 proteins were
extracted from the HGMD.1 Appropriate structure
information was available for 37% (3768 in 243
proteins) of these mutants, forming the disease set.
Three hundred and forty-six of the HGMD proteins
had close orthologs in other species. The corre-
sponding 16,682 inter-ortholog residue differences
provided a set of non-disease variants. 14% (2309 in
153 proteins) of the inter-species variants had
appropriate structure information, and formed the
control set.
Analysis of factors likely to affect protein
stability

Eleven contributions to the energy and entropy of
protein stability are considered. There are four
classes of electrostatic interaction: reduction of
charge–charge, charge–polar or polar–polar energy,
or introduction of electrostatic repulsion; three
solvation effects: burying of charge or polar groups,
and reduction in non-polar area buried on folding;
and two terms representing steric strain: backbone
strain and overpacking. The other two contri-
butions considered are cavity formation (affecting
van der Waals energy), and loss of a disulfide
bridge. Figure 1 shows examples of each of these,
with the corresponding disease outcome. The
crystallographic temperature factor and surface
accessibility of mutated residues are also con-
sidered.

Figure 2(a) shows the distribution of each of these
effects in the disease and non-disease data sets
(criteria used are described in Materials and
Methods). The red bar shows the fraction of all
disease data points classified as disease, and the
green bar is the fraction all non-disease points
classified as disease. An ideal factor includes a large
fraction of the disease points (red bar), and no non-
disease points (green bar). The 11 energy and
entropy factors are ordered by the ratio of the two
bar heights, with the best discriminators on the left.

Discrimination power ranges from perfect for
disulfide bond breakage (the only instances are in
the disease set), to none (loss of polar–polar
interactions is as common in the disease set as in
electrostatic repulsion with another aspartic acid. There is als
hexosaminidase B (HEXB, 1O7A_D), causing Sandhoff disea
polar environment. There is also minor over-packing. (i) Break
(AGA, 1APY_A), causing aspartylglycosaminuria. C163S re
strain. G137V in arylsulfatase B (ARSB, 1FSU), causingMarote
a glycine residue with backbone dihedral angles unsuitable fo
E167K in uroporphyrinogen decarboxylase (UROD, 1R3
hepatoerythropoetic porphyria. E167 forms charge–polar int
helix cap. The mutation removes these interactions.
the control set). Coverage also varies widely, from
only 3% of disease cases involving disulfide bond
loss to 24% of cases involving over-packing. The last
two terms capture the ability of the structure to
relax to partly compensate for unfavorable energy
or entropic effects. As expected, regions of lower
crystallographic temperature factor contain more
disease mutations than non-disease ones. Similarly,
buried residues, which generally have least space to
adjust to change and more other energetic restric-
tions, have a twofold excess of disease mutations
over non-disease ones.

Greater discrimination can be achieved by taking
advantage of the fact that most mutants affect more
than one factor. Figure 2(b) shows some examples of
discrimination using pairs of factors. For example,
combining loss of a polar–polar interaction with a
non-surface environment increases the ratio of
disease to non-disease cases from about one to
approximately three to one. Highest discrimination
will be obtained with a method that considers all
the factors affected by a mutation. For this purpose,
each mutant is represented as a point in a 15-
dimensional factor space. Eleven of the dimensions
are the energy and entropy factors shown in
Figure 2. One dimension is the surface accessibility
of the mutated residue, relative to the unfolded
state. The other three are the Ca temperature factor
of the mutated residues, the Z value of the
temperature factor, and the standard deviation of
all Ca temperature factors. (Three dimensions
rather than one are used to allow for variable
scaling of the experimental values.) As described in
Materials and Methods, a SVM was used to
determine a surface that optimally partitions the
disease and non-disease points in this space.
Accuracy of the SVM model

Figure 3 summarizes the results of the model.
74% of the 3768 mis-sense mutations in the disease
dataset were assigned as disease causing, and 85%
of the 2309 mis-sense mutations in the non-disease
dataset were classified as non-disease. For the 82%
of data points more than a distance of 0.5 from the
SVM partitioning surface, the prediction accuracy
increases to 79% correctly identified disease data
points, and 89% correctly assigned non-disease
points. The 15% false positive rate arises from
defects in the model. Since only stability factors are
included in the model, all mutants that act through
o limited over-packing. (h) Buried polar group. A543T in
se. Here a hydroxyl group is introduced in a buried non-
ing of a disulfide bond. C163S in aspartylglucosaminidase
places one component of a disulfide bond. (j) Backbone
aux–Lamy syndrome. G137V introduces a side-chain onto
r other residue types. (k) Loss of charge–polar interaction.
Q_A), causing familial porphyria cutanea tarda and
eractions with two main-chain N–H groups, providing a
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Figure 2. (a) Partitioning of each
stability factor between the disease
and non-disease data sets. The red
bars show the fraction of disease
variants covered by the corre-
sponding factor, and the green
bars show the fraction of non-
disease variants covered. An ideal
factor has high coverage of the
disease set, and no examples in
the non-disease set. Factors are
ordered by the discriminatory
power (ratio of disease to non-
disease coverage), best discrimina-
tors to the left. The discriminatory
power of each factor is included in
the bar labels. The ratio ranges from
infinite for breaking a disulfide
bridge (no examples in the non-
disease set) to 1 for polar–polar
interactions (an approximately
equal number of examples in the
disease and non-disease sets).
(b) Improvement in discrimination
when two stability factors are
considered together. As in (a), bars
show the partitioning between
disease and non-disease variants,
now considering two factors at a
time. Discriminatory power is con-
siderably improved. For example,
adding a non-surface requirement
to loss of polar–polar interactions
increase the discriminatory ratio
from 1 to 3. Best discrimination is
achieved when all relevant factors
are considered, as in the full model.
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other mechanisms, such as effects on catalysis,
binding and so on, are included in the 26% false
negative rate. Some fraction of false negatives is
mutants included in the HGMD database that do
not appear to cause disease. For example, the
mutant G15D in the alpha chain of hemoglobin
(HBA1) is in HGMD, but is predicted to be non-
Figure 3. Evaluation of the SVM model. The right-hand
identified by the model in jack-knifed testing. The model
destabilization of the structure, so that the false negative rate
the model. The bottom bar shows the result for the more con
SVM distance greater than 0.5), with a false negative rate of 2
disease data set. Here, the false positive rate (variants incorr
higher confidence classifications.
disease causing, with a confident SVM score of 0.8.
The literature on this mutation18 gives no indication
of disease. Allowing for approximations in the
model, a conservative conclusion is that substan-
tially more than half of disease mutants operate at
least partly through destabilization of the folded
structure.
panel shows the fraction of disease variants correctly
is trained only to detect variants that cause disease by
of 26% includes all other causes, as well as deficiencies in
fident subset of predictions (the 80% of the data with an
1%. The left-hand panel shows the same data for the non-
ectly assigned to disease) is 15% for the full set and 11%
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464 Protein Variants in Monogenic Disease
Model evaluation using in vitro mutagenesis
stability data

The SVM disease model is trained entirely on
disease related mutant data, containing no explicit
information about stability. Evaluation of the
model’s performance against in vitro mutagenesis
free energy data provides an independent test of the
hypothesis that disease is strongly coupled with
structure destabilization. We would expect that
there should be a strong correlation between a
potential disease outcome and the change in the free
energy difference between the folded and unfolded
states.

As described in Materials and Methods, we have
run the disease trained prediction model against a
set of 581 of these in vitro stability data, from four
proteins (Table 1). Figure 4 shows the relationship
between the change in free energy and the fraction
of mutations that would be predicted to have a
disease outcome. For mutants that stabilize or
mildly destabilize the folded state (up to 1 kcal/
mol) the faction of potential disease causing
residues is close to the false positive rate of the
model (16%). As the change in free energy
increases, so does the fraction of potential disease
causing mutations, reaching 90% in the 3–4 kcal/
mol range, and 100% above 4 kcal/mol. These
results confirm that the model is detecting
destabilizing effects on structure. The observation
that most potential disease classified mutations
destabilize the folded state by about 2 to 3 kcal/mol
suggests that real disease causing mutations will be
in this range. That conclusion is supported by the
fact that the distribution of SVM scores for mutants
that destabilize by more than 2 kcal/mol is similar
to that of the disease causing mutants (means of
K0.88 and K1.00, medians of K0.68 and K0.60,
respectively).

It is informative to examine the outliers in this
distribution. Five (L108I, L36V, L37V and A132G in
staphylococcal nuclease and S92A in barnase) of the
53 mutants that decrease stability by 3–4 kcal/mol
are predicted not to be consistent with disease. The
two L/V mutants differ by one methyl group, and
both result in a slight loss of hydrophobic burial.
There are 24 L/V mutants in the disease dataset
and 37 cases in the non-disease dataset, suggesting
that this class of mutant is finely balanced between
disease and non-disease causing, and subtle effects
tip the balance. Consistent with this, the SVM gives
a low confidence score (0.14 and 0.13) for these two
outliers. L108I creates no change of volume or
overall hydrophobicity, so it is surprising that it is
so destabilizing. There are 25 such mutations in the
non-disease dataset, and only four in the disease
set, suggesting that this high level of destabilization
is unusual. The SVM score is also in the less
confident range (0.3). The authors of the experi-
mental study19 suggest that loss of highly optimal
van der Waals packing is primarily responsible for
the large effect. The remaining two mutations,
A132G and S92A, are both predicted to be non-
disease causing with relatively high confidence
(SVM scores 0.70 and 0.89). For A132G, there is a
minor loss of hydrophobic burial. There are 36 cases
of A/G mutations in the non-disease set and only
11 cases in the disease dataset. For S92A, the model
identified the loss of a hydrogen bond and a slight
gain of hydrophobic burial. Serrano and
colleagues20,21 note that this residue is the first
residue in a beta turn between two strands. The
hydroxyl group is buried, and makes two hydrogen
bonds, suggesting that it is may be involved in
unusually strong interactions. There are 77 cases of
S/A mutants in the non-disease set and only two
in the disease set, indicating that such strong polar
electrostatic interactions are unusual.

Eight of the 52 mutants that increase protein
stability are predicted to be consistent with disease.
All but one are in staphylococcal nuclease. All
increase stability by less than 1 kcal/mol. For three
Figure 4. Application of the
disease/stability model to in vitro
site-directed mutagenesis data.
The plot shows the fraction of
mutants classified as consistent
with disease, as a function of the
free energy difference between the
folded and unfolded states. For
stabilizing and weakly destabiliz-
ing mutants, the disease com-
patible fraction is similar to the
false positive rate of the model.
Above 3 kcal/mol of destabiliza-
tion, 90% of mutants are classified
as disease compatible. The results
suggest that a typical disease
causing mutant destabilizes the
folded state by 2–3 kcal/mol.
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cases: N138G, S128A and H124F, the SVM returns a
low confidence score. In none of the other cases is it
clear why there is disagreement with experiment.
For D21A and D21G, there is a predicted loss of
charge–charge and charge–polar interactions. The
distributions of these two mutations between the
disease and non-disease datasets are 8/8 and 57/11,
respectively. T41I is predicted to result in a large
gain of hydrophobic burial, offset by the loss of a
charge–polar and polar–polar interactions in a
buried environment. There are 41 cases of T/I
mutations in the disease dataset and 18 cases in the
non-disease dataset, most with a predicted large
gain of hydrophobic burial and decreased electro-
static interactions. G50A is predicted to result in
backbone strain. It is probable that the structure is
able to relax to accommodate the change in
backbone angles. The temperature factor is moder-
ately high, supporting this possibility. The eighth
mutant, N58D, is in barnase. There is a predicted
loss of polar–polar interaction and a slight gain of
charge–polar interaction.
Alternative test sets

This work uses disease and non-disease related
data for training and testing. Others3,6,7 have used
data on the phenotypic impact of single residue
mutants in a bacterial and a phage protein. We have
investigated the relationship between our assign-
ment of disease potential and phenotypic impact in
these mutagenesis sets. The data are a set of about
4000 mutants of the Escherichia coli lac repressor22

and a set of about 2000 mutants of phage T4
lysozyme.23 A total of 1987 mutations in T4
lysozyme and 3291 mutations in lac repressor can
be modeled on to the corresponding protein
structures (PDB entries 1lbh and 7lzm, respect-
ively). Each data set was partitioned into groups
based on the phenotype annotations in the litera-
ture. For lac repressor, these annotations are: C
(wild-type phenotype, 200-fold repression of beta-
galactosidase activity, but in practice some times
only 8–10% of this);Cs (wild-type phenotype under
certain conditions, including temperature-sensitive
mutations);CK (20–200-fold galactosidase repres-
sion); KC (4–20-fold); and K (less than fourfold
repression). For T4 lysozyme, the groups are: CC
(wild-type phenotype: plaque size similar to
control); C (significantly smaller plaques); C/K
(similar in size to C, but hazy morphology); and K
(no plaques produced).
The HGMD trained SVM model was used to

assign potential disease mutants in each of the
phenotype categories. Figure 5 shows the results.
For both proteins, a high fraction of the mutants in
the most severe class of phenotype impact are
assigned as disease-like (w90% for Lac repressor
and w100% for T4 lysozyme). However, for both
proteins, about 40% of “wild-type” mutants are also
assigned as consistent with disease. The probable
explanation is that a rather low level of enzyme
activity is needed for a wild-type classification: for
T4 lyzozyme, as little of 4% residual enzyme
activity may be classified as wild-type,23 and for
Lac repressor, 10% activity is some times suffi-
cient.22 Such low levels of monogenic disease
protein activity would likely usually result in
disease.
Functional analysis of single residue mutations

An advantage of the structure/stability model is
that it provides mechanistic insight into why a
mutant has a deleterious effect on protein function.
In principle, functional roles, such as ligand binding
and catalysis, may also be assigned to particular
residues, and so allow more general mechanism-
based analysis. As described in Materials and
Methods, we have investigated this possibility
Figure 5. Application of the
disease/stability model to mutants
of Lac repressor and T4 lyzozyme.
Symbols below the bars indicate
the extent of phenotypic impact for
that set of mutants, fromC for the
most activity to K for none. Red
regions of the bars show the
fraction of mutants in each
category found to be compatible
with disease. As expected, a high
fraction of the low activity mutants
are assigned as compatible with
disease, but a significant fraction
of the maximum activity ones are
also so classified. This result is
consistent with the fact that a low
% of activity is sufficient for a C
classification for both proteins.
Numbers below each column
show the number of mutants in
that category.
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Figure 6. Distribution of direct functional effects of
variants in the disease and non-disease data sets. Residue
function was assigned from Swiss Prot annotation and on
the basis of contacts with bound ligands. 7% of stability
variants also have a known functional role, and only an
additional 1.6% of false negatives are associated with
function. 2.1% of correctly classified non-disease variants
are assigned a functional role. Overall, few variants are
assigned function, and inclusion of those in a disease
classification model would slightly increase the false
positive rate.

466 Protein Variants in Monogenic Disease
using SwissProt functional annotation and experi-
mentally observed ligand binding. Figure 6 shows
the results. For the disease set, an additional 1.6% of
the mutants that were false negatives in the stability
model are annotated as functionally important.
Seven percent of the stability related mutants are
also assigned a functional role. These low values
probably reflect the incomplete assignment of
function. Inclusion of these in the model would
reduce the false negative rate by 1.6%. However, in
the non-disease set, an additional 2.1% of mutants
are assigned a functional role, leading to an increase
in the fraction of false positives. Thus, we conclude
that, at present, residue function annotation is too
unreliable and incomplete to be useful.
Table 1. In vitro mutagenesis data from four proteins, used to

Protein and PDB structure Structure class

Acyl-coenzyme A binding protein (2abd) All alpha
fk 506 binding protein (1fkj) Alpha and beta
Barnase (1bni) Alpha and beta
Staphylococcal nuclease (1stn) All beta

Structure class is taken from SCOP.49
Investigation of the role of protein structure
accuracy

Two-thirds of the mis-sense mutations are
analyzed in the context of structure models rather
than experimental structures. The accuracy of these
comparative models therefore plays a role in the
accuracy of disease assignment. In general,
accuracy of a structure model decreases with
decreasing sequence identity between the structure
of interest and the closest available template
structure.

To investigate the significance of this factor,
disease assignment accuracy was examined as a
function of structure/template sequence identity, in
ranges between 25% and 100% (“100%” are those
cases for which an experimental structure of the
human protein is available). A separate SVMmodel
was trained and tested within each sequence ID
group.

Results are shown in Table 2. Overall, disease
assignment using protein models based on a
structure template with more than 40% sequence
identity is not significantly less accurate than that
based on experimental structures. For sequence
identity of 30% or lower, errors in structure models
begin to have a significant effect, with increases in
both the false negative and false positive rates.
Multiple factors contribute to the decline in
accuracy, including less reliable side-chain inter-
actions arising from higher main-chain position
errors, an increased frequency of sequence align-
ment errors, and higher number of insertions and
deletions.24
Discussion
Role of protein destabilization in monogenic
disease

This work tested the hypothesis that destabiliza-
tion of protein structure is a major factor in human
monogenic disease. A simple factor-based model of
the stability impact of single residue mutants and
an objective machine learning technique are used.
In properly jack-knifed testing, the model is able to
distinguish between mutants likely to lead to
disease and those that do not, with reasonably
low false negative (26%) and false positive (15%)
rates. The false negative rate (those non-
synonymous base changes that lead to disease not
test the SVM model

Number of mutations (total 581)

3059

3460,61

8720,21,62

43019,42–48

Petitioner Merck, Ex. 1031, p. 466



Table 2. Disease assignment accuracy as a function of structure model quality

Disease variants Non-disease variants

% Identity # Mutants % of Total # Proteins FN (%) # Mutants % of Total # Proteins FP (%)

100% 1710 35 85 25.5 672 23 50 16.7
90–99% 981 20 67 23.2 932 33 61 13.2
40–99% 1077 22 93 24.3 705 25 62 16.7
25–39% 1181 24 142 27.5 551 19 91 28.2

Each row shows data using structure models based on a given range of sequence identity to an experimental structure. Accuracy is
measured by the false positive rate, FP (fraction of non-disease variants classified as disease causing), and the false negative rate, FN
(fraction of disease variants classified as non-disease causing) The 100% row gives data for cases based on an experimental structure,
rather than a model. Accuracy is unaffected by the use of a structure model for sequence identities down to about 40%.
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so categorized) partly reflects deficiencies in the
model, but also includes the fraction of mutants that
act through mechanisms other than destabilization.
We conclude from these results that substantially
more than half of monogenic disease mutants act
through a process consistent with destabilization of
the folded state.

Use of the model to classify in vitro mutagenesis
data strongly supports the role of stability in
disease, and implies that a disease causing mutant
typically destabilizes a protein by 2–3 kcal/mol. For
most globular proteins, the free energy difference
between the folded and unfolded state is between
5 kcal/mol and 15 kcal/mol,25 corresponding to an
equilibrium constant between the unfolded and
folded states of between 10K4 and 10K13. A mutant
that destabilized by 2 kcal/mol would increase the
concentration of the unfolded state by about two
orders of magnitude, but the fraction of unfolded
molecules is still so small that there would be no
expected effect on function in an in vitro assay.
In vivo, though, chaperone scavenging of unfolded
proteins26 may cause such a 100-fold increase in the
fraction of unfolded molecules to result in a much
lower steady state protein concentration.

Although loss of stability is clearly highly related
to a disease outcome, it may sometimes be an effect
on folding that is the actual mechanism. In vitro
folding studies of simple proteins, such as
barnase,27 show that about 40% of mutants that
affect stability also affect the folding rate. For
disease mutants, folding may be slowed so much
that most molecules are targeted for recycling by
the quality control machinery in the endoplasmic
reticulum and elsewhere.28 Since not all mutants
that affect stability also affect folding rate, if folding
were the primary factor, a stability model should
generate a high level of false negatives. The
reasonably high accuracy of the stability model
thus suggests that it is the most relevant factor.
Nevertheless, without extensive experimental
studies, it is not possible to know for what fraction
of cases stability or folding is most relevant.

Direct experimental evidence for the role of
stability is scarce, since there are very few studies
of the properties of disease causing mutants in
human proteins. One exception is mutants in
phenylalanine hydroxylase. Excess phenylalanine
is toxic, and defects in this enzyme lead to
phenylketonuria (PKU). Over 100 single residue
disease causing mutants are known, and a subset of
these have been studied in COS cells.29 There is a
clear correlation between the set assigned as
affecting stability by our model and the in vivo
total activity and concentration, as measured by
immuno-precipitation.

Why does protein stability play a prominent role
in monogenic disease?

There are many mechanisms by which a single
base change may affect the function of a protein
in vivo: changes in gene regulatory regions may lead
to altered transcription rates; changes in the
transcribedmessage may lead to altered processing,
particularly splicing; message changes may affect
translation through, for example, altering the
secondary structure properties.30,31 Surprisingly,
data for monogenic disease in HGMD suggest that
all these pre-protein factors account for less than
10% of cases.1 This number may be an under-
estimate of the true value, because of bias in
detection methodology. Nevertheless, it is clear
that protein level effects are by far the more
common.
Once a polypeptide chain has been produced,

non-synonymous changes (those base changes
resulting in an amino acid substitution) may affect
in vivo activity in two major ways: aspects of the
protein’s molecular function may be altered,
particularly ligand binding, catalysis, post-trans-
lational modification, or an allosteric mechanism.
The likelihood of this class of effect depends on the
fraction of residues critically involved in one or
more of these functions.
The second way in which non-synonymous base

changes may affect in vivo activity is by reduction of
the concentration of protein. This may come about
through less successful folding, or an increase in the
fraction of unfolded protein, caused by a reduction
in stability. Tests with the stability model, sampling
a large number of randomly chosen mutants, show
that approximately half are consistent with a
disease outcome. Thus, the high fraction of disease
mutants associated with stability loss is likely a
consequence of the higher fraction of mutants that
can affect stability, compared with the other
possible causes.
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Distinguishing properties of monogenic disease
proteins

For the 1000 or so monogenic disease proteins in
HGMD, the average number of known single
residue mutants leading to disease is just over 10.1

Yet no mutants directly causative of monogenic
disease are known in the remaining approximately
22,000 human proteins. What is the difference
between these two sets of proteins? First, mono-
genic disease proteins may be abnormally unstable
or have abnormally fragile folding behavior. There
is very little data with which to address this
possibility, but many are relatively simple metabolic
enzymes, and compared with most human
proteins, the least likely to exhibit this sort of
fragility. A second possibility is that mutants in
many of the other proteins lead to a non-viable
fetus, and so are never classified as disease causing.
Gene suppression in Caenorhabditis elegans32 and
Saccharomyces,33,34 as well as limited mouse knock-
out data all suggest that only 10–20% of proteins are
essential in this sense, and so that is unlikely
explanation. Third, and most probable, monogenic
disease proteins may be the subset to which the
system is least robust to component failure.
Analysis of non-synonymous single nucleotide
polymorphisms in the human population shows a
significant fraction that appear to be as deleterious
to protein structure and function as those found in
monogenic disease genes,3,5,6,35 but with no disease
outcome. Limited knowledge of human protein
networks makes it difficult to rigorously test this
possibility. Nevertheless, inspection of the pathway
context of monogenic disease proteins supports this
explanation. Many, such as phenylalanine
hydroxylase, appear to perform unique roles, with
no redundancy alternative pathways. In contrast,
inspection of the pathway context of proteins
containing SNPs that destabilize protein structure
significantly, such as the T cell receptors,36 usually
suggests a mechanism that makes the system robust
to failure of a protein component. Many different T
cell receptors are involved in an antigenic response,
so that reduced effectiveness of some will not have
obvious disease consequences, although it may
influence resistance to particular infections in subtle
but significant ways.

Advantages and disadvantages of a protein
structure-based approach

An advantage of the structure-based approach is
that it provides a detailed atomic level model of the
precise mechanism by which an amino acid change
results in a change in protein properties.
A disadvantage is that it is limited to stability
effects, and to cases where structure is available.
Use of comparative modeling allowed us to extend
the number of mutants that can be analyzed. Tests
showed that disease prediction accuracy is
unaffected by the use of a model, down to 40%
sequence identity to a known structure. This is in
keeping with studies of the accuracy of structure
modelingmethods,24 and also partly reflects the fact
that the method does not depend on very accurate
structures. Even so, only about 10% of human
protein domains can currently be analyzed. The
rapid advance of structural genomics37 may quickly
reduce this limitation.

Access to results

Analysis results for all missense disease and
control mutations is available†.
Materials and Methods

Identification of single residue variants related to
monogenic disease

Genes associated with monogenic disease were identi-
fied by checking all 16,220 human gene names in the
NCBI Locuslink38 database (as of 04/26/2002) against the
Human Gene Mutation Database1 (HGMD) (as of 02/09/
2002). HGMD contains the most comprehensive collec-
tion of mutations related to monogenic disease. Most are
causative of monogenic disease, although a few may be
associated with disease as a result of linkage dis-
equilibrium rather than directly causative, or contribute
to complex trait disease. Later versions of HGMD include
more of the latter class, and so the earlier version was
preferred. A total of 731 genes containing 10,263 single
residue variations were identified.

Identification of a set of single residue variants not
related to disease

We also required a control set of mutants, not causative
of disease. It is not known which base variants in the
human population contribute to complex trait disease,
and so it is not possible to use these. Following others,4

we used non-synonymous base differences between
human proteins and closely related proteins in other
mammals. The justification here is that almost all variants
that are fixed between species are essentially neutral and
non-deleterious. To maintain compatibility between the
disease and control sets, the same 731 monogenic disease
proteins were used. The protein sequences of these genes
were compared to all other mammalian protein sequences
in SWISS-PROT,39 using BLAST.40 Proteins with at least
90% sequence identity over at least 80% of the full length
were selected. Single residue differences in these align-
ments were used as a set of pseudo “mutations”,
providing the non-disease set. A total of 348 proteins
containing 16,682 such single-residue differences to the
human disease set were obtained.

Selection of sets of mutants with protein structure

Each of the 731 human proteins was checked for entries
in the Protein Data Bank (as of 7/26/2004).41 Templates
for models of human proteins were taken from the PDB
for cases where there was no human structure available,
and there was a PDB entry for an X-ray structure at least
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Table 3. The 15 factors included in the model of protein stability

Type Factors

Continuous factors Electrostatic interaction: polar–polar, polar–charge, charge–charge
Over-packing
Hydrophobic burial
Surface accessibility
Structural rigidity: crystallographic B-factor, Z score and standard deviation

Binary factors Cavity
Electrostatic repulsion
Backbone strain
Buried charge
Buried polar
Breakage of a disulfide bond

The effect of each single residuemutant on stability is expressed in terms of the value of one or more of these contributions to the energy
and entropy. Continuous factors are represented by a continuous variable, binary factors are two state, either significantly or not
significantly affecting stability.
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3.0 Å resolution andwith 40% or higher sequence identity
to the human protein over at least 100 residues.
For the non-disease set, variants that might be partially

compensated by other species differences in the same
protein were eliminated as follows. All clusters of
variants where there are interatomic contacts of 5 Å or
less between residues were discarded. For example, A2S
in the myosin light chain is a variant between human and
mouse, and between human and rat. G20T, a variant
between human and mouse, makes contact with the G20
position, and so both variants were excluded. The rat
protein has no change at G20, so rat A2S was retained in
the non-disease set.
Support vector machine

The Support Vector Machine software package
SVMlight†was used to determine the partitioning surface
between the disease and non-disease data in the
15-dimensional parameter space. Continuous variables
were normalized in the form of a Z score (ZZ(value-
mean)/standard-deviation). A radial basis kernel was
used, allowing for complex surface topology. For this
kernel, the higher the parameter g, the more complex the
effective surface, allowing better accommodation of the
data. Too higher a gamma leads to over-fitting, and less
accurate prediction on new data. A g value of 0.2 was
selected, based on a series of trials. Weights were assigned
to the disease and control data sets to compensate for
their different sizes, such that they contributed equally to
determining the partitioning surface. The distance of a
data point from the partitioning surface provides an
approximate measure of confidence in a prediction.
SVM model training and testing

A subset of 90% of the disease and non-deleterious
variations were selected randomly to form a training set.
The resulting SVM model was used to predict which of
the 10% of data not included in training are disease
causing. The training and testing procedure was repeated
30 times, randomly selecting the test data on each run. For
each trial, the false negative rate (the fraction of disease
variations mis-classified as non-disease) and false
positive rate (the fraction of non-disease variants mis-
† http://svmlight.joachims.org/
classified as disease causing) in the test dataset were
calculated. The average false positive and false negative
rates provide the measure of the prediction accuracy.

In vitro mutagenesis data

Free energy difference data from site-directed muta-
genesis experiments were used to test the ability of the
SVM model to identify known destabilizing mutations.
Four proteins with a large number of associated site-
directed mutagenesis experiments19–21,42–48,59–62 were
selected. They cover three classes of protein folds
(SCOP49 classification): all-alpha, all-beta and alpha and
beta. Table 1 lists the proteins, and the number of mutants
in each. More data are available in the PROTHERM
database50 but inconsistencies in format, particularly the
sign convention for free energy, prevent the large scale
use of these.

Comparative modeling of protein structure

Comparative models were built using the in-house
APSE (Automatic Protein Structure Emulator) pipeline.
Modeling protocols in APSE are based on experience with
building comparative models in the CASP experiments51

and a variety of projects. The procedure can be run in
automatic or semi-automaticmode.A core backbonemodel
is first constructed by copying regions of the chosen
template structure. Alignments are obtained using
CLUSTALW. Co-ordinates of side-chains conserved
between the human protein and the PDB template are
copied. Remaining side-chains are added using SCWRL.52

Where necessary, quaternary structure was taken from
the PQS (protein quaternary structure) database of
biological units.53 Additional subunits are modeled in
the same manner as the chain of interest. Side-chains are
modeled in the multimer context.

Modeling the structure of single residue mutants

All SCWRL library backbone-dependent confor-
mations52 for the new side-chains were built. The
conformation least damaging to stability was selected,
based on the following rules. First, the conformation with
the least worst over-packing was selected; i.e. if there is
one conformation with an interatomic contact of 2.6 Å
and another with 2.7 Å, the latter was accepted. No
distinction was made between conformations with
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contacts 3.0 Å or longer. If more than one conformation
remained, the one with the least loss of hydrophobic area
was selected. In cases where there is no loss of
hydrophobic area, conformations with loss of a salt-
bridge were next eliminated, then those with electrostatic
repulsion, hydrogen bond loss, cavity formation, back-
bone strain, introduction of a buried charge, and finally,
introduction of a buried polar group.
Modeling the stability impact of a single residue
mutant

Table 3 lists the stability factors that provide the 15
dimensions used in assessing the impact of each mutant
on protein stability. These are divided into those factors
treated as continuous variables, and those treated as two
state variables (significantly destabilizing or not).
Continuous factors

(1) Electrostatic interactions. The difference in electrostatic
energy between a wild-type protein and its corre-
sponding mutant was calculated using a simple
Coulomb’s law treatment, with no solvent model.
The partial electrostatic interaction energy between a
pair of polar or charged groups i and j is calculated in
the usual manner as:

Eij ZK
X

k

X

l

qkql=rlk

where the sums are over all atoms k of group i and
atoms l of group j, the qs are the partial atomic charges
in electrons, and rlk is the distance between atoms l
and k, in Å. K is the scaling constant (332) nominally
converting energies to kcal/mol. (Absolute scale is
not significant here, because of the Z score
normalization.) Interactions between a pair of groups
are included if the centers of charge are less than a
cutoff distance dc apart. The center of charge of a
group rc is defined as:

rc Z
X

k

jqkjrk=
X

k

jqkj

where the sum is over all atoms in the group.
Electrostatic group definitions and partial atomic
charges are as defined by Pedersen & Moult.54 The
threshold for group–group interactions, dc, is 5 Å.
This protocol for electrostatic calculations has been
shown to be effective at identity incorrect structural
features in experimental structures.55

(2) Overpacking. For each mutant, the closest inter-atomic
distance between the mutant residue and any
neighboring residue was used.

(3) Relative surface accessibility. Solvent accessible sur-
face56 was calculated with in-house software. The
relative surface accessibility of a residue is defined as
the surface area of the side-chain in the folded state
divided by an estimate of the average surface area in
the unfolded state.57

(4) Hydrophobic burial change. The change in buried non-
polar area DANP resulting from a single residue
mutation is defined as:

DANP Z
X

i

DaiK
X

j

Daj

where the first sum i is the change in non-polar area
on folding for all non-polar atoms in the mutant
structure and the second sum j is over all non-polar
atoms in the wild-type structure. The change in
atomic non-polar area in folding is given by:

DaZ auKaf

where au is the estimate of the average atomic surface
area in the unfolded state57 for that atom, and af is the
calculated atomic area in the folded structure. Non-
polar atoms are those assigned zero charge.

(5) Crystallographic temperature factors. For each experi-
mental structure used directly or as a model, the
average temperature factor hBi, and standard
deviation s(B) over all Ca atoms was calculated, and
used to obtain a temperature factor Z score for each
Ca: ZiZ ðBiKhBiÞ=sðBÞ. Bi, Zi, and s(B) were used as
parameters in the SVM.
Binary factors

(6) A cavity is assigned to any mutation resulting in the
loss of volume of an aliphatic carbon group or greater
at a zero solvent accessibility position. For example,
Ala mutated to Gly, where the wild-type Cb atom has
zero solvent accessibility.

(7) Electrostatic repulsion is assigned to any mutation
which results in two like charged groups with an
unavoidable atomic contact of less than 4.5 Å.

(8) Backbone strain is assigned to any mutation if one of
the following conditions is met. (A) Replacement of a
glycine residue with f/j angles in a non-allowed
region for other residue types. Allowed regions were
those covering 90% of observed f/j values, as
provided in PROCHECK.58 (B) Replacement of a cis-
proline (uZ0(G60)8) with another residue. (C)
Replacement of another residue by proline,
where the f value is inappropriate (permitted f for
ProZK60(G15)8).

(9) Buried charge is assigned to any mutation that results
in a zero solvent accessibility, electrostatically
isolated, charge group.

(10)Buried polar is assigned to any mutation that results
in a zero solvent accessibility polar group with no
hydrogen bond. A hydrogen bond is defined as a
donor to acceptor distance %2.5 Å, and an angle at
the acceptor R90.08.

(11)Breakage of a disulfide bond is assigned to any
mutation that replaces a cysteine residue in an S–S
bond with a non-cysteine residue.
Evaluation of discrimination power of each stability
factor

The frequencies of each stability factor in the disease
and non-disease datasets were calculated. The ratio of the
two frequencies defines a discrimination power. For this
purpose, a threshold was chosen for each of the
continuous factors. Any mutation with a value higher
than the threshold was considered to destabilize protein
structure. Thresholds were chosen by inspection of the
distribution of values for the disease and non-disease sets,
selecting levels that provide a high fraction of true
positives and true negatives, while minimizing false
negatives and false positives. The following values were
used:

(1) Overpacking: at least one unavoidable atomic contact
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of 2.5 Å or less of the mutated residue to a
neighboring one.

(2) Hydrophobic burial: loss of hydrophobic burial of
more than 50 Å2.

(3) Electrostatic interaction: any reduction in electrostatic
interaction energy, for polar–polar, charge–charge and
charge–polar interactions.

(4) Buried residue: relative residue accessibility of less
than 20% (i.e. the wild-type side-chain accessibility is
less than 20% of the estimated average unfolded state
accessibility).

(5) Moderate crystallographic temperature factor: the Ca

temperature factor of the mutated residue has a Z
score of less thanC1 (i.e. the temperature factor is less
than one standard deviation above the mean for the
protein).
Identification of residues with a role in molecular
function

Each mutated residue, and all residues with one or
more atomic contacts of 6 Å or less to it, was checked
against the SWISS-PROT feature annotation table for
possible functional effects. Additionally, a check was
made for atomic contacts of the mutated residue of 6 Å or
less to any ligand atom in PDB entries for that protein and
other X-ray structures with at least 40% sequence identity
over at least 100 amino acid residues, and at 3.0 Å or
better resolution.
Acknowledgements

This work was supported by grant LM07174 from
the National Library of Medicine.
References

1. Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D.,
Shiel, J. A., Thomas, N. S. et al. (2003). Human Gene
Mutation Database (HGMD): 2003 update. Hum.
Mutat. 21, 577–581.

2. Wang, Z. & Moult, J. (2001). SNPs, protein structure,
and disease. Hum. Mutat. 17, 263–270.

3. Ng, P. C. & Henikoff, S. (2003). SIFT: predicting amino
acid changes that affect protein function. Nucl. Acids
Res. 31, 3812–3814.

4. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W., 3rd,
Kondrashov, A. S. & Bork, P. (2001). Prediction of
deleterious human alleles. Hum. Mol. Genet. 10,
591–597.

5. Ramensky, V., Bork, P. & Sunyaev, S. (2002). Human
non-synonymous SNPs: server and survey. Nucl.
Acids Res. 30, 3894–3900.

6. Chasman, D. & Adams, R. M. (2001). Predicting the
functional consequences of non-synonymous single
nucleotide polymorphisms: structure-based
assessment of amino acid variation. J. Mol. Biol. 307,
683–706.

7. Krishnan, V. G. & Westhead, D. R. (2003). A
comparative study of machine-learning methods to
predict the effects of single nucleotide
polymorphisms on protein function. Bioinformatics,
19, 2199–2209.
8. Ng, P. C., Henikoff, J. G. &Henikoff, S. (2000). PHAT: a
transmembrane-specific substitution matrix.
Predicted hydrophobic and transmembrane.
Bioinformatics, 16, 760–766.

9. Lau, A. Y. & Chasman, D. I. (2004). Functional
classification of proteins and protein variants. Proc.
Natl Acad. Sci. USA, 101, 6576–6581.

10. Valdar, W. S. & Thornton, J. M. (2001). Conservation
helps to identify biologically relevant crystal contacts.
J. Mol. Biol. 313, 399–416.

11. Dodge, C., Schneider, R., Sander, C. & The,
H. S. S. P. (1998). database of protein structure-
sequence alignments and family profiles. Nucl.
Acids Res. 26, 313–315.

12. Przybylski, D. & Rost, B. (2002). Alignments grow,
secondary structure prediction improves. Proteins:
Struct. Funct. Genet. 46, 197–205.

13. Beveridge, D. L. & DiCapua, F. M. (1989). Free energy
via molecular simulation: applications to chemical
and biomolecular systems. Annu. Rev. Biophys.
Biophys. Chem. 18, 431–492.

14. Mark, A. E. & van Gunsteren, W. F. (1994). Decompo-
sition of the free energy of a system in terms of
specific interactions. Implications for theoretical and
experimental studies. J. Mol. Biol. 240, 167–176.

15. Pan, Y. & Daggett, V. (2001). Direct comparison of
experimental and calculated folding free energies for
hydrophobic deletion mutants of chymotrypsin
inhibitor 2: free energy perturbation calculations
using transition and denatured states from molecular
dynamics simulations of unfolding. Biochemistry, 40,
2723–2731.

16. Guerois, R., Nielsen, J. E. & Serrano, L. (2002).
Predicting changes in the stability of proteins and
protein complexes: a study of more than 1000
mutations. J. Mol. Biol. 320, 369–387.

17. Vapnik, V. N. (1995). The Nature of Statistical Learning
Theory, Springer, New York.

18. Molchanova, T. P., Pobedimskaya, D. D. & Postnikov,
Yu. V. (1994). A simplified procedure for sequencing
amplified DNA containing the alpha 2- or alpha
1-globin gene. Hemoglobin, 18, 251–255.

19. Holder, J. B., Bennett, A. F., Chen, J., Spencer, D. S.,
Byrne, M. P. & Stites, W. E. (2001). Energetics of side
chain packing in staphylococcal nuclease assessed by
exchange of valines, isoleucines, and leucines.
Biochemistry, 40, 13998–14003.

20. Serrano, L., Kellis, J. T., Jr, Cann, P., Matouschek, A. &
Fersht, A. R. (1992). The folding of an enzyme. II.
Substructure of barnase and the contribution of
different interactions to protein stability. J. Mol. Biol.
224, 783–804.

21. Serrano, L., Matouschek, A. & Fersht, A. R. (1992). The
folding of an enzyme. III. Structure of the transition
state for unfolding of barnase analysed by a protein
engineering procedure. J. Mol. Biol. 224, 805–818.

22. Markiewicz, P., Kleina, L. G., Cruz, C., Ehret, S. &
Miller, J. H. (1994). Genetic studies of the lac repressor.
XIV. Analysis of 4000 altered Escherichia coli lac
repressors reveals essential and non-essential resi-
dues, as well as “spacers” which do not require a
specific sequence. J. Mol. Biol. 240, 421–433.

23. Rennell, D., Bouvier, S. E., Hardy, L. W. & Poteete,
A. R. (1991). Systematic mutation of bacteriophage T4
lysozyme. J. Mol. Biol. 222, 67–88.

24. Tramontano, A. & Morea, V. (2003). Assessment of
homology-based predictions in CASP5. Proteins:
Struct. Funct. Genet. 53, 352–368. (Suppl. 6).
Petitioner Merck, Ex. 1031, p. 471



472 Protein Variants in Monogenic Disease
25. Privalov, P. L. (1979). Stability of proteins: small
globular proteins. Advan. Protein Chem. 33, 167–241.

26. Hohfeld, J., Cyr, D. M. & Patterson, C. (2001). From
the cradle to the grave: molecular chaperones that
may choose between folding and degradation. EMBO
Rep. 2, 885–890.

27. Serrano, L., Matouschek, A. & Fersht, A. R. (1992). The
folding of an enzyme. VI. The folding pathway of
barnase: comparison with theoretical models. J. Mol.
Biol. 224, 847–859.

28. Plemper, R. K. & Wolf, D. H. (1999). Retrograde
protein translocation: ERADication of secretory pro-
teins in health and disease. Trends Biochem. Sci. 24,
266–270.

29. Scriver, C. R., Hurtubise, M., Konecki, D.,
Phommarinh, M., Prevost, L., Erlandsen, H. et al.
(2003). PAHdb 2003: what a locus-specific knowl-
edgebase can do. Hum. Mutat. 21, 333–344.

30. Shen, L. X., Basilion, J. P. & Stanton, V. P., Jr (1999).
Single-nucleotide polymorphisms can cause different
structural folds of mRNA. Proc. Natl Acad. Sci. USA,
96, 7871–7876.

31. Pelletier, J. & Sonenberg, N. (1987). The involvement
of mRNA secondary structure in protein synthesis.
Biochem. Cell. Biol. 65, 576–581.

32. Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G.,
Durbin, R., Gotta, M. et al. (2003). Systematic
functional analysis of the Caenorhabditis elegans
genome using RNAi. Nature, 421, 231–237.

33. Cliften, P., Sudarsanam, P., Desikan, A., Fulton, L.,
Fulton, B., Majors, J. et al. (2003). Finding functional
features in Saccharomyces genomes by phylogenetic
footprinting. Science, 301, 71–76.

34. Rubin, G. M., Yandell, M. D., Wortman, J. R., Gabor
Miklos, G. L., Nelson, C. R., Hariharan, I. K. et al.
(2000). Comparative genomics of the eukaryotes.
Science, 287, 2204–2215.

35. Yue, P. & Moult, J. (2005). Identification and analysis
of deleterious human SNPs. J. Mol. Biol. In the press.

36. Wang, Z. & Moult, J. (2003). Three-dimensional
structural location and molecular functional effects
of missense SNPs in the Tcell receptor Vbeta domain.
Proteins: Struct. Funct. Genet. 53, 748–757.

37. Service, R. (2005). Structural biology. Structural
genomics, round 2. Science, 307, 1554–1558.

38. Wheeler, D. L., Church, D. M., Edgar, R., Federhen, S.,
Helmberg, W., Madden, T. L. et al. (2004). Database
resources of the National Center for Biotechnology
Information: update. Nucl. Acids Res. 32, D35–D40.

39. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter,
M. C., Estreicher, A., Gasteiger, E. et al. (2003). The
SWISS-PROT protein knowledgebase and its sup-
plement TrEMBL in 2003. Nucl. Acids Res. 31, 365–370.

40. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J.,
Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped
BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucl. Acids Res. 25,
3389–3402.

41. Deshpande, N., Addess, K. J., Bluhm, W. F., Merino-
Ott, J. C., Townsend-Merino, W., Zhang, Q. et al. (2005).
The RCSB Protein Data Bank: a redesigned query
system and relational database based on the mmCIF
schema.Nucl. Acids Res. 33, D233–D237.

42. Shortle, D., Stites, W. E. & Meeker, A. K. (1990).
Contributions of the large hydrophobic amino acids
to the stability of staphylococcal nuclease.
Biochemistry, 29, 8033–8041.

43. Green, S. M. & Shortle, D. (1993). Patterns of
nonadditivity between pairs of stability mutations in
staphylococcal nuclease. Biochemistry, 32,
10131–10139.

44. Green, S. M., Meeker, A. K. & Shortle, D. (1992).
Contributions of the polar, uncharged amino acids to
the stability of staphylococcal nuclease: evidence for
mutational effects on the free energy of the denatured
state. Biochemistry, 31, 5717–5728.

45. Meeker, A. K., Garcia-Moreno, B. & Shortle, D. (1996).
Contributions of the ionizable amino acids to the
stability of staphylococcal nuclease. Biochemistry, 35,
6443–6449.

46. Stites, W. E., Meeker, A. K. & Shortle, D. (1994).
Evidence for strained interactions between side-
chains and the polypeptide backbone. J. Mol. Biol.
235, 27–32.

47. Schwehm, J. M., Kristyanne, E. S., Biggers, C. C. &
Stites, W. E. (1998). Stability effects of increasing the
hydrophobicity of solvent-exposed side chains in
staphylococcal nuclease. Biochemistry, 37, 6939–6948.

48. Byrne, M. P., Manuel, R. L., Lowe, L. G. & Stites, W. E.
(1995). Energetic contribution of side chain hydrogen
bonding to the stability of staphylococcal nuclease.
Biochemistry, 34, 13949–13960.

49. Andreeva, A., Howorth, D., Brenner, S. E.,
Hubbard, T. J., Chothia, C. & Murzin, A. G.
(2004). SCOP database in 2004: refinements inte-
grate structure and sequence family data. Nucl.
Acids Res. 32, D226–D229.

50. Bava, K. A., Gromiha, M. M., Uedaira, H., Kitajima, K.
& Sarai, A. (2004). ProTherm, version 4.0: thermo-
dynamic database for proteins and mutants. Nucl.
Acids Res. 32, D120–D121.

51. Samudrala, R. & Moult, J. (1997). Handling context-
sensitivity in protein structures using graph theory:
bona fide prediction. Proteins: Struct. Funct. Genet. 1,
43–49.

52. Canutescu, A. A., Shelenkov, A. A. & Dunbrack, R. L.,
Jr (2003). A graph-theory algorithm for rapid protein
side-chain prediction. Protein Sci. 12, 2001–2014.

53. Henrick, K. & Thornton, J. M. (1998). PQS: a protein
quaternary structure file server. Trends Biochem. Sci.
23, 358–361.

54. Pedersen, J. T. & Moult, J. (1997). Protein folding
simulations with genetic algorithms and a detailed
molecular description. J. Mol. Biol. 269, 240–259.

55. Oliva, M. T. & Moult, J. (1999). Local electrostatic
optimization in proteins. Protein Eng. 12, 727–735.

56. Lee, B. & Richards, F. M. (1971). The interpretation of
protein structures: estimation of static accessibility.
J. Mol. Biol. 55, 379–400.

57. Shrake, A. & Rupley, J. A. (1973). Environment and
exposure to solvent of protein atoms. Lysozyme and
insulin. J. Mol. Biol. 79, 351–371.

58. Laskowski, R. A. M. M., Moss, D. S. & Thornton, J. M.
(1993). PROCHECK: a program to check the stereo-
chemical quality of protein structures. J. Appl.
Crystallog. 26, 283–291.

59. Kragelund, B. B., Osmark, P., Neergaard, T. B.,
Schiodt, J., Kristiansen, K., Knudsen, J. & Poulsen,
F. M. (1999). The formation of a native-like structure
containing eight conserved hydrophobic residues is
rate limiting in two-state protein folding of ACBP.
Nature Struct. Biol. 6, 594–601.

60. Main, E. R., Fulton, K. F. & Jackson, S. E. (1998).
Context-dependent nature of destabilizing mutations
on the stability of FKBP12. Biochemistry, 37, 6145–6153.

61. Fulton, K. F., Main, E. R., Daggett, V. & Jackson, S. E.
Petitioner Merck, Ex. 1031, p. 472



Protein Variants in Monogenic Disease 473
(1999). Mapping the interactions present in the
transition state for unfolding/folding of FKBP12.
J. Mol. Biol. 291, 445–461.

62. Serrano, L., Sancho, J., Hirshberg, M. & Fersht, A. R.
(1992). Alpha-helix stability in proteins. I. Empirical
correlations concerning substitution of side-chains at
the N and C-caps and the replacement of alanine by
glycine or serine at solvent-exposed surfaces. J. Mol.
Biol. 227, 544–559.
Edited C. R. Matthews
(Received 7 May 2005; received in revised form 8 August 2005; accepted 10 August 2005)
Available online 31 August 2005
Petitioner Merck, Ex. 1031, p. 473


	Loss of Protein Structure Stability as a Major Causative Factor in Monogenic Disease
	Introduction
	Results
	Selection of data for analysis
	Analysis of factors likely to affect protein stability
	Accuracy of the SVM model
	Model evaluation using in vitro mutagenesis stability data
	Alternative test sets
	Functional analysis of single residue mutations
	Investigation of the role of protein structure accuracy

	Discussion
	Role of protein destabilization in monogenic disease
	Why does protein stability play a prominent role in monogenic disease?
	Distinguishing properties of monogenic disease proteins
	Advantages and disadvantages of a protein structure-based approach
	Access to results

	Materials and Methods
	Identification of single residue variants related to monogenic disease
	Identification of a set of single residue variants not related to disease
	Selection of sets of mutants with protein structure
	Support vector machine
	SVM model training and testing
	In vitro mutagenesis data
	Comparative modeling of protein structure
	Modeling the structure of single residue mutants
	Modeling the stability impact of a single residue mutant
	Evaluation of discrimination power of each stability factor
	Identification of residues with a role in molecular function

	Acknowledgements
	References




