
Now, choose among I?O...Os o...0 (y = 1,2, * . . ,p) the coefficient 
matrix which has the greatelt rank and premultiply (8) by 

Then we have 

which is generally a rational matrix of the form: 
“I 

A(s,; -. ,s,)=K(s,,* *- Psp)+ 2 A*iS’ 
i=l Su 

Now introducing auxiliary variables 

si Xi = - 
sY 

(izl,. . s ,y-l,Y+L--*,P) 
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IV. A  METHOD FOR MAKING “H,,. . .,,I’ NONSINGULAR A Switched-Capacitor High-Pass Filter 
Suppose H,,..., of (1) is singular with row rank q. Then there is ROUBIK GREGORIAN AND WILLIAM E. NICHOLSON, JR. 

a nonsingular matrix Se such that 

R(s,,* * . Jp) = &H(s,,s,,* * . &) (8) 

where 

@,...u= -%~? with rank [H,*...,]=q 1 1 
and 

Abstract-A high-pass switched-capacitor biqumlratic filter section is 
described. It is economical and has sufficiently low sensitivities to 
element-value variations and parasitics to make it useful in a variety of 
applications. For analog input, it can be supplemented with a fii-order 
filter section which prevents direct signal leaktbrough. 

I. INTRODUCTION 

FJ ,... ‘b = 
H,:...$ I I -jj,---,- , i,=O,l;--,n, (m=1,2,*-*,p). 

‘1 9 

A number of recent publications [l]-[4] discussed the design 
of filters using only switches, capacitors, and operational ampli- 
fiers. In particular, [2] described second-order filter sections 
which could realize low-pass or bandpass transfer functions. The 
purpose of this letter is to present a related circuit which realizes 
a high-pass characteristic. It is economical, and both theory and 
experiments indicate that its .sensitivities to element imperfec- 
tions are sufficiently low for most practical applications. 

II. FILTER CIRCUIT 

The basic circuit is shown in Fig. l(a); the timing diagram in 
Fig. l(b). Denoting u,(t) at t = (n - l)T by ot(n - l), etc., the 
operation of the circuit can be described as follows. At t = (n - 
l)T, we have u,(n- l)=o&n- 1). During the following $I= 1 
interval, ut is held at ui,(n- 1) by the capacitor C. Also, cy,C, 
and LQC, are both charged to uo(n - I), while cr;C, to ua(n- 1). 
Next, when 9’0, a,C, as well as a;Ci are discharged into C,, 
while the charge in azC, enters C,. The corresponding charge- 
conservation equation is 

(9) 

in (9), we get 

T(Sl,. . * ,sp,x,; * * YXy--lrxy+lr . * *,.x&J= T(s;x)=A(s,,. * Jp) 

where T(s; X) is a polynomial matrix of (2~ - 1) variables. Notice 
that the constant coefficient matrix of T(s;x) is 

C,uo(n) = C,uo(n - I)- cw*C,ua(n - 1) 

-aiCIU,(n-l)-agCI[U,(n)-U~(n-I)] (1) 

or, after taking the x-transforms of both sides 

vo(Z)[1-z-‘(1-a*)]=-~ol;z-‘V2(z)-aa,(l-z-’)ViJz). 

(2) 

A similar analysis performed for the stage containing the second 
amplifier gives 

V,(z)(l-z-‘)=cr~z-‘VIJ(z). 

Combining (2) and (3) gives the transfer function 

(3) 

Hz..., 
To,,., I 1 - ;-- _ _ _-_ _ . 

Ho...o$o...o Vo(z) H,(z) A  - = - ag(.z - 1y 
Vdz) Z2-Z(2-o!I)+(l-aI+aia2). 

(4) 
If To... 0 is full rank, then 

H-‘(s)= T-‘(s;x)~M(s,)S, (10) Equation (4) describes a second-order high-pass filter char- 

xi=sj/sy. acteristic, with two complex-conjugate poles and a double zero 
at dc (i.e., at z= 1). Note that Ho(z) is similar in form to the 

If To..., is not full rank the procedure above may be repeated to bandpass and low-pass functions of the “version I” filters dis- 
get a new polynomial matrix of [2(2p - l)- l] variables until cussed in [2]. 
To..., becomes full rank. The circuit of Fig. 1 is suitable as a self-contained filter only if 

the input signal is a sampled-and-held waveform, so that uin does 
REFERENCES not change during the (P= 0 half cycle. Otherwise, the output 

[1] 6. l$iseyin, “Inversion of multidimensiottal polynomial matrices,” J. follows the input during this period, and hence there is a direct 
AEU., Band 33, Heft 11, pp. 457-462, Nov. 1979. signal leakthrough, which affects the overall frequency response. 

[Z] C. S. Koo and C. Chen, “Fadeeva’s algorithm for spatial dynamical 
equations,” Proc. JIZEE, vol. 65, pp. 975-976, June 1977. 

To avoid this, a sample-and-hold stage can be cascaded with the 
[3] E. Emre, and 0. H&yin, ‘Two computational algorithms for 

computer-ajded design, ” in SSCT Conf., the Prague Czechoslavakia. 
(41 E. Emte, 0. Huseyin, and K. Abdullah, “Author’s reply on the cotu- Manuscript received August 31, 1978; revised April 16, 1979. 

ments on, on the inversion of rational matrices,” IEEE Tram. Circuits The authors are with American Microsystems Inc., Santa Clara, CA 
and Sysr. pp. 375-376, Apr. 1975. 95905 1, 
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Fig. 1. Second-order switched-capacitor high-pass filter. (a) Circuit dia- 
gram. (b) Timing diagrams. 

Fig. 2. Third-order high-pass filter. 

filter. A more efficient technique is, however, to cascade a 
first-order filter section with the.originaI one (Fig. 2). Since the 
clocking of the added stage is the complement of that of the 
first, the leakthrough is blocked at all times. The overall transfer 
function is now 

a&z - 1)’ = 
[z-(l-a(yq)][z*-z(2-a(yz)+(l-a,+a;a*)]~ (5) 

This has one real and two complex conjugate poles, and also 
three zeros at dc. 

III. DESIGN EXAMPLE A,=&,, Az=a,-a{a2 

Next, as an example, the bilinear z transformation [6], [7] will 
be used to derive the transfer function of a third-degree high- 
pass filter with the following specifications: 

Stopband loss: a > 25 dB for f < 130 Hz 
Passband loss: a < 0.01 dB for f 2 600 Hz. 

it is to be expected that the sensitivity of the pole-Q to these 
parameters is reasonably low. In fact, let the desired analog 
natural-mode polynomial of the filter be 

P(s)=?+ ~s+w;. 

Prewarping these band-limit frequencies to account for the 
nonlinear scale distortion [6], [7] gives the transfer function of 
the analog prototype: 

H(s) = 
5.207~~ 

(A + 1.59s)(AZ+ 1.59As+3.28s2) 
(6) 

where A = 1200~. Using a clock frequency of 16 kHz, the bilin- 
ear transformation gives 

H(z) = 
0.877(z - 1)3 

(z -0.862)(z2- 1.876~ +0.892) ’ 
(7) 

Equating coefficients in (5) and (7) gives a, = a; =0.124, az= 
0.129, asas =0.877, and a,=O.138. Note that only the product, 
not the individual values of as and as are defined. 

A discrete-element experimental circuit was constructed to 
verify the above theoretical results. The operational amplifiers 
used were RCA CA-3140 units, the transmission gates Motorola 
MC 14066B integrated circuits. The measured results are shown 
in Fig. 3, which also illustrates the 0.2-dB droop due to the 
sample-and-hold effect. 

IV. NONIDEAL EFFECTS 

Next, the susceptibility of the circuit to nonideal effects will be 
discussed. The circuit will not function properly if either a dc 
bias in oin or the inherent offset voltages of the amplifiers are 
amplified so much that they drive one or more of the amplifiers 
into saturation. Due to the presence of the transmission zeros at 
dc, any dc bias component in the input voltage, is blocked, and 
cannot affect the output of any of the operational amplifier. 
Hence, only the dc offset voltages which originate in the ampli- 
fiers themselves are of concern. A detailed analysis shows that 
the largest worst-case dc offset voltage appears at the output of 
amplifiers 2. Its value is 2]~,~~,] + ]uOrrl], where uoff, denotes the 
equivalent dc input voltage of amplifier i (Fig. 4). This indicates 
that in order to avoid the saturation of amplifier 2, and to 
achieve the largest possible dynamic range, a3 should be de- 
creased. This will cause smaller values for u. and ua. Therefore, 
as should be increased to enhance the gain of the last stage. The 
corresponding improvement in dc offset was observed experi- 
mentally. 

The sensitivities of the frequency response to element-value 
variations are discussed next. The values of the grounded input 
capacitors C are unimportant , as long as their voltage droops 
due to leakage currents remain small during a half-clock period. 
The capacitance ratios a3 and as affect the flat gain only, and 
hence their exact values do not influence the selectivity proper- 
ties of the filter. By contrast, ai, a;, as, and a4 affect the values 
of the poles. In particular ai, a;, and a*, determine the location 
of the complex pole-pair which is normally the dominant one. 

A critical situation arises when the pole-Q is high, i.e., the 
poles are very close to the unit circle. If, as is usually the case, 
the clock-radian frequency is much higher than the angle ep of 
the poles zp = rp exp( ~&), then the demoninator polynomial of 
(4) can be written in the form D(z)= z*-(2-A,)z +(l -A*), 
with A,, A,< 1. The distance of Z~ from the unit circle is de- 
termined solely by AZ. Since in the given circuit the ai determine 
directly the hi (not 2 -A, and 1 - A,) according to the relations 

(8) 
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Fig. 3. Measured-loss response. 

I I 

Fig. 4. Equivalent circuit for the calculation of offset-voltage effects. 

Using the bilinear s-z transformation, P(s) can be trans- 
formed into the z-domain. The z-variable natural-mode poly- 
nomial thus obtained can be equated to the denominator of 
H,(z) in (4). Normalizing the time and frequency variables so 
that T- 1, this gives 

-2 
d 

ah2 
a0 4-2a,+aia2 

and 

Q=v 
CYiCX2(4-2a, + CKiaJ 

2(a,- cXia2) . 

From (9) and (lo), the logarithmic sensitivities of o. and Q  to 
the variables a,, a;, and az can readily be obtained. Defining the 

usual way S$=X/J+/~X, the results are 

s$J = al 
4-2a,+a;a,’ (11) 

Since, as (8) shows, at, a2, and ai < 1, in the worst case we have 

PO aI 
almax= 4-2a, + aiaz z,t: I . 

+X+0 

Also, 

sp 
2-a, 

4-2al+ aiCY* 

S”O  E 
2-a, 2-a, =05 

al= 4-2al+aIaI mio,a=2(2 ’ 

St20 = 
2-a, 

4--2ffl+aiaz 

S”O  E: 2-a, 
a2m 4-2t~l+aiaz ~i~,o 

=0.5. 

Similarly, 

Se= _ (4-aW +~oQ)‘~o 
aI 4alQ 

and 

sZ=s$= 2al-af+2aia2 
a,(4-2a,+aia.J (1 +woQ>. 

For a1 = ai, using (9) and (lo), 

sJf=sz= 
l-a,/2+a, 

(2-a,+ala2/2)(1-az)’ 

(12) 

(13) 

(14) 

(16) 

In usual case when a,,a2<1, $x0.5. It should be noted, 
however, that for al-+1 (and hence Q+co),  S~~+co. For the 
design example, SaT = 0.642 results. 

Finally, the effect of the finite amplifier gain A will be 
discussed. It will be assumed that the signal frequencies are 
lower than the break-point of the amplifier gain characteristic, 
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and hence A(o) is constant in the frequency range of interest. 
For A < co, the negative input voltages of the two amplifiers in 
Fig. 1 will be - u,,/A and - u/A, respectively. Hence, (2) will 
be replaced by 

Cl uo(n)+ J- I 
Q(n) 

I [ 
f&An - 1) =c, o,(n-l)+~ 

I 
fAJ(n) -a,c, u,(n-l)+J- 

r I L 
u,(n) -a’lC1 u2(n- 1)+ 7 1 

[ 
uo(n) 

-a3c1 “inCn)+ 7 
%dn) -uh(n-l)-T , 

I 
(17) 

Using z-transformation, 

K&)[l-z-‘(l-ai,)]=-&ai;z-‘V*(z)-B,(l-z-’)Vi,(z) 

(18) 
results, where 

^ (A + l)al+ ai 
a’= A+1+a,+ai+a3 

Aai 
“= A+l+a,+ai 

For a , = ai and A >> 1, these expressions can be simplified. For 
example, ai, =a,[ 1 - (2al + a3 - 1)/A] is obtained. 

Performing a similar analysis on the second stage, it turns out 
that (3) is replaced by 

Vdz)[ l-(l+~)z-~]=&,z-‘V,(z) 

where 

A A a2 
a’= A+l-a,’ 

Combining (18) and (20), the modified transfer function Z&(z) 
can be obtained and evaluated. Alternatively, (19) and (21) can 
be used to find the relative changes in the ai due to the finite 
gain, and (1 l)-(16) applied to obtain the corresponding change 
in w,, and Q. For the amplifiers used in the filters designed by 
the authors, A > lo4 in the low-frequency band, and the finite- 
gain effect was found to be negligible in all cases encountered. 
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New Results on the Ability of LC Networks to 
Realize Natural Frequencies 

S. E. SUSSMAN-FORT 

Absfmci-A theorem proved by Lee states necesary and sufficient 
conditions for an LC network of a special structure to be able to realize au 
arbharily prescribed set of natural frequencies. A new proof of the 
sufficiency of these conditions is presented here. The proof is based upon a 
recent matbematlcal result and provides, iu addition, bounds upon the 
element values in such an LC network realihiug a given set Of natural 
frequencies. 

I. INTRODUCMON 

The following definitions are given in [ 11. 
1) An LC network of complementary-tree structure is one in 

which both the capacitors and the inductors separately 
form a tree. 

2) A shunt-reducible LC network is one which can be re- 
duced to a single node by successively short-circuiting 
loops, that contain only one inductor and one capacitor. 

An example of the shunt-reduction of a complementary-tree- 
structure LC network is shown in Fig. 1. 

In [ 11, Lee proves that a necessary and sufficient condition for 
a complementary-tree structure LC network to be able to realize 
an arbitrary set of pure imaginary natural frequencies is that the 
network be, in addition, shunt-reducible. The necessity of the 
shunt-reducibility condition is proved by demonstrating the 
rather remarkable result that the maximum and minimum ab- 
solute values of natural frequency, w,,, and urnin, of a non- 
shunt-reducible, complementary-tree structure LC network are 
constrained by the relation o,, > 20,~~ for all sets of positive 
element values. The proof of sufficiency, however, relies upon 
scaling the impedance levels of successive loops of inductors and 
capacitors so that the loops produce the natural frequencies with 
negligible interaction. We offer a new proof of the sufficiency 
condition which does not require that the network consist, in 
effect, of disjoint loops. This new result is based upon two 
interesting lemmas that we prove below, and a mathematical 
theorem recently proved by de Oliveira [2]. 

II. PRELIMINARY RESULTS 

We first formulate the notation that will be used in the 
remainder of this paper. Consider an arbitrary, complementary- 
tree structure LC network containing n capacitors and n induc- 
tors which are arbitrarily numbered C,, C,, . + . , C,, and 
L,,L,,* * * ,L,, respectively. The capacitors are designated as 
forming the tree for the network, with the inductors evidently 
forming links with this tree. The fundamental loop matrix of the 
network can then be written as 

[F lnl (1) 
where F is n X n, and 1, is the n X n identity matrix. We define 
the diagonal matrices 

L=diag(L,,L,;--,L,,) C - diag( C,, C,, . . . , C,,) 
D=diag(d,,d,;.- . ,d,) P = diaghp2,. . . A) (2) 

Manuscript received January 16, 1979; revised April 19, 1979. 
The author is with the Department of Electrical and Systems Engineering, 

Rensselaer Polytechnic Institute, Troy, NY 12181. 

0098-4094/80/0300-0229$00.75 0 1980 IEEE 

iRhythm, Inc. / Welch Allyn, Inc. 
Exhibit 1051 

Page 4




