
SYSTEMS DESIGN 
AND DESIGN 
METHODS 

This Part starts with Chapter 6 examining a structured design approach and 
its application to CMOS system design. This is followed by a discussion of 
CMOS chip implementation options ranging from Field Programmable Gate 
Arrays (FPGAs) to full custom layout, which illustrates the trade-offs 
between implementation, design complexity, and time to market. The chap­
ter then discusses a variety of CMOS design automation options and the var­
ious design tools used for CMOS design. 

Chapter 7 deals with the important problem of testing CMOS circuits by 
introducing the reader to the test process, followed by an explanation of test 
nomenclature. Various methods of designing a testable CMOS circuit are 
then treated. This treatment centers on a structured approach to testing. 

Chapter 8 provides an extensive set of subsystem examples starting with 
coverage of datapaths. Adders are treated at great depth. The chapter contin­
ues with a treatment of the design of memories and concludes by examining 
various techniques for implementing CMOS control logic. 

PART2 

379 
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CMOS 
DESIGN 
METHODS 

6.1 Introduction 

In Chapter 1 we found that the design description for an integrated circuit may 
be described in terms of three domains, namely: ( 1) the behavioral domain, (2) 
the structural domain, and (3) the physical domain. In each of these domains 
there are a number of design options that may be selected to solve a particular 
problem. For instance, at the behavioral level, the freedom to choose, say, a 
sequential or a parallel algorithm is available. In the structural domain, the 
decision about which particular logic family, clocking strategy, or circuit style 
to use is initially unbound. At the physical level, how the circuit is imple­
mented in terms of chips, boards, and cabinets also provides many options to 
tli.e designer. These domains may be hierarchically divided into levels of 
design abstraction. Classically these have included the following: 

• Architectural or functional level. 

• Register-transfer level (RTL). 

• Logic level. 

• Circuit level. 

The relationship between description domains and levels of design abstrac­
tion are elegantly shown by the Y-chart1•2 in Fig. 6.1, which was introduced 
in Chapter 1. In this diagram, the three radial lines represent the three 
description domains, namely the behavioral, structural, and physical 381 
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382 CHAPTER 6 CMOS DESIGN METHODS 

FIGURE 6.1 Y-chart show­
ing description domains and 
levels of design abstraction 

Behavioral Domain Structural Domain 

Circuit Abstraction Level 

J 
RTL, Logic Abstraction Level 

Transistors 

Cells 

Modules 

Chips 
Boards 
Boxes 

Physical Domain 

Architectural Abstraction Level 

domains. Along each line are enumerated types of objects in that domain. 
Circles represent levels of similar design abstraction: the architectural, logic, 
and circuit levels. The particular abstraction levels and design objects may 
differ slightly, depending on the design method. 

In this chapter we will examine the means by which we transform a 
description in one domain into a description in another domain. We begin by 
discussing some of the guiding principles that apply to most engineering 
projects. Then the various design strategies available to the CMOS IC 
designer are surveyed, ranging from very fast prototyping or small-volume 
approaches to the more labor-intensive custom design approaches. The CAD 
tools necessary to achieve the design strategies are then summarized. 
Finally, we examine the economics of design, which can guide us to the right 
selection of an implementation strategy. 

6.2 Design Strategies 

6.2.1 Introduction 
The economic viability of an IC is in large part affected by the productivity that 
can be brought to bear on the design. This in turn depends on the efficiency with 
which the design may be converted from concept to architecture, to logic and 
memory, to circuit and hence to a physical layout. A good VLSI design system 
should provide for consistent descriptions in all three description domains 
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6.2 DESIGN STRATEGIES 383 

(behavioral, structural, and physical) and at all relevant levels of abstraction 
(architecture, RTL, logic, circuit). The means by which this is accomplished may 
be measured in various terms that differ in importance based on the application. 
These design parameters may be summarized in terms of 

• Performance-speed, power, function, flexibility. 

• Size of die (hence cost of die). 

• Time to design (hence cost of engineering and schedule). 

• Ease of test generation and testability (hence cost of engineering and 
schedule). 

Design is a continuous trade-off to achieve adequate results for all of the 
above parameters. As such, the tools and methodologies used for a particular 
chip will be a function of these parameters. Certain end results have to be 
met (i.e., the chip must conform to performance specifications), but other 
constraints may be a function of economics (i.e., size of die affecting yield) 
or even subjectivity (i.e., what one designer finds easy, another might find 
incomprehensible). 

Given that the process of designing a system on silicon is complicated, the 
role of good VLSI-design aids is to reduce this complexity, increase productiv­
ity, and assure the designer of a working product. A good method of simplifying 
the approach to a design is by the use of constraints and abstractions. By using 
constraints the tool designer has some hope of automating procedures and taking 
a lot of the "legwork" out of a design. By using abstractions, the designer can 
collapse details and arrive at a simpler concept with which to deal. 

In this chapter we will examine design methodologies that allow a vari:. 
ation in the freedom available in the design strategy. The choice, assuming 
all styles are equally available, should be entirely economic. According to 
function, suitable design methods are selected. It may be found that due to 
inefficiencies in layout, some styles will not be capable of implementing the 
function. Following these steps, the required die cost is estimated and the 
quickest means of achieving that die should be chosen. We will focus on 
structured approaches to design since they off er the best prospects of dealing 
with large and diverse VLSI problems of the present and future. 

6.2.2 Structured Design Strategies 
The successful implementation of almost any integrated circuit requires an 
attention to the details of the engineering design process. Over the years a num­
ber of structured design techniques have been developed to deal with both com­
plex hardware and software projects. Not surprisingly the techniques have a 
great deal of commonality. Rigorous application of these techniques can drasti­
cally alter the amount of effort that has to be expended on a given project and 
also, in all likelihood, the chances of a successful conclusion. Whether under 
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consideration is a small chip designed by a single designer or a large system 
designed by a team of designers, the basic principles of structured design will 
improve the prospects of success. In the following sections some of the classical 
techniques for reducing the complexity of IC design will be summarized. 3,4 

6.2.3 Hierarchy 

The use of hierarchy, or "divide and conquer," involves dividing a module 
into submodules and then repeating this operation on the submodules until 
the complexity of the submodules is at an appropriately comprehensible 
level of detail. This parallels the software case where large programs are 
split into smaller and smaller sections until simple subroutines, with well­
defined functions and interfaces, can be written. As we have seen, a design 
may be expressed in terms of three domains. We can employ a "parallel hier­
archy" in each domain to document the design. For instance, an adder may 
have a subroutine that models the behavior, a gate-connection diagram that 
specifies the circuit structure, and a piece of layout that specifies the physical 
nature of the adder. Composing the adder into other structures can proceed in 
parallel for all three domains, with domain-to-domain comparisons ensuring 
that the representations are consistent. 

At a system level, the use of hierarchy allows one to specify single­
designer projects, at which level the schedule is proportional to the number 
of available personnel. 

Example 

To illustrate the principle of hierarchy consider the top-level diagram of a raster­
graphics vector generator that includes an 8-bit difference engine, shown in Fig. 
6.2(a). This engine may be used for a variety of graphics algorithms, including 
line drawing and linear shading. Operation in the case of drawing a line on a ras­
ter display consists of loading the X, Y, count, and direction registers with the ini­
tial (X,Y) point, length of the line, and up/down-count control data for the X and 
Y counters. The difference engine block is loaded with three values-A, B, and 
C-which are derived from the parameters of the line to be drawn. 

A diagram of the difference engine is shown in Fig. 6.2(b). It consists of 
an A, B, and C register, an adder, and two multiplexers or muxes. The multi­
plexers, registers, and adder may be decomposed into 1-bit units. The hierar­
chy is stopped at the level where modules are defined in terms of simulation 
models and physical layouts. For instance, the adder, multiplexer, and regis­
ter might be standard cells. Similar decompositions could be completed for 
the other modules in Fig. 6.2(a). 

The hierarchy defined above is a structural hierarchy that reflects func­
tionality, such as the adding, multiplexing, or storing state. An alternative 
hierarchy for the difference engine is shown in Fig. 6.3, where 8 identical 
"bit-slices" have been built. Each bit slice has one element of the engine 
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shown in Fig. 6.2(b). This is known as a "physical hierarchy" because it 
might be the decomposition used to build an n-bit difference engine layout. 
Thus there are at least two "disjoint" hierarchies describing the same struc­
ture. The hierarchies "join" at the difference-engine levei. Generally, it is 
good practice to maintain identical hierarchies between the function, struc­
ture, and physical aspects of a design because this allows consistent checks 
between description domains from the lowest level of the hierarchy to the 
very top levels. Frequently, if the physical hierarchy is designed first without 
a structural or functional hierarchy, it will be found that the resulting hierar­
chy is cumbersome. On the other hand structural hierarchies may be defined 
that do not map well to physical constraints. For instance, consider the fioor­
plan shown in Fig. 6.4 where module A has to fit within a certain area con­
straint. Module B has space for some of the contents of Module A but, due to 
the structural hierarchy, the fioorplan in Fig. 6.4(a) results. Usually, after a 
few iterations the physical and structural hierarchies may be reconciled 
(Fig. 6.4b). Many times the issue is moot because an automatic layout system 
is able to take the structural hierarchy and create a layout that meets both tim­
ing and area requirements. 

FIGURE 6.2 A difference 
engine: (a) system diagram; 
(b) implementation 
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6.2 DESIGN STRATEGIES 387 

6.2.4 Regularity 
Hierarchy involves dividing a system into a set of submodules. However, 
hierarchy alone does not necessarily solve the complexity problem. For 
instance, we could repeatedly divide the hierarchy of a design into different 
submodules but still end up with a large number of different submodules. 
With regularity as a guide, the designer attempts to divide the hierarchy into 
a set of similar building blocks. The use of iteration to form arrays of identi­
cal cells is an illustration of the use of regularity in an IC design. However, 
extended use may be made of regular structures to simplify the design pro­
cess. For instance, if the designer were constructing a "datapath," the inter­
face between modules (power, ground, clocks, busses) might be common but 
the internal details of modules may differ according to function. Regularity 
can exist at all levels of the design hierarchy. At the circuit level, uniformly 
sized transistors might be used rather than manually optimizing of each 
device. At the logic-module level, identical gate structures might be 
employed. At higher levels, one might construct architectures that use a 
number of identical processor structures. By using regularity in the ways 
mentioned, a design may be judged correct by construction. Methods for for­
mally proving the correctness of a design may also be aided by regularity. 

Regularity allows an improvement in productivity by reusing specific 
designs in a number of places, thereby reducing the number of different 
designs that need to be completed. 

Example 

Continuing the example of the difference engine in Fig. 6.2(b), the multi­
plexer, adder, and register modules may be defined in terms of identical 
CMOS inverters and tristate inverters as illustrated in Fig. 6.5. The counters 
shown in Fig. 6.2(a) might use the same adder, register, and multiplexer used 
in the difference engine. For every different module that is used (no matter 
what level), a variety of design checks have to be performed-functional ver­
ification, timing verification, layout-connectivity verification, etc. By identify­
ing common operations at a high level, regularization can reduce the number 
of different modules that need to be designed and verified (i.e., counting= add­
ing 1 = adding). This principle applies at all levels of hierarchy. 

6.2.5 Modularity 
The tenet of modularity adds to hierarchy and regularity the condition that 
submodules have well-defined functions and interfaces. If modules are 
"well-formed," the interaction with other modules may be well-character­
ized. The notion of "well-formed" may differ from situation to situation, but 
a good starting point is the criteria placed on a "well-formed" software sub­
routine. First of all, a well-defined interface is required. In the case of soft­
ware this is an argument list with typed variables. In the IC case this 
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FIGURE 6.5 Regularity at 
the circuit level by using 
inverters and tristate buffers: 
(a) multiplexer; (b) register; 

in-1 1->->:>-------i 

in-0 1->->:>----1----J 

(a) 

(b) 
REGISTER 

(c) adder (c) ADDER 

corresponds to a well-defined behavioral, structural, and physical interface 
that indicates the position, name, layer type, size, and signal type of external 
interconnections, along with logic function and electrical characteristics. For 
instance, connection points may indicate the power and ground, inputs and 
outputs to a module. The function must also be defined in an unambiguous 
manner. Modularity help~ the designer to clarify and document an approach 
to a problem, and also allows a design system to more easily check the 
attributes of a module as it is constructed. The ability to divide a task into a 
set of well-defined modules also aids in a team design where each of a num­
ber of designers has a portion of a complete chip to design. 

In structured programming, proponents advise the use of only three 
basic constructs. These are concatenation, iteration, and conditional selec-
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tion. In the IC design world these constructs have parallels. For instance, 
concatenation is mirrored by cell abutment, where IC cells (in the physical 
domain) are connected by placing them adjacent to each other and intercell 
connections are formed on the common boundary. Iteration is handled in the 
IC case by one- and two-dimensional arrays of identical cells, typified by a 
memory. The use of conditional selection is typified in a programmable logic 
array (PLA), the function of which is determined by the location of transis­
tors in an array. When combined with the ability to parametize designs, these 
three programming notions can greatly aid the designer in modularizing a 
design. Of course in a Hardware Description Language (HDL) these con­
structs are used directly. 

At a system level, the correct decisions regarding modularity allows one 
to break up a system with the confidence that when the parts are combined, 
the whole system will function as specified. 

Example 

A good example of the use (or ill use) of modularity is the use of transmis­
sion gates as inputs to logic modules (especially those using ratioed logic). 
Normally in CMOS circuits the inputs to logic blocks connect to the gates of 
MOS transistors. In these cases, the internal behavior of the modules is 
entirely determined by the arrival time and shape of the input waveform. 
Consider the case where the inputs are connected to transmission gates that 
are in turn connected to ratioed circuitry (for instance, consider the situation 
when the 2-input multiplexer shown in Fig. 6.6(a) is used for the multiplexer 
blocks in the difference engine example). The internal signal condition is 
now determined by the source impedance in addition to the input timing. A 
module-to-module cross-check has to occur to ensure that the driving circuit 
can adequately drive the mux. This is an example of a poorly modularized 
circuit. The fix is to use the tristate-inverter-based mux shown in Fig. 6.5(a) 
or the buffered mux shown in Fig. 6.6(b). 

Modules can also be poorly modularized on a temporal basis. Consider 
a module for the difference engine that uses dynamic CMOS logic but fails 
to latch or register the inputs. Because external inputs might arrive at various 
times withrespect to the clock, erroneous results might occur unless the tim­
ing of each input is individually checked. A modular approach to clocking 
where all module inputs are registered on entering the module and all out­
puts are the outputs of registers is the first step in ensuring module-to­
module timing consistency. 

6.2.6 Locality 
By defining well-characterized interfaces for a module, we are effectively 
stating that the other internals of the module are unimportant to a:ny exterior 
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(a) 

FIGURE 6.6 An example of ;0"
0 ~ --~ 

poor modularity: (a) mux with 
transmission-gate inputs; 
(b) a solution-a buffered 
mux (b) 

interface. In this way we are performing a form of "information hiding" that 
reduces the apparent complexity of that module. In the software world this is 
paralleled by the reduction of global variables to a minimum (hopefully to 
zero). 

Example: 

Increasingly, locality has come to mean "time locality"; that is, modules see 
a common clock, and hence synchronous-timing methods apply. The first 
way of ensuring time locality is to pay attention to the clock generation and 
distribution network (see Chapter 4). Having done this, critical paths, if pos­
sible, should be kept within module boundaries. Any global module-to­
module signal should have the entire clock cycle to traverse the chip. 
Repeated chip crossings of critical signals will rapidly lead to inferior timing 
characteristics. Many times in modem designs, logic is replicated to allevi­
ate cross-chip crossings. 

Modules can also be located to minimize the "global wiring" that may 
be necessary to connect a number of modules in a system. A common imper­
ative in design systems today that applies for both gate-arrays and custom 
design is use "wires first, then modules"-rather than the more common 
"place modules, then route them together." 
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TABLE 6.1 Structured Software and VLSI Hardware Design 

Hierarchy 
Regularity 

Modularity 

Locality 

SOFTWARE 

Subroutines, libraries 
Iteration, code sharing, object­
oriented procedures 

Well-defined subroutine interfaces 

Local scoping, no global variables 

6.2. 7 Summary 

HARDWARE 

Modules 
Datapaths, module reuse, reg­
ular arrays, gate arrays, stan­
dard cells 
Well-defined module inter­
faces, timing- and loading­
data for cells 
Local connections through 
fl.oorplanning, registered 

. inputs and outputs 

There are strong parallels between the methods of design for software sys­
tems and for hardware systems. Table 6.1 summarizes some of these paral­
lels for the principles outlined above. 

As stated previously the use of HD Ls to describe hardware systems in 
essence merges these two disciplines and the software methods above are 
used to define hardware. At some level the hardware aspects become rele­
vant as a physical chip is the end product. 

6.3 CMOS Chip Design Options 

In this section we will examine a range of design options that may be used to 
implement a CMOS system design. These are arranged in order of 
"increased design investment," which loosely relates to the time it takes to 
design the device. The sequence is also somewhat in order of complexity of 
device that may be implemented. 

6.3.1 Programmable Logic 

As the investment made in any chip design is significant, designers search 
for ways in which to amortize the design effort over a large number of 
devices. This might result from a huge single market for one device or, more 
probably, multiple smaller markets for a more adaptable device. The larger 
the unit volume for a part the lower its cost will be to the end user: 

Programmability is one way to achieve a wider use for a particular part. 
This is epitomized by the microprocessor. Often, though, the cost or speed of 
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a microprocessor may not meet system goals and an alternative solution is 
required. In CMOS, one may divide this spectrum of programmable devices 
into three areas: 

• Chips with programmable logic structures. 

• Chips with programmable interconnect. 

• Chips with reprogrammable gate arrays. 

The CMOS-system designer should be familiar with these options for two 
reasons: 

• First, it allows the designer to competently assess a particular system 
requirement for an IC and recommend a solution, given the system 
complexity, the speed-of-operation, cost goals, time-to-market goals, 
and any other top-level concerns. 

• Second, it familiarizes the IC system designer with methods of mak­
ing any chip design reprogrammable and hence more useful and of 
wider-spread use. 

6.3.2 Programmable Logic Structures 

The first broad class of programmable CMOS devices are represented by the 
programmable logic devices referred to as PALs® (Programmable Array 
Logic,® Advanced Micro Devices, Inc.) or PLDs (Programmable Logic 
Devices).5•6 Generally, these devices are implemented as AND-OR plane 
devices as shown in Fig. 6. 7. In the design shown a number of inputs feed ver­
tical wires, which are selectively connected to an AND-OR gate. Each AND­
OR gate has a variable number of product terms that feed the gate. This gate in 
turn feeds an I/O cell, which allows registering of the AND-OR signal and the 
feedback of the registered result into the AND-OR plane. PAL devices come in 
a large range of sizes with a variable number of inputs, outputs, product terms, 
and I/0-cell complexity. The 22V10 is an industry-standard device with the 
following characteristics: 

12 inputs 

10 I/Os 

#product terms 9 10 12 14 16 14 12 10 8 

24 pins 

The I/O structure for a 22Vl0 is shown in the inset in Fig. 6.7. It consists of 
a register, an output 4: 1 mux, a tristate buffer, and a 2: 1 input mux. The 
tristate buffer is used to enable the output. Alternatively, the pin may be used 
as an input to the array. The 4: 1 mux routes the true or complemented ver-
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sion of the product term or register output to the output. The 2: 1 input mux 
may also select the register output. The register is provided with a global 
synchronous preset and asynchronous reset. 

Typical speeds for a 22V10 in high-speed CMOS are: 

• CLK to output-8 ns. 

• Input to combinational output-15 ns. 

Typical toggle frequencies with feedback are around 40 MHz. 

FIGURE 6.7 A typical PAL 
architecture 
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The programming of PALs is done in three main ways: 

• Fusible links. 

• UV-erasable EPROM. 

• EEPROM (E2ROM)-Electrically Erasable Programmable ROM. 

Fusible links use a metal such as platininum silicide or titanium tungsten 
to form links that are blown when a certain current is exceeded in the fuse. 
This is normally accomplished by using a higher than normal programming 
voltage applied to the device. This technology is normally used in conjunc­
tion with a bipolar process (as opposed to a CMOS process) where the small 
devices can readily sink the current needed to blow the fuses. Programming 
is a one-time operation. As an alternative to current, a laser can be used to cut 
aluminum fuses in normal CMOS technologies. Frequently this is used in 
redundant memory techniques where a spare column may be switched in to 
replace a failing one. 

UV-erasable memories typically use a floating gate structure as shown 
in Fig. 6.8. Here a floating gate is interposed between the regular MOS tran­
sistor gate and the channel (see also Chapter 3). To program the cell, a volt­
age around 13-14 volts is applied to the control gate while the drain of the 
transistor to be programmed is held at around 12 volts. This results in the 
floating gate becoming charged negatively. This increases the threshold of 
the transistor (to around 7 volts), thus rendering it permanently "off' for all 
normal circuit voltages (maximum 5-6 volts). The process can be reversed 
by illuminating the gate with UV light. 

"Permanently" means at least 10 years at 125°C. At elevated tempera­
tures the storage time will be reduced. Programming may be completed 
numerous times. The chips are usually housed in glass-lidded packages to 
allow illumination by UV light. 

FIGURE 6.8 UV- erasable bit line -----+----r-------+"===~=~---

EPROM structure 
word line control gate 
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EEPROM technology allows the electrical programming and erasure of 
CMOS ROM cells. This type of programming forms the most popular in use 
today for CMOS and is the one most likely encountered by the IC-system 
designer in today's foundry processes. A typical structure is shown in Fig. 6.9.7 

Two transistors are typically used in a ROM cell. One is an access transistor, 
while the other is the programmed transistor. A two-poly sandwich is again 
used in the programmed transistor with the control gate on the top. A very thin 
oxide between the floating gate and the drain of the device allows electrons to 
"tunnel" to or from the floating gate (thus chargillg the gate oxide) to tum the 
cell off or on respectively. The series-access transistor allows programming of 
cells. EEPROM has a testability advantage over fused technologies. Each 
device can be fully tested before shipment. A range of ROM architectures have 
been used, including the normal NOR ROM structure8 and NAND structures.9 

By way of comparison, in a custom .8 µm CMOS chip a PLA (Program­
mable Logic Array) of the complexity of the 22Vl0 (programmed via mask) 
would be roughly 200µ wide by 500µ tall or .01 mm2, and would be approx­
imately the same speed or faster in a given technology. On a 100 mm2 square 
chip one could fit 5,000 such PLAs (assuming 50% overhead for routing). 

6.3.3 Programmab'e Interconnect 

In a PAL the device is programmed by changing the characteristics of the 
switching element. An alternative would be to program the routing. This has 
been demonstrated via a number of techniques including Laser Pantography, 
where a laser lays down paths of metal under computer control. Commer­
cially, programmable routing approaches are represented by products from 
Actel, QuickLogic, and other companies. 

The Actel Field Programmable Gate Arrays 10 are based on an element 
called a PLICE™ (Programmable Low-Impedance Circuit Element) or anti-

FIGURE 6.9 EEPROM 
structure(© IEEE 1992) 
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FIGURE 6.10 Program-
mable interconnect struc-
tures: (a) Antifuse®; 
(b) ViaLink® 

fuse. An antifuse is normally high resistance (>100 MQ). On application of 
appropriate programming voltages, the antifuse is changed permanently to a 
low-resistance structure (200-500.Q). The structure of an antifuse is shown 
in Fig. 6.lO(a). It consists of an ONO (oxide-nitride-oxide) layer sandwiched 
between a polysilicon layer on top and an n+ diffusion on the bottom. The 
QuickLogic array is based on a structure called a ViaLink®, which consists 
of a sandwich of material between metall and metal2. 11 This is illustrated in 
Fig. 6.1 O(b ). The "on" resistance of this structure is somewhat lower than 
that in Fig. 6.lO(a). 
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One chip architecture that uses the antifuse is shown in Fig. 6. l 1.12,l3,l4 

Logic elements are arranged in rows separated by horizontal interconnect. 
Interconnect permanently connected to the logic elements passes vertically. 
Both horizontal and vertical segments are segmented into a variety of 
lengths. Segments may be joined by programming antifuses. Certain special 
signals such as power and a clock line are routed globally to all logic. The 
logic elements are surrounded by 1/0 pads and programming and diagnostic 
logic. Note the similarity to a gate-array (Section 6.3.5). 

A more detailed representation of the interconnect scheme is shown in 
Fig. 6.12. Pass transistors are used to connect wire segments for the purpose 
of programming. These may be bypassed by antifuses if the links are 
required permanently. In the figure transistors N1, N2, N3, N4, N9, N10, Nu, 
and N12 are the column-access transistors, while transistors N5, N6, N7, and 
Ng are the row-access transistors. These are used during programming or 
may be used for diagnostic purposes to check the state of any signal. In the 
example shown, the antifuse at the conjunction of N2's column and Ng's row 
has been programmed (denoted by a solid dot). This connects the signal in 
logic module A to the segments that are bolded in the diagram. In addition, 
the bypass antifuse on Ng has been programmed, thereby extending the hor­
izontal segment to the next set of logic cells. To program the antifuse at Nr 
Ng, all pass transistors in series with N2 are turned on and the top end is con­
nected to the programming voltage. In addition, all transistors in series with 
Ng are turned on and the end connected to the ground supply. When the pro­
gramming sequence is applied, the antifuse so selected is "blown." Similar 
addressing techniques allow for the sampling of signals for testing or debug­
ging. The sequencing of the antifuse blowing is carefully determined to 
ensure that all fuses can be blown. 
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FIGURE 6.12 Actel inter­
connect example 

FIGURE 6.13 Actel 
logic cell 
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The structure of the Actel logic element is shown in Fig. 6.13. It consists 
of three 2-input muxes and a NOR gate. This structure can implement all 
2- and 3-input logic functions and some 4-input functions. A latch may be 
implemented with one logic element, while a register requires two elements. 
The QuickLogic cell is shown in Fig. 6.14. In addition to the structure shown 
in Fig. 6.13, it includes a resettable register and numerous logic gates. An 
interesting trade-off in these types of arrays is the granularity of the logic 
cell versus the amount of routing. 

The Actel programmable I/O pad is shown in Fig. 6.15. Two antifuses 
allow the configuration to operate as an input pad, output pad, or bidirec­
tional pad. If the ENABLE pin is not programmed, then the pad is bidirec­
tional. If the ENABLE antifuse to V DD is blown, the pad is an output, 
whereas if the Vss antifuse is blown, the pad is an input. The isolation 
devices isolate the pad if necessary during programming and testing. 
(A highly desirable feature of the Actel architecture is the ability to observe 
any node in the chip using the series pass-transistors that are used for 
programming.) 
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At the time of writing, these arrays could implement 550 logic modules 
and 70 I/O modules. The speed of a particular circuit depends on the logic 
element speed and the delay through antifuse elements in any routing. A sin­
gle logic module exhibits a delay from 7 ns to 14 ns (5V and 25°C) depend­
ing on fan-out in a 2 µm technology. Long route delays through many 
antifuses can range from 15 ns to 35 ns. With smaller technologies the logic 
module delays would decrease while the routing delays might decrease 
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FIGURE 6.16 XILINX 
FPGA architecture 

somewhat. More drastic reductions in the routing delays would come with 
lower "on-resistance" antifuses. 

If a 32-bit adder were implemented in an Actel array, 160 logic modules 
would be needed, and it would add in approximately 65 ns. Thus roughly 3.5 
32-bit adders would fit in a single FPGA chip. Currently in a 1µ custom chip 
7 mm on a side (6 mm-by-6 mm active area), we could fit 1300 adders (each 
560µ by 50µ) running twice as fast, or 600 adders running ten times as fast. 
Bear in mind that if we only wanted two 32-bit adders and a bit of logic run­
ning at 10 MHz, we could get in in an afternoon and for about $5-10 if we 
used an FPGA; compared with 6 months and $200,000 that an application­
specific chip would require. 

6.3.4 Reprogrammable Gate Arrays 
A further class of programmable device is the programmable (or reprogram­
mable) gate array. These may be further categorized into ad-hoc and struc­
tured arrays. 

6.3.4. 1 The XILINX Programmable Gate Array 

An example of an ad-hoc array is a set of products from the XILINX com­
pany.15 The architecture of the XC3000 series is depicted in Fig. 6.16. An 
array of Configurable Logic Blocks (CLBs) is embedded within a set of hor­
izontal and vertical channels that contain routing that can be personalized to 
interconnect CLBs. The configuration of the interconnect is achieved by 
turning on n-channel pass transistors. The state that determines a given inter­
connect pattern is held in static RAM cells distributed across the chip close 
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to the controlled elements. The CLBs and routing channels are surrounded 
by a set of programmable I/Os. 

In detail, the structure of a CLB is shown in Fig. 6.17. It consists of two 
registers, a number of muxes, and a combinatorial function unit. The latter 
can generate two functions of four variables, any function of five variables, 
or a selection between two functions of four variables. The function bit and 
each mux is controlled by a number of RAM state bits. More recent CLBs 
feature enhanced table lookup function generators which can be used to 
build logic functions or used as register storage. Inbuilt support for carry 
chains means that datapaths can be conveniently built (XC40QO series). Each 
input and output on a CLB has a particular local interconnect pattern (called 
direct interconnect by XILINX), which allows most local interconnection 
between adjacent CLBs to take place. At the junction of the horizontal and 
vertical routing channels (where the general-purpose interconnect runs), 
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FIGURE 6.18 XILINX cross­
bar connect and CLB local 
connect example 

programmable switching matrices are employed to redirect routes. Fig. 6.18 
shows a typical CLB surrounded by switching matrices. The switching 
matrices perform crossbar switching of the global interconnect, which runs 
both vertically and horizontally. Programmable Interconnect Points or PIPs 
interconnect the global routing to CLBs. Both PIPs and the switching matri­
ces are implemented as n-channel pass gates controlled by I-bit RAM cells. 
Extra special long-distance interconnect is used to route important timing 
signals with low skew. 

Assuming one has a board design finished, design proceeds by mapping 
the logic design to the CLBs and thence to one or more programmable gate­
arrays. Software then "places and routes" the CLBs by loading the internal 
state RAM with the codes needed to program the I/Os, the CLBs, and the 
routing. The design is then ready to be tested or used. 

Currently, the largest array holds ,,.,,,500 CLBs and has approximately 
IOOK bits of state RAM (this will increase with time as processes shrink). In 
common with the Actel approach, timing is dependent on the basic CLB 
speed and a routing delay term. Users seem to be able to achieve system­
clock rates that are 30-50% of the speed grade. Thus with 250 MHz parts an 
80 MHz clock frequency is feasible. 

A 32-bit adder would require approximately 62 CLBs, enabling 
roughly 8 to be implemented on the largest CLB available in 1993. The 
speed would be approximately 20-50 MHz. Thus the reprogrammable 
arrays implemented in a more advanced (but standard) process and with 
probably larger die sizes (hence cost) are roughly of the same complexity as 
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the programmable example given in the previous section implemented in a 
less dense process. 

While the XILINX arrays are stand-alone programmable gate arrays, the 
ideas may be of use to the IC-system designer who wishes to embed some 
reprogrammable logic within a larger system. In addition, the IC designer 
may find that prototyping a design in such an array might aid in system 
debug of a chip function. A significant advantage of the reprogrammable 
gate array is the ability to redesign the internals of a chip by changing soft­
ware. This can be of considerable advantage in a product that has to undergo 
field updates. 

6.3.4.2 Algotronix 

An example of a regular programmable array is the CAL1024 (Configurable 
Array Logic) from Algotronix. 16•17 This architecture contains 1024 identical 
logic cells arranged in a 32-by-32 matrix. At the boundary of the chip, 128 
programmable I/O pins allow cascading the chips in even larger arrays. The 
cell interconnect is shown in Fig. 6.19. Each cell is connected to the East, 
South, West, and North neighbor. In addition two global-interconnect signals 
connect to each cell. These are used to supply a low-skew signal to all cells 
for clocking. Each cell also receives row select lines and bit lines that are 
used to program RAM bits within the logic cells that dynamically customize 
the logic cell. 

The cell design is shown in Fig. 6.20. It consists of four "through" mul­
tiplexers to route single-bit signals entering from the North, South, East, and 
West. In addition two multiplexers route a selection of signals to a function 
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TABLE 6.2 CAL Logic Cell Functions 

NUMBER FUNCTION NUMBER FUNCTION 

0 ZERO 8 -Xl.X2 
1 ONE 9 -Xl.-X2 
2 Xl 10 Xl+X2 
3 -Xl 11 Xl+-X2 
4 X2 12 -Xl+X2 
5 -X2 13 xnor(Xl,X2) 
6 Xl.X2 14 -Xl+-X2 
7 Xl.-X2 15 xor(Xl,X2) 

16 D ClkLatch 17 -D ClkLatch 
18 D-ClkLatch 19 -D -Clk Latch 

unit. These signals include the signals entering on the orthogonal edges of 
the cell, two global "clock" signals, and the output of the function block for 
feedback situations (latches). The muxes are controlled (as in the XILINX 
array) by small 5-transistor static RAM cells. The functions that the logic 
cell can implement are detailed in Table 6.2. 

The I/O pads are very interesting. The trick is to use only one pin for 
I/O into and out of the array but have the communicating chips automatically 
deal with two pins that are outputs. The pads achieve this by using a ternary 
(three-level) logic scheme to sense when two outputs are driving each other 
via a contention circuit. This is then used with an XOR gate, as shown in Fig. 
6.21, to deduce the correct input value. 

Design is similar to both the XILINX and Actel approaches, where sub­
stantially automatic techniques can place and route a CAL chip. Unlike both 
other approaches, however, all routing (save the global clock lines) must 
pass through cells to get from one point to another. Thus, in the worst case, a 
signal may have to travel through 64 cells. Although implemented with fast 
transmission gates, this still can result in a substantial delay. For instance the 
through routing delay is in the range of 0.5 ns-2 ns, resulting in a delay of 
32 ns-128 ns. However, an intriguing option with this type of array is that 
the programming can be changed almost in real time. Thus one can think of 
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FIGURE 6.22 Concurrent 
logic array details 

actually having a computer program that "executes" on such an array many 
times faster than conventional machines. 18 

From a complexity viewpoint, a single-bit adder would take 4 cells. 
Thus a 32-bit ripple-carry adder would take 128 cells, and 8 adders could fit 
on a 1024-cell chip (1.5 µm CMOS). The speed would be in the 500 ns 
range. In all of these array architectures serial arithmetic may be preferable 
to parallel arithmetic because low-delay connections can be made between 
adjacent cells. 

6.3.4.3 Concurrent Logic 

The CLi6000 series is another example of a regular array style FPGA.19 Cur­
rent designs have between 1000 and 3136 cells, with prospects of up to 
10,000 cells per chip in the next few years. As an example the CLi6005 con­
sists of a 7-by-7 array of superblocks. Each superblock has an array of 8-by-
8 logic cells. Each logic cell connects to the four nearest neighbors and to a 
local and express bus (Fig. 6.22). The cell structure is shown in Fig. 6.23. 
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Compared with the Algotronix cell it has considerably more functionality within 
a cell. A resettable register, XOR, and an AND gate are included. Thus, for 
instance, a single-counter bit can be implemented in a single cell. 

6.3.5 Sea-of-Gate and Gate Array Design 

Programming interconnect on chips is a method of reducing the design cost of 
an integrated circuit. For small-volume chips this can have a direct impact on 
the part price. The most popular style in use for the implementation of general 
logic functions is the Sea-of-Gates (SOG) or Gate Array structure, in which 

FIGURE 6.23 Concurrent 
Logic array logic cell 
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FIGURE 6.24 Sea-of-gates 
(SOG) chip layout architec­
ture 

the core of the chip contains a continuous array of n- and p-transistors. A ven­
dor stocks what are called master or base wafers that have been processed up 
to the stage of laying down polysilicon (i.e., the transistors have been formed). 
Personalization is then achieved by using design-specific metalization and 
contacts. The cost is kept down because of the following factors:· 

• The wafer cost is kept low because large numbers of base wafers may 
be used for many different designs. 

• Only 2-5 masks need to be generated, thus keeping mask costs low. 

• Design time is small due to highly automated tools for placement, 
routing, and testing. 

• Packaging cost is kept low due to standard bond-outs and packages. 

• Processing time is kept to a minimum because only the top metaliza­
tion steps need be run. 

• Testing costs are kept low because common test fixtures are used for 
multiple designs. 

A typical SOG structure is shown in Fig. 6.24. It consists of a continous 
strip of n- and p-transistor diffusions adjacent to substrate diffusions. Poly-
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silicon crossing the n and p diffusions forms a continuous horizontal array of 
transistors. These rows are repeated vertically. The core of an SOG chip so 
constructed is surrounded by an array of I/O cells that can also be pro­
grammed by metalization. Routing channels are formed by routing over the 
top of unused transistors. Gate arrays, which predate SOG structures, used 
fixed-height routing tracks. Wiring between active logic rows in an SOG 
chip occurs over the top ofunused transistors, while in a Gate Array the rout­
ing is constrained to a routing channel. Fig. 6.25 shows a collection of gates 
wired together illustrating the routing over the top of the transistor rows. The 
necessity to pick a number for the Gate Array routing track density thereby 
constraining the number of horizontal routes gave way eventually to the con­
tinuous-array SOG approach. 

A number of design decisions have to be made when designing the base 
array.20 These include the following: 

• The overall size of the core array. 

• The macro structure of the strips: 

-How many n rows and prows there are per horizontal strip, and how 
they are routed. 

• The micro architecture: 

-The size and ratio of the n- and p-transistors. 

-The number, direction, and layer of routing tracks. 

-The method of logic-gate isolation. 

-The personalization method. 

Usually, the core-array sizes vary from small to large die sizes. When a 
given system is being planned, the actual density of transistors is mapped to 
an equivalent raw gate number and then to an effective usable gate level that 
reflects the cost of routing and placement overheads. For instance, if the col­
umn pitch of the array is 10µ and the row pitch is 100µ, then an 8 mm-by-
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FIGURE 6.26 Geometry 
isolated SOG or Gate-array 
base cell 

8 mm core chip would contain 800 x 80 = 64,000 transistor pairs. This cor­
responds roughly to 16,000 2-input NAND gates. At a 40% usability index 
(the number of gates that may be used/the total number of gates), this means 
we can expect to use 6400 gates on this base core. 

Most SOG structures have a single row of n- and p-transistors. Some 
designers have found it advantageous to use a double row of n-transistors 
and a double row of p-transistors to aid in the implementation of memories 
and dynamic logic.21 Other designers, wishing to implement analog circuits, 
choose arrays of transistors that are suitable for those applications.22 

Most designs choose equally sized transistors, presumably because 
unequal rise and fall times tend to even out. The absolute size of transistors 
is a trade-off between drive capability, fan-in loading, and the array density 
required. The size of the transistors also affects the granularity of routing 
tracks. 

Typical examples of geometrically isolated and gate-isolated designs 
are shown in Fig. 6.26 and Fig. 6.27. In Fig. 6.26 a geometrically isolated 
design typical of early gate-arrays is shown in which three n-p pairs are cou­
pled to form a cell.23 N- and p-transistors are equally sized. The polysilicon 
gates are commoned. The "dog-bone" poly connections on the transistor 
gates allow for routing. Substrate connections are placed below the 
n-transistor strips and above the p-transistor strips. A typical SOG design is 
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shown in Fig. 6.27. The key point about the SOG structure is that the transis­
tors at the end of a gate serve to isolate adjacent gates. This is achieved by 
tying the gate of then-isolation transistor to Vss and the gate of the p-isola­
tion transistor to VDD· Where adjacent gates share a V88- or VDD-connected 
transistor, the isolation transistor is not required. Substrate and well connec­
tions run under power busses at the bottom and top of the cell. 

The personalization may be completed in a number of ways. For 
instance, possible methods are: 

• Single-layer metal. 

• Single-layer metal and contacts. 

• Double-layer metal and contacts and vias. 

• Triple-layer metal, vias, and contacts. 

The personalization of the arrays shown in Fig. 6.26 and 6.27 for a 3-input 
NAND gate and a D latch are shown in Fig. 6.28. Both cells are arranged to 
have metall running horizontally and metal2 vertically. Note how for the 
NAND gate the geometrically isolated gate is smaller but for a more com­
plex structure the transistor isolated array is much smaller. 

FIGURE 6.27 Transistor- or 
gate-isolated SOG cell 

Micron Ex. 1037, p. 451 
Micron v. YMTC 
IPR2025-00119



412 CHAPTER 6 CMOS DESIGN METHODS 

FIGURE 6.28 Personaliza­
tion of a 3-input NANO gate 
and a D latch in geometry 
isolated and transistor isolated 
SOG structures 
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The routing style of most SOG orients the macrocells (i.e., NANDs, 
NORs, REGISTERs) along the rows as illustrated in Fig. 6.27, with routing 
running horizontally between rows of macrocells. In an alternative strategy, 
the cells are grouped in columns24 with routing tracks running vertically 
between columns of macrocells on the chip. The latter approach has been 
shown to provide 1.08 to 1.31 higher gate density than the row-based 
approach. 

6.3.6 Standard-cell Design 
Whereas gate-array architectures standardize at the chip geometry level, it is 
possible to standardize at the logic or function level. That is, a specific 
design for each logic gate in a library can be created. This is the basis for 
what is termed standard-cell or cell-based design. Library cells are normally 
created for the following classes of circuits: 

• SSI logic (nand, nor, xor, aoi, oai, inverters, buffers, registers). 

• MSI logic (decoders, encoders, parity trees, adders, comparators). 

• Datapath (alus, adders, register files, shifters, bus extractors, and 
inserters). 

• Memories (RAM, ROM, CAM). 

• System-level blocks (multipliers, microcontrollers, UARTs, RISC 
cores). 

A design is captured using the standard cells available in a library via sche­
matic or HDL. The layout is then normally automatically placed and routed 
by CAD software. For SSI and MSI blocks, the layout style is usually iden­
tifiable as rows of constant or near-constant height blocks separated by rows 
of routing. As the complete layout is being done, optimization of the height 
of routing channels may be completed by good placement. Most manufactur­
ers have extended the SSI/MSI standard-cell technique to the design of data­
paths and other higher-level functions such as microprocessors and their 
peripherals. Another fundamental component of a standard cell system is a 
selection of memories. Often these are available as a set of parameterizable 
modules based .on word width, number of words, and number of read- and 
write-ports. 

Compared to gate-arrays, standard-cell designs provide a density advan­
tage at the cost of increased prototype costs and possibly increased design 
complexity. However, where manufacturers have implemented sizable cir­
cuit blocks, the productivity of a standard-cell approach might in fact be bet­
ter that that of a gate-array because the function does not need to be 
designed. 
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FIGURE 6.29 Typical stan­
dard-cell structures showing 
low-power and regular-power 
cells 

6.3.6.1 A Typical Standard-cell Library 

The LSI Logic standard cell library25 is representative of a larg~ number of 
libraries that are available. Frequently the SSI logic blocks come in a 
density-optimized version and a speed-optimized version. Figure 6.29 shows 
possible layouts for a low-power and normal-power 2-input NAND gate. 
Metal power busses run horizontally at the top and bottom of the cells. Con­
nections to the cells are available at the top and bottom of the cells. As these 
hypothetical cells are ~mplemented on a salicided process, connections to the 
inputs of the gates are made in polysilicon. The density-optimized versions 
use minimum-sized transistors to achieve the smallest-height standard-cell 
while the speed-optimized versions use large transistors to provide good 
driving capability. A summary of typically available cell types is summa­
rized in Table 6.3. 

(a) 

nto p 
spacing 

transistor pitch 

(b) 

I P to vddn 
spacing 

p-transistor width 

n-transistor width 

I n to ~ssp 
spacing 

Micron Ex. 1037, p. 454 
Micron v. YMTC 
IPR2025-00119



6.3 CMOS CHIP DESIGN OPTIONS 415 

TABLE 6.3 Typical SSI Standard-cell Library Summary 

GATE TYPE 

inverter/buffer/tristate 
buffers 
nan di and 
nor/or 
xor 
xnor 
aoi (and-or-invert) 
oai (or-and-invert) 
multiplexers 

schmitt trigger 
adder/half-adder 
latches 

registers 

IIO pads 

VARIATIONS 

2-8 inputs 
2-8 inputs 
2-3 inputs 

2-8 inputs, inverting/ 
noninverting 

inverting/noninverting 
normal, fast 
D, asych/synch clear/ 

set, scan 
D, JK, asych/synch 

clear/set, scan 
in, out, tristate, bi­

direct, boundary 
scan, limited slew 
rate, crystal oscilla­
tor 

OPTIONS 

High-, Normal-, Low-
power 

High-, Normal-, Low-power 
High-, Normal-, Low-power 
High-, Normal-, Low-power 
High-, Normal-, Low-power 
High-, Normal-, Low-power 
High-, Normal-, Low-power 
High-, Normal-, Low-power 

High-, Normal-, Low-power 
High-, Normal-, Low-power 
High-, Normal-, Low-power 

High-, Normal-, Low-power 

Various current options 
1-16 mA 

In addition various parameterizable macro cells such as register files, 
FIFOs, RAMs and ROMs may be provided. 

Wide varieties in standard-cell topologies exist. An example of a 3µm 
library may be found in CMOS3 Cell Library by Dennis V. Heinbruch.26 

These cells are very intricate and designed to minimize parasitics and to 
maximize performance within a given area. Such libraries take a long time to 
create. Another approach is to abstract the geometry of the cells to allow 
rapid redeployment in a new technology. Other variations are shown in Fig. 
5.15. Where no salicide is available, the polysilicon gates might be strapped 
in metal2, to eliminate any RC delays that might occur in routes that pass 
through a number of rows of cells. 

Figure 6.30 (also Plate 6) shows a three-level-metal standard-cell strat­
egy used at TLW (for a 3-input NAND gate). In this example, internal cell 
connections are completed in metall. Connections to gates occur at the cen­
ter of the cell with a double-via structure from poly to metal2. Metal3 runs 
horizontally and metal2 runs vertically; thus the cells may be completely 
covered with routing. With this kind of a cell combined with good automatic 
placement, very good densities can be achieved. With a library where the 
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FIGURE 6.30 Three-level­
metal standard cell 
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size of the transistors may be parameterized and some generator support for 
regular-array structures such as datapaths and memories is available, the 
density can rival that done by hand. This means that other than for special 
analog, memory, or I/O blocks, all layout can be compiled with little impact 
on die cost but a big impact on productivity. 
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6.3. 7 Full-custom Mask Design 
Full-custom design is the name given to the technique where the function 
and layout of practically every transistor is optimized. Traditionally, this is 
how most commercial designs have been done from the beginning of IC­
design history. Many times, nonconventional circuit forms or clocking meth­
ods will be used in an effort to decrease size or increase speed. Design 
involves detailed manipulation of the geometric layout ("polygon pushing") 
and detailed circuit simulation of every circuit structure. As a historical 
point, it is interesting to note that even in the mid-1970s custom design was 
long on geometry and short on any kind of verification (due to lack of com­
pute cycles). Design entry might have included cutting your own mask from 
Rubylith®, entering the geometry via a text editor (having drawn it by hand), 
or digitizing the same hand-drawn layout with a large digitizer. If you were 
lucky you may have seen the layout briefly on a monochrome storage dis­
play. Frequently, using a library cell consisted of deft use of a pair of scis­
sors, some tape, and an old layout plot. Design-verification tools consisted of 
a large room, knee pads, and coloring pencils to color layout plots. Of 
course, circuits consisted of 10s to lOOs of transistors. 

In these times, for digital CMOS circuits, companies rarely use full cus­
tom design due to the high labor content and low productivity. Exceptions to 
this include the design of memory and commodity parts such as FPGAs and 
the design of quasi-analog components such as phase-locked loops. In addi­
tion, large mega-cells such as RISC microprocessors may be custom­
designed for speed and cost reasons. 

In 1989, Fey27 found that for full-custom designs the productivity 
ranged between 6 and 17 transistors per day for logic transistors and 60 to 
230 transistors per day for ROM transistors. 

6.3.8 Symbolic Layout 
Because a major component of custom design is the physical layout of new 
modules, IC-designers sought methods of reducing the time of entry of the 
physical layout. In the early 1970s MOS logic designers frequently used 
manually drawn shorthand notations for layout structures (the author 
included). As computers became more prevalent, this practice led to sym­
bolic layout systems. These systems attempt to abstract the layout in some 
manner in order to reduce the complexity of the task, thus increasing produc­
tivity. Over the last 15 years a number of strategies have evolved. 

6.3.8.1 Coarse-grid Symbolic Layout 

The idea behind coarse-grid symbolic layout involves dividing the chip sur­
face into a uniformly spaced grid in both the X and Y directions. The grid size 
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FIGURE 6.31 Coarse-grid 
symbolic layout 
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represents the minimum feature or placement tolerance that is desired in a 
given process, and is usually selected by close consultation between design­
tool developers and semiconductor-process engineers. For each combination 
of mask layers that exist at a grid location, a symbol is defined. Figure 6.31 
shows a typical symbol set and layout. Given a particular design system, 
these symbols are then placed on the grid to construct the desired circuit, 
much the same way as you would tile a floor. Symbol sets could be defined as 
characters or graphical symbols, which was invaluable in the early days of 
color displays because character-only color displays were a lot cp.eaper than 
color graphics displays. 

American Microsystems International (AMI)28•29 and Rockwell Inter­
national 30 pioneered the use of character-based symbolic layout. 

This style of symbolic layout provided for first-generation symbolic lay­
out with low-cost design entry. In general these systems have been sup­
planted by more modern approaches. 

6.3.8.2 Gate-matrix Layout 

A character-based symbolic layout style was developed at Bell Labs31 spe­
cifically for custom CMOS circuitry. It improved on coarse-grid symbolic 
layout by providing a regular layout style where a matrix of intersecting 
transistor diffusion rows and polysilicon columns is employed. The intersec­
tion of a row and a column is a potential transistor site (poly crossing diffu­
sion). A related style is featured in Piguet et al.32 

The evolution of this technique from a standard-cell viewpoint is shown 
in Fig. 6.32. Figure 6.32(a) shows a circuit implemented in terms of standard 
cells (four 2-input NANDs and one inverter). Note that intercell connections 
are in metal. Rather than running these connections in metal, we can run ver­
tical polysilicon columns corresponding to each gate signal. The transistors 
may then be placed on the polysilicon signals and interconnected, as shown 
in Fig. 6.32(b). Note that vertical co.lumns may be either polysilicon or dif­
fusion. Horizontal rows are transistors and/or metal routing tracks. Metal 
may also run vertically. A character-symbolic layout for the layout may be 
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created (in fact this is how the layouts were first captured). The following 
rules summarize the gate-matrix technique: 

1. Polysilicon runs only in one direction and is of constant width and 
pitch. 

2. Diffusion wires (of constant width) may run vertically between poly­
silicon columns. 

3. Metal may run horizontally and vertically. Any pitch departures from 
minimum (e.g., power rails) are manually specified. 

4. Transistors can only exist on polysilicon columns. 

To convert from a character symbolic description to mask artwork, the char­
acter matrix is examined and the symbols are expanded to their equivalent 
mask entities. Operations such as merging horizontal dashes into one metal 
wire and merging adjacent devices are performed during this phase. Obvi-

FIGURE 6.32 Evolution of 
gate-matrix layout: (a) stan­
dard cell layout (in schematic 
form); (b) gate-matrix layout 
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FIGURE 6.33 "Sticks"­
symbolic layout compaction: 
(a) layout; (b) horizontal con­
straint graph 

ously very simple software and limited computer resources are needed to 
capture designs in this manner. 

In common with coarse-grid symbolic layout, gate-matrix-symbolic lay­
out systems have been largely replaced, but the style of layout is still of 
interest for small- to medium-sized modules. 

6.3.8.3 Sticks Layout and Compaction 

A popular method of symbolic design is termed "sticks" layout. Here the 
designer draws a freehand sketch of a layout, using colored lines to represent 
the various process layers such as diffusion, metal, and polysilicon. Where 
polysilicon crosses diffusion, transistors are created and where metal wires 
join diffusion or polysilicon, contacts are formed. Alternatively, specific prim­
itives such as transistors are drawn and interconnected with lines representing 
conductors. Following this rapid capture of the rough topology, a spacing pro­
gram or compactor determines the correct spacing between all wires, transis­
tors, and contacts created. The most popular compactor is what is termed a 
graph compactor. The compactor creates a directed-constraint graph. The 
nodes of the graph are the primitives, and the branches. are used to connect 
groups that have potential design-rule violations. The weights of the branches 
are the minimum separations necessary between two nodes. An example of the 
mapping of a symbolic circuit to a graph is depicted in Fig. 6.33. If there is no 
spacing necessary between two groups, an edge will not be created between 
the two groups. Once the graph has been established, the critical path (i.e., the 
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path with the greatest spacing requirement) through the graph can be deter­
mined. The nodes in the path can then be placed sequentially. For any given 
node, there may be a number of paths to it. The critical path to a given node 
will determine its minimum placement consistent with all design rules. X and 
Y passes through the graph are completed to compress the layout. 

During the 1980s a large body of CAD research was devoted to "sticks" 
symbolic layout systems.33-43 These systems and their commercial deriva­
tives have met with varied success and acceptance. 

6.3.8.4 Virtual-grid Symbolic Layout 

Virtual-grid symbolic layout44 is a symbolic layout method that draws on the 
experience gained in coarse-grid symbolic systems, gate-matrix, "sticks"­
type systems, and other approaches, such as ICSYS,45 developed at the Uni­
versity of Edinburgh and Caltech. In essence, the system approaches design 
at the layout level by manipulating circuit elements such as transistors and 
wires as opposed to any form of geometric mask description. These elements 
are placed on a grid to facilitate easy design capture and use of simplified 
tools, with the final geometric spacing between grid lines determined by the 
density and interference of circuit elements on neighboring grid locations. 
This leads to the notion of a virtual grid. 

The concept is best illustrated by a simple example, as shown in Fig. 
6.34(a). Three vertical wires are shown centered on a grid. The result of 
using a fixed grid of 10 units and a wire width and separation of 10 units 
leads to the mask description shown in Fig. 6.34(b). By using a grid in which 
the spacing varies according to topology, the mask description in Fig. 
6.34(c) is constructed. The end result for the designer is that placement on 
the grid may be done without regard to any design rules. In addition to elim­
inating design rules, the grid is also used to define circuit connectivity in a 
manner similar to that employed in schematic capture systems. Here, the 
notion of a "coordinode," as introduced by Buchanan, is used to capture 
physical location, structural connectivity, and behavioral state. As its name 
suggests, a coordinode has the properties of a coordinate, namely some xy 
position that will eventually map to the silicon surface. In addition, it may 
possess the properties of a node in a circuit, such as voltage or simulation 
state. Structurally, a coordinode defines the nodes in the network being 
designed. In the virtual-grid context, a coordinode is mapped to a discrete set 
of grid points rather than a quasi-continuous set of xy coordinates. The grid 
coordinates form the lines of action in a circuit, defining the essential com­
munication paths in and through a circuit. Local geometric perturbations are 
handled by software skilled in the art of manipulating geometry. 

MULGA is an example of an integrated design system based on these 
principles still in use.46.47 The NS system is a VLSI system that has been in 
use since 1984, which employs the same principles.48 Further systems have 
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FIGURE 6.34 Virtual-grid 
symbolic layout 
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reported the use of similar techniques.49,so A virtual-grid-circuit capture sys­
tem yields the following benefits: 

• Design-rule-free topology capture. 

• Rapid design capture through the use of point interconnect. 

• Fast grid-based algorithms for connectivity audit, compaction, and 
other design processes. 

• Ability to allow simplified parametized cells with automatic geometry 
generation. 

• Hierarchical module assembly. 

• Natural target for higher-level silicon compilers (geometry free). 

The use of the virtual grid allows a very simple compaction strategy to be 
used. However, recent virtual-grid systems also use graph based compaction. 
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In terms of productivity, based on roughly 20 chip designs, by using 
known circuits and just altering the geometry, productivities similar to stan­
dard-cell designs are seen while densities comparable with hand layout result. 

Symbolic-layout systems are an acquired taste. Many people (such as 
the author) could not imagine designing without them at the layout level, 
while many others design quite happily without them. Recently, there has 
been somewhat of a renaissance of symbolic layout when designers with 
fixed-geometry designs are confronted with the effort of porting an old 
CMOS design to a completely new process. 

6.3.9 Process Migration-Retargetting Designs 

Of concern to the system designer are methods of retaining the investment in 
engineering large systems where ever-improving process densities mean that 
the system cost can be reduced over time by incorporating the five ASICs 
designed in a given year onto one chip in two years, and onto one-fourth of 
a chip in four years. The following approaches are possible: 

• Recast the architecture. 

• Recast the logic design. 

• Recast the layout in the new process. 

The first option requires a complete reengineering of the problem with 
the associated system and production test vectors. This frequently provides 
the best technical solution with a varied saving on previous engineering. In 
the software domain, this is equivalent to rewriting the program to suit a 
faster computer with, say, a parallel architecture. 

The second option allows a design implemented in today's standard 
cells to be fairly painlessly translated to the next generation standard cells. 
Timing analysis still has to be completed, but the process can reuse previous 
engineering efforts. While this process works well for logic, specialized 
VLSI structures such as memories may be a problem. Some ASIC vendors 
counter this by providing n-port memory compilers that work in the target 
processes. The counterpart in the software world is the use of a new compiler 
to produce code for a new fast processor. 

Finally for the "dusty deck" problem, researchers have turned their 
attention to the problem of migrating mask designs implemented in old tech­
nologies to newer smaller processes. Some success has been recorded with 
systems that extract symbols from old geometry and then recompact the 
symbols with the new design rules of the target process.51 

In all·cases, the design effort would still contain a large proportion of 
simulation and timing analysis, which usually constitutes the major portion 
of the design effort in today's designs. 
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6.4 Design Methods 

When starting a design project, the designer has a number of options with 
regard to the specification level of the chip. Usually the designer starts at the 
behavioral level and progresses to the RTL level, then to the logic level, and 
then possibly to the structural level, and finally to the layout level. Depend­
ing on the complexity of the design, tools exist to synthesize a chip layout 
from any of these levels of specification. 

6.4.1 Behavioral Synthesis 

At the behavioral level, the operation of the sysfem is captured without hav­
ing to specify the implementation. For instance, the pipelining required to 
meet a certain speed may not be specified. This is the level that provides the 
fastest emulation of the system and the one that is best used to debug the 
operation of the complete system. Obviously, this level is technology­
independent. 

For the synthesis of complex behavioral descriptions including signal­
processing architectures, a rich research literature is available. Researchers 
have had success with high-level synthesis by building systems to synthesize 
constrained architectures. Good examples are the Cathedral series of silicon 
compilers, Cathedral I, which concentrated on bit-serial digital filterss2; 

Cathedral II, which compiled collections of communicating sequential DSP 
processorss3; and Cathedral III, which was aimed at video-signal-processing 
architectures.s4 Another example is the LAGER compiler for signal process­
ing architectures.SS These targeted systems are sometimes called Silicon 
Compilers, because they take a design from the behavioral (code) to the 
mask level (silicon). 

In principle, a behavioral compiler must perform the following oper­
ations: 

• Decide upon and assign resources based on area and timing 
requirements. 

• Insert pipeline registers to achieve timing constraints. 

• Create microcode and/or control logic. 

For instance, consider the following behavioral code fragment: 

a = a + b*c; 

This specifies a multiply-accumulate step. Depending on the required speed 
and word size, this may be implemented as anything from a bit-serial multi­
plier to a fully parallel Booth-encoded Wallace tree multiplier (see Chapter 8)., 
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The vector-drawing architecture shown in Fig. 6.2 is derived from the equation 
for a straight line, 

Y = a*x + b; 

It is not intuitively obvious how the structure in Fig. 6.2 might evolve from 
the equation above. It took a clever human and difference-equation mathe­
matics to produce the implementation shown. 

Behavioral-synthesis systems currently provide very good silicon 
implementations for narrow (but very useful) classes of problems, and will 
continue to gain ground as they become more generalized and commercially 
available. 

6.4.2 RTL Synthesis 

RTL-synthesis programs take an RTL description and convert it to a set of 
registers and combinational logic. At this stage of the design process, the 
architecture has been captured. One research system pioneering this 
approach to design (and aimed at CMOS) is the Yorktown Silicon Compiler 
System. 56 There are also a number of commercial systems now available. 

Commonly, RTL descriptions are captured using a Hardware Descrip­
tion Language (HDL). In general, RTL HDLs have to capture the following 
attributes of a design: 

• Control flow using if-then-else and case statements. 

• Iteration. 

• Hierarchy. 

• Word widths, bit vectors, and bit fields. 

• Sequential versus parallel operations. 

• Register specification and allocation. 

• Arithmetic, logic, and comparison operations. 

An RTL compiler is responsible for converting a description in an HDL into 
a set of registers and combinational logic. Logic optimization is then used to 
improve the logic to meet timing or area constraints (Section 6.4.3). 

As examples of available commercial systems, some of the transforma­
tions that allow RTL descriptions to be synthesized will be given in terms of 
the VHDL language57- 59 and the Synopsy VHDL Compiler@.6° Consider 
the following (sketchy) VHDL description of the difference engine shown in 
Fig. 6.2(b). 

package types is 
type OP_CODE is (NOP, LOADA, LOADB, LOADF, RUN); 
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at tribute OP_CODE_ENCODING of OP_CODE: 

type is "000 001 010 011 100"; 

end types; 

The type section defines a user-defined type called OP _CODE, which will 
be used to control the difference engine. It states that the 3-bit field has five 
operation codes to load the three registers, to run the difference engine, or to 
do nothing (NOP). An optional encoding has been assigned via the 
at tribute keyword. Thus one operation that the HDL synthesizer does is 
to assign values to unspecified type fields. 

entity DIFF _ENGINE is 

port( 

DATA : in BIT_VECTOR (0 to 7); 
OP : in OP_CODE; 

CLOCK : in BIT; 

SIGN : out BIT; 

) i 

end DIFF_ENGINE; 

The entity section defines the name of the design (DIFF _ENGINE) and 
denotes a port interface to the module. For instance, in this case DATA is 
defined to be an 8-bit bit-vector that is an input. 

architecture DIFF_ENGINE_l of DIFF_ENGINE is 

signal A,B,F BIT_VECTOR (0 to 7); 

begin 

process 
begin 

wait until (not CLOCK' stable and CLOCK 

case OP is 

when LOADA = > A < = DATA; 

when LOADB = > B < = DATA; 

when LOADF => F <= DATA; 

when RUN = > 

'1'); 

i f (SIGN = ' 1 ' ) then F < = F +A 

else F <= F+B 

end if; 

when NOP => F <= F 

end case; 

SIGN <= (F<O); 

end process; 

end DIFF_ENGINE_l 

In the above RTL description, a number of statements are illustrated. First, 
the signal statement defines some internal signals that have local scope 
within the module. The process statement indicates a section of code to 
be implemented sequentially. The wait statement indicates the presence of 

Micron Ex. 1037, p. 466 
Micron v. YMTC 
IPR2025-00119



6.4 DESIGN METHODS 427 

clocked registers and specifies that the registers are triggered on the rising 
edge of CLOCK. The case operator indicates a multiplexer, as does the if 
operator. Finally, the"+" operator indicates an addition while the"<" oper­
ator indicates a comparison operator. When combined with an appropriate 
substrate (simulation, logic library, operator definition), the above descrip­
tion may be compiled into a set of logic gates and registers. 

In the case of state-machines, RTL compilers need to provide for auto­
matic state-assignment61 and minimization. 

6.4.3 Logic Optimization 

Logic optimization programs take logic descriptions as generated by an RTL 
synthesis (with the registers stripped out) or which are generated directly at 
the logic level and optimize the network of gates that are required to imple­
ment the function specified by the logic description for a given logic library. 
The registers are then reunited with the optimized logic, and the physical 
layout for the system may be implemented using largely automatic tech­
niques. The methods for this are well understood62 and there are a number of 
very successful commercial systems. 

A typical flow through a typical logic synthesis system is shown in Fig. 
6.35. The design is commenced with a logic description. This may be in the 
form of Boolean equations or a schematfo netlist of logic gates. The objec-
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tive of a logic optimization scheme is to manipulate the logic to meet speed 
or area constraints or a combination of both goals. Generally, logic­
optimization systems divide the problem into two stages: 

• A technology-independent phase in which the logic is optimized 
according to algebraic and/or Boolean techniques. 

• A technology-mapping phase, which translates the technology­
independent description derived in the previous step to specific library 
standard cells, FPGA elements, or other implementable logic gates. 

The technology-independent aspect of logic optimization uses a large 
body of algorithms that operate on logic networks, using both Boolean and 
algebraic techniques. Most often logic-optimization systems provide a 
means to read logic networks, manipulate them, perform a technology map­
ping, and save the resulting structure to be used by an automatic layout pro­
gram or some other tool. A typical flow through an optimization script is as 
follows63 : , 

• Network organization. 

• Two-level minimization. 

• Algebraic decomposition. 

• Iterative improvement. 

Having read the design in, the first step might be to perform tasks such 
as eliminating constant nodes and redundant inverters or converting the 
logic to a two-level PLA sum-of-products form (see Chapter 8). Next, a two­
level minimization might be invoked. Espresso64 is an example of a widely 
used two-level minimization program. Next, algebraic decomposition may 
be used that introduces new nodes into the logic network in a manner that 
minimizes the cost. One technique used is known as "weak division."65 This 
is used to decompose two-level logic expressions into multiple-level logic 
expressions. It operates by repeatedly "dividing" the expressions by subex­
pressions that appear more than once in the set of expressions that constitute 
the design. The most suitable subexpression is chosen by evaluating a cost 
function that may be based on reducing the number of literals (area) or other 
functions related to the levels of logic (speed). Consider the following equa­
tions: 

fl aef + bef + ceg 
f2 aeg + bg + def 

The common subexpressions are ef, ae, eg, and a+b. Of these, ef saves 
the most literals. When e f is divided into all subexpressions, the result is 

fl = (a+b)tl + ceg 
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f2 = aeg + bg + dtl 

t1 = ef 

After this pass the literal eg might be chosen, yielding 

fl = (a+b)tl + ct2 
f2 = at2 + bg + dtl 
tl =ef 
t2 = eg 

Finally, algorithms are used to iteratively improve the logic structure. 
This may employ the algebraic techniques of extraction, factoring, and sub­
stitution in addition to decomposition. 

Following the technolo,gy-independent step, a technology mapper is 
then used to optimize the gates for a particular technology.66 Two kinds of 
optimizers are in popular use. The first consists of a rule base consisting of 
rules in the form 

if (antecedent) then (precedent).67 

They are used to map over small sections of circuitry to choose suitable logic 
gates for an implementation. Figure 6.36 illustrates some typical rules. Fig­
ure 6.36(a) eliminates cascaded inverters, while Fig. 6.36(b) converts NOR 
and INVERT logic gates into an OAI gate. Other rules might bias gate selec­
tion toward faster gates such as NAND gates. Another approach is termed 
Directed-Acyclic-Graph(DAG) covering.68 In this approach, what is called a 
base-function set is chosen. This might be a 2-input NAND gate and an 
inverter. All logic gates in the target library are then described in terms of the 
base-function elements. These are known as pattern gates. The logic net­
work is optimized using the base-function set. This creates a subject graph. 
Graph optimization techniques are then used to find an optimized set of tar­
get gates. Figure 6.37(a) shows a base function set. Figure 6.37(c) shows 
examples of pattern graphs. For the 4-input NAND gate shown in Fig. 
6.37(c), two possible pattern graphs are shown. Figure 6.37(d) shows a sub­
ject graph in which a particular mapping has been identified. Finally, Fig. 
6.37(e) shows the resultant mapped logic implementation. 

The MIS69 and BOLD70 systems are examples of research-based tools 
that provide logic minimization. These systems provide an environment that 
contains a number of minimization techniques. These are used to construct 
minimization scripts that can be adapted for varying styles of logic minimi-

antecedents precedent 

FIGURE 6.36 Rule-based 
technology mapping 
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FIGURE 6.37 DAG technol­
ogy mapping 
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zation. Figure 6.38 shows the typical inputs to MIS that might consist of a 
minimization script, a set of equations, and a logic-library definition. The 
output is a netlist implementing the equations in terms of the logic library. 
An example of the use of this program is presented in Chapter 8. The EDIF 
language is frequently used as a common netlist format between design 
systems.71 . 

Apart from increasing design productivity, logic synthesis systems are 
very useful for transforming between technologies. For instance, a designer 
might synthesize a circuit in terms of multiple FPGAs, and construct a pro-
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totype. This might be used to verify the operation of the circuit under real­
world conditions and then a single-chip version may be compiled using a 
gate-array library and the original logic description. 

6.4.4 Structural-to-Layout Synthesis 

Once a network of logic gates and registers is available, these may be auto­
matically converted to a layout. Software for this task is very well devel­
oped, having been refined over the last 15 to 20 years. Gate arrays and 
standard-cell designs use this approach. There are two main phases that are 
required: placement and routing. 

6.4.4. 1 Placement 

Placement is the task of placing modules adjacent to each other to minimize 
area or cycle time (timing-directed placement). Two main automated algo­
rithms have been developed. The Min-cut algorithm 72 takes the blocks at the 
top level of the chip or module to be placed and finds two approximately 
equal area-groupings of subblocks with the minimum number of signal inter­
connections. These two blocks are then placed in the top and bottom half of 
a conceptual final layout. This process is repeated for these two halves, split­
ting the conceptual layout into quarters and so on until the leaf cells are 
reached. This algorithm is very fast and gives good placements. Another 
popular technique in which the movement of modules is likened to thermal 
annealing is also used.73 Modules are initially allowed to move randomly, 
and the "temperature" of the layout is evaluated by applying some measure 
such as routing area or timing. As the layout "cools" the routing and/or tim­
ing improves. For each proposed subblock movement, the resulting temper­
ature is calculated. If it is higher than the current temperature, the move is 
not completed. To avoid local minima, the "melt" is reheated and then 
recooled according to an "annealing schedule." This process is used in the 
TimberWolf program that was developed at the University of California, 
Berkeley74 and refined at Yale University. 

6.4.4.2 Routing 

A router takes a module placement and a list of connections and connects the 
modules with wires. This technology is very mature. Types of routers 
include channel routers, switchbox routers, and maze routers. Channel rout­
ers are typified by the YACR2 router75 and the Greedy router.76 These rout­
ers route rectangular channels. Switchbox routers can route more complex 
channel shapes than channel routers. Maze routers 77 can route just about any 
configuration but have comparatively long running times. They are usually 
reserved for really tough routing problems. 

MISll 

netlist 

FIGURE 6.38 Logic 
optimization using 
MISH 
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A global router78 is a special router that works during a placement algo­
rithm to try to plan where routes will travel when the layout is finally placed. 

6.4.4.3 An Automatic Placement Example 

The standard-cell (constant height cells) placement part of Timber Wolf takes 
as inputs the following: 

• The .eel file. 

• The .blk file. 

• The . par file. 

• The .net file. 

The .eel file describes the connectivity of standard-cells port locations and 
signal names. A partial example is shown below: 

cell 2 INVERTER-2 
left -36 right 36 bottom -225 top 225 
pin name Z_top signal NEXT_STATE<2> 18 225 

equiv name Z_bottom 18 -225 
pin name A_top signal [169) -18 225 

equiv name A_bottom -18 -225 

pad 0 %%%pad_TOP_O orient 3 

padside T 
left -1 right 1 bottom -1 top 1 
pin name top_%io-port signal STATE<3> 0 1 

pad 1 %%%pad_TOP_l orient 3 

padside T 
left -1 right 1 bottom -1 top 1 
pin name top_%io-port signal STATE<2> 0 1 

The first cell statement denotes an inverter, INVERTER-2 with output 
NEXT_STATE<2> and input [169]. The bounding box of the inverter is 
specified by the second line. Each successive line specifies a port and its 
location. Ports that feed through cells may also be specified. Finally, the 
ordering and location of I/O pads are specified by the pad statements. 

The .blk file contains information pertaining to the structure of each row 
in the layout. An example follows: 

block height 450 class 1 
block height 450 class 1 mirror 

block height 450 class 1 

This defines a three-row layout with the middle row mirrored in Y. 
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The .par file contains various global parameters to be applied to the lay­
out. The following is an example: 

rowSep 1.1111112 
addFeeds 
feedThruWidth 36 
implicit.feed.thru.range 0.25 
do.global.route 
do.global.route.cell.swaps 

For instance, this specifies to add feedthroughs if necessary. 
Finally the .net file specifies information about the nets to be routed. The 

following is an example: 

allnets HVweights 2.5 1.0 

This specifies that all nets are to be routed with an equal weighting of 2.5 for 
horizontal and 1 for vertical routes. 

Timber Wolf returns the following files 

• The .pll and .pl2 files which describe the placement of modules. 

• The .pin file, which describes the segment list of routes. 

• The .twf file. 

• The .out file, which is a summary of the program execution. 

• The .sv2 and .sav files, which allow restart of the program. 

For example, a portion of .pl2 file example appears as follows: 

D-REG-MUX-8 0 502 612 952 2 1 

INVERTER-2 1188 1452 1260 1902 1 2 

D-REG-MUX-31 1332 502 1944 952 2 1 

A portion of a .pin file appears as follows: 

[212] 3 NOR2-1 A_bottom 702 502 1 1 0 

STATE<O> 12 AOI21-35 B_top 774 2852 4 -1 0 

Using this information, a channel router may be called to complete the chan­
nel routes specified by Timber Wolf. With the addition of power feeds on the 
two ends of the layout, the standard cells and routing blocks may be placed 
to create the final layout. A typical standard-cell layout in outline form is 
shown in Fig. 6.39 and Plate 9. 
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FIGURE 6.39 A typical 
standard-cell layout style 
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A large number of mature research, proprietary, and commercial place­
and-route systems are available. 

6.4.5 Layout Synthesis 

The layout of regular structures such as RAMs, ROMs, PLAs, register files, 
multipliers, and general datapaths may be synthesized by software genera­
tors. These programs take a number of parameters as input and automatically 
create a custom physical layout. Some systems create actual mask layout 
tuned to a particular process, while others create symbolic layouts that may 
be compacted to suit a particular technology. 79 

The following is an example of a virtual-grid symbolic description of an 
inverter from the NS design system. It is specified in Common Lisp. 

(defaspect-generator ("USER:INVERTER" :VIRTUAL-GRID) 

(w ratio pw) 

iii transistors 

(part N-CHANNEL-MOSFET :origin (pt 1 3) :WIDTH w) 

(part P-CHANNEL-MOSFET :origin (pt 1 7) 

:WIDTH ( * ratio w)) 

iii contacts 
(part VG-TERMINAL :x 0 :y 3 

:CONNECTED-LAYERS I (N-DIFF METAL)) 
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(part VG-TERMINAL :x 2 :y 3 

:CONNECTED-LAYERS I (N-DIFF METAL)) 

(part VG-TERMINAL :x 3 :y 5 
:CONNECTED-LAYERS I (METAL POLY) ) 

(part VG-TERMINAL :x 0 :y 7 

:CONNECTED-LAYERS I (P-DIFF METAL)) 
(part VG-TERMINAL :x 2 :y 7 

:CONNECTED-LAYERS I (P-DIFF METAL)) 

i i i wires 
(part VG-LOG :from (pt 0 10) :to (pt 4 10) 

:LAYER 'METAL :WIDTH pw) 
(part VG-LOG :from (pt 0 0) :to (pt 4 0) 

:LAYER 'METAL :WIDTH pw) 
(part VG-LOG :from (pt 0 0) :to (pt 0 3) :LAYER 'METAL) 

(part VG-LOG :from (pt 0 7) :to (pt 0 10) :LAYER 'METAL) 

(part VG-LOG :from (pt 2 5) :to (pt 2 3) :LAYER 'METAL) 

(part VG-LOG :from (pt 1 0) :to (pt 1 10) :LAYER 'POLY) 

(part VG-LOG :from (pt 3 0) :to (pt 3 10) :LAYER 'POLY) 

(part VG-LOG :from (pt 2 7) :to (pt 2 5) :LAYER 'METAL) 
) 

The first two statements specify transistors. The next four statements specify 
inter-layer contacts (the type is specified by the list of layers following the 
: CONNECTED-LAYERS keyword). The final eight statements specify wires 
with position keywords(: from : to), a size keyword (:WIDTH), and the 
: LAYER keyword, specifying the layer on which the wire is routed. 

In this example, the width of the n~ and p-transistors has been specified in 
terms of the variables wand ratio. The keyword : WIDTH passes this to the 
transistor generator. In addition, the power bus width has been specified in 
terms of pw. Figure 6.40 illustrates a few insta1_1ces of this layout generator. 

At a higher level, the following is the top-level call to a PLA generator 
(see Chapter 8): 

(defaspect-generator ( "PLA: PLA" :VIRTUAL-GRID) (pla­
filename) 

(let* ((inputs (get-number-of-inputs pla-filename)) 

(outputs (get-number-of-outputs pla-filename)) 

(cells 

(list 
'("PLA-EDGE" :inputs ,inputs :outputs ,outputs 

:edge :bottom) 
'("PLA-MIDDLE" :pla-file ,pla-filename) 

'("PLA-EDGE" :inputs ,inputs :outputs ,outputs 
: edge : top) ) ) ) 

(vertically-abut cells) 

(import-all-ports))) 

This hierarchically calculates some parameters (inputs,outputs) from 
the file specifying the PLA and calls some other generators (PLA-EDGE and 
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FIGURE 6.40 Various 
instantiations of a CMOS 
inverter generated by a 
generator w = 2 ratio = 1 pw = 1 w = 4 ratio = 2 pw = 2 w = 4 ratio= 0.5 pw = 4 

PLA-MIDDLE) and then vertically abuts these cells. Following this, the 
ports are imported from the lower level of the design. As an example of the 
next level down, the generator that performs the PLA-MIDDLE function is 
reproduced below: 

(defaspect-generator ("PLA:PLA-MIDDLE" :VIRTUAL-GRID) 
(pla-filename) 

(let ( (cells (list 
("FLA-LEFT" :pla-file ,pla-filename) 

:pla-file ,pla-filename) ( II AND- PLANE II 

("AND-OR-JOIN" :pla-file 

' ("OR-PLANE" :pla-file 

,pla-filename) 

("FLA-RIGHT" 

(horizontally-abut cells) 
(import-all-ports))) 

:pla-file 

,pla-filename) 
,pla-filename)))) 

This horizontally abuts the PLA-LEFT, AND-PLANE, AND-OR-JOIN, OR­
PLANE, and PLA-RIGHT cells. Finally at the AND and OR plane level, the 
generator places transistors according to the PLA personality matrix. 

It may be seen that with the combination of symbolic layout, a powerful 
language and a good CAD substrate, powerful layout generators may be cre­
ated with minimum effort. 

As opposed to the creation of random logic, which the previous section 
illustrated, layout generators are used for regular arrays or places where a 
simple algorithm can specify the layout. 
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6.5 Design-capture Tools 

6.5.1 HDL Design 
The behavior and/or structure of a system may be captured in a Hardware 
Description Language. There are a wide variety of proprietary, commercial, 
and public domain languages including those specifically designated hard­
ware description languages (HDLs), such as VHDL, ELLA, Verilog®, and 
modified high-level languages, such as C, Pascal, and Lisp. Languages like 
VHDL allow for the capture of both structure and behavior. For example, 
Chapter 1 used an example of a structural design coded in Verilog®, while 
this chapter used an RTL VHDL description. 

The popular standard HDLs differ from high-level languages by cater­
ing for hardware notions such as bit vectors, signals, and time within the 
native language. This is reflected in the syntax of the language and the 
underlying runtime operating support, which includes compilers, debuggers, 
and simulators. In common with high-level languages, HDLs usually pro­
vide all of the elements of modern computer languages-structure, 
parametization, conditionals, looping, and hierarchy. 

6.5.2 Schematic Design 
The traditional method of capturing a digital system design is via an interac­
tive schematic editor. Actually, preferences have cycled from textual netlists 
(when graphics hardware was expensive) to interactive graphic editors to 
textual HDLs. Many design systems allow a free mix of code and diagrams 
so that designers can choose. In general, diagrams are more quickly under­
stood ("a picture is worth a thousand words"), but HDLs are more easily 
modified. 

Schematic editors provide a means to draw and connect components. A 
collection of components may be collected into a module for which an icon 
may be defined. The icon is a diagram that stands for the collection of com­
ponents within the module. The shape might suggest the function of the 
module, while the 1/0 connections of the module are represented by stubs 
with signal names. This icon may then be used in another module, and so on, 
hierarchically, throughout the design. Figure 6.41 shows a typical schematic 
for a module and its schematic icon. 

Primarily, schematic editors are menu-based graphic editors with opera­
tions such as: 

• Creating, selecting, and deleting parts by pointing or area inclusion. 

• Changing the graphic view by panning, zooming, or other means. 
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FIGURE 6.41 Structural 
views of a circuit: (a) sche­
matic; (b) schematic icon (a) (b) 

DO 
01 
02 
03 z 
04 
05 
06 

To a basic graphic editor, operations are added that pertain to the electrical 
nature of the schematic, such as: 

• Selecting an electrical node and interrogating it for state, connections, 
capacitance, etc. 

• Running an attached simulator or other electrical network-based tools. 

6.5.3 Layout Design 

Layout too can b~ captured via code (in the case of generators) or interactive 
graphics editors. However, to maintain one's sanity, a good color editor is a 
strong requirement if substantial layout editing is to be performed. Layout 
editors, like schematic editors, are based on drawing editors (for instance see 
Rubin80). Differences occur in the way color is treated and sometimes in the 
way detail is thresholded (although in advanced design systems one editor is 
usually used for all diagram editing81 ). Because there is usually a large 
amount of data present, various means of turning off detail are required to 
alleviate long redraw times. A layout editor might interface to a Design Rule 

I 

Checking program to allow interactive checking of DRC errors, and to a 
layout-extraction program to examine circuit-connectivity issues. 

6.5.4 Floorplanning 

Floorplanning82•83 is the exercise of arranging blocks of layout within a chip 
to minimize area or maximize speed. The latter is increasingly the main rea­
son for performing this activity. Floorplan editors provide graphical feed­
back about the size and placement of modules without showing internal 
layout details. In addition, the editors show connectivity information 
between modules in the form of "rat's-nest" wiring diagrams, where the con­
nected ports of modules are connected by straight lines. These kinds of dia­
grams indicate the relative density of wiring and whether, for instance, ports 
line up between adjacent modules. Figure 6.42 shows a simple example. 
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A c 

B D 

This shows that module D should be flipped around the Y axis to improve the 
routing. Some editors provide shaded color displays of routing density that 
allows designers to re-place and "rip-up-and-reroute" congested areas of the 
chip. While floorplanning may be done automatically, many times a much 
better job can be done manually. Usually, the task is not that time consum­
ing, given the right interactive tools and a knack for doing it. 

6.5.5 Chip Composition 
Similar to structural synthesis, chip composition, or "block-place-and­
route," is the term that is applied to wiring the top level modules in a design. 
At this point a good placement of modules is assumed. The task consists 
mainly of routing modules together and then placing a pad ring around the 
completed chip core. Usually there is a routing strategy that is followed. For 
instance, the technique of binary composition, 84 has been widely used. Here 
modules are combined alternately in horizontal and vertical strips from the 
bottom up until the complete chip is routed. Figure 6.43 illustrates an exam­
ple that shows the progression of steps of grouping modules and adding rout­
ing channels. Figure 6.43(a) shows the unrouted, relatively placed modules. 
Figure 6.43(b) shows a horizontal composition where, for instance, A and B 
are routed together by routing cell AB. A vertical composition step is shown 
in Fig. 6.43(c), where all modules 'are now connected. Routing block DEF 
routes module D and the composed module (E,EF,F). The advantage of this 

FIGURE 6.42 A floorplan 
example 
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approach is that only channel routes need to be routed, which is a well­
solved problem. 

6.6 Design Verification Tools 

Figure 6.44 shows a conventional flow through a set of design tools to pro­
duce a working CMOS chip from a functional specification. Depending on 
the tools, some steps may be automatic and hidden from the designer but 
usually are performed by some agent. The design process is commenced 
with a clock-cycle-accurate functional specification (say, in a high-level lan­
guage such as C). This is used to verify that the system performs as required. 
This is translated to a structural RTL or logic description. If done manually, 
the functionality of the two descriptions has to be proved isomorphic. This is 
done by applying a stimulus to the functional description and to a logic sim­
ulation of the RTL description and comparing the outputs of both forms on a 
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clock-cycle by clock-cycle basis. RTL simulations may be done with the 
actual clock timing by estimating the layout loading capacitances. Once the 
functional equivalence has been satisfied, the structural description is trans­
formed into a physical form (i.e., a layout). Again, this might be automatic 
for a gate array or standard-cell layout or might be done manually. The prob­
lem now is to prove that the layout is a faithful reproduction of the structure 
of the RTL description (i.e., all signals are routed correctly). In addition, we 
have to prove that the functionality is still maintained in the temporal 
domain (timing). This is done by extracting the parasitic routing capaci­
tances introduced by the physical layout and applying them to the RTL sim­
ulation model. 

Each one of these steps requires a certain set of verification tools. In this 
section we summarize these tools. 

6.6.1 Simulation 

Probably the software tool that designers most frequently encounter is some 
form of simulator that is used to predict and verify the performance of a 
given circuit. Simulators come in a wide variety depending on the accuracy 
and speed of simulation required. 85 

6. 6. 1. 1 Circuit-level Simulation 

The most detailed and accurate simulation technique is referred to as Circuit 
Analysis. As the name suggests the simulators operate at the circuit level. 
Circuit-analysis programs are typified by the SPICE program developed at 
the University of California at Berkeley86 and ASTAP developed at IBM. 87 

Commercially available versions are typified by the HS PI CE program. 88 

The basis for this type of program is the solution of the matrix equations 
relating the circuit voltages, currents, and resistances (or conductances). 
This type of simulator is characterized by high accuracy but long simulation 
times. Simulation time is typically proportional to Nm, where N is the num­
ber of nonlinear devices in the circuit, and m is between 1 to 2. This type of 

FIGURE 6.44 Design flow 
through typical CMOS VLSI 
tools 
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program is used to verify in detail small circuits or to verify the simulation 
results of faster but less accurate simulators, such as timing simulators. It is 
unrealistic to use this type of program for the verification of large VLSI 
chips. 

Circuit simulators used to verify performance of CMOS circuits should 
not be assumed to accurately predict the performance of designs. There are 
three basic sources of error. These are as follows: 

• Inaccuracies in the MOS model parameters. 

• The use of an inappropriate MOS model. 

• Inaccuracies in parasitic capacitances and resistances. 

Usually, contemporary circuit simulators related to SPICE provide dif­
ferent levels of modeling (specified by the LEVEL parameter). Simple mod­
els are optimized for speed of processing, while more complex models are 
used for more accurate simulation. If possible one should verify actual tran­
sistors from known process corners against the DC characteristics predicted 
by the simulator. A good practice is to include test transistors of both polar­
ities with various widths with the lengths used in the design (usually the 
minimum and sligh.tly longer for I/O transistors). Because processes are 
shrunk, the models used by a simulator may no longer be able to accurately 
predict the performance of the transistors. 

Assuming that one has verified the DC performance of the transistors, 
the AC performance can now be in question. A significant source of error in 
predicting performance can be the parasitic capacitances that are applied to 
nodes in the circuit description used in the circuit-analysis program. The 
gate capacitance is part of the MOS model and should be subtracted from the 
total capacitance predicted by a layout-extraction program. One should 
check how drain and source capacitances are added to transistors-often 
they are added as diodes or as part of the MOS model. In this case they 
should not be added as stray capacitance on the node. A good practice is to 
create a check layout with known areas and peripheries on each layer and 
then check the SPICE deck produced by any extraction program. The bottom 
line is to be aware of the means of process calibration (i.e., that someone is 
responsible for it). 

6.6.1.2 Timing Simulation 

It is possible to simplify the general circui,t analysis approach used above to 
allow simple nonmatrix calculations to be employed to solve for circuit 
behavior. This usually involves making some approximations about the cir­
cuit. Typical of an early simulator using this approach is the MOTIS simula­
tor. 89 More recent examples may be found in White and Sangiovanni-
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Vincentelli.90 The accuracy of such simulators is less than that of SPICE­
type simulators, but the execution time is almost two orders of magnitude 
less. 

Implementations may use MOS-model equations to calculate device cur­
rents or may use table look-up methods. Calibration of any simulator is advis­
able, using the techniques described above for circuit simulators. Usually the 
relative accuracy of such simulators is good; that is, inherently high speed cir­
cuits will demonstrate better performance than slower circuits. However, 
sometimes the absolute accuracy may not be as good as a circuit simulator, 
especially if no real silicon has been used to check simulation results. 

Absolute accuracy is somewhat of a red herring anyway, because pro­
cess variation, temperature variation, and allowable supply-voltage excur­
sions may vary by a range of three or four to one. The designer is usually 
trying to predict the slowest the circuit will operate. It is unwise to do this 
with no margin unless the whole design system is known to accurately pre­
dict worst-case performance. Designers generally allow a 10-20% margin in 
assessing speeds. 

6.6. 1.3 Logic-level Simulation 

Many simulators have evolved to deal with simulation at the logic level. 
They use primitive models such as NOT, AND, OR, NAND, and NOR gates. 
Some operate in a "unit delay" mode, where every gate is assumed to have a 
delay of one time-unit. This type of simulator can be highly optimized for 
execution speed. Alternatively, timing parameters may be assigned to the 
logic models based on prior circuit simulation and known circuit parasitics. 
Because all logic circuits are rarely active simultaneously, logic events may 
be scheduled on a queue. This means that the state of the network is evalu­
ated on an event-driven basis, rather than on a timing-substep basis, as are 
most of the implementations of the two previous simulators. 

Timing is normally specified in terms of an inertial delay and a load 
dependent delay for the appropriate edge transitions, as follows: 

Tgate = Tintrinsic + Czoad X Tzoad1 (6.1) 

where 

Tgate = the delay of the gate 

Tintrinsic = the intrinsic gate delay (no load) 

Czoad =the actual load in some units (i.e., pF or# normalized gates) 

Tzoad = the delay per load in some units (i.e., ns/pF or ns/#normalized 

gates) 
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(A normalized gate might be the minimum gate load of the smallest 
inverter in a standard-cell library-all other gate inputs would be char­
acterized ih terms of this unit.) 

Logic simulators with such timing information are quite accurate for 
CMOS logic configurations or other circuits where the function has been 
'Yell characterized at the gate level. Nowadays this characterization can be 
done automatically by running scripts that perform the circuit simulations 
and extract the relevant data. Where this capability is not available, a consid­
erable manual simulation effort is required to create a new standard-cell 
library in a new process. 

Logic simulators are adequate for well-characterized CMOS circuits 
that have regular logic counterparts. They are relatively fast and are thus 
suitable for large circuits. This has been also aided by hardware engines that 
compute the simulation algorithm. Early logic simulators were not suitable 
for circuits with transistors rised as transmission gates, such as transmission 
gate multiplexers, memories, or pass-gate logic. However, recent logic sim­
ulators do deal with transistor circuits in a limited manner. 

6.6.1.4 Switch-level Simulation 

Switch-level simulators merge logic-simulator techniques with some circuit­
simulation techniques by modeling transistors as switches. RSIM~1 is ah 
example of a switch-level simulator with timing. CMOS gates are modeled 
as either pull-up or pull-down structures, for which RSIM dynamically cal­
culates a resistance to powe,r or ground. This resistance is used with the out­
put capacitance of the gate to predict rise or fall times. 

Switch-level simulators alleviate the need for circuit analysis calibration 
of CMOS gates, but do have some accuracy limitatio_ns when evaluating 
transmissibn-gate circuits (they are usually overly pessimistic). In addition, 
some circuit structures present patholbgical topology cases, which confuse 
the simulation algorithms (the "tiny XOR" _gate used in the transmission­
gate adder in Chapter 8 is an example)'. 

If you design at the transistor level, a switch-level simulator provides a 
first lihe of defense as far as simulation. One should probably back up any 
simulations with a reduced set of simulations using a timing simulator. 

6.6.1.5 Mixed-mode Simulators 

There now exist very good commercial simulators that merge the good 
points of functional simulation, logic simulation, switch simulation, timing 
simulatfon, and circuit simulation. Each circuit block cah be simulated in the 
appropriate mode. For instance a standard-cell logic block might be simu­
lated at the logic level, a memory might be simulated at the functional level, 
and a phase-locked loop might be simulated at the circuit level. In this way 
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only those circuits requiring detailed simulation expend expensive compute 
cycles. 

6. 6. 1. 6 Summary 

A good simulator is crucial to modern CMOS design. The style of simulator 
determines the level to which one can safely design. With a logic simulator, 
one can accurately model well characterized gates and functional blocks. A 
timing simulator allows design down to the transistor level for most digital 
circuits and some limited-accuracy analog circuits. Finally, a circuit-analysis 
program provides enough accuracy (when calibrated to a process) for the 
most complicated analog circuitry. The simulation times and therefore the 
amount of circuitry that may be simulated with each kind of simulator varies 
widely. Logic simulators (particularly unit-delay) are of use at the system 
level. Timing simulators are useful for modules into the 100-1 OOK transistor 
range and have been used for lM+ transistor circuits for a few hundred vec­
tors. Circuit simulators are useful for 10 to 1,000-transistor complexities for 
short simulation periods. Modern mixed-mode simulators allow a trade-off 
in simulation accuracy and time of simulation. 

6.6.2 Timing Verifiers 
Classically, designers simulated with unit-delay simulators to verify func­
tionality. Then they ran simulations with delays to check for timing prob­
lems. The detection of such problems is pattern dependent. In other words, if 
the critical timing vector is not exercised, the critical path will not be found. 
A timing verifier takes a different approach to temporal verification. Here, 
the delays through all paths in a circuit are evaluated in a pattern­
independent manner and the user is provided with information about these 
delays. CMOS verifiers in common with simulators may work at the gate or 
the transistor level.92 The circuit to be analyzed is first statically examined to 
determine the direction of signal flow in all transistors. This is necessary to 
evaluate only those delays that will be critical in actual circuit operation. A 
recent example of this type of analyzer is the Pearl program.93 Each transis­
tor is examined and the direction of signal flow is calculated using nine rules. 
These rules may be determined from: 

• Circuit-design methodology rules. 

• Electrical rules. 

• User-supplied rules. 

The Pearl program calculates an RC delay for each node using RSIM. These 
are then evaluated in a breadth-first manner. Delay paths are qualified by 
appropriate clocks. 
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A timing analyzer implemented at the transistor level can provide a 
designer with rapid feedback about critical paths. Combined with a switch­
level simulator for rapid global functional simulation, a timing simulator for 
detailed module verification, and a circuit-analysis program for critical-path 
evaluation, the timing analyzer completes a set of powerful verification 
tools. Timing analyzers implemented at the gate level allow the same quality 
of design down to the gate level, which is sufficient for a wide range of 
CMOS systems. 

Pitfalls of timing analyzers are false paths and sneak paths. False paths 
can occur because the timing analyzer does not know how the circuit is used. 
For instance, that a bus is only used to read or write during a cycle and not 
for both. False paths are dealt with by blocking them as they are recognized. 
Sneak paths are paths that for some reason the timing analyzer does not rec­
ognize. These can occur in complicated clocking schemes that may be 
beyond aging timing analyzers. For this reason it may be prudent to timing 
simulate circuits as a backup unless you are confident that your timing ana­
lyzer catches everything. (Many have believed the latter point, only to be 
ushered back to reality by the outcome of the silicon.) 

6.6.3 Network Isomorphism 
An electrical network may be represented by a graph where the vertices of 
the graph are devices such as MOS transistors, bipolar transistors, diodes, 
resistors, and capacitors. The arcs are the connections between devices. 
These are the electrical nodes in the circuit. This graph may be in turn repre­
sented by some data structure that may be accessed by a variety of software 
routines interested in the electrical connectivity properties of the circuit. 
Two electrical circuits are identical if the graphs representing them are iso­
morphic; that is, each graph has the same number of devices and for every 
device in one circuit there is a matching device in the other circuit. The 
matching devices have identical properties such as: 

• Transistor width and length. 

• Resistance value. 

• The number of connections on each terminal (i.e., gate, drain, source). 

Each node in one circuit has a matching node in the other circuit. They have 
identical properties such as: 

• The same number of source and drains attached to them. 

• And the same number of gates (MOS gate). 

Network isomorphism is used to prove that two networks are equivalent 
and therefore should function equivalently. This is used most often to prove 
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that a layout is equivalent to a network extracted from a schematic schematic 
or HDL structural netlist. Other uses include proving that two schematics or 
two layouts are equivalent. 

The process of comparing two networks is commonly called "netlist 
comparison," "network isomorphism," or LVS (layout versus schematic). 

Electrical networks may use subnetworks as devices. For instance, in a 
chip layout standard-cell blocks may be represented by bounding boxes (for 
a vendor's proprietary library). The layout extract operation then extracts 
only the routing. This is compared with to the network obtained by expand­
ing the structural description down to the level of gates (but not transistors). 
Frequently the notion of "logical equivalency" is used. This allows a layout­
design system to swap the order of signals on series transistors in logic gates 
with respect to the structural specification for layout convenience. While this 
is fine for logic circuits, some problems can occur if it is used in high­
performance and mixed-signal circuits. Consider an analog-bias circuit con­
sisting of series transistors where the order of the transistors dictates the 
behavior-these cannot be swapped. 

6.6.4 Netlist Comparison 
If a schematic or circuit description is entered to define an IC, at some stage 
a physical layout is generated. This may be completed automatically, as in 
the case of a gate array or place-and-route standard-cell system. Alterna­
tively, the physical layout may have a manual component. Ideally, the signal 
names between parallel representations would be the same, allowing easy 
comparison between desired and actual circuit by matching node names and 
the number and type of components connected to each node in the schematic 
and the layout. In reality, signal names are often omitted from internal nodes 
in a circuit (especially in layouts) and only applied to I/O ports. Thus there is 
the problem of comparing two graphs that are labeled in a limited manner. 
Programs that verify the equivalence or lack thereof of two unnamed circuit 
graphs are thus needed. 

Typical of a program that performs this function is GEMINI.94 Signa­
tures are calculated for each transistor in the test and reference circuit. Sig­
natures include: 

• Fan-in. 

• Fan-out. 

• Transistor type. 

• Bound nets connected to the transistor. 

Test and reference circuits are then repeatedly checked to correlate transis­
tors. Discrepancies are either indicated interactively or by a listing of the 
matched and unmatched nodes. 
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6.6.5 Layout Extraction 

Layout extractors examine the interrelationship of mask layers to infer the 
existence of transistors and other components. They are related to design 
rule checkers (Section 6.6.7). Various approaches have been implemented to 
approach this problem.95•96 Commonly, parasitic capacitances and resis­
tances are reported in addition to transistor connectivity. Algorithms com­
monly use geometric-shape intersections to recognize active devices (see 
Chapter 3). The need for such tools by the system designer will decrease as 
higher-level design techniques provide "correct-by-construction" modules. 
However, some form of layout extraction is usually done to create data for 
the back annotation step described in the next section. 

6.6.6 Back-Annotation 

Once a layout has been constructed and there is isomorphism between the 
schematic network and the layout network, one can correlate extracted capac­
itances from the layout with the schematic and perform simulation or timing 
analysis to verify performance. This is done by moving the capacitance that 
appears on a layout node to the corresponding schematic node while account­
ing for existing capacitance on the schematic node. For instance, the schematic 
may already have the source-drain and gate load due to the gates connected to 
the node and only the routing capacitance is required to be added. This opera­
tion is known as "back-annotation" (Fig. 6.44). 

6.6.7 Design-rul~ Verification 

If mask design is completed manually (and even automatically), it is neces­
sary to verify that the layout conforms to the geometric design rules. This is 
achieved with a design-rule checker. Many variations exist, but typical 
approaches are found in Szymanski and Van Wyk,97 Baker and Terman,98 

and Baird99 (see also Chapter 3). 
Hierarchical design-rule checkers are necessary for large circuits. 100 

These design-rule checkers use the hierarchical nature of a design to reduce 
the number of cells that have to be individually checked. 

6.6.8 Pattern Generation 

Pattern generation is the last step in the sequence that starts at the architec­
ture for a chip and ends with a database suitable for manufacture. It is the 
operation of creating the data that is used for maskmaking. Over the years, 
the format of this data has changed as the methods of generating masks have 
changed. Originally, the data drove flatbed plotters that cut Rubylith® (a red 
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plastic "mask" layer backed by a clear Mylar® plastic backing). Nowadays, 
most semiconductor operations use electron-beam-generated masks (i.e., 
generated by exposing a resist-coated metal· film with a focused electron 
beam). These machines expose the masks in a raster-scan style similar to a 
television. 

A common format is the Electron Beam Exposure System, EBBS for­
mat.101 Data is composed of rectangles, parallelograms, or trapezoids. Given 
a layout captured in a design system, the following steps must be completed 
to create an EBBS file: 

• Combine layers to form required mask (i.e., all n + and vddn regions 
for an nplus mask). 

• Size-resulting data (i.e., shrink or bloat to account for processing 
effects such as under-etching or sideways diffusion). 

• Canonicalize resulting geometry in terms of base figures (i.e., rectan-
gles). 

• Sort the resulting shapes in scanline order. 

• Determine polarity of mask (i.e., dark field or light field). 

• Output data in suitable format. 

Because this is the last step in the design process and because it is hard to 
detect defects on the masks, manufacturers frequently pattern two or more 
die patterns on a single-mask reticle and then use differencing techniques to 
detect differences between pairs of like die patterns to detect mask defects . 

. 6.7 Design Economics 

It is important for the IC designer to be able.to predict the cost and the time 
to design a particular IC or sets of I Cs. This can guide the choice of an imple­
mentation strategy. This section will summarize a simplified approach to 
estimate these values. 

In this study we will concentrate on the cost of a single IC, although one 
should consider the overall system when making such decisions. System 
level issues such as packaging and power dissipation may affect the cost of 
an IC. 102 

The selling price of an integrated circuit may be given. by 

ctotal 
stotal = 1 - m' (6.2) 
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where 

Ctotal = the manufacturing cost of a single IC to the vendor 

m = the desired profit margin. 

The margin has to be selected to ensure a profit after fixed costs including 
overhead (G&A), and the cost of sales (marketing and sales costs) have been 
subtracted out. 

The costs to produce an integrated circuit are generally divided into the 
following: 

• Nonrecurring costs (NREs). 

• Recurring costs. 

• Fixed Costs. 

6.7.1 Nonrecurring Engineering Costs (NREs) 

The nonrecurring costs are those costs that are spent once during the design 
of an integrated circuit. They include 

• The engineering design cost. 

• The prototype manufacturing cost. 

These costs are amortized over the total number of ICs sold. Ftotab the total 
nonrecurring cost is given by 

Ftotal = Etotal + PtotaZ, (6.3) 

where 

Etotal = the engineering cost 

Ptotal =the prototype manufacturing cost. 

Normally the recurring costs are viewed as an investment for which there is 
a required rate of return. For instance, if $1 OOK is invested in NRE for a chip 
then $1M might have to be generated as profit for a rate of return of 10. 

6. 7. 1. 1 Engineering Costs 

The costs of designing the IC (Etotaz) hopefully happen only once during the 
chip design process. The costs include: 

• Personnel costs. 

• Support costs. 
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The personnel costs might include the labor for: 

• Architectural design. 

• Logic capture. 

• Simulation for functionality. 

• Layout of modules and chip. 

• Timing verification. 

• DRC and tapeout procedures. 

• Test generation. 

The support costs, amortized over the life of the equipment for the length of 
the design project, include: 

• Computer costs. 

• CAD program costs. 

• Education or reeducation costs. 

6. 7. 1.2 Prototype Manufacturing Costs 

These costs (Ptotaz) are the fixed cost to get the first !Cs from the vendor. 
They include: 

• The mask cost. 

• Test fixture costs. 

• Package tooling. 

The photo-mask cost is proportional to the number of steps used in the 
process. Mask costs increase as the process dimensions are reduced, so while 
newer, smaller processes generally have increased mask costs, masks on the 
metalization layers can be less expensive than the lower layers. A mask can 
currently cost between $500 and $1500. 

A test fixture consists of a printed wiring board-probe assembly to 
probe individual die at the wafer level and the interface to the tester. Costs 
range from $1000 to $5000 depending on the complexity of the interface 
electronics. 

If a custom package is required, it may have to be designed and manu­
factured (tooled). The time and expense of tooling a package depends on the 
sophistication of the package. Where possible, standard packages should be 
used. 
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6.7.2 Recurring Costs 

Once the development cost of an IC has been determined, the IC manufac­
turer will arrive at a price for the specific IC. This includes a recurring cost; 
that is, one that recurs every time an IC is sold. 

The IC manufacturer will determine a part price for an IC based on the 
cost to produce that IC and a profit margin. The margin can fall as the reve­
nue increases. An expression for the cost to process an IC follows. 

The total cost is 

Ctotal = Cprocess + Cpackage + Ctest• (6.4) 

where 

Cpackage = package cost 

Ctest = test cost-the cost to test an IC is usually proportional to the 

number of vectors and the time to test. 

where 

W = wafer cost 

W+P 
Cprocess = NY y y ' 

w pa ft 

P = processing cost 

N =gross die per wafer (the number of complete die on a wafer) 

Y w = die yield per wafer 

Ypa = packaging yield 

Yft = final test yield. 

(6.5) 

The wafer yield, Yw was dealt with in Chapter 4. The packaging yield is the per­
centage of successfully diced, bonded and packaged parts. The final test yield is 
the percentage of package~ parts that pass a final packaged part test sequence. 

6.7.3 Fixed Costs 

Once a chip has been designed and put into manufacture, the cost to support 
that chip from an engineering· viewpoint may have a few sources. In order 
for the part to be effectively used, Data Sheets describing the characteristics 
of the IC have to be written. A data sheet is probably always required, even 
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for application specific ICs that are not sold outside the company that devel­
oped them. From time to time Application Notes describing how to use the 
IC may be needed. In addition specific application support may have to be 
provided to help particular users. This is particularly true for ASICs, where 
the designer usually becomes the walking, talking data sheet and application 
note. Another ongoing task may be failure analysis if the part is in high vol­
ume and you desire to increase the yield. 

Finally there is what is called "the cost of sales," which is the marketing, 
sales force, and overhead costs associated with selling each IC. In a captive 
situation this might be zero. 

6.7.4 Schedule 

At the outset of a system-design project involving newly designed ICs it is 
important to be able to estimate the design cost and design time for that system. 
Estimating the cost can guide the designer as to the method by which the ICs 
will be designed. Estimating the time is essential to be able to select a strategy 
by which the ICs will be available in the right timescale and at the right price. 
This second task (estimating schedules) is usually the least well specified and 
requires some experience to accurately predict design timescales. 

If we assume that for a given IC size Cprocess is constant, the variables 
left in determining the return on investment of an IC are, Etotal• the engineer­
ing design cost, Ptotal the prototype-manufacturing cost. Ptotal depends on 
the way in which the IC is implemented. We examined a variety of strategies 
fo~ the design of CMOS systems in Section 6.2. The fixed costs of prototyp­
ing Piotal are relatively constant, given an implementation technology. The 
engineering costs depend on the complexity of the chip and the design strat­
egy. For this reason, it is important to be able to estimate a schedule for the 
design of an IC and then manage the available resources to bring the project 
to a successful conclusion. 

Studies on schedule management for ICs have been carried out by ana­
lyzing many IC design projects implemented in a variety of ways. 104 These 
show that schedule is only a function of personpower, that is, the number of 
people working on the project. The study showed that below 30 weeks, 
schedule is proportional to personpower, while beyond about 30 weeks, the 
schedules become proportional to the cube root of the personpower. Fey and 
Paraskevopoulos102 suggest a number of methods for increasing productiv­
ity, thereby improving schedules. They include the following: 

• Using a high-productivity design method. 

• Improving the productivity of a given technique. 

• Decreasing the complexity of the design task by partitioning. 
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A range of various design methods were examined in Section 6.3 which 
form the basis for achieving some of these goals. 

As a final point one should note that increasing the personpower is a 
poor way of improving a schedule and likely will have the opposite effect. 

6.7.5 Personpower 
In order to estimate the schedule, one must have some idea of the amount of 
effort required to complete the design. As we have seen, typical IC projects 
will involve the following tasks: 

• Architectural design. 

• Logic capture. 

• Simulation for functionality. 

• Layout of modules and chip. 

• Timing verification. 

• DRC and tapeout procedures (ERC, LVS, MEBES). 

• Test generation. 

If we take each of these activities and apply a productivity figure for a given 
complexity of design, we may have the basis for the manpower, or person­
power, required to complete the project. 

Fey has completed productivity studies for custom-chip designs103• 104 

and gate-array designs. 105 

6. 7 .6 An Example-Gate-array Productivity 
Fey's productivity models for gate arrays lead to the following empirically 
determined equation: 

P = 16.2 mG0·6 0.5 < G < 25, 

where 

P = the productivity in gates/person-day 

G = the number of gates in thousands 

m = (0.611)(0.86u)(0.64R)(l.17D), 

where 

(6.6) 

(inputs+ outputs+ bidirects) o.5 

I= the adjusted I/O = K (6.7) 
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K = the number of gates 

R = the complexity (from 1 (lowest) to 5) 

U = the number of gates used = max(O, %gates used - 90%) 

D = the design experience = number of previous designs completed by 
designer 

As with automobile advertising, these formulae are for comparison purposes 
only; your mileage may vary. Other variables that were studied included the 
number of test vectors per gate, the quality of the design specification and 
the year of the design. 

By normalizing the productivity, we obtain 

(6.8) 

where PN is the normalized productivity in gates per person-day. 
The personpower (M) may be calculated from the productivity by 

0.5 < G< 25, (6.9) 

where 

Ps = 17.1G0·61 (Eq. 6.8 fitted to experimental data), 

Thus 

(6.10) 

By evaluating Mone may then estimate the schedule (T), using the following 
equation: 

T=M M<29 

T= 9.lM034 M ~ 29 

(6.11) 

(6.12) 

Thus for a 1000-gate design these equations would suggest that it takes 9 
weeks while a lOK-gate design would take 29 weeks. These equations are 
included as an analytical guide for estimating schedules. They represent the 
result of one piece of research work aimed at quantifying design productiv­
ity. Nothing replaces experience when it comes to estimating the real thing 
(and even then that does not always help!). 
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The general outcome of this research suggests keeping design schedules 
below 6-7 months. Increasing productivity can increase the number of gates 
that can be designed in this time. With HDL based synthesis, this should reach 
50-lOOK gates. Other design methods should lead to higher productivities. 

6.8 Data Sheets 

A data sheet for an IC describes what it does and outlines the specifications 
for making the IC work in a system. These specifications would include 
power-supply voltages, currents, input setup times, output-delay times, and 
clock-cycle times. Also included would be pin loadings and package and 
pinning details. While commercially produced chips are accompanied by 
data sheets (and this is a good place to look for examples), chips produced in 
small volumes internally in an organization may often be introduced into the 
world without the advantage of a data sheet. 

A good habit to acquire is that of compiling a data sheet for any chip you 
might design. A data sheet is the interface between the chip designer and the 
board-level designer. In particular, it is good practice and mandatory in 
industry to compile the data sheet for the chip and give it to the ultimate cus­
tomer before it is fabricated. This prevents many undesirable scenarios that 
can arise when perfectly designed chip meets perfectly designed system and 
creates product nightmare. In this section an outline of a typical data sheet 
will be reviewed by way of example. 

6.8.1 The Summary 

A summary of the chip includes the following details: 

• The designation and descriptive name of the chip (i.e., ABC1478-
FIR Filter Chip). 

• A short description of what the chip does .. 

• A features list (optional for an internal product-but good for your 
ego). 

• A very high level block diagram of the chip function. 

This serves to orient the user to the chip and the function it performs. 

6.8.2 Pinout 

The pinout section should contain a description of the following pin 
attributes: 

• The name of the pin. 
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• The type of the pin (i.e., whether input, output, tristate, digital, analog, 
etc.). 

• A brief description of the pin function. 

• The package pin number. 

This documents the external interface of the chip. 

6.8.3 Description of Operation 
This section should outline the operation of the chip as far as the user of 

the chip is interested. Programming options, data formats, and control 
options should be summarized. 

6.6.4 DC Specifications 
The absolute maximum ratings should be stated for the following: 

• Supply voltage. 

• Pin voltages. 

• Junction temperature. 

The style of each 1/0 (i.e., TTL, CMOS, ECL) should be summarized and 
the following DC specifications should be given over the operating range 
(temperature and voltage, i.e., mins and maxes): 

• The V1L and VIH for each input. 

• The VoL and VoH for each output (at a given drive level). 

• The input loading for each input. 

• The output drive capability of each output. 

• Quiescent current. 

• Leakage current. 

• Power-down current (if applicable). 

• Any other relevant voltages and currents. 

This section communicates the power dissipation and required voltages for 
the chip to correctly operate. 

6.8.5 AC Specifications 
The following timing specifications should be presented: 

• Setup and hold times on all inputs (slowest and fastest). 
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• Clock (and all other relevant inputs) to output delay times (slowest 
and fastest). 

• Other critical timing, such as minimum pulse widths,. 

This data should be tabulated in table form and supported by a timing dia­
gram where necessary. This is probably the most important section and an 
area where data provided ahead of the chip fabrication will aid the board 
designer. Designs are frequently snagged, for instance, when chip designers 
assume infinitely fast external memories and do not allow enough time 
between outputs changing and the next rising edge of the clock. 

6.8.6 Package Diagram 

A diagram of the package with the pin names attached should be supplied. 

6.9 Summary 

This chapter has covered a broad spectrum of design issues that may be 
encountered when designing CMOS chips. The structured design strategies 
that were introduced early in the chapter are useful for any kind of CMOS­
chip design method. A range of implementation options was given to give 
the reader an appreciation for the wide spectrum of solutions that are avail­
able today. In addition a summary of the design styles was given. Increas­
ingly, the level of design is being pushed upward as logic synthesizers are 
refined, compilers are optimized, and knowledge is capture_d from libraries 
of reusable components. You as a designer must keep abreast of such tech­
niques to ensure that you can bring to bear a productivity that results in 
timely, cost-effective, and reliable silicon that may be shipped after the first 
manufacturing run. 

6.10 Exercises 

1. Explain how you would assess the required design-method for a 
function that has to be performed by a single chip. Draw a decision 
chart that shows the various questions that have to be answered, and 
the resulting actions. 

2. Explain the following terms with respect to CMOS-chip design: hier­
archy, regularity, modularity, and locality. Give an example of each. 
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3. Summarize the differences between a SOG chip and a standard-cell 
chip. What benefits does each implementation style have? 
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CMOS 
TEST 
METHODS 

7 .1 The Need for Testing 

While in real estate the refrain is "Location! Location! Location!," the com­
parable 'advice in IC design should be "Testing! Testing! Testing!" While 
most problems in VLSI design have been reduced to algorithms in readily 
available software, the responsibilities for the various levels of testing and 
testing methodology can be a significant burden on the designer. 

In Chapter 4 we noted that the yield of a particular IC was the number of 
good die divided by the total number of die per wafer. Due to the complexity 
of the manufacturing process not all die on a wafer correctly operate. Small 
imperfections in starting material, processing steps, or in photomasking may 
result in bridged connections or missing features. It is the aim of a test pro­
cedure to determine which die are good and should be used in end systems. 

Testing a die (chip) can occur: 

• at the wafer level. 

• at the packaged-chip level. 

• at the board level. 

• at the system level. 

• in the field. 

465 
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By detecting a malfunctioning chip at an earlier level, the manufactur­
ing cost may be kept low. For instance, the approximate cost to a company of 
detecting a fault at the above levels is 1: 

• wafer 

• packaged-chip 

• board 

• system 

• field 

$0.01-$.1 

$0.10-$1 

$1-$10 

$10-$100 

$100-$1000. 

Obviously, if faults can be detected at the wafer level, the cost of manu­
facturing is kept the lowest. In some circumstances, the cost to develop ade­
quate tests at the wafer level, mixed signal requirements or speed 
considerations may require that further testing be done at the packaged-chip 
level or the board level. A component vendor can only test at the wafer or 
chip level. Special systems, such as satellite-borne electronics, might be 
tested exhaustively at the system level. 

Tests may fall into two main categories. The first set of tests verifies .that 
the chip performs its intended function; that is, that it performs a digital fil­
tering function, acts as a microprocessor, or communicates using a particular 
protocol. In other words, these tests assert that all the gates in the chip, acting 
in concert, achieve a desired function. These tests are usually used early in 
the design cycle to verify the functionality of the circuit. These will be called 
functionality tests in this book. They may be lumped into the verification 
activity. The second set of tests verifies that every gate and register in the 
chip functions correctly. These tests are used after the chip is manufactured 
to verify that the silicon is intact. They will be called manufacturing tests in 
this book. In many cases these two sets of tests may be one and the same, 
although the natural fl.ow of design usually has a designer considering func­
tion before manufacturing concerns. 

It is interesting to note that of most first-time failures of silicon, it is the 
functionality of the design that is to blame; that is, the chip does exactly what 
the simulator said it would but for some reason (almost always human error) 
that function is not what the rest of the system expects. 

7.1.1 Functionality Tests 

Functionality tests are usually the first tests a designer might construct as 
part of the design process. Does this adder add? Does this counter count? 
Does this state-machine yield the right outputs at the right clock cycles? 

For most systems, functionality tests involve proving that the circuit is 
functionally equivalent to some specification. That specification might be a 
verbal description, a plain-language textual specification, a description in 
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some high-level computer language such as C, FORTRAN, Pascal, or Lisp 
or in a hardware-description language such as VHDL, ELLA, or Verilog®, 
or simply a table of inputs and required outputs. Functional equivalence 
involves running a simulator at some level on the two descriptions of the 
chip (say, one at the gate level and one at a functional level) and ensuring for 
all inputs applied that the outputs are equivalent at some convenient check­
points in time. The most detailed check might be on a cycle-by-cycle basis. 

Functional equivalence may be carried out at various levels of the design 
hierarchy. If the description is in a behavioral language (such as the last two 
categories mentioned), the behavior at a system level may be verifiable. For 
instance, in the case of a microprocessor, the operating system might be 
booted and key programs might be run for the behavioral description. How­
ever, this might be impractical (due to long simulation times) for a gate-level 
model and extremely impractical for a transistor-level model. The way out of 
this impasse is to use the hierarchy inherent within a system to verify chips and 
modules within chips. That, combined with well-defined modular interfaces, 
goes a long way in increasing the likelihood that a system composed of many 
VLSI chips will be first-time functional. Remember too, at the lowest levels of 
the hierarchy, timing tests must be run to validate that a particular function 
such as addition is achieved at a given clock frequency. 

There is no good theory on how to ensure that good functional tests be 
written. The best advice is to simulate the chip or system as closely as possi­
ble to the way it will be used in the real world. Often this is impractical due 
to slow simulation times and very long verification sequences. One approach 
is to move up the simulation hierarchy as modules become verified at lower 
levels. For instance, the gate-level adder and register modules in a video fil­
ter might be replaced by functional models and then the filter itself might be 
replaced by a functional model. At each level, small tests are written to ver­
ify the equivalence between the new higher-level functional model and the 
lower-level gate or functional level. At the top level, the filter functional­
model may be surrounded with a software environment that models the real­
world use of the filter. For instance, a carefully selected subsample of a video 
frame might be fed to the filter and the output of the functional model com­
pared with what is expected theoretically. The video output might also be 
observed on a video frame buffer to check that it looks correct (by no means 
an exhaustive test, but a confidence builder). Finally, if enough time is avail­
able, all or part of the functional test may be appplied to the gate level and 
even the transistor level if transistor primitives have been used. One 
approach that is becoming more popular and feasible is to model chips as 
collections of reprogrammable gate arrays (see Chapter 6). Commercial 
hardware is available to aid this activity. 

Remember the following statement, culled from many years of IC­
design experience, whenever you are tempted to give test work short shrift: 

"If you don't test it, it won't work! (Guaranteed.)" 
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7.1.2 Manufacturing Tests 

Whereas functionality tests seek to verify the function of a chip as a whole, 
manufacturing tests are used to verify that every gate operates as expected. 
The need to do this arises from a number of manufacturing defects that might 
occur during chip fabrication or during accelerated life testing (where the 
chip is stressed by over-voltage and over-temperature operation). Typical 
defects include: 

• layer-to-layer shorts (i.e., metal to metal). 

• discontinous wires (i.e., metal thins when crossing vertical topology 
jumps). 

• thin-oxide shorts to substrate or well. 

These in turn lead to particular circuit maladies, including: 

• nodes shorted to power or ground. 

• nodes shorted to each other.2 

• inputs floating/outputs disconnected. 

Tests are required to verify that each gate and register is operational and 
has not been compromised by a manufacturing defect. Tests are normally 
carried out at the wafer level to cull out bad die, and then on the packaged 
parts. The length of the tests at the wafer level might be shortened to reduce 
test time based on experience with the test sequence. 

Apart from the verification of internal gates, 1/0 integrity is also tested 
through completing the following tests: 

• l/0-level test (i.e., checking the noise margin for TTL, ECL, or 
CMOS I/O pads). 

• Speed test. 

• !DD test. 

The last of these tests checks the leakage if the circuit is composed of com­
plementary logic. Any value markedly above the expected value for a given 
wafer normally indicates an internal shorting failure (or very bad leakage). 
Wafer tests may be done at high speed or low speed (1 MHz) due to possible 
power and ground bounce effects that may be present in older testers. 

In general, manufacturing-test generation assumes that the circuit/chip 
functions correctly, and ways of exercising all gate inputs and of monitoring 
all gate outputs are required. 

To illustrate the difference between a functional test and a manufacturing 
test, consider the testing of a microprocessor at a functional level, which might 
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be the first concern of the designer (to see whether the microprocessor worked 
as a whole). To test any instruction, a sequence of instructions that use that 
instruction might be used (i.e., does the ADD instruction add?). While this 
might prove that the control logic that yields that instruction is intact, it does 
not, for instance, prove that the instruction works for all possible addresses and 
data. At this level of test it is assumed that the adders, muxes, gates, and regis­
ters in the microprocessor datapaths operate correctly. 

Tests that exercise all bits in the datapaths have to be written to verify 
the chip at the manufacturing level. These tests might include a test to 
check that registers can store a 1 and a 0 and a test that exercises each bit 
in any adder and ensures that the carry chain is not broken (i.e., does the 
adder add for all inputs?). The inputs have to be chosen carefully to check 
for all possible manufacturing defects. The manufacturing tests may be the 
only tests applied to a microprocessor prior to its being placed in a socket 
and booted. 

7.1.3 A Walk Through the Test Process 

As a designer you may be responsible for part or all of the tests that are writ­
ten to test a particular chip (often called the stimulus). "Written" might 
include a number of methods of test specification from applying waveforms 
or logic values manually to a simulator to, more probably, writing a program 
in a high-level language to apply stimuli to a description of the circuit. When 
the stimulus is applied to a circuit via a simulator, the output of the simulator 
may be dumped to a file (often called an activity file). If this output is filtered 
so that only the chip inputs and chip outputs are retained and further filtered 
so that only the quiescent signal values are kept after an input or inputs 
change, then the resulting file may be used to generate a "test program." 

Depending on whether you are testing a wafer or a packaged part, a 
probe card or "device-under-test" (DUT) board would be needed to connect 
the tester outputs and inputs to the die I/O pads or chip package pins. Probe 
cards are normally constructed by experts,·while DUT boards are well within 
the capabilities of the electronic hobbyist. 

The next requirement for a chip tester is the existence of this "test pro­
gram." This is a file with a format of inputs and outputs that suit the chip 
tester that is to be used to test your chip. A simple format is shown below for 
the case of a single-bit adder: 

III 00 

SC 
UA 
MR 

R 

ABC Y 

0 000 00 
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1 001 10 
2 010 10 
3 011 01 
4 100 10 
5 101 01 
6 110 01 
7 111 11 

The first line designates the signal directions and shows three inputs and 
two outputs. The next five lines designate the signal names. Thereafter, each 
line designates a new test vector. The first column is the test vector number. 
The next three columns are the binary value of the inputs, and the next two 
columns are the expected output values. Each line represents a certain length 
clock cycle that is asserted by the tester. Signals normally change soon after 
an internal clock running at the tester period. Clock generation may be car­
ried out in two different ways. First, the clock can be regarded as any other 
signal, in which case it takes two tester cycles to complete a single clock 
cycle-one for the clock low and one for the clock high. Alternatively, a tim­
ing generator may be used, which allows the clock rising edge (for instance) 
to be placed anywhere in the tester cycle. So, for instance, if the inputs are 
changed at the start of the tester cycle, the clock might be programmed to 
rise at the middle of the cycle. 

Sundry other setup files are normally required by the tester. Normally a 
mapping file is required that maps a given input or output in the test program 
to a physical connection (pin) in the tester. This pin may be programmed to 
be an input, output, tristate, bidirect, or, in some cases, a multiplexed data 
pin. Each pin on the tester is driven by a function memory that is used either 
to assert a value or to check a value at a DUT pin. In addition, various control 
memories may be present to control the drive on the tester pin (i.e., to control 
a tristate pin) or to mask data from the chip (i.e., to ignore certain pins at cer­
tain times). These memories have finite length, so sometimes with older 
testers more than one vector load has to be used to test a part. This normally 
slows testing because the reload procedure may be slow. Modern testers sel­
dom suffer from this problem. 

The clock speed is specified (by specifying a test cycle time, Tc), as are 
supply-voltage levels and pins on the tester and probe card or DUT board. 
The time at which outputs are asserted or inputs are sampled is also specified 
on a pin-by-pin basis (Ts). The format of the test data may usually be chosen 
from Non Return to Zero (NRZ), Return To Zero (RTZ), or other formats, 
such as Surround By Zero (SBZ). For instance, an RTZ output would transi­
tion (if the pin were driven high) at Ts and return to zero at Tc· 

The probe card or DUT board is connected to the tester. The test pro­
gram is compiled and downloaded into the tester, and the tests are applied to 
the circuit. The tester samples the chip outputs and compares the values with 
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those provided by the test program. If there are any differences, the chip is 
marked as faulty (with an ink dot) and the miscomparing vectors may be dis­
played for reference. In the case of a probe card, the card is raised, moved to 
the next die on the wafer, and lowered, and the test procedure is repeated. In 
the case of a DUT board with automatic part handling, the tested part is 
binned into a good or bad bin and a new part is fed to the DUT board, and the 
test is repeated. In most cases these procedures take a few seconds for each 
part tested. 

The ability to vary the voltage and timing on a per-pin basis with a tester 
allows a process known as "schmooing" to be carried out. For instance, one 
might vary the Vvv voltage from 3 to 6 volts on a 5-volt part while varying 
the tester cycle time.This yields a graph that shows the speed sensitivity of 
the part with respect to voltage. Another "schmoo" test that is frequently 
exercised is to skew the timing on inputs with respect to the chip clock to 
look for setup and hold variations. 

7.2 Manufacturing Test Principles 

A critical factor in all LSI and VLSI design is the need to incorporate meth­
ods of testing circuits. This task should proceed concurrently with any archi­
tectural considerations and not be left until fabricated parts are available 
(which is a recurring temptation to designers). 

Figure 7.l(a) shows a combinational circuit with n-inputs. To test this 
circuit exhaustively a sequence of 2n inputs (or test vectors) must be applied 
and observed to fully exercise the circuit. This combinational circuit is con­
verted to a sequential circuit with addition of m-storage registers, as shown 
in Fig. 7 .1 (b ). The state of the circuit is determined by the inputs and the pre-

n Combinational 
Logic 

2" inputs required to exhaustively test circuit 

(a) 

n 
Combinational 
Logic 

Registers 

elk 

m 

2" + m inputs required to exhaustively test circuit 

For n = 25 m = 50, 1 µS/test, the test time is 
over 1 billion years (Williams) 

(b) 

FIGURE 7.1 The combin­
ational explosion in test 
vectors 
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FIGURE 7.2 CMOS stuck-at 
faults 

vious state. A minimum of 2Cn+m) test vectors must be applied to exhaus­
tively test the circuit. To quote Williams3: 

With LSI, this may be a network with n = 25 and m = 50, or 2 75 patterns, 
which is approximately 3.8 x 1022. Assuming one had the patterns and 
applied them at an application rate of 1 µs per pattern, the test time would 
be over a billion years (109). 

Clearly, this is an important area of design that has to be well under­
stood. 

7.2.1 Fault Models 

7.2.1.1 Stuck-At Faults 

In order to deal with the existence of good and bad parts it is necessary to pro­
pose a "fault model," that is, a model for how faults occur and their impact on 
circuits. The most popular model is called the "Stuck-At" model. With this 
model, a faulty gate input is modeled as a "stuck at zero" (Stuck-At-0, S-A-0, 
SAO) or "stuck at one" (Stuck-At-1, S-A-1, SAl). This model dates from board­
level designs where this was determined to be an adequate set of models for 
modeling faults. Figure 7 .2 illustrates how an S-A-0 or S-A-1 fault might 
occur. These faults most frequently occur due to thin-oxide shorts (the n-tran­
sistor gate to Vss or the p-transistor gate to V DD) or metal-to-metal shorts. 

~E>OUT Stuck-At-0 
SAO Fault 
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7.2. 1.2 Short-Circuit and Open-Circuit Faults 

Other models include "stuck-open"4 or "shorted" models. Two shorted faults 
are shown in Fig. 7.3. Considering the faults shown in Fig. 7.3, the short SJ 
is modeled by an S-A-0 fault at input A, while short S2 modifies the function 
of the gate. What becomes evident is that to ensure the most accurate mod­
eling, faults should be modeled at the transistor level, because it is only at 
this level that the complete circuit structure is known. For instance, in the 
case of a simple NAND gate, the intermediate node in the series n-pair is 
"hidden" by the schematic. What this implies is that test generation must be 
done in such a way as to take account of possible shorts and open circuits at 
the switch level.5 Although the switch level may be the mpst appropriate 
level, expediency dictates that most existing systems rely on Boolean logic 
representations of circuits and S-A-0 and S-A-1 fault modeling. 

A particular problem that arises with CMOS is that it is possible for a 
fault to convert a combinational circuit into a sequential circuit. This is illus­
trated for the case of a 2-input NOR gate in which one of the transistors is 
rendered ineffective (stuck open or stuck closed) in Fig. 7.4. This might be 
due to a missing source, drain, or gate connection. If one of then-transistors 
(A connected to gate) is stuck open, then the function displayed by the gate 
will be 

F =(not (A+ B)) +(A. (not B). Fn), 

fr-o 

A 

B 

82 modifies function of gate 

\\\\\\\\\\\\\\\\\\\\\\\\\\\h 

H 
H 

FIGURE 7.3 CMOS bridging 
faults 
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FIGURE 7.4 A CMOS open 
fault that causes sequential 
faults 

A B F 

FIGURE 7.5 A 
defect that causes 
static 100 current 

F=-(A+B) 

F=-(A+B)+A. -B. Fn 

' 
~' 

=='"'"*"l''nlimmTili>l<=mi ~PHH~H' '~~h 'HH~ ''n'' 
nhnnn~ hnL nn~~ HHH, 

A B F 

where F n is the previous state of the gate. Similarly if the B n-transistor drain 
connection is missing, the function is 

F =(not (A+ B)) +((not A). B. Fn). 

If either p-transistor is open, the node would be arbitrarily charged (i.e., it 
might be high due to some weird _charging sequence) until one of the n-tran­
sistors discharged the node. Thereafter it would remain at zero, bar charge­
leakage effects. This problem has caused researchers to search for new meth­
ods of test generation to detect such behavior.6 

Currently debate ranges over whether an SAO/SAl approach to testing 
is adequate for testing CMOS. It is also possible to have switches (transis­
tors) exhibit a "stuck-open" or "stuck-closed" state. Stuck-closed states can 
be detected by observing the static V DD current (I DD) while applying test 
vectors. Consider the gate fault shown in Fig. 7.5, where a p-transistor in a 
2-input NAND gate is shorted. This could physically occur if stray metal 
overlapped the source and drain connections or if the source and drain diffu­
sions shorted. If we apply test vector 11 to the A and B input and measure the 
static I DD current, we will notice that it rises to some value determined by 
the ~ ratios of the n- and p-transistors. While the debate continues and test 
cycles are at a premium, the SAO/SAl model will suffice for some time to 
come. 

7.2.2 Observability 

The observability of a particular internal circuit node is the degree to which 
one can observe that node at the outputs of an integrated circuit (i.e., the 
pins). This measure is of importance when a designer/tester desires to mea­
sure the output of a gate within a larger circuit to check that it operates cor-
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rectly. Given a limited number of nodes that may be directly observed, it is 
the aim of well-designed chips to have easily observed gate outputs, and the 
adoption of some basic test design techniques can aid tremendously in this 
respect. Ideally, one should be able to observe directly or with moderate 
indirection (i.e., one may have to wait a few cycles) every gate output within 
an integrated circuit. While at one time this aim was hindered by limited 
gate-count processes and a lack of design methodology, current design prac­
tices and processes allow one to approach this ideal. Section 7 .3 examines a 
range of methods for increasing observability. 

7.2.3 Controllability 

The controllability of an internal circuit node within a chip is a measure of 
the ease of setting the node to a 1 or 0 state. This measure is of importance 
when assessing the degree of difficulty of testing a particular signal within a 
circuit. An easily controllable node would be directly settable via an input 
pad. A node with little controllability might require many hundreds or thou­
sands of cycles to get it to the right state. Often one finds it impossible to 
generate a test sequence to set a number of poorly controllable nodes into the 
right state. It should be the aim of a well-designed circuit to have all nodes 
easily controllable. In common with observability, the adoption of some sim­
ple design for test techniques can aid tremendously in this respect. 

7 .2.4 Fault Coverage 

A measure of goodness of a test program is the amount of fault coverage it 
achieves; that is, for the vectors applied, what percentage of the chip's inter­
nal nodes were checked. Conceptually, the way in which the fault coverage 
is calculated is as follows. Each circuit node is taken in sequence and held to 
0 (S-A-0), and the circuit is simulated, comparing the chip outputs with a 
known "good machine"-a circuit with no nodes artificially set to 0 (or 1). 
When a discrepancy is detected between the "faulty machine" and the good 
machine, the fault is marked as detected and the simulation is stopped. This 
is repeated for setting the node to 1 (S-A-1). In turn, every node is stuck at 1 
and 0, sequentially. The total number of nodes that, when set to 0 or 1, do 
result in the detection of the fault, divided by the total number of nodes in the 
circuit, is called the percentage-fault coverage. 

The above method of fault analysis is called sequential fault grading. 
While this might be practical for small circuits, or by using hardware simu­
lation accelerators on medium circuits, the time to complete the fault grading 
may be very long. On average KN cycles (assuming that, on average, N/2 
cycles are needed to detect each fault) need to be simulated, where K is the 
number of nodes in the circuit and N is the length of the test sequence. For 
K = 1000 and N = 12,000, 12 million cycles are required. At 1 ms per cycle, 
this yields 12,000 seconds or 3 hrs 20 minutes. For K = 100,000 and 
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N = 360,000, 3.6 x 109 cycles are required. At I s per cycle, 1040 years 
would be required to do sequential fault grading. 

To overcome these long simulation times many ingenious techniques 
have been invented to deal with fault simulation. 

7.2.5 Automatic Test Pattern Generation (ATPG) 

Historically in the IC industry, designers designed circuits, layout drafts­
people completed the layout, and the test engineer wrote the tests. In many 
ways, the test engineers were the Sherlock Holmes of the industry, reverse 
engineering circuits and devising tests that would test the circuits in an ade­
quate manner. For the longest time, test engineers implored circuit designers 
to include extra circuitry to ease the burden of test generation. Happily, as 
processes have increased in density and chips have increased in complexity, 
the inclusion of test circuitry has become less of an overhead for both the 
designer and the manager worried about the cost of the die. In addition, as 
tools have improved, more of the burden for generating tests has fallen on 
the circuit/logic designer. To deal with this burden, methods for automati­
cally generating tests have been invented. Collectively these are known as 
ATPG, for Automatic Test Pattern Generation. This section summarizes one 
approach to ATPG to provide background for the reader. In practice, one may 
find that ATPG is of great use in the generation of test vectors or that for a 
variety of reasons it is not applicable. 

Historically, most ATPG approaches have been based on simulation. A 
five-valued logic 7 form is commonly used to implement test generation algo­
rithms (more advan~ed algorithms use up to 10 level logic). This consists of 
the states I, 0, D, D, and X. 0 and 1 represent logical zero and logical one 
respectively. X represents the unknown or DON'T-CARE state. D re.E_resents 
a logic I in a good machine and a logic 0 in a faulty machine while D repre­
sents a logic 0 in a good machine and a logic I in a faulty machine. The truth 
tables for inverters, AND, and OR gates are shown in Tables 7.1, 7.2, and 7.3. 

TABLE 7.1 Inverter 
Z= NOTA 

A z 

0 1 
1 0 
x x 
D D 
D D 
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TABLE 7.2 2-input AND gate Z =A AND B 

A B 0 1 x D D 

0 0 0 0 0 0 
1 0 x D D 

x 0 x x x x 
D 0 D x D 0 
D 0 D x 0 D 

We oan examine the use of this five-valued logic by considering the cir­
cuit shown in Fig. 7.6 where an S-A-0 fault is to be detected at node h. We 
will alternatively call a circuit a machine, which is customary in test nomen­
clature. Thus node h would have value D. There are two objectives. The first 
is to propagate the Don node h to one or more primary outputs (POs). A pri­
mary output is a directly observable signal, such as a pad or, as we shall learn 
later, a scan output. This path to the primary output (or outputs) is called the 
sensitized path. The second objective is to set node h to state D via a set of 
primary inputs (Pis). A primary input is one that can be directly set via a pad 
or some other means. The gate driving node his the Gate Under Test or 
GUT. From node h we backtrack to the primary inputs (a, b, c, d, e) to find 
the necessary input vector required to set node h to a 1. Because the gate 
driving node his an AND gate from the above definition (a Dis a 1 in a good 
machine), both inputs (f, g) have to be set to 1 to set h to 1. Proceeding fur­
ther toward the inputs, to assert node fas a 1, both nodes a and b have to be 
set to a 1. Because node g is driven by an OR gate, either node c or node d 
need to be set to a 1 to assert node g. Thus a vector {a,b,c,d} of { 1,1,1,0} or 
{ 1, 1,0, 1} is required to control node h. To observe that node g has been set to 
a D, input node e has to be set to a 1. Thus the resultant test vector is 

TABLE 7.3 2-input OR gate Z =A OR B 

A B 0 1 x D D 

0 0 1 x D D 
1 1 1 1 1 1 
x x 1 x x x 
D D 1 x D 1 
D D 1 x 1 D 
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FIGURE 7.6 The D 
algorithm-sensitization 
step 

{a,b,c,d,e} = {l,l,O,l,l} or {l,l,1,0,l}. If we are checking for an S-A-1 
fault at node h, we must be able to set it to 0. By similar reasoning to that for 
the S-A-0 case the test vector would be {a, b, c, d, e} = { 0, 1, X,X, 1} or 
{1,0,X,X,1} or {0,0,X.X,1) or {l,l,0,0,1}. Similarly, for other nodes a sum­
mary of the vectors is as in Table 7.4. 

The next step is to collapse the vectors into the least set that covers all 
nodes.Apossiblesetis {l,1,0,l,l}, {O,O,l,0,1}, {l,l,0,0,1}. 

The reason for using a five-valued logic is shown in Fig. 7.7. Here an 
additional AND gate and INVERT gate have been added to the circuit. We 
can se.e that a fault at node his essentially unobservable (due here to the non­
sensical logic). This circuit suffers from what is called reconvergent fan-out. 

The usual basis for manual generation of tests by test engineers and 
many current automatic test-pattern generation programs is the D-algorithm 
(DALG). 8 PODEM9 and PODEM-X10 are improved algorithms that are 
more efficient than the original DALG and in addition treat error-correcting 
circuits composed of XOR gates with reconvergent fan-out. Another ATPG 
algorithm is called FAN 11 and an improved efficiency algorithm 12 dealing 
with tristate drivers called ZALG has been developed. 13 Other work has 
concentrated on dealing at a module level rather that a gate level.14 In basis, 
these algorithms.start by propagating the D value on an internal node to a 
primary output. This is called the D-propagation phase. The selection of 
which gates to pass through to the output is guided by observability indexes 
assigned to gates. At any particular gate input, the gate with the highest 
observability is selected. Once the D value is observable at a primary output, 
the next step is to determine the primary input values that are required to 

TABLE 7.4 Node-vector Summary of D Algorithm (Fig. 7.6) 

NODE 

h 
h 

f 
f 
g 

g 

TEST 

S-A-0 
S-A-1 
S-A-0 
S-A-1 
S-A-0 
S-A-1 

VECTOR {a,b,c,d,e} 

{l,1,0,l,l}, {l,l,1,0,l} 
_{0,1,X,X, 1}, { 1,0,X,X, 1}, {0,0,X,X, 1}, { 1,1,0,0,1} 
{l,l,0,1,l}, {l,1,1,0,l} 
{0,0,0,l,l}, {0,0,1,0,1} 
{ l,l,O,l,1}, { l,l,l,0,1}, {l,l,l,1,1} 
{ 1,l,0,0,l} 
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1 a 
b 

1 c 
d 

0 

D 0 j 

enable the fault to be observed and tested. This proceeds by backtracking 
from the faulted signal and sensitized path-enables toward the primary 
inputs. The selection of which path to proceed along toward the inputs is 
aided by controllability indices assigned to nodes. This is known as the 
backtrace step. 

Controllabilities and observabilities can be assigned statically (that is, 
without regard to the logic state of the network) or dynamically15 (that is, 
according to the current state of the network). The SCOAP16 algorithm is 
one method of assigning controllabilities and observabilities. In the SCOAP 
system the following six testability measures (TMs) are defined for each cir­
cuit node: 

• CCO(n)-combinatorial 0 controllability of node n (i.e., the extent to 
which a combinatorial node can be forced to a zero). 

• CCI(n)-combinatorial I controllability of node n. 

• CO(n)-combinatorial observability of node n. 

• SCO(n)-sequential 0 controllability of node n. 

• SCI(n)-sequential I controllability of node n. 

• SO(n)-sequential observability of node n. 

The combinatorial measures are applied to the ouputs of logic gates, 
while the sequential measures apply to registers and other "sequential" mod­
ules. As an example, for the AND gate shown in Fig. 7 .8 the CCI value is 

CCI(z) = CCI(a) + CCI(b) + 1. 

That is, the I-controllability of the output of the AND gate is the sum of the 
I-controllabilities of each input because each input has to be set to I to set 
the output to I. The I is added at the end because the AND gate represents 
one stage of combinatorial logic. The sequential I-controllability is given by. 

SCI(z) = SCI(a) + SCI(b). 

FIGURE 7.7 Reconvergent 
fan-out with D notation 

FIGURE 7.8. 
NANO gate 
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FIGURE 7.9 SCOAP test-
ability measure example: 
(a) controllabilities; 
(b) observabilities 

The combinatorial 0-controllability is given by 

CCO(z) = min[CCO(a), CCO(b)] + 1. 

This arises due to the fact that either a 0 on a orb forces a 0 at the output. 
Therefore the easiest controllable input may be used (the lowest combinato­
rial controllability). The sequential controllability is given by 

SCO(z) = min[SCO(a), SCO(b)]. 

The combinatorial observability of a is given by 

CO(a) = CO(z) + CCl(b) + 1; 

that is, the observability of z added to the combinatorial I-controllability of 
b. This occurs because b has to be forced to a 1 to make a observable. The 
sequential observability of a is given by 

SO(a) = SO(z) + SO(b). 

Similar equations may be derived for other gate types. The SCOAP 
algorithm proceeds by first calculating the circuit controllabities by propa­
gating controllabilites from the logic inputs. Following this, the observabili­
ties are propagated from the logic outputs. Figure 7 .9(a) shows a logic circuit 
with the 1-controllabities annotated. Figure 7 .9(b) shows the observabilities. 
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7.2 MANUFACTURING TEST PRINCIPLES 481 

In cases of multiple fan-out, the minimum observability measure is used. 
The presence of high controllability numbers indicates a node that is difficult 
to control, while the presence of high observability numbers indicates nodes 
that are difficult to observe. As mentioned above, the testability measures are 
used to guide the selection of paths in the D-propagation and backtrace 
phase of the D-algorithm-based ATPG procedures. 

Other testability measures, such as COP17 and LEVEL, 18 are also used. 
COP testability measures are probablistic in nature. 

More recently authors have proposed the use of massively parallel 
methods for ATPG. 19 Methods have also been developed that model faults as 
changes to a Boolean network. Equivalence checking is used to prove that 
the two networks are not equivalent. These methods, when combined with 
random-fault generation and fault simulation, have demonstrated a great 
deal of success.20 

7.2.6 Fault Grading and Fault Simulation 
Fault grading consists of two steps. First, the node to be faulted is selected. 
Normally global nodes such as rese·t lines and clock lines are excluded 
because faulting them can lead to unnecessary simulation (i.e., if the reset or 
clock line is stuck, then not much is going to happen in the circuit). A simu­
lation is run with no faults inserted, and the results of this simulation (that is, 
the primary output responses for each input test vector) are saved. Following 
this process, in principle, each node or line to be faulted is set to 0 and then 
1 and the test vector set is applied. If,. and when, a discrepancy is detected 
between the faulted circuit response and the good circuit response, the fault 
is said to be detected and the simulation is stopped, and the process is 
repeated for the next node to be faulted. If the number of nodes to be faulted 
is K, and the average number of test vectors is N, the number of simulation 
cycles, SK' is approximately given by 

N 
SK=22K+N 

= K(N+ 1) ~KN. (7.1) 

This serial fault simulation process is therefore running K sets of the test 
vector set. With a small vector set, simple circuit, or very fast simulator, this 
approach is feasible. However, for large test sets and circuits, it is highly 
impractical. 

To deal with this problem, a number of ideas have been developed to 
increase the speed of fault simulation. 

Parallel Simulation is one method for speeding up simulation of multi­
ple machines. In this method m words in an n-bit computer are used to 
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encode the state of n "machines" for a 2m-state simulator. Two n-bit words 
may be used to encode n machines for a three-state simulator. More com­
puter words may be used to encode simulators with more states. Moreover 
this principle has been extended to special-purpose hardware where the com­
puter word length could be optimized to deal with substantially more circuits 
in parallel. Now if M circuits can be simulated in parallel, then 

(7.2) 

Concurrent Simulation21 is currently the most popular method for soft­
ware-based fault simulators. The technique uses a nonfaulted version of the 
circuit to create a "good" machine model. Each fault creates a new faulty 
machine that is simulated in parallel with the good machine. Thus N + 1 sim­
ulations may have to be completed, where N is the number of faults. Concur­
rent simulators rely on a number of heuristics to reduce the amount of 
simulation. For instance, when a difference is noted between a faulted 
machine and a good machine at an externally observable point (i.e., the 
pads), the faulty machine is dropped from the simulation queue and the fault 
is "detected." If the bad machine has an X or Z compared to a 1 or 0 for the 
good machine, the fault is a "possible detect." Obviously, the more exter­
nally observable nodes a circuit has, the quicker bad machines get dropped 
from the simulation. Normally, only the good machine state is stored, with 
each node listing the fault machines that differ with the good machine. The 
different state is often small, which implies that there is a small amount of 
extra simulation to be done. In other words, most simulation for a faulty 
machine is exactly the same as the good machine. This is what concurrent 
simulation exploits. Fault collapsing occurs when two different faults result 
in the same faulty machine. This is noted, and one of the faulty machines 
may be dropped. Some machines perform static fault collapsing prior to sim­
ulation. For instance, an SAO fault on the input of an inverter is the same as 
an SAl fault at the output of the same inverter. With some fault simulators it 
is possible to create a fault dictionary. This is a cross reference that maps an 
observed fault to a set of possible internal faults. It is of use when the tester 
wishes to track down the actual internal failure (such as to perform yield 
improvement) rather than just cull the part. 

Apart from software-based simulations, hardware-fault simulation 
accelerators that can provide a speedup over software-based simulators are 
also available. 

7.2.7 Delay Fault Testing 
The fault models we have dealt with to this point have neglected timing. 
Failures that occur in CMOS could leave the functionality of the circuit 
untouched, but affect the timing. For instance, consider the layout shown in 
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Fig. 7 .10 for a high-power NAND gate composed of paralleled n- and p-tran­
sistors. If the link illustrated was opened, the gate would still function, but 
with increased pull-down time. In addition, the fault now becomes sequen­
tial because the detection of the fault depends on the previous state of the 
gate and the simulation clock speed. 

7.2.8 Statistical Fault Analysis 

Conventional fault analysis can consume large CPU resources and take a 
long time. An alternative to this is what is called statistical fault analysis 
(STAFAN).22 This method of fault analysis relies on estimating the probabil­
ity that a fault will be detected. In summary, a fault free simulation is per­
formed on a circuit in which some extra statistics are gathered by a modified 
simulator on a per-input vector basis. These are as follows: 

• Zero-counter-The 0 count on each gate input when a l--70 change of 
the output is detected. 

• One-counter-The 1 count on each gate input when a 0--71 change of 
the output is detected. 

• Sensitization-counter-incremented if the input change causes the 
output to be sensitized. 

• Loop-counter-used to detect and deal with feedback. 

The one-controllability of line l is given by 

Cl (Z) = one-count/N, 

where N is the number of vectors. 
The zero-controllability is given by 

CO(l) = zero-count/N. 

FIGURE 7.10 An example 
of a delay fault 
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TABLE 7.5 Statistical Fault Analysis 1 And O Observabilities 

GATE TYPE Bl(l) BO(l) 

AND 
Cl (m) 

BO (m) · 
S (l) - Cl (m) 

Bl (m) · Cl (l) co (l) 

OR BI (m) · 
S(l)-CO(m) CO (m) 

Cl (l) BO (m) · CO (l) 

NAND 
CO(m) 

BO (m) · Cl (l) 
S(l) - Cl (m) 

Bl (m) CO (l) 

NOR 
S(l) - Cl (m) 

BO (m) Cl (l) 
Cl (m) 

Bl (m) · CO (l) 

NOT BO (m) BI(m) 

The one-level sensitization probability is 

SC[) = sensitization-count/N. 

The observabilities are calculated by propagating from gate outputs to gate 
inputs. For common gates, Jain and Agrawal derive the one-observabilities 
(Bl) and zero-observabilities (BO) for common gates, as shown in Table 7.5. 

Methods also exist to deal with fan-out where two observabilities must be 
combined. Once these observability and controllability measures have been 
determined, the probability of fault detection may be calculated as follows: 

Dl(l) = BO(l). CO(l), 

where Dl(l) is the probability of detection that line l is SAl. 

DO(l) = Bl(l) . Cl(!), 

where DO(l) is the probability of detection that line l is SAO. 
From these values the fault coverage of the circuit may be calculated. 

The results of using this technique follow very closely the results generated 
by conventional fault simulation. 

7.2.9 Fault Sampling 
Another approach to fault analysis is known as fault sampling. This is used 
in circuits where it is impossible to fault every node in the circuit. Nodes are 
randomly selected and faulted. The resulting fault-detection rate may be sta-
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tistically inferred from the number of faults that are detected in the fault set 
and the size of the set. As with all probabalistic methods it is important that 
the randomly selected faults be unbiased. Although this approach does not 
yield a specific level of fault coverage, it will determine whether the fault 
coverage exceeds a desired level. The level of confidence may be increased 
by increasing the number of samples. 

7 .3 Design Strategies for Test 

7 .3.1 Design for Testability 
The key to designing circuits that are testable are the two concepts that we 
have introduced called controllability and observability. Restated, controlla­
bility is the ability to set (to 1) and reset (to 0) every node internal to the cir­
cuit. Observability is the ability to observe either directly or indirectly the 
state of any node in the circuit. 

We will first cover three main approaches to what is commonly called 
Design for Testability. These may be categorized as: 

• ad-hoc testing. 

• scan-based approaches. 

• self-test and built-in testing. 

Following this we will look at the application of these techniques to particu­
lar types of circuits. In this treatment we will look at: 

• random logic (multilevel standard-cell, two-level PLA). 

• regular logic arrays (datapaths). 

• memories (RAM, ROM). 

7.3.2 Ad-Hoc Testing 
Ad-hoc test techniques, as their name suggests, are collections of ideas 
aimed at reducing the combinational explosion of testing. Common tech­
niques involve: 

• partitioning large sequential circuits. 

• adding test points. 

• adding multiplexers. 

• providing for easy state reset. 
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FIGURE 7.11 Ad-hoc test 
techniques applied to a 
counter 

Long-counters are good examples of circuits that can be tested by ad-hoc 
techniques. For instance imagine you have designed an 8-bit counter and 
want to test it. Figure 7 .11 (a) shows a naive implementation in which the 
counter only has a RESET and a CLOCK input, with the terminal count (TC) 
being observable. The designer probably thought that a reset and 256 dock 
cycles, followed by the observation of TC, would be adequate for testing 
purposes. Apart from the noriobservability of the count value (Q<7:0>), the 
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main problem is the number of cycles required to test a single counter. Pos­
sible ad-hoc test techniques are shown in Fig. 7.ll(b) and Fig. 7.ll(c). In 
Fig. 7 .11 (b), a parallel-load feature is added to the counter. This enables the 
counter to be preloaded with appropriate values to check the carry propaga­
tion within the counter. Another technique is to reduce the length of each 
counter to, say, 4 bits, as shown in Fig. 7.ll(c). This is achieved by having 
the test signal block the carry propagate at every 4-bit boundary. With this 
method 16 vectors exhaustively can test each 4-bit section. The carry propa­
gate between 4-bit sections may be tested with a few additional vectors. 

Another technique classified in this category is the use of the bus in a 
bus-oriented system for test purposes. This is shown on Fig. 7.12(a) for a 
very simple accumulator. Each register has been made loadable from the bus 
and capable of being driven onto the bus. Here the internal logic values that 
exist on a data bus are enabled onto the bus for testing purposes. A more gen­
eral scheme is illustrated in Fig. 7 .12(b ), where the normally inaccessible 
inputs are set and the outputs are observed via the bus. 
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FIGURE 7.12 Bus-oriented 
test techniques 
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FIGURE 7.13 Multiplexer 
based testing 

Frequently, multiplexers may be used to provide alternative signal paths 
during testing. In CMOS, transmission gate multiplexers provide low area 
and speed overhead. Figure 7 .13 (a) shows a scheme called a Design for 
Autonomous Test23, which uses multiplexers. Figure 7 .13(b) shows the cir­
cuit configured for normal use, while Fig. 7.13(c) shows the circuit config­
ured to test module A. 

Any design should always have a method of resetting the internal state 
of the chip within a single cycle or at most a few cycles. Apart from making 
testing easier, this also makes simulation faster because a few cycles are 
required to initialize the chip. 
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In general, ad-hoc testing techniques represent a bag of tricks developed 
over the years by designers to avoid the overhead of a systematic approach to 
testing, which will be described in the next section. While these general 
approaches are still quite valid, process densities and chip complexities 
necessitate a structured approach to testing. 

7.3.3 Scan-Based Test Techniques 

A collection of approaches have evolved for testing that lead to a structured 
approach to testability. The approaches stem from the basic tenets of control­
lability and observability outlined earlier in this chapter. 

7.3.3.1 Level Sensitive Scan Design (LSSD) 

A popular approach is called Level Sensitive Scan Design, or the LSSD 
approach, introduced by IBM.24,25,26 This is based on two tenets. First, that 
the circuit is level sensitive. According to Williams27, 

A logic system is level-sensitive if, and only if, the steady state response to 
any allowed input state change is independent of the circuit and wire delays 
within the system. Also, if an input state change involves the changing of 
more than one input signal, then the response must be independent of the 
order in which they change. Steady state response is the final value of all 
logic gate outputs after all change activity has terminated. 

The second principle of LSSD is that each register may be converted to a 
serial shift register. 

The basic building block in LSSD is the Shift Register Latch, or SRL. A 
block-level implementation of a polarity-hold SRL is shown in Fig. 7.14(a). It 
consists of two latches, L1 and L2. L1 has a serial data port, I, and an enable, A. 
It also has a data port, D, and an enable, C. When A is high, the value of L1 (T1) 

is set by the value of L while when C is high, L1 is set by D. A and C can not 
be simultaneously high. When signal Bin L2 is high, T1 is passed to T2. A gate­
level implementation of the SRL is shown in Figs. 7. l 4(b) and 7 .14( c ). In nor­
mal operation, the D input is the normal input to the register, while the T2 sig­
nal is the output. L1 is the master while L2 is the slave. SRLs may be connected 
in series by using the T2 output and the I input of successive latches. During 
normal system operation, A is held low and C and B may be thought of as a 
two-phase nonoverlapping clock. When data is to be loaded into the SRLs or 
dumped out of the SRLs, A and B are used as a two-phase shift clock. 

Figure 7.15(a) shows a typical LSSD scan system. An expanded view is 
shown in Fig. 7.15(b). The first rank of SRLs have inputs driven from a pre­
ceding stage and have outputs QAl, QA2, and QA3. These outputs feed a 
block of combinational logic. The output of this logic block feeds a second 
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FIGURE 7.14 A shift regis-
ter latch 

D 
D T2 
B 

L, L2 

(a) 

D 

T, 

c 

A 

L, 

(b) 

D 
T2 

-T2 
B 

L2 

(c) 

rank of SRLs with outputs QBl, QB2, and QB3. Figure 7.15(c) shows a typ­
ical clocking sequence. Initially the shift-elk and c2 are clocked three times 
to shift data into the first rank of SRLs (QAl-3). cl is asserted, and then c2 
is asserted, clocking the output of the logic block into the second rank of 
SRLs (QBl-3). shift-elk and c2 are then clocked three times to shift QBl, 
QB2, and QB3 out via the serial-data-out line. Testing proceeds in this man­
ner of serially clocking the data through the SRLs to the right point in the cir­
cuit, running a single "system" clock cycle and serially clocking the data out 
for observation. In this scheme, every input to the combinational block may 
be controlled and every output may be observed. In addition, running a serial 
sequence of 1 's and O's (such as 110010) through the SRLs can test them. 

Test generation for this type of test architecture may be highly auto­
mated. ATPG techniques may be used for the combinational blocks, and as 
mentioned, the SRLs are easily tested. The prime disadvantage is the com­
plexity of the SRLs (i.e., impacting density and speed). 

7.3.3.2 Serial Scan 

Level Sensitive Scan went to great pains to provide a hazard-free latching 
scheme. Faster clock speeds and design for smaller overhead in the registers 
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has led to simplifications in the SRL that give up a little on the hazard front 
but retain tlie scan principles mentioned above. (The hazard is moved inside 
the register, which with careful design can be guaranteed to be race free for 
a particular process and environmental characteristics.) 

A schematic for a commonly used CMOS edge-sensitive scan-register is 
shown in Fig. 7 .16. A MUX is added before the master latch in a conventional 
D register. TE is the Test Enable pin, and TI is the Test Input pin. When TE is 
enabled, TI is clocked into the register by the rising edge of CLK. Figure 7 .17 

FIGURE 7.15 An LSSD 
scan chain: (a) basic architec­
ture; (b) example circuit; 
(c) example timing 
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FIGURE 7.16 A typical 
CMOS scan-register 

FIGURE 7.17 Various 
CMOS scan-latch options 
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shows some circuit-level diagrams of CMOS SRL implementations. Figure 
7.17(a) shows a frequently used implementation, which uses transmission 
gates to implement the multiplexers. The layout density overhead for this latch 
is minimal. In addition, because the addition of the testability MUX places two 
transmission gates in series, the increase in delay is minimized. Two further 
implementations of the input MUX are shown in Figs. 7 .17 (b) and 7 .17 ( c ). 
Figure 7.17(b) shows the addition of only two transistors and a single control 
line. A register so implemented does have the normal problems associated 
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with used single-polarity transmission gates (see Chapter 5). Alternatively, the 
clocks may be gated, as shown in Fig. 7.17(c). While this minimizes transis­
tors, it may lead to unacceptable hold-time constraints on the register. Because 
the signals applied to the master latch are delayed with respect to the main 
clock, the data has to be held for a longer time at the input. 

7.3.3.3 Partial Serial Scan 

Quite often in a design, one may not find it area- and speed-efficient to 
implement scan registers in every location where a register is used. This 
occurs, for instance, in signal-processing circuits where many pipeline reg­
isters might be used to achieve high speed. If these are in the data-flow sec­
tion of the chip, then one can think of the logic that has to be tested as the 
logic with the pipeline registers removed. In this case only the input and out­
put registers need be made scannable.28 This technique of testing is known 
as partial scan, and depends on the designer making decisions about which 
registers need to be made scannable. 

Consider the design shown in Fig .. 7.18 (from Gupta et al.29). In a full­
scan test strategy all registers would have to be scannable. A partial-scan 
design is shown in Fig. 7. l 8(a) where only two registers have been made 
scannable (R6 and R3). In addition, these registers have the ability to hold 
their state dependent on a HOLD control. The part of the circuit that is being 
tested and monitored by the scan registers (known as the kernel) is shown in 
Fig. 7.18(b). It may be proven that, by holding the vectors at the input of the 
kernel for three clock cycles, the kernel may be represented by the combina­
tional-equivalent circuit shown in Fig. 7.18(c). This circuit may be used by 
an ATPG program to generate test vectors. 

7.3.3.4 Parallel scan 

One can imagine that serial-scan chains can become quite long, and the load­
ing and unloading sequence can dominate testing time. An extension of 
serial scan is called random-access or parallel scan. 30 

The basic idea is shown in Fig. 7 .19. Each register in the design is 
arranged on an imaginary (or real) grid where registers on common rows 
receive common data lines and registers in common columns receive com­
mon read- and write-control signals. In the figure, an array of 2-by-2 registers 
is shown. The D and Q signals of the registers are connected to the normal cir­
cuit connections. Any register output may be observed by enabling the appro­
priate column read line and setting the appropriate address on an output data 
multiplexer. Similarly, data may be written to any register. 

Figure 7.20 shows a D-register implementation called a Cross-Con­
trolled Latch.31 It consists of a normal CMOS master-slave edge-triggered 
register augmented by two small n-transistors, N1 and N2. When -test-write­
enable is high, Probe[)} is high, and elk is low, the value of node Y (D) may 
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FIGURE 7.18 The applica­
tion of scan techniques to 
employ partial scan: (a) pipe­
line circuit; (b) kernel of pipe­
line circuit; (c) combinational 

(a) 

(b) 

equivalent of kernel (c) 

be sensed on Sense[i] via transistor N2. When -test-write-enable is low, 
Probe[j] is high, and elk is high, the value on Sense[i] can be driven onto 
node Y. This is seen immediately at the output of the register. The net effect 
on the register-timing parameters of the extra transistors is to slightly 
increase the minimum clock-pulse width. The area impact for an ASIC­
based register is around 3%. 

The large number of observable outputs (one for every register in the 
design) are compressed using signature analysis (see Section 7.3.4.1). The large 
number of observable outputs leads to very efficient concurrent-fault simulation. 
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7.3.4 Self-Test Techniques 

Self-test and built-in test techniques, as their names suggest, rely on aug­
menting circuits to allow them to perform operations on themselves that 
prove correct operation. 

7.3.4. 1 Signature Analysis and BILBO 

One method of incorporating a built-in test module is to use signature anal­
ysis32·33 or cyclic-redundancy checking. This involves the use of a pseudo-

FIGURE 7.19 Parallel 
scan-basic structure 

FIGURE 7.20 Parallel scan 
register (a cross-controlled 
latch) 
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FIGURE 7.21 Pseudo­
random sequence generator 
(PRSG) 

random sequence generator (PRSG) to generate the input signals for a sec­
tion of combinational circuitry and then using a signature analyzer to 
observe the output signals. 

A PRSG implements a polynomial of some length N. It is constructed 
from a linear feedback shift register (LFSR), which is constructed, in turn, 
from a number of 1-bit registers connected in a serial fashion, as shown in 
Fig. 7.21. The outputs of certain shift bits are XORed and fed back to the 
input of the LFSR to calculate the required polynomial. For instance, in 
Fig. 7.21, the 3-bit shift register is computing the polynomialf(x) = 1 + x + 
x 3. For an n-bit LFSR, the output will cycle through 2n - 1 states before 
repeating the sequence. Tables for determining suitable shift registers may 
be found in Golumb.34 A complete feedback shift register (CFSR) includes 
the zero state, which may be required in some test situations. Methods for 
designing these may be found in Wang and McCluskey.35 

A signature analyzer is constructed by cyclically adding the outputs of a 
circuit to a shift register or an LFSR if successive logic blocks are to be 
tested in a like manner. A typical circuit is shown in Fig. 7.22(a). As each test 
vector is run, the incoming data is XO Red with the contents of the LFSR. At 
the end of a test sequence, the LFSR contains a number, known as the syn­
drome, which is a function of the current output and all previous outputs. 
This can be compared with the correct syndrome (derived by running a test 
program on the good logic) to determine whether the circuit is good or bad. 

Signature analysis can be merged with the scan technique to create a 
structure known as BILBO-for Built-In Logic Block Observation.36 

A 3-bit register is shown with the associated circuitry. In mode D (CO = 
Cl = 1 ), the registers act as conventional parallel registers. In mode A (CO = 
Cl = 0), the registers act as scan registers. In mode C (CO= 1, Cl = 0), the 
registers act as a signature analyzer or pseudo-random sequence generator 
(PRSG). The registers are reset if CO= 0 and Cl = 1. Thus a complete test­
generation and observation arrangement can be implemented, as shown in 
Fig. 7.22(b). In this case two sets ofregisters have been added in addition to 
some random logic to effect the test structure. 

0<0> 0<1> 0<2> 

REG REG REG 
1-bit 1-bit 1-bit 

d q d q d q 

1 + x + x3 
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A chip set for FFT applications was designed with local testing based on 
pseudo-random pattern generation and signature analysis.37 With a 28-bit pat­
tern generator and a 17-bit signature at 10 MHz it took 26 seconds to test the part. 

7.3.4.2 Memory Self-Test 

Embedding self-test circuits for memories in higher-speed circuits not only 
may be the way of testing the structures at speed but can save on the number 
of external test vectors that have to be run. A typical read/write memory 
(RAM) test program for an M-bit address memory might be as follows38•39: 

FOR i=O to M-1 write (data ) 

FOR i=O to M-1 read( data) then write(data) 

FOR i=O to M-1 read(data) then write ( data ) 

FOR i=M-1 to 0 read( data) then write(data) 

FOR i=M-1 to 0 read(data) then write ( data ) 

data is 1 and data is 0 for a I-bit memory or a selected set of patterns for 
an n-bit word. For an 8-bit memory data, might be xOO, x55, x33, and xOF. 
An address counter, some multiplexers, and a simple-state machine result in 
a fairly low overhead self-test structure for read/write memories. Oshawa et 
aI.40 describe a 4-Mbit RAM with self-test. The self-test consists of 256K 
cycles that input a checkerboard pattern to test for cell-to-cell interference. 

FIGURE 7.22 Built-in logic 
block observation (BILBO): 
(a) individual register; (b) use 
in a system 
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This is followed by 256K cycles in which the data is read out. Then a com­
plemented checkerboard is written and read. A total of 1 million cycles pro­
vide a test sufficient for system maintenance. 

ROM memories may be tested by placing a signature analyzer at the 
output of the ROM and incorporating a test mode that cycles through the 
contents of the ROM. A significant advantage of all self-test methods is that 
testing may be completed when the part is in the field. With care, self-test 
may even be performed during normal system operation. 

7.3.4.3 Iterative Logic Array Testing 

Arrays of logic41 •42 present an interesting problem to the test architect 
because the replication can be used to advantage in reducing the number of 
tests. In addition, by augmenting the logic extremely high fault coverage 
rates are possible. An iterative logic array (ILA) is a collection of identical 
logic modules (such as an n-bit adder). An ILA is C-testable if it can be · 
tested with a constant number of input vectors independent of the iteration 
count. An ILA is I-testable if a particular fault that occurs in any module as 
a result of an applied input vector is identical for all modules in the ILA. 
Assuming that only one module is faulty, the detection of a fault may be 
made by using an equality test on the ILA outputs. 

7.3.5 IDDQ Testing 

An increasingly popular method of testing for bridging faults is called IDDQ 
(V DD supply current Quiescent) or current-supply monitoring.43 •44 This 
relies on the fact that when a complementary CMOS logic gate is not switch­
ing, it draws no DC current (except for leakage). When a bridging fault 
occurs, for some combination of input conditions a measurable DC I DD will 
flow. Testing consists of applying the normal vectors, allowing the signals to 
settle, and then measuring !DD· To be effective any circuits that draw DC 
power such as pseudo-nMOS gates or analog circuits have to be disabled. 
Because many circuits now require SLEEP modes to reduce power, this may 
not be a substantial additional overhead. 

Because current measuring is slow, the tests must be run slower than 
normal, thus increasing the test time. However, this technique gives a form 
of indirect massive observability at little circuit overhead. 

7.4 Chip-Level Test Techniques 

In this chapter we have discussed the principles behind testing ICs, and cov­
ered some techniques aimed at making testing easier. In the past the design 
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process was frequently divided between a designer who designed the circuit 
and a test engineer who designed the test to apply to that circuit. The advent 
of the ASIC, small design teams, the desire for reliable I Cs, and rapid times 
to market have all forced the "test problem" earlier in the design cycle. In 
fact, the designer who is only thinking about what functionality has to be 
implemented and not about how to test the' circuit will quite likely cause 
product deadlines to be slipped and in extreme cases products to be stillborn. 
In this section we will examine some practical methods of incorporating test 
requirements into a design. This discussion is structured around the main 
types of circuit structure that will be encountered in a digital CMOS chip. 

7.4.1 Regular Logic Arrays 

Partial serial scan or parallel scan is probably the best approach for struc­
tures such as datapaths. One approach that has been used in a Lisp micropro­
cessor is shown in Fig. 7 .23. 45 Here the input busses may be driven by a 
serially loaded register. These in turn may be used to load the internal data­
path registers. The datapath registers may be sourced onto a bus, and this bus 
may be loaded into a register that may be serially accessed. All of the control 
signals to the datapath are also made scannable. 

data path scan out 

serial/parallel register 

existing data path busses 

parallel/serial register 

data path scan in 

reg logic reg logic 

control scan in- control scan path control scan out 

control logic 

FIGURE 7.23 Datapath test 
scheme 
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7.4.2 Memories 

Memories may use the self-testing techniques mentioned in Section 7.3.4.2. 
Alternatively, the provision of multiplexers on data inputs and addresses and 
convenient external access to data outputs enables the testing of embedded 
memories. It is a mistake to have memories indirectly accessible (i.e., data is 
written by passing through logic, data is observed after passing through 
logic, addresses can not be conveniently sequenced). Because memories 
have to be tested exhaustively, any overhead on writing and reading the 
memories can substantially increase the test time and, probably more signif­
icantly, turn the testing task into an effort in inscrutability. 

7.4.3 Random Logic 

Random logic is probably best tested via full serial scan or parallel scan. 

7 .5 System-Level Test Techniques 

Up to this point we have concentrated on the methods of testing individual 
chips. Traditionally at the board level, "bed-of-nails" testers have been used 
to test boards. In this type of a tester, the board under test is lowered onto a 
set of test points (nails) that probe points of interest on the board. These may 
be sensed (the observable points) and driven (the controllable points) to test 
the complete board. At the chassis level, software programs are frequently 
used to test a complete board set. For instance, when a computer boots, it 
might run a memory test on the installed memory to detect possible faults. 

The increasing complexity of boards and the movement to technologies 
like Multichip Modules (MCMs) and surface-mount technologies (with an 
absence of through-board vias) resulted in system designers agreeing on a 
unified scan-based methodology for testing chips at the board (and system 
level). This is called Boundary Scan. 

7 .5.1 Boundary Scan 

7.5. 1. 1 Introduction 

The IEEE 1149 Boundary Scan architecture46 is shown in Fig. 7.24. In 
essence it provides a standardized serial scan path through the I/O pins of an 
IC. At the board level, ICs obeying the standard may be connected in a vari­
ety of series and parallel combinations to enable testing of a complete board 
or, possibly, collection of boards. The description here is a precis of the pub-
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;ackage Interconnect Serial Test Interconnect 
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1/0 Pad and Boundary Scan Cell 
Serial Data In Serial Data Out 

lished standard. The standard allows for the following types of tests to be run 
in a unified testing framework: 

• Connectivity tests between components. 

• Sampling and setting chip I/Os. 

• Distribution and collection of self-test or built-in-test results. 

7.5. 1.2 The Test Access Port (TAP) 

The Test Access Port (or TAP) is a definition of the inter~ace that needs to be 
included in an IC to make it capable of being included ~n a Boundary-Scan 
architecture. The port has four or five single-bit connections, as follows: 

• TCK (The Test Clock Input)-used to clock tests into and out of chips. 

• TMS (The Test Mode Select)-used to control test operations. 

• TD/ (The Test Data Input)-used to input test data to a chip. 

• TDO (The Test Data Output) used to output test data from a chip. 

It also has an optional signal 

• TRST* (The Test Reset Signal) used to asynchronously reset the TAP 
controller; also used if a power-up reset signal is not available in the 
chip being tested. 

FIGURE 7.24 Boundary 
scan architecture 
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FIGURE 7.25 TAP architec­
ture 

The TDO signal is defined as a tristate signal that is only driven when 
the TAP controller is outputting test data. 

7.5. 1.3 The Test Architecture 

The basic test architecture that must be implemented on a chip is shown in 
Fig. 7 .25. It consists of: 

• the TAP interface pins. 

• a set of test-data registers to collect data from the chip. 

• an instruction register to enable test inputs to be applied to the chip. 

• a TAP controller, which interprets test instructions and controls the 
flow of data into and out of the TAP. 

Data that is input via the TD! port may be fed to one or more test data regis­
ters or an instruction register. An output MUX selects between the instruc­
tion register and the data registers to be output to the tristate TDO pin. 

7.5.1.4 The TAP Controller 

The TAP controller is a 16-state FSM that proceeds from state to state based 
on the TCK and TMS signals. It provides signals that control the test data 
registers, and the instruction register. These include serial-shift clocks and 
update clocks. 

The state diagram is shown in Fig. 7 .26. The state adjacent to each state 
transition is that of the TMS signal at the rising edge of TCK. 

The reader is referred to the standard for complete descriptions of these 
states. It is probably best to understand them by examining a typical test 
sequence. Starting initially in the Test-Logic-Reset state, a low on TMS tran-

TDI 7 

TMS 177:>------t 
TCK 177>-----1 

TRST* 1+7 >-----1 

Test Data Registers 

Instruction Decode 

Instruction Register 

Clocks/Control 

TAP 
Controller 
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sitions the FSM to the Run-Test/Idle mode. Holding TMS high for the next 
three TCK cycles places the FSM in the Select-DR-Scan, Select-IR-Scan, 
and finally Capture-IR mode. In this mode two bits are input to the TD! port 
and shifted into the instruction register. Asserting TMS for a cycle allows the 
instruction register to pause while serially loading to allow tests to be carried 
out. Asserting TMS for two cyeles, allows the FSM to enter the Exit2-IR 
mode on exit from the Pause-IR state and then to enter the Update-IR mode 
where the Instruction Register is updated with the new IR value. Similar 
sequencing is used to load the data registers. 

A CMOS implementation of the Tap Controller based on that in the stan­
dard is shown in Fig. 8.89. 

7.5. 1.5 The Instruction Register (IR) 

The instruction register has to be at least two bits long, and logic detecting 
the state of the instruction register has to decode at least three instructions, 
which are as follows: 

• BYPASS-This instruction is represented by an IR having all zeroes 
in it. It is used to bypass any serial-data registers in a chip with a 1-bit 
register. This allows specific chips to be tested in a serial-scan chain 
without having to shift through the accumulated SR stages in all the 
chips. 

• EXTEST-This instruction allows for the testing of off-chip circuitry 
and is represented by all ones in the IR. 

• SAMPLB/PRELOAD-This instruction places the boundary-scan 
registers (i.e., at the chips' 1/0 pins) in the DR chain, and samples or 
preloads the chips I/Os. 

FIGURE 7.26 TAP controller 
state diagram 
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FIGURE 7.27 Instruction­
register bit implementation 
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In addition to these instructions, the following are also recommended: 

• INTEST-This instruction allows for single-step testing of internal 
circuitry via the boundary-scan registers. 

• RUNBIST-This instruction is used to run internal self-testing proce­
dures within a chip. 

Further instructions may be defined as needed to provide other testing func­
tions. 

A typical IR bit is shown in Fig. 7.27. 

7.5.1.6 Test-Data Registers (DRs) 

The test-data registers are used to set the inputs of modules to be tested, and 
to collect the results of running tests. The simplest data-register configura­
tion would be a boundary-scan register (passing through all I/O pads) and a 
bypass register (1-bit long). Figure 7.28 shows a generalized view of the data 
registers where one internal data register has been added. A multiplexer 
under the control of the Tap controller selects which particular data register 
is routed to the TDO pin. 

7.5.1.7 Boundary Scan Registers 

The boundary scan register is a special case of a data register. It allows cir­
cuit-board interconnections to be tested, external components tested, and the 
state of chip digital I/Os to be sampled. Apart from the bypass register, it is 
the only data register required in a Boundary Scan compliant part. 

A single structure (in addition to the existing I/O circuitry) can be used 
for all I/O pad types, depending on the connections made to the cell. It con­
sists of two multiplexers and two edge-triggered registers. Figure 7 .29(a) 
shows this cell used as an input pad. Two register bits allow the serial shift­
ing of data through the boundary-scan chain and the local storage of a data 
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Boundary Scan Registers 

From TOI ------1 Internal Data Register To TOO 

Bypass Register 
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bit. This data bit may be directed to internal circuitry in the INTEST or 
RUNBIST modes (Mode= 1). When Mode= 0, the cell is in EXTEST or 
SAMPLE/PRELOAD mode. A further multiplexer under the control of 
ShiftDR controls the serial/parallel nature of the cell. The signal ClockDR 
and UpdateDR generated by the Tap Controller load the serial and parallel 
register, respectively. 

An output cell is shown in Fig. 7.29(b). When Mode= 1, the cell is in 
EXTEST, INTEST, or RUNBIST modes, communicating the internal data to 

FIGURE 7.28 TAP data reg­
isters 
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FIGURE 7.30 Boundary 
scan tristate cell 
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the output pad. When Mode= 0, the cell is in the SAMPLE/PRELOAD 
mode. 

Two output cells may be combined to form a tristate boundary-scan cell, as 
shown in Fig. 7 .30. The output signal and tristate-enable each have their own 
muxes and registers. The Mode control is the same for the output-cell example. 

Finally, a bidirectional pin combines an input and tristate cell, as shown 
in Fig. 7.31. 

7 .5.2 Summary 
At the system ~evel, the Boundary Scan-Test Access Port approach has been 
summarized. There are, however, other related methods of dealing with testing 
at the system level. For instance, a boundary-scan method used in a multichip 
workstation, which uses a central controller rather than implementing the con­
troller in each chip, has been reported.47 A system designer has to trade off 
aspects, such as chip area versus implementation time, when deciding on a test 
strategy. However, the important thing is to have a strategy. 

7 .6 Layout Design for Improved Testability 

In this chapter a number of models for failure were postulated and methods 
for detecting the faults in working circuits were proposed. We have already 
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discussed a circuit-design technique to detect stuck-open faults in CMOS in 
Section 7.3.3.2. An interesting question arises. Can we construct the physical 
layouts to reduce the likelihood of such failures? This question has interested 
many researchers, and there is a body of literature that discusses the possible 
answers.48- 52 

In order to predict layout styles that improve testability, a designer has 
to have some idea of the nature and frequency of defects for a particular pro­
cess. The types of defects that commonly occur may be divided into those 
that short together conductors and those that create open circuits. Shorts are 
possible intralayer in all layers used for connections, i.e., diffusion, polysil­
icon, metall, metal2, and metal3, if used. The gate oxide may also short to 
the substrate or to either the source or drain. The source and drain regions 
may also short. Similarly for open circuits, all conducting layers might have 
open circuits. In addition, contacts may be misaligned, missing, or badly 
etched, leading to interlayer opens. 

For open circuits, the ideas proposed in the literature to increase the 
immunity to open-circuit faults usually involve incorporating connection 
redundancy. 

FIGURE 7.31 Boundary 
scan bidirectional cell 
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7.7 Summary 

This chapter has summarized the important issues in CMOS chip testing and 
has provided some methods for incorporating test considerations into chips 
from the start of the design. The importance of writing adequate tests for 
both functional verification and manufacturing verification can not be under­
stated. It is probably the single most important activity in any CMOS chip 
design cycle and usually takes the longest time no matter what design meth­
odology is used. If a single message should be left in the reader's mind after 
reading this chapter, it should be that a chip designer should be absolutely 
rigorous about the testing activity surrounding a chip project and that testing 
should rank first in any design trade-offs. 

7 .8 Exercises 

1. Explain what is meant by a Stuck-At-l(SAl) fault and a Stuck-At-0 
(SAO) fault. 

2. How are sequential faults caused in CMOS? Give an example. 

3. Explain the different kinds of physical faults that can occur on a 
CMOS chip, and relate them to typical circuit failures. 

4. Explain the terms controllability, observability, and fault coverage. 

5. Explain how serial-scan testing is implemented. 

6. Explain how a pseudo-random sequence generator (PRSG) may be 
used to test a 16-bit datapath. How would the outputs be collected 
and checked? 

7. Design a block diagram of a test generator for an 8 x 4K static RAM. 
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SUBSYSTEM 
DESIGN 

8.1 Introduction 

Most digital functions can be divided into the following categories: 

• datapath operators. 

• memory elements. 

• control structures. 

• I/O cells. 

CMOS system design consists of partitioning the system to be designed into 
components that may be categorized into the above groups. Once those 
groupings have been determined, CMOS subsystems that implement those 
functions are designed. Many options exist that trade speed, density, pro­
grammability, ease of design, and many other variables. In this chapter we 
present a number of subsystems built with the circuits developed in Chapter 
5. These subsystems may be used to build systems (chips, chip sets, or 
boards) of considerable complexity. 

8.2 Datapath Operators 

Datapath operators form an important subclass of VLSI circuit design that 
benefit from the structured design principles of hierarchy, regularity, modular- 513 
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FIGURE 8.1 Datapath 
Example 
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ity, and locality. This arises because n-bit data is generally processed, which 
naturally leads to the ability to use n identical circuits to implement the func­
tion. In addition, data operations may generally be sequenced in time or space, 
which leads to the notion of physically placing linked data operators adjacent 
to each other. Generally, data may be arranged to flow in one direction, while 
any control signals are introduced in an orthogonal direction to the dataftow. 
This mirrors the physical reality of a CMOS chip, which usually has at least 
two good routing layers (i.e., metall and metal2, or metal2 and metal3). 

Consider the magnitude comparator shown in Fig. 8.l(a). This may be 
implemented by the layout shown in Fig. 8 .1 (b ), where data operators are 
arranged horizontally and data bits are arranged vertically. Data is relayed 
from operator to operator by horizontal wires (say, in metal2), while control 
information is routed vertically (say, in metall). Datapaths allow optimiza­
tion of the area of the layout by incorporating the regular routing strategy 
into the operator cell design. Usually, the data routing may be passed over 

Micron Ex. 1037, p. 553 
Micron v. YMTC 
IPR2025-00119



8.2 DATAPATH OPERATORS 515 

the active circuitry, while the control signals are passed over or through the 
cells. Little area more than the basic area that the transistors take to imple­
ment a function is consumed. This efficiency is hard to achieve in random 
logic. The VLSI designer can exploit the regularity of datapaths by having to 
design one "bit-slice" of the design, which is a horizontal slice through the 
structure, shown in Fig. 8.l(b). 

The rest of this section is devoted to describing a variety of data-pro­
cessing elements that can be cast as datapaths. 

8.2.1 Addition/Subtraction 

Addition forms the basis for many processing operations from counting to 
multiplication to filtering. As a result, adder circuits that add two binary 
numbers are of great interest to digital system designers. A wide variety of 
adder implementations are available to serve different speed/density require­
ments. The truth table for a binary full adder was introduced in Chapter 1 and 
is reproduced in Table 8 .1, along with some functions that will be of use dur­
ing the discussion of adders. 

A and Bare the adder inputs, C is the carry input, SUM is the sum output, 
and CARRY is the carry output. The generate signal, G (A.B), occurs when a 
carry output (CARRY) is internally generated within the adder. When the 
propagate signal, P (A+ B), is true, the carry-in signal (C) is passed to the 
carry output (CARRY) when C is true. (In some adders A EB B is used as the 
P term because it may be reused to generate the sum term.) 

8.2. 1. 1 Single-Bit Adders 

Probably the simplest approach to designing an adder is to implement gates 
to yield the required majority logic functions. From the truth table these are: 

SUM= ABC+ABC+ABC+ABC, (8.1) 

TABLE 8.1 Adder Truth Table 

c A B A.B(G) A+B(P) AEBB SUM CARRY 

0 0 0 0 0 0 0 0 
0 0 1 0 1 1 1 0 
0 1 0 0 1 1 1 0 
0 1 1 1 1 0 0 1 
1 0 0 0 0 1 1 0 
1 0 1 0 1 0 1 
1 1 0 0 1 1 0 1 
1 1 1 1 1 0 1 1 
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FIGURE 8.2 Single-bit 
adder schematic (3-input 
XOR) 

which may be factored as follows: 

= C(AB+AB) + C(AB+AB) 

= AEBBEBC 

CARRY= AB +AC+ BC, 
which may be factored as follows 

=AB + C (A + B). 

(8.2) 

(8.3) 

The gate schematic for the direct implementation of Eqs. (8.2) and (8.3) is 
shown in Fig. 8.2(a). This implementation uses a 3-input XOR gate. A tran­
sistor-level implementation is shown in Fig. 8.2(b). This uses a total of 32 
transistors. An implementation that does not use XOR gates is shown in 
Fig. 8.3(a). This uses an alternative implementation that is achieved by real­
izing that the CARRY term may be reused in the SUM term as a common 
subexpression. In this implementation, shown in Fig. 8.3(b), 

SUM= ABC+ (A+B+C)CARRY 

= ABC+ (A+ B + C) (AB+ C (A+ B)). (8.4) 

~-)-~-~SUM 

E:t:rJ=DD>----CARRY 
(a) 

A~-A B -B 
C -C 

(b) 
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A---+-t-------1---~ 

B-----<>-+----~ 

c---------~ 

(a) 

A----4 f-s 
s----4 f-c 
A----4 
c-i f-A 

A-i f-s 

(b) 

SUM 

'>------ CARRY 

The transistor schematic for this implementation is shown in Fig. 8.3(b). It 
uses 28 transistors. 

8.2. 1.2 Bit-Parallel Adder 

An n-bit adder may be constructed by cascading n 1-bit adders, as shown in 
Fig. 8.4(a). This is called a Ripple Carry Adder. The inputs are n-bitA and B 
values. The CARRY signal of stage i is fed to the C signal of stage i + 1 and 
the SUM signal forms then-bit output. The nth bit of the SUM indicates the 
sign of the result, while the nth CARRY signal indicates whether an overflow 
condition has occurred. Because the carry-output signal (CARRY) is used in 
the generation of SUM in the circuit shown in Fig. 8.3(a), SUM will be 
delayed with respect to CARRY. In the case of an n-bit parallel adder, the 
carry delay has to be minimized, because the delay associated with the adder 
is Tn = nTc, where Tn is the total add time, n is the number of stages, and Tc 
is the delay of one carry stage. To optimize the carry delay, the inverter at the 
output of the carry gate can be omitted. In this case, every other stage oper-

FIGURE 8.3 Single-bit 
adder schematic (cascaded 
logic gates) 
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Figure 8.4 Parallel adder 
implementations 
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ates on complement data, as shown in Fig. 8.4(b). This may result in a sig­
nificant decrease in carry delay. The delay in inverting the adder inputs or 
sum outputs is finessed out of the critical-ripple carry path. 

An n-bit subtractor may be constructed by inverting one operand to an 
n-bit adder and adding 1 to the adder via the carry input, as shown in 
Fig. 8.5(a). An adder/subtractor may be constructed from XOR gates and 
adders, as shown in Fig. 8.5(b). 

The transistor schematic for the adder in Fig. 8.3(a) is shown redrawn in 
Fig. 8.6(a). The propagate term (A+ B) and generate term (A.B) can be 
clearly seen. To aid in a uniform layout, the p-chain is not the exact dual of 
then-chain. It is left to the reader to verify the equivalence. Figure 8.6(b) 
shows how the transistors in the carry stage might be sized to optimize the 
delay through the carry stage. Sizing up the transistors in the carry gate while 
keeping the other transistors small decreases the effective load of these tran­
sistors and any parasitic routing capacitance. Using the styles of layout pre­
sented so far, two possible mask layouts for the combinational adder are 
depicted in Fig. 8.7 (also Plate 7). The choice of aspect ratio would depend 
very much on the environment. In a standard-cell environment, the layout in 
Fig. 8.7(a) might be appropriate where a single row of n- and p-transistors is 
used. The routing for the A, B, and C inputs is shown inside the cell although 
it is quite possible it could be placed outside the cell because external routing 
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tracks have to be assigned to these signals anyway. Figure 8.7(b) shows a 
layout that might be appropriate for a datapath. Here the transistors are 
rotated and all of the wiring is completed in polysilicon and metall. This 
allows metal2 bus lines to pass over the cell horizontally. In addition, the 
size of the transistors in the adder may be increased without impacting the 
bit-pitch (height) of the datapath. The following optimizations may be made 
to the combinational adder (Fig. 8.6): 

1. Arrange the transistors switched by the carry in signal ( C) close to 
the output. This will enable the input signals to settle the gate such 
that the C transistors are least influenced by body effect. 

2. Make all transistors in the sum gate whose gate signals are connected 
to CARRY minimum size. This minimizes the capacitive load on this 
signal. Keep routing on this signal to a minimum and minimize the 
use of diffusion as a routing layer. 

3. Sizing of series transistors can be determined by simulation. It may 
or may not pay to increase the size of the series n-transistors and 
p-transistors. For instance, it may not pay to increase the size of the 
series transistors connected to A and B in the carry gate in a ripple­
carry adder, because these signals will have time to settle in the 
upper bits of the adder while the carry is rippling. It may be of advan­
tage to increase the size of the C transistors in the carry gate to over­
ride the effects of stray capacitance. For a parallel adder, the SUM 

FIGURE 8.5 Arithmetic 
operators: (a) subtractor; 
(b) adder/subtractor 
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Figure 8.6 Optimized com­
binational adder schematic 

gate transistors may be made minimum size, while for a serial adder 
the CARRY and SUM delays would have to be more balanced. 

8.2. 1.3 Bit-Serial Adders, Carry-save Addition, 
and Pipelining 

Rather than construct a ripple carry adder, a serial adder, shown in Fig. 8.8, 
may be constructed. This uses a single adder and constructs the SUM 
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{a) 

{b) 

sequentially. At time t, the SUM is calculated and the CARRY stored in a reg­
ister. At time t + 1, the sum uses CARRY[t] to calculate a new SUM. 

CARRY[t+ 1] =A[t+ l].B[t+ 1] + C[t].(A[t+ 1] +B[t+ 1]) 

SUM[t + l] = CARRY[t + l].(A[t + 1] + B[t + 1] + C[t]) 
+ A[t + l].B[t + 1].C[t] (8.5) 

The two inputs to the adder are stored inn-bit registers. The SUM output 
is stored in an n-bit result register. An illustrative add cycle is shown in 
Fig. 8.8. Addition is commenced by clearing the carry register. Then the 

FIGURE 8.7 Combinational 
adder layouts: (a) standard 
cell; (b) datapath 
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Figure 8.8 Bit-serial adder 
implementation 

n+ 1 bit register 
addend 

cout 

CLK 
SET 

CLEAR 

clk-+----n+_1 _bi_t r--'eg'--is_te_r _____ __, 

REG 
1-Bit 

i:I q 

n bit register 

result 

Illustrative Add Cycle 

elk llIUlJlJlJlJ 
-cir~ 

addend________r;-L.__ 

augand~ 
cinL_fl__ 

cout__JL_ 

output~ 

operands are serially applied to the inputs of the adder, the least significant 
bit first. The example shows 1 added to 5 to form 6 at the output. It takes n 
clock cycles to complete an n-bit add. In a serial adder, equal SUM and 
CARRY delays are advantageous, because these delays determine the fastest 
clock frequency at which the adder can operate. 

Bit-serial architectures have been used successfully for a variety of sig­
nal-processing applications, especially with technologies in the 2-5µ 
range. 1 Reasons for using bit-serial architectures include reduced signal 
routing (1-bit signals instead of n-bit signals), reduced module sizes, and 
higher-speed operation (one adder and a register rather than an n-bit adder). 
Multilevel-metal CMOS technologies have largely solved the signal routing 
problems while more advanced processes have drastically reduced the size 
and increased the speed of adders and registers to the point where the design 
problems lie elsewhere (for instance, in correctly completing a large design 
on schedule). However, the general principle of breaking an n-bit addition 
into smaller additions may be applicable to current design situations. Apart 
from bit-serial adders, nibble (4-bit) and byte (8-bit) adders are frequently 
used. The reason for using reduced-size adders might range from size to 
power dissipation considerations. 

Adders, such as the 1-bit serial adder shown in Fig. 8.8, where both the 
carry and sum are registered on each cycle, are often called carry-save 
adders (CSAs).2 This can be extended to an n-bit adder by registering n car­
ries and n sums. The carries are left shifted, with a new carry input intro­
duced to the D of the LSB carry register and the carry output available at the 
MSB carry register Q. Ann-bit CSA would have 2n registers. Figure 8.9 
illustrates a circuit which uses two 4-bit CSAs, which is representative of a 
structure that might be used in a digital filter. The inputs SIN<3:0> and 
CIN<2:0> are added to constant A<3:0> in the left column (first rank) of 
CSA bits, and then B<3:0> is added in the next column (second rank). Each 
bit of a CSA has the binary output encoded in the sum and carry of each bit. 
The carry output of each CSA stage is left shifted to feed the carry input of 
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l--t--8<3> 

81N<2> 

1---t--- 8<2> 

81N<1> 

C8AAdders 

the next rank. The binary output may be extracted by feeding the sum and 
carry of each bit of the CSA to the inputs of a carry-propagate adder (CPA), 
as illustrated by the ripple-carry adder in Fig. 8.9 (or Fig. 8.4a). Usually a 
different, faster, architecture is used for the final carry-propagate adder. In 
applications such as filtering where many additions have to occur and many 
n-bit adders have to be used, use.of cascaded carry-save adders reduces the 
critical path to the sum of the clock to Q time of the register, the adder delay, 
and the setup time into the register. Current CMOS processes allow opera­
tion in excess of 200 MHz, and operation above 1 GHz is very close. Figure 
8.10 shows a CPA adder structure that can be used for the CPA shown in 
Fig. 8.9. Registers are used at the input and output of the CPA to ensure that 
the inputs arrive at the same time as the carry and that the outputs all appear 

FIGURE 8.9 Carry-save 
adder (CSA) example 
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A<3>-----< 
8<3> 

A<2>--1-----< 
8<2> 

A<1>--t----l 

A<O>--+----~ 

Figure 8.1 O Pipelined carry-
propagate (CPA) example clk-------------<i-~.._____, 

at the correct time. Figures 8.9 and 8.10 illustrate two methods of increasing 
the speed of a basic n-bit adder by the use of pipelining. The cost of pipelin­
ing is latency; that is, the time it takes from when operands are introduced to 
the data processing element to when outputs are available from the module. 
The adder in Fig. 8.9 has a latency of two clock cycles, while .the adder in 
Fig. 8.10 has a latency of three cycles. A filter built with k CS As would have 
a latency of k + 3 cycles. The throughput is k adds/cycle. Latency is usually 
not important in DSP applications, such as filtering, but is important in appli­
cations such as microprocessors where for a variety of reasons (including 
control) an add operation (32 bits or more) has to occur in a single clock 
cycle. On the other hand, throughput is all important to DSP applications. In 
the rest of this section some alternative techniques for improving adder 
speed will be introduced. In so doing, we will discover some classical exam­
ples of trading space for time. In other words, by increasing the size of a data 
element, we can often improve the speed. 

8.2. 1.4 Transmission-Gate Adder 

A rather different implementation of an adder uses a novel exclusive-or 
(XOR) gate. The schematic for this XOR gate is shown in Fig. 8.1 i. As a 
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point to note, switch-level simulators have problems with this gate. The 
operation of the gate is explained as follows: 

1. When signal A is high, -A is low. Transistor pair P 1 and N 1 thus act as 
an inverter, with -B appearing at the output. The transmission gate 
formed by transistor pair P2 and N2 is open. 

2. When signal A is low, -A is high. The transmission gate (P2,N2) is 
now closed, passing B to the output. The inverter (P1, N1) is partially 
disabled (level reduced B passed to output by P1, N1). 

Thus this transistor configuration forms a 6-transistor XOR gate. By revers­
ing the connections of A and -A, an exclusive-nor (XNOR) gate is con­
structed. 

By using four transmission gates, four inverters, and two XOR gates, an 
adder may be constructed according to Fig. 8.12.3 A EBB and the comple­
ment are formed using the TG XOR gate shown in Fig. 8.11. The SUM (A EB 
B EB C) is formed by a multiplexer controlled by A EBB (and complement). 
Examining the adder truth-table reveals that CARRY= C when A EBB is true. 
When A EBB is false, CARRY= A (or B). This adder has 24 transistors, the 
same as the combinational adder, but has the advantage of having equal SUM 
and CARRY delay times. In addition, the SUM and CARRY signals are non­
inverted. The number of transistors may be reduced if speed is not the ulti-

FIGURE 8.11 Transmission­
gate XOR (tiny XOR) 

FIGURE 8.12 Transmission­
gate adder 
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Figure 8.13 Optimized­
area TG adder 

SUM 

CARRY 

mate goal. Two transistors may be eliminated by using an inverter on the 
output of the XOR gate. In addition with some optimization, the output buff­
ers may be eliminated, as shown in Fig. 8.13.4 

8.2. 1.5 Carry-Lookahead Adders 

The linear growth of adder carry-delay with the size of the input word for an 
n-bit adder may be improved by calculating the carries to each stage in par­
allel. The carry of the ith stage, Ci, may be expressed as 

where 

Gi =Ai. Bi 

Pi =Ai+ Bi 

Expanding this yields 

The sum Si is generated by 

generate signal 

propagate signal. 

or C· 1ffip. (if P· =A· ffi B·) l- l l l l. 

(8.6) 

(8.8) 

The size and fan-in of the gates needed to implement this carry-fookahead 
scheme can clearly get out of hand. As a result, the number of stages of look-
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ahead is usually limited to about four. For four stages of lookahead, the 
appropriate terms are 

Co= Go +PoCI 

C1 = Gi + P1 Go+ P1PoCI 

C2 = G2 + P2G1 + P2P1Go + P2P1PoCI 

C3 = G3 + P3G2 + P3P2G1 + P3P2P1Go + P3P2P1PoCI. (8.9) 

Figure 8.14 shows a generic carry-lookahead adder. The PG generation 
and SUM generation circuits surround a carry-generate block. A possible 
implementation of the carry gate for this kind of carry-lookahead adder for 4 
bits is shown in Fig. 8.15. Note that the gates have been partitioned to keep 
the number of inputs less than or equal to four. This is typical of the type of 
carry lookahead that would be used in a gate-array or. standard-cell design. 
The circuit and layout are quite irregular. Taking the term of C3, we note that 
it may be expressed as 

(8.10) 

This function may be implemented as a domino CMOS (nMOS) gate, as 
shown in Fig. 8.16(d). Carry C0 - C2 are generated similarly. Note that the 
worst-case delay path in this circuit has six n-transistors in series. A high­
speed static version of the carry-lookahead gate for C3 is shown in Fig. 8.17.5 

P<3> 

D-SUM<3> C<2> 

B<3> 
G<3> 

A<3> 

P<2> 

D-SUM<2> C<1> 

B<2> 
G<2> 

A<2> 

P<1> 

D-SUM<1> C<O> 

B<1> 
G<1> 

A<1> 

P<O> 

D-SUM<O> Cl 

B<O> 
G<O> 

A<O> 

PG Generator Carry Sum Generator 
Generate 

Block 

FIGURE 8.14 Generic 
carry-lookahead adder (CLA) 
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Figure 8.15 4-bit CLA 
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6<3:0>~ . P<3:0> 

PG Generator 

This uses pseudo-nMOS gates to achieve high-speed static operation. An 
adder using this stage may be constructed by using a 4-bit adder block with 
local ripple carry and this gate as the block carry generator. 

The Manchester adder stage improves on the carry-lookahead implemen­
tation by using a single C3 gate, as shown in Fig. 8.16(d). A selection of the 
elemental carry stages is shown in Fig. 8.18. The first, shown in Fig. 8.18(a), 
is a dynamic stage. Operation proceeds as follows. When CLK is low, the 
output node is precharged by the p pull-up transistor. When CLK goes high, 
the n pull-down transistor turns on. If carry generate (A.B) is true, then the 
output node discharges. If carry propagate (A + B) is true, then a previous 
carry may be coupled to the output node, conditionally discharging it. Note 
that in this circuit CARRY is actually propagated. A static stage is shown in 
Fig. 8.18(b). This requires P to be generated as A E9 B. A multiplexer-based 
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Figure 8.18 Manchester­
adder circuits: (a) dynamic 
stage; (b) static stage; 
(c) MUX stage; (d) 4-bit 
section; (e) PG logic; 
(f) SUM logic 
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implementation is shown in Fig. 8.18(c). A 4-bit adder may be constructed by 
cascading four such stages and adding the circuitry to supply the required sig­
nals. This is commonly called a Manchester carry adder. Thus a 4-bit adder 
would be constructed as shown in Fig. 8.18(d). There is some similarity with 
the d01p.ino carry circuit. However, the intermediate carry gates are no longer 
needed, because the carry values are available in a distributed fashion. The 
4-bit adder is chosen to reduce the number of series-propagate transistors, 
which improves the speed. Note that if all propagate signals are true, and CI is 
high, six series n-transistors pull the output node low in the case of the 
dynamic gate while five transistors are in series in the static gate. In addition to 
four Manchester stages, the adder requires four PG generator blocks, one rep­
resentative implementation being shown in Fig. 8.18(e). Four SUM generate 
blocks (an XNOR gate), shown in Fig. 8.18(f), complete the adder. This worst­
case propagation time can be improved by bypassing the four stages if all 
carry-propagate signals are true.6 The additional circuitry needed to achieve 
this is shown in Fig. 8.19(a). It consists of an AND gate, which turns on a 
carry-bypass signal if all carry propagates are true. The optimum number of 
cascaded stages may be calculated for a given technology by simulation. A 
final implementation of a 4-bit Manchester adder is shown in Fig. 8.19(b). 
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Cl 

(a) 

-P<O> -P<1> -P<2> 

Cl --.~---1 

-P<1> 

(b) 

This implementation7 uses a "conflict-free" bypass circuit, which improves 
the speed by using a 3-input multiplexer that prevents conflicts at the wired 
OR node in the adder, shown in Fig. 8.19(a). The control signals T1, T2, and T3 
are respectively generated by 

Ti= -(PoP1P2).P3 

T2 =-P3 

T3 = PoP1P2P3. 

Note that in this version the inverter present on the cin signal has been 
moved to the center of the carry chain to improve speed (there are now a 
maximum of two transmission gates in series with an inverter). Very wide, 
fast adders may be constructed by extending the carry bypass shown in 
Fig. 8.19(b).8 

FIGURE 8.19 Manchester 
adder with carry bypass: 
(a) simple; (b) conflict free 
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Figure 8.20 Carry-select 
adder: (a) basic architecture; 

8.2. 1. 6 Carry-Select Adder 

An additional approach to increase the speed of a parallel adder that expends 
area in favor of speed is to use a carry-select adder. The basic scheme is 
shown in Fig. 8.20(a).9 Usually, two ripple-carry-adder structures are built 
(although any adder structure may be used), one with a zero carry-in and the 

· other with a one carry-in. This is repeated for a certain sized adder, say, of 
4-bits. The previous carry then selects the appropriate sum using a multi­
plexer or tristq.te adder gates. The stage carries and the previous carry are 
gated to form the carry for the sµcceeding stage. As a further optimization, 
each succeeding ripple adder may be extended by one stage to account for 
the delay in the carry-lookahead gate. Thus for a 32-bit adder, the stage num­
bers are 4-4-5-6-7-6, as shown in Fig. 8.20(b). This yields an adder with 
approximately (4 + 1+1+1 + 1+1), or 9, gate delays for a 32-bit addition. 

8.2. 1. 7 Conditional-Sum Adder 

A CMOS implementation of a conditional-sum adder10 is shown in 
Fig. 8.21. 11 A conditional block generates C0, C1, S0, and S1 signals, as 
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a+b 
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FIGURE 8.21 Conditional­
sum adder: (a) basic circuits; 
(b) 4-bit adder example 

shown in Fig. 8.21(a). Here pass logic has been used to generate 

So= -(A EBB) 

S1=AEBB 

Co=A.B 

C1=A+B. 
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Figure 8.22 A 64-bit adder 
block diagram 

The C0 and C 1 signals are fed to successive stages, selecting between the S0 
and S1 signals using transmission gate multiplexers. SUMs and CARRYs are 
generated in a tree-like fashion as shown in Fig. 8.21(b). For a 32-bit adder 
there are six transmission gates in series. If the stray capacitance in the series­
transmission gates can be minimized, it is claimed that this adder can be 
quite fast. 

8.2. 1.8 Very Wide Adders 

Adders with very large word sizes (>32 bits) can be constructed hierarchi­
cally by combining smaller "block" adders typically with a word width of 16 
bits. Figure 8.22 shows a 64-bit adder composed of four 16-bit blocks. Each 
16-bit block outputs a block P and block G signal that are fed to a block­
carry generator. This module in turn feeds the carry-in to each 16-bit block. 

A single bit of a typical block adder12 is shown logically in Fig. 8.23(a), 
while a transmission-gate and inverter implementation is shown in 
Fig. 8.23(b). This is divided into three sections, which generate the local 
propagate signal (P), the block propagate (Pout), and the block generate 
(Gout) signals and the sum: signal (SUM). These single bits are cascaded to 
form a 16-bit adder block. The block propagate and block-generate signals 
pass through series connections of transmission gates and inverters. These 
can be accelerated by using bypass techniques similar to that shown in 
Fig. 8.19(b). Figure 8.24(a) shows a representation of the block-generate 
chain for a 16-bit adder with bypassing. For example the final transmission 
gates are controlled by signals S1, S2, and S3. These are generated as follows: 

S1 = -T2.P15 (passes G<15> to output) 

S2 = -T1.T2.P15 (passes G<lO> to output) 

(passes G<5> to output), 

A<63:48> B<63:48> A<47:32> B<47:32> A<31:16> B<31:16> A<15:0> B<15:0> 

Cout 

A 
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1-bit 

A 0 
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Ti= P6.P7.Pg.P9.P10 
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... SUM 
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The block-carry generator for the 112-bit adder is shown in Fig. 8.24(b). The 
block generates and propagates from seven 16-bit adders are combined into 
seven carry-bypass multiplexers. These in turn are bypassed by the transmis­
sion gates, reducing the maximum number of series transmission gates from 
seven to four. The -BC signals are the block carries that are fed to each 
16-bit adder. The 112-bit adder that Figs. 8.23 and 8.24 are based on yielded 
a 8.5 ns 112-bit adder in a 0.8µ three-level-metal technology. 

FIGURE 8.23 The cells in a 
16-bit adder block used in the 
64-bit adder: (a) gate diagram; 
(b) circuit diagram 
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Stage Number 

Gin<O> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Bypass Network 

(a) 

-BC<15> -BC<31> -BC<47> -BC<63> -BC<79> -BC<95> 

Figure 8.24 Bypass tech- C<1> 

niques used in a 112-bit -BC<15> 

adder: (a) 16-bit adder gener-
ate bypass logic; (b) 112-bit 
carry-bypass logic (bl 

8.2.1.9 Summary 

With the number of adders presented, the natural question is "What adder 
should be used where?" In general, a ripple adder (Fig. 8.2, Fig. 8.3, Fig. 8.6, 
or Fig. 8.12) should be used as the first choice because they are small, sim­
ple, and relatively fast. The adder shown in Figs. 8.6 and 8.7 is one of the 
smallest that can be designed and is especially suited to pipelined adders. If 
a faster nonpipelined adder is required, standard-cell libraries frequently 
supply the adder shown in Fig. 8.15 or some other 4-bit adder with a.look­
ahead generator. The carry-select adder is a good choice for a faster h-bit 
adder because it can easily be assembled from ripple adders and multiplexers 
and the speed can be improved by adding adders and multiplexers. This ease 
of construction comes at the expense of area. The Manchester adders are 
good choices for custom-designed datapaths with word widths from 16 to 32 
bits because they are regular, small and fast. The transmission-gate adder 
(Fig. 8.12 or 8.13) is of use where the SUM and CARRYpropagation times 
must be similar (e.g., in multiplier arrays). For adders used in floating-point 
ALUs, the adder outlined in Figs. 8.23 and 8.24 may be suitable. 

Micron Ex. 1037, p. 575 
Micron v. YMTC 
IPR2025-00119



8.2 DATAPATH OPERATORS 537 

8.2.2 Parity Generators 
A function related to binary addition is parity generation, that is, detecting 
whether the number of ones in an input word is odd or even. Frequently it is 
necessary to generate the parity of, say, a 16- or 32-bit word. The function is 

(8.11) 

Figure 8.25(a) shows a conventional implementation. A dynamic dual-rail 
logic version is shown in Fig. 8.25(b ). A number of these may be cascaded to 
perform a 32-bit parity function. 13 A static 4-input XOR that could be used is 
shown in Fig. 8.25(c). 14 In a data path, Fig. 8.25(a) may be implemented as 
a linear column with a tree-routing channel connecting the XOR gates. 

8.2.3 Comparators 
A magnitude comparator is useful to compare the magnitude of two binary 
numbers. One can build a comparator from an adder and a complementer, as 
shown in Fig. 8.26. A zero detect (NOR gate) provides theA = B signal while 
the final carry output provides the B > A signal. Other signals-such as 
A < B or A ~ B-may be generated by logical combinations of these signals. 
The generation of B <A is shown in Fig. 8.26. 

If equality comparison is required, then XNOR gates and an AND gate 
are all that is required, as shown in Fig. 8.27(a). Rather than a gate imple­
mentation, a pass-gate logic structure may be used, as shown in Fig. 8.27(b). 
Single-polarity transmission gates have been used here as might be appropri­
ate in a low-power circuit, but of course complementary transmission gates 
may also be used. This structure does not draw any DC current but may be 
slow for long comparators. The final circuit shown in Fig. 8.27(c) is a 
merged XNOR/NOR gate using pseudo-nMOS. This gate draws DC current 
but is very small and very fast. 

8.2.4 Zero/One Detectors 
Detecting all ones or all zeros on wide words requires large fan-in AND or 
OR gates. One can build a tree of AND gates, as shown in Fig. 8.28(a). Here 
alternate NAND and NOR gates have been used. The delay to the output is 
proportional to log N, where N is the bit width of the word. If the word being 
checked has a natural skew in the outputs (such as at the output of a ripple 
adder), the designer might consider mimicking the adder delay in the zero or 
one detect as shown in Fig. 8.28(b). Here the delay from the last changing 
output to the zero/one detect is a constant one gate delay. Similar to the com­
parator example in the last section, a small and fast ONE/ZERO detection 
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Figure 8.25 Parity genera­
tion: (a) static XOR tree; 
(b) dynamicversion; (c) static 

(a) 

(b) 

A -B 

_L _L 
-C 
_L 

-D 

_L _r'k 

elk 

4-input XOR (c) 

circuit for word widths of less that 32 bits is the pseudo-nMOS NOR gate. At 
large word widths, self-loading may require the pseudo-nMOS gate to be 
split into 8- or 16-bit chunks. 
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B>A 

B<3> B<A 

A<3> 

B<2> 

A<2> 

B<1> A=B 

A<1> 

B<O> 

A<O> 

8.2.5 Binary Counters 

Binary counters are used to cycle through a sequence of binary numbers. An 
asynchronous counter has outputs that change at varying times with respect 
to the clock edge, whereas a synchronous counter has outputs that change at 
substantially the same time. 

8.2.5. 1 Asynchronous Counters 

A "ripple-carry" binary counter is shown in Fig. 8.29. This is based on the 
toggle register introduced in Chapter 5. The T register (which is a single­
counter stage) is reproduced in Fig. 8.29(a). This counter stage may be cas­
caded, as shown in Fig. 8.29(b). Note that the clocking of each stage is car­
ried out by the previous counter stage, and thus the time it takes the last 
counter stage to settle can be quite large for a long counter chain. This 
counter is shown mainly for historical and reference purposes and should not 
be used as shown. Note that it has no reset signal, thus making it extremely 
difficult to test. 

8.2.5.2 Synchronous Counters 

A general synchronous up/down counter is shown in Fig. 8.30. It uses an 
adder and a D register per bit position. The speed that this counter can oper­
ate is determined by the ripple-carry time from the LSB to the MSB. This 
can be improved using any of the carry-lookahead techniques discussed in 
Section 8.2. If only an incrementer is required, the adder circuit degenerates 
into a syncll;ronous counter stage, comprising an XOR gate, an AND gate, 

FIGURE 8.26 Comparator 
using an adder 
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Figure 8.27 Comparator cir­
cuits: (a) XNOR based; 
(b) pass gate based; 
(c) pseudo-nMOS based 

a=b 

(a) 

(b) 

(c) 

and a D register, as shown in Fig. 8.31. A multiplexer on the D input of the 
register allows a value to be loaded into the register for initialization. 
Remembering that an XOR can be implemented with a multiplexer yields 
the counter structure shown in Fig. 8.32(a). A reset register allows initializa­
tion, while the XOR function is provided by the multiplexer on the register D 
input. The multiplexer selects between the true and complement values of 
the register, based on the carry-input value. A more detailed version of the 
counter cell is shown in Fig. 8.32(b). 
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8.2.6 Boolean Operations-ALUs 
Boolean operations are most easily accomplished by using the multiplexer­
based circuit shown in Fig. 5.35. This is shown in multiplexer format in 
Fig. 8.33. An Arithmetic Logic Unit (ALU) requires both arithmetic (add, 

FIGURE 8.28 One- and 
zero-detect circuits: (a) tree; 
(b) "ripple" 

FIGURE 8.29 Asynchron­
ous counter 

Micron Ex. 1037, p. 580 
Micron v. YMTC 
IPR2025-00119



542 CHAPTER 8 SUBSYSTEM DESIGN 

Figure 8.30 Synchronous 
up/down counter using 
adders and registers 
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subtract) and Boolean operations. One may either multiplex between an 
adder and a Boolean unit or merge the Boolean unit into the adder as in the 
classic TTL 181 ALU. 15 A 1-bit CMOS implementation of the latter circuit 
that uses a Manchester carry stage is shown in Fig. 8.34. Signal mode is false 
for arithmetic operations and true for Boolean operations. Signals S<3:0> 
control the operation type. For instance, in Boolean mode for S<3>=0, 
S<2>=0, S<l>=O, S<l>=l, bis passed to the output. 

8.2.7 Multiplication 
In many digital signal processing operations-such as correlations, convolu­
tion, filtering, and frequency analysis-one needs to perform multiplication. 
Multiplication algorithms will be used to illustrate methods of designing dif­
ferent cells so that they fit into a larger structure. In order to introduce these 
designs, simple serial and parallel multipliers will be introduced. The appro­
priate texts should be consulted for more definitive system architectures. The 
most basic form of multiplication consists of forming the product of two 
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in<O>-> 0 

elk 1->->:,___.--+--+-----oi 

load.I !->->:>---+--+-----; 

SEL 

SEL 

SEL 

~---+--<~->->! 0<2> 

~----+--<->->! 0<1> 

~----+---<O->->I 0<0> 

positive binary numbers. This may be accomplished through the traditional 
technique of successive additions and shifts in which each addition is condi­
tional on one of the multiplier bits. For example, the multiplication of two 
positive binary integers, 1210 and 510, may proceed using the shift-and-add 
method in the following manner: 

multiplicand: 
multiplier 

1100 : 1210 

0101 : 510 
1100 

0000 

1100 

0000 

0111100 : 6010 

Therefore, the multiplication process may be viewed to consist of the 
following two steps: 

1. Evaluation of partial products. 

2. Accumulation of the shifted partial products. 

FIGURE 8.31 lncrementer 
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Figure 8.32 Compact syn­
chronous counter 
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It should be noted that binary multiplication is equivalent to a logical 
AND operation. Thus evaluation of partial products consists of the logical 
ANDing of the multiplicand and the relevant multiplier bit. Each column of 
partial products must then be added and, if necessary, any carry values 

F passed to the next column. There are a number of techniques that may be 
used to perform multiplication. In general, the choice is based on factors 
such as speed, throughput, numerical accuracy, and area. As a rule, multipli­
ers may be classified by the format in which data words are accessed, 
namely: 

• serial form. 

FIGURE 8.33 Boolean logic 
unit as MUXes 

• serial/parallel form. 

• parallel form. 
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8.2. 7. 1 Array Multiplication 

A parallel multiplier is based on the observation that partial products in the 
multiplication process may be independently computed in parallel. For 
example, consider the unsigned binary integers X and Y. 

m-1 

X = L Xi2i 
i = 0 

n-1 

Y= L,.Ypj 
j=O 
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FIGURE 8.35 Array 
multiplier cell 

x 

The product is found by 

m-l n-l 

P =Xx Y = I, Xi2i · I, Y/Y 
i=O j=O 

m- l n- l 

= I I (XiY) 2i+j 

i=O j=O 

m+n- l 

= I Pk2k. 

k=O 

Thus Pk are the partial product terms called summands. There are mn sum­
mands, which are produced in parallel by a set of mn AND gates. For 4-bit 
numbers, the expression above may be expanded as in Table 8.2. 

An n x n multiplier requires n(n - 2) full adders, n half adders, and n2 

AND gates. The worst-case delay associated with such a multiplier is 
(2n + l)'tg, where 'tg is the worst-case adder delay. Figure 8.35 shows a cell 
that may be used to construct a parallel multiplier. The Xi term is propagated 
diagonally from top right to bottom left, while the Yj term is propagated hori­
zontally. Incoming partial products enter at the top. Incoming .CARRY IN val­
ues enter at the top right of the cell. The bit-wise AND is performed in the cell, 
and the SUM is passed to the next cell below. The CARRY 0 UT is passed to the 
bottom left of the cell. Figure 8.36 shows the multiplier array with the partial 
products enumerated. This arrangement may be drawn as a square array, as 
shown in Fig. 8.37, which is the most convenient for implementation. In this 
version the degeneracy of the first two rows of the multiplier are shown. The 
first row of the multiplier adders has been replaced with AND gates while the 
second row employs half-adders rather than full adders. This optimization 
might not be done if a completely regular multiplier were required (i.e., one 

TABLE 8.2 4-bit Multiplier Partial Products 

X3 X2 Xl XO Multiplicand 
Y3 Y2 Yl YO Multiplier 

X3YO X2YO XlYO XOYO 
X3Yl X2Yl XlYl XOYl 

X3Y2 X2Y2 X1Y2 XOY2 
X3Y3 X2Y3 X1Y3 XOY3 

P7 P6 PS P4 P3 P2 Pl PO Product 
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8.2 DATAPATH OPERATORS 547 

array cell). In this case the appropriate inputs to the first and second row would 
be connected to ground, as shown in Fig. 8.36. 

The cell design for this multiplier is relatively straightforward, with the 
main attention paid to the adder. An adder with equal carry and sum propa­
gation times is advantageous, because the worst-case multiply time depends 
on both paths. 

8.2. 7.2 Radix-n Multiplication 

The structure shown in Figs. 8.36 and 8.37 computes the partial-products in 
a Radix-2 manner, that is by observing one bit of the multiplicand at a time. 
Higher radix multipliers may be designed to reduce the number of adders 
and hence the delay required to compute the partial sums. The best known 
method is called Booth recoding, which is a Radix-4 multiplication scheme. 

A Booth-recoded multiplier examines three bits of the multiplicand at a 
time to determine whether to add zero, 1 *, -1 *, 2 *, or -2 * of that rank of the 
multiplicand. Table 8.3 shows the operation to be performed based on the 
current two bits of the multiplicand and the previous bit. In addition three 
control values are shown: ZERO zeroes the operand, NEG inverts the oper­
and, and TWO multiplies the value by 2 (left shift). 

Figure 8.38 shows a 16 x 16 Booth-recoded multiplier. Figure 8.38(a) 
shows the top level schematic and a possible floorplan. The schematic shows 
the multiplier divided into two parts-one the Booth array and the other a 

FIGURE 8.36 A 4 x 4 array 
multiplier 
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Figure 8.37 A square 
version of the 4 x 4 array 
multiplier 

TABLE 8.3 

Xi-I xi 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

X<2> 

P<7> 

Booth-recoding Values 

Xi+! OPERATION 

0 addO 
1 add2 
0 sub 1 
1 add 1 
0 sub 1 
1 add 1 
0 sub2 
1 addO 

X<1> X<O> 

P<3> 

P<4> 

NEG ZERO TWO 

1 1 0 
0 0 1 
1 0 0 
0 0 0 
1 0 0 
0 0 0 
1 0 1 
0 1 0 
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8.2 DATAPATH OPERATORS 549 

carry propagate adder (CPA). The Booth array accepts two 16-bit inputs, 
MIER<15:0> (the multiplier) and MCAND<15:0> (the multiplicand) and 
feeds the CPA. The CPA also accepts a 32-bit input (SUM-IN<31 :0> ), which 
is used to perform multiple-accumulates. The floorplan divides the layout 
according to the schematic hierarchy using an array block and a CPA block. 
As the only 32-bit datapath is the final CPA, this structure is folded to obtain 
a set of datapaths that are roughly 16 bits high. Figure 8.38(b) shows the 
schematic and floorplan for the array section of the multiplier. It consists of 
8 ranks of adders each 17 bits wide (or tall for the floorplan shown). The first 
rank (Booth-First-16) degenerates to the schematic shown in Fig. 8.38(c), 
while the remaining ranks are represented by the schematic in Fig. 8.38(e). 
Both ranks use a Booth decode cell which is shown in Fig. 8.38(d). This cell 
observes 3 bits of the multiplier (MIER) and produces the control signals 
XI, X2 and N<l:O> which are used in the array adders (Figs. 8.38f) and 

MIER -> 
16 

Booth-Array 

MIER * CRY 
SUM 

SUM-IN l->->1>--'-
3+2 ---------' 

MIER<15:0> 

CPA 

+ 
CRY PRODUCT 32 

-> PRODUCT 
SUM 
SUM-IN 

PRODUCT 
MCAND 
<15:0> 

<31:0> FIGURE 8.38 Radix-2 multi-

(a) 16*16 Booth Multiplier 

Manchester CPA 
(2 columns) 

TG CSA Adder 
(for accumulate) 
2 columns of 16 adders 

SUM-IN<31 :0> 

plier (Booth-recoded): 
(a) 16 x 16 multiplier top level 
schematic and floorplan; 
(b) array schematic and floor­
plan; (c) first rank schematic; 
( d) Booth decoder; ( e) adder 
ra!lk schematic, rank floor­
plan, and bit floorplan; 
(f) Booth gate; (g) array adder 
schematic and mask layout; 
(h) final adder 
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BOOTH-Fl RST-16 
SUM<16:2> 
CRY<16:2> 

MCAN0<15:0> MCAN0<15:0> CRY<1:0> 
MIER<1 :O>,VSS MIER<2:0> SUM<1:0> 

BOOTH-A00-16 
A<14:0> A<14:0> SUM<16:2> 
B<14:0> B<14:0> CRY<16:2> 

MCAN0<15:0> MCAN0<15:0> CRY<1:0> 
MIER<3:1> MIER<2:0> SUM<1:0> 

BOOTH-A00-16 
C<14:0> A<14:0> SUM<16:2> 
0<14:0> B<14:0> CRY<16:2> 

MCAN0<15:0> MCAN0<15:0> CRY<1:0> 
MIER<5:3> MIER<2:0> SUM<1:0> 

BOOTH-A00-16 
E<14:0> A<14:0> SUM<16:2> 
F<14:0> B<14:0> CRY<16:2> 

MCAN0<15:0> MCAN0<15:0> CRY<1:0> 
MIER<7:5> MIER<2:0> SUM<1:0> 

MIER~ 
MCANO~ 

MC ANO 
<15:0> 

(b) Booth Array 

Figure 8.38 (continued) 

MIER<15:0> 

A<14:0> 
B<14:0> 
CRY<1:0> 
SUM<1:0> 

C<14:0> 
0<14:0> 
CRY<3:2> 
SUM<3:2> 

E<14:0> 
F<14:0> 
CRY<5:4> 
SUM<5:4> 

G<14:0> 
H<14:0> 
CRY<7:6> 
SUM<7:6> 

G<14:0> 
H<14:0> 

MCAN0<15:0> 
MIER<9:7> 

1<14:0> 
J<14:0> 

MCAN0<15:0> 
MIER<11:9> 

K<14:0> 
L<14:0> 

MCAN0<15:0> 
MIER<13:11 > 

M<14:0> 
N<14:0> 

MCAN0<15:0> 
MIER<15:13> 

SUM 
<30:16> 

CRY 
<30:16> 

CRY<15:0> 

BOOTH-A00-16 
A<14:0> SUM<16:2> 1<14:0> 
B<14:0> CRY<16:2> J<14:0> 
MCAN0<15:0> CRY<1:0> CRY<9:8> 
MIER<2:0> SUM<1:0> SUM<9:8> 

BOOTH-A00-16 
A<14:0> SUM<16:2> K<14:0> 
B<14:0> CRY<16:2> L<14:0> 
MCAN0<15:0> CRY<1:0> CRY<11:10> 
MIER<2:0> SUM<1:0> SUM<11:10> 

BOOTH-A00-16 
A<14:0> SUM<16:2> M<14:0> 
B<14:0> CRY<16:2> N<14:0> 
MCAN0<15:0> CRY<1:0> CRY<13:12> 
MIER<2:0> SUM<1:0> SUM<13:12> 

BOOTH-A00-16 
A<14:0> SUM<16:2> SUM<30:16> 
B<14:0> CRY<16:2> CRY<30:16> 
MCAN0<15:0> CRY<1:0> CRY<15:14> 
MIER<2:0> SUM<1:0> SUM<15:14> 

~CRY 
~SUM 
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MCAND<15>,MCAND<15:0>E Booth 
X1 

x17 
MCAND<15:0>,VSS l\D-

X2 } PP<16:0> 
N<1 :0> ----' 

SUM<16:0> 

PP<16>~6 
4/4 

15:0 
PP<15:0> 

BOOTH-DECODE 
N<1:0> N<1:0> VSS,VDD#15 

MIER<2:0> -> MIER<2:0> X1 X1 

MCAND<15:0> ~ 

(c) Booth-First-16 

Mier<2:0> G>--~l:=-M2 
M1 
MO 

.g N<1:0> 

X2 X2 N<1> -----~O 

.qi CRY <16:2> 

.qi CRY<1:0> 

.qi SUM<16:2> 

.qi SUM<1 :0> 

-~~~·X1 
-MO • 32/16 
M1 8/8 

Mier N X1 X2 
000 0 0 0 
001 0 1 0 
010 0 1 0 
011 0 0 1 
100 1 0 1 
101 1 1 0 
110 1 1 0 
111 1 0 0 

MO -----,,..----~ 
M1 
-M2~-~ 

-MO -----,---... 
-M1 
M2~-~ 

(d) Booth-Decode 

8.38g). From Fig. 8.38(b) it may be seen that MIER<l:O> and Vss are fed to 
the first rank (Booth-First-16), MIER<3:1> to the second rank and so on. 
Each rank "retires" two bits of the partial product sum (SUM) and carry 
(CRY) so by the last adder rank (lower right of schematic in Fig. 8.38b) 31 
SUM, CRY pairs have been produced. These are used by the CPA to produce 
a 32-bit result. A possible floorplan of the Booth array is shown in 
Fig. 8.38(b). It consists of the 8 ranks of adder abutted horizontally. The cir­
cuit diagram for an adder rank appears in Fig. 8.38(e). It consists of a Booth 
decode (Fig. 8.38d), 17 Booth gates (Fig. 8.38f), and a 17-bit carry-save 
adder. The latter circuit consists of a 15-bit CSA for the LSBs and two 
inverters for the top 2 bits. The fl.oorplan of the adder rank and adder bit is 
shown in Fig. 8.38(e). The adder rank consists of 15 Booth-Adder modules, 

FIGURE 8.38 (continued) 
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Figure 8.38 (continued) 

X1 Booth 
MCAND<15>,MCAND<15:0>S3 

x17 
MCAND<15:0>,VSS ~ )\D- SUM<16:0> CRY<16:0> 

X2~ PP<16:0> 16 
N<1:0> PP<15>--------+---~ 

BOOTH-DECODE 
N<1:0> N<1:0> 

X1 MIER<2:0>-> MIER<2:0> X1 

MCAND<15:0>~ 
A<14:0>~ 

B<14:0>~ 

X2 X2 

.EJ CRY<16:2> 

.EJ CRY<1:0> 

.EJ SUM<16:2> 

.EJ SUM<1:0> 

CARRY<n+1> 
SUM-IN<n+2> 

PP<16:15> 

A<14:0> 
B<14:0> 

PP<14:0> 

16:15 

15:1 

0 
N<1>----------~ 

X1 X2 N<1:0> 

CARRY<n-2> 

(e) Booth-Add-16 
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N<1> 

N<1> 

(f) Booth 

(g) FIGURE 8.38 (continued) 
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Figure 8.38 (continued) 

RSUM 1'>->~>--"3'-"'1 '----+-----7 

R CRY H->; >----'3"-71 '------1-----1 

SUM-IN ,_,_,,__3"-""'2-~ 

(h) CPA - Carry Propagate Adder 

- PRODUCT <31 :0> ~- 32
' '=" PRODUCT 
~ 

P31 

B<31:1> 

A<30:0> 

v55,B<31:1> 

V55,P31,A<30:1> 

A<O> 

NC,C<6:0> 

c4 
a MAN-4 

-s 
b x8 

co 

C<6:o>,v88 

- PRODUCT <32:0> 

32:1 

0 

2 inverters and the Booth Decoder vertically abutted. The Booth-Adder con­
sists of a Booth gate and adder stage horizontally abutted. The Xl, X2 and 
N<l:O> lines feed vertically from the Booth-Decode logic to the Booth gate 
in each adder (or inverter). At each rank the SUM shifts right by two bit posi­
tions while the CRY shifts right by one bit position. The adder shown in 
Fig. 8.38(g) shows one possible adder implementation that has been opti­
mized for size by using the transmission-gate adder with n-pass transistors. 
A possible mask layout is also shown. Figure 8.38(h) shows the final adder 
(CPA). It consists of a CSA to add in the SUM-IN signal and 32 stages of 
Manchester adder (8 MAN-4) to produce the final output. Any fast 32-bit 
CPA could be used here. Of course this multiplier may be made faster by 
including appropriate pipeline registers. 

Figure 8.39 shows some alternative Booth related circuits. Figure 
8.39(a) shows an alternative Booth-decoder stage along with a generic mul­
tiplier cell (Fig. 8.39b). It is implemented with a multiplexer, an XOR gate, 
an AND gate, and an adder. This circuit may be highly optimized at the cir­
cuit level. Figure 8.39(c) shows one particular implementation for the pre­
adder gating that uses n-channel pass transistors. 

Radix-8 multiplication carries Radix-4 multiplication one step further 
by requiring that+ 1,-l,+2,-2,+3,-3,+4,-4 and 0 times the multiplicand need 
to be calculated. The *3 is the hard term to calculate, requiring an adder. 
However, in some circumstances a Radix-8 multiplier might be appropriate. 

8.2. 7.3 Wallace Tree Multiplication 

If Table 8.1, showing the truth table for an adder, is examined, it may be seen 
that an adder is in effect a "one's counter" that counts the number of 1 'son 
the A, B, and C inputs and encodes them on the SUM and CARRY outputs. 
Table 8.4 below summarizes this. 
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q<1> 
q<O> 

q<1> 
q<O> 

q~-q 

(a) 

1* -1* 2* -2* zero 

(c) 

TABLE 8.4 An Adder as a 1 's Counter 

ABC cs Number of 1 's 

000 00 0 
001 10 
010 10 1 
011 01 2 
100 01 
101 10 2 
110 10 2 
111 11 3 
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FIGURE 8.39 Booth­
recoded multiplier cells 
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A 1-bit adder provides a 3:2 compression in the number of bits. The 
addition of partial products in a column of an array multiplier may be 
thought of as totaling up the number of 1 's in that column, with any carry 
being passed to the next column to the left. Consider the 6 x 6 multiplication 
table shown in Table 8.5. 

Considering the product PS, it may be seen that it requires the summa­
tion of six partial products and a possible column carry from the summation 
of P4. Figure 8.40 enumerates the adders required in a multiplier based on 
this style of addition. The adders have been arranged vertically into ranks 
that indicate the time at which the adder output becomes available. While 
this small example shows the general Wallace addition technique, it does not 
show the real speed advantage of a Wallace tree. In Fig. 8.40 there is an iden­
tifiable "array part" and a CPA part, which is at the top right. While this has 
been shown as a tipple-carry adder, any fast CPA can be used here. The delay 
through the array addition (not including the CPA) is proportional to log 
(base3/2) n, where n is the width of the Wallace tree. In a simple array mul­
tiplier it is proportional to n. So in a 32-bit multiplier where the maximum 
number of partial products is 32, the compressions (3:2 compressors) are 

Thus there are 9 adder delays in the array. In an array multiplier (Booth­
recoded) there are 16 (note that the Booth recoding may also be used with a 
Wallace tree adder). To get the total addition time, the final CPA time has to 
be added to the array propagation times. For a 64-bit multiplier the compar­
ison is 11 for a Wallace tree versus 32 for an array. 

Apart from 3:2 compression, 4:2 compression (really 5:3) is often used. 
An improvement over two cascaded adders may be achieved by using the 4:2 
compressor shown in Fig. 8.41. This has three XOR delays in the sum path 
rather than the four that would be present if two adders were used. A regular 

TABLE 8.5 A 6 x 6 Multiplier 

XS X4 X3 X2 Xl XO Multiplicand 
YS Y4 Y3 Y2 Yl YO Multiplier 

XSYO X4YO X3YO X2YO XlYO XOYO 
XSYl X4Yl X3Yl X2Yl XlYl XOYl 

XSY2 X4Y2 X3Y2 X2Y2 X1Y2 XOY2 
XSY3 X4Y3 X3Y3 X2Y3 X1Y3 XOY3 

XSY4 X4Y4 X3Y4 X2Y4 X1Y4 XOY4 
XSYS X4YS X3YS X2YS XlYS XOYS 

Pll PlO P9 PS P7 P6 PS P4 P3 P2 Pl PO Product 
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x5y5 
P11 

x4y5 
x5y4 

pg 
x3y5 
x4y4 
x5y3 

PS 

x2y5 
x3y4 

P7 x4y3 
x5y2 

x1y5 
x2y4 P6 
x3y3 
x4y2 
x5y1 

x0y5 
x1y4 
x2y3 
x3y2 
x4y1 
x5y0 

PS 
x0y4 
x1y3 
x2y2 
x3y1 

P4 x4y0 

x0y3 
x1y2 
x2y1 P3 
x3yO 

xOy2 
x1y1 
x2yO P2 

xOy1 
P1 x1y0 

xOyO PO 

layout for a 54-by-54 bit multiplier using the compressor shown in Fig. 8.41 
may be found in Goto et al. 16 

8.2. 7.4 Serial Multiplication 

Multiplication may be performed serially. The simplest form of serial multi­
plier, shown in Fig. 8.42, uses the successive addition algorithm and is 
implemented using a full adder, a logical AND circuit, a delay element (i.e., 
either static or dynamic flip-flop), and a serial-to-parallel register. 

FIGURES.40 Wallace adder 
tree (for 6 x 6 multiplier) 
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Figure 8.41 A 4:2 (5:3) 
compressor circuit 

FIGURE 8.42 Serial multi­
plier 

11 I->->; ~-.-----I 

12 H->;~~----1 

13 H->; ~+-+---.-----1 

14 I->->) ~+-+---+--+-J 

Cout 

Gin 

The two numbers X and Y are presented serially to the circuit (at differ­
ent rates to account for multiplier and multiplicand word-lengths). The par­
tial product is evaluated for every bit of the multiplier, and a serial addition 
is performed with the partial additions already stored in the register. The 
AND gate ( G2) between the input to the adder and the output of the register 
is used to reset the partial sum at the beginning of the multiplication cycle. If 
the register is made of N - 1 stages, then the 1-bit shift required for each par­
tial product is obtained automatically. As far as the speed of operation is con­
cerned, the complete product of M + N bits can be obtained in MN intervals 
of the multiplicand clock. 

REG 
1-Bit 

elk d q 

elk 
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Serial Stream 
LSB First 
x---.....--+--1 

delay 

Y<1> Y<2> Y<3> 

Using the general approach discussed previously, it is possible to realize 
a serial/parallel multiplier with a very modular structure that can easily be 
modified to obtain a pipelined system. The basic implementation is illus­
trated by Fig. 8.43. In this structure, the multiplication is performed by 
means of successive additions of columns of the shifted partial products 
matrix. As left-shifting by one bit in serial systems is obtained by a I-bit 
delay element, the multiplier is successively shifted and gates the appropri­
ate bit of the multiplicand. The delayed, gated instances of the multiplicand 
must all be in the same column of the shifted partial-product matrix. They 
are then added to form the required product bit for the particular column. 

This structure requires M + N clock cycles to produce a product. The 
main limitation is that the maximum frequency is limited by the propagation 
through the array of adders. The structure of Fig. 8.43 can be pipelined with 
the introduction of two delay elements in each cell, as shown in Fig. 8.44. If 
rounding or truncation of the product term to the same word length as the 
input is tolerated, then the time necessary to produce a product is 2M clock 
cycles. In this case the multiplier accumulates partial product sums, starting 
with the least significant partial product. After each addition, the result is an 

Yn 

Xj 

Partial Sum Out 
Partial Sum In-----~ 

FIGURE 8.43 Serial/ 
parallel multiplier 

FIGURE 8.44 Pipelined 
serial/parallel multiplier 
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Figure 8.45 Lyon serial mul­
tiplier 

Yj f--------------Yj+1 

Xj 

Partial Sum In------~ 

o----- control out 

f----+-------- Xj+1 

reset 

Partial Sum Out 

This multiplier uses LSB first 
because this is the format 
that more naturally caters 
for addition and multiplication. 

N-bit number that shortens to N-1 bits before the next partial product is 
added. Here, it can be noted that the chip area increases linearly with the 
length of the multiplier. 

Figure 8.45 shows a schematic of a two-stage serial-multiplier stage 
based on the work of Lyon 17 , in which the basic solution described so far has 
been modified so that both words are in serial form. 18 Multipliers of this type 
are frequently useful in FPGAs. 

8.2.8 Shifters 

Shifters are important elements in many microprocessor designs for arith­
metic shifting, logical shifting, and rotation functions. A 4-by-4 barrel 
shifter is shown in Fig. 8.46(a), constructed from complementary transmis­
sion gates. The input to the shifter is the value to be shifted a (literal<6:0>) 
and the shift amount (shift<3:0> ). Table 8.6 shows the value of the output 
(result<3:0>) for various values of shift and literal. 

The function performed depends on the connections of the literal bus. 
These connections may be made with an additional multiplexer on the front 
of the shift matrix. Table 8.7 shows the functions. 

Both arithmetic and logical shifts are implemented as well as rotates. 
Figure 8.46(b) shows a symbolic layout for the core transmission gate. The 
control lines have been run in polysilicon, assuming either that silicided poly 
is used or that these signals are set up well in advance of the literal input. 
Other layouts that do not use polysilicon are of course possible. While the 
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shift<3> -+ shifl<2> -+ shifl<1> -+ shifl<O> -+ 

literai<6> -+ 

literai<5> '-+-+>--~ 

literai<4> !-+-+>----___; 

literai<3> 1->-+>--------¥ 

literai<2> 1-+-+.>---------__; 

literai<1> '-+-+>-------------~ 

literai<O> '-+-+>----------------~ 

(a:) 

-shift 

(b) 

TABLE 8.6 Shifter Operations 

SHIFT RESULT 

1 LITERAL<3 :0> 
2 LITERAL<4: 1> 
4 LiTERAL<5:2> 
8 LITERAL<6:3> 
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FIGURE 8.46 Array shifter 
using transmission gates: 
(a) circuit; (b) cell layout 
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Figure 8.47 Multiplexer­
hHsed shifter 

TABLE 8.7 Modified Shifter Operations 

LITERAL<6:0> 

VSS,VSS,VSS,A<3:0> 
A<3>,A<3>,A<3>,A<3:0> 

A<3:0>,VSS,VSS,VSS 
A<3:0>,A<2:0> 
A<2:0>,A<3:0> 

OPERATION 

LOGICAL RIGHT SHIFT 
ARITHMETIC RIGHT SHIFT 

LOGICAL LEFT SHIFT 
LEFT ROTATE 

RIGHT ROTATE 

circuit shown in Fig. 8.46(a) is fine for transistor level design, it is not really 
appropriate for a gate-level implementation. 

Figure 8.47 shows a shifter that uses multiplexers (which of course can 
be transmission gates). An implementation for a logical left shift, arithmetic 
right shift is shown. The shifter is divided into two halves, one of which 

shift<O> shif1<1> shif1<2> shif1<3> 
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shifts right and one of which shifts left. The fill values can be set by appro­
priate connections at the ends of the shifter ranks. The output of the two 
shifters is muxed to form a final result. The value of SHIFT<2:0> gives the 
amount of the shift with SHIFT<3> = 1 producing a left shift, while 
SHIFT<3> = 0 produces an arithmetic right shift. Left and right rotates may 
be implemented by wrapping the end connections conditionally to the oppo­
site end bits. 

Shifters implemented with transmission gates are notorious for fooling 
timing analyzers unless the directionality of the pass transistors are somehow 
communicated to the timing analyzer. The multiplexer shifter may use buff­
ered (inverting, if need be) multiplexers, which can aid in speeding up the long 
lines in large shifters. The multiplexer version directly takes the shift amount 
as control, while the array version requires an n:m decoder (2:4 for the one 
shown in Fig. 8.46a). For these reasons the multiplexer version may be 
favored in CMOS although the version shown in Fig. 8.46 can be compact. 

Other shift options are frequently required, for instance, shuffles, bit­
reversals, and interchanges. One can either use the complementary transmis­
sion gate, static single-pass transistors (usually n-channel). Precharged ver­
sions of single-pass transistor shifter circuits are generally cumbersome. 
Large capacitances can be associated with the intermediate mux nodes and 
these must all be precharged to prevent charge-sharing problems. The speed 
of an n-bit shifter is proportional to log(n), so combined with the fast speed 
of transmission gates, shifting can be a fast operation. 

8.3 Memory Elements 

Memory elements form critical components in the implementation of CMOS 
systems. While off-the-shelf memories are limited by the number of I/O 
pins, the speed of driving into the chip, and large off-chip output nodes, on­
chip memories can be engineered to be very fast and to have unique access 
paths. In general, CMOS ASIC processes will not compete with the density 
of state-of-the-art DRAM memory, but may be very competitive with high­
speed static memories. Memory elements may be divided into the following 
categories: 

• Random access memory. 

• Serial access memory. 

• Content access memory. 

Random access memory at the chip level is classed as memory that has 
an access time independent of the physical location of the data. This is con­
trasted with serial-access memories, which have some latency associated 
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FIGURE 8.48 Memory-chip 
architecture 
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with the reading or writing of a particular datum and with content-address­
able memories. Within the general classification of random access memory, 
we can consider read only memory (ROM) or read/write memory (com­
monly called RAM). ROMs usually have a write time much greater than 
their read time (programmable ROMs have write times of the order of milli­
seconds), while RAMs have very similar read and write times. Both types of 
memory may be further divided into static-load, synchronous, and asynchro­
nous categories. Static-load memories require no clock. Synchronous RAMs 
or ROMs require a clock edge to enable memory operation. The address to a 
synchronous memory only needs to be valid for a certain setup time after the 
clock edge. Asynchronous RAMs recognize address changes and output new 
data after any such change. Static-load and synchronous memories are easier 
to design and usually form the best choice for a system-level building block, 
because tpey can generally be clocked by the system clock. 

The memory cells used in RAMs can further be divided into static struc­
tures and dynamic structures. Static cells use some form of latched storage, 
while dynamic cells use dynamic storage of charge on a capacitor. We will 
concentrate on static RAMs because they are easier to design and potentially 
less troublesome than dynamic RAMs. Static RAMs tend to be faster (but 
much larger) than dynamic RAMs. 

A typical memory-chip architecture is shown in Fig. 8.48. Central to the 
design is a memory array consisting of 211 by 2m bits of storage (actually 2n-k 

by 2m+k). A row (or word) decoder addresses one word of 2mbits out of 2n-k 

words. The column (or bit) decoder addresses 2k of 2m bits of the accessed 
row. This column decoder accesses a multiplexer, which routes the addressed 
data to and from interfaces to the external world. 

8.3.1 Read/Write Memory 

8.3.1.1 RAM 

Figure 8.49 shows one row and one column of a generic RAM architecture with 
the support circuits required by the RAM cell. The row decoder is a 1 of n-k 
riPrnrlP.r whkh mav !!enerallv be thought of as an AND gate. One of the 2n-k 
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row lines is accessed at one time. The bit-line-conditioning circuitry, the ram­
cell, the sense amplifiers, column multiplexers, and the write buffers form a 
tightly coupled circuit that provides for the hazard-free reading and writing of 
the memory cell. The bit lines are normally run as complementary signals. 
There are many variations of these circuits to achieve varying density/speed/ 
noise-margin requirements. We shall look at a variety of schemes for imple­
menting static RAMs. The column decoder is similar to the row decoder but is 
a 1 of k decoder. k is normally less than n and the decoder drives a multiplexer 
(rather than a selector). Frequently, the column decoder may be merged with 
the column multiplexer. 

Starting with the RAM cell itself, various circuits are shown in 
Fig. 8.50. 19 The most commonly used in ASIC memories is the 6-transistor, 
cross-coupled inverter circuit shown in Fig. 8.50(a). A typical mask-level 
layout for a 6-transistor circuit is shown in Fig. 8.51 (also Plate 8). The 
p-transistors may be replaced with high-value polysilicon resistors if the 
process supports this option (Fig. 8.50b). The value of the resistor has to be 
such that it prevents leakage from changing any value stored in the RAM 
cell. Generally the resistors are in the lOO's to lOOO's of Megaohms. Delet­
ing one of the bit-line pass transistors results in a 5-transistor RAM cell. 
Writing such a cell has to be considered carefully (see later in this section). A 
4-transistor dynamic RAM cell may be achieved by deleting the p loads of 
the static cell, as shown in Fig. 8.52(a). This cell and the other dynamic cells 
have to be refreshed to retain the contents of the memory. A 3-transistor cell 
is shown in Fig. 8.52(b). The cell stores data on the gate of the storage tran­
sistor. Separate read and write control lines are used. Multiple read-ports 
may be added easily, by adding read transistors. In addition, separate or 

FIGURE 8.49 Generic RAM 
circuit 
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-bit bit 
(a) 

Figure 8.50 Static RAM cell 
circuits (b) 

-bit bit 

merged read and write data busses may be used. A I-transistor cell is shown 
in Fig. 8.52(c).20 The memory value is again stored on a capacitor. The 
capacitor can be implemented as a transistor as shown in Figs. 8.52(d) and 
8.52(e). Sense amplifiers sense the small change in voltage that results when 
a particular cell is switched onto the bit line. This type of cell (Fig. 8.52c) 
forms the basis for most high-density DRAMs.21- 28 The cell shown in Fig. 
8.52(d) can be implemented in a conventional two metal, single poly pro­
cess. The dominant problem that arises with this type of memory when used 
in an ASIC process is the loss of the stored charge due to leakage or stray 
substrate currents created by surrounding digital logic. 

As far as the average CMOS-system design is concerned, the static 
6-transistor cell should be used since it involves the least amount of detailed 
circuit design and process knowledge and is the safest with respect to noise 
and other effects that may be hard to estimate before silicon is available. In 
addition, current processes are dense enough to allow large static RAM 
arrays. As a general system-design principle, large amounts of memory 
should only be included in a design if the performance of the system is 
affected. Commercial RAM manufacturers are much better at designing 
RAMs than the average system designer. If dense memory can be partitioned 
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off-chip with no performance degradation or cost impact, then this is a good 
approach to take. 

8.3.1.1.1 Static RAM-read 

We will begin our examination of CMOS static RAMs by considering a read 
operation. Imagine that the bit lines of the circuit shown in Fig. 8.49 are at 
some value and that the word line is asserted. The one node on the memory 
cell will attempt to pull the bit line up through the access transistor and the p 
load. The zero node will attempt to pull the bit line down through the access 
transistor and the n channel pull-down. As an n-channel transistor is poor at 
passing a one and the p-channel transistors in the RAM cell are generally 
small (or in the case of a resistive load, the resistors are very large), design of 

FIGURE 8.51 Mask layout 
for 6-transistor static RAM 
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Figure 8.52 Dynamic RAM 
circuits: (a) 4-transistor; (b) 3 
transistor; ( c) 1 transistor with 
capacitor; ( d) 1 transistor with 
transistor capacitor; ( e) rep­
resentative layout for (d) 
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the RAM circuit concentrates on pulling the bit line from high to low. Thus 
one method of reading a RAM cell would be to precharge the bit lines high 
and·then enable the word-line decoder. For a given pair of bit lines, one 
RAM cell will attempt to pull down either the bit or -bit line depending on 
the stored data. The bit-line pull-up circuit may use p-channel transistors to 
precharge each bit line (Fig. 8.53a). In this example, the sense amplifier is an 
inverter that forms a single-ended sense amplifier. The sense time is roughly 
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the time it takes one RAM cell pull-down and access transistor to reach the 
inverter threshold. To optimize speed, one might set the inverter threshold 
above the V DD midpoint, but below an adequate noise margin down from the 
V DD rail. Alternatively, one can precharge the bit lines with n-channel tran­
sistors, which results in ~he bit lines being precharged to an n threshold down 
from VDD (Fig. 8.53b). This can dramatically improve the speed of the RAM 
cell access. In addition, it reduces power dissipation because the bit lines do 
not change by the supply voltage. The key aspect of the precharged RAM 
read cycle is the timing relationship between the RAM addresses, the pre­
charge pulse, and the enabling of the row decoder. If the word-line assertion 
precedes the end of the precharge cycle, the RAM cells on the active word­
line will see both bit lines pulled high and the RAM cells may flip state. If 

FIGURE 8.53 RAM read 
options: (a) V00 precharge; 
(b) V DfJ Vtn precharge 

Micron Ex. 1037, p. 608 
Micron v. YMTC 
IPR2025-00119



570 CHAPTER 8 SUBSYSTEM DESIGN 

Figure 8.54 RAM read oper-

the addresses change after the precharge cycle has finished, more than one 
word line will be accessed and more than one RAM cell will have the chance 
to pull the bit lines down, leading to erroneous READ data. Normally, RAM 
designers generate a carefully designed timing chain than ensures the correct 
temporal relationships between precharge, row access, and sense operations. 

A RAM access method that does not require precharge is shown in 
Fig. 8.54(a). Here n-channel load transistors pull up the bit lines statically. 
When the word line is asserted, the bit line being pulled down by the RAM 
cell, falls to a value that is a function of the pull-up size, the pass-transistor 
size, and the RAM inverter pull-down size. At the same time, the pull-up 
must not be able to flip the RAM cell. A differential amplifier is used to 
amplify the bit-line difference. Figure 8.54(b) shows the equivalent circuit 
of the pull-down circuit during a read operation. Voltage V1 must safely clear 
the input threshold of the RAM cell inverters. A value of .5-1 Vis appropri­
ate. Voltage V2 yields the bit-line difference voltage, which must be ampli­
fied to detect a transition on the bit line. The size of the bit-line load 
determines how fast the bit line can recover (to prevent false writes) after a 
write operation where the bit line may have been driven to Vss· The sense 
amplifier is designed in conjunction with the bit-line pull-up and RAM cell 
to amplify this bit-line change. Design margins must be valid over all pro­
cess, temperature, and voltage extremes. Figure 8.55 shows the zero bit volt­
age (Vbit(O)) and the pull-down voltage (~Julldown) for various ratios of pull­
up beta to pull-down betas. As the pull-up becomes weaker, the Vbit(O) volt­
age approaches Vss and the differential voltage between a high and a low on 
the bit lines increases. However, as the pull-down transistors are limited in 
size by the desire to keep the RAM cell small, a design trade-off has to be 
made between speed and the differential bit voltage, which affects the noise 
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~word 

data 
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immunity of the cell and the write characteristics. To a first order, the bit-line 
voltage (V2) is given by 

1 

l + ~pullup 
~driver- eff 

where ~pullup is the gain of the load and ~driver-eff is the gain of the combina­
tion of the pass and pull-down transistor in series. When the gain of the pull­
up is high compared with the pull-down path, the bit-line voltage rises 
towards VDD - Vtn. When the gain of the pull-up is very small, the bit-line 
voltage approaches zero. The pull-down voltage V1 is a result of resistive 
divider action between the word-access transistor and the RAM-cell pull­
down. While these transistors are in the linear region, V1 is roughly given by 

~ 
V _ V pass 

I - 2 · 
~pass+ ~ pulldown 

The RAM cell and the sense amplifier draw static current, which affects power 
dissipation. Figure 8.56 shows typical SPICE waveforms for the word line, bit 
lines, and sense amplifier. In this design the bit line pulls down to about 
2 volts, while the bit-line high level is about 4 volts. During access, the RAM 
cell low value is pulled up to about 1 volt, leaving about 1 volt of margin to the 
switching point of the RAM cell inverter. The sense amplifier can be seen 
starting to switch just as the bit lines start diverging. The period between word 
line deassertion and bit nearing-bit is the recovery time (during which no other 
word line should be asserted in order to prevent false writes). 

FIGURE 8.55 RAM bit-line 
voltage levels versus transis­
tor size for static pull-up RAM 
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Figure 8.56 Static RAM­
read waveforms 
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Sense Common 
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Current mode sensing may also be used.29•30•31 In this technique, the 
current change in the bit lines is detected using special circuits. The theory is 
that by using low-impedance circuits, the RC delay inherent in driving the 
bit lines may be decreased. 

8.3.1.1.2 Static RAM-write 

The objective of the RAM write operation is to apply voltages to the RAM 
cell such that it will flip state (a condition we do not desire during the read 
operation). Figure 8.57(a) shows a straightforward write circuit. In this cir­
cuit, the write-enable transistors (N1,N2) are enabled to allow the data and 
complement to move to the bit lines. The word line is then asserted (actually 
the turn-on order is not important). Either the bit or -bit line is driven to V88, 

while the other bit line is driven to a threshold down from VvD· Figure 
8.57(b) shows a more detailed view of the situation. The figure shows a zero 
stored in the cell. During a WRITE cycle where a one is to be written, node 
-Cell has to be pulled below the RAM-cell inverter threshold and at the same 
time node Cell has to be pulled abqve the RAM-cell inverter threshold. In the 
former case, n-transistors Nv (the driver n-transistor), N1 (the write-access 
transistor), and N3 (the word-access transistor) have to pull Pbit (the RAM 
inverter pull-up) below the inverter threshold. In addition N5 (the bit-line 
pull-up) has to be pulled low by N1 and Nv. On the other bit-line side, Pv, N2 
and N 4 have to pull Nbit as high as possible. To augment the write operations 
it may be necessary to use complementary write-access transistors, as shown 
in Fig. 8.57(c). Correct WRITE operation must be verified over all process, 
temperature, and voltage extremes. Figure 8.58 shows a plot of the wave­
forms during a WRITE operation. The SPICE circuit used to model the RAM 
write operation is shown at the top of the figure. write-data and -write-data 
were driven antiphase into the write transistors N2 and N6. The cell switches 
when -write-data = 3V and write-data = 2V. 
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FIGURE 8.57 Static RAM­
write circuits: (a) n-channel 
pass transistors; (b) circuit 
model during write; (c) com­
plementary transmission gate 
version 
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Figure 8.58 Static RAM­
write waveforms and circuit 
model 
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8.3.1.1.3 Row decoders 

The simplest row decoder is an AND gate. Figure 8.59 shows two straight­
forward implementations. The first in Fig. 8.59(a) is a static complementary 
NAND gate followed by an inverter. This structure is useful for up to 5-6 
inputs or more if speed is not critical. The NAND transistors are usually 
made minimum size to reduce the load on the buffered address lines because 
there are 2n-k (N1oad + P1oad)'s on each address line. The second implemen­
tation, shown in Fig. 8.59(b), uses a pseudo-nMOS NOR gate buffered with 
two inverters. The NOR gate transistors can be made minimum size, and the 
inverters can be scaled appropriately to drive the word line. Large fan-in 
AND gates can also be constructed from smaller NAND and NOR gates, as 
shown in Fig. 8.59(c). Figure 8.60 shows two possible layout styles (in sym-
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bolic form) for the row decoders. One passes the address lines over the 
decode gates, while the other uses a more standard cell style. Choice would 
depend on the size of the decoder in relation to the size of the RAM cell. 
Often, speed requirements or size restrict the use of single-level decoding, 
such as that shown in Fig. 8.59. The alternative is a predecoding scheme, 
which is il.lustrated in Fig. 8.6l(a). Here the (n-k) row address lines are split 
into a p-bit predecode field and a q-bit direct decode field. The q-bit decode 
field requires a gate per word line, so q is chosen to suit the pitch of the RAM 
cell. The p-bit predecode field generates 2P predecode lines ( 4 in this exam­
ple), each of which is fed vertically to 2n-k_row decode gates (8 in this exam­
ple). Figure 8.6l(b) shows a possible implementation of a predecode 
scheme, where the predecode gate is a NAND gate and the word-decode gate 
is a NOR gate. An additional input (-elk) has been included in the NOR gate 

FIGURE 8.59 Row-decoder 
circuits: (a) complementary 
AND gate; (b) pseudo-nMOS 
gate; (c) cascaded NANO, 
NOR gates 
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Figure 8.60 Typical sym­
bolic layouts of row decoders 
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to allow the enabling of the gate, which is necessary to ensure correct timing 
of the word signal. A slow rise time and fast fall time on a word-decode gate 
might be advantageous because it ensures that any RAM cells on a word line 
transitioning low are isolated before RAM cells on a high-transitioning word 
line are accessed. Figure 8.6l(c) shows a pseudo-nMOS AND row decode 
gate. Finally, Fig. 8.62 shows a few more row decoder circuits. Figure 
8.62(a) shows some obvious ways of building large fan-in AND gates from 
smaller fan-in gates. Figure 8.62(b) is a pseudo-nMOS decoder that mini­
mizes draw static power. Figure 8.62(c) shows a predecode scheme where 
the predecode gates power the word-line driver.32 Figure 8.62(d) shows a 
domino dynamic AND gate implementation. 

8.3.1.1.4 Column decoders 

The column decoder is responsible for selecting 2k out of 2m bits of the 
accessed row. A tree decoder is shown in Fig. 8.63. Here the data is routed 

Micron Ex. 1037, p. 615 
Micron v. YMTC 
IPR2025-00119



8.3 MEMORY ELEMENTS 577 

Row Decode Gates 

Predecode Gates word<7> 

word<6> 

word<5> 

word<4> 

word<3> 

word<2> 

word<1> 

word<O> 

a<1> a<2> 

(a) 

a<4> a<3> 
a<2> a<1 > __ '--__./ 1-----word 

-a<O> -elk 

(b) 

a<1> a<2> en 

(c) 

via pass gates enabled by the column-address lines. The address decoding is 
in essence distributed. Decoders for bit and -bit lines are shown, although 
one of these may be omitted for single-ended read operations. The read (and, 
usually of lesser importance, write) operations are somewhat delayed by the 
series-transmission gates. However, in comparison with gate delays these 

FIGURE 8.61 Predecode 
circuits: (a) basic approach; 
(b) actual implementation; 
(c) pseudo-nMOS example 
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Figure 8.62 Various other 
row decoder circuits: 
(a) methods of building large 
fan-in AND gates; (b) power 
saving pseudo-nMOS gate; 
(c) decoder powered; 
(d) domino 

(a) 

(b) 

(c) 

(d) 

usually are small for a low number of series transistors (2 to 4). Complemen­
tary transmission gates may also be used, if required, by either the read oper­

::itinn or write ooeration. 

Micron Ex. 1037, p. 617 
Micron v. YMTC 
IPR2025-00119



8.3 MEMORY ELEMENTS 579 

bil<7> 

+----.- selected-data 

to sense amps and write ckts 

-bil<7> 

+----+---selected-data 

-a<D> -a<1 > -a<2> 
a<D> a<1> a<2> 

If the delay of the series-pass gates was troublesome, the decoder shown 
in Fig. 8.64 could be used. Here a NAND decoder is employed on a bit-by­
bit basis to enable complementary transmission gates (single transistors may 
be used where possible) onto a common pair of data lines. These are then 
routed to a sense amplifier and write circuitry. 

8.3.1.1.5 Sense amplifiers 

Many sense amplifiers have been invented to provide faster sensing, smaller 
layouts, and lower power-dissipation sensing. 33 The simple inverter sense 
amplifier provides for low power sensing at the expense of speed. The differ­
ential sense amplifier can consume a significant amount of DC power 
(Fig. 8.54). Alternatively, one can employ clocked sense amplifiers similar 
to the SSDL gate shown in Fig. 5.40. 

8.3.1.1.6 RAM timing budget 

The critical path in a static RAM read cycle includes the clock to address 
delay time, the row address driver time, row decode time, bit-line sense time, 
and the setup time to any data register. The column decode is usually not in 

FIGURE 8.63 Tree-style 
column decoder 
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Figure 8.62 Various other 
row decoder circuits: 
(a) methods of building large 
fan-in AND gates; (b) power 
saving pseudo-nMOS gate; 
(c) decoder powered; 
(d) domino 
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usually are small for a low number of series transistors (2 to 4). Complemen­
tary transmission gates may also be used, if required, by either the read oper­
ation or write operation. 
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If the delay of the series-pass gates was troublesome, the decoder shown 
in Fig. 8.64 could be used. He~e a NAND decoder is employed on a bit-by­
bit basis to enable complementary transmission gates (single transistors may 
be used where possible) onto a common pair of data lines. These are then 
routed to a sense amplifier and write circuitry. 

8.3.1.1.5 Sense amplifiers 

Many sense amplifiers have been invented to provide faster sensing, smaller 
layouts, and lower power-dissipation sensing.33 The simple inverter sense 
amplifier provides for low power sensing at the expense of speed. The differ­
ential sense amplifier can consume a significant amount of DC power 
(Fig. 8.54). Alternatively, one can einploy clocked sense amplifiers similar 
to the SSDL gate shown in Fig. 5.40. 

8.3.1.1.6 RAM timing budget 

The critical path in a static RAM read cycle includes the clock to address 
delay time, the row address driver time, row decode time, bit-line sense time, 
and the setup time to any data register. The column decode is usually not in 

FIGURE 8.63 Tree-style 
column decoder 
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Figure 8.64 Decoded 
column decoder 
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bit<3> 

-bit<3> 

~------DATA 

.--------DATA 

to sense amp and write ckts 

the critical path because the decoder is usually smaller and the decoder has 
the row access time and bit-line sense time to operate. The write operation is 
usually faster than the read cycle because the bit lines are being actively 
driven by larger transistors than the memory cell transistors. However, the 
bit lines may have to be allowed to recover to their quiescent values before 
any more access cycles take place. In the static load RAM, this speed 
depends on the size of the static pull-up. Apart from carefully sizing transis­
tors, the RAM speed may be increased by pipelining the row decode signal. 

8.3.1.2 Register Files 

Register files are generally fast RAMs with multiple read and write ports. 
C:onventional RAM cells may be made multiported by adding pass transis-
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tors. Such a configuration is shown in Fig. 8.65(a). A single-write-port, dou­
ble-read-port memory is shown. For a cross-coupled inverter RAM cell, the 
write lines generally have to be differential. However, the read lines can be 
single ended. Figure 8.65(b) shows a modified RAM cell with a single write 
port and two read ports. This general technique has been used on a 17-port 
register file that had an overall bandwidth of 1.4 Gigabytes/s.34 

An alternative register file structure that can be easily changed for a 
wide variety of read and write ports is shown in Fig. 8.66.35 Figure 8.66(a) 
shows a single-write-port, double-read-port cell. The write port is a single­
ended implementation where the write pass transistor (N1) is used to over­
drive a weak feedback inverter (N3,P3). The threshold of storage inverter 
(N2,P2) is biased towards Vss by increasing the size of N2 with respect to P2 
to aid in the writing of the cell. The storage inverters drive a buffer inverter 
(N4,P4) which in turn drives two read lines through pass transistors (N5,N6). 

Additional read ports are constructed by adding transistors at the output of 
inverter (N4,P 4) and adding additional read-row decode lines. Additional 
write lines are added by adding transistors that drive inverters (N2,P2) and 
(N3,P3). A benefit of this design is that no matter what load appears on the 
output of the buffer inverter, the state of the memory cell can not be flipped. 

write ---t--1------i--+---+-_._-------+---+-+-+--+--+­

readO --+-1---1-+--+-----------+--+-+--t--1-
read1 ---1--<>--J--+-----------+--+--+--1-

-rbit1 -rbitO -wr_data wr_data rbitO rbit1 

(a) 

write ----+-+--+--+-------------e--+--+--+-­

readO ----+-+--+-----------+---.--+--­

read1 ----1--+---t----------+----1----

-rbit1 -wr_data wr_data rbitO 

(b) 

FIGURE 8.65 Multiported 
(2R-1W) RAM cell: (a) fully 
differential; (b) single-ended 
read 
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Figure 8.66 Expandable 
register file cell: (a) row 
accessed; (b) column 
accessed and row accessed 

wr-b-addr<3:0> 

rd-a-addr<3:0> 

rd-b-addr<3:0> 

write-data read-dataO read-data 1 

(a) 

write-enable (row) ---t---t--t---+-----------+--+-1--+-----------+-+ 
readO --+---t--+-+-----------+--ic------------+-+ 
read1 --+---+------------+--i:--------------+ 

write-enable (column) 

(b) 

The design in Fig. 8.66(a) is used where there is no column multiplexing. 
The version shown in Fig. 8.66(b) is used where column multiplexing is 
required. An additional transistor (two in this design for symmetry) is added 
per column to enable a column for writing. 

8.3.1.3 FIFOs, UFOs, S/POs 

Using the basic RAM memory cell, multiport register cells, or variations of 
these, a variety of special-purpose memories can be constructed. 

A First In First Out (FIFO) memory is useful for buffering data between 
two asynchronous data streams. Figure 8.67 shows a block diagram that out­
lines the operation of a FIFO. A stream writes into the FIFO when a WRITE 
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Write-Data Read-Data 

Write-Address Read-Address 

Write-Clock Read-Clock 

Full Empty 

clock is asserted and observes a FULL flag, which is raised when the FIFO 
can accept no more input data. Another stream reads data when a READ 
clock is asserted until an EMPTY flag is asserted. Ideally, the two ports can 
read and write independently. Due to other system delays and latencies it 
may be desirable to have ALMOST-FULL and ALMOST-EMPTY flags so that 
impending fullness or emptiness can be communicated. The simplest imple­
mentation of a FIFO uses a dual port RAM or register file with a read and 
write counter. An example design of the addressing logic that is useful for 
synchronous read and write signals is shown in Fig. 8.68. Two counters con­
trol the read pointer (RP) and the write pointer (WP) that are addresses to the 
dual port memory. A further difference circuit is incremented, in the case of 
a write, or decremented, in the case of a read. The output of this counter is 
examined to determine the EMPTY and FULL flags. In this case a ZERO 
detect determines when the FIFO is EMPTY. Alternative implementations of 
FIFOs may use distributed forms of row decoders, where full and empty bits 
are propagated by serial shift registers in the word direction of the memory. 

A Last In First Out (LIFO) memory, or push-down stack, is of use in 
such applications as subroutine stacks in microcontrollers. In common with 
FIFOs, regular RAMs or register files may be used or special distributed row 
decoders may be designed as the address pointer moves sequentially from 
row to row. The former usually are more straightforward to design, while the 
latter may save some space. (See also Section 9.2.4.3.) 

A Serial In Parallel Out (SIPO) memory is of use to convert serial data 
to a parallel form. These memories are often of use in signal-processing 
applications. An example of the memory cell used in this type of memory is 
shown in Fig. 8.69. Data is shifted in at a high rate via the complementary 
clocks elk and -elk, which should be nonoverlapping to prevent data 
feedthrough. Data may be read in parallel through access transistor N1 with 
an appropriately timed clock pulse (i.e., when the Q data is valid). 

8.3. 1.4 Serial-Access Memory 

Serial-access memories (shift registers) are also of use in signal-processing 
applications for storage and delaying signals. A serial-access memory may 

FIGURE 8.67 FIFO inter­
face signals 
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Figure 8.68 f I FO address 
control design 
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be simulated by a RAM, and probably for most applications this provides the 
smallest implementation because the CMOS static RAM cell is a very area­
efficient structure. However, the RAM is surrounded by peripheral circuits, 
such as row and column decoders and sense amplifiers, and in the case of a 
serial-access memory, a counter. In some circumstances, a dedicated shift­
register memory may be appropriate from a density, speed, or floorplanning 
viewpoint. (See Chapter 9.) 

Micron Ex. 1037, p. 625 
Micron v. YMTC 
IPR2025-00119



8.3 MEMORY ELEMENTS 585 

2/4 2/4 

211 i--__ _, 

Clk B J 
Clk.L 8>----------------~ 

delay<5> delay<4> delay<3> delay<2> delay<1> delay<O> 

dout 

32-stage SR 16-stage SR 8-stage SR 4-stage SR 2-stage SR 1-stage SR 

(a) 

D _, 

(b) 

Figure 8.70(a) shows an example of a 64-byte tapped delay line that 
might be used in a video processing system. Blocks of byte-wide shift regis­
ters are delayed by 32, 16, 8, 4, 2, and 1 clock cycles, and multiplexers con­
trol the pass-around of the delay blocks to yield the appropriate delay 
amount. Each memory cell is a shift register, as shown in Fig. 8.70(b). A typ­
ical layout for the shift register cell is shown in Fig. 8.70(c). Here the 
2-phase clocks are run horizontally between bits of the shift register. The 
horizontal metal2 power busses are run over the transistors. 

8.3.2 Read Only Memory 

Read Only Memory cells may be implemented with only one transistor per 
bit of storage. A ROM is a static memory structure in that the state is retained 

FIGURE 8.69 SIPO cell 
design 

FIGURE 8.70 Tapped delay 
line: (a) architecture; 
(b) circuit; (c) symbolic layout 
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Figure 8.71 Basic ROM 
architecture 

indefinitely-even without power. A ROM array is usually implemented as a 
NOR array, as shown in Fig. 8.71. Note that a NAND array may be used if 
ultra-small R0Ms36•37 are required, but as discussed in Chapter 5, these 
implementations will be quite slow. 

The.electrical details of the NOR structure may embody any of the NOR 
gate structures studied so far, including the pseudo-nMOS NOR and the 
domino NOR gate. One problem with the domino gate is that the pull-down 
path passes through two transistors, one the programmed transistor and the 
other the virtual ground pull-down. This can slow the bit-line transition for 
large ROMs. A dynamic CMOS alternative to the domino NOR is shown in 
Fig. 8.72. Here the word lines are forced low while the bit lines are being 
precharged. This ensures that DC current does not flow. After the bit-line 
pull-ups have been turned off, the word-line drivers are asserted and one 
word line is active. The timing chain to ensure this sequence of events has to 
be carefully designed and simulated. Where DC power dissipation is accept­
able and the speed is sufficient, the pseudo-nMOS ROM is the easiest to 
design, requiring no timing. The DC power dissipation may be significantly 
reduced by turning the pull-ups on according to the column address decod­
ing. Figure 8.73 shows an example of this where only one bit line in four is 
being pulled up at any one time. Row decoders for ROMs are similar to those 
for RAMs except that they are usually. very constrained by the ROM bit 
pitch. This usually means that some form of a predecode structure is 
required. Column decoders for ROMs are usually simpler than those for 

Row Decoder 

data<O> data<1> data<2> 
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ROW NOR 
Array 

Row Predecode 

precharge 

bit line 

Column Decode Signals 

I I .><}---data 

Column Mux 

Row Decoders Column Decoders 

RAMs because only read operations are employed and single-ended sensing 
is usually employed. 

Mask programmability may be achieved via contact programming, pres­
ence or absence of a transistor, or an implant to turn a transistor permanently 

Figure 8. 72 Dynamic ROM 
circuitry 

FIGURE 8.73 A power­
saving ROM circuit 
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Figure 8.74 ROM layouts: 
(a) circuit; (b) poly word lines; 
(c) poly and meta12 strapped 
word lines 

off or on. Other technology options may be possible, such as electrically 
erasable random access memories. 

Several symbolic layouts for ROM cells are shown in Fig. 8.74, along 
with a programming techinque. Running word lines in polysilicon is only 
appropriate for slow speed ROMS or (perhaps) silicided poly. In a micro­
code ROM in a microprocessor, transistor programming would be prefer­
able, because this would minimize the dynamic power dissipation (less 
capacitance on word lines). It can also affect speed if the load on word lines 
can be balanced in a sparse ROM~ In a generic circuit that is mask-program­
mable, metal programming may be desirable. Strapping the poly with 
metal2 every 4 to 8 ROM sites is appropriate for higher speed ROMs 
(Fig. 8.74c). 

bit<3> bik2> bik1> bit<O> 

(a) 

(b) 
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8.3.3 Content-Addressable Memory 

A content addressable memory38•39 is shown in Fig. 8.75(a). The CAM por­
tion examines a data word and compares this data with internally stored data. 
If any data word internally matches the input data word, the CAM signals 
that there is a match. These match signals can be passed as word lines to a 
RAM to enable a specific data word to be output (Fig. 8.75b). This structure 
may be used as a translation look-aside buffer in the virtual memory lookup 
in a microprocessor. 

A typical CMOS CAM memory cell is shown in Fig. 8.76(a). It consists 
of a normal static RAM cell with additional transistors N 1 and N2, which 
form an XOR gate, and N3 , which is a distributed NOR pull-down. The 
memory cell may be written and read in the conventional manner. Writes are 
used to store the match data in the cells, whereas reads are used for testing 
purposes. A MATCH operation proceeds by placing the data to be matched 
on the bit lines but not asserting the word line. A 1 appears on the gate of N3 
if the data in the cell is not equal to the data on the bit lines. The drains of N3 
transistors of cells in the same row are commoned, as shown in Fig. 8.76(b). 
These form a distributed NOR gate, which may be dynamic (with appropri­
ate timing) or pseudo-nMOS (if speed is not critical). Each match line 
(match<3 :0>) remains high if the data in the row matches the data placed on 
the bit lines. These lines may be used to assert the word lines on a RAM. 

CAM Memory Array 

Data _____ _, 

Nm bit words 

(a) Match 

CAM Memory Array 

Data In ____ _, 

Nm bit words 

CAM match lines I RAM word lines 

RAM Memory Array 

,___ ____ Data Out 

N k bit words 

(b) 

FIGURE 8.75 CAM architec­
ture: (a) basic CAM; 
(b) typical application as 
translation lookaside buffer 
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Figure 8.76 CAM: (a) cell; 
(b) array circuit 

-bit 

(a) 

Row Decoder 
for writing and 
reading CAM cell 

(b) 

bit 

Match Data In Read Data (Test) 

Normal RAM Read/Write Circuitry 

CAM cells 

match-precharge 

Another NOR gate, which looks at all the match lines, yields an overall 
match signal. 

8.4 Control 

While arithmetic and memory structures benefit from regularity, control 
structures usually do not. They perennially form the really hard part of a 
design-the part that takes the longest time to design, verify, and test. Usu-
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ally the control portion of a design is also the last to solidify in the design 
cycle. Thus it is prudent to look for methods of designing control structures 
that are highly automated and therefore quick to design. This section begins 
with a discussion of finite-state machines (FSMs) and then examines various 
methods for implementing these and other control structures. 

8.4.1 Finite-State Machines 

A finite-state machine (Fig. 5.43a) provides an organized structure for cap­
turing control sequencing and operation. Diagrammatically, a state machine 
may be represented by a state-transition diagram (or graph) in which the 
labelled nodes of the graph represent states and the labelled directed arcs 
represent transitions between states. A state-transition diagram can be con­
structed in which the nodes are drawn as circles and the transitions are drawn 
as lines with arrows. Two basic types of state machines can be designed. A 
Mealy state machine uses logic to determine the outputs from the inputs and 
the current state, stored in state registers. A Moore machine determines the 
outputs from the current state alone. Figure 8.77 shows the two types of 
machine. 

8.4. 1. 1 FSM Design Procedure 

While the design of complex state machines is liable to be machine assisted, 
small state machines may be designed by hand. As an example, a state 
machine that might control a toll-booth on a highway will be used. In the idle 
state, the tollbooth, with its gate lowered and its green "proceed" light off, 
awaits a car. When a car enters the tollbooth, a pressure sensor detects the car 
and passes a signal to the controller. The controller then awaits the correct 
toll signal and on receiving this, raises the gate and turns the green light on. 
When the car exits the tollbooth, the controller reenters the idle state (green 
light off and gate down). 

The following steps are illustrative of the design of a state machine to 
perform this function. 

1. Draw the state-transition diagram 

First the state machine is captured in a state-transition diagram. The inputs to the 
controller are three signals: a RESET (R for short) signal, a CAR-IN-BOOTH (A 
for short) signal (indicating the car is in the tollbooth), and the CHANGE-OK (C 
for short) signal indicating the correct toll has been tendered. There is one output 
from the controller, the GREEN-LIGHT signal used to raise the gate and tum the 
green light on. The example above may be represented by three states: the IDLE 
state, the WAIT-FOR-COIN state and the WAIT-FOR-CAR-TO-EXITstate. These 
are represented as circles in Fig. 8.78(a). Arcs are drawn between states to repre­
sent the state transitions. For example, when the controller is in the IDLE state it 
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Figure 8.77 Mealy and 
Moore state machines 

feedback 

inputs--+-----< 

MOORE MACHINE 

feedback 

inputs,--.----1--1 

MEALY MACHINE 

transitions to the WAIT-FOR-COIN state when there is a car in the booth (i.e., the 
input CAR-IN-BOOTH or A, is true). When CAR-IN-BOOTH is false, the IDLE 
state loops to itself (-A). Additionally, the RESET signal causes the IDLE state to 
be entered. 

2. Check the state diagram 

There are some simple checks that may be made on the state-transition dia­
gram. These are as follows: 

A. Ensure that all states are represented, including the IDLE state. 

B. Check that the OR of all transitions leaving a state is TRUE. This is 
a simple method of determining that there is a way out of a state once 
entered. 

C. Verify that the pairwise XOR of all exit transitions is TRUE. This 
ensures that there are not conflicting conditions that would lead to 
more than one exit-transition becoming active at any one time. 
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D. Insert loops into any state if it is not guaranteed to otherwise change 
on each cycle. In other words, if a machine enters a state and stays 
there until some condition occurs, insert the appropriate transition, 
which is a loop to the state itself. For instance, in the WAIT-FOR­
COIN state, if the toll is not correct, the controller stays in the WAIT­
FOR-COIN state. 

3. Write the state equations 

For each transition, the state equation may be represented as follows: 

if( state == oldstate & condition) next-state = newstate 

8.4 CONTROL 593 

FIGURE 8.78 State-
machine transition diagram 
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For instance, for the state transition diagram shown in Fig. 8.78, the state 
equations may be written as 

next-state IDLE when state==IDLE & !CAR-IN-BOOTH 
OR state==WAIT-FOR-CAR-TO-EXIT & !CAR-IN-BOOTH 

next-state WAIT-FOR-COIN when state==IDLE & CAR-IN-BOOTH 
OR state==WAIT-FOR-COIN & !CHANGE-OK 

next-state WAIT-FOR-CAR-TO-EXIT 
when state==WAIT-FOR-COIN & CHANGE-OK 
OR state==WAIT-FOR-CAR-TO-EXIT & CAR-IN-BOOTH 

The first state equation states that the next state is IDLE if any of the fol­
lowing conditions are true: 

The current state is IDLE and the input CAR-IN-BOOTH is false. 

The current state is WAIT-FOR-CAR-TO-EXIT and the input CAR-IN­
BOOTH is false. 

4. Assign the states 

The minimum number of state bits that can represent a state machine is log2K 
where K is the number of states. To ease the problem of state assignment, more 
states than the minimum may be used. In this example, there are three states, 
so two state bits (S1,S0) are required. Alternatively, unary state assignment 
would require three bits. The following design guidelines are useful: 

A. Assign the ZERO state (S1,S0=0,0) to the most complex state (state 
IDLE). 

B. Assign the adjacent states in a Gray code manner (such that they dif­
fer by one bit). 

C. Otherwise assign states to minimize logic. 

Thus for this example an assignment would be: 

IDLE 0 0 
WAIT-FOR-COIN 0 1 

WAIT-FOR-CAR-TO-EXIT 1 0 

The state assignments are labelled at the center of each state (the bolded cir­
cles) in Fig. 8.78. At this point a truth table may be constructed that describes 
the state machine (see Table 8.8). 

Each line of Table 8.8 describes an arc on the state-transition diagram. 
For instance, the first row shows that the IDLE state is entered (00) when 
RESET is set to 1. The second line shows that when in state IDLE, the next 
state is IDLE if there is no car in the tollbooth. The CHANGE-OK is a don't-

Micron Ex. 1037, p. 635 
Micron v. YMTC 
IPR2025-00119



TABLE 8.8 Tollbooth-state table 

current state 

reset car-in-booth change-ok state<l> state<O> 

1 x x x x 
0 0 x 0 0 
0 1 x 0 0 
0 x 0 0 1 
0 x 0 1 
0 1 x 1 0 
0 0 x 1 0 

care in this case. Examining the state bits one by one, logic equations may be 
written for each bit. For instance, 

next-state<O> 

next-state<l> 

!reset & car-in-booth & !state<O> & !state<l> 
+ !reset & !change-ok & state<O> & !state<l> 
!reset & !change-ok & state<O> & !state<l> 
+ !reset & car-in-booth & !state<O> & !state<l> 

The logic for any outputs must also be generated. In this example, the 
output GREEN-LIGHT is simply state<l>. Notice that the state assignment 
may have been done in a way that would have necessitated some logic to 
decode this signal (i.e., state WAIT-FOR-CAR-TO-EXIT= 11). 

5. Construct the resulting logic and registers 

The resulting logic and registers are shown in Fig. 8.78(b). This may be sim­
plified to yield the design in Fig. 8.78(c). 

8.4.2 Control Logic Implementation 

Control logic in CMOS is constructed in two main ways, with two-level 
sum-of-products logic and with multilevel logic. Two-level sum-of-products 
representations have a straightforward geometric implementation in the 
form of a Programmable Logic Array (PLA). Both two-level and multilevel­
logic may be implemented in terms of CMOS logic gates (either static or 
dynamic). 

8.4.2. 1 PLA Control Implementation 

A programmable logic array (PLA) is a structure that provides a regular 
structure for implementing combinatorial and sequential logic functions. A 
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Figure 8.79 PLA Architec­
ture 

PLA may be used to take inputs and perform some combinatorial function of 
these inputs to yield outputs, or additionally some of the outputs may be fed 
back to the inputs via registers, thus forming a finite-state machine. Two­
level logic minimization is a well-understood problem. The program 
Espresso40 is representative of programs that minimize sum-of-products 
forms. 

A typical PLA uses a two-level sum-of-products AND-OR structure 
similar to that shown in Fig. 8.79. This implementation also shows clocks to 
latch inputs and outputs. The basis of a PLA is a sum-of-products form of 
representation of binary expressions. For example, consider the following 
expressions that have to be evaluated: 

ZQ =Xo 

z1 = x1 + (-xo. -xi . -x2) 

Z2 = -X1. -X2 

z3 = (-x0 . -x1 . x2) + (-x0 . x 1 . -x2) 

where z0, z1, z2, and z3 are the four output terms (or sums) and x0, x1, 

and x2 are the input variables. There are five product terms, namely, x0, x1, 

-xo . -x1 . x2, -x1 . x2, and -xo . x 1 . -x2. Thus these terms would be formed 
in the AND array of the PLA, as shown in Fig. 8.80. The four outputs are 
formed by ORing the appropriate product terms. Normally, high-speed PLAs 
are implemented as two NOR arrays, as shown in Fig. 8.79 (although NAND 
arrays may be used for slow applications). By using inverting inputs and out­
puts, the AND-OR structure is maintained. 

The electrical design of a CMOS PLA depends on the generic style of 
PLA. A straightforward physical implementation for a PLA is represented 

input~ 

~~ output 

! 
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Zo = Xo 

Z1 = X1 + (-Xo·-X1 .-X2) 

Z2 =-X1--X2 

Z3 = (-Xo--X1 .X2) +(-Xo.X1 .-X2) 

Sum of Products Form 

AND PLANE OR PLANE 

Inputs 

.,, .; 
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Xo 

-Xo.X1·-X2 

-X1--X2 
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by Fig. 8.80. Variations of this involve multiple-sided access (Fig. 8.81) and 
various folded structures. 

A generic floorplan for a "simple" PLA is shown in Fig. 8.82. This has 
been designed as a set of tiles, designated by letters. In the treatment of var­
ious circuit options this naming convention will be used to designate partic­
ular cells. Brief descriptions of the cells are as follows: 

AN AND-plane programming cell 

OR OR-plane programming cell 

v ) 

~ 
y 
Q_ 
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FIGURE 8.80 PLA example 

FIGURE 8.81 Multisided 
PLA access 
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TL Tl Tl TM TO TO TR 

LA AN AN AO OR OR RO 

LA AN AN AO OR OR RO 

BL Bl Bl BM BO BO BR 

FIGURE 8.82 Generic PLA 
floorplan 

Figure 8.83 Pseudo-nMOS 
PLA 

AO AND-OR communication cell 

TI Top AND-plane input cell 

BI Bottom-AND plane input cell 

TO Top OR-plane output cell 

BO Bottom OR-plane output cell 

LA Left AND-plane cell 

RO Right OR-plane cell 

BL Bottom-left cell 

BM Bottom-middle cell 

BR Bottom-right cell 

TL Top-left cell 

TA Top AND cell 

TM Top-middle cell 

TO Top OR cell 

TR Top-right cell 

The most straightforward PLA design uses a pseudo-nMOS NOR gate. 
Figure 8.83 shows the circuit diagram with the key cell positions identified. 
Cell AO can either be a layer-change cell or can be used to buffer the AND 
array outputs. Figure 8.84 shows a PLA for the tollbooth example. Design of 

LA 

~ 
LA 

clock2 

IN OU 

IN OUT0 OUT1 
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elk 

the pseudo-nMOS NOR gates would follow the guidelines given in previous 
chapters. Advantages of this PLA include simplicity and small size. Disadvan­
tages occur due to the static power dissipation of the NOR gates and possible 
speed problems (the pull-ups may become slow on large terms). Any conve­
nient register may be used; a static register is shown. This PLA could be fairly 
independent of the overall system-clocking strategy. Cells TL, TA, BL, BM, 
TM, TR, RO, and BR are used to route power and clocks as necessary. 

By using dynamic CMOS, the circuit shown in Fig. 8.85(a) may be 
used. Both the AND plane and OR plane have to be supplied with clocks 
similar to those shown at the bottom of the diagram (Fig. 8.85b). On the ris­
ing edge of the clock the input latches store the input data. Following this the 
AND and OR planes are precharged and then evaluated. When the AND 
plane outputs are valid, the OR plane may be evaluated. The waveforms in 
Fig. 8.85(b) may be generated from a multiphase clock or, more probably, in 
a single-phase clocking scheme by self-timed circuits. Figure 8.86 shows 
some possible circuits for self timing the PLA operation. The AND pre­
charge may be timed of the rising edge of the clock and the worst case time 
it takes an AND line to pullup. This may be accomplished by using the cir­
cuit shown in Fig. 8.86(a), which uses a dummy AND row. This row has 
every AND programming transistorinserted (NPD) to ensure the load capac-
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FIGURE 8.84 PLA for toll­
booth example 
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Figure 8.85 Dynamic PLA 

discharge AND 

elk -elk elk -elk 

Inputs 

(a) 

elk 

precharge AND u 
discharge AND LJ 

precharge OR 

discharge OR 
(b) 

precharge OR ---<>+-----a 

precharge AND 

discharge OR ---H---+---i 

-elk elk -elk 

Outputs 

itance (Cload) is a maximum. In addition, the p pull-up (PU) is made smaller 
than the normal p pull-ups to give some timing margin. An inverter and a 
NAND gate complete the timing circuit. The OR precharge clock may be 
self-timed using the circuit shown in Fig. 8.86(b). Here a dummy AND row 
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precharge AND 

elk 

Dummy AND row 

(a) 

precharge AND 

precharge OR 

Input Lines 

(b) 

is used to determine the worst-case fall time of an AND row. The row is fully 
populated, with transistors turned off. One smaller-than-normal n pull-down 
(Nweak) in conjunction with a smaller-than-usual ground switch (Nswitch) is 
used to pull down the heavily loaded AND line. This is delayed by a few 
inverters and fed to the OR-place precharge/discharge. 

A single-clock PLA that combines a pseudo-nMOS AND plane and a 
dynamic OR plane is shown in Fig. 8.87.41 When the clock is high, the OR 
plane is precharged while all the product ter~s are forced low by the clocked 
n-transistor in the AND plane. When the clock transitions low, the product 
terms conditionally evaluate and then the precharged OR-plane outputs eval­
uate. The AND plane-transistor ratios are designed according to normal 
pseudo-nMOS techniques. The inputs must be held constant during the 
period when the clock is low. This PLA cuts down on the DC dissipation of 
a fully pseudo-nMOS PLA;while requiring only one clock. 

In general PLAs have not found as much acceptance in CMOS as in 
nMOS technologies. This is due to a number of reasons, some due to CMOS 
technology and some to the passage of time: 

• PLAs have a fixed fioorplan and fairly fixed 1/0, so extra routing often 
overshadows any area benefit. 

• Dynamic PLAs are cumbersome to design in CMOS, whereas pseudo­
nMOS PLAs dissipate DC power. 
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FIGURE 8.86 Self-timed 
PLA circuits: (a) AND pre­
charge; (b) OR precharge 
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Figure 8.87 Hybrid 
dynamic pseudo-nMOS PLA 

-clk----41---d 

elk 

IN 

• PLAs are not very compatible with Gate Array technologies, which 
are popular for ASICs. 

• Automatic multilevel logic synthesis has improv'ed dramatically. 

• Processes are smaller, hence logic gates are cheaper. 

• Large PLAs can be slow. 

However, PLAs are compact in themselves and provide a very straightfor­
ward way to automate the generation of control logic. 

8.4.2.2 ROM Control Implementation 

Frequently, control structures may be implemented as a sequenced ROM. A 
ROM is a special case of a PLA where the AND plane is fully populated. 
Figure 8.88 shows a simple example of a ROM controller that has a condi­
tion-code input and a jump capability implemented by a mux. The ROM has 
five fields: a next-address field, which provides the next address to the ROM 
if a branch is not taken; a jump-address field, which is the address taken if 
the condition code is true; a condition-code select field, which selects which 
of a number of external conditions to select and the polarity; and an output 
field, which provides control outputs. Programming consists of writing a 
microprogram that controls the values of different fields of the ROM. For 
instance, for the tollbooth example the symbolic microcode might be given 
as in Table 8.9. 
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ROM 
1--------------<r---- jump-address 
o----------+---i,__ next-address 

Data 0---------.---+--<c--- condition-code-select 
1---------.--1--+-1,__ condition-code-polarity 
o----+-----1--1--+--<- condition-code-enable address 

1---+--+- car- in -booth 
1---+--+- change-ok 

Here an instruction field has been constructed from the condition-code 
field as follows: 

nop = select true input 00 

car-in-booth= select car-in-booth input 01 

change-ok = select change-ok input 10 

The polarity of the condition controls the XOR gate. 
If a metal-programmed ROM is constructed, then a readily changed 

microsequencer may be constructed. With the addition of a simple datapath, 
the microsequencer can be extended into a more general microcontroller, 
which can be used in many low-speed control applications. Megacell librar­
ies frequently contain core microcontrollers that implement standard instruc­
tion sets that are supported by a wealth of software. 

TABLE 8.9 Symbolic Microcode for the Tollbooth Example 

ADDRESS LABEL INSTRUCTION JUMP-ADDRESS OUTPUT 

0 idle: nop 
1 !car-in-booth jmp idle 
2 cib: change-ok jmp exit 

3 nop jmp cib 

4 exit: !car-in-booth jmp idle green 
5 car-in-booth jmp exit green 

8.4 CONTROL 603 

FIGURE 8.88 ROM micro­
controller 
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8.4.2.3 Multilevel Logic 

The most commonly used method for implementing control logic in CMOS 
is to use multilevel logic, that is, cascaded groups of regular gates such as 
INVERTERS, BUFFERS, NANDs, NORs, XORS, and AOis. There are 
many CAD systems available today that will automatically minimize the 
logic for a set of Boolean equations or other algorithmic description. Fur­
thermore, some design systems can do state assignment and can synthesize 
state machines from a high-level description. After a set of gates have been 
generated, automatic layout programs can produce a layout in gate-array or 
standard-cell technology. Even in full-custom chips, this is now a preferred 
method of generating control logic for the following reasons: 

• Standard-cell logic is fluid in shape and can be "reflowed" into gaps 
that occur in chip layouts due to fixed blocks like memories and data­
paths. 

• The designer (or synthesis program) has a large amount of control 
over speed through basically fast gates, gate sizing, and the ability to 
trade area for speed. 

• The automatic logic-gate layout generation is a mature technology­
in double-level metal it might be half as dense as a customized layout, 
but in triple-level metal the density difference is even less. 

Most standard-cell control-logic layout is composed of rows of pre­
defined logic and storage cells separated by routing. Programs have been 
written to automate the generation of control logic from the transistor level. 
Many of these use the gate-matrix layout style (see Chapter 6). While for 
small sections of control logic this technique works, there are a number of 
problems for large sections of control logic. In particular, the layouts get 
sparse, and internal gate connections completed by long horizontal metal 
lines tend to produce low-performance gates. Other techniques for custom 
generating the required logic gates on the fly have included generating 
dynamic CVSL gate layouts and connecting them in a standard cell style. 

8.4.2.4 An Example of Control-Logic Implementation 

Figure 8.89 shows the logic schematic for the Boundary Scan-state machine 
described in Chapter 7. The state-transition diagram appears in Fig. 7.26. A 
target cycle time of 100 ns was desired. 

A state-machine description was written that was automatically fed to 
the MISII42 logic-synthesis program. This Lisp-based state-machine lan­
guage description is shown below: 

(defpal TAP-FSM-AOI-MUX prototype 
(ipin 2 reset) 
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(ipin 3 TMS) 
(ipin 4 -TCK) 

(opin. 100 clockir) 
(opin 101 updateir) 
(rpin 102 shiftir) 
(opin 103 clockdr) 
(opin 104 updatedr) 
(rpin 105 shiftdr) 
(rpin 106 enable) 
(opin 107 select) 
(rpin 108 -reset) 
(rpin 20 state<O> h :polarity-fuse) 
(rpin 21 state<l> h :polarity-fuse) 
(rpin 22 state<2> h :polarity-fuse) 
(rpin 23 state<3> h :polarity-fuse) 

(setq updateir (and state-update-ir -TCK)) 
(setq updatedr (and state-update-dr -TCK)) 
(setq clockir (not (and (or state-shift-ir state-capture-ir) 

-TCK))) 

(setq clockdr (not (and (or state-shift-dr state-capture-dr) 
-TCK))) 

(setq shiftir state-shift-ir :clock -tck ) 
( setq -reset (not state-test-logic-reset) : clock -tck) 
(setq shiftdr state-shift-dr :clock -tck) 
(setq enable (or state-shift-ir state-shift-dr) :clock -tck) 
(setq select (not (or state-exit2-ir state-exitl-ir 

(macro 

state-shift-ir 
state-pause-ir state-run-test-idle 

state-update-ir 
state-capture-ir state-test-logic-reset))) 

(state-machine 
;;State transitions 
'(;;Idle-wait for car 

(test-logic-reset 
(:next run-test-idle (not tms)) 
(:next test-logic-reset tms) 
( : reset reset) ) 

(run-test-idle 
(:next select-dr-scan tms) 
(:next run-test-idle (not tms))) 

(select-dr-scan 
(:next select-ir-scan tms) 
(:next capture-dr (not tms))) 

(capture-dr 

(:next exitl-dr tms) 
(:next shift-dr (not tms))) 
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(shift-dr 
(:next exitl-dr tms) 
(:next shift-dr (not tms))) 

(exitl-dr 
(:next update-dr tms) 
(:next pause-dr (not tms))) 

(pause-dr 
(:next exit2-dr tms) 
(:next pause-dr (not tms))) 

(exit2-dr 
(:next update-dr tms) 
(:next shift-dr (not tms))) 

(update-dr 
(:next select-dr-scan tms) 
(:next run-test-idle (not tms))) 

(select-ir-scan 
(:next test-logic-reset tms) 
(:next capture-ir (not tms))) 

(capture-ir 
(:next exitl-ir tms) 
(:next shift-ir (not tms))) 

(shift-ir 
(:next exitl-ir tms) 
(:next shift-ir (not tms))) 

(exitl-ir 
(:next update-ir tms) 
(:next pause-ir (not tms))) 

(pause-ir 
(:next exit2-ir tms) 
(:next pause-ir (not tms))) 

(exit2-ir 
(:next update-ir tms) 
(:next shift-ir (not tms))) 

(update-ir 
(:next select-dr-scan tms) 

(:next run-test-idle (not tms))) 
) 

;;State number assignments 

' ( (exit2-dr 0) 
(exitl-dr 1) 
( shift-dr 2) 
(pause-dr 3) 
(select-ir-scan 4) 
(update-dr 5) 
( capture-dr 6) 
(select-dr-scan 7) 
(exit2-ir 8) 
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(exitl-ir 9) 
(shift-ir #xA) 
(pause-ir #xB) 
(run-test-idle #xC) 
(update-ir #xD) 
(capture-ir #xE) 
(test-logic-reset #xF)) 

;;Base name for state variables (optional) 
"state")) 

This simple language defines the inputs and outputs and then lists the 
states and their transitions. State assignment is done manually, although in 
general, software is available to do this task. 

-TMS 
Y1 

-Y3 --,__------" 

TMS 

-Y1 

TMS 

-Y2 
TMS - - -- ___ .-----....._ 

Y3 
Y4 --;_ __ ____./ 

-TMS 

-Y3 

-Y1 

Y2 --,__------" 
-TMS 

-Y1 

_;;~ ==:::i--< 
Y2 

-Y4 --,____,­
TMS 

-Y2 

T~~=:J--< 
Y1 
Y3 
Y4 --,___------" 

-Y2 

Y3 

Y1 

Y3 

TMS 

-Y2 

Y2 

Y4 

-Y3 

Y4 
-Y1 _ _,------------.._ 
-Y2 

Y3 
-Y4 --,____.; 

-TMS 
-Y2 

(a) 
TRST 

REG 
1-bit 

REG 
1-bit 

q 

q 

REG 
1-bit 

q 

REG 
1-bit 

q 

-Y1 
Y1 

-Y2 
Y1 

Y4,Y3,Y2,Y1 --
4
-r-/--<<±J state 

Y3~Select 

-Y3 

Y3 

-Y4 

Y4 

. SELECT 
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FIGURE 8.89 Boundary­
scan tap controller design 
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FIGURE 8.89 (continued) 

608 
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Y1 

-TCK~ 
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-Y1 

-TCK~y4 
Y3 _ y

2 
-> UpdateDR 

Y1 

-TRST~TRST 
TCK~-TCK 

TMS~-TMS 

(b) 

REG 
1-bit 

0 q 
Vss 

-TCK 

TRST SELECT 

-> -reset 

REG 
1-bit 

q 

REG 
1-bit 

q 

-> ShiftlR 

-> ShiftDR 

When compiled, this state-machine description built the following set of 
logic equations that were fed to MISII. 

INORDER = RESET TMS STATE<2> -TCK STATE<O> STATE<l> STATE<3> ; 

OUTORDER=NEXT_STATE<3>NEXT_STATE<2>NEXT_STATE<l>NEXT_STATE<0> 

NEXT_-RESET SELECT NEXT_ENABLE NEXT_SHIFTDR UPDATEDR CLOCKDR 
NEXT_SHIFTIR UPDATEIR CLOCKIR ; 

CLOCKIR = ! (-TCK * !STATE<O> * STATE<l> * STATE<3>); 

UPDATEIR = ! ( ! -TCK + ! STATE<O> + STATE<l> + ! STATE<2> + ! STATE<3>); 

NEXT_SHIFTIR = ! (STATE<O> + !STATE<l> + STATE<2> + !STATE<3>); 

CLOCKDR = ! (-TCK * !STATE<O> * STATE<l> * !STATE<3>); 

UPDATEDR = ! ( ! -TCK + ! STATE<O> + STATE<l> + ! STATE<2> + STATE<3>); 

NEXT_SHIFTDR = ! (STATE<O> + !STATE<l> + STATE<2> + STATE<3>); 

NEXT_ENABLE = ! (STATE<O> + !STATE<l> + STATE<2>); 
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SELECT = ! (STATE<3>); 

NEXT_-RESET = ! (STATE<O> * STATE<l> * STATE<2> * STATE<3>); 

NEXT_STATE<O> = (!STATE<l>*TMS + !STATE<O>*STATE<l>*TMS + 
STATE<0>*!STATE<2>*!TMS +RESET+ 

STATE<0>*STATE<l>*STATE<2>*STATE<3>*TMS); 

NEXT_STATE<l>=(!STATE<2>*!TMS+STATE<l>*STATE<2>*!STATE<3>*!TMS+ 
!STATE<0>*!STATE<l>*STATE<2>*!STATE<3> +RESET+ 

STATE<0>*STATE<l>*STATE<2>*STATE<3>*TMS + 
!STATE<0>*STATE<l>*STATE<2>*STATE<3>*!TMS + 

STATE<0>*!STATE<l>*STATE<2>*TMS + 
!STATE<0>*!STATE<l>*STATE<2>*STATE<3>*TMS); 

NEXT_STATE<2>=(!STATE<0>*!STATE<l>*STATE<2>+STATE<0>*STATE<2>+ 
!STATE<l>*!STATE<2>*TMS +RESET); 

NEXT_STATE<3> = (!STATE<0>*STATE<2>*STATE<3>*!TMS + 
STATE<l>*STATE<3>*TMS + !STATE<2>*STATE<3>*!TMS + 

!STATE<0>*!STATE<l>*STATE<2>*!STATE<3> +RESET+ 
!STATE<l>*!STATE<2>*STATE<3>*TM£TATE<0>*!STATE<l>*STATE<2>tTM£ 
STATE<0>*STATE<l>*STATE<2>*STATE<3>*!TMS); 

This description is read into MISH, converted to sum-of-products form and 
written out as a PLA description. The following is the expanded input in sum 
of products form: 

.i 7 

.0 13 

.ilb RESET TMS STATE<2> -TCK STATE<O> STATE<l> 

STATE<3> 
.ob NEXT_STATE<3> NEXT_STATE<2> NEXT_STATE<l> NEXT_­

STATE<O> NEXT_-RESET SELECT NEXT_ENABLE NEXT_SHIFTDR 

UPDATEDR CLOCKDR NEXT_SHIFTIR UPDATEIR CLOCKIR 

.p 41 
1------ 1000000000000 

-0----1 1000000000000 

--0---1 1000000000000 
-----11 1000000000000 

--1-000 1000000000000 

001-10- 1000000000000 
1------ 0100000000000 

--1-1-- 0100000000000 

-1---0- 0100000000000 

--1--0- 0100000000000 

1------ 0010000000000 

000---- 0010000000000 

-00--1- 0010000000000 

-0--01- 0010000000000 

-11--0- 0010000000000 

-0---10 0010000000000 

-11-1-1 0010000000000 
--1-000 0010000000000 

1------ 0001000000000 
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-1--0-- 0001000000000 

-1---0- 0001000000000 

000-1-- 0001000000000 

-11-111 0001000000000 

--0---- 0000100000000 

----0-- 0000100000000 

------0 0000109000000 

-----0- 0000100000000 

------0 0000010000000 

--0-01- 0000001000000 

--0-010 0000000100000 

--11100 0000000010000 

---0--- 0000000001000 

----1-- 0000000001000 

-----0- 0000000001000 

------1 0000000001000 

--0-011 0000000000100 

--11101 0000000000010 

---0--- 0000000000001 

----1-- 0000000000001 

-----0- 0000000000001 

------0 0000000000001 

.e 

The initial statements indicate the number of inputs (. i), outputs (. o), and 
product terms (. p ). For each product term (line), the six inputs on the left 
are coded in terms of zero (O), one (1) or don't care (-). The inputs are 
ordered according to the . i lb statement. The outputs on the right are 
ordered according to the . ob statement. This description is then minimized 
by the Espresso sum-of-products minimizer. The output in sum-of-products 
form is shown below: 

.i 7 

.o 13 

.ilb RESET TMS STATE<2> -TCK STATE<0> STATE<l> STATE<3> 

.ob NEXT_STATE<3> NEXT_STATE<2> NEXT_STATE<l> NEXT_STATE<O> 
NEXT_-RESET SELECT NEXT_ENABLE NEXT_SHIFTDR UPDATEDR CLOCKDR 

NEXT_SHIFTIR UPDATEIR CLOCKIR 

.p 21 

--11100 0000000010000 

--11101 0000000000010 

--0-010 0000001100000 

--0-011 0000001000100 

-11-1-1 0011000000000 

--1-000 1010000000000 

-0---10 0010000000000 

-00-1-- 0011000000000 

-0--01- 0010100000000 
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-11--0- 0010100000000 

-00--0- 0010000001001 
--1-1-- 0100000000000 

-1--0-- 0001100000000 

--0---1 1000100000000 

-----11 1000000001000 

-01--0- 1100100001001 

-1---0- 0101000001001 
---0--- 0000000001001 

------0 0000110000001 
----1-- 0000000001001 
1------ 1111000000000 
.e 

This reduced sum-of-products form has 21 product terms. A representative 
pseudo-nMOS PLA layout is shown in Fig. 8.90. The registers have been 
arrayed across the bottom of the PLA because this allows the inputs and out­
puts to the PLA to be placed on the bottom of the PLA. If the registers are 
incorporated into the PLA itself, the inputs and outputs have to be placed on 
the top and bottom of the PLA to achieve a small pitch. In this implementa­
tion, the input pitch was 7.5µ, the minterm pitch was 5.25µ, and the output 
pitch was 4.5µ. The layout shown was 181µ wide by 270µ high. Minimum­
sized n-trarisistors were used, although these could be increased in size to 
improve the speed if necessary. As designed, the state machine implemented 
with a PLA could operate at a worst-case cycle time of 10 ns. The PLA dis­
sipates 8 mW at 10 MHz. Of this around 5 to 6 mW are due to DC dissipation 
in the p pull-ups. A dynamic version was estimated to dissipate about 3 mW. 

A manual schematic design was also completed for the design shown in 
Fig. 8.89. In addition, a library file, describing the standard-cell library, was 
input to MISH. Each gate denotes its name, size, logic equation, and timing 
behavior. The library is shown below: 

# Area is approximate virtual grid squares 
# Name Area Equation 
# <phase> <input load> <max load> 
# <rise-block-delay> <rise-fanout-delay> <fall-block-delay> 
<fall-fanout-delay> 
GATE ZERO 0 O=CONSTO; 
GATE ONE 0 O=CONSTl; 
GATE XOR 420 O=A*!B+!A*B; PIN * UNKNOWN 2 50 

0.52 0.4 .45 .54 
GATE XNOR 420 O=A*B+!A*!B; PIN * UNKNOWN 2 50 

0.5 0.4 .31 0.4 
GATE OR3 300 O=A+B+C; PIN * NONINV 1 50 

0.33 0.14 .81 0.12 
GATE OR2 240 O=A+B; PIN * NONINV 1 50 

0.36 0.13 .49 0.10 
GATE NOR4 300 0= ! (A+B+C+D); PIN * INV 1 50 

0.31 0.5 .35 0.12 
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FIGURE 8.90 PLA layout for boundary-scan tap controller design 
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GATE NOR3 240 0= ! (A+B+C); PIN * INV 1 50 
0.29 0.4 .35 0.12 

GATE NOR2 180 0= ! (A+B); PIN * INV 1 50 
0.17 0.26 .29 0.12 

GATE NAND4 300 0= ! (A*B*C*D); PIN * INV 1 50 
0.16 0.14 .36 0.4 

GATE NAND3 240 0= ! (A*B*C); PIN * INV 1 50 
0.14 0.14 .33 0.3 

GATE NAND2 180 0= ! (A*B); PIN * INV 1 50 
0.18 0.14 .28 0.2 

GATE INVERTER 120 O=!A; PIN * INV 1 50 
0.29 0.14 .1 0.12 

GATE BUFFER 180 O=A; PIN * NONINV 1 50 
0.6 0.14 .2 0.12 

GATE AND4 3 60 O=A*B*C*D; PIN * NONINV 1 50 
0.73 0.14 .37 0.2 

GATE AND3 300 O=A*B*C; PIN * NONINV 1 50 
0.37 0.12 .64 0.1 

GATE AND2 240 O=A*B; PIN * NONINV 1 50 
0.47 0.12 .31 0.1 

GATE AOI21 240 0= ! (A+ (B*C)); PIN * INV 1 50 
0.17 0.2 .28 0.2 

GATE OAI21 240 0=! (A* (B+C)); PIN * INV 1 50 
0.17 0.2 . 28 0.2 

GATE MUX2 480 0= ((A*! S) + (B*S)); PIN * NONINV 1 50 
0.14 0.2 .28 0.3 

GATE MUX2-INV 420 O=!((A*!S)+(B*S));PIN * INV 1 50 
0.45 0.14 . 6 0.1 

MISH examined the logic equations, minimized the logic, and cr~ated a 
netlist in terms of the library gates. The netlist output of MISH is shown 
below: 

.model tap-fsm-aoi.eqn 

.inputs RESET TMS STATE<2> -TCK STATE<O> STATE<l> STATE<3> 

.outputs NEXT_STATE<3> NEXT_STATE<2> NEXT_STATE<l> NEXT_­
STATE<O> NEXT_-RESET \ 

SELECT NEXT_ENABLE NEXT_SHIFTDR UPDATEDR CLOCKDR NEXT_­

SHIFTIR UPDATEIR CLOCKIR 
.default_input_arrival 0.00 0.00 

.default_output_required 0.00 0.00 

.default_input_drive 0.14 0.12 

.default_output_load 1.00 

.gate INVERTER A=STATE<O> 0=[324) 

.gate INVERTER A=STATE<2> 0=[323] 

.gate NOR2 A=STATE<O> B=[323) 0=[312] 

.gate INVERTER A=STATE<3> O=SELECT 

.gate INVERTER A=STATE<l> 0=[327) 

.gate OR2 A=STATE<O> B=[327) 0=[329) 

.gate NAND2 A=[329) B=STATE<2> 0=[481] 

.gate INVERTER A=RESET 0=[350) 
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.gate INVERTER A=TMS 0=(326] 

.gate OAI21 A=[350] B=STATE<l> C=[326] 0=(328] 

.gate INVERTER A=[328] 0=(449] 

.gate NAND2 A=[481] B=[449] 0=NEXT_STATE<2> 

.gate NAND3 A=[312] B=SELECT C=NEXT_STATE<2> 0=(471] 

.gate NOR2 A=[323] B=[324] 0=[302] 

.gate NOR2 A=SELECT B=[327] 0=[299] 

.gate NAND2 A=[302] B=[299] O=NEXT_-RESET 

.gate NAND2 A=NEXT_-RESET B=STATE<O> 0=[461] 

.gate NAND2 A=[461] B=TMS 0=[479] 

.gate NAND2 A=[326] B=STATE<O> 0=(331] 

.gate OAI21 A=[479] B=NEXT_STATE<2> C=[331] 0=[334] 

.gate OR2 A=[328] B=[334] O=NEXT_STATE<O> 

.gate NAND2 A=[327] B=STATE<O> 0=(335] 

.gate OAI21 A=[471] B=NEXT_STATE<O> C=[335] 0=[336] 

.gate NOR3 A=STATE<l> B=[323] C=[326] 0=(202] 

.gate OAI21 A=[350] B=SELECT C=[202] 0=(338] 

.gate OR2 A=[336] B=[338] 0=NEXT_STATE<3> 

.gate AND2 A=NEXT_STATE<2> B=STATE<2> 0=(272] 

.gate AND2 A=NEXT_STATE<O> B=[272] 0=[205] 

.gate NOR2 A=STATE<O> B=STATE<3> 0=[268] 

.gate AOI21 A=[205] B=NEXT_STATE<3> C=[268] 0=(258] 

.gate NAND2 A=NEXT_-RESET B=STATE<l> 0=[469] 

.gate NAND2 A=NEXT_STATE<2> B=[469] 0=[459] 

.gate AOI21 A=RESET B=[326] C=[459] 0=[255] 

.gate NAND2 A=[258] B=[255] O=NEXT_STATE<l> 

.gate OR2 A=STATE<2> B=[329] 0=[343] 

.gate INVERTER A=[343] O=NEXT_ENABLE 

.gate OR2 A=STATE<3> B=[343] 0=[433] 

.gate INVERTER A=[433] O=NEXT_SHIFTDR 

.gate INVERTER A=-TCK 0=(344] 

.gate NOR2 A=[323] B=[344] 0=[248] 

.gate NOR2 A=STATE<l> B=[324] 0=(245] 

.gate NAND2 A=[248] B=[245] 0=(347] 

.gate NOR2 A=STATE<3> B=[347] O=UPDATEDR 

.gate NAND2 A=SELECT B=-TCK 0=(348] 

.gate OR2 A=[329] B=[348] O=CLOCKDR 

.gate AND2 A=[433] B=NEXT_ENABLE O=NEXT_SHIFTIR 

.gate NOR2 A=SELECT B=[347] O=UPDATEIR 

.gate NAND2 A=STATE<3> B=-TCK 0=(349] 

.gate OR2 A=[329] B=[349] O=CLOCKIR 

.end 

This was fed to the NS Design System43 , where a program-generated 
schematic was created. This schematic was extracted, and netlist information 
and physical cell details were fed to the TimberWolt44 placement program. 
The placement information was then returned to the NS VLSI design system 
where the circuit was automatically routed and a symbolic standard-cell lay-
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out created. After compaction to a set of CMOS-process design rules, the 
final mask layouts were available for backannotation, simulation, timing 
analysis, and size comparison. This complete integrated process (Fig. 8.91) 
completes automatically from changing any of the primary inputs in about 
five minutes. A number of "knobs" may be turned to affect the size of the 
layout. Starting from the top, a number of different logic-synthesis scripts 
and a variety of standard-cell libraries, varying from a 2-input NAND, a 
two-input NOR, and an INVERTER to more extensive collections of gates 
were tried. The number of rows that Timber Wolf used was also varied. 

Finally, the standard-cell height may be varied to create "performance" 
(large) or "area" (small) conscious layouts. Alternatively with the system 
described above, additional characterized symbolic standard cells may be added in 
about 5 minutes. The process may also be changed, thus creating a further dimen­
sion for optimization. Because all the characterization tools (simulation, timing 
analysis) work at the transistor level, new cells may be added with ease. Moreover 
with sophisticated placement programs, standard-cell layouts may be "reflowed" 
into unused space between larger fixed blocks. Table 8.10 summarizes the results. 

Designer 

RTL 

Logic 

Script Library Logic 

Logic 

NS Schematic Library Circuit 

Aspect Ratio 
TimberWolf 

Critical Nets 

Layout Param 

Cell Type 
Symbolic Layout 

Process File 

GDS2 Layout 
Mask Layout 

Vendor 
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FIGURE 8.91 Control-logic 
design process 
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In Table 8.10, the basic library had (in addition to registers): 

inverter 

nand2 

nor2. 

The tlw library had the following gates (in addition to registers): 

inverter 

nand2,nand3,nand4,and2,and3,and4 

nor2,nor3,nor4,or2,or3,or4 

xor,xnor. 

The tlw-aoi library had, in addition to the tlw library, the following four 
gates: 

mux2,mux-inverting 

and-or-invert Z = !(A. (B + C)) 

or-and-invert Z = !(A+ (B . C)). 

Table 8.10 shows the flexibility in aspect ratio that can be gained with stan­
dard-cell layouts. It also illustrates that metal3 provides layouts that are 
about half the size of the metal2 counterparts. Combined with RTL synthesis 
and logic optimization, the standard-cell approach provides an excellent 
means of capturing control logic (and other logic styles also). The final lay­
out after compaction for one of the standard-cell layouts for a two-level­
metal process is shown in Fig. 8.92. A metal3 layout is shown in Fig. 8.93 
(also Plate 9). 

Finally, because this state machine was very small, a gate-matrix layout 
was completed by hand (assuming that an automatic synthesis program was 

TABLE 8.10 Standard-cell Layout Options 

SIZE STD-CELL METAL DIMXxY 
LOGIC #ROWS (mm2) LIBRARY HEIGHT LAYERS (mm) 

Fig. 8.89 2 .120 tlw soµ 2 .67 x .18 
MISH 2 .118 basic soµ 2 .62X.19 
MISH 2 .099 tlw-aoi soµ 2 .S2X .19 
MISH 3 .1 tlw-aoi soµ 2 .4 x ~25 
MISH 4 .122 tlw-aoi SOµ 2 .34X .33 
MISH 2 .OS8 tlw-aoi soµ 3 .49 x .12 
MISH 3 .OS8 tlw-aoi soµ 3 .34 x .17 
MISH 3 .074 tlw-aoi 30µ 2 .4 x .19 
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FIGURE 8.93 Metal3 stan­
dard-cell layout for boundary­
scan tap controller 
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available for production designs). In this design minimum-size transistors 
were used and large AOI gates were used to implement the more complex 
terms. Figure 8.94 shows the gate used to implement the Yrnext term. The 
design could use dynamic logic and dynamic registers to reduce the size and 
power even further. The registers were placed to the right of the gate-matrix 
logic section. The layout is shown in Fig. 8.95. 

Table 8.11 summarizes the area, speed, and power of the three implemen­
tations. The various implementations exhibit their strong points. The PLA is 
easy to design in a fully automated manner, is small, and for this application is 
fast enough. A dynamic version would have lower power dissipation. It is, 
however, fairly fixed in size. The standard-cell design may also be fully auto­
mated, as with the PLA, from a state-machine description. The speed and size 
may be varied over some range by logic-synthesis techniques and the avail-

Table 8.11 Area, Speed, and Power of 
Control Implementations 

STYLE AREA SPEED POWER 

PLA .050mm2 lOns 8mW 
Standard Cell (DLM) .099mm2 lOns 6.3mW 
Standard Cell (TLM) .058 mm2 -lOns -6mW 
Gate Matrix .032mm2 15 ns l.5mW 
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FIGURE 8.94 An example of 
a complex CMOS gate used 
in the gate-matrix implemen­
tation 
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Figu,re 8.95 Gate-matrix 
layout for boundary-scan tap 
controller 
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gate matrix logic registers 

ability of a continuously variable symbolic layout library. The aspect ratio and 
shape of the resulting layout is primarily dictated by the placement program 
and in theory may be varied with a granularity down to the size of a gate ( -20µ 
x 50µ). Finally, the gate-matrix layout represents the smallest and lowest 
power-dissipation case (which is largely due to the fact that this example is so 
simple). This comes at the cost of speed (although this is not important in this 
application) and time to design because an automated approach was not avail­
able. This approach is not recommended when suitable automation is not 
available except under extreme power or size restrictions. 

8.5 Summary 

This chapter has presented a range of sub-system designs in terms of data­
path, memory, and control elements. Coupled with I/O structures, these form 
the basic building blocks from which larger systems may be hierarchically 
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structured. How one goes about designing and implementing a given CMOS 
chip is largely affected by the availability of tools, the schedule, the com­
plexity of the system, and the final cost goals of the chip. In general, the sim­
plest and least expensive (in terms of time and money) approach that meets 
the target goals should be chosen. Given an ideal tool set that can draw on 
large libraries of predefined components, synthesis tools, and integrated 
VLSI backend tools, an almost continuous trade-off may be made to select a 
particular approach. The following rules may be applied. Where the design is 
of moderate complexity (a description that changes with time) and time to 
silicon is of paramount importance, an FPGA approach is probably suitable. 
If speed or complexity eliminate this approach, a gate-array is the next logi­
cal choice. To cost-reduce a gate-array or include sizable memories, a stan­
dard-cell approach is the next option. The next step to symbolic layout of 
regular arrays (i.e., datapaths, special memories, cellular arrays) and stan­
dard-cell control logic, is a big one. This step is usually taken on large-vol­
ume chips where the complexity, speed, and area dictate a custom approach. 
At this time in the evolution of VLSI, the final step of a full-custom, micron­
tweaked design should almost never occur except for small, highly opti­
mized circuits. As for capture methods, both HDLs and schematics have 
their strong points. It is likely that an increasing number of designers will 
move to HDLs, but schematics will be around for some time yet. 

8.6 Exercises 

1. Design an 8-bit parallel accumulator (adder and register) that is opti­
mized for low power and has a power-down capability. Show how 
your circuit would retain the stored state. 

2. Design a 32-bit parallel adder optimized for speed, single-cycle oper­
ation, and regularity of layout. Repeat the exercise with no layout 
restrictions. 

3. Show how the layout of the parity generator in Fig. 8.25(a) may be 
designed as a linear column of XOR gates with a tree-routing chan­
nel. 

4. Design an 8-bit barrel shifter (i.e., arbitrary left or right rotate) using 
multiplexers. Explain what the performance limitations of your 
design might be. 

5. A four-section Finite Impulse Response (FIR) filter employs fixed 
coefficients and implements the function 

Y= [2 xX(t)] + [4 xX(t-1)] + [8 xX(t-2)] + [2 xX(t-2)] + 
[4 x X(t- 3)], 
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where X(t) is the sampled value of an 8-bit input at time t. Design a 
circuit to implement this function. 

6. Design an FSM to control the stop lights at a four-way intersection 
with pedestrian crossing. Implement the control logic as a PLA, as 
multiple-level logic, and as a ROM microcontroller. 

7. Tong and Jha45 describe a binary divider. Design the base cell and 
show how you would complete a layout for the divider. 

8. Complete a fioorplan (showing clock and power and ground routing) 
and the circuit design for key cells (i.e., memory cell, row decoder, 
column decoder, sense amplifier) in a three-read-port, two-write-port 
register file. What simulations would you carry out to ensure the per­
formance and justify the selection of power and ground bus widths? 
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CMOS SYSTEM 
CASE STUDIES 

Part 3 comprises three case studies of CMOS chips or modules. They are 
included as examples to show the use of sub-systems introduced in Chapter 
8 and Chapter 5. In addition, the designs were chosen to illustrate three dif­
ferent levels of design. 

The first example describes an embeddable RISC microcontroller. This 
was implemented as a custom chip but could be implemented as a standard 
cell, gate array, or even an FPGA. The design emphasis here is from the 
architectural level down to the gate level. 

In the second example, describing a television ghost cancellation chip, 
the architecture is also important but the detailed circuit and layout design 
have a huge impact on the commercial viability of the chip. The emphasis 
extends from the architectural level to the circuit level. 

The final example illustrates a simple analog-to-digital converter where 
an individual inverter is the ultimate focus of attention. 

The three case studies represent decreasing logic complexity and 
increasing emphasis on circuit design. As the complexity of a given CMOS 
system increases, the ability to individually address individual transistors, 
gates and sub-systems decreases. This trend is illustrated by these examples. 

PART3 

625 
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CMOS SYSTEM 
DESIGN 
EXAMPLES 

9.1 Introduction 

Many times VLSI design mirrors board-level system design, where standard 
components such as ALUs, memories, and logic gates are combined to form 
a specified function. This reality is reflected in CMOS standard-cell or gate­
array libraries. However, the VLSI medium affords the designer the possibil­
ity of creating new components that break the barriers created by packaging. 
This might be a section of logic, phase-locked to a lower external clock, that 
operates at extremely high speed. Or it might be a special memory structure 
that merges logic and the structure of an algorithm to meet a speed, power, or 
cost objective. 

In the first edition of this book, this chapter contained a number of 
examples that illustrated this principle. Implemented in today's technology 
many of these examples would form small components of much larger chips. 

In this chapter, three examples are given that illustrate how the compo­
nents developed in Chapter 8 and previous chapters are used in larger sys­
tems. The first is a contemporary high-speed RISC microcontroller that may 
be used for a variety of high-speed DSP applications. It provides an illustra­
tion of the flow of constraints from high-level decisions to the low-level 
implementation that results. The example also provides an example of three 
kinds of CMOS layout-datapath, memory, and control logic. While the 
implementation style used in this example is symbolic custom layout, the 

627 

Micron Ex. 1037, p. 667 
Micron v. YMTC 
IPR2025-00119



628 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

FIGURE 9.1 RISC micro­
controller system use block 
diagram 

design could also be implemented (at an area and perhaps performance cost) 
as a standard-cell, sea-of-gates design or even an FPGA. 

The second example might be thought of as a "classical" regularly struc­
tured CMOS VLSI design, in which one basic core cell is replicated many 
times to form the major portion of the chip. Many times such structures find 
application in high-speed digital-signal processing applications, such as 
video filtering and image processing. 

The final example bridges the analog/digital gap by describing a simple 
6-bit flash AID converter. Each example demonstrates increasing emphasis 
on the detail of circuit and layout. 

9.2 A Core RISC Microcontroller t 

The first example presented is a RISC microcontroller that was designed as 
part of a much larger image processing chip. A block diagram of the proces­
sor is shown in Fig. 9 .1. The processor had an on-chip instruction RAM and 
connected via a system address and data bus to the rest of the chip and spe­
cial function units. As it is shown in Fig. 9 .1, the processor'is typical of 

tThis processor was designed by B. Edwards, C. Terman and N. Weste ofTLW. 

system address bus 

address 

instruction 
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9.2 A CORE RISC MICROCONTROLLER 629 

embedded programmable cores which provide control for other dedicated 
processing elements. 

The 16-bit processor had to run at 40MHz and affords a good example 
of an embedded processor that can be used for a wide variety of control and 
signal-processing applications. While a little more corp.plicated than a mini­
mal microcontroller, the concepts demonstrated iri this example can be 
applied to a wide range of CMOS VLSI system problems. 

We begin with the design of the instruction set, which in turn must be 
able to implement the operations required of the processor. We follow with a 
description of the pipeline architecture or the arrangement of memory and 
logic to enable the implementation of the instruction set in the required cycle 
time. The major logic blocks are then summarized. The layout of these 
blocks is then summarized. Finally, the methods of testing and verifying the 
processor are described. 

9.2.1 Instruction Set 

The instruction set defines what basic operations are possible with the pro­
cessor and forms a high-level specification for the processor. The instruc­
tions in this instance are divided into two groups, namely, 

• the control-transfer class. 

• the ALU class. 

The control-transfer class includes jump and call instructions. The ALU 
class includes arithmetic and logic operations. Other types of instructions 
might include operating system instructions (for a full microprocessor) and 
specialized I/O instructions (say, for a graphics accelerator). 

9.2. 1. 1 Address Architecture 

At this point there is a decision to make concerning the type of address archi­
tecture that the microcontroller is to implement. Options include a stack­
address architecture, an accumulator architecture, and a multiple-register 
(two- or three-register) address architecture. Each dictates a particular regis­
ter architecture. Figure 9.2 indicates some of the possibilities. 

An accumulator architecture has a special register associated with the 
ALU that holds the intermediate results of computation (Fig. 9.2a). The 
computation for 

c = a + b 

would be 

load a 
plus b 
store c 
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630 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

Figure 9.2 Alternative pro­
cessor address architectures 

memory 
accumulator 

1 read/write port 
(a) 

2 ports - 1 read, 1 write 
(b) 

3 ports - 2 read, 1 write 
(c) 

In this example the register file has to be able to do one read or write at 
a time. At any one time only a single port is required, at the expense of taking 
three clock cycles to complete the add. However, a single-port register file 
can be implemented with a six-transistor static RAM cell, the smallest all­
transistor static memory that can be implemented. 

In a stack architecture (Fig. 9.2b), the register file implements a stack. 
The ALU uses the stack and a special register called the top-of-stack (TOS) 
to perform arithmetic operations. For instance, to complete the operation 

c = a + b; 

the following operations would be completed: 

push a 

push b 

pop add 

pushes a onto stack (TOS=a) 

pushes b onto stack (TOS=b) 

pops a and b, pushes a+b onto stack (TOS = a+b = c) 

This requires that the register be read and written in a single cycle as the pop 
operation reads (a) and writes (c= a+b). The static RAM cell shown in 
Figs. 8.53 and 8.65 can achieve this by single-ended sensing of the bit lines 
and differential driving for write operations. This RAM cell is not much 
larger than the RAM cell that would be used in the stack architecture. Two 
decoders are needed, so the overall register file would be slightly larger than 
for the stack case. Although the add operation takes three cycles in the exam­
ple above, in general as one operand may already be on the top of the stack, 
the add can be completed in two cycles. 
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9.2 A CORE RISC MICROCONTROLLER 631 

A three-address architecture is what most modern RISC processors use 
(Fig. 9.2c). It completes the operation 

c = a + b 

(and most other operations) in one cycle. To do this requires a three-ported 
register file that can independently read two operands and write a third. This 
register file can be implemented using the structures shown in Fig. 8.65 (a 
regular RAM cell with multiple ports) or Fig. 8.66 (a register file). This reg­
ister file is larger than the static RAMs for the accumulator and stack archi­
tectures due to the increase in memory-cell size and the three address­
decoders that are required, but the architecture is potentially two or three 
times faster (for various reasons this speed increase is not always reflected in 
real programs). 

The size (in words) of the register file has to be estimated. This is related 
to the maximum number of intermediate results that need to be held at one 
time. This might be estimated by implementing the chip function in a high­
level language (C, FORTRAN, Pascal, Lisp) first and using this as a basis for 
estimation. In this case, 128 registers were dictated by the system architects. 

At this point the designer might assess the areas of each type of register 
structure (if area was of importance) by completing a layout for each mem­
ory cell and decoder or, in the case of a gate-array or standard-cell design, 
finding the most appropriate register architecture. In the case at hand, the 
three-port address register architecture is chosen for the following reasons: 

• Potentially provides the fastest architecture. 

• Easy to program. 

• Increase in area deemed not important (a custom layout is assumed). 

• No complicated clocking required (minimizes design time). 

An equal address space was allowed for random "external registers," yield­
ing an 8-bit address field for reads and writes. A 1 in the MSB of the read or 
write address indicates a read or a write to a register on an external bus. This 
provides for a register-mapped I/O space for communication with external 
devices through the implementation of extra hardware if required. 

9.2.1.2 ALU Class Instructions 

With the register architecture fixed, an encoding for the instruction set may 
be proposed (Hex numbers are used). Because there are three addresses of 
8-bits required, the following encoding for the ALU class was used, resulting 
in a 32-bit instruction. In the following description, 

WR (write address) is one of 
O 0 - 7 F register file address 
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632 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

8 0 - FF external interface address 
RA (read port A address) is one of 

0 0 - 7 F register file address 
8 0-FF external inte1face address 

RB (read port B address) is one of 
0 0 - 7 F register file address 
8 0 - FF external interface address 

OP is the op-code for the instruction. 
IT is the instruction type. 

The first type of instruction is used for general arithmetic and logic opera­
tions. 

IT = 1 three-address arithmetic instruction 

I #bits= 2 

IT=l 1~ 
The general operation is as follows: 

WR = RA op RB 

So for instance, a specific operation might include 

WR[lO] = RA[S] + RB[4] 

In the instruction above, location 10 in the register file is replaced with the 
sum of locations 5 and 4. 

A two-address literal instruction is provided as follows: 

IT= 2 two-address with sign-extended 8-bit literal 

The general operation is as follows: 

WR = RA op LITERAL 

A specific operation might be 

WR[lOO] = RA[20] + 24 

I LITERAL 

In the instruction above, location 100 in the register file is replaced with the 
sum of location 10 and the constant 24. 

A single-address literal instruction is also provided. This allows a 16-bit 
literal to be loaded into the register file. 

IT= 3 one-address with sign-extended 12-bit literal 
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The general operation is as follows: 

WR = op LITERAL (B is undefined} 

A specific operation might be 

WR[lOO) = -1 (#xFFFF} 

that is, placing the constant FFFF in location 100. 
The opcode, OP, is defined as follows 

00 
01 
02 
03 

A+B 
A+B+l 
A 

A+l 
08-0F Undefined 
10 
11 

12 
13 
18 
19 
lA 

all zeros 
A and B 
notA and B 
B 

notA and notB 
A xnor B 
notA 

04 

05 
06 
07 

14 
15 
16 

17 
lC 
lD 
lE 

A-B-1 
A-B 
A-1 
A 

A and notB 
A 

A xor B 
A or B 
notB 
A or notB 
A nand B 

1B notA or B lF all ones 
logical left shift by SHIFTR 
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20 
21-2F 
30 
31-3F 

logical left shift by 1 to 15 bits 
arithmetic right shift by SHIFTR 
arithmetic right shift by 1 to 15 bits 

SHIFTR is a special register (external address = 21) that allows a shift 
amount to be externally specified. 

Although these assignments may seem random, they are linked to the 
implementation. For instance, bit 0 of the ALU opcode is the carry-in to the 
adder in the ALU, bit 1 forces the B bus to zero, and bit 3 inverts the B bus. 
Similarly, bits 3-0 are used directly by the Boolean logic to implement the 
functions outlined above (see Section 9.2.3.1). These assignments are used 
to eliminate control logic. 

9.2. 1.3 Control Transfer Instructions 

The control transfer instructions implement jumps, call, and return. They are 
defined as follows: 

I IT=O lop 6 bits icoND 8 bits 

where 

OP=20 Jump True 
OP=22 Jump False 

IJA 12 bits 
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634 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

and 

OP=lO Call 
OP=08 Return 

COND defines a condition code as follows: 

00 ALU result negative 
01 ALU result zero 
02 Adder result had carry 
03 ALU result was negative or zero 
04 Boolean/Shifter result zero 
05-0F <Illegal> 
lF-34 External conditions selectable by multiplexer 
3F True 
40-FF <Illegal> 

JA specifies a 12-bitjump or call address. In the case of a CALL, the current 
program counter (PC) is pushed onto a stack, while a RETURN pops the PC 
from the stack. 

9.2.2 Pipeline Architecture 

The design was partitioned into six major blocks (Fig. 9.3a). TheALU_DP is 
responsible for performing arithmetic and logic operations. It also contains 
an interface to an external system-address and data bus. The register file is 
responsible for providing operands for the ALU_DP and storing the results 
of ALU operations. The PC (Program Counter) data path is responsible for 
calculating the next program counter value. It therefore has to deal with 
JUMPs, CALLs, and RETURNs. For the latter instructions, it implements an 
eight-deep stack. The Instruction Pipe datapath stores the instruction for a 
number of pipeline stages and performs comparisons to permit pass-around 
(see Section 9.2.2.1). The instruction RAM provides instructions for the pro­
cessor and the control section provides for instruction decode and various 
other control operations. 

The ALU_DP, register file, instruction pipe, and PC datapath were con­
structed using datapath techniques although they could be implemented as 
standard cells or sea-of-gates structures. A high-speed static RAM was used 
for program storage. A separate write port was provided to load the program 
RAM. A single control block was used to control all sections. 

The operation of the microcontroller is as follows: 

1. The PC presents an address to the instruction RAM, which in turn 
looks up an instruction to be applied to the machine. This includes 
the opcode for the ALU and the addresses to the register file. 

2. The register file accesses the operands addressed by the instruction 
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9.2 A CORE RISC MICROCONTROLLER 635 

(a) 

System Address and Data busses 

Register File 
read data B 

Instruction Pipe ALU_DP 
read dataA 
write data - ,-- write address - read addresses 

I • 
Control 

CT'' 
Condition Cod 

Instruction 

es 

Data Out 

Address 

'°"'~tioo RAM Add'~ Program Counter Control Logic 
PC_DP 

Data In 

i External Address i 
Write Data External PC 

(either from the register file or external registers), and places them on 
the ALU input busses. 

3. The ALU calculates the result including condition flags such as carry 
and zero. 

4. The result is written to the register file or external registers. 

If all of these operations were placed in one cycle, the cycle could be 
quite long. For instance, consider the following representative times: 

Instruction RAM access 15 ns 
Register file read 10 ns 
ALU operation 15 ns 
Register write 10 ns 

which results in a total cycle time of around 50 ns. This exceeds the desired 
cycle time by more than a factor of two. Fortunately, this problem may be 
solved by the use of pipelining. 

The microcontroller may be conveniently pipelined according to the 
steps outlined above, calling the stages the I, R, E, and W stages for Instruc­
tion fetch, register Read, Execute, and Write operations. One may of course 
choose to pipeline the machine differently; this scheme is chosen based on 

FIGURE 9.3 Processor­
block diagram: (a) overview; 
(b) schematic 
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WC<15:0> 

IRAM_DATA<14:8> 
IRAM_DATA<6:0> 

W_C_ADD<6:0> 
W_WE.L 

CLK 

RAO 
RA1 
WA 
-WE 
CLK 

(b) 

IRAM_DATA<15:0> 
ALT_SEL 

STACK_EN 

l_NEXT.L 
CLK 

IRAM_DATA -> 

REGWAR 
E_ALU 
W_ALU 

CLK 

E_BZERO 
E ZERO 
E CRY 
(::NEG 

SYSBUS_OE -> 
IRAM_ACCESS -> 

SKIP -> 
INTERRUPT -> 

XCOND -> 
IRAM_DATA<21:16> 
IRAM_DATA<31 :24> 

R_EXT_ADD.L 
WC ADD<2:0> 
w::::c::::ADD<7:6> 

SHFREG 
RST -> 
CLK -> 

Figure 9.3 (continued) 

16 
EXT_PC 
R_JPC 

PC_DP 

ALT_SEL 
STACK_EN 

l_NEXT.L 
CLK 

INST_PIPE 

l_PC 

R_INST W_C_ADD 
REGWAR ALU_OP 
E_ALU R_EXT _ADD.L 
W_ALU A_SEL 
CLK B_SEL 

SPROC-CONTROL 
ALT SEL 
USfACK 

E_BZERO l_NEX~L 
E_ZERO EXTOE 
E_CRY EXT EN 
E_NEG INC_ADDR 
SYSBUS_OE SHIFT_COUNT 
IRAM_ACCESS E_ALU 

W_ALU 
SKIP W_WE.L 
INTERRUPT 

~gg~g SEL SYSBUS_RD 
R_OP - SYSBUS_WR 

-R_EXT_ADD 
W_EXT_ADD 
W_EXT _ADD_SEL 
SHFREG 
RESET 
CLK 

16 
IRAM_ADDR 

WC ADD<7:0> 
ACu_::-op 
R_EXT_ADD.L 
A_SEL 
B_SEL 

ALT_SEL 
STACK_EN 
l_NEXT.L 
EXTOE 
EXT EN 
INC_ADDR 
SHIFT_COUNT 
E_ALU 
W_ALU 
W_WE.L 

the fact that the microcontroller has to run at 40 MHz and on some experi­
ence of how fast modules will run. In practice, a number of pipeline schemes 
might be explored, with the one that meets the speed requirement with the 
least design effort selected. 

In the signal nomenclature, I_, R_, E_, or W _preceding a name indi-
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cates that the data is valid in that pipeline stage. The pipeline operation can 
be visualized using the following pipeline diagram: 

Cycle I stage R stage E stage W stage 

0 Inst 1 

1 Inst 2 Inst 1 

2 Inst 3 Inst 2 Inst 1 

3 Inst 4 Inst 3 Inst 2 Inst 1 

4 Inst 5 Inst 4 Inst 3 Inst 2 

In cycle 0, instruction 1 is in the I stage, having been fetched from the instruc­
tion RAM. In cycle 1, it moves to the R stage and is used to address the register 
file to access the read operands in the instruction (RA and RB). Instruction 2 
enters the I stage. Instruction 1 enters the E-stage in cycle 2, where it presents 
the opcode to the ALU. The read operands have also been fetched from the 
register file. Instruction 3 enters the I stage, and Instruction 2 moves to the R 
stage. Finally, in cycle 3 Instruction 1 enters the W stage, where the WR 
address is used to write the result of the ALU operation into the register file. 

9.2.2. 1 Bypassing, Result Forwarding, or Pass-around 

In the above pipeline diagram it may be seen that the operands for instruction 
2 and 3 have been read by the time that the result of instruction 1 is written 
back to the register file. This requires that the W stage write data be for­
warded to the R stage or E stage if these stages require the data that is being 
written to the register file. For instance, if the result of instruction 1 were 
used in instruction 2, then the data being written to the register file in cycle 3 
would also have to be passed to the E stage for instruction 2. This is done by 
comparing the operand addresses in the R stage and E stage with those in the 
W stage and controlling a set of multiplexers that feed the appropriate oper­
and to the ALU. 

Consider the following code fragment: 

ADD A,B,C 

SUB D,C,F 

xxx 

Add A, B and place in C 

Subtract C from D and place in F 

yyy 

The following pipeline diagram represents the code sequence: 

Cycle I stage R stage E stage 

0 ADD A,B,C 

1 SUB D,C,F ADD A,B,C 

2 xxx SUB D,C,F ADD A,B,C 

3 yyy xxx SUB D,C,F 

W stage 

ADD A,B,C 
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In cycle 3, the result of adding A and B is being written to location C. How­
ever, C is required in the E stage to compute D - C. Thus the normal read 
path from the register file has to be bypassed to allow the current (W stage) 
value of C to be passed to the ALU. 

9.2.2.2 Conditional Branching 

The condition code (if coming from the ALU) is calculated late in the E 
stage. Any jump occurs in the cycle after the condition is calculated and, due 
to the pipelining, the instruction after a jump is executed. 

Consider the following code sequence that implements a branch based 
on the result of an ADD instruction: 

ADD A,B,C 
JMP ZERO,FOO 

SUB E,F,G 
AND X,Y,Z 

FOO: OR P,Q,R 
ADD A,R,C 

Add A, B and place in C 
Jump to location FOO if the result of 
A+B(C)=O 
Subtract F from E and place in G 
AND X and Y and place in Z 
Branch Target FOO 

The following pipeline diagram represents the code sequence where the 
branch is not taken: 

Cycle I stage R stage E stage W stage 

0 SUB E,F,G JMP ZERO ADD C,A,B 

1 AND D,G,H SUB E,F,G JMP ZERO,FOO ADD C,A, B 

2 AND D,G,H SUB E,F,G JMP ZERO 

3 AND D,G,H SUB E,F,G 

In cycle 0 the ADD instruction is executed and the ZERO condition is calcu­
lated. The JMP instruction is executed in cycle 1, the condition being regis­
tered to the W stage. In cycle 2 the SUB instruction is unconditionally 
executed, and in cycle 3 the AND instruction is executed. 

The following pipeline diagram represents the code sequence where the 
branch is taken: 

Cycle I stage R stage E stage Wstage 

0 SUB E,F,G JMP ZERO ADD C,A, B 

1 OR P,Q,R SUB E,F,G JMP ZERO,FOO ADD C,A, B 

2 ADD A,R,C OR P,Q,R SUB E,F,G JMP ZERO 

3 ADD A,R,C OR P,Q,R SUB E,F,G 
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The sequence here is the same except that in cycle 1 the OR instruction 
moves to the I stage. In cycle 3 this instruction is executed. Note that the 
SUB instruction is still executed in cycle 2. 

9.2.2.3 Subroutine Call and Return 

Consider the following code sequence, which demonstrates a Call and 
Return Sequence: 

ADD A,B,C 
CALL FOO 
SUB E,F,G 

BAZ: XXX 
yyy 

FOO : ADD J, K, L 
RETURN 
SUB X,Y,Z 

The execution of this sequence is shown below: 

Cycle I stage R stage E stage 

0 SUB E,F,G CALL FOO ADD A,B,C 

1 ADD J,K,L SUB E,F,G CALL FOO 

2 RETURN ADD J,K,L SUB E,F,G 

3 SUB X,Y,Z RETURN ADD J,K,L 

4 xxx SUB X,Y,Z RETURN 

5 yyy xxx SUB X,Y,Z 

6 yyy xxx 

7 yyy 

W stage 

ADD A,B,C 

CALL FOO 

SUB E,F,G 

ADD J,K,L 

RETURN 

SUB X,Y,Z 

xxx 

As with the JUMP instruction, the instructions after the CALL and RETURN 

instructions are also executed. 

9.2.2.4 110 Architecture 

The 1/0 architecture in this example is a condensed version of the real 1/0 
architecture to keep the example simple. Five registers are provided in the 
1/0 space of the processor (seven are listed below but some are read/write or 
otherwise utilize the same physical register). They are as follows: 

• SBRAR (address= 0) Sysbus Read Address Register. When this regis­
ter is written, it causes a read on the system bus. If an SBRAR is written 
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on cycle i, then on cycle i + 1, the SBRAR address is output to the SYS­
ADDR bus. On cycle i + 2, the data is returned on the SYS-DATA lines. 
On cycle i + 3, the data may be used in the ALU. Thus a code segment 
to read data from the system bus and increment it might be 

WR[20] = RA[80] (SBRAR) 

xx 
yy 

WR[20] = RA[20] + 1 

• SBWAR (address= 81 (hex)) Sysbus Write Address Register. This 
register holds the next address of a Sysbus write. It uses the same reg­
ister as SBRAR. 

• SBWDR (WR= 82) Sys bus Write Data Register. When this register is 
written, it causes a write on the system bus. 

• SBWDR-INC (address = 83) This causes an autoincrement in the 
SB WAR register, which provides for a simple DMA capability. 

• SBRDR (address = 84-read-only) This register contains the data from 
the last system bus read. 

• REGWAR (address = 85) This register is used as a register-file write 
address in ALU class instructions when WR = CO - DF. 

• SHFREG (address = 86) This register allows a shift amount to be 
specified for the shifter when the ALU-OP is 20 or 30. 

9.2.3 Major Logic Blocks 
With the instruction set defined, and address and pipeline architectures 
decided, the next step is to define logic and storage elements that will realize 
these architectures. Just how one translates architecture into an RTL design 
varies. It usually requires a stepwise refinement process where a design is pro­
posed, simulated, and modified to correspond more closely to the required 
behavior. Most often, previous experience will aid in determining good direc­
tions. It is a skill that improves as more designs are completed. 

In this section, an RTL design will be presented in schematic form as a 
finished design. Because the style of processor design is fairly generic, it is 
hoped that this example will provide readers with a starting point for their 
own designs. The complete schematic for design for the controller core (sans 
instruction memory and I/O devices) is shown in detail in Fig. 9.3(b). 

9.2.3. 1 ALU_OP 

The ALU_DP module is responsible for computing collecting operands, col­
lecting the results, and interfacing with external modules. It is divided into 
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three main sections: 

• The I/0-REGS. 

• The ALU proper. 

• The EXT-BUS-DP. 

The module is shown in Fig. 9.4. 
The inputs are: 

R A DATA and R_B_DATA busses-These are the read data busses 
from the register file. 

R_LITERAL-Literal bus from the instruction RAM. 

A_SEL and B_SEL-A and B operand select control. 

ALU_OP-TheALU op-code. 

SHFT-The shift amount for the shifter. 

EXTOE, EXTEN controls-Various controls to the EXT-BUS-DP mod­
ule for loading registers and tristating busses. 

INC_ADDR-An increment control for the autoincrementing address 
register (SBWDR_INC) in the external-bus module. 

CLK-The clock. 

The outputs are: 

SYS_ADDR (system address bus)-Used to address external modules. 

SYS_DATA (system data bus)-Used to transfer data to and from exter­
nal modules. 

10-REGS 

R_LITERAL 1->->.r--r-"'""~~----1 R_LITERAL A 
R_A_DATA _, 16 R_A_DATA B 

E-ABUS<15:0> 

ALU 

A 
E BZERO 
-E NEG 

B E CARRY R_B_DATA _, R B DATA 
__ _, EXT-DATA W_C_DATA 
~~E_RESULT 

'~~~~ ALU OP E_ZERO 
<->>-+-"--< SHFT ALU_OUT 

A_SEL l->->~>---7"-+~f-+----1 SEL_A 
B_SEL _, SEL_B 

CLK _, ._C.._L__,K ____ __. 
16 _, W_C_DATA 

'-+---------------~ EXT_RDATA<15:0> 

EXT_BUS_DP 
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FIGURE 9.4 ALU_DP-block diagram 
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Figure 9.5 10-REGS mod­
ule schematic 

W_C_DATA-Write data bus to the register file. 

SHFREG -Shifts amount to control block. 

REGWAR-Alternates register write address to INST_PIPE. 

CONDITION-CODES-Flags from ALU operation such as ZERO 
(E_BZERO and E_ZERO), NEGATIVE (E_NEG), and CARRY 
(E_CARRY). 

First we will deal with the two modules that surround the ALU. 

9.2.3.1.1 IO-REGS 

The IO-REGS are responsible for providing the appropriate operands to the 
ALU. The A and B port of the ALU have identical structures (IO-REG) that 
provide operands from: 

• the register file. 

• the literal bus (from the instruction RAM). 

• W-stage data (for pass-around) and E-stage data. 

• external data from the external bus (EXT _DATA). 

The IO-REGS circuit is shown in Fig. 9.5 and the IO-REG subblock is 
shown in Fig. 9.6. The modules are composed of multiplexers, registers, and 
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CLK 

E_LIT<15:0> R LIT IO-REG OUT ~~'~' 
R_A_DATA R->>--'

1
->;<
6 
'---+-------! ~=~~~_DAT:_RESULT 

E_RESULT ., 16 E_RESULT 
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16 
E_EXT_DATA 1-+-+:>----r-----. 

W_RESULT 

sel<2> 
sel<1>---I 

sel<3> 

CLK 

4 16 
SEL ~ ~ W_RESULT 

CLK~ 

buffers. As a single clock is being used, the register structure in Fig. 9.25(a) 
was chosen for the following reasons: 

• Static (A habit; dynamic registers could be used but if area is not that 
affected, static allows the clock to be stopped and the static registers 
are not as susceptible to noise). Static registers also allow IDDQ test­
ing (see Chapter 7). 

• Small number of transistors. 

In Fig. 9.5 the literal field from the instruction RAM, R_LIT­
ERAL<l 5:0>, is registered to create the E-stage version of this data, 
E_LIT<l5:0>. Note that port A receives the full 16-bit field of the literal, 
while the B port receives an 8-bit sign-extended version (E_LIT<7>#7, 
E_LIT<7:0> ). The register-file write data is taken from the BIO-REG mod­
ule. A further register stores the EXT_DATA bus. In the IO-REG module 
(Fig. 9.6), a register stores the R-stage data from the register file. The deci­
sion to place this register here rather than in the register file relates to the dif­
ference in critical path between the ALU and the read access of the register 
file. In this case, the relatively long delay of driving a bus from the register 
file to the ALU is placed in the R stage. If the register were placed in the reg­
ister file, this delay would be in the E stage (because it would be added to the 

FIGURE 9.6 10-REG mod­
ule schematic 
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644 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

Figure 9.7 EXT-BUS-DP 
module schematic 

clock-to-Q delay of the register). Because the register-file read time was 
shorter than the ALU critical path, this placement was used. Two other reg­
isters store the ALU result (E_RESULT) and the subsequent W _RESULT. 
The latter represents the data that will be stored in the register file in the W 
stage. A large buffer drives the A or B data to the ALU. There is some repli­
cation in registers and muxes between the two IO-REG sections. This was 
done for layout regularity and bus optimization reasons. 

9.2.3.1.2 EXT-BUS-DP 

The EXT-BUS-DP (Fig. 9.7) provides an interface between the external sys­
tem bus and the processor. A write-data register (SBWDR) is provided to 
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9.2 A CORE RISC MICROCONTROLLER 645 

which data may be written from the ALU to the SYS_DATA bus. An address 
register (SBRAR/WAR) is provided to supply addresses to the system 
address bus (SYS_ADDR). An incrementer is provided with the address reg­
ister to aid in simple DMA-type operations. The SYS_DATA may also be reg­
istered (SBRDR) for reads from the SYS_DATA bus. These registers may be 
tristated onto the EXT_RDATA bus, which is an input of the IO-REGS mod­
ule. The SHFREG stores a shift amount that may be used by the shifter. In 
the actual chip, this module had a few extra registers for other special oper­
ations. As mentioned previously, REGWAR provides a write address for the 
register file for ALU operations with addresses in the range CO-DF. 

9.2.3.1.3 i\l.,lJ 

The ALU is divided into three subsections, namely, 

• the adder. 

• the Boolean unit. 

• the shifter. 

While it would be possible to merge the Boolean unit with the adder (a la the 
181 ALU), the designers happened to like this partitioning because the 
instruction decode is simple and the modularity allows the Boolean and 
shifter to be dropped if those blocks are not required. Also a range of adders 
may be used to achieve different size and speed requirements. As shown in 
Fig. 9.8, each functional unit takes its inputs from theA and B buses and con­
ditionally tristates the result onto the ALU _OUT bus. 

16 ADDER 
A..:!- A ALU_OUT 

B 
E_NEG <.:!.I E_NEG 

E CARRY .:t. E_CARR - ALU_OP E_ZERO d. E_ZERO 
y 

BOOLE 16 
16 A ALU_OUT <.:!.I ALU_OUT 

B ..:!- B - ALU_OP E_BZERO d. E_BZER 0 

IN 
SHIFTER 

ALU_OP <5:4>,SHFT <3:0> ALU_OP 
ALU_OUT 

4 
SHFT G>-+-o 

6 
ALU_OP ..:!, 

FIGURE 9.8 ALU module 
schematic 
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Figure 9.9 Manchester 
stage used in adder 

The adder module chosen for this design is the static Manchester carry 
stage shown in Fig. 8.19(a). The reasons are as follows: 

• It is a static design requiring no clocking (straightforward design). 

• It could be designed to have a very small pitch, which is important in 
keeping datapath height small and delays low. 

• It had been used in previous designs successfully. 

• It provides a better speed trade-off for the adder (simpler PG and 
SUM generators-see Figs. 8.18 and 8.34). 

The adder module is designed in 4-bit sections and consists of a PG gen­
erator, a carry lookahead section, and a SUM generator. Figure 9.9 shows a 
schematic of a single-bit section that also represents the physical layout­
i.e., the carry section is sandwiched between the PG generator on the left and 
the SUM logic on the right. Figure 9.10 shows the schematic for a 4-bit sec­
tion. Complementary CMOS logic is used throughout the adder except for 
the carry lookahead gate, which is a pseudo-nMOS NAND gate. Variations 
of this adder might include the pseudo-nMOS carry-lookahead gate shown 
in Fig. 8.17. Other adders that might be used if the speed is not too stringent 
might include the adder shown in Fig. 8.7(b). This is potentially the smallest 
adder that might be used, and the speed can be altered somewhat by adjust­
ing the size of the CARRY gate transistors. This adder, used as a carry-select 
adder, might also prove useful. If in doubt, the designer might complete 
some initial simulations of various adders at this point. If possible, you 
should actually design the layouts and backannotate the schematics or HDL 
when simulating because this will give the best indication of the final speed 
that might be attained. Remember to simulate at the Worst Case Speed cor­
ner of the process. Figure 9.11 shows the complete 16-bit adder complete 
with control circuitry. A zero and negate circuit (called BUS-OP in this 
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design) is required on one input (B) to zero the operand or set B to all ones 
(for adding zero, -1 or just passing A) and conditionally inverting the oper­
and for subtraction operations. While this could be implemented using an 
XOR gate and an AND gate as shown at the bottom of Fig. 9 .11, the pass­
gate implementation shown in Fig. 9.25(b) is faster and smaller and was 
used in this design. A zero detect is placed on the output of the adder 
(E_ZERO). It is placed here rather than on theALU_OUTbus in Fig. 9.8 
because this implementation is faster by the time it takes the tristate buffers 
in the adder and Boolean unit to drive that bus. As a result, the zero circuit is 
replicated in the Boolean unit (E_BZERO). The circuit used for this is a 
pseudo-nMOS NOR gate. Other complementary CMOS solutions could also 
be used (see Fig. 8.28). The ALU-OP instruction decode is also shown. This 
is fairly straightforward. For instance, ALU-0P=5 is A-B. Thus INVERT= 
1, CIN = 1, andALU-OP<5:4> = 0. This inverts the B operand, adds 1 to the 
adder via the carry in, and enables the adder tristate buffer. 

The module used for the Boolean unit is a transmission-gate circuit 
based on the structure shown in Fig. 8.33, and is shown in Fig. 9.12. The 

FIGURE 9.10 4-bit 
Manchester adder 
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Figure 9.11 16-bit adder 
schematic 

Figure 9.12 Boolean bit 
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9.2 A CORE RISC MICROCONTROLLER 649 

complete Boolean unit is shown in Fig. 9 .13 that includes a tristate output 
buffer, decoding logic, and a zero detect. As an example of a Boolean 
instruction, consider that ALU-OP=16 is AffiB. In Fig. 9.12, f<0>=0, 
f<l>=l,f<2>=l, andf<3>=0. Thus the truth table is 

A B OP 
0 0 0 
1 0 1 
0 1 1 
1 1 0 

which implements the XOR operation.ALU-OP<5:4>=0l enables the Boal­
. ean unit onto theALU_OUTbus. 

The shifter is a tristate-buffer multiplexer structure using a left shifter 
and a right shifter with direct decoding of the shift amount (see Fig. 8.47 
with tristate-buffers replacing transmission gate muxes). Tristate buffers 
were used to achieve the desired speed. 

A word about the critical path. In the ALU section, the critical path starts 
in a register, passes through the IO-REG muxes, through the BUS-OP circuit 
(conditionally negating and zeroing the operand), through the adder and into 
the condition code logic where the conditions are registered. The critical 
path as reported by the timing analyzer is shown below. 

Summary of path-clock rising to clock rising delay of 22.7 ns due to a 
delay of 21.8 ns at node 3836 and a .9 ns setup time into the register: 

CK to CK 22.7ns (setup time 0.9) data node 3836 at CK+ 21.8 
S>sproc>SPROC-CONTROL-l>REG-17>D-REG-MUXSTANDARD 

The delays have the form: 

Node name cumulative-delay (this-node-delay) 
node-path 

16~ ~ c...::.r-= E_BZERO 

BOOLE-BIT 

A H-+>---T'-'1,,_6 ----1 a zbuf 1-----' 16 

B _, 16 b x16 z 1--------+---+---<->~11 ALU_OUT 
f s 

ALU_OP<3:0> 

in<15> --j 1611 

ALU_OP<5> 

FIGURE 9.13 Boolean unit 
schematic 
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Clock buffer delay: 

Node CK O.Ons (0.9ns) 
S>sproc>INST_PIPE-2>CLOCK-BUFFER-3>CG-INVERTER-3>NMOS-4 
Node 4329 0.9ns (0.6ns) 
S>sproc>INST_PIPE-2>CLOCK-BUFFER-3>CG-INVERTER-4>PMOS-4 

Clock-to-Q delay of register: 

Node 4338 1.5ns (1.6ns) 
S>sproc>INST_PIPE-2>DP-D-REG-10 

Instruction Pipe logic-Figure 9.18: 

Node 4277 3.lns (0.9ns) 
S>sproc>INST_PIPE-2>CG-INVERTER_.47>PMOS-4 

IO-REGS delay (Fig. 9.6): 

Node 1364 4.0ns (1.6ns) 
S>sproc>SP-DP-l>IO-REGS-l>I0-REG-2>MUX-DRIVER-1> 

CG-INVERTER-3>NM0S-4 
Node 3007 5.6ns (1.0ns) 
S>sproc>SP-DP-l>IO-REGS-l>I0-REG-2>MUX-DRIVER-1> 

CG-INVERTER-4>PMOS-4 
Node 3008 6.7ns (1.0ns) 
S>sproc>SP-DP-l>I0-REGS-l>I0-REG-2>DP-MUX2-3#2> 

CG-TG-2>NMOS-1 
Node 3082 7.6ns (0.7ns) 
S>sproc>SP-DP-l>I0-REGS-l>I0-REG-2>BUS-DRV-2#2> 

CG-INVERTER-9>PMOS-4 
Node 3126 8.3ns (0.6ns) 
S>sproc>SP-DP-l>IO-REGS-l>I0-REG-2>BUS-DRV-2#2> 

CG-INVERTER-lO>NMOS-4 

BUS-OP gate (Figure 9.11): 

Node 2372 9.0ns (0.9ns) 
S>sproc>SP-DP-l>ALU-l>ADDER-l>BUS-OP-2#2> 

CG-INVERTER-14>PMOS-4 

Manchester-adder delay (Figure 9.11): 

Node 2313 9.9ns (4.0ns) 
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-LSB-1 
Node 2381 13.9ns (0.7ns) 
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-1#0 
Node 2379 14.6ns (0.7ns) 
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-1#1 
Node 2380 15.3ns (4.0ns) 
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-1#2 
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Node 2306 19.3ns (1.6ns) 
S>sproc>SP-DP-l>ALU-l>ADDER-l>CG-INVERTER-15#15>NMOS-4 
Node 2343 20.9ns (0.7ns) 
S>sproc>SP-DP-l>ALU-l>ADDER-l>CG-INVERTER-7>PMOS-4 

LE gate in control.logic (Figure 9.21): 

Node 1436 21.7ns (0.lns) 
S>sproc>SPROC-CONTROL-1>0R-17>NOR2STANDARD> 

N-CHANNEL-MOSFET-94 
Node 3836 21.8ns 

From this, it may be seen that -48% of the timing budget is used by the 16-bit 
adder, 18% is spent in the register, and 22% is spent in the input-operand 
switching. Because this was not the overall worst path in the design and the 
timing was close to the design goal of 40 MHz, this timing was deemed suffi­
cient. If improvements were required, the adder and IO-REGS could be further 
scrutinized (or the design could be transferred to a smaller process). 

9.2.3.2 Register File 

The register is arranged as a 32 x 64 memory with 4: 1 column multiplexing. 
The register-file structure shown in Fig. 8.66(a) is used as the three-port reg­
ister file. Figure 9 .14( a) shows the transistor sizes used in the memory cell 
along with the read- and write-row decoders. The ratios of the write-path 
transistors and the storage inverter are chosen to ensure correct writes over 
all process corners. Two read-access transistors are used to provide dual read 
ports. Two read-row decoders and a write-row decoder that are based on a 
complementary 5-bit AND gate are used. 

A 2-bit write address performs a column select for write operations, 
while 2-bit read addresses employ a multiplexer decoder (Fig. 8.63) to yield 
a 16-bit result. The column circuit, which is a 4-bit section, is shown in Fig. 
9.15(a). It includes two 4:1 multiplexers (using single n-channel transistors), 
a sense inverter, and a buffer, which select the data to be routed to the IO­
REGS. The write circuitry consists of a register to hold the write data and 
buffers for the four write-data lines (WD<3:0>) and write-strobe logic to 
allow the selective writing of any of the four columns (WAS<3:0> ). 

A write operation proceeds by placing an address on the write-address 
lines and then deasserting the clock. This causes one of four column 
WRITE-STROBE (WAS) signals to be asserted, which writes data into the 
cells with the word line asserted. Latches were added to the WRITE­
ADDRESS (WA) lines to improve the speed. 

Reads are totally static. For read operations, the critical path begins in 
the Instruction RAM, the output of which is passed to the word-line decoder 
of the register file. This in turn drives the row line of the register file, access­
ing a register. This triggers bit-line changes, which are demultiplexed and 
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Figure 9.14 Register file 
partial schematic 

32*64 memory array 
4/1 ---r-+-

64
-<->->1 RDO 

To column decoder 

To column decoder 
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32 

write row decoder 

buff er and gate 

""~ RAO~ 
---+-~· 

32 
x32 

read row decoder - port A 

buffer and gate 
32 =----~~ RA1~ x32 1--r------------~ 

--1-~ 

read row decoder - port B 

driven to the IO-REGS module in the ALU-DP. There is a large spectrum 
over which the speed (and power) of the register file may be changed by siz­
ing the row-decoder drivers, the decoder, AND gates, and the word-line driy­
ers. In addition, moving the read registers into the register file could also be 
used to improve speed if necessary. Additionally, the bit lines could have 
been precharged to improve speed. In this case none of these improvements 
were required. A typical SPICE simulation for verifying the read-access time 
is shown in Fig. 9.15(b). This includes parasitic capacitances that are deter­
mined from a mask extraction of the layout of key cells of the register file 
(for instance, from a layout of the register file memory cell, the word-line 
and bit-line capacitances may be estimated). Figure 9.15(c) shows an 
address-input changing and the word-line response and the bit-line change. 
Figure 9.15(d) shows the bit-line response, the delay through then-channel 
column multiplexer, and the final output. This shows that the delay from the 
address change to valid output is around 10 ns. The bit-line sense amplifier is 
ratioed to move the threshold voltage toward V88, which improves the sense 
time. For simplicity, the bit-line is not precharged, although some speed 
increase could be achieved by precharging and using a more exotic sensing 
scheme. However, this met the speed goals by almost half a clock cycle, so 
no further design effort was required. 

Micron Ex. 1037, p. 692 
Micron v. YMTC 
IPR2025-00119



9.2 A CORE RISC MICROCONTROLLER 653 
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A point that arises here is the importance of being able to rapidly proto­
type a design to assess where the speed bottlenecks are. Frequently this can 
be done with pencil and paper or more conveniently with a good top-to-bot­
tom VLSI CAD system. Completing a rough "first draft" of a design can 
often highlight critical parts of the design ahead of time. This prevents work 
on areas that do not affect the performance of the overall system. Frequently, 
designers tend to take a myopic view of the design and can spend unneces­
sary time optimizing something that does not matter ("disappearing down 
the optimization rat-hole"). 

FIGURE 9.15 Register file 
read: (a) column decoder cir­
cuit; (b) SPICE model; 
(c) waveforms; (d) wave­
forms 
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Figure 9.15 (continued) 

9.2.3.3 PC Datapath (PC_DP) 

The PC datapath computes the next program-counter address (!_PC) 
(Fig. 9. l 6a). During normal operation the !_PC selects the incremented 
version of the PC (l-NOR-PC<15:0> ). When a JUMP, CALL, or RETURN 
operation occurs, the I_PC register is loaded with the R_JPC (from 
the instruction) in the case of a JUMP or a CALL, or with the stack in 
the case of a RETURN (l-ALT-PC<l5:0>). The multiplexers to achieve 
this can be seen in the figure. The signal !_NEXT selects either the "normal" 
PC (I-NOR-PC) on ALU operations or conditional jumps that fail. It selects 
the "alternate" PC (I-ALT-PC) on subroutine call, return, and conditional 
jumps that are taken. Note that the !_PC signal is duplicated, feeding the 
!_PC to the incrementer. This was done to improve speed because a critical 
path exists from the l_NEXT.L signal, through the incrementer and into regis­
ter NPC, that switches the !_PC multiplexer. The regular !_PC output of the 
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module is heavily loaded because it drives external modules. The duplicated 
path provides a faster !_PC to the incrementer, thereby improving speed. 

The subroutine stack with a depth of eight is constructed from eight 16-
bit latches. The stack design is shown in Fig. 9. l 6(b ). One of eight latches 
may be conditionally written when the clock is low depending on an enable 

FIGURE 9.16 PC_DP 
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CLK S-. 

32 
R_INST ,_._.,..._.,,_~ 

signal generated by the control logic. The outputs of the 8 registers are 
selected using a wired OR structure. One has to carefully design this circuit 
as there is a race that can occur between the data and the gated clock. 

The module can be a 10- to 16-bit datapath, depending on the size of the 
program RAM or ROM. 

9.2.3.4 Instruction Memory 

In the first design that employed this processor, static RAM was used as the 
program memory. This decision was made because a number of algorithms 
were to be implemented by the processor and the algorithms were in a state 
of flux at the time of design. The RAM was a conventional, fast, static RAM 
employing a six-transistor cell similar to that described in Chapter 8. 

9.2.3.5 Instruction Pipe 

The Instruction Pipe (INST_PIPE) is shown in Figs. 9.17 and 9.18. This 
module registers certain parts of the instruction and generates the select con-
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trols for the IO-REGS module that determine which operands are fed to the 
ALU. 

The Instruction RAM has a register that stores the I-stage instruction 
!_INST <31 :0> and outputs R_INST<3 l :0>. In INST _PIPE, the 
R_INST<31:24> bits are registered to form E_ALU_OP<7:0>, which is fed 

FIGURE 9.18 INST_PIPE 
address comparators: 
(a) schematic; (b) equality 
gate 
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oat 
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Figure 9.18 (continued) (bl 

to the ALU_DP to control the ALU operation. While only six bits are 
required, a full 8-bit register was used because it maintains the regularity of 
the layout (and does not take up any more space in a data path). 

R_INST<23:16> is stored in two successive registers to form E_C_ADD 
and W_C_ADD, the E-stage and W-stage register-file write addresses. These 
addresses are compared with the R-stage RA and RB addresses to determine 
whether bypassing is required (Fig. 9.18a). The select signals generated in this 
module are routed to the IO-REGS module in the ALU-DP. F:or instance by 
referring to Fig. 9.18(a), it may be seen thatA_SEL<l> is set when the E-stage 
write address equals the R-stage address. Figures 9.4 and 9.5 show that when 
this signal is asserted, the E-stage data is forwarded to the bypass register. 
WhenA_SEL<3> is asserted, it selects between the register-file and the literal 
field (A_SEL<O> ). WhenA_SEL<2> is asserted, it selects external data; when 
deasserted, it selects between E_RESULT and W_RESULT, as discussed 
above. B_SEL is similarly generated. The logic required to achieve this is 
shown in Fig. 9. l 8(a). Because this was a small amount of logic, it was placed 
in the datapath under the metal2 bus signals. 

The address comparators use an enabled pseudo-nMOS XNOR gate as 
shown in Fig. 9.18(b). This gate is small and fast, and it fits unobtrusively 
into the datapath. 

9.2.3.6 Control Logic 

The control-logic block is responsible for four main control functions: 

• instruction decode. 

• microstack address control. 
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9.2 A CORE RISC MICROCONTROLLER 659 

• condition-code control. 

• I/O control. 

Figure 9.19 shows the instruction-decode logic. In addition to the R-RET 
signal the signals, 

E-CALL, a Call instruction 

E-JFALSE, a Jump False instruction 

E-JTRUE, a Jump True instruction 

E-ALU, an ALU instruction 

are generated. The write enable for the register file (W _WE) is generated 
when there is a W-ALU signal while the W_EXT_ADD_SEL<I> signal is 
generated if an external register is not addressed. The SHIFT-COUNT signal 
is used by the shifter and is either derived from the op-code or an external 
register in the EXT_BUS_DP section. 

8 
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1~-------; 

CLK 

4 
SHFREG _, O 
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4-Bit 

d q 
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CLK 
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FIGURE 9.19 Control­
instruction decode 
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Figure 9.20 Control-stack 
address 

XCOND_SEL~ 

8-bit 

SP<0>,SP<7:1> O 
SP<7:0> 

E-CALL 

The PC_DP-stack (microstack) address is generated using an 8-bit 
shift register (Fig. 9.20). The shift register is reset with a 1 in the LSB. When 
E-CALL is true, the register left-shifts, while w)1en R-RET is true the register 
right-shifts. Thus this implements a pointer that points to the current return 
address. This coulq have been implemented as a 3-bit counter and a set of row 
decoders in the stack. However, this was deemed simpler and smaller for this 
size stack. 

The condition-code logic is responsible for collecting the conditions, 
selecting the appropriate condition, and then controlling I_NEXT. multi­
plexer in the PC_DP, as shown in Fig. 9.18. The registers are shown in Fig. 
9.21, and the condition-code logic is shown in Fig. 9.22. In Fig. 9.21 the con-
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Figure 9.21 Control-condition code registers 
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6 
SEL~ 

6 
-SEL~ 

FIGURE 9.22 Control-condition code selection 

ditions and the selection field (XCOND_SEL) are registered. Conditions that 
come from the ALU are 

E_CRY-carry from adder 

E_ZERO-adder zero 

E_NEG-high bit of ALU 

E_BZERO-Boolean zero. 

In addition extra conditions are generated. For instance, LE (less-than-or­
equal-to) is E_ZERO ORed with E_NEG. A condition may also be passed 
from an external source (XCOND). 

Figure 9.22 shows the condition-code logic. First, a 6-input multiplexer 
selects the appropriate condition. This is then passed to a set of gates that 
control the !NEXT signal dependent on JF (Jump False), JT (Jump True), 
ALU (an ALU instruction-no jump can be taken), and reset. 

Finally, the I/O control logic is shown in Fig. 9.23. This controls the writ­
ing of registers and the tristating of busses in the EXT_BUS_DP. The EXTOE 
bus controls the enabling of external registers onto the external bus for reading 
by the ALU. The EXTEN signals control the loading of various external regis­
ters caused by writes by the ALU or the returning SYSBUS data. 

2 
--+-<'41-+ INEXT.L 
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FIGURE 9.23 Control-1/0 
path 
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9.2.4 Layout 

The microcontroller was constructed using three styles of layout, namely, 

• datapath elements 

• standard-cell layout 

• memory layout 

and of course, routing. 
A datapath layout strategy was selected for this design, which is based 

on one its designers have used for a large Lisp microprocessor and which 
has proved useful on numerous other datapath chip layouts (Fig. 9.24a). 
Metal2 power busses run at the bottom and top of the cell. Sometimes these 
may be omitted and the power busses run vertically in metall. Space is 
allowed for four metal2 busses to run through the cell (or five without 
metal2 power busses). The choice of four busses was originally made for 

control 

•••••••••••••• •••••••••• data 
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~~~~~~~~~~~~o 

~~~~~~~~~~~;--c 
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FIGURE 9.24 Datapath 
strategy 
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the microprocessor, and most datapaths have been shoehorned into this 
structure. A designer of course could choose more route-through busses but 
probably not fewer. Active circuitry is placed under the route-throughs in 
diffusion, polysilicon, and metall. In a nonsilicided process, metal control 
lines are run vertically, while in a silicided process, the polysilicon may be 
used as control lines as long as the delay does not impact speed (be warned: 
in high-speed circuits silicide is really not adequate). More than four busses 
may be run through cells for short distances. For instance, adjacent con­
nects between cells may be made in polysilicon or metal. Metal (or poly) 
can pass over an intervening cell if metal (or poly) transparency is provided 
in the cell. For instance, to achieve metal transparency, all vertical connec­
tions are made in: polysilicon. This normally elongates the cell but may pro­
vide the right trade-off of increasing the length of one cell rather than 
adding an extra bus for every bit for the complete length of the datapath. 
Figures 9 .24(b) and ( c) show an example of 5 to 6 busses being routed. The 
height of the cell is determined by a combination of the metal2 pitch and the 
n-to-p spacing of the transistors. There is a maximum width of the horizon-

Table 9.1 Standard Cells 

INVERTING FUNCTIONS 

INVERTER 
2-input NAND 
3-input NAND 
4-input NAND 

2-inputNOR 
3-inputNOR 

NONINVERTING FUNCTIONS 

2-inputAND 
3-inputAND 
4-inputAND 

2-input OR 
3-input OR 
BUFFER lX, 2X, 4X, 8X drive 

STORAGE ELEMENTS 

DREGISTER 
DREG/CLEAR 
DREG/SET 
DREG/MUXED 

DLATCH 
D LATCH/CLEAR 
DLATCH/SET 

OTHER LOGIC FUNCTIONS 

2-inputMUX 
4-inputMUX 
XOR 
XNOR 
AND-OR-INVERT 221 
OR-AND-INVERT 221 

Tristate-Buffer 
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inverk1> invert<1> 

tally oriented n- and p-transistor that determines the minimum height of the 
cell given a certain number of route-throughs. If wider transistors are 
required, then they must be rotated or composed of multiple smaller transis­
tors. Figure 9.25 shows a number of examples of symbolic layouts of cells 
designed using this style of layout. Figure 9.25(a) shows the D-register cell, 
and Fig. 9.25(b) shows the BUS-OP cell used for conditionally negating 
and zeroing the B operand to the ALU. Figure 9.26 shows 4 bits of the 
Manchester adder (also Plate 10). 

FIGURE 9.25 Datapath lay­
outs: (a) register; (b) SUS-OP 
gate 
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The standard cells in the control section use a fairly standard two-level­
metal routing strategy (see Fig. 6.29b). Metall power busses run horizontally, 
and polysilicon (silicide) runs vertically. Routing channels may be metall/ 
metal2 or metall/poly. Table 9.1 gives a list of all the standard cells used. 

The standard cells are placed by the TimberWolf program 1 and routed sym­
bolically. The resulting layout is compacted to form a mask layout. Of course, 
any place-and-route program may be used to build the standard-cell logic. 

9.2.4. 1 Datapath F/oorplans 

When using datapath elements with a constrained number of route-throughs, the 
designer needs to determine an ordering of the functions on the datapath that 
does not require the number of feedthroughs to be exceeded. The ordering of 
functions on a datapath may be determined by permuting the order of the blocks 
and counting the number of connections between the blocks. This is done in a 
top-down manner from the highest level at which a single datapath is required. 
Common tricks employed include using tristate drivers as multiplexers (thus 
only requiring one common wire), replicating logic to reduce route-throughs, or 
using routing layers other than metal2 on adjacent or nearly adjacent modules. 
As noted previously, adjacent connections may be made in polysilicon or metal. 
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9.2 A CORE RISC MICROCONTROLLER 667 

As an example of a typical floorplan, the ALU_DP module will be exam­
ined. The floorplan follows the schematic hierarchy, employing a layout 
block for the IO-REGS, ALU, and EXT_BUS_DP. These are placed adjacent 
to each other, as shown in Fig. 9.27. The register-file and literal ports enter 
on the left, and the system-address and data ports are accessed at the right of 
the ALU_DP. The control signals and clock enter at the bottom. From Fig. 
9.4 it may also be seen that the R_EXT_BUS andALU_OUTbus have to con­
nect to all three modules. Just at this level it may be seen that IO-REGS is 
going to have at least six horizontal busses passing through it, so some 
thought has to be given to this potential problem. 

Examining Fig. 9.28(a), the floorplan of the IO-REGS module may be 
seen. This module consists of 16 bit-slice sections vertically abutted on top 
of a control section. At this level R_A_DATA, R_B_DATA, R_LITERAL, and 
W_C_DATA enter on the left of the module. A, B, and EXT_DATA enter on 
the right. The bit-slice is shown in Fig. 9.28(b). It does not follow the sche­
matic hierarchy in order to meet the four-bus constraint. With the arrange­
ment shown in Fig. 9.28(b), no more than four busses are required in the 
datapath bit-slices. 

Figure 9.29(a) shows the floorplan of the EXT_BUS_DP module. It 
consists of a number of 16-bit modules abutted to a common control section. 
Each vertical 16-bit section is associated with a register, which is shown in 
Fig. 9.7. Some registers (e.g., SHFREG and REGWAR) have bus-throughs 
in their upper bits. Figure 9.29(b) shows the RDDATA register-block bit­
slice, which is composed of a register and tristate buffer abutted. The con­
trols run vertically. 

Figure 9.30(a) shows a floorplan of the ALU. The ALU datapath is split 
according to the schematic hierarchy (Fig. 9.8), that is, an adder, a Boolean unit, 
and a shifter block. Figure 9 .30(b) shows the floorplan of the adder. It consists of 
a 16-bit BUS-OP, Manchester adder, zero detect, and bus-driver horizontally 
abutted, with a control block at the bottom. The adder is, in turn, four 4-bit 
Manchester sections (Fig. 9.26). The Boolean-unit bit floorplan is shown in Fig. 
9.30(c). Finally, the shifter floorplan is shown in Fig. 9.30(d). The shifter was 

IO_REGS 

W_C_DATA 
R_A_DATA 
R_B_DATA 
R_LITERAL 

ALU 

CONTROL, CLOCK 

EXT_BUS_DP 

SYS_DATA 
SYS_ADDR 

Figure 9.27 ALU_DP floor­
plan 
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FIGURE 9.28 10-REGS 
floorplan: (a) complete mod-

(a) 

10-REG bitslice 

Control 

literal reg a-reg 

reg mux 

ff-ff--.,------, 

mux b-reg mux wrbuffer ext_data reg 

ff - f f--'---____J 

reg mux mux wr buffer -- This block is repeated twice horizontally. 

ule; (b) 1-bit slice (bl 

designed so that one module shifted left and the same module, reflected in X and 
Y and abutted to a common central bus-buffer module, shifted right. 

The other datapath modules are similarly constructed. As an example of a 
memory structure, the ftoorplan of the register file is shown in Fig. 9 .31. The 
storage array (the register file shown in Fig. 9.14a) is abutted at the right by 16 
4-bit column circuits, represented in Fig. 9.14(b). The three row-decoders are 
arrayed at the bottom of the memory array. Buffered address lines for the read 
and write ports run horizontally and are buffered in the bottom-right comer. Col­
umn-address buffers are placed above these drivers. 

The control standard cell does not have an ordered ftoorplan but was 
specified as a two-row standard-cell layout that turns out to be about as long 
as the ALU_DP cl.atapath so that it may be conveniently placed adjacent to 
this module. Figure 9.32 shows a possible fioorplan of the processor. 
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E_RESULT_REG WDATA ADDR RD DATA 

--- SHFREG REGWAR 
--------

/ 

CONTROL 7 
(a ) / 

Tristate Buffer Mux Register 

~ l
sys_data 

1----+----<------+~-i---;.-->---<· sys_addr 

r_ext_data ..___,_ __ __._ ________ .._. 

enable elk 
(b) 

9.2.5 Functional Verification and Testing 

A schematic for the design was first captured and the functionality of various 
modules checked. For instance, the adder, Boolean unit, and shifter had tests 
written for them. In addition for this design a C register transfer model of the 
processor was written as the RTL schematic was being developed. Once the 
overall processor was captured at the schematic and RTL levels, an assembler 
was written so that programs could be written using the instruction set of the 
machine to verify the functionality. A suite of tests were written to check each 
instruction class and type of operation. For instance, all arithmetic instructions 
were checked, a test was written to check the register file, the pass-around 
logic was checked, and the condition-code logic was checked. These vectors 
were enhanced to increase fault coverage by running them on a fault simulator. 

Apart from these initial functional tests, timing simulations were run on 
the backannotated schematics to verify the performance of modules such as 
the adder. A timing analyzer was then used to report overall worst-case tim­
ing paths for the processor (and its peripherals) as a whole. This was first 
done with the layout incomplete, and as layouts were completed, the accu-

Figure 9.29 EXT _BUS_DP 
floorplan: (a) complete mod­
ule; (b) an example bit 
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FIGURE 9.30 ALU floor­
plans: (a) complete module; 
(b) adder; (c) Boolean unit 
bit; ( d) shifter 
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rate backannotated schematics were used to achieve increasingly accurate 
timing analyses. Frequently, gates had to be moved between modules and 
between pipeline stages to achieve the desired speed. 
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Figure 9.31 Register-file 
floorplan 

Figure 9.32 Possible pro­
cessor floorplan 
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In addition, extensive tests were written for the C functional model. The 
vectors at the boundary of the symbol processor were captured and applied 
to the schematic version and the corresponding outputs checked for consis­
tency. 

The C RTL model was merged with other C-level models for the com­
plete chip, and the system as a whole was tested by pumping data though the 
complete chip, and comparing the output values with a "golden" software 
model. This kind of testing verifies that the processor can be programmed to 
perform the required signal processing operations, but it does not give very 
much insight into whether all instructions work for all operands in the pro­
cessor. 

So in summary there were a number of levels of verification and testing: 

• At the individual submodule level (functionality (C RTL simulator 
and transistor level simulator) and timing tested (transistor level sim­
ulator)). 

• At the processor level (functionality (C RTL simulator) and timing 
tested (transistor level simulator and timing analyzer)). 

• At the chip level (functionality and timing tested; C RTL simulator, 
module level timing analyzer used). 

A good strategy to have is a set of regression tests that are run anytime a 
change is made to a module. These can be run in bottom-up mode so that 
bugs in low-level modules are found without having to find the bugs in time­
consuming high-level simulations. 

9.3 A TV Echo Canceller 

The chip described in this section2 (designed by A. Corry, B. Edwards, and 
N. Weste of TLW, and C. Greenberg of Philips Laboratories) is presented as 
an example of the kind of structure that lends itself to implementation as a 
regular structure. Because the chip is dominated by this regular structure, a 
high proportion of the engineering of the chip may be directed at the 
repeated structure, thereby providing effective use of the chip area. 

9.3.1 Ghost Cancellation 

This application is in the area of video-ghost cancellation.3,4 Terrestrial and 
cable TV transmissions are subject to multiple-path propagation and 
transmission-line impedance discontinuities. Both of these imperfections in 
the communication channel lead to what is termed "ghosting," or echoes, 
which is familiar to most TV viewers. 
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9.3 A TV ECHO CANCELLER 673 

Figure 9.33(a) shows a representation of the transmission path subject to 
ghosting. The signal at the receiver is given by 

where 

SR = the received signal 

Sr= the transmitted signal 

He= the contribution of ghosts to the signal at the receiver. 

If the receiver incorporates a filter structure, as shown in Fig. 9.33(b), then. 

where 

Se = the processed signal 

Hee = the response of the filter. 

If Hee= He, then the original signal is restored. 
A typical ghosted signal is shown in the time domain in Fig. 9.34(a). It 

consists of the main signal and a set of ghosts that precede the main signal 
(pre-ghosts) and a set of ghosts that follow the main signal (post-ghosts). 
The filter structure shown in Fig. 9.34(b) may be used to cancel the ghosts 
shown in Fig. 9.34(a). A filter with characteristic Heel prior to the adder 
cancels the pre-ghosts, and the filter with characteristic Hee2 is used to can­
cel the post-ghosts. A delay line adds the main signal at the required point in 
time via a three input adder. 

(a) (b) 

FIGURE 9.33 Ghosts: 
(a) transmission channel; 
(b) receive channel 
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674 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

Figure9.34 Ghosted signal: 
(a) time domain; (b) possible 

h(n) 

nT 

main signal 

-- pre-ghosts_...,,___ ____ post-ghosts -------

(a) 

cancellation filter (bl 

The filters shown in Fig. 9.34(b) may be implemented with filters that 
are called Finite Impulse Response (FIR) and Infinite Impulse Response 
(UR) filters. By sending a known "training signal" as part of a regular TV 
signal, the filter coefficients of the two filters may be determined and the 
ghosts canceled.5•6 

9.3.2 FIR and llR Filters 

Mathematically, a sampled data FIR filter is represented by 

n 

y ct) = Li hix (t) , 
i = 0 

where 

y(t) = the filtered signal stream at time t 

x(t) = the input signal stream at time t 

hi = the filter coefficients 

n = the order or length of the filter. 

An IIR filter may be constructed by using an FIR filter with feedback. 

(9.1) 
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9.3 A TV ECHO CANCELLER 675 

There are a number of well-known forms for the sampled data FIR filter. 
Some are shown in Fig. 9.35. Figures 9.35(a) and (b) show two straightfor­
ward implementations of a 4-tap FIR filter. In the first implementation a 
delayed versiori of the incoming signal (X) is fed to a set of taps comprised of 
a multiplier and an adder. The multiplier multiplies the coefficient (Hn) by 
the delayed version of X. The adders are cascaded to form the final sum Y. In 
the second implementation, the delay is placed between adders in the taps. 
Each filter tap requires a register, an adder, and a multiplier. The precision of 

(a) 

(b) 

(c) 

XB>-----~------.--------1,___ ____ ---, 

X H, X ~ X H, X Ho 

+ ~ + ~ + ~ + ~v 
(d) 

FIGURE 9.35 FIR archi­
tectures 
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676 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

the adder and multiplier depend on the precision of the coefficient, the length 
of the filter, and the desired precision or result. Implementations vary from 
just writing code on a microprocessor or DSP processor (for speech applica­
tions) to full hardware implementations. The multiplier can be a costly com­
ponent in high throughput situations (such as video). If the filter response is 
fixed and the coefficients are therefore fixed, the multiplier may be simpli­
fied to contain only the product terms required. For instance, if an 8-bit coef­
ficient is 00110011, then only four adders are required to perform this fixed 
multiplication. For 01111110, only two adders are required (the MSB and 
LSB are subtracted from the signal). This is known as Canonic Signed Digit 
representation.7 In fixed FIR filters, a great deal of signal-processing exper­
tise goes into designing the coefficients so that the number of adders is 
reduced. Unfortunately, in the ghost-cancellation application, the filter 
response is adaptive (i.e., it has to be programmable) and other methods have 
to be sought to reduce the size of the filters. 

Many times the coefficients are symmetric, that is H_n = Hn- A symmet­
ric filter is shown in Fig. 9.35(c). The cost of adding two taps in this structure 
is only two adders, a multiplier, and two registers. Frequently, every other 
coefficient is zero, in which case the structure in Fig. 9.35(d) is useful. 

A single stage of an FIR filter requires one add and one multiply (called 
a multiply-accumulate operation) at the appropriate resolution, which is dic­
tated by the data and coefficients. For m-bit data, if the data frequency is f D' 

and n filter taps are required, then the number of m-bit multiply-accumulates 
per second is 

Nmult-acc = n xfv 

For data sizes and speeds ranging from 1 bit at 100 Hz (for sigma-delta AID 
converters) to 8 to 12 bits at 40 MHz (HDTV video) and beyond, the archi­
tecture and implementation styles for FIR filters vary widely. 

9.3.3 System Architecture 
Figure 9.36 shows a block diagram of a typical ghost cancellation system. 
Analog baseband video is converted to digital form, and the synchronization 
and phase-locked sample clock are extracted. The digital video is fed to the 
ghost cancellation chip and to a DSP processor. The DSP processor exam­
ines a single captured TV line in which the training signal is embedded and 
runs an algorithm that calculates the filter coefficients required to cancel any 
imperfections in the transmission channel. These are downloaded into the 
ghost-canceller chip, and the ghosts are canceled. The output of the ghost­
cancellation chip is fed to a D/ A converter and hence to the baseband port of 
a TV receiver. 
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Video Input Ghost 
@ ND Canceller 

,_.. Chip 

'---. Sync. 
,_ DSP 

9.3.4 Chip Architecture 

9.3.4. 1 Filter Considerations 

DIA 

ROM 

RAM 

In this application, the following specifications are applicable: 

Sampling rate = 4 x Fsc 
= 14.32MHz 

Ghost delays = -10 µ,s to +40 µ,s 

Vi de o Output 

~ 

= -150 samples to +580 samples 
Coefficient precision = 8 bits 
Sample precision = 8 or 9 bits 

Ideally then, a total of 730 8-bit filter taps would be required. Each tap would 
require an 8-bit multiply-accumulate block operating at 14.32 MHz. As an 
example, a 50 MHz DSP processor (16 to 32 bits), could deal with -3.5 taps. 
Based on some early area estimates, it was decided that a full implementa­
tion of 730 taps was too large to provide economic die sizes in current tech­
nology. In addition, most of the filter taps would be zero, making this direct 
implementation very inefficient from a hardware resource point of view. 

It was realized that if each tap could be positioned independently within 
the time domain, the filter would require one tap for each nonzero filter coef­
ficient. The disadvantage of this approach is that a separate delay line is 
required for each filter tap. An intermediate approach is to group a number of 
successive taps into sections, with a delay line for each section. This yields 
reasonably effective use of the taps, since a single ghost generally requires 
many taps to cancel it. This architectural trade-off was verified at Philips 
Research Labs with a prototype system with simulated and real echo situa­
tions. As a result, the number of taps required was reduced to around 150. 
This was the first step toward creating a practical implementation. 

The second optimization to improve chip size involves the filter-tap 
design because it dominates the chip area. As a starting point we might con­
sider an 8 x 8 multiplier-accumulator based on the designs given in Chapter 8. 

FIGURE 9.36 Ghost cancel­
lation system 

Micron Ex. 1037, p. 717 
Micron v. YMTC 
IPR2025-00119



678 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

Figure 9.37 Ghost canceller 

As a rough size estimate, an 8 x 8 Booth-recoded multiplier with an 18-bit 
accumulator would require 16 adders, 8 half-adders, and an 18-bit CPA adder. 
An alternative to a parallel multiplier is a word-serial multiplier. This requires 
four cycles to compute an 18-bit product for 8-bit coefficients and employs a 
single 18-bit adder. The former parallel implementation requires a cycle time 
of -70 ns, while the latter requires a cycle time of 17.5 ns. While these deci­
sions are justified within a few sentences, they actually required quite a bit of 
prototyping of various multipliers, which involved completing the layouts and 
simulating backannotated schematics with a transistor-level timing simulator. 
Simulation without the layout is usually not a good idea, because with com­
pact structures, delays are normally due to self-loading and are hence highly 
affected by the actual layout. 

9.3.4.2 Chip Overview 

A block diagram of the chip is shown in Fig. 9.37. In essence it is the same 
structure as shown in Fig. 9.34(b). The main modules consist of the IIR and 
FIR filter sections, a 3-input adder, a main signal-variable-delay line, and 
various scaling and rounding logic. 

The filter sections were divided into nine sections of twenty contiguous 
filter taps each, resulting in a total of 180 taps. Each section was designed so it 
could be part of the FIR- or the HR-filter response. In addition, each section 
may receive an input that has a fixed delay of 0-128 samples for a section used 
in the FIR filter or 0-448 samples for a section used in the IIR filter. The signal 
may then be delayed by a 0-63 stage programmable delay line. 

In the FIR and IIR filters, a section may be placed at an arbitrary tempo­
ral location by virtue of the programmable delay lines. Figure 9.38 shows an 
example where there are 40 FIR stages (Filter Blocks[8-7]) and 140 IIR 
stages (Filter Block[6-0]). The bold lines show the signal flow in this con­
figuration. 

Cascade Data Out 

Chip architecture Cascade Data In 
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FIGURE 9.38 An example of use of the chip with 40 FIR stages and 140 llR stages 
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A 3-input adder is required to add in the main signal, the FIR signal, and 
the IIR signal. In addition, it allows cascading of more than one chip, and 
associated circuitry performs various rounding, limiting, and overflow­
detection operations. 

A main signal-delay line is used to delay the main signal (by convention 
the strongest) so that the FIR filter may be placed before this signal in time. 

The control logic is required to interface with an external microprocessor 
to allow the configuration of the filters and the loading of coefficients. 

A phase-locked loop is used to multiply a 4 x Fsc clock (14.32 MHz) by 
4 to achieve the required clock frequency for the filter. A 2-phase clock gen­
erator uses the PLL clock or an external clock to generate a 57 .28 MHz 
2-phase clock for the chip. 

9.3.5 Submodules 

9.3.5.1 Filter Taps 

The basic filter tap structure is reviewed in Fig. 9.39(a). An 8-bit resolution 
and an accumulation to 18 bits was required. A number of filter architectures 
were investigated, resulting in a tap based on a serial Modified-Booth 
Recoded multiplier that requires four clock cycles to complete a multiply­
accumulate. 

This basic filter tap is shown at an RTL level in Fig. 9.39(b). It consists 
of an 18-bit adder and accumulator, a register to hold the coefficient, a shift 
register to shift the coefficient, a Booth recoder, and a Booth gate. Initially, 
the previous cascaded sum is loaded into the accumulator. On the next four 
cycles, the coefficient shift register shifts left by two bits in each cycle. The 
Booth recoder operates on the incoming sample and passes 0, 1, -1, 2, or-2 
times the coefficient to the adder. The loading of the next tap accumulator 
may be pipelined in the last cycle so that only four clock cycles are required. 

Clearly some choices have to be made between circuit implementations 
of elements such as adders, registers, and multiplexers. Three parameters 
drove this design-size, speed and power dissipation. Turning to the adder 
first, size constraints dictated a ripple-style adder (Figs. 8.6 and 8.7b). This 
style of adder is the smallest that can be built with decent performance. The 
registers could be static or dynamic. For size considerations, dynamic regis­
ters were selected except for the coefficient storage. This in part led to the 
next decision which was the 2-phase clocking strategy. Again consistent 
with reduced size and power consumption, n-channel pass gates with 
p-feedback inverters were used where possible. For instance, the logic that 
implements the Booth gating is shown in Fig. 9.40. As a matter of interest, 
one can compare this with the BUS-OP gate shown in Fig. 9.25(b) (which is 
a subset of this gate). 
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Coe ff 

Tap Structure 

(a) 

SR 

Next Sum 
Booth Gate 

Previous Sum 

Booth Recode 

Section Input Sample 

(b) 

Previous Carry 

Next Carry 

SR 

Next Sum 
Booth Gate 

Previous Sum 

Booth Recode 

Section Input Sample 
(c) 

Why was one design used in one instance and not in the other? In the 
design in Fig. 9.40 area was of paramount importance, so the extra design 
time spent in verifying the correct operation of this gate (it is a ratioed gate) 
was well spent. In the processor example, the BUS-OP gate is one of many 
different modules that had to be designed, so a "fire and forget" philoso­
phy-that is, an approach that is guaranteed to function correctly and whose 
speed is verified during the norrrial course of transistor-level timing analy-

FIGURE 9.39 Tap design: 
(a) architecture; (b) RTL cir­
cuit; (c) carry save version 
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Figure 9.40 Booth gate 

Coeff --<-----~ 

Coeff*2 --<------+--+-~ 

r T 
·1 ·-1 ·2 ·-2 Zero 

sis-was used. If no transistor-level tools were available, a gate-level imple­
mentation (XOR and AND) gate would be used. This microexample 
provides a model for the kinds of optimization that may occur in a CMOS 
VLSI design. It is important to achieve a balance between optimization and 
project completion time. 

Power dissipation estimations showed that a 5-volt part would dissipate 
around 2-3 watts. While this is satisfactory for a ceramic package, some­
thing nearer one watt was required for a plastic package. Thus the decision 
was made to operate the chip at either 3.3 volts or 5 volts. As a result it was 
found that an 18-bit ripple adder was marginal at the slow corner of the 3.3-
volt operating conditions (110°C, 3.0 volts). This forced a reevaluation of 
the ripple-adder strategy and was solved by employing a carry-save 
approach. This is shown in Fig. 9.39(c). While this increases the overall 
power dissipation somewhat, it allows operation at the lower voltage, which 
resulted in a power dissipation near one watt for a 3.3-volt operation. Both 
sum and carry are pipelined, resulting in a critical path that is close to a 
clock-to-Q delay, a worst-case adder delay, and a register setup delay. In the 
process in which this chip was implemented, this was below 5 ns. A side 
benefit of this architecture is that it is capable of much higher frequency 
operation, thus extending the application of the basic filter to HDTV video 
rates. 

Figure 9.41 shows the final circuit diagram for a single bit of the filter 
tap. The complete filter tap consists of 18 of these bits with a clock driver 
and qualification block driving this datapath. An example of the symbolic 
layout of the datapath is shown in Fig. 9.42 (also Plate 11). Typical simula­
tions that would be run on this datapath would include speed tests to ensure 
that the stage operated at 17 .5 ns at all process corners. In addition, the power 
dissipation could be estimated to aid in overall chip planning and power dis­
tribution. 

The basic ftoorplan of a section is shown in Fig. 9.43. AU-shaped struc­
ture, ten taps wide, is used so that the input and output from the section are 
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Fixed Var. Vert. 
Delay Del. Route 
Line Line 

tap 

available at a central routing trunk. Because the Booth-re.coding logic 
is common to all taps, one recoder is used for all twenty taps in a section. An 
I/O section provides for driving the output of a section onto global IIR-sum 
and FIR-sum busses. Each section is connected to its neighbors via a cascade 
connection. 

9.3.5.2 Delay Lines 

There are at least two approaches to implementing the variable delay lines: a 
multiport RAM and shift register. Although the per-bit area of the RAM 
implementation is smaller than the shift register, the shift-register approach 
was chosen because it provided a more compact floorplan when considered 
in concert with the layout of the sections. 

The programmable delay line for each section is placed at the left of 
each section (Fig. 9.43). To the left of the variable delay line, the fixed-delay 
block is situated (Fig. 9.43). This consists of the actual delay line and a dis­
tributed multiplexer. The distributed multiplexer consists of 11 8-bit busses 
that run vertically for the height of the nine sections. Each fixed delay takes· 
its input from one of these busses and outputs to another. The multiplexer 
consists of tristate buffers placed under the vertical routing. 

The shift-register bit is a simple 2-phase dynamic register and is shown 
in Fig. 8.70(b), and the variable delay line is shown in Fig. 8.70(a). 

9.3.5.3 Phase-locked Loop- and Clock-generation 

The Phase-Locked Loop is a charge-pump type PLL s,9; it was first introduced 
in Fig. 5 .61 and is repeated in Fig. 9 .44. A divide-by-4 counter in the feedback 
loop provides one 16 x Fsc clock for a 4 x Fsc input-clock. The phase detector 
measures the difference between the PLL VCO frequency (divided by 4 in this 
case) and the incoming reference frequency ( 4 x Fsc-14.32 MHz). The phase 

u 

Phase Detector 
D 

Charge Pump Filter vco 
16 x Fsc 

4x Fsc 

FIGURE 9.43 Section 
floorplan 

FIGURE 9.44 PLL 
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Figure 9.45 Phase detector 

detector produces a sequence of UP or DOWN pulses, which are used to 
switch a charge pump. The charge pump either charges or discharges a capac­
itor with voltage or current pulses, as determined by the phase detector. A filter 
is used to limit the rate of change of the capacitor voltage, and the result is a 
slowly rising or falling voltage that depends on the frequency difference 
between the PLL VCO and the reference frequency. The VCO increases or 
decreases its frequency of operation as the control voltage is increased or 
decreased. Together, the components form a closed-loop feedback system 
whose phase and frequency response are determined by the characteristics of 
the charge pump, the filter, and the VCO. 

The phase-detector implementation is shown in Fig. 9.45. This is a con­
ventional phase detector implemented in static CMOS logic. If F 2 falls 
before F 1 falls, the signal DN is asserted. If F 1 falls before F2 falls, UP is 
asserted. 

The charge pump is shown in Fig. 9.46. The charge pump feeds pulses 
of current to a filter and capacitor, which has the effect of charging the capac­
itor up or down. This results in a voltage that rises or falls, and controls the 
VCO, either increasing or decreasing the frequency. The charge pump con­
sists of a resistively biased constant current source (N1, N2, N3) with n (N4) 

and p (P1) current mirror sources. These feed current mirror transistors N5 
and P2. These in turn are switched to the filter via CMOS transmission gates, 
with complementary clocks balanced for equal delay. The current-source 
transistors are double the minimum length to improve the drain conductance. 

Because the filter had to be monolithic (with no external components), an 
RC filter was constructed from MOS transistors. A CMOS transmission gate is 
used as a resistor, and MOS transistors are used as capacitors (Fig. 9.47a). 
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N-REF--j 

swo 

SW1 

These are not ideal components but are adequate for this application. 
P-diffusion resistors might also be used for the resistor, while the capacitors 
can be poly-poly capacitors if a two-poly process is available. Alternatively, 
the filter can be implemented off-chip at the expense of a pad and of possible 
noise injection. The equivalent RC filter is shown in Fig. 9.47(b). 

The VCO consists of 13 stages of a current-starved oscillator with a 
buffered output (Fig. 9.48). This was chosen because it had a wide range of 
operation and was verified to operate correctly over all process corners. The 
main parameter of interest for the VCO is the frequency range and the oscil­
lator sensitivity in terms of MHz/volts. The transistors were made larger than 
minimum to reduce the effects of geometry biases and to swamp the routing 

FIGURE 9.46 Charge pump 
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Figure 9.47 Filter 

Figure 9.48 VCO 

3.5/2 and 7/2 = 10K in Worst Speed 

2400/6 2400/6 

0 D 
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capacitance (thereby ensuring high-speed performance). The n- and 
p-transistors are sized to achieve equal rise and fall time. 

The filter values and the VCO sensitivity vary widely over process cor­
ners. The lockup times for the VCO have a much longer time constant than 
the VCO itself. Thus it is time consuming (and possibly impractical) to com­
pletely verify the VCO using circuit simulation (SPICE). In order to ensure 
that the chosen parameters would work over the process corners, a simple 
analytical model was constructed that modeled the PLL. This was used to 
verify the VCO lock times. Various of these functional simulations were 
spot-checked against full circuit simulations for accuracy in the analytical 
model. 

The output of the PLL is fed to the 2-phase clock generator, which is 
shown in Fig. 9.49. This consists of a conventional cross-coupled 2-phase 
clock generator with the final driver transistors being 4000µ (p) and 2000µ 
(n) wide. The clock load was 1 OOpF per phase. A multiplexer allowed the on­
chip PLL to be bypassed. This was done as a system requirement and also as 
a safety mechanism in case the analog PLL was inadequate (it wasn't). 

vco 
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9.3.5.4 Peripheral Processing 

A number of support modules surround the filters. These include 

• a microprocessor interface. 

• the final filter adder. 

• an I/O block. 

>-_._-<->->I Ph2 
4000/2000 

The microprocessor block is used to load the filter-block coefficients, 
configure the filter sections, and monitor filter overflow. The I/O block is 
responsible for converting the filter output to signed or unsigned form and 
for managing the I/O communication busses for multiple chips. The final 
adder combines the main pulse of the FIR with the output of the FIR and IIR 
filters. In addition it rounds the filter output to 8 or 9 bits and can scale the 
outputs or the FIR and IIR filters by factors of 2. In many ways it is this kind 
of "glue" and support logic that can dominate the design after the core signal 
processing section has been designed. One must always remember to count 
in the "control" portions of a design when estimating design times. 

9.3.6 Power Distribution 

At 5-volt operation, the chip dissipates around 2.5 watts and draws 500 mA. 
On average this is 55 mA per section with the peak current being much higher 
than this. To both achieve metal migration requirements and reduce switching 
noise, each section was effectively provided with a power and ground pad, 
shown in Fig. 9.50(a). These connections were routed in metal3. In addition, to 
reduce power-supply noise on-chip bypass capacitors were placed under the 
power lines. These consist of large gate-area n-transistors, with their gates 
connected to Vnn and source and drains connected to Vss (substrate). 

FIGURE 9.49 Clock gen­
erator 
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Figure 9.50 Power distribu­
tion to chip 

Figure 9.51 Ghost chip: 
(a) floorplan; (b) bond 
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Every filter section has a V DD and V ss pad on each side. 

9.3.7 Chip Floorplan 

The overall chip fioorplan is shown in Fig. 9.5l(a) (also Plate 12). The sec­
tions occupy the majority of the chip. The final datapath and 1/0 sections are 
at the top of the design. The clock driver is placed in the pad ring at the top 
left, while the PLL is placed in the pad ring at the top right. The PLL has its 
own 5-volt supply. 

Figure 9.Sl(b) shows the bond diagram for the chip for a 144-pin plastic 
PGA package. This is a step of the design process in which the placement of 
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{b) 

FIGURE 9.51 (continued) 

the I/O pads of the chip and the package bond leads are checked for bond­
lead compliance. Usually, this means checking for correct bond angles (the 
angle of the bond wire with respect to the center of the package, and check­
ing that bonds do not cross each other). 
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9.3.8 Testing and Verification 

Similarly to the testing of the RISC microcontroller, testing of this chip was 
completed at various levels. Low-level SPICE simulations_ were completed 
for key modules, such as the adder bit and registers. Timing simulation was 
completed at the section level with backannotated schematics. Full chip sim­
ulation was completed at the gate level using a unit-delay logic simulator. 
Functional models were also written for a filter tap, and simulations were 
completed at a mixed transistor/functional level. The Lisp functional model 
for a tap is shown below. 

(deffunctional-model csa-filter-stage-dp 
:inputs (("sum-in<17:0>" :capacitance .11) 

("carry-in<17:0>" :capacitance .09) 
(Z :capacitance .26) 
(*+1 :capacitance .26) 
{*+2 :capacitance .26) 
(*-1 :capacitance .26) 
{*-2 :capacitance .26) 
(load-coeff :capacitance .08) 
(-load-ace :capacitance .18) 
(phl :capacitance .18) 
(ph2 :capacitance .26)) 

:outputs (("sum-out<17:0>" :capacitance .08) 
("carry-out<17:0>" :capacitance .11)) 

:local-state ((*-2or*-1 :initform 'X) 
(creg-master :initform '0) (creg :initform '0) 
(sreg-master :initform '0) (sreg :initform '0) 
(recode-reg :initform '0) 
(coeff-reg :initform '0) 
(coeff-shifter :initform '0) 
(coeff-shifter-reg :initform '0)) 

:model (progn 
; most outputs advance on phasel 

(when (eq phl 1) 
(setq *-2or*-1 (sim-or *-1 *-2) 

creg creg-master 
sreg sreg-master 
coeff-shifter (if (eq coeff-shifter-reg 'X) 'X 

(lsh coeff-shifter-reg 2) )) 
,, recoding the coefficient 

(setq recode-reg 
(cond 

( (eq Z 1) 0) 
( (eq coeff-shifter-reg 'X) 'X) 
((eq *+l 1) coeff-shifter-reg) 
( (eq *-1 1) (logxor coeff-shifter-reg #0777777)) 
( (eq *+2 1) (lsh coeff-shifter-reg 1)) 

( (eq *-2 1) ( logxor ( lsh coeff-shifter-reg 1) #0777777)) 
(t 'X)))) 

,, compute sum/carry output bits of the adder 
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(if (or (eq recode-reg 'X) (eq sreg 'X) 
(eq creg 'X) (eq *-2or*-1 'X)) 
(setq sum-out 'X 

carry-out 'X) 
(loop with sum = 0 and carry = 0 

for i below 18. 

9.3 A TV ECHO CANCELLER 693 

for coeff-bit = (ldb (byte 1 i) recode-reg) 
for sum-bit = (ldb (byte 1 i) sreg) 
for carry-bit first *-2or*-1 then 

(ldb (byte 1 (1- i)) creg) 
for adder = (+ coeff-bit sum-bit carry-bit) 

do (setq sum (dpb (logand adder 1) (byte 1 i) sum) 
carry (dpb (lsh adder -1) (byte 1 i) carry)) 

finally (setq sum-out sum 
carry-out carry))) 

,, phase 2 clock asserted 
(when (eq ph2 1) 

;; coefficient load cycle 
(when (eq load-coeff 1) 

(setq coeff-reg sum-in)) 
;; accumulator-load cycle 

(case -load-ace 
;reload coefficient 

(0 (setq coeff-shifter-reg coeff-reg 
creg-master carry-in 
sreg-master sum-in)) 

;shift coefficient 

:delays 

(1 (setq coeff-shifter-reg coeff-shifter 
creg-master carry-out 
sreg-master sum-out)))) 

((phli sum-outi :delay 11.4 :driver-size 12/1) 
(phli sum-outi :delay 11.4 :driver-size 8/1) 
(phli carry-outi :delay 11.4 :driver-size 12/1) 
(phli carry-outi :delay 11.4 :driver-size 8/1)) 

:timing-constraints ( (-load-accph2i:setupl.O :hold3.0) 
(Z phli :setup 8.4 :hold 3.0) 
{*+l phli :setup 8.4 :hold 3.0) 
(*-1 phli :setup 8.4 :hold 3.0) 
(*+2 phli :setup 8.4 :hold 3.0) 
{*-2 phli :setup 8.4 :hold 3.0) 
(sum-in ph2i :setup -3.0 :hold 3.0) 
(carry-in ph2i :setup -3.0 :hold 3.0) 
(load-coeff phi :setup 3.25)) ;write pulse setup 

At the start of the model, inputs and outputs are defined by the keywords 
inputs and : outputs. Each input is denoted by a name and a load 

capacitance, while each output has a name, a capacitive load, and a drive 
strength. The : 1oca1-state keyword denotes the internal registers in the 
model and their initialization values. The functionality is specified within the 
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: model section. Finally, the : delay section specifies important signal-to­
signal delays, while the : timing-constraints section specifies 
: setup and : hold times for the registers in the design. The timing values 
are derived from SPICE or timing simulations. The model above is useful for 
both simulation and timing analysis. In the latter case, the modularity of the 
tap is well specified by the I/O and timing specifications that are included. 
Extensive timing analysis was completed, using backannotated schematics 
with parasitics extracted from compacted mask layouts. 

The critical path in this design consisted of the clock generator and dis­
tributed skew in the clock lines (remember that the design also had to operate 
at 3.3 volts). 

9.3.9 Summary 
This section has presented an example of a CMOS VLSI design that employs 
a high degree of regularity. Accordingly, the design style changes from the 
processor design, with much more emphasis being placed on circuit and lay­
out design for the key replicated cells. A key talent in CMOS-system design 
is knowing when and where to optimize. For example, had the ghost­
cancellation chip been implemented as a standard-cell or gate array, it would 
have been from 4 to 10 times larger, resulting in a chip cost that would have 
made the implementation economically infeasible. 

9.4 A 6-bit Flash AID t 

9.4.1 Introduction 
This final example has been included as an example of a simple analog cir­
cuit that is almost digital (hence its inclusion in a digital CMOS text). The 
circuit is a 6-bit AID converter implemented as a "flash" converter. This pro­
vides for a very fast converter at the expense of area. Although limited to 
about 8 bits of resolution, as CMOS circuits are becoming smaller over time, 
this circuit architecture is also becoming smaller, and faster. This style of 
converter or variants is of particular use at video-sample rates. 

Figure 9.52 shows the basic architecture. An analog input is presented to 
a sample-and-hold circuit, which feeds one input of 2N comparators, where 
N is the desired digital precision. A clock input samples the input and strobes 
the sample-and-hold. The other input to the comparators is connected to a 
resistor string connecting a reference voltage ( + V REF and -V REF). For a 
given input voltage, after the sampling process and the comparators have 

tDesigned by N. Weste. 
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Analog Input Voltage 

2n Resistors 
and 
Comparators 

Sample/Hold 

-VREF 

Thermometer Decoder 

l 
000111 

Digital Output Value 

switched, the output of the comparators is a string of 1 s where the highest 1 
represents the highest comparator that switched. This is represented in the 
diagram by a gray bar. A decoder may be used to convert this "thermometer 
code" to an N-bit number. 

9.4.2 Basic Architecture 

A CMOS implementation of a 6-bit flash AID converter is shown in Fig. 
9.53. It consists of a polysilicon resistor string, 64 sampling comparators, 64 
registers, and a thermometer decoder that consists of 64 3-input NOR gates 

input 
64 comparators 
64 resistors 

clock 

64 registers 64 NOR gates PLA 6-bit digital output 

FIGURE 9.52 Flash A/D 
architecture 

FIGURE 9.53 Flash circuit 
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696 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

and a 64-term PLA. The analog parts that have to be designed include the 
resistor string and the comparators. The digital parts consist of the register, 
the NOR gate, and the PLA. 

9.4.3 Resistor String 

The resistors may be implemented as diffusion resistors, polysilicon resis­
tors, or metal in very high speed flash converters. In this design, polysilicon 
resistors were used. The value of the resistor and the reference voltage deter­
mine the DC current drawn by the reference ladder. Choosing the value of 
the resistors is a trade-off between limiting the DC power dissipation and 
achieving a low impedance reference to supply the comparator. The value 
chosen in this design was 20 Q, which is approximately 1 square of polysil­
icon. This yields a nominal resistance of 1280 Q for the string. For a 1-volt 
reference the current drawn is approximately 0.8 mA. 

9.4.4 The Comparator 

The comparator is shown in Fig. 9.54. It consists of two cascaded, capaci­
tively coupled, auto-zeroed inverters 10 followed by a dynamic register. Dur­
ing the sample time, the input value is stored on the capacitor C 1 via pass 
gate P 1, while the inverters are auto-zeroed via pass gates P3 and P 4. The 
auto-zero step is used to reduce the effect of any offset voltages present in 
the comparator. The transistors in each inverter have slightly different char­
acteristics (such as threshold voltage and beta). This in turn leads to slightly 
different transfer characteristics. If the inverters were not auto-zeroed, the 
comparators would switch at slightly different voltages. The auto-zero step 
reduces this offset to below the precision of the converter. 

When sample is false, the reference input is connected to the capacitor, 
thereby transferring charge to or from the capacitor. This causes a voltage 
change at the input of the first comparator, which causes the output of the 
comparator to rise or fall by an amount proportional to the gain of the 
inverter (and the capacitive divider formed by C1 and the input capacitance 
of the inverter). This signal is further amplified by the second comparator. 
This is then passed to a register. 

As stated, the gain of the comparator depends on the gain of the inverter 
and the ratio of C 1 ( C2) to the input capacitance of the inverter. The input 
capacitance of the inverter is approximately two minimum-size transistor 
gate capacitances. In a two-polysilicon process, the coupling capacitor (C1) 

can be made large compared to the gate capacitance. However in a single 
poly process, this capacitor has to be made from a relatively low capacitance 
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poly-metal-metal2 sandwich (poly and metal2 connected to one plate, metal 
to the other). In this design this capacitor was made .05pF. The combined 
gain of the capacitor and an inverter was around 10 (the capacitor value used 
roughly halves the gain). Thus two comparators result in a gain of about 100. 
Figure 9.54(b) shows the frequency response of two capacitively coupled 
comparators. This would indicate a sensitivity of around lOmV. In practice 
the converter demonstrated 6-bit resolution with an input reference of 
600mV, which agrees with these simulated results. 

The transistor size and nip f3 ratio of the inverter transistors affect the 
DC-transfer characteristic (gain, linearity, and dynamic range) and the AC 
performance (bandwidth and phase response). A design often involves mak-

sample 

sample sample 

(a) 

Latch 
1000 

100 
2nd Comp 

Gain 

10 
1st Comp 

100 1K 10K 100K 1M 10M 100M 

Frequency (Hz) 

(b) 

FIGURE 9.54 Comparator: 
(a) circuit; (b) frequency 
response 
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698 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES 

ing a compromise between conflicting requirements. For instance, the 
inverter gain is improved by using transistors with slightly longer than min­
imum length at the expense of input-loading capacitance. Increasing the 
width of the p with respect to the n moves the quiescent point ("f11 = Vout) of 
the DC~transfer characteristic toward midrail but increases the input capaci­
tance, which reduces the gain. The main point to note here is that with this 
extremely simple analog circuit, a relatively large effort goes into the design 
of one inverter compared with that of a logic inverter. 

The maximum sample rate of the converter is dependent on the band­
width of the comparators (and reference resistor string) and the maximum 
clock frequency of the digital circuitry. A SPICE-frequency analysis (Fig. 
9.54b) revealed that the comparator used here (for the process used) had a 
3dB bandwidth of 10 MHz. Measured devices were successfully operated at 
10 MHz with supply voltages of both 3 and 5 volts. 

Complementary transmission gates are used as analog switches. Charge 
injection occurs when a changing gate signal couples charge to the source/drain 
node via Cgd or Cgs· This can be minimized by using complementary switches 
and delay-balanced clocks. The sample clock and its complement are buffered 
with an equalized delay clock generator (shown in Fig. 5.52b). The CMOS 
switches have to be made large enough to achieve speed goals. 

The final piece of circuitry in the comparator is a dynamic register. 
This consists of two cascaded tristate inverters followed by a pair of buff er 
inverters. 

9.4.5 Thermometer Code Logic 
The output of the comparators is a thermometer code, which has to be con­
verted to a binary number. This is achieved using a logic gate, which checks 
for a 011 code using a 3-input NOR gate (Fig. 9.55). This indicates the upper 
boundary of the comparator output. This is then passed to a PLA-style 
decoder, which has a term for every comparator. For instance, the 8th bit is 
shown. When the signal at the output of the NOR gate is asserted, the PLA 
NOR gate transistors are turned on, causing the code 000111 to appear at the 
output. The PLA is implemented with a pseudo-nMOS NOR gates. 

9.4.6 Floorplan and Layout 
A basic cell horizontally joins a resistor, two comparators, the register, and 
the thermometer gate. This structure is then arrayed 64 times vertically. The 
decoder PLA is abutted horizontally on the right of this structure, and clock 
and I/O buffers are placed on the top and bottom of the structure. This floor-
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Q-Above _ _,,----._ 
-0<0> 1-------+--+----+--l+-----il--+l-+--I 

-Q-below --u_-----

plan is shown in Fig. 9 .56. A generator was written to automatically generate 
the layout for a given resolution. A chip micrograph is shown in Plate 13. 

A portion of a 2-bit section of the converter layout is shown in Fig. 9 .57. 
The resistor string may be seen at the bottom, with the resistors placed ver­
tically. The input/reference switches are above the resistors. The comparator 
capacitor is the long structure in the center of the layout. The capacitor is 

output buffers 

resistor string 64 comparators therm PLA -.... and registers gate 

clock drivers 

FIGURE 9.55 Thermometer 
decode logic 

FIGURE 9.56 Floorplan of 
AID 
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clock and-clock run vertically 

FIGURE 9.57 Partial cell 
layout for AID two-bit section 
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about 100,u long. This would be much smaller in a double polysilicon pro­
cess. Above the capacitor is the comparator inverter and auto-zero switch. 
Another comparator, register, NOR gate, and PLA gate are placed above this 
section in the converter. 

9.4. 7 Summary 
A modest implementation of a flash AID converter has been presented in 
order to illustrate some of the issues that are addressed as we leave the digi­
tal world. There is a wealth of literature on AID conversion, and the reader is 
encouraged to investigate these sources if this subject is of interest. For a 
more efficient 8-bit AID converter employing a similar technique see Ding­
wall and Zazzu 11 and Tsukada et al. 12 

9.5 Summary 

This chapter has presented three case examples of CMOS designs. The first 
described a contemporary RISC microcontroller with a mix of datapath, 
memory, and control logic. This design could be implemented in a wide 
range of CMOS logic styles and design methods. The second described a 
high-performance signal-processing circuit that is representative of video­
rate architectures. To achieve commercial viability this design required cus­
tom layout and innovative architecture and circuit design. The final design 
featured a straightforward flash AID converter representing the interface 
between the analog world and the CMOS digital domain. In this design the 
focus extends to basically one inverter which is extensively simulated. From 
these examples it may be seen that the more complex a system becomes, the 
less time is available to spend on low-level details; notwithstanding, it is 
possible to create denser, faster designs in a given technology if the appro­
priate amount of design effort is invested. In these days of short product 
cycles, time to market is almost always the dominant concern. This leads to 
the requirement for short design times. This in turn is achieved by the use of 
highly automated design systems, the use of libraries, and the reuse of other 
components of interest. 

9.6 Exercises 

1. In order to achieve a short cycle time, the RISC microcontroller in 
Sectiori 9.2 used four pipeline stages. Redesign the processor to run 
in a single (albeit longer) cycle. How does each module change? 
What simplifications may be made? 

9.6 EXERCISES 701 
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2. If the critical path of the processor is that shown in Section 9.2.3.1.3, 
what changes to the architecture would you make to improve this 
speed? 

3. Sketch out the logic design for a multiplication-function block that 
can be attached to the processor in the EXT_BUS_DP module. 
(Could you implement multiplication on the processor as described?) 

4. Examine alternative architectures to implement the FIR/IIR filters in 
the ghost cancellation chip (i.e., 8 x 8 multiplier running 4 taps). 
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.MODEL- SPICE MOS model 
call, 189 

22Vl0, 392 
3-D CMOS, 140 
AID converter, 694 
abstraction levels, 21 
AC specifications, 457 
accelerated lifetime testing, 250 
acceptor, 110 
acceptor silicon, 112 
accumulation, 181 
accumulation mode, 44 
accumulator architecture, 629 
Actel, 395 
active mask, 118 
active-matrix LCDs, 140 
activity file, 469 
AD - SPICE MOS model parameter, 

190 
ad-hoc testing, 485 
adder as a compressor, 556 

bit-serial, 520 
block, 534 
carry lookahead, 526 

carry propagate, 523 
carry select, 532 
carry-save, 522 
conditional sum, 532 
Manchester, 528, 646, 667 
one bit, 515 
parallel, 517 
ripple, 517 
transmission gate, 524 
wide, 534 
truth table, 23 

adders, 515-536 
address architecture, 629 

comparator, 658 
algebraic decomposition, 428 
Algotronix, 403 
ALPHA microprocessor, 333 
ALU, 640, 645 
ALU 181, 542 

instructions, 631 
ambient temperature, 243 
amorphous silicon, 140 
amplifier, 71 
AND function, I 0 
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gate 16 
anisotropic etch, 126, 128 
antifuse, 395 
arithmetic logic units AL Us, 542 
array multiplication, 545 
AS - SPICE MOS model parameter, 190 
ASTAP, 441 
asychronous counters, 539 
asynchronous RAM, 564 
ATPG, 476 
automatic gate layout, 280 

test pattern generation ATPG, 476 
avalanche breakdown, 47 

phenomena, 362 

back-annotation, 37, 448 
backtrace, 479 
barrel shifter, 560 
base, 93 
base-function set, 429 
behavioral description, 31 

domain, 21, 22 
synthesis, 424 

beta ratio, 68-69 
BiCMOS, 96 
BiCMOS logic, 297 

processes, 136-138 
bidirectional I/O, 364 
BILBO, 494 
binary adder truth table, 23 

composition, 439 
counters, 539 

bipolar inverter, 94 
transistor 93 
transistor DC characteristics, 95 

bird's beak, 121 
bit-parallel adders, 517 
bit-serial adders, 520 
bloating masks, 165 
block adder, 534 
body effect, 51, 54, 223 

ties, 123 
BOLD, 429 
bond diagram, 690 
Boolean function unit, 305-306 

operations, 541 
unit, 647 

Booth recoded multiplication, 547 
bootstrapping, 217 
Boron, 112 
Boundary Scan techniques, 500-507 

Bresenham algorithm, 23 
built in logic block observation 

BILBO, 494 
bulk potential, 48 
buried channel, 121 

contact, 152 
bypass capacitors on-chip, 689 
bypassing, 637 

C-SWITCH, 8 
C2MOS, 301-303 
C2MOS latch, 342 
CALI 024, 403 
call instruction, 634 
Calma Stream format, 155 
CAM, 589 
Canonic Signed Digit CSD, 676 
capacitance models, 192 

values for 1 µm process, 202 
capacitor chip, 696 
capacitors chip, 134 
carrier concentration, 49 
carry function, 23 

lookahead adders, 526 
propagate adder CPA, 523 
save adders, 522 
select adder, 532 

cascade voltage switch logic, 311 
cascode inverter, 80 
Cathedral I II III, 424 
cdb• 183 
cgb• 183 
CGBO - SPICE MOS model 

parameter, 189 
cgd• 183 
CGDO - SPICE MOS model 

parameter, 189 
cgs• 183 
CGSO- SPICE MOS model parameter, 

189 
channel length modulation, 55 

resistance, 60, 177 
router, 431 
stop, 116 
stop implant, 119 

charge pump, 334, 686 
sharing, 240 
storage, 333 

chemical vapor deposition, 132 
chip composition, 439 
circuit extraction, 166 
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circuit-level simulation, 441 
CJ - SPICE MOS model parameter, 190 
CJSW - SPICE MOS model parameter, 

190 
CLB, 400 
clean V DD and Vss• 361 
CLi6000, 406 
clock buffer design, 364 

buffers, 325 
design, 333 
distribution, 356 
enabling, 350 
generato,r 688 
multiplication, 334 
race, 323 
skew,201,324,325,344,345 
synchronization, 334 
tree, 356 

clocking schemes, 334 
CMOS delays, 206-216 

cell array, 286 
complimentary logic, 295 
gate design, 262 
inverter, 9 
inverter - DC characteristics, 61-68 
inverter amplifier, 71 
inverter layout, 273 
layout guidelines, 287 
multi-drain logic, 299 
process enhancements, 130 
transistor construction - mask, 150 
transmission gate - DC operation, 

86-90 
CMRR - Common Mode Rejection 

Ratio, 81 
coarse grid symbolic-layout, 417 
collector, 93 
column decoders, 576 
combinational logic, 10 
common mode gain, 81 
compaction, 420 
comparator, 658 
comparator analog, 696 
comparators, 537 
complex gate delays, 214 

gate layout, 279 
complimentary switch, 8 
compound gates, 15 
compressors 3 :2 4:2, 556 
concurrent fault simulation, 482 
Concurrent Logic 406 
condition-code logic, 660 

conditional branching, 638 
conditional-sum adder, 532 
conductor capacitance as a function of 

spacing, 198 
sheet resistance, 177 

conductors sizing, 238 
configurable array logic CAL, 403 

logic block, CLB 400 
conflict-free carry bypass, 531 
constant current load inverter, 77 

field scaling, 251 
voltage scaling, 251 

contact replication, 240 
resistance, 179 
rules, 151 

content addressable memory CAM, 
589 

control logic, 590-620 
logic example, 659 
transfer, 633 

controllability, 475 
controllability measures, 479 
COP, 481 
core limited, 357 
counter design, 487 
counters, 539 
CPA, 523 
critical path, 644 

paths, 263 
cross-controlled latch, 494 
crowbarred, 10 
csb• 183 
CSD, 676 
current density, 238 

mirror, 84, 336 
starved inverter, 336 

CVD, 132 
CVSL, 311 
cyclic redundancy checking, 494 
Czochralski method, 110 

D register, 325, 643 
D-algorithm, 478 
D-propagation, 478 
DALG, 478 
dark field, 147 
data sheets, 456 
datapath layout, 663, 684 
datapaths, 513 
DC specifications, 457 
defects-manufacturing, 468 
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delay fault testing, 482 
lines, 685 
model, 222 
time, 206, 211 

depletion, 181 
depletion capacitance, 182 

layer, 181 
lod inverter, 79 
mode, 44 
mode transistors, 42 

deposition, 112 
design corners, 246 

economics, 449 
flow, 441 
for testability, 485 
margining, 243 
rule verification, 448 
rule waiver, 142 

device failure, 57 
under test DUT, 469 

difference engine, 383 
differential gain, 81 

inverter, 81-86 
split-level cascade logic, 314 

diffusion capacitance, 186 
capacitance values, 188 
equation, 199 

diode, 91 
diode clamps, 362 

current, 91 
directed-acyclic-graph DAG technol-

ogy mapping, 429 
dirty Vvv and Vss• 361 
disjoint hierarchy, 384 
distributed RC effects, 198-202 
domino logic, 308, 341 
donor, 110 
donor silicon, 112 
donut transistor, 278 
dopant, 110 
double guard ring, 162 
double-edge triggered register, 328 
DRACULA, 164 
drain engineering, 122 
DRAM cells, 135 
DRC, 164 
dummy collectors, 162 
DUT, 469 
dynamic CMOS logic, 301 

D latches, 330 
logic, 310 
power dissipation, 233 

RAM cells, 566 

EAROM, 136 
EBES, 449 
EBL, 113 
ECLI/O, 367 
edge-triggered register, 19-20, 319 
EDIF, 430 
EEPROM, 394 
EEROM, 136 
effective resistance, 219 
E8 band gap energy of silicon, 49 
electon beam lithography, 113 
electrically alterable ROM, 136 
Electron Beam Exposure System 

EBES, 449 
ELLA, 22 
Elmore delay, 219 
emitter, 93 
emphirical delays, 213 
enhancement mode transistors, 42 
environmental characteristics tempera-

ture, 243 
characteristics voltage 244 

epitaxial, 140 
epitaxial layer, 124, 160 
epitaxy, 111 
Espresso, 428 
estimating design schedules, 453 
Euler path, 280 
evaluate, 301 
externally induced latchup, 159 

fall time, 206, 208 
FAN, 478 
fan-in, 264 
fan-out, 264 
fat-metal, 154 
fault coverage, 475 

grading, 481 
machine, 475 
models, 472 
sampling, 484 
simulation, 481 

field aiding, 163 
device, 116 

field-induced junction, 45 
field-oxide, 116 
field-programmable gate-array FPGA, 

400 
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FIFO, 582 
final test yield, 452 
Finite Impulse Response, 674 

state machine, FSM 317 
finned capacitor, 135 
FIR filter, 674 

filter tap design, 680 
first in first out memory FIFO, 582 
fixed costs, 452 
flash AID converter, 694 
fiat-band voltage, 48 
fioorplan, 690, 698 
fioorplan examples, 665-671 
fioorplanning, 438 
four-phase clocking, 351 
Fowler-Nordheim tunneling, 57,136 
FPGA, 400 
frequency response, inverter, 698 
fringing fields, 191 
FSM, 317 
full custom mask design, 417 
fully restored, 15 
function memory, 470 
functional model, 692 

verification, 669 
functionality tests, 466 
fusible links, 394 

GaAs technology, 38 
ganged CMOS, 300 
gate capacitance, 181 

extension, 150 . 
isolation, 411 
matrix symbolic-layout, 418 
oxide, 43 
oxide capacitance, 182 

gate-array design, 407-413 
layout, 285 

gate-under-test, GUT, 477 
gates compound, 15 
GEMINI, 447 
generate signal G, 515 
generators, 434 
geometric isolation, 410 
Ghost canceller chip, 672 
GND, 7 
good machine, 4 7 5 
graph compaction, 420 
graphical editor, 437 
gross die per wafer, 452 
GROUND, 7 

ground bounce, 239 
GTL, 368 
guard rings, 152, 361 
Gunning I/O logic, 368 

hardware description language, 437 
stack, 655 

HDL, 425, 437 
Heil, 0., 3 
hierarchy, 383 
high-impedance, 8, 10 
hold time, 318, 323 
holding voltage, 156 
hot electrons, 57 
HSPICE, 441 

I/O latchup prevention, 162 
pads,357 
structures, 357 

IDD testing, 474 
IDDQ testing, 74, 498 
IIR filter, 67 4 
impact ionization, 57 
impurity, 110 
incrementer, 539 
inductance, 205 
inertial delay, 443 
input, 7 
input pad, 361 

protection, 362 
waveform slope, 216 

instruction set, 629 
inter-layer contacts, 151 
interdigitated pads, 357 
internal latchup prevention, 161 
intrinsic delay, 443 

silicon, 109 
inversion, 181 
inversion mode, 44 

notation, 19-20 
inverter, 9 
inverter BiCMOS, 96-98 

bipolar, 94 
current load, 72 
layout, 273 
resistive load, 72 
threshold voltage, 228 

ion implantation, 112 
island, 118 
isolation of MOS transistors, 50 
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isomorphism network, 446 
isotropic etch, 128 
iterative logic array testing, 498 

jamb latch, 326 
JK register, 320 
jump instruction, 634 
junction capacitance, 187 

diode, 91 
pn, 110 
temperature, 243 

k Boltzmann's constant, 49 
kink effect, 129 

LAGER, 424 
lambda design rules, 142 

SPICE parameter, 51 
laser pantography, 395 
last in first out memory LIFO, 582 
latch, 19-20, 318 
latchup, 156-163 
latchup prevention, 160 

triggering, 158 
latency, 524 
lateral scaling, 251 
layer assignments CIF, 155 

assignments GDS2, 155 
representations, 143 

layout design rules, 142-156 
extraction, 448 
multiplexer, 294 
synthesis, 434 
transmission-gate, 291 

layout-versus-schematic LVS, 447 
LDD, 122 
leaf cell, 35 
leakage current, 231 
LEVEL, 481 
Level 3 SPICE model, 99-105 

sensitive scan design LSSD, 489 
level-sensitive latch, 19-20, 319 
LFSR, 496 
LIFO, 582 
light field, 14 7 
lightly doped drain LDD, 122 
Lilienfeld, J. , 3 
linear feedback shift register LFSR, 

496 
operating region, 45 

Lisp, 692 
literal, 632 

local interconnect, 133 
locality, 389 
LOCOS, 121 
logic levels, 8 

optimization, 427 
simulation, 443 

loop filter, 334, 686 
low power logic, 368-370 

power standard cells, 414 
LSSD, 489 
LVS, 447 

machine as applied in testing, 475 
macromodeling, 221 
Manchester addelj, 528, 646, 667 
manufacturing defects, 468 

tests, 468 
maze router, 431 
memory, 563-590 
memory test, 497 
merged contact, 152 
mesa, 118 
metal interconnect, 130 

rules, 154 
tab, 131 

metal2 process steps, 132 
rules, 154 

metal3 rules, 154 
metallization, 122 
metallurgical junction, 45 
metal migration, 238-239, 361 
metastability, 337 
Miller effect, 218 
min-cut algorithm, 431 
MIS, 429 
mixed-mode simulation, 444 
MJ - SPICE MOS model parameter, 

190 
MJSW - SPICE MOS model parame-

ter, 190 
mobility, 52 
mobility variation, 56 
modularity, 387 
MOS capacitor, 180 

DC device equations, 51 
device capacitances ,183 
gate capacitance, 184 
switches, 7 
transistor DC characteristics, 53 
transistor intoduction, 4 
transistor invention, 3 
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transistor symbols, 41 
MOTIS, 442 
MTBU, 339 
MULGA, 421 
multiple conductor capacitances, 192 
multiplexer, 17-18, 140, 304 
multiplexer layout, 294 
multipliers, 542-560 
multiport memories, 580 

N-switch, 7 
n-well CMOS process, 117-123 

CMOS process flow, 168-172 
construction, 118 
rules, 150 

NAND gate, 11 
gate delay, 265 

NAND-NOR delays, 267 
layout, 278 

native substrate, 117 
net-list, 35 
netlist comparison, 447 
network isomorphism, 446 
nichrome, 134 
NMH, 70 
NMv 70 
nMOS transistor, 43 
noise margin, 69-71 
non-recurring costs NREs, 450 
nonsaturated region, 45 
NOR, 586 
NOR gate, 12 
not gate, 9 

notation, 19-20 
notation inversion, 19-20 
NP domino logic, 310 

dynamic logic, 341 
NREs, 450 
NRZ, 470 
NS, 421, 434 

observability, 474 
observability measures, 479 
ohmic contact, 121 
one detectors, 537 
one-bit adders, 515 
ONO, 396 
open-circuit faults, 473 
operating conditions temperature, 243 
OR function, 10 

output, 7 
output condunctance, 60 

pads, 360 
overglass, l 55 
oxidation of Si02, 111 
oxide breakdown, 361 

capacitance, 182 
oxide-nitride-oxide ONO, 396 

p-well CMOS process, 123-124 
packaging, 247 
packaging yield, 452 
pad limited, 357 

pullups and pulldowns 365 
PALs, 392 
parallel fault simulation, 481 

hierarchy, 383 
plate capacitance model, 191 
scan testing, 494 
switches, 10 

parasistic transistors, 116 
parasitic capacitance, 183 
parity generators, 537 
partial products, 546 

scan testing, 493 
pass transistor logic, 304 
pass-around, 637 
passivation, I 55 
pattern gates, 429 

generation, 448 
PB - SPICE MOS model parameter, 

190 
PC, see program counter, 654 
PCMs, 225 
PD - SPICE MOS model parameter, 

190 
Pearl, 445 
Penfield-Rubenstein delay model, 219 

slope delay mode, 220 
peripheral capacitance, 187 
personalization, 411 
PG logic, 530 
PGA, 247 
phase detector, 686 

Locked Loop PLL, 685 
phased-locked loops, 334 
Phosphorous, 112 
phosphorous glass, 126 
photoresist, 113 
physical description, 28, 35-36 

domain, 21 
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hierarchy, 384 
origin of latchup, 156 

PIDL, 168 
pinched off, 45 
pipeline diagram, 637 
pipelined system, 317 
pipelining, 524, 634 
PLA generator example, 435 
placement, 431 
planarization, 121 
PLDs, 392 
PUCE, 395 
PLL, 685 
PLLs, 334 
pMOS transistor, 47 
pn diode, 91 

juntion, 45 
pnp transistor layout, 153 
PODEM, 478 
PODEM-X, 478 
poly2, 134 
polycide, 132 
polysilicon, 113 
POWER, 7 
power and ground bounce, 239 

bounce, 239 
dissipation, 231-237 
dissipation dynamic, 233 
dissipation short-circuit, 235 
dissipation static, 231 
distribution, 689 
economy, 237 
saving pseudo-nMOS, 587 

PQFP, 247 
PR, 113 
precharge, 301 
predecode gates, 575 
preferential etch, 128 
primary inputs, 477 

outputs, 477 
probe card, 470 
process control monitors PCMs, 225 

gain factor, 54 
Input Desciption Language, 168 
migration, 423 
variation, 245 

program counter, 634, 654 
programmable array logic PALs, 392 

interconnect, 395 
logic devices PLDs, 392 
logic structures, 392 

propagate signal P, 515 

PRSG, 496 
PS - SPICE MOS model parameter, 

190 
pseudo random sequence generator 

PRSG, 496 
pseudo-nMOS, 537, 586, 646, 658, 

698 
pseudo-nMOS inverter, 73-77, 228 

logic, 298 
PSG, 137 
PSWITCH, 8 
punch-through, 47 
punch-through devices, 362 
punchthrough, 57 
PWR, 7 

q electronic charge, 49 
QuickLogic, 396 

race clock, 323 
radiation tolerance, 129 
radio frequency interference RPI 

pads, 366 
radix-2 multiplication, 547 
RAM, 564 
RAM read operation, 567 

sense amplifier, 84 
write operation, 572 

rapid prototyping, 653 
rats-nest, 438 
RC delay clock, 334 
read-only-memory, 585 
recurring costs, 450, 452 
refractory metal, 132 
register, 19-20, 318 
register file, 651 

files, 580 
registered pads, 365 
regularity, 387 
reliability, 250 
resettable register, 330 
resistance, 176 
resistance extimation, 176 

of nonrectangular regions, 178 
resistivity, 176 
resistor string, 696 
resistors chip, 134 
result forwarding, 637 
return instruction, 634 
reverse breakdown voltage, 93 
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rip-up-and-reroute, 439 
ripple adders, 517 
RISC microcontroller, 628 
rise time, 206, 210 
ROM, 585 
ROM layout, 588 
round transistor, 278 
routing, 431 
routing capacitance, 191-198 
row decoders, 574 
RS-latch, 319 
RSIM, 444 
RTL synthesis, 425 
RTZ, 470 
Rubylith®, 448 
rule based logic optimizer, 429 

SAO, 472 
SAl, 472 
salicide, 132 
sample-set differential logic SSDL, 

313 
sapphire, 126 
saturated load inverters, 78-79 

region, 45 
SBZ, 470 
scaling, 250 
schematic design, 437 

icon, 437 
schmooing, 4 7 1 
SCOAP, 479 
scribe line, 155 
sea-of-gates design, 407-413 

layout, 286 
seed layer, 140 
select mask, 122 
selective diffusion, 113 
self test, 494 
self-aligned process, 116 
sense amplifier, 84 

amplifiers, 579 
sensitized path, 477 
sequential fault grading, 475 

faults, 473 
serial in parallel out memory SIPO, 

582 
multiplication, 557 
scan testing, 490 

serial-access memory, 583 
serial/parallel multiplication, 559 
series switches, I 0 

settable register, 330 
setup time, 318 

time, 323 
SFPL, 314 
sheet resistance, 176 
shift register, 685 

register latch SRL , 489 
shifter, 649 
shifters, 560 
short-circuit dissipation, 235 

faults, 473 
sidewall capacitance, 187 
signature analysis, 494 
silicide, 132 
silicon gate process, 113 

nitride, 50 
Silicon-on-insulator, 125-130 
simulation, 441-445 
simulation circuit-level, 441 

logic, 443 
mixed-mode, 444 
switch-level, 444 
timing, 442 

simulator delay model, 222 
SiN, 112, 120 
single dynamic clock latches, 331 

wire capacitance, 191 
sinker layer, 140 
Si02, 112 
SIPO, 582 
site, 285 
sizing conductors, 238 
slope delay model, 220 

effect on delay, 216 
small signal characteristics, 59 
SOG, 407-413 
SOI, 125-130 
SOI advantages, 129 

rules 156 
source follower pull-up logic SFPL, 

314 
source-drain extension, 150 
SPICE, 441 
SPICE characterization example, 652 

circuit description language, 27-28 
modeling of capacitance, 188 
MOS Model call, 189 
MOS parameters - typical, 59 

split contact, · 152 
SRAM cell, 133, 139 
SRL, 489 
SSDL, 313 
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stack address generator, 660 
architecture, 630 
hardware, 655 

STAFAN, 483 
stage ratio, 229 
stage-ratio, 265 
standard cell design, 413-416 

cells 283 
static load, 72 

power dissipation 231 
RAM cells 565 

statistical fault modeling, 483 
step coverage, 121, 131 
sticks symbolic-layout, 420 
strong 0, 8 

1, 8 
structural description, 32-35 

domain, 21 
representation, 24 
synthesis, 431 

structured design methods, 383 
stuck-at faults, 472 
stuck-at-0 fault, 472 
stuck-at-1 fault, 472 
subject graph, 429 
submicron processes, 147 
subroutine call and return, 639 
substrate contacts, 123 

resistance, 157 
substrate-bias effect, 54 
subthreshold region, 55 
subtractor, 518 
SUM logic, 530 
sum-of-products, 428 
summands, 546 
surface state charge, 49 
SWAMI, 121 
switch-level RC models, 218 

simulation, 444 
switchbox router, 431 
switches parallel, 10 

series, 10 
symbolic layout, 417-423 
symbolic-layout coarse grid, 417 

gate matrix, 418 
sticks, 420 
virtual-grid, 421 

symmetric NOR gate, 300 
synchronizer failure, 337 
synchronizers, 337 
synchronous counters, 539 
Synopsys VHDL compiler, 425 

T latch or register, 320 
Tantalum, 132 
tantalum silicide, 132 
tapped delay line, 585 
technology mapping, 428, 429 
temperature effect on inverter transfer 

characteristic, 69 
variation - theshold voltage, 48 
variation of resistance, 178 

ternary, 405 
test program format, 469 
tester, 470 
testing, 669 
TG adder, 553 

XOR gate, 525 
thermal annealing, 431 

impedance, 243 
resistance, 253 

thermometer code, 698 
thin-film transistors, 139 
thinox, 118 
thinoxide, 118 
three level metal standard cells, 415 
threshold adjust, 49-50 

voltage, 47-50, 47 
throughput, 524 
TimberWolf, 431, 432 
timing analysis example, 649 

analyzers, 445 
budget, 651 
generator, 470 
simulation, 442 
verifiers, 445 

TiN, 133 
topside connection, 123 
transconductance, 60 
transistor rules, 150 

sizing, 226, 271 
transmission gate - DC operation, 

86-90 
transmission-gate adder, 524 

layout, 291 
transparent routing, 289 
trench capacitor, 135 
triangle function, 31 
trigger point, 156, 158 
tristate I/O, 364 

inverter, 91 
tristate-buffer latch, 326 
TTL interface inverter, 80 

load, 361 
tunnel oxide, 136 

Micron Ex. 1037, p. 752 
Micron v. YMTC 
IPR2025-00119



twin-well CMOS process, 124-125 
two phase clock generator, 349 

phase clocking, 344 
phase dynamic registers, 347 

two-level minimization, 428 
unsaturated load inverters, 77-78 

region, 45 

UV light, 113 
UV-PROM, 394 

Vse, 93 
VCDL, 336 
Vee, 93 
VCO, 334, 687 
VDD• 7 
V DD and Vss pads, 360 

contact, 123, 152 
VHDL, 425 
via construction, 131 

resistance, 179 
rules, 154 

via2 rules, 154 
ViaLink, 396 
VIH, 70 
VIL, 70 
virtual-grid symbolic-layout, 421,434 
VJ - SPICE MOS model parameter, 

190 
VoH• 70 
Vov 70 
voltage controlled delay line VCDL, 

336 
controlled oscillator, VCO 687 
regulator, 296 

voltage-controlled oscillator, 334 
Vss· 7 
Vss contact, 123, 152 

wafer, 110 
wafer processing, I 09-110 
waiver-design rule, 142 
Wallace tree multiplication, 554 
Wanlass, Frank , 3 
wave pipelining, 324 
weak 0, 8 

I, 8 
division, 428 

weak-feedback inverter, 326 
Weimer, P.K. , 3 
well contacts, 123 

resistance, 157 
ties, 123 

white space, 288 
wide adders, 534 
wire length design guide, 204 
work function, 49 
worst-power corner, 246 
worst-speed corner, 246 

XC3000, 400 
XC4000, 401 
XILINX, 400 
XNOR, gate 282, 304, 305, 658 
XOR, 312, 525, 540 

Y chart, 382 
yield, 248 
Yorktown Silicon Compiler, 425 

zero and negate, 646 
detect, 647 

zero/one detectors, 537 
Zipper CMOS, 310 
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