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LEARNING OUTCOMES

In this chapter, you’ll learn...
 24.1 The nature of capacitors, and how to 

calculate a quantity that measures their 

ability to store charge.

 24.2 How to analyze capacitors connected in 

a network.

 24.3 How to calculate the amount of energy 

stored in a capacitor.

 24.4 What dielectrics are, and how they make 

capacitors more effective.

 24.5 How a dielectric inside a charged 

 capacitor becomes polarized.

 24.6 How to use Gauss’s laws when 

 dielectrics are present.

You’ll need to review...
 21.2, 21.5, 21.7 Polarization; field of charged 

conductors; electric dipoles.

 22.3–22.5 Gauss’s law.

 23.3, 23.4 Potential for charged conductors; 

potential due to a cylindrical charge 

distribution.

24 Capacitance  

W
hen you stretch the rubber band of a slingshot or pull back the string of an ar-
cher’s bow, you are storing mechanical energy as elastic potential energy. A ca-
pacitor is a device that stores electric potential energy and electric charge. To 

make a capacitor, just insulate two conductors from each other. To store energy in this de-
vice, transfer charge from one conductor to the other so that one has a negative charge and 
the other has an equal amount of positive charge. Work must be done to move the charges 
through the resulting potential difference between the conductors, and the work done is 
stored as electric potential energy.

Capacitors have a tremendous number of practical applications in devices such as 
electronic flash units for photography, mobile phones, airbag sensors for cars, and 
radio and television receivers. We’ll encounter many of these applications in later chap-
ters (particularly Chapter 31, in which we’ll see the crucial role played by capacitors in 
the  alternating-current circuits that pervade our technological society). In this chapter, 
however, our emphasis is on the fundamental properties of capacitors. For a particular 
capacitor, the ratio of the charge on each conductor to the potential difference between 
the conductors is a constant, called the capacitance. The capacitance depends on the 
sizes and shapes of the conductors and on the insulating material (if any) between them. 
Compared to the case in which there is only vacuum between the conductors, the capaci-
tance increases when an insulating material (a dielectric) is present. This happens because 
a redistribution of charge, called polarization, takes place within the insulating material. 
Studying polarization will give us added insight into the electrical properties of matter.

Capacitors also give us a new way to think about electric potential energy. The energy 
stored in a charged capacitor is related to the electric field in the space between the con-
ductors. We’ll see that electric potential energy can be regarded as being stored in the field 
itself. The idea that the electric field is itself a storehouse of energy is at the heart of the 
theory of electromagnetic waves and our modern understanding of the nature of light, to 
be discussed in Chapter 32.

? In flash photography, the energy used to  

 make the flash is stored in a capacitor, 

which consists of two closely spaced conduc-

tors that carry opposite charges. If the amount 

of charge on the conductors is doubled, by 

what factor does the stored energy increase? 

(i) 22; (ii) 2; (iii) 222; (iv) 4; (v) 8.

and Dielectrics
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798    CHAPTER 24 Capacitance and Dielectrics 

Dielectric Breakdown

We mentioned earlier that when a dielectric is subjected to a sufficiently strong electric 
field, dielectric breakdown takes place and the dielectric becomes a conductor. This oc-
curs when the electric field is so strong that electrons are ripped loose from their mol-
ecules and crash into other molecules, liberating even more electrons. This avalanche of 
moving charge forms a spark or arc discharge. Lightning is a dramatic example of dielec-
tric breakdown in air.

Because of dielectric breakdown, capacitors always have maximum voltage ratings. 
When a capacitor is subjected to excessive voltage, an arc may form through a layer of di-
electric, burning or melting a hole in it. This arc creates a conducting path (a short circuit) 
between the conductors. If a conducting path remains after the arc is extinguished, the 
device is rendered permanently useless as a capacitor.

The maximum electric-field magnitude that a material can withstand without the 
occurrence of breakdown is called its dielectric strength. This quantity is affected 
significantly by temperature, trace impurities, small irregularities in the metal elec-
trodes, and other factors that are difficult to control. For this reason we can give only 
approximate figures for dielectric strengths. The dielectric strength of dry air is about 
3 * 106 V>m. Table 24.2 lists the dielectric strengths of a few common insulating ma-
terials. All of the values are substantially greater than the value for air. For example, 
a layer of polycarbonate 0.01 mm thick (about the smallest practical thickness) has 
10 times the dielectric strength of air and can withstand a maximum voltage of about 
13 * 107 V>m211 * 10-5 m2 = 300 V.

EVALUATE We can check our answer for u0 by noting that the volume 
between the plates is Vbetween = 10.200 m2210.0100 m2 =  0.00200 m3. 
Since the electric field between the plates is uniform, u0 is uniform as 
well and the energy density is just the stored energy divided by the 
volume:

u0 =
U0

Vbetween
=

7.97 * 10-4 J

0.00200 m3 = 0.398 J>m3

This agrees with our earlier answer. You can use the same approach to 
check our result for u.

In general, when a dielectric is inserted into a capacitor while the 
charge on each plate remains the same, the permittivity P increases by 
a factor of K (the dielectric constant), and the electric field E and the 
energy density u = 1

2 PE2 decrease by a factor of 1>K. Where does the 
energy go? The answer lies in the fringing field at the edges of a real 
parallel-plate capacitor. As Fig. 24.16 shows, that field tends to pull the 
dielectric into the space between the plates, doing work on it as it does 
so. We could attach a spring to the left end of the dielectric in Fig. 24.16 
and use this force to stretch the spring. Because work is done by the 
field, the field energy density decreases.

KEYCONCEPT Adding a dielectric (with dielectric constant K) that 
fills the space between the plates of a capacitor reduces the electric 
field, the electric energy density, and the total stored energy, all by a 
factor of 1>K.   

E
S

– – – – – – – – – – – – ––

+ + + + + + + + + + + + + +

F- i

F+ i

Dielectric

S

S

Figure 24.16 The fringing field at the edges of the capacitor exerts 
forces F

S

-i and F
S

+i on the negative and positive induced surface charges 
of a dielectric, pulling the dielectric into the capacitor.

BIO APPLICATION Dielectric Cell 
Membrane The membrane of a living cell 

behaves like a dielectric between the plates 

of a capacitor. The membrane is made of 

two sheets of lipid molecules, with their 

 water-insoluble ends in the middle and their 

water-soluble ends (shown in red) on the 

outer surfaces. Conductive fluids on either 

side of the membrane (water with negative 

ions inside the cell, water with positive ions 

outside) act as charged capacitor plates, 

and the nonconducting membrane acts as 

a  dielectric with K of about 10. The poten-

tial difference V across the membrane is 

about 0.07 V and the membrane thickness 

d is about 7 * 10-9 m, so the electric 

field E = V>d in the membrane is about 

107 V>m—close to the dielectric strength 

of the membrane. If the membrane were 

made of air, V and E would be larger by a 

factor of K ≈ 10 and dielectric breakdown 

would occur.

TABLE 24.2 Dielectric Constant and Dielectric Strength of 

Some Insulating Materials

Material
Dielectric  

Constant, K
Dielectric Strength,  

Em (V,m)

Polycarbonate 2.8 3 * 107

Polyester 3.3 6 * 107

Polypropylene 2.2 7 * 107

Polystyrene 2.6 2 * 107

Pyrex® glass 4.7 1 * 107
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25 Current, Resistance,  
and Electromotive Force

? In a flashlight, how does the amount  

of current that flows out of the bulb 

compare to the amount that flows into the 

bulb? (i) Current out is less than current in; 

(ii) current out is greater than current in; 

(iii) current out equals current in; (iv) the 

answer depends on the brightness of 

the bulb.

I
n the past four chapters we studied the interactions of electric charges at rest; now we’re 
ready to study charges in motion. An electric current consists of charges in motion from 
one region to another. If the charges follow a conducting path that forms a closed loop, 

the path is called an electric circuit.
Fundamentally, electric circuits are a means for conveying energy from one place to 

another. As charged particles move within a circuit, electric potential energy is transferred 
from a source (such as a battery or generator) to a device in which that energy is either 
stored or converted to another form: into sound in a stereo system or into heat and light in 
a toaster or light bulb. Electric circuits are useful because they allow energy to be trans-
ported without any moving parts (other than the moving charged particles themselves). 
They are at the heart of computers, television transmitters and receivers, and household 
and industrial power distribution systems. Your nervous system is a specialized electric 
circuit that carries vital signals from one part of your body to another.

In Chapter 26 we’ll see how to analyze electric circuits and examine some practical 
applications of circuits. To prepare you for that, in this chapter we’ll examine the basic 
properties of electric currents. We’ll begin by describing the nature of electric conductors 
and considering how they are affected by temperature. We’ll learn why a short, fat, cold 
copper wire is a better conductor than a long, skinny, hot steel wire. We’ll study the prop-
erties of batteries and see how they cause current and energy transfer in a circuit. In this 
analysis we’ll use the concepts of current, potential difference (or voltage), resistance, and 
electromotive force. Finally, we’ll look at electric current in a material from a microscopic 
viewpoint.

LEARNING OUTCOMES

In this chapter, you’ll learn...
 25.1 The meaning of electric current, and 

how charges move in a conductor.

 25.2 What is meant by the resistivity and con-

ductivity of a substance.

 25.3 How to calculate the resistance of a 

conductor from its dimensions and its 

resistivity.

 25.4 How an electromotive force (emf) makes 

it possible for current to flow in a circuit.

 25.5 How to do calculations involving energy 

and power in circuits.

 25.6 How to use a simple model to under-

stand the flow of current in metals.

You’ll need to review...
 17.7 Thermal conductivity.

 23.2 Voltmeters, electric field, and electric 

potential.

 24.4 Dielectric breakdown in insulators.
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816    CHAPTER 25 Current, Resistance, and Electromotive Force 

In many simple circuits, such as flashlights or cordless electric drills, the direction of 
the current is always the same; this is called direct current. But home appliances such as 
toasters, refrigerators, and televisions use alternating current, in which the current continu-
ously changes direction. In this chapter we’ll consider direct current only. Alternating cur-
rent has many special features worthy of detailed study, which we’ll examine in Chapter 31.

EXAMPLE 25.1 Current density and drift velocity in a wire

An 18 gauge copper wire (the size usually used for lamp cords), with a 
diameter of 1.02 mm, carries a constant current of 1.67 A to a 200 W 
lamp. The free-electron density in the wire is 8.5 * 1028 per cubic 
meter. Find (a) the current density and (b) the drift speed.

IDENTIFY and SET UP This problem uses the relationships among cur-
rent I, current density J, and drift speed vd. We are given I and the wire 
diameter d, so we use Eq. (25.3) to find J. We use Eq. (25.3) again to 
find vd from J and the known electron density n.

EXECUTE (a) The cross-sectional area is

A =
pd2

4
=
p11.02 * 10-3 m22

4
= 8.17 * 10-7 m2

The magnitude of the current density is then

J =
I
A

=
1.67 A

8.17 * 10-7 m2 = 2.04 * 106 A>m2

(b) From Eq. (25.3) for the drift velocity magnitude vd, we find

 vd =
J

n 0 q 0
=

2.04 * 106 A>m2

18.5 * 1028 m-32 0 -1.60 * 10-19 C 0

 = 1.5 * 10-4 m>s = 0.15 mm>s

EVALUATE At this speed an electron would require 6700 s (almost 2 h) 
to travel 1 m along this wire. The speeds of random motion of the elec-
trons are roughly 106 m>s, around 1010 times the drift speed. Picture the 
electrons as bouncing around frantically, with a very slow drift!

KEYCONCEPT Current is the rate at which electric charge flows 
through an area, and current density is the current per unit area. Current 
density is proportional to the concentration of moving charged particles, 
the charge per particle, and the drift speed of the particles.

TEST YOUR UNDERSTANDING OF SECTION 25.1 Suppose we replaced the wire in 
Example 25.1 with 12 gauge copper wire, which has twice the diameter of 18 gauge wire. If the 
current remains the same, what effect would this have on the drift speed vd? (i) None—vd would be 
unchanged; (ii) vd would be twice as great; (iii) vd would be four times greater; (iv) vd would be half 
as great; (v) vd would be one-fourth as great.

ANSWER

❙ (v) Doubling the diameter increases the cross-sectional area A by a factor of 4. Hence  
the current-density magnitude J=I>A is reduced to 

1
4 of the value in Example 25.1, and  

the magnitude of the drift velocity vd=J>n0q0 is reduced by the same factor. The new  
magnitude is vd=10.15 mm>s2>4=0.038 mm>s. This behavior is the same as that of an  
incompressible fluid, which slows down when it moves from a narrow pipe to a broader one  
(see Section 14.4).

25.2 RESISTIVITY

The current density J
u

 in a conductor depends on the electric field E
u

 and on the properties 
of the material. In general, this dependence can be quite complex. But for some materials, 
especially metals, at a given temperature, J

u

 is nearly directly proportional to E
u

, and the 
ratio of the magnitudes of E and J is constant. This relationship, called Ohm’s law, was 
discovered in 1826 by the German physicist Georg Simon Ohm (1787–1854). The word 
“law” should actually be in quotation marks, since Ohm’s law, like the ideal-gas equa-
tion and Hooke’s law, is an idealized model that describes the behavior of some materials 
quite well but is not a general description of all matter. In the following discussion we’ll 
assume that Ohm’s law is valid, even though there are many situations in which it is not.

We define the resistivity r of a material as

(25.5)

Magnitude of electric field
in material

Magnitude of current density
caused by electric field

Resistivity
of a material r =  

J

E
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 25.2 Resistivity    817

The greater the resistivity, the greater the field needed to cause a given current density, 
or the smaller the current density caused by a given field. From Eq. (25.5) the units of r 
are 1V>m2 > 1A>m22 = V # m>A. As we’ll discuss in Section 25.3, 1 V>A is called one 
ohm (1 Ω; the Greek letter Ω, omega, is alliterative with “ohm”). So the SI units for r 
are Ω # m (ohm-meters). Table 25.1 lists some representative values of resistivity. A per-
fect conductor would have zero resistivity, and a perfect insulator would have an infinite 
 resistivity. Metals and alloys have the smallest resistivities and are the best conductors. 
The resistivities of insulators are greater than those of the metals by an enormous factor, 
on the order of 1022.

The reciprocal of resistivity is conductivity. Its units are 1Ω # m2-1. Good conduc-
tors of electricity have larger conductivity than insulators. Conductivity is the direct elec-
trical analog of thermal conductivity. Comparing Table 25.1 with Table 17.5 (Thermal 
Conductivities), we note that good electrical conductors, such as metals, are usually also 
good conductors of heat. Poor electrical conductors, such as ceramic and plastic materials, 
are also poor thermal conductors. In a metal the free electrons that carry charge in electri-
cal conduction also provide the principal mechanism for heat conduction, so we should 
expect a correlation between electrical and thermal conductivity. Because of the enor-
mous difference in conductivity between electrical conductors and insulators, it is easy 
to confine electric currents to well-defined paths or circuits (Fig. 25.5). The variation in 
thermal conductivity is much less, only a factor of 103 or so, and it is usually impossible to 
confine heat currents to that extent.

Semiconductors have resistivities intermediate between those of metals and those of 
insulators. These materials are important because of the way their resistivities are affected 
by temperature and by small amounts of impurities.

A material that obeys Ohm’s law reasonably well is called an ohmic conductor or a 
linear conductor. For such materials, at a given temperature, r is a constant that does not 
depend on the value of E. Many materials show substantial departures from Ohm’s-law 
behavior; they are nonohmic, or nonlinear. In these materials, J depends on E in a more 
complicated manner.

Analogies with fluid flow can be a big help in developing intuition about electric 
current and circuits. For example, in the making of wine or maple syrup, the product is 
sometimes filtered to remove sediments. A pump forces the fluid through the filter under 
pressure; if the flow rate (analogous to J) is proportional to the pressure difference be-
tween the upstream and downstream sides (analogous to E), the behavior is analogous to 
Ohm’s law.

Resistivity and Temperature

The resistivity of a metallic conductor nearly always increases with increasing tempera-
ture, as shown in Fig. 25.6a (next page). As temperature increases, the ions of the con-
ductor vibrate with greater amplitude, making it more likely that a moving electron will 

TABLE 25.1 Resistivities at Room Temperature (20°C)

Substance R (𝛀 ~ m) Substance R (𝛀 ~ m)

Conductors Semiconductors

 Metals Silver 1.47 * 10-8    Pure carbon (graphite) 3.5 * 10-5

Copper 1.72 * 10-8    Pure germanium 0.60

Gold 2.44 * 10-8    Pure silicon 2300

Aluminum 2.75 * 10-8 Insulators

Tungsten 5.25 * 10-8    Amber 5 * 1014

Steel    20 * 10-8    Glass 101091014

Lead    22 * 10-8    Lucite 71013

Mercury    95 * 10-8    Mica 101191015

 Alloys Manganin (Cu 84%, Mn 12%, Ni 4%)    44 * 10-8    Quartz (fused) 75 * 1016

Constantan (Cu 60%, Ni 40%)    49 * 10-8    Sulfur 1015

Nichrome   100 * 10-8    Teflon 71013

   Wood 10891011

Conducting paths
(traces)

Figure 25.5 The copper “wires,” or 
traces, on this circuit board are printed di-
rectly onto the surface of the dark-colored 
insulating board. Even though the traces 
are very close to each other (only about 
a millimeter apart), the board has such a 
high resistivity (and low conductivity) that 
essentially no current can flow between 
the traces.
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 25.3 Resistance    819
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Current flows from
higher to lower
electric potential.

L

V =  potential
difference
between ends

I
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Higher
potential

Lower
potential

Figure 25.7 A conductor with uniform 
cross section. The current density is uni-
form over any cross section, and the elec-
tric field is constant along the length.

25.3 RESISTANCE

For a conductor with resistivity r, the current density J
u

 at a point where the electric field is 
E
u

 is given by Eq. (25.5), which we can write as

 E
u

= rJ
u

 (25.7)

When Ohm’s law is obeyed, r is constant and independent of the magnitude of the electric 
field, so E

u

 is directly proportional to J
u

. Often, however, we are more interested in the 
total current I in a conductor than in J

u

 and more interested in the potential difference V 
between the ends of the conductor than in E

u

. This is so largely because I and V are much 
easier to measure than are J

u

 and E
u

.
Suppose our conductor is a wire with uniform cross-sectional area A and length L,  

as shown in Fig. 25.7. Let V be the potential difference between the higher-potential and 
lower-potential ends of the conductor, so that V is positive. (Another name for V is the volt-
age across the conductor.) The direction of the current is always from the higher- potential 
end to the lower-potential end. That’s because current in a conductor flows in the direc-
tion of E

u

, no matter what the sign of the moving charges (Fig. 25.2), and because E
u

 points 
in the direction of decreasing electric potential (see Section 23.2). As the current flows 
through the potential difference, electric potential energy is lost; this energy is transferred 
to the ions of the conducting material during collisions.

We can also relate the value of the current I to the potential difference between the 
ends of the conductor. If the magnitudes of the current density J

u

 and the electric field E
u

 
are uniform throughout the conductor, the total current I is I = JA, and the potential dif-
ference V between the ends is V = EL. We solve these equations for J and E, respectively, 
and substitute the results into Eq. (25.7):

 
V
L

=
rI

A
 or V =

rL

A
 I (25.8)

This shows that when r is constant, the total current I is proportional to the potential dif-
ference V.

The ratio of V to I for a particular conductor is called its resistance R:

 R =
V
I

 (25.9)

Comparing this definition of R to Eq. (25.8), we see that

(25.10)

Resistivity of conductor material

Length of conductor

Cross-sectional area of conductor

Resistance of
a conductor R =  

A

rL

If r is constant, as is the case for ohmic materials, then so is R.
The following equation is often called Ohm’s law:

V =  IR (25.11)

Relationship among
voltage, current, 
and resistance:

Voltage between ends of conductor

Resistance of conductor

Current in conductor

TEST YOUR UNDERSTANDING OF SECTION 25.2 You maintain a constant electric field 
inside a piece of semiconductor while lowering the semiconductor’s temperature. What happens 
to the current density in the semiconductor? (i) It increases; (ii) it decreases; (iii) it remains  
the same.

ANSWER

❙ (ii) Figure 25.6b shows that the resistivity r of a semiconductor increases as the temperature 
 decreases. From Eq. (25.5), the magnitude of the current density is J=E>r, so the current  density 
decreases as the temperature drops and the resistivity increases.

iRhythm, Inc. / Welch Allyn, Inc. 
Exhibit 1043 

Page 7



820    CHAPTER 25 Current, Resistance, and Electromotive Force 

However, it’s important to understand that the real content of Ohm’s law is the direct pro-
portionality (for some materials) of V to I or of J to E. Equation (25.9) or (25.11) defines 
resistance R for any conductor, but only when R is constant can we correctly call this 
relationship Ohm’s law.

Interpreting Resistance

Equation (25.10) shows that the resistance of a wire or other conductor of uniform cross 
section is directly proportional to its length and inversely proportional to its cross-
sectional area. It is also proportional to the resistivity of the material of which the 
conductor is made.

The flowing-fluid analogy is again useful. In analogy to Eq. (25.10), a narrow water 
hose offers more resistance to flow than a fat one, and a long hose has more resistance 
than a short one (Fig. 25.8). We can increase the resistance to flow by stuffing the hose 
with cotton or sand; this corresponds to increasing the resistivity. The flow rate is approx-
imately proportional to the pressure difference between the ends. Flow rate is analogous 
to current, and pressure difference is analogous to potential difference (voltage). Let’s not 
stretch this analogy too far, though; the water flow rate in a pipe is usually not propor-
tional to its cross-sectional area (see Section 14.6).

The SI unit of resistance is the ohm, equal to one volt per ampere 11 Ω =  1 V>A2. 
The kilohm 11 kΩ = 103 Ω2 and the megohm 11 MΩ = 106 Ω2 are also in common 
use. A 100 m length of 12 gauge copper wire, the size usually used in household wiring, 
has a resistance at room temperature of about 0.5 Ω. A 100 W, 120 V incandescent light 
bulb has a resistance (at operating temperature) of 140 Ω. If the same current I flows in 
both the copper wire and the light bulb, the potential difference V = IR is much greater 
across the light bulb, and much more potential energy is lost per charge in the light bulb. 
This lost energy is converted by the light bulb filament into light and heat. You don’t want 
your household wiring to glow white-hot, so its resistance is kept low by using wire of low 
resistivity and large cross-sectional area.

Because the resistivity of a material varies with temperature, the resistance of a spe-
cific conductor also varies with temperature. For temperature ranges that are not too great, 
this variation is approximately linear, analogous to Eq. (25.6):

 R1T2 = R031 + a1T - T024 (25.12)

In this equation, R1T2 is the resistance at temperature T  and R0 is the resistance at tem-
perature T0 , often taken to be 0°C or 20°C. The temperature coefficient of resistance a is 
the same constant that appears in Eq. (25.6) if the dimensions L and A in Eq. (25.10) do 
not change appreciably with temperature; this is indeed the case for most conducting ma-
terials. Within the limits of validity of Eq. (25.12), the change in resistance resulting from 
a temperature change T - T0 is given by R0 a1T - T02.

A circuit device made to have a specific value of resistance between its ends is called a 
resistor. Resistors in the range 0.01 to 107 Ω can be bought off the shelf. Individual resis-
tors used in electronic circuitry are often cylindrical, a few millimeters in diameter and 
length, with wires coming out of the ends. The resistance may be marked with a standard 
code that uses three or four color bands near one end (Fig. 25.9), according to the scheme 
in Table 25.3. The first two bands (starting with the band nearest an end) are digits, and 
the third is a power-of-10 multiplier. For example, green–violet–red means 57 * 102 Ω, 
or 5.7 kΩ. The fourth band, if present, indicates the accuracy (tolerance) of the value; no 
band means {20%, a silver band {10%, and a gold band {5%. Another important char-
acteristic of a resistor is the maximum power it can dissipate without damage. We’ll return 
to this point in Section 25.5.

For a resistor that obeys Ohm’s law, a graph of current as a function of potential dif-
ference (voltage) is a straight line (Fig. 25.10a). The slope of the line is 1>R. If the sign of 
the potential difference changes, so does the sign of the current produced; in Fig. 25.7 this 
corresponds to interchanging the higher- and lower-potential ends of the conductor, so the 
electric field, current density, and current all reverse direction.

Figure 25.8 A long fire hose offers 
substantial resistance to water flow. To 
make water pass through the hose rapidly, 
the upstream end of the hose must be at 
much higher pressure than the end where 
the water emerges. In an analogous way, 
there must be a large potential difference 
between the ends of a long wire in order to 
cause a substantial electric current through 
the wire.

Tolerance
First digit

MultiplierSecond digit

Figure 25.9 This resistor has a resistance 
of 5.7 kΩ with an accuracy (tolerance) of 
{10%.

TABLE 25.3 Color Codes for Resistors

Color
Value as 

Digit
Value as 

Multiplier

Black 0 1
Brown 1 10
Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109
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