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Abstract Antibody drug conjugates (ADCs), a promising
class of cancer biopharmaceuticals, combine the specificity
of therapeutic antibodies with the pharmacological potency
of chemical, cytotoxic drugs. Ever since the first ADCs on
the market, a plethora of novel ADC technologies has
emerged, covering as diverse aspects as antibody engineering,
chemical linker optimization and novel conjugation strategies,
together aiming at constantly widening the therapeutic win-
dow for ADCs. This review primarily focuses on novel chem-
ical and biotechnological strategies for the site-directed attach-
ment of drugs that are currently validated for 2nd generation
ADCs to promote conjugate homogeneity and overall
stability.
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Introduction

Chemotherapeutic strategies have long been used as the pri-
mary treatment against a broad range of cancers. However,
tumor-cell specificity is only addressed with regard to rapid
cell division rates present in most cancers, a feature that is true
for a lot of non-malignant cell types as well, leading to sys-
temic side-effects. Thus, targeted cancer treatments with ther-
apeutic antibody biologics have gained major interest in the
pharmaceutical and biopharmaceutical industry. In recent
years however, huge efforts have been made to merge the
positive features of chemical and biological cancer treatments
with the development of antibody drug conjugates (ADCs)
that deliver the highly cytotoxic drugs directly at the tumor
site. As such, ADCs widen the therapeutic window in com-
parison to chemotherapeutics: The tumor-targeted, antibody-
mediated drug delivery approach decreases the minimum ef-
fective dose and at the same time elevates the maximum tol-
erated dose (Fig. 1).

With such promising properties and the recent FDA ap-
proval of the first two ADCs, Kadcyla® and Adcetris®, the
ADC field has gained momentum in all relevant directions
with increasing knowledge about the major challenges, draw-
backs and screws to turn for improving the quality and efficacy
of modern cancer treatments covered by recent technology
reviews [1–3] and currently over 40ADCs in clinical trials [4].

Many choices have to be made for the successful genera-
tion and application of ADCs. The antibody defines the cel-
lular target. To date various different molecular targets in both
solid and haematological cancers are being exploited for ADC
development [5]. While targeting surface antigens that are
drastically overrepresented in malignant cells, as it is true for
e.g. HER2 [6], is generally advantageous, ADCs targeting less
selectively expressed cancer markers need to be carefully de-
signed and fine-tuned to maintain the specific therapeutic
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effect. One such fine-tune parameter is the stoichiometric ratio
of drug molecules per antibody molecule (Drug-antibody-ra-
tio, DAR). ADC potency increases with increasing DAR,
however plasma clearance accelerates as well [7], possibly
due to increased ADC hydrophobicity derived from the con-
jugated payload [8, 9]. Thus, novel approaches to modulate
ADC hydrophobicity and the corresponding ADC aggrega-
tion potential are highly desired [10]. Another important
parameter affecting the therapeutic window of ADCs is
related to the type of drug conjugation technique. Historically,
cytotoxic payloads have been conjugated via natural antibody
residues in a statistical fashion, leading to heterogeneous con-
jugate populations [11]. In contrast, the controlled, site-
specific conjugation has the potential to overcome heteroge-
neity and widen the therapeutic window [12] (Fig. 1). In con-
sequence, a variety of novel approaches for the site-specific
drug conjugation has been developed over the last years. Site-
specific technologies range from purely chemical methods, to
genetic engineering and chemoenzymatic manufacturing.
Here, we discuss current developments and promising future
directions within this field.

Statistic Conjugation

Mylotarg® (Gemtuzumab ozogamicin) targeting CD33 was
the first ADC to be approved by the FDA for the treatment
of myeloid leukemia in 2000 and statistically conjugated via
surface exposed lysine residues of the antibody molecule. Ten
years later, Pfizer voluntarily withdrew it from the US and
European market due to low efficacy and possible toxicity
observed in a second phase III study [13]. This may be attrib-
uted to the rather broad DAR of four to six and approximately
50 % unconjugated antibody being present in the product
mixture [3, 14]. Kadcyla® is another FDA approved ADC
where conjugation occurs at accessible lysine residues of the

Trastuzumab IgG targeting HER2. The corresponding
emtansine drug (DM1) is equipped with an amine-reactive
succinimide ester group for conjugation. The Trastuzumab
IgG contains in total 88 lysines and 70 out of these have been
shown to be conjugated with DM1 [15]. While the DAR dis-
tribution may be narrowed to a rather constant level (between
3 and 4), 70 different conjugation sites result in a vastly com-
plex mixture of ADC species with possibly divergent thera-
peutic and pharmacokinetic properties. Although Kadcyla® is
successfully applied for the treatment of HER2-positive met-
astatic breast cancer, significant efforts are made to reduce the
heterogeneity obtained by statistic conjugation methods and
gain more control over the conjugation process.

Site-Specific Chemical Conjugation to Cysteine Residues

The selective reduction of the four intermolecular disulfide
bonds within an IgG molecule followed by maleimide-thiol
conjugation to cytotoxic drugs was one of the first attempts to
increase the control of the conjugation sites and to reduce the
heterogeneity observed using lysine-based conjugation
methods [16]. Adcetris®, the FDA approved CD30-specific
antibody conjugated to monomethyl auristatin E (MMAE) for
the treatment of hodgkin lymphoma, is the most prominent
example of this strategy. The four disulfides bridging the IgG
heavy and light chains yield eight potential conjugation sites
inherently reducing conjugate heterogeneity, but still causing
diverse ADC species with DAR distribution between zero and
eight [17]. Moreover, maleimide conjugated ADCs are prone
to hydrolysis and unwanted thiol exchange might result in
attachment of the drug to endogenous proteins [18]. Using
exocyclic olefinic maleimides might solve this problem, since
their conjugated products are resistant towards thiol-exchange
[19]. The companies Thiologics and Polytherics are using
cysteine bridging dibromomaleimides and bis-sulfone

Fig. 1 Novel ADC conjugation technologies for a widened
therapeutic window. The antibody-mediated delivery of cytotoxic
drugs at tumor sites lowers drug toxicity and enhances efficacy
compared to conventional chemotherapeutics. Techniques for the

conjugation of 1st generation ADCs are associated with conjugate
heterogeneity issues. Thus, ADCs of the next generation are
generated via site-directed conjugation approaches to improve the
therapeutic activity
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reagents as conjugation scaffolds, respectively, to meet the
challenges arising from instability and heterogeneity
(Fig. 2a) [20, 21]. By re-bridging the reduced disulfides, they
increase stability and reduce the maximum amount of cyto-
toxic drugs to be attached from eight to four. In a recent study,
dibromopyridazinediones have been used to generate antibod-
ies with two different payloads orthogonally attached giving
rise to development of dual drug ADCs (Fig. 2a) [22].

A different approach to reduce heterogeneity of cysteine-
based conjugated ADCs is the engineering of additional cys-
teine residues to the antibody leaving the interchain disulfides
untouched [23, 24]. Initial difficulties arose from the oxidation
of the mutated cysteines and the inability to selectively reduce
them in the presence of the antibodies disulfides. These prob-
lems were not resolved until 2008, when Junutula and co-
workers developed IgGs with two unpaired cysteines (called

Fig. 2 Techniques for the production of 2nd generation ADCs. a Re-
bridging disulfides by bis-sulfone reagents, dibromomaleimides and
dibromopyridazinediones reduces maximum DAR from eight to four. b
The π-clamp (shown in orange) mediates site-specific conjugation with
perfluoroaromatic reagents to its cysteine. b After removal of the
antibody’s glycan by the enzyme PNGase, a transglutaminase is used to
form an isopeptide bond between Q295 and an incoming amine-azide-
linker. The drug molecule is attached to the azide by a strain promoted
azide alkyne click reaction. d The transpeptidase Sortase A catalyzes the
reversible formation of an amide-bond between threonine of the sequence
LPXTG (shown in green) and a drug derivatives with a N-terminal penta-

glycine motive (shown in red). e Formylglycine generating enzyme
(FGE) transforms the thiol within the sequence CXPXR (shown in
yellow) to an aldehyde. A following Pictet-Spengler type reaction
generates stable conjugation-products. f Tub-tag labeling is a
versatile and efficient tool to produce novel ADC derivatives.
TTL mediates the site-specific attachment of various tyrosine
derivatives to the C-terminus of the Tub-tag (shown in blue). In a second
step, the cytotoxic drug is conjugated to the tyrosine derivatives using
well established bioorthogonal chemistry (SPAAC = strain-promoted
azide alkyne cycloaddition; CuAAC = copper-catalyzed azide alkyne
cycloaddition)
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THIOMABs) and treated them with an optimized reduction/
oxidation protocol in which all interchain disulfides are
reinstalled after full reduction, leaving the unpaired cysteines
unblocked for following cytotoxic drug attachment. By this,
they were able to obtain homogeneous ADC conjugates
(DAR of two) with comparable efficacy but significant reduc-
tion of in vivo toxicity, resulting in an improved therapeutic
index [12]. Moreover, such flexible cysteine integration in
combination with mathematical modelling allows the choice
of a favorable intramolecular microenvironment and a defined
DAR that positively affects the overall therapeutic activity of a
given ADC [18, 25]. Neri and coworkers engineered a cyste-
ine residue to the N-terminus of recombinant antibodies and
used a thiazolidine linker to site-specifically conjugate the
drug cemadotin. The thiazolidine hydrolyzes over time (half-
life: 45 h in PBS 37 °C) releasing the free drug [26]. Very
recently, Zhang et al. introduced a different approach to reduce
the heterogeneity in cysteine-based ADC production.
Perfluoroaromatic reagents are used to selectively conjugate
payloads to the cysteine of a four amino acid sequence called
π-clamp (FCPF). By this, they were able to conjugate a
perfluoroaryl derivative of monomethyl auristatin F
(MMAF) to Trastuzumab containing a C-terminal π-clamp
whereas no reaction with conventional Trastuzumab was ob-
served under the same reaction conditions (Fig. 2b) [27].

Cysteine mediated production of ADCs and the ideas aris-
ing thereof laid the foundation for site-specific conjugations of
drugs to antibodies. Ever since it was shown that site-specific
conjugation positively influences the characteristics of ADCs,
the field has rapidly adapted and a significant number of novel
techniques has emerged for drug loading at defined location
within the antibody.

Incorporation of Unnatural Amino Acids (UAAs)

Amber suppression pioneered by Schultz is the most frequent-
ly used method for the incorporation of unnatural amino acids
to proteins and antibodies [28, 29]. The unnatural amino acid
contains a bioorthogonal handle that enables the site-specific
attachment of a payload in the presence of all naturally occur-
ring functional groups. One of the major advantages of this
technology is that the position of the unnatural amino acid,
and therefore the conjugation site of the cytotoxic drug, can
easily be varied by a single amino-acid mutation. Moreover,
many different unnatural amino acids have successfully been
incorporated to proteins by this method and one can choose
from a broad selection of substrates increasing chemical flex-
ibility [30]. In cooperation with the company Ambrx, Schultz
and coworkers expressed Trastuzumab and a anti-5 T4 anti-
body in mammalian cells. By the use of an orthogonal
tRNA/aminoacyl-tRNA pair and an amber stop codon
(TAG) they placed p-acetylphenylalanine at distinct sites
within the antibodies and aminooxy-auristatin F and auristatin

D derivatives were conjugated by oxime ligation. Although
the final conjugation step took up to 4 days at slightly acidic
pH, the auristatin F conjugates had a similar pharmacokinetic
profile in rats to that of unconjugated Trastuzumab. The
auristatin D ADCs showed superior efficacy (in vitro and in
rats) and in vivo pharmacokinetics compared to cysteine con-
jugated counterparts [31, 32]. One of the major difficulties of
using amber suppression for the production of ADCs is the
high technical demand and relatively low antibody titers in the
range of 300–1000 mg/L [31, 32]. Moreover, the amber stop
codon usage in mammalian cells is relatively high resulting in
a heterogenous mixture of antibodies with falsely incorporat-
ed natural amino acids, that may lead to toxic side-effects and
makes purification of the ADCs much more complicated.
Sutro Biopharma tries to sort out this problem by using an
E. coli based cell-free system for the production of heteroge-
nous ADCs. However, the antibody titer that they were able to
achieve by this was even lower (250 mg/L) and all antibodies
generated by cell-free expression systems are not glycosylated
[33]. Even though several unglycosylated antibodies are eval-
uated for human therapy [34], the impact of removing this
posttranslational modification is still under debate.

Enzymatic and Chemoenzymatic Approaches

Within the last years, several enzymatic and chemoenzymatic
methods for the site-specific functionalization of antibodies
have been developed, among them the use of engineered
glycotransferases, transglutaminases, the bacterial derived for-
myl glycine generating enzyme (FGE) and the transpeptidase
Sortase A. In nature glycotransferases promote the transfer of
an activated glycosyl donor to a lipid or glycoprotein and
thereby play important roles in the posttranslational modifica-
tion of proteins and in signaling pathways. Qasba et al. were
able to show, that by the mutation of a few amino acids within
the binding pocket of the beta-1,4-galactosyltransferase I, un-
natural monosaccharides that carry a unique reactive group (a
bioorthogonal handle) are accepted as substrates and can
thereby be incorporated to glycan modified proteins [35].
Ever since, this knowledge has been used to site-specifically
conjugate fluorophores, biotin-derivatives and cytotoxic drugs
to antibodies [36–38]. In 2014, Sanofi-Genzyme published a
combinatorial approach of beta-1,4-galactosyltransferase I
and alpha-2,6-sialyltransferase to place a terminal sialic acid
residue to the native glycosylation site of Trastuzumab and
anti FAB. Subsequent mild periodate oxidation of the sialic
acids and oxime ligation enabled site-specific conjugation of
1.6 molecules of monomethyl auristatin E (MMAE) or Dol10
to the antibodies, resulting in a comparable antitumor activity
with a significantly lower toxin loading to that of statistically
conjugated ADCs [39]. Enzymatic glycosylation approaches
are promising and straightforward strategies to equip antibod-
ies with cytotoxic drugs without the need of antibody
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engineering. However, since glycosylation is a heterogeneous
modification, producing homogenous ADCs by this technol-
ogy is very complicated. Moreover, changing the glycosyla-
tion pattern of the antibodies may lead to an immunogenic
response in humans which was already shown for several
unnatural sialic acid derivatives [40, 41].

In 2010, the Schibli group was showed site-specific
functionalization of IgGs (rituximab and the anti-L1-CAM
chCE7) using an amide bond forming transglutaminase.
After removal of the antibodies N-glycan using PNGase, var-
ious amine-containing substrates were coupled to Q295 by
isopeptide bond formation [42]. Using a chemoenzymatic
two-step variant of the transglutaminase technology, they
were able to produce homogenous Trastuzumab-MMAE con-
jugates with a DAR of 2 functionalized at Q295 (Fig 2c) [43].
Introducing transglutaminase recognition sequences into the
antibody is another approach that does not rely on
PNGase pretreatment. Rinat-Pfizer placed the amino-
acid tag LLQA to several positions to the heavy and
light chain of anti-EGFR, anti-HER2 and anti-M1S1 antibod-
ies and conjugated fluorophores and auristatin derivatives
using a transglutaminase from Streptoverticilliummobaraense
resulting in DAR of 1.2–2 [44]. These conjugates showed a
larger therapeutic window in rats compared to heterogenous
cysteine-conjugated derivatives with a DAR of 3.6. However,
careful MS analysis revealed unspecific reactivity of the
transglutaminase at Q295 making a Q295N mutation neces-
sary to ensure specific reactivity [45]. The Group of Kolmar
designed a novel transglutaminase recognition tag based on
the crystal structure of a natural protein substrate of a bacterial
transglutaminase. Placing this structural constraint tag to the
C-terminus of the heavy chain of cetuximab allowed fast and
efficient conjugation to amine containing biotins [46].
However, to prevent intramolecular crosslinking of the anti-
body catalyzed by the enzyme, the terminal K447 had to be
removed and the amount of Q295 site-reactivity remains
unknown.

The transpeptidase Sortase A (Staphylococcus aureus) has
intensively been studied for the site-specific modification of
proteins and antibodies [47–49]. The thiol of the enzyme’s
C148 attacks the amide bond between threonine and glycine
of the recognition sequence LPXTG placed at the terminus of
a protein of choice. This leads to the release of the terminal
glycine and formation of a thioacyl intermediate. A following
nucleophilic attack of another glycine-peptide equippedwith a
cargo of choice results in the reformation of an amide-bond
and thereby the site-specific functionalization of the protein.
The reversibility of transpeptidase mediated reactions is a ma-
jor drawback of this technology since it reduces efficiency and
increases the need of tedious post-reaction purification. This
has been addressed to a certain extent by the use of
depsipeptide substrates [50] and enhanced Sortase A variants
[51]. The company NBE-Therapeutics AG developed a

Sortase A based platform called SMAC-technology (sortase
mediated antibody conjugation technology) to generate vari-
ous ADCs with different linkers and toxins (MMAE and
DM1) [52]. By the C-terminal addition of a 14 or 19 amino
acid long peptide sequence containing a LPETG and a C-
terminal Strep II tag to the heavy and light chain of the anti-
bodies trastuzumab and cAc10 theywere able to achieve DAR
ratios of 3.05–3.53 (Fig. 2d). Moreover, since the Strep II tag
is only present in unreacted starting material, they tremen-
dously simplified post-reaction purification. Even though the
SMAC derived ADCs contained higher aggregate content
compared to the unmodified counterparts, they were sufficient
for in vitro and in vivo studies and showed similar potency
compared to their chemically modified counterparts adcetris
and kadcyla.

Another chemoenzymatic strategy, in which a
formylglycine generating enzymes (FGE) oxidizes the cyste-
ine side chain of the peptide sequence CXPXR to a
formylglycine was pioneered and developed in the labs of
Diercks and Bertozzi [53, 54]. Oxime forming reactions or,
to gain hydrolytically stable products, Pictet-Spengler type
reactions [55–56] are used to conjugate payload to this
bioorthogonal group. The company Redwood Bioscience
(now Catalent Pharma solutions) uses this approach to obtain
side-specific ADCs. They introduced the CXPXR sequence
into eight sites of trastuzumab, out of which three were iden-
tified to be suitable for maytansinoid conjugation (Fig. 2e).
The plasma stability, in vivo half-life and efficacy in a xeno-
graft mice model were dependent on the conjugation site and
showed the best values for conjugates that were functionalized
at the C-terminus of the heavy chain. Moreover these conju-
gates showed an improved safety profile to conventionally
conjugated lysine ADCs [57]. Since prokaryotic and eukary-
otic FGEs tend to precipitate, they recently published a opti-
mized protocol to obtain soluble FGEs and showed that FGEs
are metalloenzymes and their activity dependent on Cu(II)
activation [58].

Tub-tag Labeling: An Emerging Approach for ADC
Conjugation

Tub-tag labeling is a novel approach for the site-specific mod-
ification of antibodies that combines the above mentioned use
of UAA incorporation with a highly efficient chemoenzymatic
system [59]. The technique is based on the enzyme tubulin
tyrosine ligase (TTL) that is naturally involved in the intracel-
lular regulation of microtubule stability [60]. TTL recognizes
a 14 amino acid recognition motif at the C-terminus of alpha-
tubulin and posttranslationally attaches a terminal tyrosine
residue [61]. When recombinantly fused to an antibody, the
recognition motif (Tub-tag) allows the TTL-mediated attach-
ment of unnatural tyrosine derivatives that carry uniquely re-
active groups for chemoselective conjugation such as strain-
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promoted alkyne azide cycloadditions (SPAAC, Fig. 2f). The
method has shown labeling efficiencies up to 99 % in vitro
and is compatible with a broad range of established conjuga-
tion chemistries (Fig. 2f). While the functional effect of the
human-derived peptide at the C-terminus of therapeutic anti-
bodies remains to be validated, its glutamate-rich, strongly
hydrophilic character may well provide a potential intrinsic
measure to counteract described drug and linker associated
hydrophobicity and aggregation issues [8, 9]. Thus, it pro-
vides a potentially favourable microenvironment for drug
loading and enhanced DAR flexibility, thereby meeting two
of the most relevant needs for modern ADC conjugation.

Conclusions

The still increasing number of ADCs in clinical trials and the
constantly growing number of ADC-related publications do
underline the significance of the ‘magic bullet’ oncology ap-
proach that has first been postulated in 1908 by Paul Ehrlich.
Nonetheless, the field has witnessed a number of recent pit-
falls that exposed the major technological vulnerabilities
where improvement is needed. Most of these weak spots re-
volve around ADC efficacy, toxicity, clearance and stability
and are currently tackled from various directions. This in-
cludes the identification of novel drugs, antibody engineering
to identify regions that are well suited for drug attachment and
versatile chemical linker strategies to modulate the drug load,
release and overall ADC stability.

Moreover, novel site-specific coupling strategies to allow
for homogeneous ADC species with defined and controllable
therapeutic properties are under investigation. All existing site-
specific conjugation strategies have advantages and disadvan-
tages and negotiate scientific parameters such as the extent of
antibody manipulation and in consequence its functional integ-
rity, conjugation efficiencies, conjugate stability, chemical ver-
satility as well as applied ‘real world’ parameters such as tech-
nical handling for cost-effective, industrial ADC production.

With an ever increasing portfolio of ADC enabling tech-
nologies at hand that together allow for better, versatile and
tailor made conjugates, probably one of the most promising
and pressing tasks within the ADC field lies in the search for
novel antibody conjugate indications beyond classical oncol-
ogy targets. This particularly includes pathogens that have
previously been hard or impossible to tackle, as has recently
been exemplified for novel Antibody-antibiotic conjugates
targeting well-hidden, intracellular populations of pathogenic
bacteria [62].
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