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 ABSTRACT

 Any new technology has impacts on the industries, gov-
 ernment and consumer sectors that have dealings with it.
 Introduction of significant numbers of electric vehicles
 (EVs) and the need for installation of charging equipment
 to support them has caused concerns for building depart-
 ment personnel, equipment manufacturers and installers,
 consumers, EV pioneers, government agencies and oth-
 ers.

 This paper presents a summary of California's Health
 and Safety Code requirements for Electric Vehicle Supply
 Equipment (EVSE) and how equipment has been devel-
 oped to comply with it. Background, history, rationale and
 comparisons are given for requirements in the California
 Health and Safety Codes, and 1996 and 1999 National
 Electrical Codes® (NEC®).

 INTRODUCTION

 In 1991 , a national consortium of automakers, equipment
 manufacturers, building officials, utilities and government
 officials began addressing issues facing EV charging.
 Called the National Electric Vehicle Infrastructure Work-

 ing Council (IWC), the consortium began parallel efforts
 to develop vehicle and charging equipment using a sys-
 tems approach. The outcome of their efforts was equip-
 ment and safety standards that result in equipment which
 uses technology to handle shock hazards and battery
 hydrogen off-gassing. IWC recommended these stan-
 dards to the Institute of Electrical and Electronic Engi-
 neers, the National Fire Protection Association (NFPA),
 the American National Standards Institute, the Society of
 Automotive Engineers (SAE), and Underwriters Labora-
 tories (UL).

 More specifically, the SAE developed equipment stan-
 dards that detail operational and architectural specifica-
 tions for charger and vehicle components. UL developed
 safety standards for listing of charging equipment. The
 NFPA adopted safety standards in the form of the 1996
 NEC® and more recently the 1999 NEC®.

 In 1994, the California Energy Commission (Energy
 Commission) began working with IWC, California Build-
 ing Officials and the State Fire Marshal to modify the
 1996 NEC® Article 625 to accommodate California spe-
 cific issues and adopt it prior to California's normal trien-
 nial adoption schedule. In June 1996, a modified version
 of the 1996 NEC® Article 625 became effective as the
 California Electrical Code's new Article 625. At present,
 California is looking at adopting the 1999 NEC® Article
 625.

 In order to understand how the building codes came to be
 and what they require, it first is important to understand
 what issues precipitated their development and how the
 equipment and vehicles function. This will be followed by
 a discussion of the building codes and how they are
 enforced. Finally, changes reflected in the 1996 NEC®
 will be discussed.

 CHARGING EQUIPMENT DEVELOPMENT

 SAFETY IS FOREMOST - Safety was and is the primary
 reason charging equipment and safety standards have
 progressed in the direction they have. Related to this is
 the issue of liability.

 Some EV enthusiasts assert that existing plugs and
 receptacles, such as NEMA 14-50R or -30R, provide suf-
 ficient safety for an EV application. As far as we know,
 this claim is unsubstantiated by any independent testing.
 While RVs, clothes dryers, welders and so on use these
 receptacles, the duty cycle of these items do not com-
 pare to that of EVs. With EVs, regular connection and
 disconnection of the vehicle to the charging equipment
 happens twice a day at a minimum (e.g., when leaving
 home in the morning and when returning in the evening).
 When public or workplace charging is used, this number
 can be more.

 Clothes dryers and welders on the other hand are typi-
 cally plugged in when installed and are not unplugged
 until removed (e.g., once or twice over a span of years).
 Even portable welders are not moved with great daily fre-
 quencies. RVs on average are only temporarily used
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 (e.g., during vacation periods each year). As such, they
 do not get plugged in and unplugged daily throughout the
 year.

 California wants 35,000 EVs operating in California by
 2003. This would equate to 25.6 million connections/dis-
 connections per year. Potential for an accident to occur
 where someone inadvertently touches an energized plug
 that is partially inserted into a receptacle is greatly
 increased. Therefore, the connection method for EVs to
 the off-board equipment must be fool proof.

 "SMART" CHARGERS - Advanced technology is used in
 order to make charging equipment that is fool proof and
 provides the minimum levels of safety specified by the
 safety experts collaborating through the IWC.

 There are four basic safety devices that are required by
 the 1996 and 1999 NEC® to meet the minimum safety
 requirements specified by the safety experts. These are:

 • Connection Interlock

 • Charge Circuit Interrupt Device

 • Automatic Deenergization Device
 • Ventilation Interlock

 These components, how they operate, and where they
 are specified in the codes will be discussed in Safety
 Devices. Because charging equipment manufactured to
 meet the code requirements have these devices, they
 have been called "Smart" Chargers. They are considered
 smart because they communicate with the EV prior to
 and during charging to detect any anomaly that might
 affect safety or the equipment.

 DURABILITY AND VALUE - Second to the safety issue
 is durability and long term value for the consumer.
 Because plugs and receptacles must be capable of with-
 standing high numbers of mate/demate cycles, they must
 be durable. Some plugs and receptacles, like the NEMA
 14-50R or -30R are not designed to withstand the duty
 cycles of EVs and would probably require more frequent
 replacement or repair resulting in higher life cycle costs
 to the consumer and possible safety hazards due to dete-
 rioration of the plug and/or receptacle. In addition, these
 plugs and receptacles must be durable in all weather
 conditions, including wet, corrosive, and adverse temper-
 ature conditions.

 The Electric Power Research Institute conducted durabil-

 ity tests on a variety of plugs and receptacles for EV
 charging. The tests found the inductive systems and butt/
 pin contactor configurations more resilient to the
 demands of the EV duty cycle and operating environment
 than other common plugs/receptacles contactor configu-
 rations.

 Finally, the customer will have the greatest opportunity to
 take advantage of discount energy supply rates through
 the use of Electric Vehicle Supply Equipment (EVSE) that
 can be programmed to charge vehicles during lower rate
 periods allowed by their electricity provider. These lower
 time-of-use rates are available through most California
 electricity providers. This benefits all electricity users by
 encouraging charging during off-peak demand periods
 when generation capacity exceeds demand.

 Overall, this systems approach to EVSE design provides
 for safety, durability and value to owners of electric vehi-
 cles, and to others who use electricity in the same ser-
 vice region.

 CONFIGURATIONS - Driven by safety and life cycle
 cost, electric utilities and automobile manufacturers have
 evaluated several different methods of connecting EVs to
 off-board equipment for charging. Table 1 below defines
 the different charging levels industry has formalized for
 EV charging. Figure 1 below shows the three configura-
 tions considered.

 Table 1 . Charging Levels [1 ]

 Level 1 "Level 1 " EV charging employs cord & plug
 connected portable EVSE that can be
 transported with an EV. This equipment is
 used specifically for EV charging and shall be
 rated at 120 VAC and 15A, and shall be
 compatible with the most commonly available
 grounded electrical outlet (NEMA 5-1 5R).

 Level 2 "Level 2" EV charging employs permanently
 wired EVSE that is operated at a fixed
 location. This equipment is used specifically
 for EV charging and is rated at less than or
 equal to 240 VAC, less than or equal to 60A,
 and less than or equal to 14.4 kW.

 Level 3 "Level 3" EV charging employs permanently
 wired EVSE that is operated at a fixed
 location. This equipment is used specifically
 for EV charging and is rated at greater than
 14.4 kW.

 In order to accommodate unique situations from charging
 site to charging site and perhaps to make charging EVs
 analogous to refueling a gasoline vehicle, industry has
 adopted the Off-board Cord/Connector option as the con-
 nection method for Level 2 and Level 3 charging. Level 2
 is the most prevalent charging level and can be found in
 the home, workplace or public sites. Level 3 charging will
 be less common and will be used for certain fleet applica-
 tions and/or retail public charging sites.
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 Figure 1 . EV Connection Alternatives [2]

 As can be seen in Table 1 , Level 2 and 3 charging equip-
 ment are intended to be permanently wired in place. This
 allows for the charging equipment off-board the vehicle to
 be sized for the level of charging it can provide. For
 example, for Level 3 charging, the cable and conductors
 will be sized larger to handle the higher amperages
 required. The On-board Cord/Plug option for Level 2 and
 3 charging would require this large cable to be on-board
 the vehicle, thus increasing vehicle weight and reducing
 driving range. The Off-board Cord/Connector option on
 the other hand, minimizes the on-board cabling, thus
 minimizing weight while still allowing for Level 2 and 3
 charging to occur with the same inlet on the vehicle.

 Level 1 charging takes a long time because the power
 level is low. Consequently, Level 1 systems are typically
 only used to charge in situations where a Level 2 system
 is not available. The Adapter Cordset option has become
 the preferred method of connecting Level 1 charging sys-
 tems. Because it is intended to be used in unexpected
 locations and circumstances, Level 1 systems are
 designed to plug into common outlets found anywhere
 (e.g., NEMA 5-1 5R or -20R). Put another way, it is

 designed to not require specialized equipment yet still
 provide minimum safety provisions in the form of ground-
 ing and ground-fault protection. Again, Level 1 charging
 will probably not be the long-term, preferred method of
 recharging vehicles in a scenario where many EVs are in
 use.

 SAFETY DEVICES - As discussed earlier, there are four
 main safety devices incorporated into "Smart" EVSE that
 make for fool proof, safe operation. These devices are a
 Connection Interlock, Charge Circuit Interrupt Device
 (i.e., ground-fault protection), Automatic Deenergization
 Device, and Ventilation Interlock. While each device
 serves a specific function, they work together as a sys-
 tem to provide a seamless charging event. While Level 2
 and 3 employ all four of these components, Level 1
 charging only uses ground-fault protection. The other
 devices are not required because the risk of shock from
 plugging and unplugging a Level 1 system is no greater
 than for common household appliances. For Level 2 and
 3, all four devices are required because the shock haz-
 ards are higher and more potentially lethal.

 Connection Interlock - The Connection Interlock is a

 device that provides for a dead interface between the
 EVSE and the vehicle. When the EV Connector is not

 connected to the vehicle, the Connection Interlock pre-
 vents power from being applied to the cable or EV Con-
 nector. When the EV Connector is connected to the

 vehicle, a signal is passed from the EVSE to determine if
 a vehicle is connected and the EVSE performs a systems
 check. Subsequent to confirming system integrity, the
 EVSE allows energy to flow through the cable and con-
 nector. This device is required by Section 625-18 of the
 1996 and 1999 NEC®, and California Electrical Codes.

 Charge Circuit Interrupt Device - Ground-fault protection
 is required for all charging levels by Section 625-22 of
 both the 1996 NEC® and the California Electrical Code.
 Specifically, the codes require ground-fault protection
 devices for personnel so that "when a current to ground
 exceeds some predetermined value that is less than the
 current required to operate the overcurrent protective
 device of the supply circuit, the system shall de-energize
 the electric vehicle supply equipment within an estab-
 lished period of time."[3]

 Traditional Ground-Fault Circuit Interrupters (GFCIs) for
 60 Hertz systems trip at 5 milliamperes (mA) when they
 detect a possible ground-fault current. This trip level
 avoids electric shock that can result in any harmful
 effects including the effects starting at 5 mA (immobility
 of body muscles, respiratory arrest) and the effects that
 could occur at 20 m A (ventricular fibrillation). However,
 these GFCIs cannot differentiate between possible haz-
 ardous ground currents and harmless transient currents
 on the electric utility distribution system (typically not
 greater than 20 mA). Therefore, traditional GFCIs are
 subject to "nuisance tripping" if a transient current above
 5 m A occurs. [4]
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 To remedy the situation, the personnel protection sys-
 tems for EVSE use ground or isolation monitoring, a cir-
 cuit interrupting device, and basic, double, or reinforced
 insulation. Product safety standards developed by UL
 specify what combinations of these devices can be used
 to meet personnel protection requirements. For example,
 basic insulation and a traditional GFCI that trips at 5 mA
 can be still be used, but "nuisance" tripping may be a
 problem as explained above. To avoid nuisance tripping
 problems, a 20 mA tripping circuit interrupting device can
 be used in conjunction with double or reinforced insula-
 tion. A 20 mA tripping circuit interrupter can be used with
 basic insulation also, but a ground monitoring device
 must be used as well. These combinations are applicable
 to 240 volt or smaller systems (Level 1 or 2 charging). For
 Level 3 systems, additional constructional features are
 required.

 "Isolated systems (with no intentional system-grounding
 connection) can be used if the isolation is reliable. One
 way to make isolation reliable is to monitor the isolation
 and disconnect power if a ground-fault appears anywhere
 in the system. "[5] Consequently, UL standards allow for
 use of basic insulation in conjunction with an isolation
 monitor. For Level 3 systems, additional constructional
 features are required.

 Circuit interrupters that trip at 20 mA prevent ventricular
 fibrillation, and special constructional features handle the
 shock effects (e.g. muscle tetanization, respiratory arrest)
 or transient currents below 20 mA,. In this way, advanced
 personnel protection systems used in EVSE can distin-
 guish between hazardous ground currents and harmless
 transient currents to offer a level of protection better than
 traditional GFCIs with fewer occurrences of nuisance trip-
 ping.

 In the 1999 NEC®, Section 625-22 has been changed to
 allow for a systems approach to providing protection ver-
 sus a device only approach.

 Automatic Deenergization Device - The Automatic Deen-
 ergization Device is a mechanism that will deenergize the
 EVSE if a strain occurs to the cable or EV connector that

 could result in live parts being exposed. An example
 would be where a parked EV connected to a charging
 station accidentally rolls back resulting in strain to the
 cable. This device is required in Section 625-19 of the
 1996 and 1999 NEC®, and the California Electrical Code.

 Ventilation Interlock - With conventional starter batteries

 used in gasoline vehicles and some conversion EVs,
 hydrogen gas can be generated during charging. In EVs
 marketed by major automobile manufacturers, advanced
 batteries are used that do not generate hydrogen gas. To
 avoid creating a situation where hydrogen gas can collect
 in an enclosed space, such as a garage, the codes
 require a ventilation interlock.

 The ventilation interlock performs three functions in order
 to meet the requirements of Section 625-29 of the 1996

 and 1999 NEC® and section 625-29 (c) and 1206 of the
 California Electrical and Building Codes. First, it queries
 the vehicle to determine if the vehicle requires ventilation
 during charging. Second, it determines whether the
 EVSE can provide ventilation. Finally, if ventilation is
 available, it ensures the ventilation operates during the
 entire charging process.

 Three scenarios illustrate how the ventilation interlock

 operates:

 1. If a charging station has ventilation included in the
 system, then the interlock will allow either a gassing
 vehicle (i.e., a vehicle using gassing batteries) or
 nongassing vehicle to charge.

 2. If a charging station is located outdoors where there
 is sufficient natural ventilation, the interlock will allow
 either vehicle to charge.

 3. If ventilation is not included in the system, then the
 interlock will allow a nongassing vehicle to charge,
 but not a gassing vehicle.

 The ventilation interlock provides assurance to the EV
 owner that hydrogen gasses, if generated, will not collect
 in enclosed spaces regardless of the type of batteries or
 vehicle. This assurance provides for the long-term market
 success of commercially produced EVs.

 BUILDING STANDARDS

 NEC® COMPARED TO CALIFORNIA ELECTRICAL
 CODE - California adopts codes and revisions on a trien-
 nial basis. In 1995, California adopted the 1993 NEC® as
 the California Electrical Code and approved including
 Article 625 of the 1996 NEC® in the California Electrical
 Code as well. Therefore, the 1996 NEC® Article 625 is
 the basis for the 1995 California Electrical Code Article

 625. However, California also modified the provisions in
 the 1996 NEC® Article 625 in two important ways.

 First, California only requires "approved" equipment as
 opposed to "listed". Listed means the equipment has
 been tested by a nationally recognized testing facility
 such as UL to perform to certain performance standards.
 In the case of EVs, the charging equipment is listed to
 comply with NEC® Article 625. At the time of adoption,
 availability of listed Level 3 charging equipment was
 uncertain. Since the codes do not specifically differenti-
 ate between Levels 1 , 2 or 3, California did not want to
 hinder the installation of Level 3 charging equipment for
 large EV applications such as buses. Therefore, Califor-
 nia allows the jurisdictions having authority (e.g., individ-
 ual building departments) to approve equipment and
 installations based upon their own assessment of
 whether it meets the requirements of the code. This can
 be done by showing manufacturer's data or third party
 testing (for example UL) that proves the equipment meets
 the safety requirements of the code. Practically speaking
 however, most building departments require the equip-
 ment to be UL listed for the purpose intended. California
 is likely to require listing after it adopts the 1999 NEC®.
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 The second major change between the 1 995 California
 Code and 1996 NEC® is ventilation. In the 1996 NEC®,
 ventilation requirements are included. In the California
 Code, ventilation requirements pertinent to EVs have
 been moved to the appropriate sections of the California
 Building Code. This was done so that ventilation, whether
 EV related or not, is addressed in the same sections of
 the California code.

 WHAT'S COVERED BY THE CODES - The scope of the
 NEC® and California Code applies to all the equipment
 that supplies power between the electricity provider and
 the EV. This means a simple receptacle would also be
 under the requirements of NEC® Article 625 if it is
 intended to be used as a power supply for an EV. The
 1996 and 1999 NEC® and California Article 625 define
 EVSE as:

 "Electric Vehicle Supply Equipment. The conductors,
 including the ungrounded, grounded, and equipment
 grounding conductors, the electric vehicle connectors,
 attachment plugs, and all other fittings, devices, power
 outlets or apparatuses installed specifically for the pur-
 pose of delivering energy from the premises wiring to the
 electric vehicle."[6]

 Figure 2 shows how EVSE, premise wiring, the vehicle
 and the utility all interface with one another. In this con-
 text, it is easier to discuss the role building departments
 play in permitting EV charging installations.

 Figure 2. EV Charging System Configuration [7]

 CODE COMPLIANCE - The definition of EVSE means

 the building department generally has jurisdiction over all
 premise wiring from the service panel to the interface
 with the EV. In the case of Level 2 and 3 charging where
 the equipment is hardwired in place, this is clear and
 unquestioned. The building department enforces the pro-
 visions of the codes in these instances. Since in most

 cases the building inspectors will not see the EV during
 field inspection and because the EVSE is designed not to
 operate unless connected the an EV, building officials
 rely on the UL listing process to validate that the EVSE
 meets the safety provisions of the building codes. They
 then can treat the EVSE as any other household appli-
 ance.

 First, they verify the proper equipment is specified in the
 plans by checking the UL listing. With a charger listed for
 use indoors without ventilation, the building official knows
 ventilation will not be required. The building official relies
 on the UL listing to ensure the charger will only charge
 nongassing vehicles. Furthermore, because major manu-
 facturers are using charging systems that communicate
 with the vehicle, building officials rely on the UL listing to
 ensure a nonventilated charging station will not acciden-
 tally charge a gassing vehicle. Second, they verify the
 premise wiring and required circuit breakers are sized
 and installed properly. Last, during field inspection, they
 verify the charging equipment is installed per the manu-
 facturer's instructions.

 Level 1 charging systems are more difficult to address
 however. By design, Level 1 charging equipment is con-
 figured to use conventional wall plugs, not specialized
 equipment. In most cases Level 1 Cordsets are provided
 with the vehicles. Consequently, building department
 inspectors are not likely to see a permit application for
 Level 1 EVSE. However, the code requirements are still
 required and a permit should be obtained for Level 1
 EVSE.

 CODE TRAINING PROGRAMS -To date, over fifteen
 training sessions have been held for over 250 California
 building department personnel. These classes have been
 conducted by California Building Officials Training Insti-
 tute. The training materials cover:

 • Technology Overview
 • Plan Check Issues

 • Communication Issues between Plan Check and

 Inspection

 • Permitting Guidelines
 • Code Definitions

 • Inspection Issues

 • Manufacturing Issues

 • Inspection Guidelines

 The California code development and training program
 was sponsored by California Electric Transportation Coa-
 lition, Los Angeles Department of Water and Power,
 Pacific Gas and Electric Company, Sacramento Munici-
 pal Utility District, San Diego Gas and Electric Company,
 Southern California Edison Company, Hughes Power
 Control Systems, General Motors Corporation, California
 Air Resources Board, and the Energy Commission.

 For more information about the codes or training, contact
 California Building Officials Training Institute at (916)
 457-1 1 03 or www.calbo.com.

 OTHER 1999 NEC® CHANGES - Beside the various
 changes discussed previously in this paper, three more
 changes that will take effect with the 1999 NEC® should
 be mentioned.
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 The first change deals with ventilation. In the California
 and 1996 NEC® codes, ventilation is emphasized as the
 requirement (i.e., the rule) with exceptions for using
 equipment safe for use indoors without ventilation. Since
 these codes became effective, all of the major automo-
 bile manufacturers are using nongassing battery technol-
 ogy and "smart" chargers. As such, ventilated charging
 systems are not required. In effect, "no ventilation" has
 become the rule and "ventilation" has become the excep-
 tion to the rule. Therefore, to reflect this, the 1999 NEC®
 will emphasize ventilation not being necessary except in
 certain instances. Because the equipment has a ventila-
 tion interlock and is UL listed, building officials and con-
 sumers can rest assured that a nonventilated charging
 station will not inadvertently charge an offgassing vehicle
 if the EVSE cannot provide ventilation.

 The second change deals with marking of the equipment.
 In previous editions of the codes, there was confusion
 about who is responsible for the markings on the EVSE.
 Is it the responsibility of the automobile manufacturer,
 equipment manufacturer, or installation contractor?
 Where should the markings be located? Does every
 piece of equipment have to be marked? The new
 changes to the code clear up these questions by detailing
 where markings are to be placed and by whom. Further-
 more, three separate marking requirements have been
 moved to one place in the codes, Section 625-15. Gener-
 ally, all EVSE is to be marked by the manufacturer "For
 use with Electric Vehicle".[8] The two ventilation require-
 ments that used to be in Section 625-29 deal with the

 ventilation requirements of a particular installation. As
 substantiated by Dave Brown, coauthor of the 1999
 NEC® code language, 'lhe wording was changed to
 make it perfectly clear that when ventilation is required,
 the EVSE installation must be marked accordingly [by the
 manufacturer], and an exhaust fan must be installed.
 When ventilation is not required, the EVSE installation
 must be so marked [by the manufacturer] and no exhaust
 fan is necessary."[9] Whether marked "Ventilation
 Required" or "Ventilation Not Required", the markings are
 to be placed so that they are clearly visible after the
 installation.

 The last change of note deals with how EVSE is installed.
 Earlier code versions did not clearly reflect the specifica-
 tions outlined in the IWC Record of Consensus items

 shown in Table 1. EVSE is intended to be permanently
 installed, meaning the equipment is permanently fas-
 tened to a wall or bollard, and the wiring is hardwired in a
 junction box or some similar fashion. Level 1 EVSE is
 permitted to be cord and plug connected as long as it has
 ground-fault protection. The 1999 NEC® language speci-
 fies all EVSE is to be permanently connected and fas-
 tened in place except equipment rated 1 25 volts, 1 5 or 20
 amperes which can be cord and plug connected. [10]
 This means Level 1 EVSE.

 CONCLUSION

 Through a national effort, EV charging and supply equip-
 ment has been designed with safety as the primary con-
 cern. Using advanced technology to overcome safety
 concerns, industry has developed safe EVSE that is
 durable and convenient to use. Safety requirements have
 been incorporated into various standards including
 equipment standards with the SAE and UL, and safety
 standards with NFPA, the NEC®, and California Building
 Codes.

 The NEC® and California Building Codes require four
 main safety devices and constructional features to
 address shock hazards and battery offgassing concerns.
 The codes require only approved or listed equipment be
 used for charging EVs.

 The 1996 NEC® was a proactive attempt to develop
 codes for equipment that was new, not readily available,
 nor widely disseminated yet. After evaluating consumer
 preferences, building department practical experience
 permitting installations, and changes or enhancements in
 EVSE design, the 1999 NEC® clarifies areas of the origi-
 nal code to make the process easier and more under-
 standable for building officials, installers and consumers.
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 sion. In 1992 she was the principal author of the Gover-
 nor's Energy Policy report. It was the research done for
 that project that led Sue to seek a position supporting
 California electric transportation policies. Sue has led
 efforts to develop and adopt standards for charging sys-
 tems, funding for electric vehicle and infrastructure incen-
 tives, public education programs, and a training program
 for emergency responders.

 DEFINITIONS, ACRONYMS, ABBREVIATIONS

 EV Electric Vehicle

 EVSE Electric Vehicle Supply Equipment
 IWC National Electric Vehicle Infrastructure Working

 Council

 NEC® National Electrical Codes®
 NEMA National Electrical Manufacturer's Association

 NFPA National Fire Protection Association, Inc.
 UL Underwriters Laboratories, Inc. ®
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