
SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985 

Input/output Linkage in a 
Qser Inter£ ace Management System 

Dan R. Olsen Jr. 
Brigham Young University 

Elizabeth P. Dempsey 
Arizona State University 

Roy Rogge 
Arizona State University 

Abstract 

The GRaphical INteraction System (GRINS) 
is described, which integrates an 
automaton-based dialogue controller with 
a dynamic display model to provide a User 
Interface Management System. The linkage 
between the logical device interface and 
the graphical presentation of virtual 
devices is discussed. A display manager 
to support dynamic manipulations of 
hierarchically structure images is 
presented. Lastly a model of Display 
Objects whereby application-specific 
display objects can have computational 
constraints defined is described. The 
constraint system is .equivalent to an 
attributed grammar and is evaluated using 
an incremental attribute flow algorithm. 

ntTRODQCTION 

With the huge increase in the number of 
interactive graphics systems that are 
being programmed has come a desire to 
reduce the cost of building such systems 
and to increase the quality of their user 
interfaces. In an attempt to meet this 
need, there have been a number of systems 
developed or proposed which can be 
categorized as User Interface Management 
Systems (UIMS). The purpose of such 
systems is to provide programming tools to 
aid in the development of quality 
interactive systems. In most UIMSs that 
have been developed, the emphasis has been 
on organizing and translating interactive 
inputs into the actual program behavior 
that the user desires. Processing an 
interactive dialogue, however, requires 
both understanding the inputs and 
providing visual feedback about the 
input. The visual feedback portion of an 
interactive dialogue has received 
significantly less attention in UIMS 
research. This paper will discuss the 
GRaphi cal INteracti on Sy stem (GR INS) 
which is a prototype UIMS which has been 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1985 ACM 0-8979J-J66-0/85/007/019l $00.75 

built to study this linkage between input 
language parsing and graphical feedback. 

There is a variety of ways in which 
visual feedback is addressed in various 
UIMSs- Some UIMSs are primarily 
concerned with input parsing and provide 
no direct support for visual feedback. 
The transition networks of Jacob 
[Jaco 83) fall into this category. The 
input-output tools of van den Bos [vand 
83] and the abstract devices of Anson 
[Anso 82) have a notion of encapsulating 
input/feedback concepts in a tool but do 
not discuss mechanisms for actually 
providing the visual feedback. Some 
UIMSs have builtin or static feedback 
techniques. These systems are dominated 
by their input language specifications 
and use a fixed set of primitive virtual 
devices whose feedback techniques are 
hardcoded into them. The menu trees of 
TIGER [Kasi 82) and the menus and 
simulated valuators of SYNGRAPH [Olse 83) 
have this characteristic. In these 
systems the UIMS provides a predefined 
external view or presentation for the 
interactive dialogue which cannot be 
significantly altered. There are systems 
such as Menulay [Buxt 83) and Flair [Wong 
82) which provide tools for designing the 
presentation of a dialogue but the 
linkage between the presentation and the 
dialogue is not a strong one. This 
problem of input/feedback linkage became 
apparent in the design of the input 
primitives for the CORE {GSPC 79) and G.KS 
[GKS 84). Rosenthal and others [Rose 82) 
have carefully defined the kinds of 
feedback that a primitive device should 
support but this has not been integrated 
with a UIMS. 

The paper will proceed by first 
discussing the overall GRINS architecture 
to identify where the input output 
linkages occur. This will be followed by 
a discussion of the lexical presentation 
issues including the layout editor which 
manipulates the lexical and syntactic 
level presentations of a user interface. 
The GRINS display manager with its 
parameterized templates and segments will 
be discussed as a model for dynamically 
manipulating images. Lastly the GRINS 
object description language for modeling 
a ppl i cation-specific di splay objects 
which provide the final level of 
input/output linkage will be presented. 

191 

IPR2025-00153 
Tesla EX1040 Page 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325165.325236&domain=pdf&date_stamp=1985-07-01
http://crossmark.crossref.org/dialog/?doi=10.1145%2F325165.325236&domain=pdf&date_stamp=1985-07-01
http://crossmark.crossref.org/dialog/?doi=10.1145%2F325165.325236&domain=pdf&date_stamp=1985-07-01
http://crossmark.crossref.org/dialog/?doi=10.1145%2F325165.325236&domain=pdf&date_stamp=1985-07-01


♦ 
GRINS ARCH I',rEC'l'QRE 

The GRINS software consists of three 
components as shown in Figure 1. The 
first is a parser that parses a 
description of the interactive interface 
to be generated. The second is the layout 
editor which allows the programmer to 
graphically design the layout of the 
screens, menus, feedback space and 
prompts. The third component is the 
runtime system that interprets the 
information generated by the other two 
components and actually executes the 
interactive program. 

Apphcation 
Progrnrn 

Com_p1Je 
nna 
Link'. 

Dialogue 
Design 

Ltmgunge 

lnten1ct 1ve Progrem 

D = Application Supplied 

□ = Pllrt of GRINS 

Figure 1. 
overall Structure of GRINS 

The parser generates two files as its 
output. The t1rst file col\tains the 
actual dialogue definition in the form of 
an Interactive Push~Down Automaton 
(IPDA). The definition of an IPDA and the 
algorithms for generating it from an input 
description are tound in Olsen [Olse 84). 
The Display Object Definitions file 
contains the information which describes 
the structure of the application. 

The runtime architecture of GRINS is shown 
in Figure 2. 

[H 
[9 
a 
[i!) 
§ 

Figure 2. 
Runtime Structure of GRINS 

In addition to the application there are 
six components to the GRINS runtime system 
itself. There are three levels of input 

192 

8 S I G G R A P H '85 

processing and three for output. The 
role of the Dialogue Manager is to 
interpret the IPDA and control the entire 
interaction. It does this by receiving 
inputs via the Logical and Physical Input 
Device Handlers and by making calls on 
the application and the constraint 
Interpreter. In Figure 2 each component 
can communicate directly with those 
components that are adjacent to it. The 
primary emphasis of this paper is on the 
Display Manager and the constraint 
Interpreter. We will discuss in detail 
how they interrelate with the Dialogue 
Manager and the Logical Input Device 
Handler. We will also discuss the models 
for dynamic graphical output that these 
components support and how they are 
specified. 

LEXICAL PRESENTATIONS 

In discussing how the presentation of an 
interactive dialogue is handled on the 
lexical level we must first understand 
how the Dialogue Manager inter.faces with 
the Logical Input Device Handler. This 
will identify specific properties of 
logical input devices which must be 
reflected in the presentation. We will 
then discuss how this information is 
manipulated by the Layout Edi tor. 

The Dialogue Manager/Logical Input Device 
Interface 

At the lexical level, the primary 
presentation issues of a user interface 
are how the logical input devices are 
prompted for and how their inputs are 
echoed. The lexical level presentations 
are defined by the Layout Editor, are 
controlled by the Dialogue Manager and 
the Logical Input Device Handler and are 
actually displayed by the Display 
Manager. 

The Dialogue Manager views logical input 
devices as being either event or sampled 
devices and as returning O or more typed 
attributes as their result. An obvious 
example is a tablet which is sampled and 
returns two real attributes. The 
interface between the Dialogue Manager 
and the Logical Input Device Handler 
makes no further distinctions between 
devices and has no preset enl.Dneration of 
input devices. 

our present Logical Input Dev ice Handler 
supports two classes of virtual devices 
in addition to the normal physical 
devices which are simply passed through 
the logical level. These virtual devices 
are menu items and picks. As in 
SYNGRAPH, picking is based on the type of 
the data object that a picked image 
represents. A new logical device class 
is created for each data type that can be 
picked and the attribute returned by each 
such device is the data value associated 

IPR2025-00153 
Tesla EX1040 Page 2



SAN FRANCISCO JULY 22-26 

with the picked image. The menu items, 
however, are more relevant to the current 
discussion because of their close 
relationship with the presentation of an 
interaction. Menu i terns best illustrate 
the interplay of the interactive dialogue 
and the presentation. • 

In discussing the relationship between 
the Dialogue Manager and the logical input 
devices we will use the terms and 
definitions set forth for GKS by Rosenthal 
[Rose 82]. The Dialogue Manager accepts 
logical inputs by either consuming them, 
as in the case of event devices, or 
sampling them, as in the case of sampled 
devices. Because most interactive systems 
require more logical inputs than 
physically exist, the physical resources 
must be multiplexed to possibly more than 
one logical device. To ensure that there 
is no conflicting usage of physical 
resources, the IPDA parser partitions the 
dialogue intc, modes. Each mode is 
characterized by a set of logical devices 
which are accessible in that mode. When 
the Dialogue Manager enters a new mode it 
r.eleases and acguires logical devices so 
that the set of logical devices that are 
actually accessible matches the set of 
devices defined for the new mode. If a 
physical resource is bound to two logical 
devices there is no conflict as long as 
those logical devices never appear in the 
same mode. The syntactic portion of the 
parse does not know about the bindings of 
multiple logical devices to a single 
physical device. It is the acquire and 
releasing process associated with a mode 
change which resolves the ambiguities. 

Simply because a device is accessible does 
not mean that its input is acceptable at 
any point in time. The set of acceptable 
inputs is determined by the current state 
of the dialogue. When the dialogue 
manager changes states it disables all 
input devices that are no longer 
acceptable and it enables any that have 
become acceptable. 

When an input is actually accepted by the 
Dialogue Manager it must be acknowledged, 
Because inputs usually are grouped into 
commands or possibly smaller "chunks" 
[Buxt 83) inputs should stay in an 
acknowledged state until closure is 
reached (as determined by the Dialogue 
Manager). 

The Layout Editor 

The role of the layout editor is to take 
the mode information provided in the IPDA 
and append additional presentation 
information to it. The Layout Editor 
integrates the principles presented in 
MENULAY [Buxt 831 with the dialogue 
control strategies developed from 
SYNGRAPH. 

The editor constructs a layout for each 

Volume 19, Number 3, 1985 

mode in the IPDA. The general graphical 
pre se nta ti on of the mode including 
titles, background colors, boundaries of 
viewports and menu areas and location of 
help and feedback message areas are all 
expressed graphically on the screen using 
the editor. In addition, the layout 
editor allows for the positioning of the 
menu icons for each logical menu device 
that is accessed by that mode. 

In addition to the placement of menu 
icons, a facility for designing and 
editing icons is provided. Since each 
menu item represents a logical input 
device it must respond to the enable, 
disable, acknowledge and unacknowledge 
requests from the Dialogue Manager. This 
means that a logical device must present 
to an interactive user one of four states 
(enabled/acknowledged, enabled/unackn­
owledged, disabled/acknowledged and 
disabled/acknowledged). As an icon is 
drawn on the screen the primitives which 
make up the icon are divided into 9-[.Qllp_S 
by the designer. Each of these groups 
can be edited separately and the designer 
can create as many of these groups as 
desired. (More than two or three groups 
is usually excessive.) 

The purpose of groups is to allow for the 
presentation of the four states of an 
icon. Each icon has a color matrix like 
that shown in Figure 3. 

Figure 3. 
Icon Color Matrix 

As the figure shows, the rows of the 
matrix correspond to the states of the 
icon and the columns are the groups. 
Colors are selected from the palette to 
fill in the cells of the matrix. As an 
icon changes state the Logical Input 
Dev ice Handler modifies the color of the 
icon• s groups to match the settings of 
the appropriate row in the matrix. To 
aid the designer in creating these 
dynamic icons there is a drawing area for 
each of the four device states. Drawing 
in any of the areas updates the other 
three, using the appropriate color 

193 

IPR2025-00153 
Tesla EX1040 Page 3



♦ 
settings for each. By using the color 
matrix from previously designed icons one 
can easily and quickly design a uniform 
presentation for an entire dialogue. 

We have only discussed the presentation of 
iconic menu items because they best 
illustrate the dialogue/presentation 
relationship. Other virtual devices are 
easily added to the Logical Input Device 
Handler. 

DISPLAY IIANAGBNBNT 

Our original intent in developing GRINS 
was to use CORE or GKS as a basis for the 
display portion of the system. Both of 
these were found to be inadequate, 
however, because of the inability to edit 
display primitives within segments. This 
editing ability is essential to being able 
to perfor-m the rapid screen updates 
required in an interactive application. 
In addition, neither the CORE nor GKS has 
the geometric modeling capabilities that 
we desired to support display objects. 

It is very important that the model for 
dynamic image modification be incorporated 
into the display manager because of the 
disparity of screen update techniques 
required by various display devices. If 
there is a basic model for image update 
then the display manager can be tailored 
to the needs and limitations of the 
display device whether it be vector 
refresh or raster. 

Primitives. segments and Templates 

The basic graphical units in the display 
manager are primitives, templates, and 
~ents. The primitives currently 
supported are lines. arcs, polygons and 
text. Primitives are grouped into 
templates in much the same fashion that 
they are placed in segments in CORE or 
GKS. The difference is that the arguments 
to each of the primitives can either be 
constant values or references to a segment 
parameter. Templates also contain trans­
formation information for references to 
subsegments. The actual subsegment 
referenced. however, lies in the segment 
using the template. Each segment 
references a template which contains the 
primitives which describe how the segment 
should be graphically interpreted. The 
parameters can be real or integer numbers 
or character strings. Editing operations 
on this structure consist of either 
exchanging or replacing subsegments of a 
segment or changing a parameter value. 
A template is intended to be used by more 
than one segment each of which contains 
different editable values. The role of 
templates is to contain the relatively 
static portions of an image. A segment 
on the other hand contains the modifiable 
portion. When a primitive with a 
parameter is added to a template, an 

194 

8 S I G G R A P H '85 

initial value for the parameter is also 
given. These initial values are stored 
in the template and are used when 
creating new segments for the template. 

In addition to the simple primitives, 
segments and templates the display 
manager provides viewports and subse91Dent 
references. Subsegment references simply 
provide a hierarchical structure for 
pictures. With each subsegment reference 
there may or may not be a transformation 
matrix. The elements of the 
transformation matrix may also be 
parameterized. A viewport definition can 
be placed in the template of either the 
root segment or another viewport. 
Viewports contain their own viewing 
definitions which can be parameterized in 
the segments which use the viewport' s 
template. Thus the editing model can be 
consistently applied to viewports as well 
as any other graphical object. Viewport 
templates can themselves contain primi­
tives, other viewports or subsegments 
references. 

This model for parameterizing display 
lists has existed for quite some time. 
Many vector refresh displays provide this 
feature in hardware. Similar structures 
are proposed by Michner [Mich 78). 
Turner [Turn 84) has proposed extensions 
to GKS which are similar. The difference 
is that in Turner's model the graphics 
variables are global to the entire image 
whereas in our model the variables lie in 
the individual segments. This is a very 
important difference because a flat or 
unstructured variable space is 
inconsistent with a hierarchically 
structured image. 

EXAMPLE; Menu Icons 
Using the menu icons described previously 
as an example, each icon is represented 
by a template. For each group in the 
icon there is a color parameter stored in 
a segment. Each primitive added to the 
template uses the color parameter which 
is appropriate for its group. As a menu 
device changes state the Logical Input 
Dev ice Handler needs only to change the 
parameters in the icon's segment to 
update the menu display. It is up to the 
display manager to perform the 
appropriate screen update operations. 

EXAMPLE: Leyo~ut..s 
Using templates/segments for display 
management each mode's layout becomes a 
viewport template. This mode template 
contains the various viewports for the 
application• s use and the menus. In 
addition, all of the other static layout 
information is stored in this template. 
When the dialogue changes mode the 
Logical Input Dev ice Handler simply 
changes the root segment/template. 
There are several of these layout 
segment/template pairs, one for each 
mode. The only one that is ever displayed 

IPR2025-00153 
Tesla EX1040 Page 4



SAN FRANCISCO JULY 22-26 

is the one referenced by the root segment. 
All layout segments reference the same 
application world segment (which of course 
may itself have subsegments). Menu icon 
segments are referenced as subsegments of 
the layout. Each layout references that 
subset of the menu icon segments which are 
part of the mode that the layout 
represents. Figure 4 shows the structure 
of layouts, application viewports and menu 
icons using this model. 

Root Segment 

/ 
Layout 

/ror 
Current Mode 

,/ 
MOOE 

I lnyaut 
Mode Prtmll1YeS 
Layout -----1 
Template Menu Icon 

L_ _L_o_c•_t_,o_ns-

I Menu TempUtte 
Mode JilereF"ences 

loyout 
Segment Appl1cat1on 

L_ Viewport 

Appl1cct1on 
World 

Coordintites 

ICON 

Group 
Colors 

Icon 
Prtm1t1ves 

:olors 

r-Addilional-, 
I Modes I 

MOOE •E 
layout ul 

Pr1m1llves 1ves 

Menu Icon ns 
lncnt 10ns 

1Jete 
Menu Template nplate :es: 

References nces 

t-----4•--lion, 
ApplJCllllOO- •lion rt 

Viewport ,ort 

Icon. 
·1m1tives 

Figure 4. 
Structure of Layouts, Viewports and 

Menu Icons 

This model for a display manager provides 
a simple and straightforward method for 
dynamically manipulating images. For 
purposes of providing feedback fr om more 
dynamic input techniques than simple menu 
icons this model is not sufficient. As 
Turner has already shown, a computational 
linkage between input values and output 
parameters must be provided. The display 
objects to be described later provide this 
capability. 

Picking 

As a final note about the interface 
between the Logical Input Device Handler 
and the Display Manager, each template has 
stored in it a type code to identify the 
ty-pe of application data that it 
represents and each segment has stored in 
it a pointer to a data value. This 
information in conjuction with the types 
of the enabled logical pick devices is 
used by the Logical Input Device Handler 
to resolve pickability and picking 
ambiguity problems from the screen. 

Volume 19, Number 3, 1985 

DISPLAY OBJECTS 

In providing a dynamic output structure 
whose power is consistent with our 
dialogue control system we wanted to be 
able to model a wide variety of 
interactive techniques. We were guided 
in this by several principles. The 
first, which has already been stated, is 
that simple value substitution does not 
have sufficient power to link inputs to 
outputs. The second is that the 
input/output linkage is frequently 
application specific. The third 
principle is that an image represents an 
application data object whose 
presentation is being defined. 

In the Dialogue Design Language the 
programmer provides what are called 
display object definitions. Display 
objects contain the computational portion 
of the output definition. As a simple 
example of a display object we define a 
virtual valuator in the form of a slider 
as shown in Figure 5. 

0.75 

Figure 5. 
A Virtual Valuator. 

By picking a location on the slider shaft 
we want to move the slider up and 
down. We also want the application to be 
able to set the upper and lower bounds of 
the slider and to be able to read the 
current value of the slider. Figure 
6. shows the object definition of the 
slider. 

195 

IPR2025-00153 
Tesla EX1040 Page 5



♦ 
Obi~ct Slider( Max,Min:Real; 

! Max and Min define the range for the 
slider in the units of the application 

SliderVal:Real 
This returns the slider value 

) = 
This display object is defined in a 
local coordinate system ranging from 
0.0 to 1.0. 

Control YLoc: Real := 0.5; 
1 This is the slider location which is 
1 set by the dialogue manager. This is 
! defined in the coordinates of the 
1 slider object. 

Assert (YLoc <= 1.0) and (YLoc >= 0.0); 
Def SliderVal:=YLoc*(Max-Min)+Min; 

! This is the value of the slider which 
! the application can read. 

Line( (0.0,1.0) ,(0.0,0.0) ,Black); 
1 This is the slider range 

Def Sl i derTop: = YLo c+0 .1; 
Sl i derBottom: = YLoc-0 .1; 

Polygon( (0.1,SliderTop) ,(-0.1,SliderTop), 
(-0.1,SliderBottom) ,(0.1,SliderBottom), 
Black); 

Text ( RealToString(SliderVal), 
(0.11,YLoc),0.0,0.1, Black); 
EndQbj__e_g; 

Figure 6. 
Slider Object Definition. 

Note that several of the display 
parameters are indirectly computed from 
the value ~- This value can be changed 
by the Dialogue Manager. This value could 
also be changed by the application if 
desired. After a control value or set of 
values is changed all assertions are then 
checked. If any assertion fails then the 
change is ignored and the image remains 
unchanged. If all assertions are valid 
then the all of the implied values which 
are found in D--.ci statements are computed 
including the actual Slider.Y.aJ... 

The IJ...ne, £.Q_l~ and ~ statements 
define the graphical primitives of the 
actual objects. Note that some of their 
arguments are constants while some are 
computed from the control variables and 
object parameters. For each object 
definition a template is created in the 
Display Manager. All of the object• s 
graphical primitives are placed in the 
template with those arguments that must be 
computed being defined as parameters. 
After the implied values are computed the 
corresponding segment parameters that have 
changed are updated and the Display 
Manager updates the screen. 

This model provides a nice separation of 
tasks. The application sees only Max, Min 
and SliderVal in its own units. The 
Dialogue Manager sees only YLoc and needs 
only know the coordinate system of the 
slider. The presentation of the slider is 
independent of all of the other components 
and can be changed as needed. 

196 

E«?J S I G G R A P H '85 

The slider object can be used to form a 
3D locator object as shown in Figure 7. 

Object Loc3D( CoordMax, CoordMin: Real; 
LocX,LocY,Locz :Real ) = 

S u b o b j 
X:Slider(CoordMax,CoordMin,LocX); 

Y:Slider(CoordMax,CoordMin,LocY); 
Z:Slider(CoordMax,CoordMin,LocZ); 

EndQbject; 

Figure 7. 
3D Locator Object Definition 

Note that the values of Max and Min for 
each slider are propagated down from the 
3DLocator object and that their SliderVal 
value are propagated up as Locx, LocY and 
Locz. This propagation of values is 
functionally identical to an attributed 
grammar. The algorithm used to determine 
which values (or attributes) must be 
recomputed after a change is the incre­
mental attribute flow algorithm of Demers 
[Deme 81] . 

Note also that the functions which 
compute the assertions and the implied 
values can be application-specific 
functions. This meets the requirement 
defined at the Seattle Workshop on 
Graphical Input and Interaction 
Techniques [Thom 83] that any mechanism 
allowing a UIMS to change the form of a 
displayed image must have a provision for 
the appl ica ti on to veto the change. 

SUMMARY 

The GRINS user interface management 
system has addressed the issues of how 
models for dynamic displays can be 
integrated with dialogue control to 
provide a comprehensive set of principles 
covering both the input and output facets 
of an interactive dialogue. GRINS has 
been implemented in Pascal and C under 
UNIX and using a Raster Technologies 
display. We are pleased with the 
progress that we have made with this 
system, however, we feel that additional 
work needs to be done on the screen 
update algorithms of the ·Display Manager 
to improve its efficiency and we are 
hoping to gain much more experience with 
the power and applicability of our 
Display Obj ect s. 

REFERENCES 
Anson, Ed. 0 The Device Model of 

Interaction. " Computer Graphics 16, 3 
(July 1982) pp. 107-114. 

Buxton, William. "Lexical and Pragmatic 
Considerations of Input Structures. n 
computer Graphics 17, 1 (January 1983) 
pp. 31-37. 

IPR2025-00153 
Tesla EX1040 Page 6



SAN FRANCISCO JULY 22-26 

Buxton, w, Lamb, M.R., Sherman, D., Smith, 
K.C. "Towards a Comprehensive User 
Interface Management System." Computer 
Graphics 17, 3 (July 1983) pp. 35-42. 

Demers, A., Reps, T. and Teitelbaum, T. 
"Incremental Evaluation for Attribute 
Grammars with Application to Syntax 
directed Edi tors. 0 8th conference on 
Principles of Programming Languages 
(January 1981) pp. 105-116. 

Graphical Kernel System, ANSI 
X3H3/83-25r3; special Issue, Computer 
Graphi_Q,S_ (February 1984) . 

GSPC. "Status Report of the Graphics 
Standards Planning Committee.° Computer 
Graphi.c.s 13, 3 (Aug 1979). 

Jacob, R. J. K. "Using Formal Specifications 
in the Design of a Human-Computer 
Interface." CQromunications of the ACM 26, 
4 (April 19 83) . 

Kasik, David J. 0 A User Interface 
Management System." Computer Graphics 16, 
3 (July 1982) PP- 99-106. 

Michner, J.C. 0 A Graphics System for 
Real-Time Programming." Proceedings of 
the Society for Information Display, 
Vol 19, 4 (Fourth Quarter 1978) 
pp. 157-161. 

Olsen, Dan R. and Dempsey, Elizabeth 
P. "SYNGRAPH: A Graphic User Interface 
Generator." Computer Graphic~ 17, 3 (July 
1983) pp. 43-50. 

Olsen, Dan R. "Push-down Automata for User 
Inter£ ace Management." ACM Transactions 
on Gral,lhics 3, 4 (July 1984). 

Rosenthal, D.S.H, Michener, J.C., Pfaff, 
G-, Kessener, R. and Sabin, M. "The 
Detailed Semantics of Graphics Input 
Devices. 0 C.ornputer Graphics 16, 3 (July 
1982) 33-38. 

Thomas, James J. and Hamlin, Griffith. 
"Graphical Input Interaction Technique: 
Workshop Summary." Computer Graphics 17, 
1 (January 1983) pp. 5-30. 

Turner, Joshua u. 0 A Programmer• s 
Interface to Graphics Dynamics." computer 
Graphics 18, 3 (July 1984) pp. 263-270. 

van den Bos, J., Plasmeijer, M.J. and 
Hartel, P.H. "Input-output Tools: A 
Language Facility for Interactive and 
Real-Time Systems." IEEE Transactions on 
software Engineering SE-9, 3 (May 1983) 
pp. 247-259. 

Wong, Peter c. s. and Reid, Eric R. 
"Flair - User Interface Dialog Design 
Tool." Computer Graphics 16, 3 (July 
1982) pp. 87-98. 

Volume 19, Number 3, 1985 

197 

IPR2025-00153 
Tesla EX1040 Page 7




