Copyri ght Adobe Systens | ncor porated

Abstr act

Thi s nmeno descri bes Adobe’ s Real

Adobe’ s Real Tine Messagi

application-1evel protocol designed for
mul ti media transport streans (such as audio, video, and interactive
content) over a suitable transport protocol (such as TCP).

Tabl e of Contents

H. Parmar, Ed.

M Thor nbur gh, Ed.
Adobe

Decenber 21, 2012

ng Protocol

Ti me Messagi ng Protocol (RTMP), an

mul ti pl exi ng and packeti zi ng

1. Introduction . 3
1.1. Term nol ogy 3
2. Contributors . 3
3. Definitions e e e e 3
4. Byte Order, Alignnent, and Tinme Fornat 5
5. RTMP Chunk Stream 5
5.1. Message For nat 6
5.2. Handshake Coe 7
5.2.1. Handshake Sequence . 7
5.2.2. Q0 and SO For nmat 7
5.2.3. Cl and S1 For nat 8
5.2.4. C2 and S2 For nat 8
5.2.5. Handshake D agram 10
5.3. Chunkingo 11
5.3.1. Chunk Fornat .o 11
5.3.1.1 Chunk Basi c Fbader : 12
5.3.1.2 Chunk Message Header 13
5.3.1.2.1 Type O . .o 14
5.3.1.2.2. Type 1. 14
5.3.1.2.3. Type 2 . 15
5.3.1.2.4. Type 3 . . Coe 15
5.3.1.2.5. Conmon Header Fields . 15
5.3.1.3. Extended Tlnestanp : 16
5.3.2. Exanples 16
5.3.2.1. Exanple 1 16
5.3.2.2. Exanple 2 .o 17

5.4. Protocol Control Messages 18
5.4.1. Set Chunk Size (1) 19
5.4.2. Abort Message (2) 19
5.4.3. Acknow edgenent (3) 20

Par mar & Thor nbur gh [Page 1]

IPR2025-00265
SportsCastr Inc. EX-2025

Adobe RTMP Decenmber 2012

.4. Wndow Acknow edgenent Size (5) 20
.5. Set Peer Bandw dth (6) - |
NP Message Formats 2 |
MP Message Format 22
Message Header 22
Message Payl oad . . C e e e e e s 22
r Control Messages (4) e e e, 23
mmand Messages . . . e e e e ..o ... 23
pes of Messages . . C e e e e s s 24
Command Message (20 7y 24
Data Message (18, 15 24
Shared Object Message (19, 16) 24
Audio Message (8 26
Video Message (9) 26
Aggregate Message (22) 26
User Control Message Events 27
ypes of Commands . . . e e e e . ..o ..., 28
Net Connecti on Cbnnands Ce e e e e s 29
.1. connect 29
1.2, cll 1)
. 1. 3. createStream . 16
Net Stream Cormands 37
play 38
play2 . . Y Y24
deIeteStream e A
receiveAudio 44
receivevVideo 45
publish . 45
seek .. . 46
pause . . e v
Me sage Exchange Exanples e e e 48
.1. Publish Recorded Video 48
2

3

i

GNEE

D

<

\‘
NNNNNNNNNEGMOIEZROd

e <

8

NNNNNNNNDNDNNAND
NRNNNONNNNDNNNNEANSDOTEWN = A
[

m?“P’P‘PS”P’P

Broadcast a Shared bject Message 50
Publish Metadata from Recorded Stream 50
8. References o ¥
Aut hors’ Addresses .. hb2

N NN W

Par mar & Thor nbur gh [Page 2]

Adobe RTMP Decenmber 2012

1. I nt roducti on

Adobe’ s Real Tine Messagi ng Protocol (RTMP) provides a bidirectional
nmessage multiplex service over a reliable streamtransport, such as
TCP [RFCO793], intended to carry parallel streans of video, audio,
and data nmessages, with associated timng information, between a pair
of communicating peers. Inplenentations typically assign different
priorities to different classes of nessages, which can effect the
order in which nmessages are enqueued to the underlying stream
transport when transport capacity is constrained.

This nmeno descri bes the syntax and operation of the Real Tine
Messagi ng Protocol.

1.1. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this nmenp are to be interpreted as described in

[RFC2119] .

2. Contri butors

Raj esh Mal lipeddi, fornerly of Adobe Systens, was the original editor
of this specification, and provided nost of its original text.

Mohit Srivastava of Adobe Systens contributed to the devel opnent of
this specification.

3. Definitions

Payl oad: The data contained in a packet, for exanple audi o sanpl es
or conpressed video data. The payload format and interpretation
are beyond the scope of this docunent.

Packet: A data packet consists of fixed header and payl oad dat a.
Some underlying protocols may require an encapsul ati on of the
packet to be defined.

Port: The "abstraction that transport protocols use to distinguish
anong nmultiple destinations within a given host conputer. TCP/IP
protocols identify ports using small positive integers.” The
transport selectors (TSEL) used by the OSI transport |ayer are
equi val ent to ports.

Par mar & Thor nbur gh [Page 3]

Adobe RTMP Decenmber 2012

Transport address: The conbination of a network address and port
that identifies a transport-|level endpoint, for exanple an IP
address and a TCP port. Packets are transmtted froma source
transport address to a destination transport address.

Message stream A logical channel of comrunication in which nmessages
flow

Message stream I D: Each nessage has an I D associated with it to
identify the nmessage streamin which it is flow ng.

Chunk: A fragnent of a nessage. The nessages are broken into
smal l er parts and interl eaved before they are sent over the
network. The chunks ensure tinmestanp-ordered end-to-end delivery
of all nessages, across multiple streans.

Chunk stream A logical channel of comrunication that allows flow of
chunks in a particular direction. The chunk stream can travel
fromthe client to the server and reverse.

Chunk stream I D: Every chunk has an ID associated with it to
identify the chunk streamin which it is flow ng.

Mul ti pl exing: Process of making separate audi o/video data into one
coherent audi o/video stream nmaking it possible to transmt
several video and audi o sinmultaneously.

DeMul ti pl exi ng: Reverse process of multiplexing, in which
interl eaved audi o and video data are assenbled to formthe
original audio and video data.

Renote Procedure Call (RPC): A request that allows a client or a
server to call a subroutine or procedure at the peer end.

Met adata: A description about the data. The netadata of a novie
i ncludes the novie title, duration, date of creation, and so on.

Application Instance: The instance of the application at the server
with which the clients connect by sending the connect request.

Action Message Format (AMF): A conpact binary format that is used to

serialize ActionScript object graphs. AMF has two versions: AMF O
[AMFO] and AMF 3 [AMF3].

Par mar & Thor nbur gh [Page 4]

4.

Adobe RTMP Decenmber 2012

Byte Order, Alignnment, and Tinme Format

Al'l integer fields are carried in network byte order, byte zero is
the first byte shown, and bit zero is the nost significant bit in a
word or field. This byte order is comonly known as bi g-endian. The
transm ssion order is described in detail in Internet Protocol

[RFCO791]. Unl ess otherw se noted, numeric constants in this
docunent are in decimal (base 10).

Except as otherw se specified, all data in RTMP is byte-aligned; for
exanple, a 16-bit field may be at an odd byte offset. Were padding
i s indicated, padding bytes SHOULD have the val ue zero.

Timestanps in RTMP are given as an integer nunber of mlliseconds
relative to an unspecified epoch. Typically, each streamw || start
with a timestanp of 0, but this is not required, as long as the two
endpoi nts agree on the epoch. Note that this neans that any
synchroni zation across nultiple streans (especially from separate
hosts) requires sone additional mechani sm outside of RTVP.

Because tinmestanps are 32 bits long, they roll over every 49 days, 17
hours, 2 m nutes and 47.296 seconds. Because streans are allowed to
run continuously, potentially for years on end, an RTMP application
SHOULD use serial number arithnetic [RFC1982] when processing

ti mestanps, and SHOULD be capabl e of handling w aparound. For
exanpl e, an application assunmes that all adjacent tinmestanps are
within 2231 - 1 mlliseconds of each other, so 10000 cones after
4000000000, and 3000000000 cones before 4000000000.

Timestanp deltas are al so specified as an unsi gned integer nunber of
mlliseconds, relative to the previous tinmestanp. Tinestanp deltas
may be either 24 or 32 bits |ong.

RTMP Chunk Stream

This section specifies the Real Tinme Messagi ng Protocol Chunk Stream
(RTMP Chunk Stream). It provides mnultiplexing and packeti zing
services for a higher-level nultinmedia stream protocol.

Wil e RTMP Chunk Stream was designed to work with the Real Tine
Messagi ng Protocol (Section 6), it can handle any protocol that sends
a stream of nessages. FEach nessage contains tinestanp and payl oad
type identification. RTMP Chunk Stream and RTMP together are
suitable for a wide variety of audio-video applications, from one-to-
one and one-to-many |live broadcasting to video-on-demand services to
interactive conferencing applications.

Par mar & Thor nbur gh [Page 5]

Adobe RTMP Decenmber 2012

Wien used with a reliable transport protocol such as TCP [RFC0793],
RTMP Chunk Stream provi des guar anteed ti nestanp-ordered end-to-end
delivery of all nessages, across multiple streans. RTMP Chunk Stream
does not provide any prioritization or simlar forms of control, but
can be used by higher-level protocols to provide such prioritization.
For exanple, a live video server m ght choose to drop video nessages
for a slowclient to ensure that audi o nessages are received in a
tinmely fashion, based on either the tine to send or the tinme to
acknowl edge each nessage.

RTMP Chunk Streamincludes its own in-band protocol control nessages,
and al so offers a nmechanismfor the higher-Ilevel protocol to enbed
user control nessages.

5.1. Message For nat

The format of a nessage that can be split into chunks to support

mul ti pl exi ng depends on a higher |evel protocol. The nessage format
SHOULD however contain the followi ng fields which are necessary for
creating the chunks.

Ti mestanp: Tinestanp of the nmessage. This field can transport 4
byt es.

Length: Length of the nmessage payload. |If the nessage header cannot
be elided, it should be included in the Iength. This field
occupies 3 bytes in the chunk header.

Type Id: A range of type IDs are reserved for protocol control
nmessages. These nessages whi ch propagate information are handl ed
by both RTMP Chunk Stream protocol and the higher-1evel protocol.
Al'l other type IDs are available for use by the higher-Ievel
protocol, and treated as opaque val ues by RTMP Chunk Stream In
fact, nothing in RTMP Chunk Stream requires these val ues to be
used as a type; all (non-protocol) nessages could be of the sane
type, or the application could use this field to distinguish
simul taneous tracks rather than types. This field occupies 1 byte
in the chunk header.

Message Stream I D: The nessage stream | D can be any arbitrary val ue.
Different nmessage streans nultiplexed onto the sanme chunk stream
are demul ti pl exed based on their nmessage stream | Ds. Beyond that,
as far as RTMP Chunk Streamis concerned, this is an opaque val ue.
This field occupies 4 bytes in the chunk header in little endian
formt.

Par mar & Thor nbur gh [Page 6]

Adobe RTMP Decenmber 2012

5. 2. Handshake

An RTMP connection begins with a handshake. The handshake is unlike
the rest of the protocol; it consists of three static-sized chunks
rat her than consisting of variable-sized chunks with headers.

The client (the endpoint that has initiated the connection) and the
server each send the same three chunks. For exposition, these chunks
will be designated CO, Cl, and C2 when sent by the client; S0, S1,
and S2 when sent by the server.

5.2.1. Handshake Sequence
The handshake begins with the client sending the CO and Cl chunks.

The client MJUST wait until S1 has been received before sending C2.
The client MJUST wait until S2 has been received before sendi ng any
ot her dat a.

The server MUST wait until CO has been received before sending SO and
S1, and MAY wait until after ClL as well. The server MJUST wait until
Cl has been received before sending S2. The server MJST wait until
C2 has been received before sending any ot her data.

5.2.2. Q0 and SO For mat

The G0 and SO packets are a single octet, treated as a single 8-bit
i nteger field:

01234567
e e s
| ver si on |
i S N N S

CO0 and SO bhits
Followi ng are the fields in the CO/ SO packets:

Version (8 bits): In C0, this field identifies the RTMP version
requested by the client. 1In SO, this field identifies the RTMP
version selected by the server. The version defined by this
specification is 3. Values 0-2 are deprecated val ues used by
earlier proprietary products; 4-31 are reserved for future
i mpl ement ati ons; and 32-255 are not allowed (to all ow
di stingui shing RTMP from text-based protocols, which always start
with a printable character). A server that does not recogni ze the
client’s requested version SHOULD respond with 3. The client MAY
choose to degrade to version 3, or to abandon the handshake.

Par mar & Thor nbur gh [Page 7]

5.2.3.

The
f ol

+

+

+

+

I
I
|
+

Adobe RTMP Decenmber 2012

Cl and S1 For mat
Cl and S1 packets are 1536 octets |ong, consisting of the
| owi ng fields:
0 1 2 3

01234567890123456789012345678901
s T S s o S S Tl s i S S S S S T o
time (4 bytes) |
B S T T o S S o i S S S s sl S N o
zero (4 bytes) |
s S S S S e i i i w S TR
random byt es |
s T S s o S S T s i St S S S S S e o
random byt es
(cont)

B i S i S S s S S S S e i S N S S

Cl and S1 bits

Time (4 bytes): This field contains a tinestanp, which SHOULD be

Zer

Ran

5.2.4.

The
and

Par mar

used as the epoch for all future chunks sent fromthis endpoint.
This may be 0, or sonme arbitrary value. To synchronize nultiple
chunkstreans, the endpoint may wi sh to send the current val ue of
t he ot her chunkstreami s tinmestanp.

0 (4 bytes): This field MIUST be all Os.

dom data (1528 bytes): This field can contain any arbitrary

val ues. Since each endpoint has to distinguish between the
response to the handshake it has initiated and the handshake
initiated by its peer,this data SHOULD send sonething sufficiently
random But there is no need for cryptographically-secure
randommess, or even dynam c val ues.

C2 and S2 For mat

C2 and S2 packets are 1536 octets |long, and nearly an echo of S1
Cl (respectively), consisting of the follow ng fields:

& Thor nbur gh [Page 8]

Adobe RTMP Decenmber 2012

0 1 2 3
01234567890123456789012345678901
B I S I T i ai S T i i S S
| time (4 bytes) |
T S o T o L S
| time2 (4 bytes) |
e S
| random echo |
B I S I T i ai S T i i S S
random echo
(cont)

I I

I I

| e |

S S S S S S S N N N S S M N N S S S
C2 and S2 bits

Time (4 bytes): This field MIUST contain the tinestanp sent by the
peer in S1 (for C2) or ClL (for S2).

Time2 (4 bytes): This field MIUST contain the tinestanp at which the
previ ous packet (sl or cl) sent by the peer was read.

Random echo (1528 bytes): This field MJST contain the random data
field sent by the peer in S1 (for C2) or S2 (for Cl). Either peer
can use the tinme and tinme2 fields together with the current
timestanp as a quick estimate of the bandwi dth and/or | atency of
the connection, but this is unlikely to be useful.

Par mar & Thor nbur gh [Page 9]

Adobe RTMP Decenmber 2012

5.2.5. Handshake D agram

I
| Uninitialized
I oy I I

[------mmme - - > 0 |

| |- >

| Cl | |

R >| SO |

| | <o |

N | s1 |

Ver si on sent | <----mem e |

| S0 | I

| <o | |

| S1 | i
R | Ver si on sent

I I C1 I

| |- >

I C2 I I

| == - >| S2 |

| | <o |

Ack sent | Ack Sent

I S2 I I

| <o | |

I I C2 I

| | >|

Handshake Done | Handshake Done

Pictorial Representation of Handshake

The follow ng describes the states nentioned in the handshake
di agram

Uninitialized: The protocol version is sent during this stage. Both
the client and server are uninitialized. The The client sends the

protocol version in packet CO. |If the server supports the
version, it sends SO and S1 in response. |f not, the server
responds by taking the appropriate action. In RTMP, this action

is termnating the connection.

Version Sent: Both client and server are in the Version Sent state
after the Uninitialized state. The client is waiting for the
packet S1 and the server is waiting for the packet C1. On
receiving the awaited packets, the client sends the packet C2 and

Par mar & Thor nbur gh [Page 10]

Adobe RTMP Decenmber 2012

the server sends the packet S2. The state then becones Ack Sent.
Ack Sent The client and the server wait for S2 and C2 respectively.
Handshake Done: The client and the server exchange nessages.
5.3. Chunki ng

After handshaki ng, the connection multiplexes one or nore chunk
streans. Each chunk stream carries nessages of one type from one
nmessage stream Each chunk that is created has a unique ID
associated wth it called chunk stream|ID. The chunks are
transmtted over the network. Wile transmtting, each chunk nmust be
sent in full before the next chunk. At the receiver end, the chunks
are assenbl ed i nto nmessages based on the chunk stream | D

Chunking allows | arge nessages at the higher-level protocol to be
broken into smaller nessages, for exanple to prevent |arge |ow
priority nmessages (such as video) from bl ocking smaller high-priority
nmessages (such as audio or control).

Chunki ng al so allows small nessages to be sent with | ess overhead, as
t he chunk header contains a conpressed representation of information
t hat woul d ot herwi se have to be included in the nessage itself.

The chunk size is configurable. It can be set using a Set Chunk Size
control nmessage (Section 5.4.1). Larger chunk sizes reduce CPU
usage, but also conmt to larger wites that can del ay other content
on | ower bandw dth connections. Smaller chunks are not good for high
bit rate stream ng. Chunk size is maintained i ndependently for each
direction.

5.3.1. Chunk For nmat

Each chunk consists of a header and data. The header itself has
three parts:

S g e S +
| Basic Header | Message Header | Extended Tinmestanp | Chunk Data |
Fomm e e e oo oo Fom e e e a o e oo ok o e e e e e e e oaoa o s S +
| |
| <=--emmemeee e Chunk Header ----------------- >|

Chunk For mat

Par mar & Thor nbur gh [Page 11]

Adobe RTMP Decenmber 2012

Basic Header (1 to 3 bytes): This field encodes the chunk stream I D
and the chunk type. Chunk type determ nes the format of the
encoded nessage header. The |ength depends entirely on the chunk
stream I D, which is a variable-length field.

Message Header (0, 3, 7, or 11 bytes): This field encodes
i nformati on about the nessage being sent (whether in whole or in
part). The I ength can be determ ned using the chunk type
specified in the chunk header.

Extended Tinestanp (0 or 4 bytes): This field is present in certain
ci rcunst ances dependi ng on the encoded tinestanp or tinestanp
delta field in the Chunk Message header. See Section 5.3.1.3 for
nore i nformation.

Chunk Data (variable size): The payload of this chunk, up to the
configured maxi num chunk si ze.

5.3.1.1. Chunk Basi c Header

The Chunk Basic Header encodes the chunk stream I D and the chunk type
(represented by fm field in the figure below). Chunk type

determ nes the format of the encoded nessage header. Chunk Basic
Header field may be 1, 2, or 3 bytes, depending on the chunk stream

| D.

An i npl enmentati on SHOULD use the smal |l est representation that can
hold the ID.

The protocol supports up to 65597 streans with I Ds 3-65599. The IDs
0, 1, and 2 are reserved. Value O indicates the 2 byte formand an
IDin the range of 64-319 (the second byte + 64). Value 1 indicates
the 3 byte formand an ID in the range of 64-65599 ((the third
byte)*256 + the second byte + 64). Values in the range of 3-63
represent the conplete streamID. Chunk StreamID with value 2 is
reserved for | owlevel protocol control nessages and conmands.

The bits 0-5 (least significant) in the chunk basi c header represent
the chunk stream I D

Chunk stream I Ds 2-63 can be encoded in the 1-byte version of this
field.

Par mar & Thor nbur gh [Page 12]

Adobe RTMP Decenmber 2012

01234567
D S SRR RN
| fot | cs id |
+- - - - - - - -+

Chunk basic header 1

Chunk stream | Ds 64-319 can be encoded in the 2-byte form of the
header. IDis conmputed as (the second byte + 64).

0 1
0123456789012345
i S S S S S LR T s

| ft| 0 | cs id - 64
e S I S IR S A S SE S

Chunk basi c header 2

Chunk stream | Ds 64- 65599 can be encoded in the 3-byte version of
this field. IDis conputed as ((the third byte)*256 + (the second
byte) + 64).

012345678901234567890123
T i i e s e i i o e e e S S o &
| fnt| 1 | cs id - 64 |
I S T i S I S s S

Chunk basic header 3

cs id (6 bits): This field contains the chunk streamID, for val ues
from2-63. Values 0 and 1 are used to indicate the 2- or 3-byte
versions of this field.

fnm (2 bits): This field identifies one of four format used by the
"chunk nessage header’. The ’'chunk nessage header’ for each of
the chunk types is explained in the next section.

cs id - 64 (8 or 16 bits): This field contains the chunk streamID
m nus 64. For exanple, 1D 365 would be represented by a 1 in cs
id, and a 16-bit 301 here.

Chunk stream I Ds with val ues 64-319 could be represented by either
the 2-byte or 3-byte formof the header.

5.3.1.2. Chunk Message Header

There are four different formats for the chunk nessage header,
selected by the "fm" field in the chunk basic header.

Par mar & Thor nbur gh [Page 13]

Adobe RTMP Decenmber 2012

An i npl enmentati on SHOULD use the nobst conpact representati on possible
for each chunk nessage header.

5.3.1.2.1. Type O

Type 0 chunk headers are 11 bytes long. This type MJST be used at
the start of a chunk stream and whenever the streamtinestanp goes
backward (e.g., because of a backward seek).

0 1 2 3
01234567890123456789012345678901
i T i e r i o i R SR N SR S S

| timestanp | message | ength
T S R i S S T T s I S N S T S S S
| nmessage | ength (cont) | mressage type id| nmsg streamid

I I ik ais: ST S S I I i o STt I S I I s st e S
| nmessage streamid (cont) |
T i S S e e S =

Chunk Message Header - Type O

timestanp (3 bytes): For a type-0 chunk, the absolute tinestanp of
the nmessage is sent here. |If the tinmestanp is greater than or
equal to 16777215 (hexadeci mal OxFFFFFF), this field MJST be
16777215, indicating the presence of the Extended Tinmestanp field
to encode the full 32 bit tinmestanp. Oherwise, this field SHOULD
be the entire tinestanp.

5.3.1.2.2. Type 1

Type 1 chunk headers are 7 bytes long. The nessage streamID is not
i ncluded; this chunk takes the sane stream | D as the precedi ng chunk.
Streans with vari abl e-si zed nessages (for exanple, nmany video
formats) SHOULD use this format for the first chunk of each new
nmessage after the first.

0 1 2 3
01234567890123456789012345678901
T T S i T T o S S S s S S s i o S S

| ti mestanp delta | message | ength
e i R R e e e el I S R R R . e S il S NI S R R R R
| nmessage |l ength (cont) | mressage type id|

T i S o i S S T S S S S S S S

Chunk Message Header - Type 1

Par mar & Thor nbur gh [Page 14]

Adobe RTMP Decenmber 2012

5.3.1.2.3. Type 2

Type 2 chunk headers are 3 bytes long. Neither the stream|D nor the
nessage length is included; this chunk has the sane stream | D and
nmessage |l ength as the preceding chunk. Streans with constant-sized
nmessages (for exanple, sone audio and data formats) SHOULD use this
format for the first chunk of each nessage after the first.

0 1 2
012345678901234567890123
R i i R S e il o S S e R T e S e o e i
| ti mestanp delta |
T o i o i I S i i S S

Chunk Message Header - Type 2
5.3.1.2.4. Type 3

Type 3 chunks have no nessage header. The stream | D, nessage |ength
and tinmestanp delta fields are not present; chunks of this type take
val ues fromthe preceding chunk for the same Chunk Stream I D. Wen a
single nessage is split into chunks, all chunks of a nessage except
the first one SHOULD use this type. Refer to Exanple 2

(Section 5.3.2.2). A streamconsisting of nessages of exactly the
same size, stream|ID and spacing in tinme SHOULD use this type for al
chunks after a chunk of Type 2. Refer to Exanple 1

(Section 5.3.2.1). |If the delta between the first nessage and the
second nessage is sanme as the tinestanp of the first nmessage, then a
chunk of Type 3 could imediately foll ow the chunk of Type 0 as there
is no need for a chunk of Type 2 to register the delta. If a Type 3
chunk follows a Type O chunk, then the tinestanp delta for this Type
3 chunk is the sanme as the tinestanp of the Type 0 chunk.

5.3.1.2.5. Conmon Header Fields
Description of each field in the chunk nmessage header:

timestanp delta (3 bytes): For a type-1 or type-2 chunk, the
di fference between the previous chunk’s tinmestanp and the current
chunk’s tinmestanp is sent here. |If the delta is greater than or
equal to 16777215 (hexadeci mal OxFFFFFF), this field MJST be
16777215, indicating the presence of the Extended Tinmestanp field
to encode the full 32 bit delta. Oherwise, this field SHOULD be
t he actual delta.

Par mar & Thor nbur gh [Page 15]

Adobe RTMP Decenmber 2012

message length (3 bytes): For a type-0 or type-1 chunk, the length
of the message is sent here. Note that this is generally not the
same as the length of the chunk payl oad. The chunk payl oad | ength
is the maxi mum chunk size for all but the |ast chunk, and the
remai nder (which may be the entire length, for small nessages) for
t he | ast chunk.

nmessage type id (1 byte): For a type-0 or type-1 chunk, type of the
nessage is sent here.

nmessage streamid (4 bytes): For a type-0 chunk, the nessage stream
IDis stored. Message streamIDis stored in little-endian
format. Typically, all nessages in the sanme chunk streamw ||
conme fromthe sane nessage stream \Wile it is possible to
mul ti pl ex separate nmessage streans into the same chunk stream
this defeats the benefits of the header conpression. However, if
one nessage streamis closed and anot her one subsequently opened,
there is no reason an exi sting chunk stream cannot be reused by
sendi ng a new type-0 chunk.

5.3.1.3. Extended Ti nestanp

The Extended Tinmestanp field is used to encode tinestanps or
timestanp deltas that are greater than 16777215 (OxFFFFFF); that is,
for timestanps or tinmestanp deltas that don't fit in the 24 bit
fields of Type 0, 1, or 2 chunks. This field encodes the conplete
32-bit timestanp or tinmestanp delta. The presence of this field is

i ndicated by setting the tinestanp field of a Type 0 chunk, or the
timestanp delta field of a Type 1 or 2 chunk, to 16777215 (OxFFFFFF).
This field is present in Type 3 chunks when the nost recent Type O,
1, or 2 chunk for the sane chunk stream I D indicated the presence of
an extended tinmestanp field.

5.3.2. Exanples
5.3.2.1. Exanple 1

This exanpl e shows a sinple stream of audi o nessages. This exanple
denonstrates the redundancy of infornmation.

Par mar & Thor nbur gh [Page 16]

Fomm e oo
| Msg # 1 | 12345
O o e e e
| Msg # 2 | 12345
O i
| Msg # 3 | 12345
Fomm e oo
| Msg # 4 | 12345
O o e e e

Decenmber 2012

- +
Time | Length
+o e e - - R +
| 1000 | 32 |
ommmm- TR +
| 1020 | 32 |
IR +
| 1040 | 32 |
+o e e - - R +
| 1060 | 32 |
ommmm- TR +

Sanpl e audi o nessages to be made into chunks

The next table shows chunks produced in this stream
onward, data transmi ssion is optim zed.
nmessage beyond this point.

over head per

From nmessage 3

There is only 1 byte of

S S oo S oo Sy +
| | Chunk | Chunk| Header Data | No. of Bytes| Total No.of |
| | Stream I D| Type | | After | Bytes in the

| | | | | Header | Chunk |
S Fommm - e S S N +
| Chunk#1 | 3 | O | delta: 1000| 32 | 44 |
I I I | l'ength: 32| I I
I I I | type: 8, | I I
			streamID:		
			12345 (11		
			bytes)		
S S S N N N +					
Chunk#2	3	2	20 (3	32	36
			bytes)		
I S +----- - R R +					
Chunk#3	3	3	none (O	32	33
			bytes)		
S S S N N N +					
Chunk#4	3	3	none (O	32	33
			bytes)		
I S +----- R R R +

Format of each of the chunks of audi o nessages

5.3.2.2. Exanple 2

This exanple illustrates a nessage that
byt e chunk and is broken into several

Par mar & Thor nbur gh

chunks.

is too long to fit

in a 128-

[Page 17]

Adobe RTMP Decenmber 2012

R o e e e a o U U +
| | Message Stream I D | Message TYpe ID| Tine | Length
R o e e e o e e o - o e e a o - +
| Msg # 1 | 12346 | 9 (video) | 1000 | 307
TR Fom e e S S +

Sanpl e Message to be broken to chunks

Here are the chunks that are produced:

S R S R S g R TR S +
| | Chunk | Chunk| Header | No. of | Total No. of|
| | Strean] Type| Data | Bytes after| bytes in

| | ID | | | Header | the chunk

+o e e - - R +----- o e - R R +
Chunk#1	4	O	delta: 1000	128	140
			I'ength: 307		
			type: 9,		
			streamID		
I I I	12346 (11	I I			
			bytes)		
B B +----- o e o e e e o - o e o +					
Chunk#2	4	3	none (O	128	129
			bytes)		
S R S R S Fom e R N +					
Chunk#3	4	3	none (O	51	52
			bytes)		
B B +----- o e o e e e o - o e o +

Format of each of the chunks

The header data of chunk 1 specifies that the overall nessage is 307
byt es.

Notice fromthe two exanples, that chunk type 3 can be used in two
different ways. The first is to specify the continuation of a
nmessage. The second is to specify the beginning of a new nessage
whose header can be derived fromthe existing state data.

5.4. Protocol Control Messages
RTMP Chunk Stream uses nessage type IDs 1, 2, 3, 5 and 6 for
protocol control nmessages. These nessages contain information needed
by the RTMP Chunk Stream protocol
These protocol control nessages MJST have nessage stream | D O (known

as the control stream) and be sent in chunk streamID 2. Protocol
control nessages take effect as soon as they are received; their

Par mar & Thor nbur gh [Page 18]

5. 4.

5. 4.

Par

Adobe RTMP Decenmber 2012

ti mestanps are ignored.
1. Set Chunk Size (1)

Protocol control nessage 1, Set Chunk Size, is used to notify the
peer of a new maxi nrum chunk si ze.

The maxi mum chunk size defaults to 128 bytes, but the client or the
server can change this value, and updates its peer using this
nessage. For exanple, suppose a client wants to send 131 bytes of
audi o data and the chunk size is 128. |In this case, the client can
send this nessage to the server to notify it that the chunk size is
now 131 bytes. The client can then send the audio data in a single
chunk.

The maxi mum chunk size SHOULD be at |east 128 bytes, and MJST be at
| east 1 byte. The maxi num chunk size is maintained i ndependently for
each direction.

0 1 2 3
01234567890123456789012345678901
I I ik ais: ST S S I I i o STt I S I I s st e S
| O] chunk size (31 bits) |
i i e T i i S e o S i H S

Payl oad for the *Set Chunk Size’ protocol nessage
0: This bit MJST be zero.

chunk size (31 bits): This field holds the new maxi nrum chunk si ze,
in bytes, which will be used for all of the sender’s subsequent
chunks until further notice. Valid sizes are 1 to 2147483647
(Ox7FFFFFFF) incl usive; however, all sizes greater than 16777215
(OXFFFFFF) are equival ent since no chunk is larger than one
message, and no nessage is larger than 16777215 bytes.

2. Abort Message (2)

Protocol control nessage 2, Abort Message, is used to notify the peer
if it is waiting for chunks to conplete a nessage, then to discard
the partially received nessage over a chunk stream The peer

recei ves the chunk stream | D as this protocol nessage’ s payl oad. An
application may send this nmessage when closing in order to indicate
that further processing of the nmessages is not required.

mar & Thor nbur gh [Page 19]

Adobe RTMP Decenmber 2012

0 1 2 3

01234567890123456789012345678901
B I S I T i ai S T i i S S
| chunk streamid (32 bits) |
T S S i T S it S S S S ik SR NS SR S S

Payl oad for the *Abort Message’ protocol nessage

chunk stream I D (32 bits): This field holds the chunk stream I D,
whose current nessage is to be discarded.

5.4.3. Acknow edgenent (3)

The client or the server MJST send an acknow edgnent to the peer
after receiving bytes equal to the wi ndow size. The w ndow size is
t he maxi mum nunber of bytes that the sender sends wi thout receiving
acknow edgnent fromthe receiver. This nessage specifies the
sequence nunber, which is the nunber of the bytes received so far.

0 1 2 3

01234567890123456789012345678901
I I ik ais: ST S S I I i o STt I S I I s st e S
| sequence nunber (4 bytes) |
i i e T i i S S Rk

Payl oad for the * Acknowl edgenent’ protocol nessage

sequence nunber (32 bits): This field holds the nunber of bytes
received so far.

5.4.4. Wndow Acknow edgenent Size (5)

The client or the server sends this nessage to informthe peer of the
wi nhdow si ze to use between sendi ng acknow edgnents. The sender
expects acknow edgnent fromits peer after the sender sends w ndow
size bytes. The receiving peer MIST send an Acknow edgenent

(Section 5.4.3) after receiving the indicated nunber of bytes since

t he [ast Acknow edgenent was sent, or fromthe begi nning of the
session if no Acknow edgenent has yet been sent.

0 1 2 3
01234567890123456789012345678901
S i o S e i i S S S

| Acknow edgenent W ndow si ze (4 bytes) |
B e i e R S ol ik i s o it TR R S T e S S e e et o o

Payl oad for the ‘W ndow Acknow edgenent Size’ protocol nessage

Par mar & Thor nbur gh [Page 20]

Adobe RTMP Decenmber 2012

5.4.5. Set Peer Bandw dth (6)

The client or the server sends this nmessage to limt the output
bandwi dth of its peer. The peer receiving this nmessage limts its
out put bandwi dth by limting the anount of sent but unacknow edged
data to the wi ndow size indicated in this nmessage. The peer
receiving this nessage SHOULD respond with a W ndow Acknow edgenent
Size nmessage if the window size is different fromthe |ast one sent
to the sender of this nmessage.

0 1 2 3
01234567890123456789012345678901
T T i S S i S S T il sl s i S S S S S
| Acknow edgenent W ndow si ze |
B I il aihs S I I T i ot S S S Y S S S S it o
| Limt Type |

S e iR T S

Payl oad for the *Set Peer Bandw dth’ protocol nessage
The Limt Type is one of the follow ng val ues:

O - Hard: The peer SHOULD limt its output bandwi dth to the
i ndi cated wi ndow si ze.

1 - Soft: The peer SHOULD limt its output bandw dth to the the
wi ndow i ndicated in this nmessage or the limt already in effect,
whi chever is snaller.

2 - Dynamc: |If the previous Limt Type was Hard, treat this nessage
as though it was marked Hard, otherw se ignore this nessage.

6. RTMP Message Formats

The section specifies the format of RTMP nessages that are
transferred between entities on a network using a | ower |evel
transport |ayer, such as RTMP Chunk Stream

Whil e RTMP was designed to work with the RTMP Chunk Stream it can
send the nmessages using any other transport protocol. RTMP Chunk
Stream and RTMP together are suitable for a wide variety of audio-
vi deo applications, fromone-to-one and one-to-many |ive broadcasting
to video-on-demand services to interactive conferencing applications.

Par mar & Thor nbur gh [Page 21]

Adobe RTMP Decenmber 2012

6.1. RTMP Message For mat

The server and the client send RTMP nessages over the network to
communi cate with each other. The nessages coul d include audi o,
vi deo, data, or any other nessages.

The RTMP nessage has two parts, a header and its payl oad.
6.1.1. Message Header
The nessage header contains the foll ow ng:

Message Type: One byte field to represent the nessage type. A range
of type IDs (1-6) are reserved for protocol control nessages.

Length: Three-byte field that represents the size of the payload in
bytes. It is set in big-endian format.

Ti mestanp: Four-byte field that contains a tinestanp of the nessage.
The 4 bytes are packed in the big-endi an order.

Message Stream|ld: Three-byte field that identifies the stream of
the nmessage. These bytes are set in big-endian format.

0 1 2 3
01234567890123456789012345678901
I I ik ais: ST S S I I i o STt I S I I s st e S
| Message Type | Payl oad | ength |
| (1 byte) | (3 bytes) |
i s S i S i ks s SRR N S
| Ti mest anp |
| (4 bytes) |
I I ik ais: ST S S I I i o STt I S I I s st e S
| Stream I D |
| (3 bytes) |
T i S e a h T N e

Message Header
6.1.2. Message Payl oad
The other part of the nessage is the payload, which is the actual
data contained in the nmessage. For exanple, it could be sonme audio

sanpl es or conpressed video data. The payload format and
interpretation are beyond the scope of this docunent.

Par mar & Thor nbur gh [Page 22]

Adobe RTMP Decenmber 2012

6. 2. User Control Messages (4)

RTMP uses nessage type ID 4 for User Control nessages. These
nessages contain information used by the RTMP stream ng | ayer.
Prot ocol nessages with IDs 1, 2, 3, 5, and 6 are used by the RTMP
Chunk Stream protocol (Section 5.4).

User Control nessages SHOULD use nessage stream|ID O (known as the
control stream and, when sent over RTMP Chunk Stream be sent on
chunk stream I D 2. User Control nessages are effective at the point
they are received in the stream their tinestanps are ignored.

The client or the server sends this nessage to notify the peer about
t he user control events. This nessage carries Event type and Event
dat a.

Payl oad for the *User Control’ protocol nessage

The first 2 bytes of the nessage data are used to identify the Event
type. Event type is followed by Event data. The size of Event Data
field is variable. However, in cases where the nessage has to pass

t hrough the RTMP Chunk Stream | ayer, the maxi mum chunk size

(Section 5.4.1) SHOULD be | arge enough to allow these nessages to fit
in a single chunk.

Event Types are and their Event Data formats are enunerated in
Section 7.1.7.

7. RTMP Command Messages

This section describes the different types of nessages and commands
t hat are exchanged between the server and the client to conmunicate
wi th each ot her

The different types of nessages that are exchanged between the server
and the client include audio nessages for sending the audi o data,

vi deo nessages for sending video data, data nessages for sending any
user data, shared object nessages, and command nessages. Shared

obj ect nmessages provide a general purpose way to manage distri buted
data among multiple clients and a server. Conmand nessages carry the
AMF encoded commands between the client and the server. A client or
a server can request Renote Procedure Calls (RPC) over streans that
are communi cated using the command nessages to the peer.

Par mar & Thor nbur gh [Page 23]

Adobe RTMP Decenmber 2012

7.1. Types of Messages

The server and the client send nessages over the network to

communi cate with each other. The nessages can be of any type which
i ncl udes audi o nessages, video nessages, comand nessages, shared
obj ect nessages, data nessages, and user control nessages.

7.1.1. Command Message (20, 17)

Command nessages carry the AMF-encoded comrands between the client
and the server. These nessages have been assigned nessage type val ue
of 20 for AMFO encodi ng and nessage type value of 17 for AMF3
encodi ng. These nessages are sent to perform sonme operations |ike
connect, createStream publish, play, pause on the peer. Conmand
nmessages |i ke onstatus, result etc. are used to informthe sender
about the status of the requested conmands. A conmand nessage

consi sts of command nane, transaction ID, and comrmand obj ect that
contains related paraneters. A client or a server can request Renote
Procedure Calls (RPC) over streanms that are conmunicated using the
command nessages to the peer.

7.1.2. Data Message (18, 15)

The client or the server sends this nessage to send Metadata or any
user data to the peer. Metadata includes details about the

dat a(audi o, video etc.) like creation tinme, duration, theme and so
on. These nessages have been assigned nessage type value of 18 for
AMFO and nessage type val ue of 15 for AM-3.

7.1.3. Shared (Object Message (19, 16)

A shared object is a Flash object (a collection of nanme val ue pairs)
that are in synchronization across nmultiple clients, instances, and
so on. The nessage types 19 for AMFO and 16 for AMF3 are reserved

for shared object events. Each nessage can contain nultiple events.

Fo-m oo - Fo-m oo - A +-- - - - +-- - - - Fo-m oo - +-- - - - + ----- Fo-m oo - +-- - - - +

| Header | Shar ed| Current | Fl ags| Event | Event | Event| .| Event | Event | Event|

| | Cbj ect | Ver si on| | Type |data |data |.|Type |data |data

| | Narre | | | | I engt h || | I engt h |

R NP R NP S +--- - +--- - R NP +--- - + 4----- S NG +--- - +
| |
[<- - - - - - - - - - - - =3

| AMF Shared Obj ect Message body |
The shared object nmessage format

The foll owi ng event types are support ed:

Par mar & Thor nbur gh [Page 24]

Fom e +
| Request Change|
| (=3) I
I I
N +
| Change (=4) I
I I
I I
I I
o me e meea oo +

o e e e - +
| SendMessage |
| (=6) |
I I
I I
S +
| Status (=7) |
e .
| Cear (=8) |
I I
I I
I I
i +

T +
| Request Renove|
| (=10) |
S +
| Use Success |
| (=11) |
T +

Par mar & Thor nbur gh

Adobe RTMP Decenmber 2012

The client sends this event to informthe server

about the creation of a naned shared object.

The client sends this event to the server when

the shared object is deleted on the client side.

The client sends this event to request that the

change the val ue associated with a naned
paranmeter of the shared object.

The server sends this event to notify al
clients, except the client originating the
request, of a change in the value of a naned
par anmet er

The server sends this event to the requesting

client in response to Request Change event if the

request i s accepted.

The client sends this event to the server to
broadcast a nessage. On receiving this event,
the server broadcasts a nessage to all the
clients, including the sender.

The server sends this event to notify clients
about error conditions.

The server sends this event to the client to
cl ear a shared object. The server al so sends
this event in response to Use event that the
client sends on connect.

The server sends this event to have the client
delete a slot.

The client sends this event to have the client
delete a slot.

The server sends this event to the client on a
successful connecti on.

[Page 25]

Adobe RTMP Decenmber 2012

7.1.4. Audi o Message (8)

The client or the server sends this nessage to send audio data to the
peer. The nessage type value of 8 is reserved for audi o nessages.

7.1.5. Video Message (9)

The client or the server sends this nessage to send video data to the
peer. The nessage type value of 9 is reserved for video nmessages.

7.1.6. Aggregate Message (22)

An aggregate nmessage is a single nessage that contains a series of
RTMP sub- nessages using the format described in Section 6.1. Message
type 22 is used for aggregate nessages.

| Header 0| Message| Back | Header 1| Message| Back |
| | Data O | Poi nter O] | Data 1 | Pointer 1|

The Aggregate Message body format

The nmessage stream I D of the aggregate nessage overrides the nessage
stream | Ds of the sub-nessages inside the aggregate.

The difference between the tinmestanps of the aggregate nessage and
the first sub-nessage is the offset used to renornalize the

ti mestanps of the sub-nessages to the streamtinescale. The offset
is added to each sub-nessage’s tinestanp to arrive at the normalized
streamtinme. The tinmestanp of the first sub-nessage SHOULD be the
same as the tinmestanp of the aggregate nessage, so the offset SHOULD
be zero.

The back pointer contains the size of the previous nessage incl uding
its header. It is included to match the format of FLV file and is
used for backward seek

Usi ng aggregat e nessages has several performance benefits:

o0 The chunk stream can send at nost a single conplete nessage wthin
a chunk. Therefore, increasing the chunk size and using the

Par mar & Thor nbur gh [Page 26]

Adobe RTMP Decenmber 2012

aggregat e nessage reduces the nunber of chunks sent.

0 The sub-nmessages can be stored contiguously in nenory. It is nore
ef ficient when making systemcalls to send the data on the
net wor k.

7.1.7. User Control Message Events
The client or the server sends this nmessage to notify the peer about
t he user control events. For information about the nessage fornmat,
see Section 6. 2.

The foll owm ng user control event types are supported:

Stream Begi n

(=0)

| The server sends this event to notify the client |
| that a stream has becone functional and can be |
| used for conmunication. By default, this event |
| is sent on ID O after the application connect |
| command is successfully received fromthe |
| client. The event data is 4-byte and represents |
| the stream | D of the streamthat becane |
| functional. |

St ream EOF
(=1)

| The server sends this event to notify the client |
| that the playback of data is over as requested

| on this stream No nore data is sent w thout |
| issuing additional commands. The client discards |
| the messages received for the stream The |
| 4 bytes of event data represent the ID of the |
| stream on which playback has ended. |

StreanDry
(=2)

| The server sends this event to notify the client |
| that there is no nore data on the stream If the

| server does not detect any nessage for a tine |
| period, it can notify the subscribed clients |
| that the streamis dry. The 4 bytes of event |
| data represent the streamID of the dry stream |

Set Buf f er
Length (=3)

| The client sends this event to informthe server

| of the buffer size (in mlliseconds) that is |
| used to buffer any data com ng over a stream |
| This event is sent before the server starts |
| processing the stream The first 4 bytes of the

| event data represent the stream | D and the next |
| 4 bytes represent the buffer length, in |

Par mar & Thor nbur gh [Page 27]

7.

2.

Adobe RTMP Decenmber 2012

| | mlliseconds. |

Stream s	The server sends this event to notify the client	
Recorded (=4)	that the streamis a recorded stream The	
	4 bytes event data represent the stream	D of
	the recorded stream	

The server sends this event to test whether the
client is reachable. Event data is a 4-byte

Pi ngRequest | |
I I
| tinmestanp, representing the | ocal server tine |
I I
| |
I I

(=6)

when the server dispatched the conmand. The
client responds with PingResponse on receiving
MsgPi ngRequest .

PingResponse	The client sends this event to the server in
(=7)	response to the ping request. The event data is
	a 4-byte tinmestanp, which was received with the
	PingRequest request.

Types of Commands

The client and the server exchange commands whi ch are AMF encoded.
The sender sends a command nessage that consists of command nane,
transaction I D, and command object that contains rel ated paraneters.
For exanpl e, the connect command contains 'app’ paraneter, which
tells the server application name the client is connected to. The
recei ver processes the command and sends back the response with the
sane transaction ID. The response string is either _result, _error,
or a nethod nane, for exanple, verifyCdient or contactExternal Server

A command string of _result or _error signals a response. The
transaction ID indicates the outstanding conmand to which the
response refers. It is identical to the tag in | MAP and many ot her
protocols. The nethod nane in the command string indicates that the
sender is trying to run a nethod on the receiver end.

The follow ng class objects are used to send various conmands:

Net Connection An object that is a higher-1level representation of
connection between the server and the client.

Net Stream An object that represents the channel over which audio
streans, video streans and other related data are sent. W also
send commands |ike play , pause etc. which control the flow of the
dat a.

Par mar & Thor nbur gh [Page 28]

1. Net Connecti on Commands

Adobe RTMP Decenmber 2012

The Net Connecti on manages a two-way connection between a client

application and the server.

In addition, it provides support for

asynchronous renote nethod calls.

The foll owm ng commands can be sent on the NetConnection

0 connect
o call
o close

O cCreateStream

7.2.1.1. connect

The client sends the connect command to the server to request
connection to a server application instance.

The command structure fromthe client to the server is as foll ows:

g S
| Field Nane | Type

S S
| Conmand Nane | String
o e e m -

| Optional User | bject
| Argunents |

Par mar & Thor nbur gh

| Descri ption |
e +
| Nane of the command. Set to "connect".

e +
| Always set to 1. |
e +

| Command information object which has |
| the name-val ue pairs. |

[Page 29]

Sarah Allen

Adobe RTMP Decenmber 2012

Following is the description of the nanme-value pairs used in Command
bj ect of the connect command.

o e e e o - - o e e e e e e e e e e e e - o e e e +
| Property | Type | Descri ption | Exanpl e Val ue |
TR S R o m e e e e e e e U +
| app | String | The Server application nanme | t est app |
| | | the client is connected to. |

R I o e e e e e e e e e e e o - Fom e e e +
flashver	String	Flash Player version. It is	FMSc/ 1.0
		the sanme string as returned	
		by the ApplicationScript	
		getversion () function.	
Fomm e S o e e e e e e e e e Fom e e e m oo oo +			
swfUrl	String	URL of the source SWF file	file://C/
		making the connection.	FlvPl ayer. swf
TR S N o m e e e e e e e e S +			
tcUrl	String	URL of the Server.	rtnp://1ocal
		I't has the followng format.	host:1935/test
		protocol://servername: port/	app/instancel
		appNane/ appl nst ance	
o e e e o - - o e e e e e e e e e e e e - o e e e +			
fpad	Boolean	True if proxy is being used.	true or false
TR S R o m e e e e e e e U +			
audi oCodecs	Number		ndicates what audi o codecs
		the client supports.	_MP3
R I o e e e e e e e e e e e o - Fom e e e +			
vi deoCodecs	Nunber		ndicates what video codecs
		are supported.	_SORENSON
TR S R o m e e e e e e e U +			
vi deoFunct-	Nunber		ndicates what special video
ion		functions are supported.	_CLIENT_SEEK
R I o e e e e e e e e e e e o - Fom e e e +			
pageUrl	String	URL of the web page from	http://
		where the SWF file was	sonehost/
			oaded.
R S N o e e e e e e e e U +			
object	Nunmber	AMF encodi ng net hod.	AMF3
Encoding			
o e e e o - - o e e e e e e e e e e e e - o e e e +

Par mar & Thor nbur gh [Page 30]

Adobe RTMP

Decenmber 2012

Fl ag val ues for the audi oCodecs property:

Par mar & Thor nbur gh

Raw sound, no conpression

Nel | yMoser at 8-kHz
conpressi on

Nel | yMoser conpression
(5, 11, 22, and 44 kHz)

G711A sound conpressi on
(Flash Medi a Server only)

G711U sound conpressi on
(Fl ash Medi a Server only)

Nel | yMouser at 16-kHz
conpressi on

Advanced audi o codi ng
(AAC) codec

Al'l RTMP-supported audi o
codecs

[Page 31]

Adobe RTMP Decenmber 2012

Fl ag val ues for the videoCodecs Property:

o o e e e e e e e e e e o e a o - +
| Codec Fl ag | Usage | Val ue |
e S . +
| SUPPORT_VID UNUSED | Cbsol ete val ue | 0x0001 |
U S Uy S S +
| SUPPORT_VI D_JPEG | Cbsol ete val ue | 0x0002 |
o o e e e e e e e e e e o e a o - +
| SUPPORT_VI D SORENSON | Sorenson Flash video | 0x0004 |
e T . +
| SUPPORT_VI D HOVEBREW | V1 screen sharing | 0x0008 |
U U Uy S S +
| SUPPORT_VID VP6 (On2)| On2 video (Flash 8+) | 0x0010 |
o o e e e e e e e e e e o e a o - +
SUPPORT_VI D_VP6ALPHA	On2 video with al pha	0x0020
(On2 with al pha	channel	
channel)		
U Uy S S +		
SUPPORT_VI D HOVEBREW/	Screen sharing version 2	0x0040
(screensharing v2)	(Flash 8+)	
o o m e e e e e e e e e e m - o e e e o - +		
SUPPORT_VI D H264	H264 video	0x0080
e T SS - +		
SUPPORT_VI D ALL	Al RTMP-supported video	Ox00FF

| | codecs | |
o o e e e e e e e e e e o e a o - +

U U g S U +
| Function Fl ag | Usage | Val ue |
o o e e e e e e e e e e o e a o - +

SUPPCORT_VI D_CLI ENT | I'ndicates that the client | 1 |
| _SEEK | can perform frane-accurate | |
| | seeks. | |
U Uy S S +

Par mar & Thor nbur gh [Page 32]

Adobe RTMP Decenmber 2012

Val ues for the object encoding property:

o o e e e e e e e e e e o e a o -
| Encodi ng Type | Usage | Val ue

o e e e e e e o e e e e e e e e e e o e e oo
| AMFO | AMFO obj ect encodi ng | 0

| | supported by Flash 6 and |

| | later |
o o e e e e e e e e e e o e a o -
| AMF3 | AMF3 encoding from | 3

| | Flash 9 (AS3) |

o e e e e e oo o e e e e e e e e oo T

The conmmand structure fromserver to client is as foll ows:

| ID

Par mar & Thor nbur gh

_result or _error; indicates whether
the response is result or error.
Transaction IDis 1 for connect
responses

Nane-val ue pairs that describe the
properties(frmsver etc.) of the
connecti on.

Name- val ue pairs that describe the
response fronjthe server. 'code’,
"level’, "description are nanes of few
anong such i nformation

[Page 33]

Adobe RTMP Decenmber 2012

dient | | Server |
R +o e e - - + | R R +

| Handshaki ng done |
I I I
I I I
I I I
I I I

I

I

(_result- connect response) |

[----------- Command Message(connect) ------- >
I< ------- W ndow Acknow edgenent Size -------- |
i< ----------- Set Peer Bandw dth ------------- i
I -------- W ndow Acknow edgenent Size ------- >I
I< ------ User Control Message(StreanBegi n) ---I
i< ------------ Command Message --------------- i
|

Message flow in the connect conmand

The nessage flow during the execution of the conmand is:

1

Client sends the connect conmand to the server to request to
connect with the server application instance.

After receiving the connect conmand, the server sends the
prot ocol nessage ' Wndow Acknow edgenent Size' to the client.
The server al so connects to the application nentioned in the
connect comrand.

The server sends the protocol nessage ' Set Peer Bandwi dth’ to the
client.

The client sends the protocol nessage ' Wndow Acknow edgenent
Size’ to the server after processing the protocol nessage ’ Set
Peer Bandwi dt h’.

The server sends an anot her protocol nessage of type User Control
Message(StreanBegin) to the client.

The server sends the result command nessage informng the client
of the connection status (success/fail). The command specifies
the transaction ID (always equal to 1 for the connect conmand).
The nmessage al so specifies the properties, such as Flash Media

Par mar & Thor nbur gh [Page 34]

Server version (string).

Adobe RTMP Decenmber 2012

In addition it specificies other

connection response related information |Iike |evel (string), code
(string), description (string), objectencoding (nunber), etc.

7.2.1.2. Cal

The call nethod of the Net Connection object runs renote procedure

calls (RPC) at the receiving end.

paranmeter to the call commuand.

The command structure fromthe sender to the receiver is as foll ows:

U Fomm e e e o
| Fi el d Nane | Type

o e a o - R
| Procedure | String

| Narre |
U Fom e m o a o
| Transaction | Number

I I

| 1D |

o e e e o - R
| Command | Object

| Object |
U Fomm e e e o
| Optional | Object

| Argunents

o e e e o - R

U Fomm e e e o
| Transaction | Nunber

| 1D |

o e e e o - R
| Command | Object

| Object |
U Fomm e e e o
| Response | Object
SRR SRR

Par mar & Thor nbur gh

cal | ed.

If a response is expected we give a
transaction Id. Else we pass a val ue of

If there exists any command info this
is set, else this is set to null type.

Any optional argunents to be provided

I D of the conmand, to which the
response bel ongs.

If there exists any command info this
is set, else this is set to null type.
Response fromthe nethod that was
cal | ed.

The call ed RPC nane is passed as a

[Page 35]

Adobe RTMP Decenmber 2012

7.2.1.3. createStream

The client sends this command to the server to create a | ogical
channel for nessage communi cation The publi shing of audio, video, and
nmetadata is carried out over stream channel created using the

creat eStream command.

Net Connection is the default comruni cati on channel, which has a
stream I D 0. Protocol and a few command nessages, i ncl udi ng
createStream use the default conmuni cati on channel

The command structure fromthe client to the server is as foll ows:

Fomm e e m e m oo o Fomm e m oo o o e m e e e e e e e e e e e e e e e e e e emeaeaoa +
| Field Name | Type | Description |
o e e e o - R e +
| Command Nane | String | Nane of the conmand. Set to |
| | | "createStreant. |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Transaction | Nunmber | Transaction ID of the command. |
| 1D | | |
o e e e o - R e +
| Command | Object | If there exists any command info this |
| Object | | is set, else this is set to null type.

U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +

The conmmand structure fromserver to client is as foll ows:

R . - T +
| Field Name | Type | Descri ption |
S S Fomimaoaao U U +
| Conmand Nanme | String | _result or _error; indicates whether |
| | | the response is result or error. |
o e e e o - R e +
| Transaction | Nunber | ID of the command that response bel ongs|
| ID | | to. |
S S SRS U U +
| Conmand | Object | If there exists any conmand info this |
| Object | | is set, else this is set to null type. |
o e e e o - R e +
| Stream | Nunmber | The return value is either a streamID

| ID | | or an error information object. |
S S SRS U U +

Par mar & Thor nbur gh [Page 36]

Adobe RTMP Decenmber 2012

7.2.2. NetStream Commands
The Net Stream defines the channel through which the stream ng audi o,
vi deo, and data nmessages can fl ow over the Net Connection that
connects the client to the server. A NetConnection object can
support nultiple NetStreans for nultiple data streans.

The follow ng commands can be sent on the NetStreamby the client to
t he server:

o play

o play2

0 deleteStream
0 closeStream
0 receiveAudio

0 receiveVideo

0 publish
0 seek
0 pause

The server sends Net Stream status updates to the client using the
"onSt at us" command:

Par mar & Thor nbur gh [Page 37]

S U S SRS U U +
| Field Name | Type | Description |
o e a o - R o m e - +
| Command Name | String | The command nane "onStatus". |
. R e +
| Transaction | Nunber | Transaction ID set to O. |
| 1D | | |
S R oo o e e oo oeaiaaoo-- +
| Conmand | Null | There is no command object for |
| Object | | onStatus nessages. |
. Fommmmmaaa T . +
I nfo Object hj ect An AMF object having at |east the
follow ng three properties: "level™
(String): the level for this nessage,
one of "warning", "status", or "error";

| |
I I
: :
| "code" (String): the nmessage code, for |
| exanple "NetStream Play. Start"; and |
| "description" (String): a human-

| readabl e description of the nessage. |
| The Info object MAY contain other |
| properties as appropriate to the code.

Format of Net Stream status nessage comrands.
7.2.2.1. play

The client sends this command to the server to play a stream A
pl ayli st can al so be created using this command nultiple tines.

If you want to create a dynam c playlist that sw tches anong
different live or recorded streans, call play nore than once and pass
false for reset each tine. Conversely, if you want to play the
specified streaminmedi ately, clearing any other streans that are
gueued for play, pass true for reset.

The command structure fromthe client to the server is as foll ows:

o e a o - R o m e e e e e e e e e e e e e e e e e e m e e e e e m +
| Field Name | Type | Descri ption |
S S o m e e e e e e e e e e e e e e e +
| Command Nanme | String | Name of the command. Set to "play' |
U Fomm e e e o o m m e mema +
| Transaction | Nunmber | Transaction ID set to O. |
| 1D | | |
o e e e o - R o +
| Command | Nul | | Command information does not exist. |
| Object | | Set to null type. |

Par mar & Thor nbur gh [Page 38]

Adobe RTMP Decenmber 2012

| Nanme of the streamto play. |
| To play video (FLV) files, specify the

| nane of the streamw thout a file |
| extension (for exanple, "sanple"). To

| play back MP3 or I1D3 tags, you nust |
| precede the streamnanme with np3: |
| (for exanple, "np3:sanple". To play

| H. 264/ AAC files, you nust precede the

| stream nane with np4: and specify the

| file extension. For exanple, to play the|
| file sanple.mv, specify "np4:sanple. miv"
| |

| An optional paraneter that specifies |
| the start time in seconds. The default

| value is -2, which neans the subscriber

| first tries to play the |ive stream |
| specified in the Stream Nane field. If a
| live streamof that name is not found,it|
| plays the recorded stream of the sane |
| nane. If there is no recorded stream |
| wth that nanme, the subscriber waits for|
| a newlive streamwth that nanme and |
| plays it when available. If you pass -1

| inthe Start field, only the live streani
| specified in the Stream Nane field is |
| played. If you pass O or a positive |
| nunmber in the Start field, a recorded |
| stream specified in the Stream Nane

| field is played beginning fromthe tinme |
| specified in the Start field. If no |
| recorded streamis found, the next item |
| in the playlist is played. |

An optional paraneter that specifies the
duration of playback in seconds. The
default value is -1. The -1 val ue neans

alive streamis played until it is no
| onger available or a recorded streamis
pl ayed until it ends. If you pass O, it

specified in the Start field fromthe
begi nning of a recorded stream It is
assuned that the value specified in

the Start field is equal to or greater
than 0. If you pass a positive nunber,

| |
I I
I I
I I
I I
I I
| plays the single frame since the tine |
I I
I I
I I
I I
I I
| it plays a live streamfor |

Par mar & Thor nbur gh [Page 39]

Adobe RTMP Decenmber 2012

| the time period specified in the |
| Duration field. After that it becones

| available or plays a recorded stream |
| for the time specified in the Duration

| field. (If a streamends before the |
| time specified in the Duration field, |
| playback ends when the stream ends.) |
| I'f you pass a negative nunber other |
| than -1 in the Duration field, it |
| interprets the value as if it were -1. |

| Reset | Boolean | An optional Bool ean val ue or nunber |

| | | that specifies whether to flush any |
I I | previous playlist. |

Par mar & Thor nbur gh [Page 40]

Adobe RTMP Decenmber 2012

| Play Cient | | | Server |
R R + | +----- +----+
Handshaki ng and Application |
connect done

Cr eat e |
St r eamni |
R R L Command Message -------------- |
| (_result- createStreamresponse) |
I I
e R Command Message (play) ----------- >
| |
| <=---memman-- Set ChunkSi ze -------------- |
I I
| <---- User Control (Streanm sRecorded) ----]
Pl ay | |
| <---- UserControl (StreanmBegin) ---------- |

I

I

I

I

I
]
| | <--Command Message(onStatus-play reset) --
I

I

I

I

I

I

I

I
| <------------- Audi 0 Message--------------- |
| |
| <=--cmemmee--- Vi deo Message--------------- |
| I |
Keep receiving audio and video streamtill finishes

Message flow in the play conmand
The nessage flow during the execution of the conmand is:

1. The client sends the play command after receiving result of the
createStream command as success fromthe server

2. On receiving the play command, the server sends a protocol
nmessage to set the chunk size.

3. The server sends anot her protocol nessage (user control)
speci fying the event ’Streanl sRecorded’” and the stream ID in that
message. The nessage carries the event type in the first 2 bytes
and the streamID in the |ast 4 bytes.

Par mar & Thor nbur gh [Page 41]

Adobe RTMP Decenmber 2012

4. The server sends another protocol nessage (user control)

speci fying the event "StreanBegin', to indicate beginning of the

streaming to the client.

5. The server sends an onStatus command nessages
Net Stream Pl ay. Start & NetStream Pl ay. Reset if the play c
sent by the client is successful. NetStream Play. Reset i
by the server only if the play conmand sent by the client
the reset flag. |If the streamto be played is not found,

Server sends the onStatus nmessage Net Stream Pl ay. St r eanNot Found.

After this, the server sends audi o and video data, which the
pl ays.

7.2.2.2. play2

Unli ke the play conmand, play2 can switch to a different bit
stream wi t hout changing the tineline of the content played.
server maintains nultiple files for all supported bitrates th
client can request in play2.

The conmand structure fromthe client to the server is as follows:

U Fom e m o a o o m e o
| Field Name | Type | Descri ption

Fomm e e m e m oo o Fomm e m oo o o e m e e e e e e e e e e e e e e e e e e emeaeaoa
| Command Name | String | Name of the conmmand, set to "play2".

o e e e o - R e
| Transaction | Nunmber | Transaction ID set to O.

| 1D | |

U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon
| Conmand | Nul | | Conmand i nformation does not exist.

| Object | | Set to null type.

o e e e o - R e
| Paraneters | Object | An AMF encoded obj ect whose properties
| | | are the public properties described

| | | for the flash.net. NetStreanPl ayOpti ons
| | | ActionScript object.

o e a o - R o m e -

The public properties for the NetStreanPl ayQpti ons object are
described in the ActionScript 3 Language Reference [AS3].

The message flow for the conmand is shown in the foll ow ng
illustration.

ommand
s sent

has set

t he

client

rate

The
at the

Par mar & Thor nbur gh [Page 42]

Adobe RTMP Decenmber 2012

| Play2 Cient | | | Server |
I +----- + | R R +
Handshaki ng and Application

connect done

---+---- |---- Command Message(createStream --->
Create |
Stream |
---+4---- | <---- Command Message (_result) ------- |
I
R N R Command Message (play) -------- >
I I I
	<------------ Set ChunkSi ze ------------
	<--- UserControl (Stream sRecorded)----
Play	
	<------- User Control (StreanBegin)-----
I I I	
	<- - Conmand Message(onSt at us-pl aystart) -
	<=----me--- Audi o Message -------------
I I I	
	<---------- Vi deo Message -------------
- I
R e EEEE Command Message(play2) ------ >
I I I
| | <------- Audi 0 Message (new rate) ----- |
Play2 | | |
| | <------- Vi deo Message (new rate) ----- |
| | | |
| | . _ I b
| Keep receiving audio and video streamtill finishes

Message flow in the play2 command
7.2.2.3. deleteStream

Net St r eam sends the del et eStream command when the Net Stream object is
getting destroyed.

Par mar & Thor nbur gh [Page 43]

Adobe RTMP Decenmber 2012

The command structure fromthe client to the server is as foll ows:

o e a o - R o m e -
| Field Name | Type | Descri ption

R S o m e m e e e e e e e e e e e e e e e e e
| Conmmand Nanme | String | Name of the command, set to

| | | "deleteStreant.

T N oo e o e o e e e e e e e e e o eeaaoo--
| Transaction | Nunber | Transaction ID set to O.

| 1D | |

R S o m e m e e e e e e e e e e e e e e e e e
| Conmand | Null | Command i nformation object does not

| Obj ect | | exist. Set to null type.
T N oo e o e o e e e e e e e e e o eeaaoo--
| Stream I D | Nunmber | The ID of the streamthat is destroyed

| | | on the server

The server does not send any response.

7.2.2.4. receiveAudio

Net St ream sends the recei veAudi o nessage to informthe server whether

to send or not to send the audio to the client.

The conmmand structure fromthe client to the server is as foll ows:

o e e e o - R e
| Field Nane | Type | Descri ption

U Fom e m o a o o m e o
| Conmmand Nanme | String | Name of the command, set to

| | | "receiveAudio".

o e a o - R o m e -
| Transaction | Nunber | Transaction ID set to O.

| 1D | |

U Fom e m o a o o m e o
| Conmand | Null | Command i nformation object does not

| Obj ect | | exist. Set to null type.

o e a o - R o m e -
| Bool Flag | Boolean | true or false to indicate whether to

| | | receive audio or not.

The server does not send any response, if the receiveAudi o command is

sent with the bool flag set as false. |If this flag is set to true,
server responds with status nmessages Net Stream Seek. Notify and
Net Stream Pl ay. St art

Par mar & Thor nbur gh [Page 44]

Adobe RTMP Decenmber 2012

7.2.2.5. receiveVideo

Net St ream sends the recei veVideo nessage to informthe server whether
to send the video to the client or not.

The command structure fromthe client to the server is as foll ows:

Fomm e e m e m oo o Fomm e m oo o o e m e e e e e e e e e e e e e e e e e e emeaeaoa +
| Field Name | Type | Description |
o e e e o - R e +
| Command Nane | String | Nane of the conmand, set to |
| | | "receiveVideo". |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Transaction | Nunmber | Transaction ID set to O. |
| 1D | | |
o e e e o - R e +
| Command | Null | Command i nformation object does not |
| Object | | exist. Set to null type. |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Bool Flag | Boolean | true or false to indicate whether to |
| | | receive video or not. |
o e e e o - R e +

The server does not send any response, if the receiveVideo command is
sent with the bool flag set as false. If this flag is set to true,
server responds with status nessages Net Stream Seek. Notify and

Net Stream Pl ay. St art

7.2.2.6. publish
The client sends the publish command to publish a naned streamto the

server. Using this nane, any client can play this stream and receive
t he published audi o, video, and data nessages.

Par mar & Thor nbur gh [Page 45]

Adobe RTMP Decenmber 2012

The command structure fromthe client to the server is as foll ows:

o e a o - R o m e - +
| Field Name | Type | Descri ption |
S S o m e o e o +
| Command Nanme | String | Name of the command, set to "publish".

U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Transaction | Nunmber | Transaction ID set to O. |
| 1D | | |
o e e e o - R e +
| Command | Null | Command i nformation object does not |
| Object | | exist. Set to null type. |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Publishing | String | Name with which the streamis |
| Nane | | published. |
o e e e o - R e +
Publi shing	String	Type of publishing. Set to "live",
Type		"record", or "append".
		record: The streamis published and the
		data is recorded to a new file. The file]
		is stored on the server in a
		subdirectory within the directory that

| | | contains the server application. If the]
| | | file already exists, it is overwitten.|
| | | append: The streamis published and the]|
| | | data is appended to a file. If no file

		is found, it is created.
		live: Live data is published w thout
		recording it in a file.
U Fom e m o a o o m e o +

The server responds with the onStatus comuand to mark the begi nning
of publi sh.

7.2.2.7. seek

The client sends the seek command to seek the offset (in
mlliseconds) within a nedia file or playlist.

Par mar & Thor nbur gh [Page 46]

Adobe RTMP Decenmber 2012

The command structure fromthe client to the server is as foll ows:

o e a o - R o m e - +
| Field Name | Type | Descri ption |
S S o m e o e o +
| Command Nanme | String | Name of the command, set to "seek". |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Transaction | Nunmber | Transaction ID set to O. |
| 1D | | |
o e e e o - R e +
| Command | Null | There is no command i nformati on object

| Object | | for this conmmand. Set to null type. |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| mlliSeconds | Nunber | Nunmber of mlliseconds to seek into |
| | | the playlist. |
o e e e o - R e +

The server sends a status nessage Net Stream Seek. Notify when seek is
successful. In failure, it returns an _error nessage.

7.2.2.8. pause

The client sends the pause conmand to tell the server to pause or
start playing.

Par mar & Thor nbur gh [Page 47]

Adobe RTMP Decenmber 2012

The command structure fromthe client to the server is as foll ows:

o e a o - R o m e - +
| Field Name | Type | Descri ption |
S S o m e o e o +
| Command Nanme | String | Nanme of the command, set to "pause". |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Transaction | Nunmber | There is no transaction ID for this
| ID | | command. Set to O. |
o e e e o - R e +
| Command | Null | Command i nformation object does not |
| Object | | exist. Set to null type. |
U Fomm e e e o o m m e e e e e e e e e e e e e e e e eaaaon +
| Pause/ Unpause | Boolean | true or false, to indicate pausing or |
| Flag | | resum ng play |
o e e e o - R e +
mlliSeconds | Nunber Nunmber of mlliseconds at which the

| |

| | | the streamis paused or play resuned.

| | | This is the current streamtinme at the
| | | Cient when stream was paused. Wen the
| | | playback is resunmed, the server wll

| | | only send nmessages with tinestanps

| | | greater than this value

The server sends a status nessage Net Stream Pause. Notify when the
streamis paused. NetStream Unpause.Notify is sent when a streamin
un-paused. In failure, it returns an _error mnmessage.
7.3. Message Exchange Exanpl es
Here are a few exanples to explain nessage exchange using RTM.
7.3.1. Publish Recorded Video
This exanple illustrates how a publisher can publish a stream and

then streamthe video to the server. Oher clients can subscribe to
this published stream and play the video.

Par mar & Thor nbur gh [Page 48]

Adobe RTMP Decenmber 2012

| Handshaki ng Done
| |

R N Command Message(connect) ----- >

| <----- W ndow Acknow edge Size ------ |
Connect
| <------- Set Peer BandWdth ---------- |

I
I
|
| |------ W ndow Acknow edge Size ----- >
I
I
|

e N e Command Message ----------- |

(_result- connect response) |

I
I
I
I
I
I
e |
Create | | |
Stream | |
| <------- Command Message ------------ |
| (_result- createStream response) |
I
I
I
I
I

Publ i shi ng
Cont ent

| <=--cm-ne--- Command Message ---------- |
| (_result- publish result)

|
[------------- Video Data ----------- >|
I I
I I
I
I

I

| _ _

| Until the streamis conplete
|

Message flow in publishing a video stream

Par mar & Thor nbur gh [Page 49]

Adobe RTMP Decenmber 2012

7.3.2. Broadcast a Shared Object Message

This exanple illustrates the nmessages that are exchanged during the
creation and changing of a shared object. It also illustrates the
process of shared object nessage broadcasti ng.

| dient | | | Server |

| Handshaki ng and Application |
| connect done |
I I I
I I I
| | |
Create and ---+---- |---- Shared Object Event(Use)---->|
| |
| |
I
I
I

connect |
Shared oject |
---+---- | <---- Shared bject Event--------- |
(UseSuccess, O ear) |
|
R N Shared Object Event ------ >
Shared object | | (Request Change) |
Set Property | | |
R N R Shared Object Event ------ |
| (Success) |
| |
R R B Shared Object Event ----- >
Shar ed obj ect | | (SendMessage) |
Message | | |
Broadcast ---+---- | <------- Shared Object Event ----- |
| (SendMessage)

I
| |
I I
Shared obj ect nessage broadcast

7.3.3. Publ i sh Metadata from Recorded Stream

Thi s exanpl e descri bes the nmessage exchange for publishing netadata.

Par mar & Thor nbur gh [Page 50]

Adobe RTMP Decenmber 2012

| Publisher dient | | | FNMS |
S I + | t- e - - -+

Handshaki ng and Application |
connect done

|
|
---Conmmand Messsage(createStream -->
|
|

|

|

|

I

R |

Create | |

Stream | |
e N B Command Message------------ |
| (_result - command response) |

I
---+--- |---- Command Message(publish) ------ >|
Publ i shing | | |
net adat a | | <------ User Control (StreanmBegin)----- |
fromfile | | |
| | ----- Data Message (Metadata) ------- >|
| |

Publ i shi ng net adat a
8. References

[RFC0791] Postel, J., "Internet Protocol"”, STD 5, RFC 791,
Sept enber 1981.

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981.

[RFC1982] Elz, R and R Bush, "Serial Nunber Arithmetic", RFC 1982,
August 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[AS3] Adobe Systens, Inc., "ActionScript 3.0 Reference for the
Adobe Flash Platfornt, 2011, <http://ww. adobe. com devnet/
actionscript/docunentation. htn >.

[AMFO] Adobe Systens, Inc., "Action Message Format -- AMF 0",
Decenber 2007, <http://opensource.adobe. com w ki /downl oad/
attachment s/ 1114283/ anf 0_spec_121207. pdf >.

[AMF3] Adobe Systens, Inc., "Action Message Format -- AWMF 3",

May 2008, <http://opensource. adobe. com w ki /downl oad/
attachnment s/ 1114283/ anf 3_spec_05_05_08. pdf >.

Par mar & Thor nbur gh [Page 51]

Adobe RTMP Decenmber 2012

Aut hors’ Addresses

Har deep Si ngh Parmar (editor)
Adobe Systens | ncorporated
345 Park Ave

San Jose, CA 95110-2704

US

Phone: +1 408 536 6000
Emai | : hpar mar @dobe. com

URI : http://ww. adobe. coni

M chael C. Thornburgh (editor)
Adobe Systens | ncorporated
345 Park Ave

San Jose, CA 95110-2704

us

Phone: +1 408 536 6000

Emai | : nt hor nbu@dobe. com
URI : http://ww. adobe. com

Par mar & Thor nbur gh [Page 52]

