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Preface
Proteins possess a broad range of structural and functional properties that are 
unmatched by any other class of biological molecules. Amazingly, nature has 
arranged simple atoms and chemical bonds in such a way to facilitate complex bio-
logical processes like molecular recognition and catalysis. Nature has also inspired 
many scientists and engineers to design and create their own customized proteins. 
These engineered proteins can serve as novel molecular tools for scientific, medical, 
and industrial applications, thus addressing many needs unmet by naturally occur-
ring proteins.

Protein engineering requires identification of particular amino acid sequences that 
will result in desired structural and functional properties. Despite recent advances 
in the field, however, protein engineering remains as much an art as it is a science. 
Engineering an arbitrary protein structure or function remains a formidable chal-
lenge, because the rules defining sequence-structure-function relationships are still 
not well understood. Even with refined quantitative models, the large degrees of 
freedom present in a typical protein do not easily allow identification of optimal 
sequences using currently available computational techniques. Furthermore, the 
complexity of proteins present engineering challenges whose solutions will most 
likely require a combination of experimental and computational approaches.

This book discusses two general strategies commonly used to engineer new 
proteins: diversity-oriented protein engineering and computational protein design. 
Diversity-oriented protein engineering, or directed evolution, identifies protein 
variants with desired properties from a large pool of mutants. As such, its success 
depends on generating sufficient sequence diversity and employing sensitive high-
throughput assays. Computational protein design, on the other hand, generates and 
screens protein sequences in silico before synthesizing them in the laboratory. This is 
still an unfamiliar concept to many, so an important goal of this book is to demystify 
the subject by describing its development and current implementations. Structure-
based protein engineering similarly uses computation to facilitate the discovery of 
interesting protein sequences. However, computational protein design places empha-
sis on both engineering new, useful proteins and on testing sequence-structure rela-
tionships. In this regard, it shares a deep philosophical root with protein folding, 
which similarly seeks to understand the relationship between protein sequence and 
tertiary structure.

The book is organized into two sections. The first half of the book discusses 
experimental approaches to protein engineering and starts by describing several 
high-throughput protein engineering platforms (Chapters 1–3). This is followed by 
a chapter on key techniques used for diversity generation (Chapter 4). The next few 
chapters present examples of therapeutics, enzymes, biomaterials, and other mol-
ecules that were engineered by rational or combinatorial-based approaches (Chapter 
5–8). The section finishes with a chapter on the use of unnatural amino acids in 
protein engineering (Chapter 9).
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viii Preface

The second half of the book introduces computational protein design, which 
designs new sequences by quantitatively modeling sequence-structure relationships. 
Despite their unique approaches, protein engineering and design are increasingly 
developing a synergistic relationship. To that end, more and more experimentalists 
are recognizing computation as an important molecular tool for protein engineering, 
and vice versa. These days, it is routine for those planning a protein engineering proj-
ect to first perform sequence analysis and to visualize protein structures in a molecu-
lar viewer. It is thus appropriate to start this section with a chapter on the common 
use of computers and informatics in protein engineering (Chapter 10). Examples of 
heuristic protein design are described in Chapter 11, before the core components of 
computational protein design are discussed in detail in Chapters 12–14. Subsequent 
chapters present examples of computationally designed proteins that played critical 
roles in advancing the use of computers in protein engineering (Chapters 15–17). The 
field has not yet fully matured and there are difficulties that remain to be resolved; 
these challenges are discussed in the last chapter of the book (Chapter 18).

Modern biology has provided a deep understanding of the molecular nature of 
biological processes. In particular, we now have a variety of tools that can be used 
to analyze and control key biological processes with molecular precision. Protein 
engineering and design are attempts to accomplish exactly these goals. As examples 
throughout the book show, certain categories of problems have attracted attention 
from scientists and engineers with a diverse range of technical expertise. We hope 
these studies will help the reader identify potential opportunities to bridge experi-
mental protein engineering and computational protein design and will lead to excit-
ing breakthroughs in biotechnology and medicine.

Sheldon J. Park
Jennifer R. Cochran
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10 Computer Graphics,
Homology Modeling, 
and Bioinformatics

David F. Green

Computational methods play a range of roles in protein engineering from the 
simple use of visualization to guide rational design to fully automated de novo 
design algorithms. In the next chapters, many of these approaches will be dis-
cussed. Here we will focus on the former, that is, computational methods that 
complement human insight in rational protein engineering. The approaches can 
loosely be grouped into three classes: (1) methods based on analysis of primary 
sequence; (2) the visual analysis of protein structure; and (3) fast estimation of 
mutational effects. The mechanistic details of performing sequence and struc-
tural analysis have been extensively discussed in other texts, and thus the focus 
here is on the application of these approaches. The approaches discussed here 
all involve use of software that is either available as a Web service or as a freely 
available, downloadable program. The Web locations of key tools are summa-
rized in the tables.

ConTenTs

Primary Sequence Analysis ....................................................................................224
Engineering through Consensus Motifs ........................................................224
Pairwise Interactions from Sequence Analysis ............................................. 227

Graphical Analysis of Protein Structure ................................................................228
Homology Modeling and Structure Visualization ........................................ 229
Modulation of Stability and Affinity through Steric Complementarity ........ 231
Modulation of Affinity through Electrostatic Complementarity ................... 232

Fast Methods for Mutational Evaluation ...............................................................234
Affinity Enhancement through Peripheral Electrostatic Interactions ...........234

Summary ................................................................................................................ 236
References .............................................................................................................. 236
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224 Protein Engineering and Design

Primary sequenCe analysis

Evolution provides a tremendously useful model for protein design. As seen in previ-
ous chapters, several approaches to mimicking evolution in the laboratory have been 
demonstrated to be powerful methods for the engineering of improved or novel func-
tion, but we may also take advantage of the results of natural evolution. Many families 
of proteins contain hundreds or thousands of members, spread across diverse species. 
By considering the common features of the sequences of these proteins, it is possible 
to deduce the key elements that determine protein structure and function—even in 
absence of any explicit structural information. In order to take this approach, several 
tools are needed. First, given one (or a few) sequences of a target structure, it is neces-
sary to be able to search through the vast array of known sequences for related pro-
teins. Second, this large family of related proteins must be aligned such that conserved 
positions are in register with one another. From this point, analysis of the degree of 
conservation at each position can give important insight applicable to protein engineer-
ing. Computational methods for this analysis of primary sequence are well established, 
and many tools are available through Web-based servers (Table 10.1).

engineering thrOugh cOnSenSuS mOtifS

One of the most straightforward applications of primary sequence data in pro-
tein engineering is the use of multiple-sequence alignments to define consensus 
motifs for a particular structure or function. These sequence signatures focus on 
the common features of a class, while not corresponding to any natural sequence. 
As a result, the resulting sequence may be expected to share the features that all 
members of the family have in common (such as a particular structure) without 
the specific features of particular family members (such as affinity for a specific 
binding partner). One of the first applications of this approach was in the design 
of a consensus-based zinc finger protein (Krizek et al. 1991). Subsequently, it was 
demonstrated that frequency of occurrence in a multiple-sequence alignment was a 

Table 10.1
web services and Databases for Primary sequence analysis

service web location (url) Description

GenBank http://www.ncbi.nlm.nih.gov/Genbank/ Repository of all publicly available 
nucleotide sequences.

Swiss-Prot http://ca.expasy.org/sprot/ Annotated database of protein 
sequences.

BLAST http:/www.ncbi.nlm.nih.gov/BLAST/ Online service to search for related 
sequences.

ClustalW2 http://www.ebi.ac.uk/tools/clustalw2/index.html Online service for multiple sequence 
alignment.

ClustalW http://www.clustal.org/ Downloadable software for multiple 
sequence alignment.
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Computer Graphics, Homology Modeling, and Bioinformatics 225

good predictor of the effects of point mutations on the stability of an immunoglobu-
lin domain (Steipe et al. 1994). These early implementations took a fairly simple 
approach; relatively small numbers of sequences were used, and global differ-
ences in amino-acid frequencies were not considered. An example of the approach 
is shown in Figure 10.1. More recently, these approaches have been refined and 
applied to a number of diverse systems.

The fundamental approach is as follows.

 1. Select a set of known sequences of the target protein family.
 2. Use the profile of these sequences to search global sequence databases for 

additional family members.
 3. Perform multiple sequence alignment on this large set of sequences.
 4. Compute statistical enrichment measures for the occurrence of each amino 

acid at each position.
 5. Use this information to bias the selection of sequences in an engineering 

context.

(a)

100%  -------------V--L-----------S----------------D----------NP-------C--- 

 50%  -----------K-VEQLK-EA---R-KVSKAAADL--YCE--A--DPLL-GVP-S-NPFRE-K--C-IL 

 20%  MNSTASIAQARKEVEQLKLEAGLERIKVSKAAADLMAYCEQHAREDPLLTGVPASENPFREKKGFCAIL 

(b)

Figure 10.1 (see color insert following page 178) Multiple sequence alignment and 
consensus sequence determination. (A) A multiple sequence alignment highlights key simi-
larities between the sequences. Here, a red background indicates 100% identity across all 
sequences, blue boxes indicate largely conserved residues, with similar residue types in red, 
and black indicates unconserved residues. The known regions of helical secondary structure 
for the top and bottom sequences are also shown. Figure generated with ESPRIPT (Gouet et 
al. 1999). (B) From the multiple sequence alignment, consensus sequences can be derived. 
Only seven residues are strictly conserved across all sequences (100%), while for 39 positions, 
there is one amino acid that occurs in the majority of sequences (50%). A complete sequence 
of 69 residues can be obtained by choosing the most common amino at each position (20% of 
the chosen amino acids all occur in at least three of the sequences). The sequences displayed 
are the set of γ-subunits from human heterotrimeric G-proteins.
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226 Protein Engineering and Design

Regan and coworkers have applied this approach to the design of several repeat 
proteins, including the tetratricopeptide repeat proteins (Main et al. 2003). The tet-
ratricopeptide-repeat (TPR) family of proteins is a class of proteins consisting of 
repeated units of a small domain. In natural proteins, a TPR domain consists of 34 
amino acids, and a typical TPR protein contains 3 to 16 repeats. Main et al. took the 
sequences of 1837 domains from 107 naturally occurring proteins and derived site-
specific global amino-acid propensities based on this alignment. The most common 
amino acid at every position was significantly enriched over the average amino-acid 
frequency across all proteins, with enrichment factors ranging from 2.5 to 11.9.

Often, consensus sequences are defined by selecting positions that are conserved 
above a certain threshold. For example, for the TPR domain, Trp at position 4, Tyr 
at position 11, Gly at position 15, Tyr at position 17, Ala at position 20, Tyr at posi-
tion 24, Ala at position 27, and Pro at position 32 all show enrichment of at least 
sixfold above the average amino-acid frequency. In terms of understanding the key 
sequence determinants of the protein fold, this is all the information that is needed. 
When designing a protein, however, one clearly needs a strategy for constructing a 
fully defined sequence.

Main et al. defined the sequence corresponding to the amino acid with the highest 
propensity at each site. Such a sequence would capture the most common features of 
this domain, but does not correspond to any natural protein. Repeats of one to three 
units of this engineered domain were constructed, with a few slight modifications: 
The single position where Cys was the most enriched residue was replaced with Ala 
(the second choice) in all repeats; a three residue helix-capping motif was added at 
the N-terminus of the protein; a solvating helix, corresponding to the first helix of 
the consensus motif with large aromatic residues, was replaced with Lys and Gln.

When they synthesized the model domain, even single domains of this protein 
were found to be well-structured, although they had relatively low stability. Repeats 
of this consensus sequence are very stable, with a repeat of three having a melting 
temperature of 83ºC and a repeat of two melting at 74ºC. In comparison, a naturally 
occurring three-repeat domain from PP5 has a melting temperature of 47ºC, com-
parable to that of the single repeat consensus protein (49ºC). These results suggest 
that the observed minimal repeat length of three (in natural systems) is not a result 
of stability requirements, but rather of an alternate reason, such as the requirement 
to bind protein targets.

Similar results have been obtained in numerous systems, including the ankyrin 
repeat proteins (Kohl et al. 2003), the leucine-rich repeat proteins (Binz et al. 2003), 
phytases (Lehmann et al. 2000), and antibodies (Knappik et al. 2000). The rationale 
for why this approach works is quite simple. Proteins have evolved both for stability 
and for function, and in a family of conserved fold, features defining protein stability 
will be conserved, while those that define diverse functions will not. In any given nat-
ural sequence, some of the residues that provide stability will likely be varied in order 
to accommodate function, but the particular residues that are varied will differ from 
protein to protein. Thus, the consensus sequence will define the underlying common 
feature that all members of the family share—an ability to stably fold into the target 
structure. As the consensus sequence does not contain those variations that create spe-
cific function at the expense of stability, it may form a much more stable structure.
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Computer Graphics, Homology Modeling, and Bioinformatics 227

A highly stable protein engineered through this approach may form a good start-
ing point for engineering novel function, either through directed evolution or rational, 
computed-aided design. When the initial sequence is particularly stable, sequence 
variations that contribute strongly to a particular function at the expense of stability 
are more easily accommodated.

pairwiSe interactiOnS frOm SeQuence analySiS

Consensus-based engineering assumes an independence of each position in the pri-
mary sequence. That is, it is presumed that combining the most common residues at 
each position will produce a stable protein. However, the contributions of residues 
in folded proteins (both to stability and to function) are known to be strongly cou-
pled in many cases. More detailed analysis of sequence conservation from multiple 
sequence alignments can provide insight into this coupling, which can subsequently 
be applied in an engineering context.

One such approach is statistical coupling analysis (Lockless and Ranganathan 
1999). This method quantifies the difference in amino-acid frequency at one position 
when sequence subsets containing only a single type of amino acid are considered 
at a second position. For example, if two positions contain Lys or Glu with roughly 
equal probabilities, the sequences with Lys at the first position are unlikely to contain 
Lys at the second position, and vice versa. Such statistical coupling may be due to an 
easily interpretable structural feature, for example, the presence of a salt-bridge, or 
to more subtle functional interactions.

In certain cases, these coupled interactions may be essential characteristics 
that must be considered when engineering a protein through sequence analysis. 
Ranganathan and coworkers have considered this problem in the context of the 
WW-domain family of proteins (Socolich et al. 2005). A set of 120 sequences was 
aligned, and statistical enrichments for each amino acid at each position were com-
puted, as were the coupling parameters between each position and a number of mod-
erately conserved sites. Two sets of novel protein sequences were generated from this 
data. The first were sequences randomly generated based on the site-independent 
enrichments; these are not consensus sequences per se, but rather sequences with 
similar amino-acid distributions to the natural set. The second set of sequences was 
generated through a computational procedure designed to match both the site-inde-
pendent distributions and the pairwise coupling values. Forty-three proteins of each 
type were expressed in E. coli and tested whether they fold to a well-defined, native-
like structure. Control sets of 42 natural sequences and 19 random sequences with 
the same overall mean amino-acid frequency as the other sets were also considered. 
None of the site-independent derived set were natively folded, although 70% were 
expressed and soluble. In comparison, 28% of the coupled-conservation set were 
natively folded, with a similar total number of soluble sequences. Of the random set, 
less than 50% were expressed and soluble (and none were folded), while 84% of the 
native set were soluble and 67% folded. These results clearly suggest that statistical 
correlations between sites are essential in sequence-based design.

At first glance, the results from these two studies seem contradictory. In the 
first case, a site-independent consensus sequence resulted in a highly thermostable 
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228 Protein Engineering and Design

protein, while in the second, designed proteins based on a site-independent analysis 
did not fold to the native state. One possible explanation is simply that each protein 
family may act differently. Site-independent information may completely determine 
the structure for some proteins, for example, zinc-fingers, phytases, antibodies, and 
the repeat proteins (TPR, ankyrin, and leucine-rich). For others, including the WW 
domains, the coupling between particular residues may be essential.

However, an alternate explanation is also possible. In the work of Ranganathan 
and coworkers, the site-independent sequences were not consensus sequences; that 
is, they did not use the most enriched amino acid at each site. Instead, they designed 
sequences with an overall amino-acid conservation profile similar to wild-type pro-
teins. Thus, in the context of a given wild-type protein, the coupling between posi-
tions may be essential. That pairwise interactions can be important is, of course, 
well known—a deleterious mutation at one position can be rescued by a compensat-
ing mutation at a second site—and it is useful to note that a purely sequence-based 
analysis can aid in determining which interactions are functionally important. The 
consensus-based protein, however, is a single sequence with the most enriched amino 
acids at each position. Thus, some of the coupling information may be implicitly 
taken into account. Consider, for example, two positions that are strongly coupled—
every sequence in the set contains KE or EK, but never KK or EE. If the KE motif 
is seen in just slightly more sequences, then Lys will be the preferred choice at site 
one while Glu is the preferred choice at site two. Thus, the consensus sequence will 
contain the KE motif, which is an acceptable choice. If, however, the sequences are 
derived randomly but biased by the independent conservation profiles, they will con-
tain KK and EE in a significant number of cases.

Statistical coupling analysis can also be used together with consensus-based 
design, as was done by Magliery and Regan for the TPR-repeat designs, discussed 
previously (Magliery and Regan 2004). This analysis identified three strongly cou-
pled networks of residues. While the consensus contains one choice of residues at 
each of these, other alternatives are possible. Additionally, the consensus-derived 
TRP sequence is highly negatively charged (–6), compared to natural sequences that 
predominantly have net charges between –3 and +3. Consideration of the statistical 
coupling between charged residues revealed subtle effects by which natural sequences 
contain compensating pairings of positive and negative residues. As these are at rela-
tively weakly conserved sites and the pairings are not unique, this information is lost 
in the consensus sequence.

graPhiCal analysis oF ProTein sTruCTure

Many protein-engineering applications involve the creation of a small number of 
mutations to a naturally occurring protein so as to enhance its function in a well-
defined manner. In these cases, a structural biologist’s intuition is often an important 
tool in the design of the desired variants, an approach that may be termed structure-
based protein design to borrow a term from the drug design field. Visualization of 
the known reference structure is a key component of this. For example, visualization 
can identify unsatisfied hydrogen bond donors or acceptors that may be mutated 
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to increase stability or affinity. Similarly, visualizing steric interactions can help 
engineer interactions to discriminate among several potential binding targets.

hOmOlOgy mODeling anD Structure viSualizatiOn

In many cases, protein engineering targets a protein whose structure has not been 
solved. This does not preclude the use of structure-based methods, as the known 
structures of related proteins can be used to create model structures though the pro-
cess of homology modeling. Briefly, homology modeling consists of a number of 
conceptual steps, which may or may not be performed independently in a given 
program. The first consists of mapping the backbone of homologous residues from a 
protein of unknown structure onto a known structure. Next, the side chains of these 
residues must be packed into the structure defined by the threaded backbone. For 
highly homologous proteins this may use the reference structure as an aid, while 
for less-similar proteins an alternate search procedure must be used. In many cases, 
however, there are regions of nonhomologous sequence, even in highly homologous 
proteins. Therefore, a new backbone, with appropriately placed side chains, must be 
constructed for these regions. As these sequences most often occur in loop regions, 
this procedure is referred to as loop building. Finally, the initial model structure is 
refined using a minimization protocol based on an empirical force field. Numerous 
homology modeling programs are available for the purpose, including several Web-
based servers (Table 10.2). Each method produces slightly different models, but gen-
erally the closer  the sequence, the more accurate the homology model will be. When 
a model of relatively low sequence similarity is desired, the use of multiple reference 
structures can improve the accuracy. Figure 10.2 displays a homology model of a 
designed dimeric protein complex, based on the known structure of a monomeric 
protein from which the complex was engineered.

Numerous tools are available for visualizing protein structure, many of which 
are freely available (Table 10.3). While every atom in a protein may play a role 
in structure and function, visualization typically focuses on the use of reduced 
models. For example, a structure is often rendered as a cartoon with the elements 
of secondary structure represented abstractly and connected by loops that follow 

Table 10.2
automated web services for homology modeling

service web location (url)

Swiss-Model http://swissmodel.expasy.org/SWISS-MODEL.html

Geno3D http://geno3d-pbil.ibcp.fr/

ESyPred3D http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/

What-If http://swift.cmbi.kun.nl/WIWWWI/

CPHModels http://www.cbs.dtu.dk/services/CPHmodels/

MODELLER* http://salilab.org/modeller/modeller.html

* Downloadable software, not a Web service
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230 Protein Engineering and Design

the backbone only. These cartoon models are useful for understanding the overall 
architecture of a protein or protein complex, and thus in identifying particular 
regions to include as variables in a combinatorial engineering application (either 
through directed-evolution or computational search). However, for the engineer-
ing of a small number of rational modifications, consideration of the chemical 
properties of each group can be essential. These properties are explicitly con-
sidered in the detailed force field-based calculations that will be discussed in 
later chapters, but can also be examined more qualitatively through visualization. 
The most straightforward approach involves mapping a property of interest, such 
as electrostatic potential or hydrophobicity, onto a surface representation of the 
protein.

Figure 10.2 (see color insert following page 178) Homology building can allow a 
model structure to be built from the structure of a related sequence. Shown here is a homol-
ogy model of a de novo designed dimeric complex (right), based on the structure of a mono-
meric protein (cyanovirin-N, left). The sequence of the dimer is 62% identical to that of the 
reference structure. Notice that all the key structural features are duplicated in the model, 
despite significant differences in sequence. Model was generated with MODELLER (Sali 
and Blundell 1993; Fiser and Sali 2003); figures were generated with VMD (Humphrey et 
al. 1996).

Table 10.3
Freely available software for structural analysis

Program web location (url) Description

VMD http://www.ks.uiuc.edu/Research/vmd/ Structural visualization program

PyMol http://pymol.sourceforge.net/ Structural visualization program

GRASP http://wiki.c2b2.columbia.edu/honiglab_
public/index.php/Software:GRASP

Visualization of protein surfaces 
and electrostatic potential maps

Residual Potential http://web.mit.edu/tidor/www/residual/index.
html

GRASP scripts for computing 
the residual potential

Probe http://kinemage.biochem.duke.edu/software/
probe.php

Software for computation of 
steric complementarity
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mODulatiOn Of StaBility anD affinity thrOugh Steric cOmplementarity

While chemical complementarity may be assessed simply by visualization of sur-
face maps, steric complementarity is more difficult for the eye to capture. Both the 
cores of proteins and the interface of protein–ligand and protein–protein complexes 
are generally well-packed with atoms forming intricate complementarity. While not 
the only consideration, the overall size and shape of particular amino acids play an 
important role. As a result, protein stability and binding affinity can be perturbed 
by relatively small changes targeted at modulating this steric complementarity. The 
addition of even a single methyl unit to an underpacked region can stabilize a protein 
or complex, as can removal of steric bulk from an overpacked region. The Probe pro-
gram (Word et al. 1999), accessible through the MolProbity Web service (Lovell et 
al. 2003), is designed specifically to address this issue. Comparison of the molecular 
surface generated with a small probe sphere with that generated with a water-sized 
sphere reveals regions of suboptimal packing. Steric clashes can be detected by the 
overlap of two or more atoms, and regions of near-optimal packing (close van der 
Waals contact between two atoms) may also be defined. This allows for a direct visu-
alization of regions of suboptimal packing in the given structure.

The rational modulation of steric complementarity has been used by Jasanoff 
and coworkers to create variants of calmodulin (CaM) and the M13 CaM-binding 
peptide (from rabbit skeletal muscle myosin) with altered specificity relative to wild 
type (Green et al. 2006). As seen in Figure 10.3, the interface contains a key hydro-
phobic interaction involving a Trp on M13, which packs into a pocket formed by 
CaM Phe 92 and several aliphatic hydrophobic groups. Replacement of the M13 Trp 
by a smaller aromatic group (either Phe or Tyr) resulted in an underpacked inter-
face, with subsequent loss of affinity; the W→F mutant binds eightfold worse than 
wild type, and the W→Y mutant binds 14-fold worse. This loss of affinity was then 

Figure 10.3 (see color insert following page 178) Affinities of protein complexes 
can be modulated by introducing perturbations in steric complementarity guided by visual 
analysis. Here we show a portion of the binding interface between calmodulin (gray) and the 
M13 CaM-binding peptide (black). Left: Reversing the positions of the Trp and Phe from 
the wild-type structure (shown in magenta) is expected to preserve near-optimal packing. 
Center: Changing only the Trp on M13 (to Phe) is expected to leave an unsatisfied void in 
the interface. Right: Changing only the Phe on CaM (to Trp) is expected to produced steric 
clashes and unfavorable structural rearrangements. Figures generated with VMD (Humphrey 
et al. 1996).
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complemented by a corresponding mutation of Phe 92 on CaM to the larger Trp, as 
well as a conservative variation of Ile 125 to Leu. The mutant-mutant complex con-
taining a W→F variation on M13 and a F→W (and I→L) substitution on CaM thus 
has the same total atom count as the wild type. The loss of affinity between the vari-
ant M13 and wild-type CaM is largely recovered in the complex with variant CaM. 
The affinity of the W→F mutant M13 for the variant CaM is only threefold different 
from WT and that of M13 W→Y differs by fourfold.

This work also reveals some of the challenges of taking advantage of steric com-
plementarity in an engineering context. The site was chosen through visual analysis, 
with the motivation of engineering an orthogonal binding pair. That is, the goal was 
to create variants of both CaM and M13 that would bind to one another with affinity 
similar to that of the wild-type complex, but that would both have reduced affinity 
for the corresponding wild-type binding partner. As discussed previously, one direc-
tion of this specificity was achieved: The M13 W→F/Y variants bind preferentially 
to CaM FI→WL. However, specificity in the reverse direction was not achieved; in 
fact, the CaM FI→WL variant bound with twofold higher affinity to wild-type M13 
than to the M13 mutants. This behavior is contrary to visual analysis—the pocket 
observed in the NMR solution structure seems well packed, and thus the replace-
ment of Phe by the larger Trp would be expected to create steric clashes and reduce 
affinity. However, structural rearrangements in the pocket are able to accommodate 
this change, and the increase in buried hydrophobic surface in the F→W variant thus 
leads to increased affinity. While detailed packing calculations of the type that will 
be discussed in later chapters may be able to capture this behavior to some degree, 
consideration of the wild-type complex alone is inadequate.

mODulatiOn Of affinity thrOugh electrOStatic cOmplementarity

Electrostatic interactions play essential roles in protein stability, binding affinity, and 
catalytic activity. As a result, modification of the electrostatic properties of a protein 
provides a particularly useful tool for structure-based protein design.

The energetic contributions of electrostatic interactions are complicated by sol-
vent effects; not only can solvent reduce the strength of an interaction in a single state 
through screening effects, but differential interactions with solvent between two 
states (folded and unfolded, bound and unbound) directly contribute to their relative 
energies. In molecular association, favorable interactions between water and polar 
groups at the binding interface are lost upon binding. These are replaced with direct 
interactions between the two binding partners, but the degree of compensation var-
ies from complex to complex. In many cases, the net electrostatic contribution may 
be unfavorable. Theoretical work by Tidor and colleagues has resulted in a frame-
work to describe the degree of electrostatic complementarity at an interface using 
the Poisson-Boltzmann continuum model of solvent (Lee and Tidor 1997; Kangas 
and Tidor 1998). While the theory provides methods for the detailed consideration 
of atom-by-atom contributions through intensive calculations, a simple graphical 
assessment of complementarity can also be defined. Briefly, the electrostatic poten-
tial due to desolvation costs is mapped onto the surface of a target protein (desolva-
tion potential). Additionally, the electrostatic interaction potential of the protein’s 
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binding partner is similarly mapped onto the surface (interaction potential). It has 
been shown that in an electrostatically optimal complex the interaction potential 
must equal the negative of the desolvation potential across the entire protein surface. 
The residual potential is thus defined as the sum of the interaction potential and the 
desolvation potential. Deviations of the residual potential from zero highlight regions 
of the surface that deviate from optimal complementarity (see Figure 10.4)—a posi-
tive residual potential indicates that a reduction in positive charge (or increase in 
negative charge) would likely enhance affinity, and vice versa. Scripts for computing 
the residual potential with the GRASP software (Nicholls et al. 1993) are available 
online (Table 10.3).

An approach based on electrostatic analysis can also be applied to solve problems 
other than affinity optimization. For example, Lauffenburger and colleagues used 
this approach to design a modified variant of granulocyte-colony stimulating factor 
(GCSF) with enhanced lifetime (Sarkar et al. 2002). Cellular trafficking models had 
predicted that the rate of degradation depends on whether GCSF remains bound to 
its target receptor following internalization. In the late endosome, unbound ligands 
are recycled to the cell surface, while bound ligand-receptor complexes are retained 
for lysosomal degradation. Thus, recycling could be enhanced if a GCSF variant dis-
sociates from the receptor in the low-pH environment of the late endosome. As the 
GCSFR binding surface has a positive charge, placement of histidines at the inter-
face could produce the desired effect—at low pH, the protonation of histidine side 
chains on GCSF would create an electrostatic repulsion with the receptor, leading to 
reduced affinity. However, it is equally important to maintain affinity in the neutral 

–20.0 0.0 20.0–20.0 0.0 20.0

Figure 10.4 (see color insert following page 178) The residual potential graphically 
displays deviations from perfect electrostatic complementarity. Displayed is the interface 
between the α (left) and βγ (right) subunits of a heterotrimeric G-protein. Regions of white 
indicate complementary surfaces (including surfaces not involved in the interface), while 
colored regions indicate the deviation from optimal complementarity. Blue indicates that the 
chemical groups underlying that region are either too positive or not negative enough, while 
red indicates groups that are either too negative or not positive enough. In the left-hand figure, 
it is clear that there are both regions that are excessively positive or excessively negative on 
this surface.
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environment of the cell-surface. Thus, the residual potential of GCSF for binding 
its target receptor was plotted on the GCSF surface and regions of excess negative 
potential were identified. These correspond to positions where GCSF is overly nega-
tive for optimal binding to the receptor, and thus may tolerate substitution with a 
neutral histidine without destabilizing the complex. Three acidic and three neutral 
residues were identified in this manner. Additional analysis suggested two aspartates 
as ideal candidates for mutation; the third acidic residue (a glutamate) was deemed 
essential to binding at neutral pH, and the substitution at the neutral residues did not 
provide adequate discrimination at low pH. Experimental characterization of the 
two D→H mutants demonstrated that (1) the mutants had affinities at pH 7.4 within 
threefold of wild type; (2) the mutants had over fourfold difference in affinity at pH 
7.4 and at pH 5.5, compared with a difference of less than twofold for wild type; and 
(3) the mutants had significantly increased lifetime in cellular proliferation assay, 
with a 50% increase in recycling at each cycle, leading to between a 50% and 100% 
increase in effectiveness after 6–8 days.

FasT meThoDs For muTaTional eValuaTion

Visual analysis of protein structure, either with or without an energetic guide such as 
the residual potential, can suggest sites of modification; chemical intuition can then 
motivate particular amino-acid substitution. However, additional analysis is often 
needed due to the intricate networks of interactions typically found in proteins. In 
the cores of proteins, for example, a substituted residue must fit within the three-
dimensional packing of residues; the substitution may, however, lead to rearrange-
ments in this packing while maintaining stability. At binding interfaces, the same 
concerns with geometric packing exist, but as there are more polar groups, one must 
also consider balancing the desolvation costs with intermolecular interactions. The 
following chapters include a discussion of calculations that aim to address some of 
these problems. However, in some cases, it may be possible to evaluate the likely 
effect of a variation in a much simpler, and faster, manner.

affinity enhancement thrOugh peripheral electrOStatic interactiOnS

Recently, it has been suggested that protein–protein binding affinities may be per-
turbed in a predictable manner without resorting to detailed calculations by targeting 
a particular class of modifications—electrostatic interactions made by surface resi-
dues at the periphery of a binding interface (Selzer and Schreiber 2001; Joughin et 
al. 2005; Shaul and Schreiber 2005). Charged residues on the surface of a protein can 
make significant interactions with a binding partner even when located at a moderate 
(5 to 10 Å) distance from the interface. These have been referred to as action-at-a-
distance interactions. As surface residues in general do not form the same intricately 
packed networks as core and interface groups, mutations can be introduced at sur-
face positions with less detailed modeling. Web-based interfaces for the identifica-
tion of such mutations have been developed (see Table 10.4)

These interactions seem to work through two nonexclusive mechanisms. 
Schreiber and coworkers have suggested a kinetic mechanism, by which these 
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peripheral residues enhance the on-rate kon of binding (Selzer and Schreiber 2001; 
Shaul and Schreiber 2005). Peripheral residues may make energetically significant 
interactions in the binding transition state to contribute to the rate of association, 
while such interactions are clearly absent in the unbound state. However, if the 
same interactions exist in the bound state as in the transition state, then they would 
have little effect on the rate of dissociation. Tidor and colleagues (including the 
author) have suggested an alternate mechanism, based purely on thermodynamic 
considerations (Joughin et al. 2005). Peripheral residues remain largely solvent 
exposed in the bound state, and thus pay only a very low (if any) desolvation pen-
alty. However, the screening effects of solvent are such that small, but significant, 
nonspecific intermolecular interactions can persist at up to 10 Å separation. Fast 
methods of predicting long-distance interactions have been developed, using differ-
ent methods designed to address different mechanisms of interaction. The kinetic 
and thermodynamic models lead to some overlap in predictions (residues that are 
expected to improve affinity also accelerate the kinetics of association), but many 
differences are seen as well. That is, some mutations are expected to increase 
affinity with minimal effect on the association rate, while others may increase the 
kinetics of association and disassociation without perturbing the overall affinity. 
These differences suggest that two distinct mechanisms are at play—peripheral 
action-at-a-distance interactions may independently be involved in modulating the 
affinity of an interaction as well as the kinetics of complex formation. Clearly both 
have applications in the engineering of protein complexes.

Mutations that add favorable interactions or remove an existing unfavorable 
interaction can be used to enhance binding affinity, as has been demonstrated. 
However, the same class of interactions could also be harnessed for additional 
modulations of affinity. For example, while introducing a mutation to severely 
reduce affinity is generally simple, destabilizing the complex by a desired degree 
is more challenging. Such an ability would be useful when engineering protein 
complexes for use as in vivo sensors or designing reagents with carefully tuned 
sensitivities. The introduction of an unfavorable action-at-a-distance interaction 
(or the elimination of an existing favorable interaction) could achieve this goal. 
The effect of individual residues in this type of interaction is relatively small, and 
thus engineering these interactions would be more effective in subtly modulating 

Table 10.4
web services for structural and energetic analysis

service web location (url) Description

MolProbity http://molprobity.biochem.duke.edu/ Web service for visualization and analysis of 
protein structure, including H-bonding and 
steric complementarity.

HyPARE http://bip.weizmann.ac.il/hypareb/main Web service for “Predicting Association Rate 
Enhancement” mutations.

AAAD http://groups.csail.mit.edu/tidor/aaad/ Web service for prediction of thermodynamic 
“Action-at-a-Distance” interactions.

Petitioner Merck, Ex. 1017, p. 235



236 Protein Engineering and Design

the stability of a complex. Similarly, the introduction of titratable groups (such as 
histidine) could be used to modify the pH dependence of binding in a relatively 
straightforward manner.

summary

Information that is directly applicable to protein engineering can be found in the 
sequences and structures of known proteins. This knowledge can then be applied to 
new design objectives through the use of relatively simple computational approaches. 
Analysis of sequence conservation across a family of related proteins can be used to 
create hyperstable proteins through consensus-based design. Visualization of protein 
structure is an efficient way to identify key regions of interest, either by proximity 
to a site of known importance or by specifically targeting regions of suboptimal 
complementarity in packing or electrostatic interactions. Finally, fast, approximate 
methods are available for estimating the effects of mutations and have been shown 
to be highly successful in some cases, such as residues at the periphery of a protein–
protein binding interface.

These approaches together provide a toolbox that complements the rational 
insight of a protein engineer in the process of design. Yet, they are not a solution 
to the design process in and of themselves. Rather, they act as a guide, suggesting a 
small number of mutations to consider or highlighting essential, conserved residues 
that should not be changed. Because they are simple, fast, and intuitive, they have 
been successfully adopted by experimental protein engineers in building a design or 
selection strategy.
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