
SYSTEMS DESIGN
AND DESIGN
METHODS

This Part starts with Chapter 6 examining a structured design approach and
its application to CMOS system design. This is followed by a discussion of
CMOS chip implementation options ranging from Field Programmable Gate
Arrays (FPGAs) to full custom layout, which illustrates the trade-offs
between implementation, design complexity, and time to market. The chap­
ter then discusses a variety of CMOS design automation options and the var­
ious design tools used for CMOS design.

Chapter 7 deals with the important problem of testing CMOS circuits by
introducing the reader to the test process, followed by an explanation of test
nomenclature. Various methods of designing a testable CMOS circuit are
then treated. This treatment centers on a structured approach to testing.

Chapter 8 provides an extensive set of subsystem examples starting with
coverage of datapaths. Adders are treated at great depth. The chapter contin­
ues with a treatment of the design of memories and concludes by examining
various techniques for implementing CMOS control logic.

PART2

379

Micron Ex. 1037, p. 419
Micron v. YMTC
IPR2025-00119

Micron Ex. 1037, p. 420
Micron v. YMTC
IPR2025-00119

CMOS
DESIGN
METHODS

6.1 Introduction

In Chapter 1 we found that the design description for an integrated circuit may
be described in terms of three domains, namely: (1) the behavioral domain, (2)
the structural domain, and (3) the physical domain. In each of these domains
there are a number of design options that may be selected to solve a particular
problem. For instance, at the behavioral level, the freedom to choose, say, a
sequential or a parallel algorithm is available. In the structural domain, the
decision about which particular logic family, clocking strategy, or circuit style
to use is initially unbound. At the physical level, how the circuit is imple­
mented in terms of chips, boards, and cabinets also provides many options to
tli.e designer. These domains may be hierarchically divided into levels of
design abstraction. Classically these have included the following:

• Architectural or functional level.

• Register-transfer level (RTL).

• Logic level.

• Circuit level.

The relationship between description domains and levels of design abstrac­
tion are elegantly shown by the Y-chart1•2 in Fig. 6.1, which was introduced
in Chapter 1. In this diagram, the three radial lines represent the three
description domains, namely the behavioral, structural, and physical 381

Micron Ex. 1037, p. 421
Micron v. YMTC
IPR2025-00119

382 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.1 Y-chart show­
ing description domains and
levels of design abstraction

Behavioral Domain Structural Domain

Circuit Abstraction Level

J
RTL, Logic Abstraction Level

Transistors

Cells

Modules

Chips
Boards
Boxes

Physical Domain

Architectural Abstraction Level

domains. Along each line are enumerated types of objects in that domain.
Circles represent levels of similar design abstraction: the architectural, logic,
and circuit levels. The particular abstraction levels and design objects may
differ slightly, depending on the design method.

In this chapter we will examine the means by which we transform a
description in one domain into a description in another domain. We begin by
discussing some of the guiding principles that apply to most engineering
projects. Then the various design strategies available to the CMOS IC
designer are surveyed, ranging from very fast prototyping or small-volume
approaches to the more labor-intensive custom design approaches. The CAD
tools necessary to achieve the design strategies are then summarized.
Finally, we examine the economics of design, which can guide us to the right
selection of an implementation strategy.

6.2 Design Strategies

6.2.1 Introduction
The economic viability of an IC is in large part affected by the productivity that
can be brought to bear on the design. This in turn depends on the efficiency with
which the design may be converted from concept to architecture, to logic and
memory, to circuit and hence to a physical layout. A good VLSI design system
should provide for consistent descriptions in all three description domains

Micron Ex. 1037, p. 422
Micron v. YMTC
IPR2025-00119

6.2 DESIGN STRATEGIES 383

(behavioral, structural, and physical) and at all relevant levels of abstraction
(architecture, RTL, logic, circuit). The means by which this is accomplished may
be measured in various terms that differ in importance based on the application.
These design parameters may be summarized in terms of

• Performance-speed, power, function, flexibility.

• Size of die (hence cost of die).

• Time to design (hence cost of engineering and schedule).

• Ease of test generation and testability (hence cost of engineering and
schedule).

Design is a continuous trade-off to achieve adequate results for all of the
above parameters. As such, the tools and methodologies used for a particular
chip will be a function of these parameters. Certain end results have to be
met (i.e., the chip must conform to performance specifications), but other
constraints may be a function of economics (i.e., size of die affecting yield)
or even subjectivity (i.e., what one designer finds easy, another might find
incomprehensible).

Given that the process of designing a system on silicon is complicated, the
role of good VLSI-design aids is to reduce this complexity, increase productiv­
ity, and assure the designer of a working product. A good method of simplifying
the approach to a design is by the use of constraints and abstractions. By using
constraints the tool designer has some hope of automating procedures and taking
a lot of the "legwork" out of a design. By using abstractions, the designer can
collapse details and arrive at a simpler concept with which to deal.

In this chapter we will examine design methodologies that allow a vari:.
ation in the freedom available in the design strategy. The choice, assuming
all styles are equally available, should be entirely economic. According to
function, suitable design methods are selected. It may be found that due to
inefficiencies in layout, some styles will not be capable of implementing the
function. Following these steps, the required die cost is estimated and the
quickest means of achieving that die should be chosen. We will focus on
structured approaches to design since they off er the best prospects of dealing
with large and diverse VLSI problems of the present and future.

6.2.2 Structured Design Strategies
The successful implementation of almost any integrated circuit requires an
attention to the details of the engineering design process. Over the years a num­
ber of structured design techniques have been developed to deal with both com­
plex hardware and software projects. Not surprisingly the techniques have a
great deal of commonality. Rigorous application of these techniques can drasti­
cally alter the amount of effort that has to be expended on a given project and
also, in all likelihood, the chances of a successful conclusion. Whether under

Micron Ex. 1037, p. 423
Micron v. YMTC
IPR2025-00119

384 CHAPTER 6 CMOS DESIGN METHODS

consideration is a small chip designed by a single designer or a large system
designed by a team of designers, the basic principles of structured design will
improve the prospects of success. In the following sections some of the classical
techniques for reducing the complexity of IC design will be summarized. 3,4

6.2.3 Hierarchy

The use of hierarchy, or "divide and conquer," involves dividing a module
into submodules and then repeating this operation on the submodules until
the complexity of the submodules is at an appropriately comprehensible
level of detail. This parallels the software case where large programs are
split into smaller and smaller sections until simple subroutines, with well­
defined functions and interfaces, can be written. As we have seen, a design
may be expressed in terms of three domains. We can employ a "parallel hier­
archy" in each domain to document the design. For instance, an adder may
have a subroutine that models the behavior, a gate-connection diagram that
specifies the circuit structure, and a piece of layout that specifies the physical
nature of the adder. Composing the adder into other structures can proceed in
parallel for all three domains, with domain-to-domain comparisons ensuring
that the representations are consistent.

At a system level, the use of hierarchy allows one to specify single­
designer projects, at which level the schedule is proportional to the number
of available personnel.

Example

To illustrate the principle of hierarchy consider the top-level diagram of a raster­
graphics vector generator that includes an 8-bit difference engine, shown in Fig.
6.2(a). This engine may be used for a variety of graphics algorithms, including
line drawing and linear shading. Operation in the case of drawing a line on a ras­
ter display consists of loading the X, Y, count, and direction registers with the ini­
tial (X,Y) point, length of the line, and up/down-count control data for the X and
Y counters. The difference engine block is loaded with three values-A, B, and
C-which are derived from the parameters of the line to be drawn.

A diagram of the difference engine is shown in Fig. 6.2(b). It consists of
an A, B, and C register, an adder, and two multiplexers or muxes. The multi­
plexers, registers, and adder may be decomposed into 1-bit units. The hierar­
chy is stopped at the level where modules are defined in terms of simulation
models and physical layouts. For instance, the adder, multiplexer, and regis­
ter might be standard cells. Similar decompositions could be completed for
the other modules in Fig. 6.2(a).

The hierarchy defined above is a structural hierarchy that reflects func­
tionality, such as the adding, multiplexing, or storing state. An alternative
hierarchy for the difference engine is shown in Fig. 6.3, where 8 identical
"bit-slices" have been built. Each bit slice has one element of the engine

Micron Ex. 1037, p. 424
Micron v. YMTC
IPR2025-00119

D t aa I

[ZJ address

X Counter - Frame Memory f---

-

X1 Display

WE

Y Counter 1---
1--

Y1

Direction 1--
Difference
Engine

/~.~)
Xup Yup

,____
Count

(X1,Y1)
max(X2-X1,Y2-Y1)

data bus

(a)

sign

8

data bus

(b)

shown in Fig. 6.2(b). This is known as a "physical hierarchy" because it
might be the decomposition used to build an n-bit difference engine layout.
Thus there are at least two "disjoint" hierarchies describing the same struc­
ture. The hierarchies "join" at the difference-engine levei. Generally, it is
good practice to maintain identical hierarchies between the function, struc­
ture, and physical aspects of a design because this allows consistent checks
between description domains from the lowest level of the hierarchy to the
very top levels. Frequently, if the physical hierarchy is designed first without
a structural or functional hierarchy, it will be found that the resulting hierar­
chy is cumbersome. On the other hand structural hierarchies may be defined
that do not map well to physical constraints. For instance, consider the fioor­
plan shown in Fig. 6.4 where module A has to fit within a certain area con­
straint. Module B has space for some of the contents of Module A but, due to
the structural hierarchy, the fioorplan in Fig. 6.4(a) results. Usually, after a
few iterations the physical and structural hierarchies may be reconciled
(Fig. 6.4b). Many times the issue is moot because an automatic layout system
is able to take the structural hierarchy and create a layout that meets both tim­
ing and area requirements.

FIGURE 6.2 A difference
engine: (a) system diagram;
(b) implementation

385

Micron Ex. 1037, p. 425
Micron v. YMTC
IPR2025-00119

FIGURE 6.3 A physical
hierarchy for the difference (bl

engine

FIGURE 6.4 Repartitioning
the structural hierarchy to suit
the physical hierarchy (a)

386

B

difference engine bit

A I s IMuxl ADDER IMuxl c
(a)

B

A A

c

c

(b)

Micron Ex. 1037, p. 426
Micron v. YMTC
IPR2025-00119

6.2 DESIGN STRATEGIES 387

6.2.4 Regularity
Hierarchy involves dividing a system into a set of submodules. However,
hierarchy alone does not necessarily solve the complexity problem. For
instance, we could repeatedly divide the hierarchy of a design into different
submodules but still end up with a large number of different submodules.
With regularity as a guide, the designer attempts to divide the hierarchy into
a set of similar building blocks. The use of iteration to form arrays of identi­
cal cells is an illustration of the use of regularity in an IC design. However,
extended use may be made of regular structures to simplify the design pro­
cess. For instance, if the designer were constructing a "datapath," the inter­
face between modules (power, ground, clocks, busses) might be common but
the internal details of modules may differ according to function. Regularity
can exist at all levels of the design hierarchy. At the circuit level, uniformly
sized transistors might be used rather than manually optimizing of each
device. At the logic-module level, identical gate structures might be
employed. At higher levels, one might construct architectures that use a
number of identical processor structures. By using regularity in the ways
mentioned, a design may be judged correct by construction. Methods for for­
mally proving the correctness of a design may also be aided by regularity.

Regularity allows an improvement in productivity by reusing specific
designs in a number of places, thereby reducing the number of different
designs that need to be completed.

Example

Continuing the example of the difference engine in Fig. 6.2(b), the multi­
plexer, adder, and register modules may be defined in terms of identical
CMOS inverters and tristate inverters as illustrated in Fig. 6.5. The counters
shown in Fig. 6.2(a) might use the same adder, register, and multiplexer used
in the difference engine. For every different module that is used (no matter
what level), a variety of design checks have to be performed-functional ver­
ification, timing verification, layout-connectivity verification, etc. By identify­
ing common operations at a high level, regularization can reduce the number
of different modules that need to be designed and verified (i.e., counting= add­
ing 1 = adding). This principle applies at all levels of hierarchy.

6.2.5 Modularity
The tenet of modularity adds to hierarchy and regularity the condition that
submodules have well-defined functions and interfaces. If modules are
"well-formed," the interaction with other modules may be well-character­
ized. The notion of "well-formed" may differ from situation to situation, but
a good starting point is the criteria placed on a "well-formed" software sub­
routine. First of all, a well-defined interface is required. In the case of soft­
ware this is an argument list with typed variables. In the IC case this

Micron Ex. 1037, p. 427
Micron v. YMTC
IPR2025-00119

388 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.5 Regularity at
the circuit level by using
inverters and tristate buffers:
(a) multiplexer; (b) register;

in-1 1->->:>-------i

in-0 1->->:>----1----J

(a)

(b)
REGISTER

(c) adder (c) ADDER

corresponds to a well-defined behavioral, structural, and physical interface
that indicates the position, name, layer type, size, and signal type of external
interconnections, along with logic function and electrical characteristics. For
instance, connection points may indicate the power and ground, inputs and
outputs to a module. The function must also be defined in an unambiguous
manner. Modularity help~ the designer to clarify and document an approach
to a problem, and also allows a design system to more easily check the
attributes of a module as it is constructed. The ability to divide a task into a
set of well-defined modules also aids in a team design where each of a num­
ber of designers has a portion of a complete chip to design.

In structured programming, proponents advise the use of only three
basic constructs. These are concatenation, iteration, and conditional selec-

Micron Ex. 1037, p. 428
Micron v. YMTC
IPR2025-00119

6.2 DESIGN STRATEGIES 389

tion. In the IC design world these constructs have parallels. For instance,
concatenation is mirrored by cell abutment, where IC cells (in the physical
domain) are connected by placing them adjacent to each other and intercell
connections are formed on the common boundary. Iteration is handled in the
IC case by one- and two-dimensional arrays of identical cells, typified by a
memory. The use of conditional selection is typified in a programmable logic
array (PLA), the function of which is determined by the location of transis­
tors in an array. When combined with the ability to parametize designs, these
three programming notions can greatly aid the designer in modularizing a
design. Of course in a Hardware Description Language (HDL) these con­
structs are used directly.

At a system level, the correct decisions regarding modularity allows one
to break up a system with the confidence that when the parts are combined,
the whole system will function as specified.

Example

A good example of the use (or ill use) of modularity is the use of transmis­
sion gates as inputs to logic modules (especially those using ratioed logic).
Normally in CMOS circuits the inputs to logic blocks connect to the gates of
MOS transistors. In these cases, the internal behavior of the modules is
entirely determined by the arrival time and shape of the input waveform.
Consider the case where the inputs are connected to transmission gates that
are in turn connected to ratioed circuitry (for instance, consider the situation
when the 2-input multiplexer shown in Fig. 6.6(a) is used for the multiplexer
blocks in the difference engine example). The internal signal condition is
now determined by the source impedance in addition to the input timing. A
module-to-module cross-check has to occur to ensure that the driving circuit
can adequately drive the mux. This is an example of a poorly modularized
circuit. The fix is to use the tristate-inverter-based mux shown in Fig. 6.5(a)
or the buffered mux shown in Fig. 6.6(b).

Modules can also be poorly modularized on a temporal basis. Consider
a module for the difference engine that uses dynamic CMOS logic but fails
to latch or register the inputs. Because external inputs might arrive at various
times withrespect to the clock, erroneous results might occur unless the tim­
ing of each input is individually checked. A modular approach to clocking
where all module inputs are registered on entering the module and all out­
puts are the outputs of registers is the first step in ensuring module-to­
module timing consistency.

6.2.6 Locality
By defining well-characterized interfaces for a module, we are effectively
stating that the other internals of the module are unimportant to a:ny exterior

Micron Ex. 1037, p. 429
Micron v. YMTC
IPR2025-00119

390 CHAPTER 6 CMOS DESIGN METHODS

(a)

FIGURE 6.6 An example of ;0"
0 ~ --~

poor modularity: (a) mux with
transmission-gate inputs;
(b) a solution-a buffered
mux (b)

interface. In this way we are performing a form of "information hiding" that
reduces the apparent complexity of that module. In the software world this is
paralleled by the reduction of global variables to a minimum (hopefully to
zero).

Example:

Increasingly, locality has come to mean "time locality"; that is, modules see
a common clock, and hence synchronous-timing methods apply. The first
way of ensuring time locality is to pay attention to the clock generation and
distribution network (see Chapter 4). Having done this, critical paths, if pos­
sible, should be kept within module boundaries. Any global module-to­
module signal should have the entire clock cycle to traverse the chip.
Repeated chip crossings of critical signals will rapidly lead to inferior timing
characteristics. Many times in modem designs, logic is replicated to allevi­
ate cross-chip crossings.

Modules can also be located to minimize the "global wiring" that may
be necessary to connect a number of modules in a system. A common imper­
ative in design systems today that applies for both gate-arrays and custom
design is use "wires first, then modules"-rather than the more common
"place modules, then route them together."

Micron Ex. 1037, p. 430
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 391

TABLE 6.1 Structured Software and VLSI Hardware Design

Hierarchy
Regularity

Modularity

Locality

SOFTWARE

Subroutines, libraries
Iteration, code sharing, object­
oriented procedures

Well-defined subroutine interfaces

Local scoping, no global variables

6.2. 7 Summary

HARDWARE

Modules
Datapaths, module reuse, reg­
ular arrays, gate arrays, stan­
dard cells
Well-defined module inter­
faces, timing- and loading­
data for cells
Local connections through
fl.oorplanning, registered

. inputs and outputs

There are strong parallels between the methods of design for software sys­
tems and for hardware systems. Table 6.1 summarizes some of these paral­
lels for the principles outlined above.

As stated previously the use of HD Ls to describe hardware systems in
essence merges these two disciplines and the software methods above are
used to define hardware. At some level the hardware aspects become rele­
vant as a physical chip is the end product.

6.3 CMOS Chip Design Options

In this section we will examine a range of design options that may be used to
implement a CMOS system design. These are arranged in order of
"increased design investment," which loosely relates to the time it takes to
design the device. The sequence is also somewhat in order of complexity of
device that may be implemented.

6.3.1 Programmable Logic

As the investment made in any chip design is significant, designers search
for ways in which to amortize the design effort over a large number of
devices. This might result from a huge single market for one device or, more
probably, multiple smaller markets for a more adaptable device. The larger
the unit volume for a part the lower its cost will be to the end user:

Programmability is one way to achieve a wider use for a particular part.
This is epitomized by the microprocessor. Often, though, the cost or speed of

Micron Ex. 1037, p. 431
Micron v. YMTC
IPR2025-00119

392 CHAPTER 6 CMOS DESIGN METHODS

a microprocessor may not meet system goals and an alternative solution is
required. In CMOS, one may divide this spectrum of programmable devices
into three areas:

• Chips with programmable logic structures.

• Chips with programmable interconnect.

• Chips with reprogrammable gate arrays.

The CMOS-system designer should be familiar with these options for two
reasons:

• First, it allows the designer to competently assess a particular system
requirement for an IC and recommend a solution, given the system
complexity, the speed-of-operation, cost goals, time-to-market goals,
and any other top-level concerns.

• Second, it familiarizes the IC system designer with methods of mak­
ing any chip design reprogrammable and hence more useful and of
wider-spread use.

6.3.2 Programmable Logic Structures

The first broad class of programmable CMOS devices are represented by the
programmable logic devices referred to as PALs® (Programmable Array
Logic,® Advanced Micro Devices, Inc.) or PLDs (Programmable Logic
Devices).5•6 Generally, these devices are implemented as AND-OR plane
devices as shown in Fig. 6. 7. In the design shown a number of inputs feed ver­
tical wires, which are selectively connected to an AND-OR gate. Each AND­
OR gate has a variable number of product terms that feed the gate. This gate in
turn feeds an I/O cell, which allows registering of the AND-OR signal and the
feedback of the registered result into the AND-OR plane. PAL devices come in
a large range of sizes with a variable number of inputs, outputs, product terms,
and I/0-cell complexity. The 22V10 is an industry-standard device with the
following characteristics:

12 inputs

10 I/Os

#product terms 9 10 12 14 16 14 12 10 8

24 pins

The I/O structure for a 22Vl0 is shown in the inset in Fig. 6.7. It consists of
a register, an output 4: 1 mux, a tristate buffer, and a 2: 1 input mux. The
tristate buffer is used to enable the output. Alternatively, the pin may be used
as an input to the array. The 4: 1 mux routes the true or complemented ver-

Micron Ex. 1037, p. 432
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 393

uts

• • • • •
/Vertical wires

./ Programmed co~ection
I-
I-

lnp

pro
term

duct l >-=~
I-
1-,

s 1-,_. l ~ outO
I-~

~'----'
I-

inO
~ .. .> ~ lnpuVOutputs "U

-
I-

I-

duct pro
term l '~>-=~ --s :: 1

"'-' out1
I-
I-
I- Output Buffer

~ ...
..:t. t6- <

~~
in1

Input Buffer Feedback Buffer

~

~ ! -cl-@ REG • 1-bit • ..:!.- d q • • ~ 3
CLK-~

/ • /S
SET--C SET

CLEAR-<: CLEAR

/
01---

Ll::;

1

s

1/0 Structure

sion of the product term or register output to the output. The 2: 1 input mux
may also select the register output. The register is provided with a global
synchronous preset and asynchronous reset.

Typical speeds for a 22V10 in high-speed CMOS are:

• CLK to output-8 ns.

• Input to combinational output-15 ns.

Typical toggle frequencies with feedback are around 40 MHz.

FIGURE 6.7 A typical PAL
architecture

Micron Ex. 1037, p. 433
Micron v. YMTC
IPR2025-00119

394 CHAPTER 6 CMOS DESIGN METHODS

The programming of PALs is done in three main ways:

• Fusible links.

• UV-erasable EPROM.

• EEPROM (E2ROM)-Electrically Erasable Programmable ROM.

Fusible links use a metal such as platininum silicide or titanium tungsten
to form links that are blown when a certain current is exceeded in the fuse.
This is normally accomplished by using a higher than normal programming
voltage applied to the device. This technology is normally used in conjunc­
tion with a bipolar process (as opposed to a CMOS process) where the small
devices can readily sink the current needed to blow the fuses. Programming
is a one-time operation. As an alternative to current, a laser can be used to cut
aluminum fuses in normal CMOS technologies. Frequently this is used in
redundant memory techniques where a spare column may be switched in to
replace a failing one.

UV-erasable memories typically use a floating gate structure as shown
in Fig. 6.8. Here a floating gate is interposed between the regular MOS tran­
sistor gate and the channel (see also Chapter 3). To program the cell, a volt­
age around 13-14 volts is applied to the control gate while the drain of the
transistor to be programmed is held at around 12 volts. This results in the
floating gate becoming charged negatively. This increases the threshold of
the transistor (to around 7 volts), thus rendering it permanently "off' for all
normal circuit voltages (maximum 5-6 volts). The process can be reversed
by illuminating the gate with UV light.

"Permanently" means at least 10 years at 125°C. At elevated tempera­
tures the storage time will be reduced. Programming may be completed
numerous times. The chips are usually housed in glass-lidded packages to
allow illumination by UV light.

FIGURE 6.8 UV- erasable bit line -----+----r-------+"===~=~---

EPROM structure
word line control gate

Micron Ex. 1037, p. 434
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 395

D control gate +

~n

)
/

floating gate

EEPROM technology allows the electrical programming and erasure of
CMOS ROM cells. This type of programming forms the most popular in use
today for CMOS and is the one most likely encountered by the IC-system
designer in today's foundry processes. A typical structure is shown in Fig. 6.9.7

Two transistors are typically used in a ROM cell. One is an access transistor,
while the other is the programmed transistor. A two-poly sandwich is again
used in the programmed transistor with the control gate on the top. A very thin
oxide between the floating gate and the drain of the device allows electrons to
"tunnel" to or from the floating gate (thus chargillg the gate oxide) to tum the
cell off or on respectively. The series-access transistor allows programming of
cells. EEPROM has a testability advantage over fused technologies. Each
device can be fully tested before shipment. A range of ROM architectures have
been used, including the normal NOR ROM structure8 and NAND structures.9

By way of comparison, in a custom .8 µm CMOS chip a PLA (Program­
mable Logic Array) of the complexity of the 22Vl0 (programmed via mask)
would be roughly 200µ wide by 500µ tall or .01 mm2, and would be approx­
imately the same speed or faster in a given technology. On a 100 mm2 square
chip one could fit 5,000 such PLAs (assuming 50% overhead for routing).

6.3.3 Programmab'e Interconnect

In a PAL the device is programmed by changing the characteristics of the
switching element. An alternative would be to program the routing. This has
been demonstrated via a number of techniques including Laser Pantography,
where a laser lays down paths of metal under computer control. Commer­
cially, programmable routing approaches are represented by products from
Actel, QuickLogic, and other companies.

The Actel Field Programmable Gate Arrays 10 are based on an element
called a PLICE™ (Programmable Low-Impedance Circuit Element) or anti-

FIGURE 6.9 EEPROM
structure(© IEEE 1992)

Micron Ex. 1037, p. 435
Micron v. YMTC
IPR2025-00119

396 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.10 Program-
mable interconnect struc-
tures: (a) Antifuse®;
(b) ViaLink®

fuse. An antifuse is normally high resistance (>100 MQ). On application of
appropriate programming voltages, the antifuse is changed permanently to a
low-resistance structure (200-500.Q). The structure of an antifuse is shown
in Fig. 6.lO(a). It consists of an ONO (oxide-nitride-oxide) layer sandwiched
between a polysilicon layer on top and an n+ diffusion on the bottom. The
QuickLogic array is based on a structure called a ViaLink®, which consists
of a sandwich of material between metall and metal2. 11 This is illustrated in
Fig. 6.1 O(b). The "on" resistance of this structure is somewhat lower than
that in Fig. 6.lO(a).

dielectric after
breakdown

(a)

(b)

Si02

Si02

!lllll,11
Metal

Metal

metal

link

metal

-A./l/'v-
200-500Q

-A./l/'v-
> 1GQ

-A./l/'v-
50-80Q

Micron Ex. 1037, p. 436
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 397

One chip architecture that uses the antifuse is shown in Fig. 6. l 1.12,l3,l4

Logic elements are arranged in rows separated by horizontal interconnect.
Interconnect permanently connected to the logic elements passes vertically.
Both horizontal and vertical segments are segmented into a variety of
lengths. Segments may be joined by programming antifuses. Certain special
signals such as power and a clock line are routed globally to all logic. The
logic elements are surrounded by 1/0 pads and programming and diagnostic
logic. Note the similarity to a gate-array (Section 6.3.5).

A more detailed representation of the interconnect scheme is shown in
Fig. 6.12. Pass transistors are used to connect wire segments for the purpose
of programming. These may be bypassed by antifuses if the links are
required permanently. In the figure transistors N1, N2, N3, N4, N9, N10, Nu,
and N12 are the column-access transistors, while transistors N5, N6, N7, and
Ng are the row-access transistors. These are used during programming or
may be used for diagnostic purposes to check the state of any signal. In the
example shown, the antifuse at the conjunction of N2's column and Ng's row
has been programmed (denoted by a solid dot). This connects the signal in
logic module A to the segments that are bolded in the diagram. In addition,
the bypass antifuse on Ng has been programmed, thereby extending the hor­
izontal segment to the next set of logic cells. To program the antifuse at Nr
Ng, all pass transistors in series with N2 are turned on and the top end is con­
nected to the programming voltage. In addition, all transistors in series with
Ng are turned on and the end connected to the ground supply. When the pro­
gramming sequence is applied, the antifuse so selected is "blown." Similar
addressing techniques allow for the sampling of signals for testing or debug­
ging. The sequencing of the antifuse blowing is carefully determined to
ensure that all fuses can be blown.

1/0 Buffers

Programff est/Diagnostics

Vertical Routes

1/0 Buffers

1/0 Buffers
FIGURE 6.11 Actel FPGA
chip architecture

Micron Ex. 1037, p. 437
Micron v. YMTC
IPR2025-00119

398 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.12 Actel inter­
connect example

FIGURE 6.13 Actel
logic cell

vertical contra

horizontal {
routing
tracks

vertical contra

I

I

vertical routing tracks horizontal
control

)N1) N2

IL IL

0 0
Module
A

, r=
I

... '"" 'i'
,.,

""' '"' r= ',, '" ,., I
,, ,.,

"' '
II Ng 11 N10

IL I

•• ..
Module
c

0 Unprogrammed PUCE

e Programmed PUCE

Fi
Ns 't'

f-
II ,....
Ny 'j"

vertical routing tracks horizontal
control

) Na) N4

IL IL

0 0
Module
B

... , ,
" '

- f-

"' ,
""' r

:--,

'"
,., ,,, ,., I Ns 'j"

""'
,, , ,.,

'"
,,,

' '
, ... , r= =; -" ' I' , I Na T

II N11 11 N12

IL IL

0 0
Module
D

The structure of the Actel logic element is shown in Fig. 6.13. It consists
of three 2-input muxes and a NOR gate. This structure can implement all
2- and 3-input logic functions and some 4-input functions. A latch may be
implemented with one logic element, while a register requires two elements.
The QuickLogic cell is shown in Fig. 6.14. In addition to the structure shown
in Fig. 6.13, it includes a resettable register and numerous logic gates. An
interesting trade-off in these types of arrays is the granularity of the logic
cell versus the amount of routing.

The Actel programmable I/O pad is shown in Fig. 6.15. Two antifuses
allow the configuration to operate as an input pad, output pad, or bidirec­
tional pad. If the ENABLE pin is not programmed, then the pad is bidirec­
tional. If the ENABLE antifuse to V DD is blown, the pad is an output,
whereas if the Vss antifuse is blown, the pad is an input. The isolation
devices isolate the pad if necessary during programming and testing.
(A highly desirable feature of the Actel architecture is the ability to observe
any node in the chip using the series pass-transistors that are used for
programming.)

Micron Ex. 1037, p. 438
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 399

0

s
REG

s 1-bit
d q

0

LOAD
0 CLR

s

At the time of writing, these arrays could implement 550 logic modules
and 70 I/O modules. The speed of a particular circuit depends on the logic
element speed and the delay through antifuse elements in any routing. A sin­
gle logic module exhibits a delay from 7 ns to 14 ns (5V and 25°C) depend­
ing on fan-out in a 2 µm technology. Long route delays through many
antifuses can range from 15 ns to 35 ns. With smaller technologies the logic
module delays would decrease while the routing delays might decrease

Isolation devices

output

1/0 Pad

input-~

isolation control

FIGURE 6.14 QuickLogic
logic cell

FIGURE 6.15 Actel 1/0 pad

Micron Ex. 1037, p. 439
Micron v. YMTC
IPR2025-00119

400 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.16 XILINX
FPGA architecture

somewhat. More drastic reductions in the routing delays would come with
lower "on-resistance" antifuses.

If a 32-bit adder were implemented in an Actel array, 160 logic modules
would be needed, and it would add in approximately 65 ns. Thus roughly 3.5
32-bit adders would fit in a single FPGA chip. Currently in a 1µ custom chip
7 mm on a side (6 mm-by-6 mm active area), we could fit 1300 adders (each
560µ by 50µ) running twice as fast, or 600 adders running ten times as fast.
Bear in mind that if we only wanted two 32-bit adders and a bit of logic run­
ning at 10 MHz, we could get in in an afternoon and for about $5-10 if we
used an FPGA; compared with 6 months and $200,000 that an application­
specific chip would require.

6.3.4 Reprogrammable Gate Arrays
A further class of programmable device is the programmable (or reprogram­
mable) gate array. These may be further categorized into ad-hoc and struc­
tured arrays.

6.3.4. 1 The XILINX Programmable Gate Array

An example of an ad-hoc array is a set of products from the XILINX com­
pany.15 The architecture of the XC3000 series is depicted in Fig. 6.16. An
array of Configurable Logic Blocks (CLBs) is embedded within a set of hor­
izontal and vertical channels that contain routing that can be personalized to
interconnect CLBs. The configuration of the interconnect is achieved by
turning on n-channel pass transistors. The state that determines a given inter­
connect pattern is held in static RAM cells distributed across the chip close

1/0 Buffers

1/0 Buffers

Vertical Routing Channels

D ojo DD
ooopo
DDD/oILJ
Array of Configurable Logic Blocks

DDD'EJEJ
- Horizontal Routing Channels -

DDDDD
1/0 Buffers

1/0 Buffers

Micron Ex. 1037, p. 440
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 401

to the controlled elements. The CLBs and routing channels are surrounded
by a set of programmable I/Os.

In detail, the structure of a CLB is shown in Fig. 6.17. It consists of two
registers, a number of muxes, and a combinatorial function unit. The latter
can generate two functions of four variables, any function of five variables,
or a selection between two functions of four variables. The function bit and
each mux is controlled by a number of RAM state bits. More recent CLBs
feature enhanced table lookup function generators which can be used to
build logic functions or used as register storage. Inbuilt support for carry
chains means that datapaths can be conveniently built (XC40QO series). Each
input and output on a CLB has a particular local interconnect pattern (called
direct interconnect by XILINX), which allows most local interconnection
between adjacent CLBs to take place. At the junction of the horizontal and
vertical routing channels (where the general-purpose interconnect runs),

REG
1-bit

DATA IN ~-----lo q

ENABLE CLOCK

0

vdd (enable)

s

O ram-state

s

RESET ram-state
1-»---------jo .

vss(inhibit)

s

ram-state

2

s
~----1 SELECT

ram-state

ram-state

GLOBAL RESET

CLEAR

REG
1-bit

q

SELECT
CLEAR

0 _, x

s

ram-state

0
_, y

s

ram-state

FIGURE 6.17 XILINX Con­
figurable Logic Block® (CLB)

Micron Ex. 1037, p. 441
Micron v. YMTC
IPR2025-00119

402 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.18 XILINX cross­
bar connect and CLB local
connect example

programmable switching matrices are employed to redirect routes. Fig. 6.18
shows a typical CLB surrounded by switching matrices. The switching
matrices perform crossbar switching of the global interconnect, which runs
both vertically and horizontally. Programmable Interconnect Points or PIPs
interconnect the global routing to CLBs. Both PIPs and the switching matri­
ces are implemented as n-channel pass gates controlled by I-bit RAM cells.
Extra special long-distance interconnect is used to route important timing
signals with low skew.

Assuming one has a board design finished, design proceeds by mapping
the logic design to the CLBs and thence to one or more programmable gate­
arrays. Software then "places and routes" the CLBs by loading the internal
state RAM with the codes needed to program the I/Os, the CLBs, and the
routing. The design is then ready to be tested or used.

Currently, the largest array holds ,,.,,,500 CLBs and has approximately
IOOK bits of state RAM (this will increase with time as processes shrink). In
common with the Actel approach, timing is dependent on the basic CLB
speed and a routing delay term. Users seem to be able to achieve system­
clock rates that are 30-50% of the speed grade. Thus with 250 MHz parts an
80 MHz clock frequency is feasible.

A 32-bit adder would require approximately 62 CLBs, enabling
roughly 8 to be implemented on the largest CLB available in 1993. The
speed would be approximately 20-50 MHz. Thus the reprogrammable
arrays implemented in a more advanced (but standard) process and with
probably larger die sizes (hence cost) are roughly of the same complexity as

Programmable
Interconnection
Point

/ _..,.., ,
"

"
.J

I u ' J Switching Matri

-

x

- CLB - --

I

Micron Ex. 1037, p. 442
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 403

the programmable example given in the previous section implemented in a
less dense process.

While the XILINX arrays are stand-alone programmable gate arrays, the
ideas may be of use to the IC-system designer who wishes to embed some
reprogrammable logic within a larger system. In addition, the IC designer
may find that prototyping a design in such an array might aid in system
debug of a chip function. A significant advantage of the reprogrammable
gate array is the ability to redesign the internals of a chip by changing soft­
ware. This can be of considerable advantage in a product that has to undergo
field updates.

6.3.4.2 Algotronix

An example of a regular programmable array is the CAL1024 (Configurable
Array Logic) from Algotronix. 16•17 This architecture contains 1024 identical
logic cells arranged in a 32-by-32 matrix. At the boundary of the chip, 128
programmable I/O pins allow cascading the chips in even larger arrays. The
cell interconnect is shown in Fig. 6.19. Each cell is connected to the East,
South, West, and North neighbor. In addition two global-interconnect signals
connect to each cell. These are used to supply a low-skew signal to all cells
for clocking. Each cell also receives row select lines and bit lines that are
used to program RAM bits within the logic cells that dynamically customize
the logic cell.

The cell design is shown in Fig. 6.20. It consists of four "through" mul­
tiplexers to route single-bit signals entering from the North, South, East, and
West. In addition two multiplexers route a selection of signals to a function

•••

•••

• • •

Logic
Cell

• • •

• • •

• • •

local
interconnect

/ "

• • •

• • •
Each logic cell also has RAM data
and address lines passing through it.

• ••

" • global signals

/

FIGURE 6.19 Algotronix
FPGA chip architecture

Micron Ex. 1037, p. 443
Micron v. YMTC
IPR2025-00119

404 CHAPTER 6 CMOS DESIGN METHODS

North Out North In

nsel<1 :O>

esel<1 :0>
West In 1.;-+•r-------t----~r-i-----r-r---..

FIGURE 6.20 Algotronix cell
design

North In
East In

South In
Westin

Global 1
Global 2

North hi
East In

South In
Westin

address

din
we

wsel<1 :0>

South In

0
1
2
3
4
5

s

x1 sel<2:0>

x2sel<i :0>

RAM

19x1

Port A

South Out

Addr Doutf----~

Din
WE

ssel<1 :0>

nsel<1 :0>
esel<1 :0>
ssel<1 :0>
wsel<1 :0>
x1 sel<2:0>
x2sel<1 :0>
y1 sel<1 :0>
y2sel<1 :0>
funcsel<1 :0>

f-----<·->•I East Out

Micron Ex. 1037, p. 444
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 405

TABLE 6.2 CAL Logic Cell Functions

NUMBER FUNCTION NUMBER FUNCTION

0 ZERO 8 -Xl.X2
1 ONE 9 -Xl.-X2
2 Xl 10 Xl+X2
3 -Xl 11 Xl+-X2
4 X2 12 -Xl+X2
5 -X2 13 xnor(Xl,X2)
6 Xl.X2 14 -Xl+-X2
7 Xl.-X2 15 xor(Xl,X2)

16 D ClkLatch 17 -D ClkLatch
18 D-ClkLatch 19 -D -Clk Latch

unit. These signals include the signals entering on the orthogonal edges of
the cell, two global "clock" signals, and the output of the function block for
feedback situations (latches). The muxes are controlled (as in the XILINX
array) by small 5-transistor static RAM cells. The functions that the logic
cell can implement are detailed in Table 6.2.

The I/O pads are very interesting. The trick is to use only one pin for
I/O into and out of the array but have the communicating chips automatically
deal with two pins that are outputs. The pads achieve this by using a ternary
(three-level) logic scheme to sense when two outputs are driving each other
via a contention circuit. This is then used with an XOR gate, as shown in Fig.
6.21, to deduce the correct input value.

Design is similar to both the XILINX and Actel approaches, where sub­
stantially automatic techniques can place and route a CAL chip. Unlike both
other approaches, however, all routing (save the global clock lines) must
pass through cells to get from one point to another. Thus, in the worst case, a
signal may have to travel through 64 cells. Although implemented with fast
transmission gates, this still can result in a substantial delay. For instance the
through routing delay is in the range of 0.5 ns-2 ns, resulting in a delay of
32 ns-128 ns. However, an intriguing option with this type of array is that
the programming can be changed almost in real time. Thus one can think of

_, from chip

1/0 Pad

~P ___/(1-----1 Contention
~ Detect

FIGURE 6.21 Algotronix 1/0
circuit

Micron Ex. 1037, p. 445
Micron v. YMTC
IPR2025-00119

406 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.22 Concurrent
logic array details

actually having a computer program that "executes" on such an array many
times faster than conventional machines. 18

From a complexity viewpoint, a single-bit adder would take 4 cells.
Thus a 32-bit ripple-carry adder would take 128 cells, and 8 adders could fit
on a 1024-cell chip (1.5 µm CMOS). The speed would be in the 500 ns
range. In all of these array architectures serial arithmetic may be preferable
to parallel arithmetic because low-delay connections can be made between
adjacent cells.

6.3.4.3 Concurrent Logic

The CLi6000 series is another example of a regular array style FPGA.19 Cur­
rent designs have between 1000 and 3136 cells, with prospects of up to
10,000 cells per chip in the next few years. As an example the CLi6005 con­
sists of a 7-by-7 array of superblocks. Each superblock has an array of 8-by-
8 logic cells. Each logic cell connects to the four nearest neighbors and to a
local and express bus (Fig. 6.22). The cell structure is shown in Fig. 6.23.

B BN

7 IEr ~I
AN B BN A

AW- AW EW2 A

B- B BE

NS1- NS1 NS2

BW- BW B

A- A EW1 AE
A BS B AS

I
express

express

' 1
AN B BN A

AW- AW EW2 A

B- B BE

NS1- NS1 NS2

BW- BW B

A- A EW1 AE
A BS B AS

l t El1 I A~
BS B

express express

local local

-
- ~

-
-

refresh - ~1 ,,.
J.

I , I

-

-
- ,___

-
-

B BN

Ar 1 Er~ 1
AN B BN A

AW EW2. A,___ A

BE

NS2

B

AE

B BE ~·

NS1 NS2 f---

BW B-

A EW1 AE ~
A BS B AS

1

,,

I

1

I

AN B BN A
AW EW2 A-A

B BE +-B

NS1 NS2 -N

BW B-B

A EW1 AE --A
A BS B AS

l t El1 I A~
BS B

ocal

ocal

E

S2

E

Micron Ex. 1037, p. 446
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 407

0

2
3
4

1-bit

s
ram-state

1-bit

s

ram-state

ram-state

vss

vdd

vss

0

vdd

s

ram-state

CLK
-RESET

0

2

s

ram-state

NS1 NS2

0

2
3

s

ram-state

REG s 1-bit
d q

ram-state

EW1 EW2

Compared with the Algotronix cell it has considerably more functionality within
a cell. A resettable register, XOR, and an AND gate are included. Thus, for
instance, a single-counter bit can be implemented in a single cell.

6.3.5 Sea-of-Gate and Gate Array Design

Programming interconnect on chips is a method of reducing the design cost of
an integrated circuit. For small-volume chips this can have a direct impact on
the part price. The most popular style in use for the implementation of general
logic functions is the Sea-of-Gates (SOG) or Gate Array structure, in which

FIGURE 6.23 Concurrent
Logic array logic cell

Micron Ex. 1037, p. 447
Micron v. YMTC
IPR2025-00119

408 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.24 Sea-of-gates
(SOG) chip layout architec­
ture

the core of the chip contains a continuous array of n- and p-transistors. A ven­
dor stocks what are called master or base wafers that have been processed up
to the stage of laying down polysilicon (i.e., the transistors have been formed).
Personalization is then achieved by using design-specific metalization and
contacts. The cost is kept down because of the following factors:·

• The wafer cost is kept low because large numbers of base wafers may
be used for many different designs.

• Only 2-5 masks need to be generated, thus keeping mask costs low.

• Design time is small due to highly automated tools for placement,
routing, and testing.

• Packaging cost is kept low due to standard bond-outs and packages.

• Processing time is kept to a minimum because only the top metaliza­
tion steps need be run.

• Testing costs are kept low because common test fixtures are used for
multiple designs.

A typical SOG structure is shown in Fig. 6.24. It consists of a continous
strip of n- and p-transistor diffusions adjacent to substrate diffusions. Poly-

V00 metal

p diffusion strip

poly gates

n diffusion strip

Vss metal

Micron Ex. 1037, p. 448
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 409

silicon crossing the n and p diffusions forms a continuous horizontal array of
transistors. These rows are repeated vertically. The core of an SOG chip so
constructed is surrounded by an array of I/O cells that can also be pro­
grammed by metalization. Routing channels are formed by routing over the
top of unused transistors. Gate arrays, which predate SOG structures, used
fixed-height routing tracks. Wiring between active logic rows in an SOG
chip occurs over the top ofunused transistors, while in a Gate Array the rout­
ing is constrained to a routing channel. Fig. 6.25 shows a collection of gates
wired together illustrating the routing over the top of the transistor rows. The
necessity to pick a number for the Gate Array routing track density thereby
constraining the number of horizontal routes gave way eventually to the con­
tinuous-array SOG approach.

A number of design decisions have to be made when designing the base
array.20 These include the following:

• The overall size of the core array.

• The macro structure of the strips:

-How many n rows and prows there are per horizontal strip, and how
they are routed.

• The micro architecture:

-The size and ratio of the n- and p-transistors.

-The number, direction, and layer of routing tracks.

-The method of logic-gate isolation.

-The personalization method.

Usually, the core-array sizes vary from small to large die sizes. When a
given system is being planned, the actual density of transistors is mapped to
an equivalent raw gate number and then to an effective usable gate level that
reflects the cost of routing and placement overheads. For instance, if the col­
umn pitch of the array is 10µ and the row pitch is 100µ, then an 8 mm-by-

I
I unu

I I
sed transistor strip

I

I I use d transistor strip
.___

I J

I I
I

I I unu sed transistor strip

I

I [use d transistor strip

-- routing

FIGURE 6.25 SOG gates
wired together showing routes
over unused transistors

Micron Ex. 1037, p. 449
Micron v. YMTC
IPR2025-00119

410 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.26 Geometry
isolated SOG or Gate-array
base cell

8 mm core chip would contain 800 x 80 = 64,000 transistor pairs. This cor­
responds roughly to 16,000 2-input NAND gates. At a 40% usability index
(the number of gates that may be used/the total number of gates), this means
we can expect to use 6400 gates on this base core.

Most SOG structures have a single row of n- and p-transistors. Some
designers have found it advantageous to use a double row of n-transistors
and a double row of p-transistors to aid in the implementation of memories
and dynamic logic.21 Other designers, wishing to implement analog circuits,
choose arrays of transistors that are suitable for those applications.22

Most designs choose equally sized transistors, presumably because
unequal rise and fall times tend to even out. The absolute size of transistors
is a trade-off between drive capability, fan-in loading, and the array density
required. The size of the transistors also affects the granularity of routing
tracks.

Typical examples of geometrically isolated and gate-isolated designs
are shown in Fig. 6.26 and Fig. 6.27. In Fig. 6.26 a geometrically isolated
design typical of early gate-arrays is shown in which three n-p pairs are cou­
pled to form a cell.23 N- and p-transistors are equally sized. The polysilicon
gates are commoned. The "dog-bone" poly connections on the transistor
gates allow for routing. Substrate connections are placed below the
n-transistor strips and above the p-transistor strips. A typical SOG design is

I ' '

I I

Micron Ex. 1037, p. 450
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 411

shown in Fig. 6.27. The key point about the SOG structure is that the transis­
tors at the end of a gate serve to isolate adjacent gates. This is achieved by
tying the gate of then-isolation transistor to Vss and the gate of the p-isola­
tion transistor to VDD· Where adjacent gates share a V88- or VDD-connected
transistor, the isolation transistor is not required. Substrate and well connec­
tions run under power busses at the bottom and top of the cell.

The personalization may be completed in a number of ways. For
instance, possible methods are:

• Single-layer metal.

• Single-layer metal and contacts.

• Double-layer metal and contacts and vias.

• Triple-layer metal, vias, and contacts.

The personalization of the arrays shown in Fig. 6.26 and 6.27 for a 3-input
NAND gate and a D latch are shown in Fig. 6.28. Both cells are arranged to
have metall running horizontally and metal2 vertically. Note how for the
NAND gate the geometrically isolated gate is smaller but for a more com­
plex structure the transistor isolated array is much smaller.

FIGURE 6.27 Transistor- or
gate-isolated SOG cell

Micron Ex. 1037, p. 451
Micron v. YMTC
IPR2025-00119

412 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.28 Personaliza­
tion of a 3-input NANO gate
and a D latch in geometry
isolated and transistor isolated
SOG structures

3-input NANO gate

D CLK

CLK D

D latch

p-transistor gate tied to V DD to isolate gate

n-transistor gate tied to V ss to isolate gate

Q

Micron Ex. 1037, p. 452
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 413

The routing style of most SOG orients the macrocells (i.e., NANDs,
NORs, REGISTERs) along the rows as illustrated in Fig. 6.27, with routing
running horizontally between rows of macrocells. In an alternative strategy,
the cells are grouped in columns24 with routing tracks running vertically
between columns of macrocells on the chip. The latter approach has been
shown to provide 1.08 to 1.31 higher gate density than the row-based
approach.

6.3.6 Standard-cell Design
Whereas gate-array architectures standardize at the chip geometry level, it is
possible to standardize at the logic or function level. That is, a specific
design for each logic gate in a library can be created. This is the basis for
what is termed standard-cell or cell-based design. Library cells are normally
created for the following classes of circuits:

• SSI logic (nand, nor, xor, aoi, oai, inverters, buffers, registers).

• MSI logic (decoders, encoders, parity trees, adders, comparators).

• Datapath (alus, adders, register files, shifters, bus extractors, and
inserters).

• Memories (RAM, ROM, CAM).

• System-level blocks (multipliers, microcontrollers, UARTs, RISC
cores).

A design is captured using the standard cells available in a library via sche­
matic or HDL. The layout is then normally automatically placed and routed
by CAD software. For SSI and MSI blocks, the layout style is usually iden­
tifiable as rows of constant or near-constant height blocks separated by rows
of routing. As the complete layout is being done, optimization of the height
of routing channels may be completed by good placement. Most manufactur­
ers have extended the SSI/MSI standard-cell technique to the design of data­
paths and other higher-level functions such as microprocessors and their
peripherals. Another fundamental component of a standard cell system is a
selection of memories. Often these are available as a set of parameterizable
modules based .on word width, number of words, and number of read- and
write-ports.

Compared to gate-arrays, standard-cell designs provide a density advan­
tage at the cost of increased prototype costs and possibly increased design
complexity. However, where manufacturers have implemented sizable cir­
cuit blocks, the productivity of a standard-cell approach might in fact be bet­
ter that that of a gate-array because the function does not need to be
designed.

Micron Ex. 1037, p. 453
Micron v. YMTC
IPR2025-00119

414 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.29 Typical stan­
dard-cell structures showing
low-power and regular-power
cells

6.3.6.1 A Typical Standard-cell Library

The LSI Logic standard cell library25 is representative of a larg~ number of
libraries that are available. Frequently the SSI logic blocks come in a
density-optimized version and a speed-optimized version. Figure 6.29 shows
possible layouts for a low-power and normal-power 2-input NAND gate.
Metal power busses run horizontally at the top and bottom of the cells. Con­
nections to the cells are available at the top and bottom of the cells. As these
hypothetical cells are ~mplemented on a salicided process, connections to the
inputs of the gates are made in polysilicon. The density-optimized versions
use minimum-sized transistors to achieve the smallest-height standard-cell
while the speed-optimized versions use large transistors to provide good
driving capability. A summary of typically available cell types is summa­
rized in Table 6.3.

(a)

nto p
spacing

transistor pitch

(b)

I P to vddn
spacing

p-transistor width

n-transistor width

I n to ~ssp
spacing

Micron Ex. 1037, p. 454
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 415

TABLE 6.3 Typical SSI Standard-cell Library Summary

GATE TYPE

inverter/buffer/tristate
buffers
nan di and
nor/or
xor
xnor
aoi (and-or-invert)
oai (or-and-invert)
multiplexers

schmitt trigger
adder/half-adder
latches

registers

IIO pads

VARIATIONS

2-8 inputs
2-8 inputs
2-3 inputs

2-8 inputs, inverting/
noninverting

inverting/noninverting
normal, fast
D, asych/synch clear/

set, scan
D, JK, asych/synch

clear/set, scan
in, out, tristate, bi­

direct, boundary
scan, limited slew
rate, crystal oscilla­
tor

OPTIONS

High-, Normal-, Low-
power

High-, Normal-, Low-power
High-, Normal-, Low-power
High-, Normal-, Low-power
High-, Normal-, Low-power
High-, Normal-, Low-power
High-, Normal-, Low-power
High-, Normal-, Low-power

High-, Normal-, Low-power
High-, Normal-, Low-power
High-, Normal-, Low-power

High-, Normal-, Low-power

Various current options
1-16 mA

In addition various parameterizable macro cells such as register files,
FIFOs, RAMs and ROMs may be provided.

Wide varieties in standard-cell topologies exist. An example of a 3µm
library may be found in CMOS3 Cell Library by Dennis V. Heinbruch.26

These cells are very intricate and designed to minimize parasitics and to
maximize performance within a given area. Such libraries take a long time to
create. Another approach is to abstract the geometry of the cells to allow
rapid redeployment in a new technology. Other variations are shown in Fig.
5.15. Where no salicide is available, the polysilicon gates might be strapped
in metal2, to eliminate any RC delays that might occur in routes that pass
through a number of rows of cells.

Figure 6.30 (also Plate 6) shows a three-level-metal standard-cell strat­
egy used at TLW (for a 3-input NAND gate). In this example, internal cell
connections are completed in metall. Connections to gates occur at the cen­
ter of the cell with a double-via structure from poly to metal2. Metal3 runs
horizontally and metal2 runs vertically; thus the cells may be completely
covered with routing. With this kind of a cell combined with good automatic
placement, very good densities can be achieved. With a library where the

Micron Ex. 1037, p. 455
Micron v. YMTC
IPR2025-00119

416 CHAPTER6 CMOS DESIGN METHODS

FIGURE 6.30 Three-level­
metal standard cell

11;1;1;1;1:+:1;1;1:1

p-transistors

l1;1:1;1;1:1:1:1:1:I

metal3 horizontal routing

l1;1;1:1:1;1;1:1:1:I

well contacts
l1:1;1;1;1;+:•:1:1:I

central metal2 connection to cells

substrate contacts

l1;1;1;1;1;1;1:i:1:1

n-transistors

l1:•:1;1;1:1;1;1;1:I

meta13 horizontal routing

!1:t:1;1:1:1:i:1;1;I

l1:1:1;.;,;,;1;1;1:I

~ ~. ~· ~·
..

metal2 vertical routing

size of the transistors may be parameterized and some generator support for
regular-array structures such as datapaths and memories is available, the
density can rival that done by hand. This means that other than for special
analog, memory, or I/O blocks, all layout can be compiled with little impact
on die cost but a big impact on productivity.

Micron Ex. 1037, p. 456
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 417

6.3. 7 Full-custom Mask Design
Full-custom design is the name given to the technique where the function
and layout of practically every transistor is optimized. Traditionally, this is
how most commercial designs have been done from the beginning of IC­
design history. Many times, nonconventional circuit forms or clocking meth­
ods will be used in an effort to decrease size or increase speed. Design
involves detailed manipulation of the geometric layout ("polygon pushing")
and detailed circuit simulation of every circuit structure. As a historical
point, it is interesting to note that even in the mid-1970s custom design was
long on geometry and short on any kind of verification (due to lack of com­
pute cycles). Design entry might have included cutting your own mask from
Rubylith®, entering the geometry via a text editor (having drawn it by hand),
or digitizing the same hand-drawn layout with a large digitizer. If you were
lucky you may have seen the layout briefly on a monochrome storage dis­
play. Frequently, using a library cell consisted of deft use of a pair of scis­
sors, some tape, and an old layout plot. Design-verification tools consisted of
a large room, knee pads, and coloring pencils to color layout plots. Of
course, circuits consisted of 10s to lOOs of transistors.

In these times, for digital CMOS circuits, companies rarely use full cus­
tom design due to the high labor content and low productivity. Exceptions to
this include the design of memory and commodity parts such as FPGAs and
the design of quasi-analog components such as phase-locked loops. In addi­
tion, large mega-cells such as RISC microprocessors may be custom­
designed for speed and cost reasons.

In 1989, Fey27 found that for full-custom designs the productivity
ranged between 6 and 17 transistors per day for logic transistors and 60 to
230 transistors per day for ROM transistors.

6.3.8 Symbolic Layout
Because a major component of custom design is the physical layout of new
modules, IC-designers sought methods of reducing the time of entry of the
physical layout. In the early 1970s MOS logic designers frequently used
manually drawn shorthand notations for layout structures (the author
included). As computers became more prevalent, this practice led to sym­
bolic layout systems. These systems attempt to abstract the layout in some
manner in order to reduce the complexity of the task, thus increasing produc­
tivity. Over the last 15 years a number of strategies have evolved.

6.3.8.1 Coarse-grid Symbolic Layout

The idea behind coarse-grid symbolic layout involves dividing the chip sur­
face into a uniformly spaced grid in both the X and Y directions. The grid size

Micron Ex. 1037, p. 457
Micron v. YMTC
IPR2025-00119

418 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.31 Coarse-grid
symbolic layout

7
6
5
4
3
2
1
0

(a)

p p p . N
A A * N *

A A
A A

0 1 2 3 4 5 6 7 8

Legend
p !ZZZZZZZZJ

A~-~

• @]

N []TI

7
6
5
4

(microns)
3
2
1
0 '---'---'-----'--'-

(b)

0 1 2 3 4 5 6 7 8
(microns)

represents the minimum feature or placement tolerance that is desired in a
given process, and is usually selected by close consultation between design­
tool developers and semiconductor-process engineers. For each combination
of mask layers that exist at a grid location, a symbol is defined. Figure 6.31
shows a typical symbol set and layout. Given a particular design system,
these symbols are then placed on the grid to construct the desired circuit,
much the same way as you would tile a floor. Symbol sets could be defined as
characters or graphical symbols, which was invaluable in the early days of
color displays because character-only color displays were a lot cp.eaper than
color graphics displays.

American Microsystems International (AMI)28•29 and Rockwell Inter­
national 30 pioneered the use of character-based symbolic layout.

This style of symbolic layout provided for first-generation symbolic lay­
out with low-cost design entry. In general these systems have been sup­
planted by more modern approaches.

6.3.8.2 Gate-matrix Layout

A character-based symbolic layout style was developed at Bell Labs31 spe­
cifically for custom CMOS circuitry. It improved on coarse-grid symbolic
layout by providing a regular layout style where a matrix of intersecting
transistor diffusion rows and polysilicon columns is employed. The intersec­
tion of a row and a column is a potential transistor site (poly crossing diffu­
sion). A related style is featured in Piguet et al.32

The evolution of this technique from a standard-cell viewpoint is shown
in Fig. 6.32. Figure 6.32(a) shows a circuit implemented in terms of standard
cells (four 2-input NANDs and one inverter). Note that intercell connections
are in metal. Rather than running these connections in metal, we can run ver­
tical polysilicon columns corresponding to each gate signal. The transistors
may then be placed on the polysilicon signals and interconnected, as shown
in Fig. 6.32(b). Note that vertical co.lumns may be either polysilicon or dif­
fusion. Horizontal rows are transistors and/or metal routing tracks. Metal
may also run vertically. A character-symbolic layout for the layout may be

Micron Ex. 1037, p. 458
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 419

A
B
c

-
-

--

J_
9

l__~ l__l_
·~ lrP21

J_
;psi

/l__~ J_
~ ~

J_
Jp5l

ll_ __ J_
~ lrp6l

J_
,. ;p71

l_l__~
lr;]71Jnal

l_l_
lrp6l

] -"'--
~

~ s

(a) (b)

created (in fact this is how the layouts were first captured). The following
rules summarize the gate-matrix technique:

1. Polysilicon runs only in one direction and is of constant width and
pitch.

2. Diffusion wires (of constant width) may run vertically between poly­
silicon columns.

3. Metal may run horizontally and vertically. Any pitch departures from
minimum (e.g., power rails) are manually specified.

4. Transistors can only exist on polysilicon columns.

To convert from a character symbolic description to mask artwork, the char­
acter matrix is examined and the symbols are expanded to their equivalent
mask entities. Operations such as merging horizontal dashes into one metal
wire and merging adjacent devices are performed during this phase. Obvi-

FIGURE 6.32 Evolution of
gate-matrix layout: (a) stan­
dard cell layout (in schematic
form); (b) gate-matrix layout

Micron Ex. 1037, p. 459
Micron v. YMTC
IPR2025-00119

420 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.33 "Sticks"­
symbolic layout compaction:
(a) layout; (b) horizontal con­
straint graph

ously very simple software and limited computer resources are needed to
capture designs in this manner.

In common with coarse-grid symbolic layout, gate-matrix-symbolic lay­
out systems have been largely replaced, but the style of layout is still of
interest for small- to medium-sized modules.

6.3.8.3 Sticks Layout and Compaction

A popular method of symbolic design is termed "sticks" layout. Here the
designer draws a freehand sketch of a layout, using colored lines to represent
the various process layers such as diffusion, metal, and polysilicon. Where
polysilicon crosses diffusion, transistors are created and where metal wires
join diffusion or polysilicon, contacts are formed. Alternatively, specific prim­
itives such as transistors are drawn and interconnected with lines representing
conductors. Following this rapid capture of the rough topology, a spacing pro­
gram or compactor determines the correct spacing between all wires, transis­
tors, and contacts created. The most popular compactor is what is termed a
graph compactor. The compactor creates a directed-constraint graph. The
nodes of the graph are the primitives, and the branches. are used to connect
groups that have potential design-rule violations. The weights of the branches
are the minimum separations necessary between two nodes. An example of the
mapping of a symbolic circuit to a graph is depicted in Fig. 6.33. If there is no
spacing necessary between two groups, an edge will not be created between
the two groups. Once the graph has been established, the critical path (i.e., the

wire1
wire4

tr1 contact2

(a)

wire1~
~!' ~.

contact1 tr1 ~ w1re4

wire2~wire3~
(b)

Micron Ex. 1037, p. 460
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 421

path with the greatest spacing requirement) through the graph can be deter­
mined. The nodes in the path can then be placed sequentially. For any given
node, there may be a number of paths to it. The critical path to a given node
will determine its minimum placement consistent with all design rules. X and
Y passes through the graph are completed to compress the layout.

During the 1980s a large body of CAD research was devoted to "sticks"
symbolic layout systems.33-43 These systems and their commercial deriva­
tives have met with varied success and acceptance.

6.3.8.4 Virtual-grid Symbolic Layout

Virtual-grid symbolic layout44 is a symbolic layout method that draws on the
experience gained in coarse-grid symbolic systems, gate-matrix, "sticks"­
type systems, and other approaches, such as ICSYS,45 developed at the Uni­
versity of Edinburgh and Caltech. In essence, the system approaches design
at the layout level by manipulating circuit elements such as transistors and
wires as opposed to any form of geometric mask description. These elements
are placed on a grid to facilitate easy design capture and use of simplified
tools, with the final geometric spacing between grid lines determined by the
density and interference of circuit elements on neighboring grid locations.
This leads to the notion of a virtual grid.

The concept is best illustrated by a simple example, as shown in Fig.
6.34(a). Three vertical wires are shown centered on a grid. The result of
using a fixed grid of 10 units and a wire width and separation of 10 units
leads to the mask description shown in Fig. 6.34(b). By using a grid in which
the spacing varies according to topology, the mask description in Fig.
6.34(c) is constructed. The end result for the designer is that placement on
the grid may be done without regard to any design rules. In addition to elim­
inating design rules, the grid is also used to define circuit connectivity in a
manner similar to that employed in schematic capture systems. Here, the
notion of a "coordinode," as introduced by Buchanan, is used to capture
physical location, structural connectivity, and behavioral state. As its name
suggests, a coordinode has the properties of a coordinate, namely some xy
position that will eventually map to the silicon surface. In addition, it may
possess the properties of a node in a circuit, such as voltage or simulation
state. Structurally, a coordinode defines the nodes in the network being
designed. In the virtual-grid context, a coordinode is mapped to a discrete set
of grid points rather than a quasi-continuous set of xy coordinates. The grid
coordinates form the lines of action in a circuit, defining the essential com­
munication paths in and through a circuit. Local geometric perturbations are
handled by software skilled in the art of manipulating geometry.

MULGA is an example of an integrated design system based on these
principles still in use.46.47 The NS system is a VLSI system that has been in
use since 1984, which employs the same principles.48 Further systems have

Micron Ex. 1037, p. 461
Micron v. YMTC
IPR2025-00119

422 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.34 Virtual-grid
symbolic layout

0 2 3 4 5 6

(a)

D [

D D
0 2µ 4µ 8µ 0 2µ 4µ

(b) (c)

reported the use of similar techniques.49,so A virtual-grid-circuit capture sys­
tem yields the following benefits:

• Design-rule-free topology capture.

• Rapid design capture through the use of point interconnect.

• Fast grid-based algorithms for connectivity audit, compaction, and
other design processes.

• Ability to allow simplified parametized cells with automatic geometry
generation.

• Hierarchical module assembly.

• Natural target for higher-level silicon compilers (geometry free).

The use of the virtual grid allows a very simple compaction strategy to be
used. However, recent virtual-grid systems also use graph based compaction.

Micron Ex. 1037, p. 462
Micron v. YMTC
IPR2025-00119

6.3 CMOS CHIP DESIGN OPTIONS 423

In terms of productivity, based on roughly 20 chip designs, by using
known circuits and just altering the geometry, productivities similar to stan­
dard-cell designs are seen while densities comparable with hand layout result.

Symbolic-layout systems are an acquired taste. Many people (such as
the author) could not imagine designing without them at the layout level,
while many others design quite happily without them. Recently, there has
been somewhat of a renaissance of symbolic layout when designers with
fixed-geometry designs are confronted with the effort of porting an old
CMOS design to a completely new process.

6.3.9 Process Migration-Retargetting Designs

Of concern to the system designer are methods of retaining the investment in
engineering large systems where ever-improving process densities mean that
the system cost can be reduced over time by incorporating the five ASICs
designed in a given year onto one chip in two years, and onto one-fourth of
a chip in four years. The following approaches are possible:

• Recast the architecture.

• Recast the logic design.

• Recast the layout in the new process.

The first option requires a complete reengineering of the problem with
the associated system and production test vectors. This frequently provides
the best technical solution with a varied saving on previous engineering. In
the software domain, this is equivalent to rewriting the program to suit a
faster computer with, say, a parallel architecture.

The second option allows a design implemented in today's standard
cells to be fairly painlessly translated to the next generation standard cells.
Timing analysis still has to be completed, but the process can reuse previous
engineering efforts. While this process works well for logic, specialized
VLSI structures such as memories may be a problem. Some ASIC vendors
counter this by providing n-port memory compilers that work in the target
processes. The counterpart in the software world is the use of a new compiler
to produce code for a new fast processor.

Finally for the "dusty deck" problem, researchers have turned their
attention to the problem of migrating mask designs implemented in old tech­
nologies to newer smaller processes. Some success has been recorded with
systems that extract symbols from old geometry and then recompact the
symbols with the new design rules of the target process.51

In all·cases, the design effort would still contain a large proportion of
simulation and timing analysis, which usually constitutes the major portion
of the design effort in today's designs.

Micron Ex. 1037, p. 463
Micron v. YMTC
IPR2025-00119

424 CHAPTER 6 CMOS DESIGN METHODS

6.4 Design Methods

When starting a design project, the designer has a number of options with
regard to the specification level of the chip. Usually the designer starts at the
behavioral level and progresses to the RTL level, then to the logic level, and
then possibly to the structural level, and finally to the layout level. Depend­
ing on the complexity of the design, tools exist to synthesize a chip layout
from any of these levels of specification.

6.4.1 Behavioral Synthesis

At the behavioral level, the operation of the sysfem is captured without hav­
ing to specify the implementation. For instance, the pipelining required to
meet a certain speed may not be specified. This is the level that provides the
fastest emulation of the system and the one that is best used to debug the
operation of the complete system. Obviously, this level is technology­
independent.

For the synthesis of complex behavioral descriptions including signal­
processing architectures, a rich research literature is available. Researchers
have had success with high-level synthesis by building systems to synthesize
constrained architectures. Good examples are the Cathedral series of silicon
compilers, Cathedral I, which concentrated on bit-serial digital filterss2;

Cathedral II, which compiled collections of communicating sequential DSP
processorss3; and Cathedral III, which was aimed at video-signal-processing
architectures.s4 Another example is the LAGER compiler for signal process­
ing architectures.SS These targeted systems are sometimes called Silicon
Compilers, because they take a design from the behavioral (code) to the
mask level (silicon).

In principle, a behavioral compiler must perform the following oper­
ations:

• Decide upon and assign resources based on area and timing
requirements.

• Insert pipeline registers to achieve timing constraints.

• Create microcode and/or control logic.

For instance, consider the following behavioral code fragment:

a = a + b*c;

This specifies a multiply-accumulate step. Depending on the required speed
and word size, this may be implemented as anything from a bit-serial multi­
plier to a fully parallel Booth-encoded Wallace tree multiplier (see Chapter 8).,

Micron Ex. 1037, p. 464
Micron v. YMTC
IPR2025-00119

6.4 DESIGN METHODS 425

The vector-drawing architecture shown in Fig. 6.2 is derived from the equation
for a straight line,

Y = a*x + b;

It is not intuitively obvious how the structure in Fig. 6.2 might evolve from
the equation above. It took a clever human and difference-equation mathe­
matics to produce the implementation shown.

Behavioral-synthesis systems currently provide very good silicon
implementations for narrow (but very useful) classes of problems, and will
continue to gain ground as they become more generalized and commercially
available.

6.4.2 RTL Synthesis

RTL-synthesis programs take an RTL description and convert it to a set of
registers and combinational logic. At this stage of the design process, the
architecture has been captured. One research system pioneering this
approach to design (and aimed at CMOS) is the Yorktown Silicon Compiler
System. 56 There are also a number of commercial systems now available.

Commonly, RTL descriptions are captured using a Hardware Descrip­
tion Language (HDL). In general, RTL HDLs have to capture the following
attributes of a design:

• Control flow using if-then-else and case statements.

• Iteration.

• Hierarchy.

• Word widths, bit vectors, and bit fields.

• Sequential versus parallel operations.

• Register specification and allocation.

• Arithmetic, logic, and comparison operations.

An RTL compiler is responsible for converting a description in an HDL into
a set of registers and combinational logic. Logic optimization is then used to
improve the logic to meet timing or area constraints (Section 6.4.3).

As examples of available commercial systems, some of the transforma­
tions that allow RTL descriptions to be synthesized will be given in terms of
the VHDL language57- 59 and the Synopsy VHDL Compiler@.6° Consider
the following (sketchy) VHDL description of the difference engine shown in
Fig. 6.2(b).

package types is
type OP_CODE is (NOP, LOADA, LOADB, LOADF, RUN);

Micron Ex. 1037, p. 465
Micron v. YMTC
IPR2025-00119

426 CHAPTER 6 CMOS DESIGN METHODS

at tribute OP_CODE_ENCODING of OP_CODE:

type is "000 001 010 011 100";

end types;

The type section defines a user-defined type called OP _CODE, which will
be used to control the difference engine. It states that the 3-bit field has five
operation codes to load the three registers, to run the difference engine, or to
do nothing (NOP). An optional encoding has been assigned via the
at tribute keyword. Thus one operation that the HDL synthesizer does is
to assign values to unspecified type fields.

entity DIFF _ENGINE is

port(

DATA : in BIT_VECTOR (0 to 7);
OP : in OP_CODE;

CLOCK : in BIT;

SIGN : out BIT;

) i

end DIFF_ENGINE;

The entity section defines the name of the design (DIFF _ENGINE) and
denotes a port interface to the module. For instance, in this case DATA is
defined to be an 8-bit bit-vector that is an input.

architecture DIFF_ENGINE_l of DIFF_ENGINE is

signal A,B,F BIT_VECTOR (0 to 7);

begin

process
begin

wait until (not CLOCK' stable and CLOCK

case OP is

when LOADA = > A < = DATA;

when LOADB = > B < = DATA;

when LOADF => F <= DATA;

when RUN = >

'1');

i f (SIGN = ' 1 ') then F < = F +A

else F <= F+B

end if;

when NOP => F <= F

end case;

SIGN <= (F<O);

end process;

end DIFF_ENGINE_l

In the above RTL description, a number of statements are illustrated. First,
the signal statement defines some internal signals that have local scope
within the module. The process statement indicates a section of code to
be implemented sequentially. The wait statement indicates the presence of

Micron Ex. 1037, p. 466
Micron v. YMTC
IPR2025-00119

6.4 DESIGN METHODS 427

clocked registers and specifies that the registers are triggered on the rising
edge of CLOCK. The case operator indicates a multiplexer, as does the if
operator. Finally, the"+" operator indicates an addition while the"<" oper­
ator indicates a comparison operator. When combined with an appropriate
substrate (simulation, logic library, operator definition), the above descrip­
tion may be compiled into a set of logic gates and registers.

In the case of state-machines, RTL compilers need to provide for auto­
matic state-assignment61 and minimization.

6.4.3 Logic Optimization

Logic optimization programs take logic descriptions as generated by an RTL
synthesis (with the registers stripped out) or which are generated directly at
the logic level and optimize the network of gates that are required to imple­
ment the function specified by the logic description for a given logic library.
The registers are then reunited with the optimized logic, and the physical
layout for the system may be implemented using largely automatic tech­
niques. The methods for this are well understood62 and there are a number of
very successful commercial systems.

A typical flow through a typical logic synthesis system is shown in Fig.
6.35. The design is commenced with a logic description. This may be in the
form of Boolean equations or a schematfo netlist of logic gates. The objec-

Weak Division

Optimization

Compile

Logic Equations
Extract

Input

Espresso

Netlist Generation

Technology
Mapping

Netlist

t
Input

FIGURE 6.35 Logic­
optimization flow

Micron Ex. 1037, p. 467
Micron v. YMTC
IPR2025-00119

428 CHAPTER 6 CMOS DESIGN METHODS

tive of a logic optimization scheme is to manipulate the logic to meet speed
or area constraints or a combination of both goals. Generally, logic­
optimization systems divide the problem into two stages:

• A technology-independent phase in which the logic is optimized
according to algebraic and/or Boolean techniques.

• A technology-mapping phase, which translates the technology­
independent description derived in the previous step to specific library
standard cells, FPGA elements, or other implementable logic gates.

The technology-independent aspect of logic optimization uses a large
body of algorithms that operate on logic networks, using both Boolean and
algebraic techniques. Most often logic-optimization systems provide a
means to read logic networks, manipulate them, perform a technology map­
ping, and save the resulting structure to be used by an automatic layout pro­
gram or some other tool. A typical flow through an optimization script is as
follows63 : ,

• Network organization.

• Two-level minimization.

• Algebraic decomposition.

• Iterative improvement.

Having read the design in, the first step might be to perform tasks such
as eliminating constant nodes and redundant inverters or converting the
logic to a two-level PLA sum-of-products form (see Chapter 8). Next, a two­
level minimization might be invoked. Espresso64 is an example of a widely
used two-level minimization program. Next, algebraic decomposition may
be used that introduces new nodes into the logic network in a manner that
minimizes the cost. One technique used is known as "weak division."65 This
is used to decompose two-level logic expressions into multiple-level logic
expressions. It operates by repeatedly "dividing" the expressions by subex­
pressions that appear more than once in the set of expressions that constitute
the design. The most suitable subexpression is chosen by evaluating a cost
function that may be based on reducing the number of literals (area) or other
functions related to the levels of logic (speed). Consider the following equa­
tions:

fl aef + bef + ceg
f2 aeg + bg + def

The common subexpressions are ef, ae, eg, and a+b. Of these, ef saves
the most literals. When e f is divided into all subexpressions, the result is

fl = (a+b)tl + ceg

Micron Ex. 1037, p. 468
Micron v. YMTC
IPR2025-00119

6.4 DESIGN METHODS 429

f2 = aeg + bg + dtl

t1 = ef

After this pass the literal eg might be chosen, yielding

fl = (a+b)tl + ct2
f2 = at2 + bg + dtl
tl =ef
t2 = eg

Finally, algorithms are used to iteratively improve the logic structure.
This may employ the algebraic techniques of extraction, factoring, and sub­
stitution in addition to decomposition.

Following the technolo,gy-independent step, a technology mapper is
then used to optimize the gates for a particular technology.66 Two kinds of
optimizers are in popular use. The first consists of a rule base consisting of
rules in the form

if (antecedent) then (precedent).67

They are used to map over small sections of circuitry to choose suitable logic
gates for an implementation. Figure 6.36 illustrates some typical rules. Fig­
ure 6.36(a) eliminates cascaded inverters, while Fig. 6.36(b) converts NOR
and INVERT logic gates into an OAI gate. Other rules might bias gate selec­
tion toward faster gates such as NAND gates. Another approach is termed
Directed-Acyclic-Graph(DAG) covering.68 In this approach, what is called a
base-function set is chosen. This might be a 2-input NAND gate and an
inverter. All logic gates in the target library are then described in terms of the
base-function elements. These are known as pattern gates. The logic net­
work is optimized using the base-function set. This creates a subject graph.
Graph optimization techniques are then used to find an optimized set of tar­
get gates. Figure 6.37(a) shows a base function set. Figure 6.37(c) shows
examples of pattern graphs. For the 4-input NAND gate shown in Fig.
6.37(c), two possible pattern graphs are shown. Figure 6.37(d) shows a sub­
ject graph in which a particular mapping has been identified. Finally, Fig.
6.37(e) shows the resultant mapped logic implementation.

The MIS69 and BOLD70 systems are examples of research-based tools
that provide logic minimization. These systems provide an environment that
contains a number of minimization techniques. These are used to construct
minimization scripts that can be adapted for varying styles of logic minimi-

antecedents precedent

FIGURE 6.36 Rule-based
technology mapping

Micron Ex. 1037, p. 469
Micron v. YMTC
IPR2025-00119

430 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.37 DAG technol­
ogy mapping

Base Functions

(a)

Example Pattern Graphs

(b)

(c)

A-----1--1
B-----1--1

c----t:;:;;;;:;;:;;;;:;;:;;;;:;;:;;;;:;;:;;;;:;=..._---1

(d)

~_=l> __ r==D
D _ __s-----._

E
F

(e)

)0-----F

F

zation. Figure 6.38 shows the typical inputs to MIS that might consist of a
minimization script, a set of equations, and a logic-library definition. The
output is a netlist implementing the equations in terms of the logic library.
An example of the use of this program is presented in Chapter 8. The EDIF
language is frequently used as a common netlist format between design
systems.71 .

Apart from increasing design productivity, logic synthesis systems are
very useful for transforming between technologies. For instance, a designer
might synthesize a circuit in terms of multiple FPGAs, and construct a pro-

Micron Ex. 1037, p. 470
Micron v. YMTC
IPR2025-00119

6.4 DESIGN METHODS 431

totype. This might be used to verify the operation of the circuit under real­
world conditions and then a single-chip version may be compiled using a
gate-array library and the original logic description.

6.4.4 Structural-to-Layout Synthesis

Once a network of logic gates and registers is available, these may be auto­
matically converted to a layout. Software for this task is very well devel­
oped, having been refined over the last 15 to 20 years. Gate arrays and
standard-cell designs use this approach. There are two main phases that are
required: placement and routing.

6.4.4. 1 Placement

Placement is the task of placing modules adjacent to each other to minimize
area or cycle time (timing-directed placement). Two main automated algo­
rithms have been developed. The Min-cut algorithm 72 takes the blocks at the
top level of the chip or module to be placed and finds two approximately
equal area-groupings of subblocks with the minimum number of signal inter­
connections. These two blocks are then placed in the top and bottom half of
a conceptual final layout. This process is repeated for these two halves, split­
ting the conceptual layout into quarters and so on until the leaf cells are
reached. This algorithm is very fast and gives good placements. Another
popular technique in which the movement of modules is likened to thermal
annealing is also used.73 Modules are initially allowed to move randomly,
and the "temperature" of the layout is evaluated by applying some measure
such as routing area or timing. As the layout "cools" the routing and/or tim­
ing improves. For each proposed subblock movement, the resulting temper­
ature is calculated. If it is higher than the current temperature, the move is
not completed. To avoid local minima, the "melt" is reheated and then
recooled according to an "annealing schedule." This process is used in the
TimberWolf program that was developed at the University of California,
Berkeley74 and refined at Yale University.

6.4.4.2 Routing

A router takes a module placement and a list of connections and connects the
modules with wires. This technology is very mature. Types of routers
include channel routers, switchbox routers, and maze routers. Channel rout­
ers are typified by the YACR2 router75 and the Greedy router.76 These rout­
ers route rectangular channels. Switchbox routers can route more complex
channel shapes than channel routers. Maze routers 77 can route just about any
configuration but have comparatively long running times. They are usually
reserved for really tough routing problems.

MISll

netlist

FIGURE 6.38 Logic
optimization using
MISH

Micron Ex. 1037, p. 471
Micron v. YMTC
IPR2025-00119

432 CHAPTER 6 CMOS DESIGN METHODS

A global router78 is a special router that works during a placement algo­
rithm to try to plan where routes will travel when the layout is finally placed.

6.4.4.3 An Automatic Placement Example

The standard-cell (constant height cells) placement part of Timber Wolf takes
as inputs the following:

• The .eel file.

• The .blk file.

• The . par file.

• The .net file.

The .eel file describes the connectivity of standard-cells port locations and
signal names. A partial example is shown below:

cell 2 INVERTER-2
left -36 right 36 bottom -225 top 225
pin name Z_top signal NEXT_STATE<2> 18 225

equiv name Z_bottom 18 -225
pin name A_top signal [169) -18 225

equiv name A_bottom -18 -225

pad 0 %%%pad_TOP_O orient 3

padside T
left -1 right 1 bottom -1 top 1
pin name top_%io-port signal STATE<3> 0 1

pad 1 %%%pad_TOP_l orient 3

padside T
left -1 right 1 bottom -1 top 1
pin name top_%io-port signal STATE<2> 0 1

The first cell statement denotes an inverter, INVERTER-2 with output
NEXT_STATE<2> and input [169]. The bounding box of the inverter is
specified by the second line. Each successive line specifies a port and its
location. Ports that feed through cells may also be specified. Finally, the
ordering and location of I/O pads are specified by the pad statements.

The .blk file contains information pertaining to the structure of each row
in the layout. An example follows:

block height 450 class 1
block height 450 class 1 mirror

block height 450 class 1

This defines a three-row layout with the middle row mirrored in Y.

Micron Ex. 1037, p. 472
Micron v. YMTC
IPR2025-00119

6.4 DESIGN METHODS 433

The .par file contains various global parameters to be applied to the lay­
out. The following is an example:

rowSep 1.1111112
addFeeds
feedThruWidth 36
implicit.feed.thru.range 0.25
do.global.route
do.global.route.cell.swaps

For instance, this specifies to add feedthroughs if necessary.
Finally the .net file specifies information about the nets to be routed. The

following is an example:

allnets HVweights 2.5 1.0

This specifies that all nets are to be routed with an equal weighting of 2.5 for
horizontal and 1 for vertical routes.

Timber Wolf returns the following files

• The .pll and .pl2 files which describe the placement of modules.

• The .pin file, which describes the segment list of routes.

• The .twf file.

• The .out file, which is a summary of the program execution.

• The .sv2 and .sav files, which allow restart of the program.

For example, a portion of .pl2 file example appears as follows:

D-REG-MUX-8 0 502 612 952 2 1

INVERTER-2 1188 1452 1260 1902 1 2

D-REG-MUX-31 1332 502 1944 952 2 1

A portion of a .pin file appears as follows:

[212] 3 NOR2-1 A_bottom 702 502 1 1 0

STATE<O> 12 AOI21-35 B_top 774 2852 4 -1 0

Using this information, a channel router may be called to complete the chan­
nel routes specified by Timber Wolf. With the addition of power feeds on the
two ends of the layout, the standard cells and routing blocks may be placed
to create the final layout. A typical standard-cell layout in outline form is
shown in Fig. 6.39 and Plate 9.

Micron Ex. 1037, p. 473
Micron v. YMTC
IPR2025-00119

434 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.39 A typical
standard-cell layout style

constant height
standard cell row s

inv inv reg nd2 nd2 nd3

channel route

reg inv nd2 nd3 inv inv inv

f:l
!ll
m;\\\\\\'.\\\\\\\\\\\\\\\\\\\\\\ .,_ ----channel route

~i
\\\\\\\'\\\H\\\\\\\\\\\\\\\\\\\\\\\\H\\\\\\ \\\\

1---
1

nr2 nd2 nr3 nd2 nr2 inv nd2

\~
variable width standard cells

\ d;tt.,oot holght I ~u,, '"'°"'''
- horizontal routes

i n metal1

-.......... vertical routes in meta12

A large number of mature research, proprietary, and commercial place­
and-route systems are available.

6.4.5 Layout Synthesis

The layout of regular structures such as RAMs, ROMs, PLAs, register files,
multipliers, and general datapaths may be synthesized by software genera­
tors. These programs take a number of parameters as input and automatically
create a custom physical layout. Some systems create actual mask layout
tuned to a particular process, while others create symbolic layouts that may
be compacted to suit a particular technology. 79

The following is an example of a virtual-grid symbolic description of an
inverter from the NS design system. It is specified in Common Lisp.

(defaspect-generator ("USER:INVERTER" :VIRTUAL-GRID)

(w ratio pw)

iii transistors

(part N-CHANNEL-MOSFET :origin (pt 1 3) :WIDTH w)

(part P-CHANNEL-MOSFET :origin (pt 1 7)

:WIDTH (* ratio w))

iii contacts
(part VG-TERMINAL :x 0 :y 3

:CONNECTED-LAYERS I (N-DIFF METAL))

Micron Ex. 1037, p. 474
Micron v. YMTC
IPR2025-00119

6.4 DESIGN METHODS 435

(part VG-TERMINAL :x 2 :y 3

:CONNECTED-LAYERS I (N-DIFF METAL))

(part VG-TERMINAL :x 3 :y 5
:CONNECTED-LAYERS I (METAL POLY))

(part VG-TERMINAL :x 0 :y 7

:CONNECTED-LAYERS I (P-DIFF METAL))
(part VG-TERMINAL :x 2 :y 7

:CONNECTED-LAYERS I (P-DIFF METAL))

i i i wires
(part VG-LOG :from (pt 0 10) :to (pt 4 10)

:LAYER 'METAL :WIDTH pw)
(part VG-LOG :from (pt 0 0) :to (pt 4 0)

:LAYER 'METAL :WIDTH pw)
(part VG-LOG :from (pt 0 0) :to (pt 0 3) :LAYER 'METAL)

(part VG-LOG :from (pt 0 7) :to (pt 0 10) :LAYER 'METAL)

(part VG-LOG :from (pt 2 5) :to (pt 2 3) :LAYER 'METAL)

(part VG-LOG :from (pt 1 0) :to (pt 1 10) :LAYER 'POLY)

(part VG-LOG :from (pt 3 0) :to (pt 3 10) :LAYER 'POLY)

(part VG-LOG :from (pt 2 7) :to (pt 2 5) :LAYER 'METAL)
)

The first two statements specify transistors. The next four statements specify
inter-layer contacts (the type is specified by the list of layers following the
: CONNECTED-LAYERS keyword). The final eight statements specify wires
with position keywords(: from : to), a size keyword (:WIDTH), and the
: LAYER keyword, specifying the layer on which the wire is routed.

In this example, the width of the n~ and p-transistors has been specified in
terms of the variables wand ratio. The keyword : WIDTH passes this to the
transistor generator. In addition, the power bus width has been specified in
terms of pw. Figure 6.40 illustrates a few insta1_1ces of this layout generator.

At a higher level, the following is the top-level call to a PLA generator
(see Chapter 8):

(defaspect-generator ("PLA: PLA" :VIRTUAL-GRID) (pla­
filename)

(let* ((inputs (get-number-of-inputs pla-filename))

(outputs (get-number-of-outputs pla-filename))

(cells

(list
'("PLA-EDGE" :inputs ,inputs :outputs ,outputs

:edge :bottom)
'("PLA-MIDDLE" :pla-file ,pla-filename)

'("PLA-EDGE" :inputs ,inputs :outputs ,outputs
: edge : top))))

(vertically-abut cells)

(import-all-ports)))

This hierarchically calculates some parameters (inputs,outputs) from
the file specifying the PLA and calls some other generators (PLA-EDGE and

Micron Ex. 1037, p. 475
Micron v. YMTC
IPR2025-00119

436 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.40 Various
instantiations of a CMOS
inverter generated by a
generator w = 2 ratio = 1 pw = 1 w = 4 ratio = 2 pw = 2 w = 4 ratio= 0.5 pw = 4

PLA-MIDDLE) and then vertically abuts these cells. Following this, the
ports are imported from the lower level of the design. As an example of the
next level down, the generator that performs the PLA-MIDDLE function is
reproduced below:

(defaspect-generator ("PLA:PLA-MIDDLE" :VIRTUAL-GRID)
(pla-filename)

(let ((cells (list
("FLA-LEFT" :pla-file ,pla-filename)

:pla-file ,pla-filename) (II AND- PLANE II

("AND-OR-JOIN" :pla-file

' ("OR-PLANE" :pla-file

,pla-filename)

("FLA-RIGHT"

(horizontally-abut cells)
(import-all-ports)))

:pla-file

,pla-filename)
,pla-filename))))

This horizontally abuts the PLA-LEFT, AND-PLANE, AND-OR-JOIN, OR­
PLANE, and PLA-RIGHT cells. Finally at the AND and OR plane level, the
generator places transistors according to the PLA personality matrix.

It may be seen that with the combination of symbolic layout, a powerful
language and a good CAD substrate, powerful layout generators may be cre­
ated with minimum effort.

As opposed to the creation of random logic, which the previous section
illustrated, layout generators are used for regular arrays or places where a
simple algorithm can specify the layout.

Micron Ex. 1037, p. 476
Micron v. YMTC
IPR2025-00119

6.5 DESIGN-CAPTURE TOOLS 437

6.5 Design-capture Tools

6.5.1 HDL Design
The behavior and/or structure of a system may be captured in a Hardware
Description Language. There are a wide variety of proprietary, commercial,
and public domain languages including those specifically designated hard­
ware description languages (HDLs), such as VHDL, ELLA, Verilog®, and
modified high-level languages, such as C, Pascal, and Lisp. Languages like
VHDL allow for the capture of both structure and behavior. For example,
Chapter 1 used an example of a structural design coded in Verilog®, while
this chapter used an RTL VHDL description.

The popular standard HDLs differ from high-level languages by cater­
ing for hardware notions such as bit vectors, signals, and time within the
native language. This is reflected in the syntax of the language and the
underlying runtime operating support, which includes compilers, debuggers,
and simulators. In common with high-level languages, HDLs usually pro­
vide all of the elements of modern computer languages-structure,
parametization, conditionals, looping, and hierarchy.

6.5.2 Schematic Design
The traditional method of capturing a digital system design is via an interac­
tive schematic editor. Actually, preferences have cycled from textual netlists
(when graphics hardware was expensive) to interactive graphic editors to
textual HDLs. Many design systems allow a free mix of code and diagrams
so that designers can choose. In general, diagrams are more quickly under­
stood ("a picture is worth a thousand words"), but HDLs are more easily
modified.

Schematic editors provide a means to draw and connect components. A
collection of components may be collected into a module for which an icon
may be defined. The icon is a diagram that stands for the collection of com­
ponents within the module. The shape might suggest the function of the
module, while the 1/0 connections of the module are represented by stubs
with signal names. This icon may then be used in another module, and so on,
hierarchically, throughout the design. Figure 6.41 shows a typical schematic
for a module and its schematic icon.

Primarily, schematic editors are menu-based graphic editors with opera­
tions such as:

• Creating, selecting, and deleting parts by pointing or area inclusion.

• Changing the graphic view by panning, zooming, or other means.

Micron Ex. 1037, p. 477
Micron v. YMTC
IPR2025-00119

438 CHAPTER 6 CMOS DESIGN METHODS

FIGURE 6.41 Structural
views of a circuit: (a) sche­
matic; (b) schematic icon (a) (b)

DO
01
02
03 z
04
05
06

To a basic graphic editor, operations are added that pertain to the electrical
nature of the schematic, such as:

• Selecting an electrical node and interrogating it for state, connections,
capacitance, etc.

• Running an attached simulator or other electrical network-based tools.

6.5.3 Layout Design

Layout too can b~ captured via code (in the case of generators) or interactive
graphics editors. However, to maintain one's sanity, a good color editor is a
strong requirement if substantial layout editing is to be performed. Layout
editors, like schematic editors, are based on drawing editors (for instance see
Rubin80). Differences occur in the way color is treated and sometimes in the
way detail is thresholded (although in advanced design systems one editor is
usually used for all diagram editing81). Because there is usually a large
amount of data present, various means of turning off detail are required to
alleviate long redraw times. A layout editor might interface to a Design Rule

I

Checking program to allow interactive checking of DRC errors, and to a
layout-extraction program to examine circuit-connectivity issues.

6.5.4 Floorplanning

Floorplanning82•83 is the exercise of arranging blocks of layout within a chip
to minimize area or maximize speed. The latter is increasingly the main rea­
son for performing this activity. Floorplan editors provide graphical feed­
back about the size and placement of modules without showing internal
layout details. In addition, the editors show connectivity information
between modules in the form of "rat's-nest" wiring diagrams, where the con­
nected ports of modules are connected by straight lines. These kinds of dia­
grams indicate the relative density of wiring and whether, for instance, ports
line up between adjacent modules. Figure 6.42 shows a simple example.

Micron Ex. 1037, p. 478
Micron v. YMTC
IPR2025-00119

6.5 DESIGN-CAPTURE TOOLS 439

A c

B D

This shows that module D should be flipped around the Y axis to improve the
routing. Some editors provide shaded color displays of routing density that
allows designers to re-place and "rip-up-and-reroute" congested areas of the
chip. While floorplanning may be done automatically, many times a much
better job can be done manually. Usually, the task is not that time consum­
ing, given the right interactive tools and a knack for doing it.

6.5.5 Chip Composition
Similar to structural synthesis, chip composition, or "block-place-and­
route," is the term that is applied to wiring the top level modules in a design.
At this point a good placement of modules is assumed. The task consists
mainly of routing modules together and then placing a pad ring around the
completed chip core. Usually there is a routing strategy that is followed. For
instance, the technique of binary composition, 84 has been widely used. Here
modules are combined alternately in horizontal and vertical strips from the
bottom up until the complete chip is routed. Figure 6.43 illustrates an exam­
ple that shows the progression of steps of grouping modules and adding rout­
ing channels. Figure 6.43(a) shows the unrouted, relatively placed modules.
Figure 6.43(b) shows a horizontal composition where, for instance, A and B
are routed together by routing cell AB. A vertical composition step is shown
in Fig. 6.43(c), where all modules 'are now connected. Routing block DEF
routes module D and the composed module (E,EF,F). The advantage of this

FIGURE 6.42 A floorplan
example

Micron Ex. 1037, p. 479
Micron v. YMTC
IPR2025-00119

440 CHAPTER 6 CMOS DESIGN METHODS

approach is that only channel routes need to be routed, which is a well­
solved problem.

6.6 Design Verification Tools

Figure 6.44 shows a conventional flow through a set of design tools to pro­
duce a working CMOS chip from a functional specification. Depending on
the tools, some steps may be automatic and hidden from the designer but
usually are performed by some agent. The design process is commenced
with a clock-cycle-accurate functional specification (say, in a high-level lan­
guage such as C). This is used to verify that the system performs as required.
This is translated to a structural RTL or logic description. If done manually,
the functionality of the two descriptions has to be proved isomorphic. This is
done by applying a stimulus to the functional description and to a logic sim­
ulation of the RTL description and comparing the outputs of both forms on a

Micron Ex. 1037, p. 480
Micron v. YMTC
IPR2025-00119

6.6 DESIGN VERIFICATION TOOLS 441

idea

t
Functional Specification 8-- equivalence checks

RTL/Logic

backannotation 8-- equivalence checks

Layout

silicon

clock-cycle by clock-cycle basis. RTL simulations may be done with the
actual clock timing by estimating the layout loading capacitances. Once the
functional equivalence has been satisfied, the structural description is trans­
formed into a physical form (i.e., a layout). Again, this might be automatic
for a gate array or standard-cell layout or might be done manually. The prob­
lem now is to prove that the layout is a faithful reproduction of the structure
of the RTL description (i.e., all signals are routed correctly). In addition, we
have to prove that the functionality is still maintained in the temporal
domain (timing). This is done by extracting the parasitic routing capaci­
tances introduced by the physical layout and applying them to the RTL sim­
ulation model.

Each one of these steps requires a certain set of verification tools. In this
section we summarize these tools.

6.6.1 Simulation

Probably the software tool that designers most frequently encounter is some
form of simulator that is used to predict and verify the performance of a
given circuit. Simulators come in a wide variety depending on the accuracy
and speed of simulation required. 85

6. 6. 1. 1 Circuit-level Simulation

The most detailed and accurate simulation technique is referred to as Circuit
Analysis. As the name suggests the simulators operate at the circuit level.
Circuit-analysis programs are typified by the SPICE program developed at
the University of California at Berkeley86 and ASTAP developed at IBM. 87

Commercially available versions are typified by the HS PI CE program. 88

The basis for this type of program is the solution of the matrix equations
relating the circuit voltages, currents, and resistances (or conductances).
This type of simulator is characterized by high accuracy but long simulation
times. Simulation time is typically proportional to Nm, where N is the num­
ber of nonlinear devices in the circuit, and m is between 1 to 2. This type of

FIGURE 6.44 Design flow
through typical CMOS VLSI
tools

Micron Ex. 1037, p. 481
Micron v. YMTC
IPR2025-00119

442 CHAPTER 6 CMOS DESIGN METHODS

program is used to verify in detail small circuits or to verify the simulation
results of faster but less accurate simulators, such as timing simulators. It is
unrealistic to use this type of program for the verification of large VLSI
chips.

Circuit simulators used to verify performance of CMOS circuits should
not be assumed to accurately predict the performance of designs. There are
three basic sources of error. These are as follows:

• Inaccuracies in the MOS model parameters.

• The use of an inappropriate MOS model.

• Inaccuracies in parasitic capacitances and resistances.

Usually, contemporary circuit simulators related to SPICE provide dif­
ferent levels of modeling (specified by the LEVEL parameter). Simple mod­
els are optimized for speed of processing, while more complex models are
used for more accurate simulation. If possible one should verify actual tran­
sistors from known process corners against the DC characteristics predicted
by the simulator. A good practice is to include test transistors of both polar­
ities with various widths with the lengths used in the design (usually the
minimum and sligh.tly longer for I/O transistors). Because processes are
shrunk, the models used by a simulator may no longer be able to accurately
predict the performance of the transistors.

Assuming that one has verified the DC performance of the transistors,
the AC performance can now be in question. A significant source of error in
predicting performance can be the parasitic capacitances that are applied to
nodes in the circuit description used in the circuit-analysis program. The
gate capacitance is part of the MOS model and should be subtracted from the
total capacitance predicted by a layout-extraction program. One should
check how drain and source capacitances are added to transistors-often
they are added as diodes or as part of the MOS model. In this case they
should not be added as stray capacitance on the node. A good practice is to
create a check layout with known areas and peripheries on each layer and
then check the SPICE deck produced by any extraction program. The bottom
line is to be aware of the means of process calibration (i.e., that someone is
responsible for it).

6.6.1.2 Timing Simulation

It is possible to simplify the general circui,t analysis approach used above to
allow simple nonmatrix calculations to be employed to solve for circuit
behavior. This usually involves making some approximations about the cir­
cuit. Typical of an early simulator using this approach is the MOTIS simula­
tor. 89 More recent examples may be found in White and Sangiovanni-

Micron Ex. 1037, p. 482
Micron v. YMTC
IPR2025-00119

6.6 DESIGN VERIFICATION TOOLS 443

Vincentelli.90 The accuracy of such simulators is less than that of SPICE­
type simulators, but the execution time is almost two orders of magnitude
less.

Implementations may use MOS-model equations to calculate device cur­
rents or may use table look-up methods. Calibration of any simulator is advis­
able, using the techniques described above for circuit simulators. Usually the
relative accuracy of such simulators is good; that is, inherently high speed cir­
cuits will demonstrate better performance than slower circuits. However,
sometimes the absolute accuracy may not be as good as a circuit simulator,
especially if no real silicon has been used to check simulation results.

Absolute accuracy is somewhat of a red herring anyway, because pro­
cess variation, temperature variation, and allowable supply-voltage excur­
sions may vary by a range of three or four to one. The designer is usually
trying to predict the slowest the circuit will operate. It is unwise to do this
with no margin unless the whole design system is known to accurately pre­
dict worst-case performance. Designers generally allow a 10-20% margin in
assessing speeds.

6.6. 1.3 Logic-level Simulation

Many simulators have evolved to deal with simulation at the logic level.
They use primitive models such as NOT, AND, OR, NAND, and NOR gates.
Some operate in a "unit delay" mode, where every gate is assumed to have a
delay of one time-unit. This type of simulator can be highly optimized for
execution speed. Alternatively, timing parameters may be assigned to the
logic models based on prior circuit simulation and known circuit parasitics.
Because all logic circuits are rarely active simultaneously, logic events may
be scheduled on a queue. This means that the state of the network is evalu­
ated on an event-driven basis, rather than on a timing-substep basis, as are
most of the implementations of the two previous simulators.

Timing is normally specified in terms of an inertial delay and a load
dependent delay for the appropriate edge transitions, as follows:

Tgate = Tintrinsic + Czoad X Tzoad1 (6.1)

where

Tgate = the delay of the gate

Tintrinsic = the intrinsic gate delay (no load)

Czoad =the actual load in some units (i.e., pF or# normalized gates)

Tzoad = the delay per load in some units (i.e., ns/pF or ns/#normalized

gates)

Micron Ex. 1037, p. 483
Micron v. YMTC
IPR2025-00119

444 CHAPTER 6 CMOS DESIGN METHODS

(A normalized gate might be the minimum gate load of the smallest
inverter in a standard-cell library-all other gate inputs would be char­
acterized ih terms of this unit.)

Logic simulators with such timing information are quite accurate for
CMOS logic configurations or other circuits where the function has been
'Yell characterized at the gate level. Nowadays this characterization can be
done automatically by running scripts that perform the circuit simulations
and extract the relevant data. Where this capability is not available, a consid­
erable manual simulation effort is required to create a new standard-cell
library in a new process.

Logic simulators are adequate for well-characterized CMOS circuits
that have regular logic counterparts. They are relatively fast and are thus
suitable for large circuits. This has been also aided by hardware engines that
compute the simulation algorithm. Early logic simulators were not suitable
for circuits with transistors rised as transmission gates, such as transmission
gate multiplexers, memories, or pass-gate logic. However, recent logic sim­
ulators do deal with transistor circuits in a limited manner.

6.6.1.4 Switch-level Simulation

Switch-level simulators merge logic-simulator techniques with some circuit­
simulation techniques by modeling transistors as switches. RSIM~1 is ah
example of a switch-level simulator with timing. CMOS gates are modeled
as either pull-up or pull-down structures, for which RSIM dynamically cal­
culates a resistance to powe,r or ground. This resistance is used with the out­
put capacitance of the gate to predict rise or fall times.

Switch-level simulators alleviate the need for circuit analysis calibration
of CMOS gates, but do have some accuracy limitatio_ns when evaluating
transmissibn-gate circuits (they are usually overly pessimistic). In addition,
some circuit structures present patholbgical topology cases, which confuse
the simulation algorithms (the "tiny XOR" _gate used in the transmission­
gate adder in Chapter 8 is an example)'.

If you design at the transistor level, a switch-level simulator provides a
first lihe of defense as far as simulation. One should probably back up any
simulations with a reduced set of simulations using a timing simulator.

6.6.1.5 Mixed-mode Simulators

There now exist very good commercial simulators that merge the good
points of functional simulation, logic simulation, switch simulation, timing
simulatfon, and circuit simulation. Each circuit block cah be simulated in the
appropriate mode. For instance a standard-cell logic block might be simu­
lated at the logic level, a memory might be simulated at the functional level,
and a phase-locked loop might be simulated at the circuit level. In this way

Micron Ex. 1037, p. 484
Micron v. YMTC
IPR2025-00119

6.6 DESIGN VERIFICATION TOOLS 445

only those circuits requiring detailed simulation expend expensive compute
cycles.

6. 6. 1. 6 Summary

A good simulator is crucial to modern CMOS design. The style of simulator
determines the level to which one can safely design. With a logic simulator,
one can accurately model well characterized gates and functional blocks. A
timing simulator allows design down to the transistor level for most digital
circuits and some limited-accuracy analog circuits. Finally, a circuit-analysis
program provides enough accuracy (when calibrated to a process) for the
most complicated analog circuitry. The simulation times and therefore the
amount of circuitry that may be simulated with each kind of simulator varies
widely. Logic simulators (particularly unit-delay) are of use at the system
level. Timing simulators are useful for modules into the 100-1 OOK transistor
range and have been used for lM+ transistor circuits for a few hundred vec­
tors. Circuit simulators are useful for 10 to 1,000-transistor complexities for
short simulation periods. Modern mixed-mode simulators allow a trade-off
in simulation accuracy and time of simulation.

6.6.2 Timing Verifiers
Classically, designers simulated with unit-delay simulators to verify func­
tionality. Then they ran simulations with delays to check for timing prob­
lems. The detection of such problems is pattern dependent. In other words, if
the critical timing vector is not exercised, the critical path will not be found.
A timing verifier takes a different approach to temporal verification. Here,
the delays through all paths in a circuit are evaluated in a pattern­
independent manner and the user is provided with information about these
delays. CMOS verifiers in common with simulators may work at the gate or
the transistor level.92 The circuit to be analyzed is first statically examined to
determine the direction of signal flow in all transistors. This is necessary to
evaluate only those delays that will be critical in actual circuit operation. A
recent example of this type of analyzer is the Pearl program.93 Each transis­
tor is examined and the direction of signal flow is calculated using nine rules.
These rules may be determined from:

• Circuit-design methodology rules.

• Electrical rules.

• User-supplied rules.

The Pearl program calculates an RC delay for each node using RSIM. These
are then evaluated in a breadth-first manner. Delay paths are qualified by
appropriate clocks.

Micron Ex. 1037, p. 485
Micron v. YMTC
IPR2025-00119

446 CHAPTER 6 CMOS DESIGN METHODS

A timing analyzer implemented at the transistor level can provide a
designer with rapid feedback about critical paths. Combined with a switch­
level simulator for rapid global functional simulation, a timing simulator for
detailed module verification, and a circuit-analysis program for critical-path
evaluation, the timing analyzer completes a set of powerful verification
tools. Timing analyzers implemented at the gate level allow the same quality
of design down to the gate level, which is sufficient for a wide range of
CMOS systems.

Pitfalls of timing analyzers are false paths and sneak paths. False paths
can occur because the timing analyzer does not know how the circuit is used.
For instance, that a bus is only used to read or write during a cycle and not
for both. False paths are dealt with by blocking them as they are recognized.
Sneak paths are paths that for some reason the timing analyzer does not rec­
ognize. These can occur in complicated clocking schemes that may be
beyond aging timing analyzers. For this reason it may be prudent to timing
simulate circuits as a backup unless you are confident that your timing ana­
lyzer catches everything. (Many have believed the latter point, only to be
ushered back to reality by the outcome of the silicon.)

6.6.3 Network Isomorphism
An electrical network may be represented by a graph where the vertices of
the graph are devices such as MOS transistors, bipolar transistors, diodes,
resistors, and capacitors. The arcs are the connections between devices.
These are the electrical nodes in the circuit. This graph may be in turn repre­
sented by some data structure that may be accessed by a variety of software
routines interested in the electrical connectivity properties of the circuit.
Two electrical circuits are identical if the graphs representing them are iso­
morphic; that is, each graph has the same number of devices and for every
device in one circuit there is a matching device in the other circuit. The
matching devices have identical properties such as:

• Transistor width and length.

• Resistance value.

• The number of connections on each terminal (i.e., gate, drain, source).

Each node in one circuit has a matching node in the other circuit. They have
identical properties such as:

• The same number of source and drains attached to them.

• And the same number of gates (MOS gate).

Network isomorphism is used to prove that two networks are equivalent
and therefore should function equivalently. This is used most often to prove

Micron Ex. 1037, p. 486
Micron v. YMTC
IPR2025-00119

6.6 DESIGN VERIFICATION TOOLS 447

that a layout is equivalent to a network extracted from a schematic schematic
or HDL structural netlist. Other uses include proving that two schematics or
two layouts are equivalent.

The process of comparing two networks is commonly called "netlist
comparison," "network isomorphism," or LVS (layout versus schematic).

Electrical networks may use subnetworks as devices. For instance, in a
chip layout standard-cell blocks may be represented by bounding boxes (for
a vendor's proprietary library). The layout extract operation then extracts
only the routing. This is compared with to the network obtained by expand­
ing the structural description down to the level of gates (but not transistors).
Frequently the notion of "logical equivalency" is used. This allows a layout­
design system to swap the order of signals on series transistors in logic gates
with respect to the structural specification for layout convenience. While this
is fine for logic circuits, some problems can occur if it is used in high­
performance and mixed-signal circuits. Consider an analog-bias circuit con­
sisting of series transistors where the order of the transistors dictates the
behavior-these cannot be swapped.

6.6.4 Netlist Comparison
If a schematic or circuit description is entered to define an IC, at some stage
a physical layout is generated. This may be completed automatically, as in
the case of a gate array or place-and-route standard-cell system. Alterna­
tively, the physical layout may have a manual component. Ideally, the signal
names between parallel representations would be the same, allowing easy
comparison between desired and actual circuit by matching node names and
the number and type of components connected to each node in the schematic
and the layout. In reality, signal names are often omitted from internal nodes
in a circuit (especially in layouts) and only applied to I/O ports. Thus there is
the problem of comparing two graphs that are labeled in a limited manner.
Programs that verify the equivalence or lack thereof of two unnamed circuit
graphs are thus needed.

Typical of a program that performs this function is GEMINI.94 Signa­
tures are calculated for each transistor in the test and reference circuit. Sig­
natures include:

• Fan-in.

• Fan-out.

• Transistor type.

• Bound nets connected to the transistor.

Test and reference circuits are then repeatedly checked to correlate transis­
tors. Discrepancies are either indicated interactively or by a listing of the
matched and unmatched nodes.

Micron Ex. 1037, p. 487
Micron v. YMTC
IPR2025-00119

448 CHAPTER 6 CMOS DESIGN METHODS

6.6.5 Layout Extraction

Layout extractors examine the interrelationship of mask layers to infer the
existence of transistors and other components. They are related to design
rule checkers (Section 6.6.7). Various approaches have been implemented to
approach this problem.95•96 Commonly, parasitic capacitances and resis­
tances are reported in addition to transistor connectivity. Algorithms com­
monly use geometric-shape intersections to recognize active devices (see
Chapter 3). The need for such tools by the system designer will decrease as
higher-level design techniques provide "correct-by-construction" modules.
However, some form of layout extraction is usually done to create data for
the back annotation step described in the next section.

6.6.6 Back-Annotation

Once a layout has been constructed and there is isomorphism between the
schematic network and the layout network, one can correlate extracted capac­
itances from the layout with the schematic and perform simulation or timing
analysis to verify performance. This is done by moving the capacitance that
appears on a layout node to the corresponding schematic node while account­
ing for existing capacitance on the schematic node. For instance, the schematic
may already have the source-drain and gate load due to the gates connected to
the node and only the routing capacitance is required to be added. This opera­
tion is known as "back-annotation" (Fig. 6.44).

6.6.7 Design-rul~ Verification

If mask design is completed manually (and even automatically), it is neces­
sary to verify that the layout conforms to the geometric design rules. This is
achieved with a design-rule checker. Many variations exist, but typical
approaches are found in Szymanski and Van Wyk,97 Baker and Terman,98

and Baird99 (see also Chapter 3).
Hierarchical design-rule checkers are necessary for large circuits. 100

These design-rule checkers use the hierarchical nature of a design to reduce
the number of cells that have to be individually checked.

6.6.8 Pattern Generation

Pattern generation is the last step in the sequence that starts at the architec­
ture for a chip and ends with a database suitable for manufacture. It is the
operation of creating the data that is used for maskmaking. Over the years,
the format of this data has changed as the methods of generating masks have
changed. Originally, the data drove flatbed plotters that cut Rubylith® (a red

Micron Ex. 1037, p. 488
Micron v. YMTC
IPR2025-00119

6.7 DESIGN ECONOMICS 449

plastic "mask" layer backed by a clear Mylar® plastic backing). Nowadays,
most semiconductor operations use electron-beam-generated masks (i.e.,
generated by exposing a resist-coated metal· film with a focused electron
beam). These machines expose the masks in a raster-scan style similar to a
television.

A common format is the Electron Beam Exposure System, EBBS for­
mat.101 Data is composed of rectangles, parallelograms, or trapezoids. Given
a layout captured in a design system, the following steps must be completed
to create an EBBS file:

• Combine layers to form required mask (i.e., all n + and vddn regions
for an nplus mask).

• Size-resulting data (i.e., shrink or bloat to account for processing
effects such as under-etching or sideways diffusion).

• Canonicalize resulting geometry in terms of base figures (i.e., rectan-
gles).

• Sort the resulting shapes in scanline order.

• Determine polarity of mask (i.e., dark field or light field).

• Output data in suitable format.

Because this is the last step in the design process and because it is hard to
detect defects on the masks, manufacturers frequently pattern two or more
die patterns on a single-mask reticle and then use differencing techniques to
detect differences between pairs of like die patterns to detect mask defects .

. 6.7 Design Economics

It is important for the IC designer to be able.to predict the cost and the time
to design a particular IC or sets of I Cs. This can guide the choice of an imple­
mentation strategy. This section will summarize a simplified approach to
estimate these values.

In this study we will concentrate on the cost of a single IC, although one
should consider the overall system when making such decisions. System
level issues such as packaging and power dissipation may affect the cost of
an IC. 102

The selling price of an integrated circuit may be given. by

ctotal
stotal = 1 - m' (6.2)

Micron Ex. 1037, p. 489
Micron v. YMTC
IPR2025-00119

450 CHAPTER 6 CMOS DESIGN METHODS

where

Ctotal = the manufacturing cost of a single IC to the vendor

m = the desired profit margin.

The margin has to be selected to ensure a profit after fixed costs including
overhead (G&A), and the cost of sales (marketing and sales costs) have been
subtracted out.

The costs to produce an integrated circuit are generally divided into the
following:

• Nonrecurring costs (NREs).

• Recurring costs.

• Fixed Costs.

6.7.1 Nonrecurring Engineering Costs (NREs)

The nonrecurring costs are those costs that are spent once during the design
of an integrated circuit. They include

• The engineering design cost.

• The prototype manufacturing cost.

These costs are amortized over the total number of ICs sold. Ftotab the total
nonrecurring cost is given by

Ftotal = Etotal + PtotaZ, (6.3)

where

Etotal = the engineering cost

Ptotal =the prototype manufacturing cost.

Normally the recurring costs are viewed as an investment for which there is
a required rate of return. For instance, if $1 OOK is invested in NRE for a chip
then $1M might have to be generated as profit for a rate of return of 10.

6. 7. 1. 1 Engineering Costs

The costs of designing the IC (Etotaz) hopefully happen only once during the
chip design process. The costs include:

• Personnel costs.

• Support costs.

Micron Ex. 1037, p. 490
Micron v. YMTC
IPR2025-00119

6.7 DESIGN ECONOMICS 451

The personnel costs might include the labor for:

• Architectural design.

• Logic capture.

• Simulation for functionality.

• Layout of modules and chip.

• Timing verification.

• DRC and tapeout procedures.

• Test generation.

The support costs, amortized over the life of the equipment for the length of
the design project, include:

• Computer costs.

• CAD program costs.

• Education or reeducation costs.

6. 7. 1.2 Prototype Manufacturing Costs

These costs (Ptotaz) are the fixed cost to get the first !Cs from the vendor.
They include:

• The mask cost.

• Test fixture costs.

• Package tooling.

The photo-mask cost is proportional to the number of steps used in the
process. Mask costs increase as the process dimensions are reduced, so while
newer, smaller processes generally have increased mask costs, masks on the
metalization layers can be less expensive than the lower layers. A mask can
currently cost between $500 and $1500.

A test fixture consists of a printed wiring board-probe assembly to
probe individual die at the wafer level and the interface to the tester. Costs
range from $1000 to $5000 depending on the complexity of the interface
electronics.

If a custom package is required, it may have to be designed and manu­
factured (tooled). The time and expense of tooling a package depends on the
sophistication of the package. Where possible, standard packages should be
used.

Micron Ex. 1037, p. 491
Micron v. YMTC
IPR2025-00119

452 CHAPTER 6 CMOS DESIGN METHODS

6.7.2 Recurring Costs

Once the development cost of an IC has been determined, the IC manufac­
turer will arrive at a price for the specific IC. This includes a recurring cost;
that is, one that recurs every time an IC is sold.

The IC manufacturer will determine a part price for an IC based on the
cost to produce that IC and a profit margin. The margin can fall as the reve­
nue increases. An expression for the cost to process an IC follows.

The total cost is

Ctotal = Cprocess + Cpackage + Ctest• (6.4)

where

Cpackage = package cost

Ctest = test cost-the cost to test an IC is usually proportional to the

number of vectors and the time to test.

where

W = wafer cost

W+P
Cprocess = NY y y '

w pa ft

P = processing cost

N =gross die per wafer (the number of complete die on a wafer)

Y w = die yield per wafer

Ypa = packaging yield

Yft = final test yield.

(6.5)

The wafer yield, Yw was dealt with in Chapter 4. The packaging yield is the per­
centage of successfully diced, bonded and packaged parts. The final test yield is
the percentage of package~ parts that pass a final packaged part test sequence.

6.7.3 Fixed Costs

Once a chip has been designed and put into manufacture, the cost to support
that chip from an engineering· viewpoint may have a few sources. In order
for the part to be effectively used, Data Sheets describing the characteristics
of the IC have to be written. A data sheet is probably always required, even

Micron Ex. 1037, p. 492
Micron v. YMTC
IPR2025-00119

6.7 DESIGN ECONOMICS 453

for application specific ICs that are not sold outside the company that devel­
oped them. From time to time Application Notes describing how to use the
IC may be needed. In addition specific application support may have to be
provided to help particular users. This is particularly true for ASICs, where
the designer usually becomes the walking, talking data sheet and application
note. Another ongoing task may be failure analysis if the part is in high vol­
ume and you desire to increase the yield.

Finally there is what is called "the cost of sales," which is the marketing,
sales force, and overhead costs associated with selling each IC. In a captive
situation this might be zero.

6.7.4 Schedule

At the outset of a system-design project involving newly designed ICs it is
important to be able to estimate the design cost and design time for that system.
Estimating the cost can guide the designer as to the method by which the ICs
will be designed. Estimating the time is essential to be able to select a strategy
by which the ICs will be available in the right timescale and at the right price.
This second task (estimating schedules) is usually the least well specified and
requires some experience to accurately predict design timescales.

If we assume that for a given IC size Cprocess is constant, the variables
left in determining the return on investment of an IC are, Etotal• the engineer­
ing design cost, Ptotal the prototype-manufacturing cost. Ptotal depends on
the way in which the IC is implemented. We examined a variety of strategies
fo~ the design of CMOS systems in Section 6.2. The fixed costs of prototyp­
ing Piotal are relatively constant, given an implementation technology. The
engineering costs depend on the complexity of the chip and the design strat­
egy. For this reason, it is important to be able to estimate a schedule for the
design of an IC and then manage the available resources to bring the project
to a successful conclusion.

Studies on schedule management for ICs have been carried out by ana­
lyzing many IC design projects implemented in a variety of ways. 104 These
show that schedule is only a function of personpower, that is, the number of
people working on the project. The study showed that below 30 weeks,
schedule is proportional to personpower, while beyond about 30 weeks, the
schedules become proportional to the cube root of the personpower. Fey and
Paraskevopoulos102 suggest a number of methods for increasing productiv­
ity, thereby improving schedules. They include the following:

• Using a high-productivity design method.

• Improving the productivity of a given technique.

• Decreasing the complexity of the design task by partitioning.

Micron Ex. 1037, p. 493
Micron v. YMTC
IPR2025-00119

454 CHAPTER 6 CMOS DESIGN METHODS

A range of various design methods were examined in Section 6.3 which
form the basis for achieving some of these goals.

As a final point one should note that increasing the personpower is a
poor way of improving a schedule and likely will have the opposite effect.

6.7.5 Personpower
In order to estimate the schedule, one must have some idea of the amount of
effort required to complete the design. As we have seen, typical IC projects
will involve the following tasks:

• Architectural design.

• Logic capture.

• Simulation for functionality.

• Layout of modules and chip.

• Timing verification.

• DRC and tapeout procedures (ERC, LVS, MEBES).

• Test generation.

If we take each of these activities and apply a productivity figure for a given
complexity of design, we may have the basis for the manpower, or person­
power, required to complete the project.

Fey has completed productivity studies for custom-chip designs103• 104

and gate-array designs. 105

6. 7 .6 An Example-Gate-array Productivity
Fey's productivity models for gate arrays lead to the following empirically
determined equation:

P = 16.2 mG0·6 0.5 < G < 25,

where

P = the productivity in gates/person-day

G = the number of gates in thousands

m = (0.611)(0.86u)(0.64R)(l.17D),

where

(6.6)

(inputs+ outputs+ bidirects) o.5

I= the adjusted I/O = K (6.7)

Micron Ex. 1037, p. 494
Micron v. YMTC
IPR2025-00119

6.7 DESIGN ECONOMICS 455

K = the number of gates

R = the complexity (from 1 (lowest) to 5)

U = the number of gates used = max(O, %gates used - 90%)

D = the design experience = number of previous designs completed by
designer

As with automobile advertising, these formulae are for comparison purposes
only; your mileage may vary. Other variables that were studied included the
number of test vectors per gate, the quality of the design specification and
the year of the design.

By normalizing the productivity, we obtain

(6.8)

where PN is the normalized productivity in gates per person-day.
The personpower (M) may be calculated from the productivity by

0.5 < G< 25, (6.9)

where

Ps = 17.1G0·61 (Eq. 6.8 fitted to experimental data),

Thus

(6.10)

By evaluating Mone may then estimate the schedule (T), using the following
equation:

T=M M<29

T= 9.lM034 M ~ 29

(6.11)

(6.12)

Thus for a 1000-gate design these equations would suggest that it takes 9
weeks while a lOK-gate design would take 29 weeks. These equations are
included as an analytical guide for estimating schedules. They represent the
result of one piece of research work aimed at quantifying design productiv­
ity. Nothing replaces experience when it comes to estimating the real thing
(and even then that does not always help!).

Micron Ex. 1037, p. 495
Micron v. YMTC
IPR2025-00119

456 CHAPTER 6 CMOS DESIGN METHODS

The general outcome of this research suggests keeping design schedules
below 6-7 months. Increasing productivity can increase the number of gates
that can be designed in this time. With HDL based synthesis, this should reach
50-lOOK gates. Other design methods should lead to higher productivities.

6.8 Data Sheets

A data sheet for an IC describes what it does and outlines the specifications
for making the IC work in a system. These specifications would include
power-supply voltages, currents, input setup times, output-delay times, and
clock-cycle times. Also included would be pin loadings and package and
pinning details. While commercially produced chips are accompanied by
data sheets (and this is a good place to look for examples), chips produced in
small volumes internally in an organization may often be introduced into the
world without the advantage of a data sheet.

A good habit to acquire is that of compiling a data sheet for any chip you
might design. A data sheet is the interface between the chip designer and the
board-level designer. In particular, it is good practice and mandatory in
industry to compile the data sheet for the chip and give it to the ultimate cus­
tomer before it is fabricated. This prevents many undesirable scenarios that
can arise when perfectly designed chip meets perfectly designed system and
creates product nightmare. In this section an outline of a typical data sheet
will be reviewed by way of example.

6.8.1 The Summary

A summary of the chip includes the following details:

• The designation and descriptive name of the chip (i.e., ABC1478-
FIR Filter Chip).

• A short description of what the chip does ..

• A features list (optional for an internal product-but good for your
ego).

• A very high level block diagram of the chip function.

This serves to orient the user to the chip and the function it performs.

6.8.2 Pinout

The pinout section should contain a description of the following pin
attributes:

• The name of the pin.

Micron Ex. 1037, p. 496
Micron v. YMTC
IPR2025-00119

• The type of the pin (i.e., whether input, output, tristate, digital, analog,
etc.).

• A brief description of the pin function.

• The package pin number.

This documents the external interface of the chip.

6.8.3 Description of Operation
This section should outline the operation of the chip as far as the user of

the chip is interested. Programming options, data formats, and control
options should be summarized.

6.6.4 DC Specifications
The absolute maximum ratings should be stated for the following:

• Supply voltage.

• Pin voltages.

• Junction temperature.

The style of each 1/0 (i.e., TTL, CMOS, ECL) should be summarized and
the following DC specifications should be given over the operating range
(temperature and voltage, i.e., mins and maxes):

• The V1L and VIH for each input.

• The VoL and VoH for each output (at a given drive level).

• The input loading for each input.

• The output drive capability of each output.

• Quiescent current.

• Leakage current.

• Power-down current (if applicable).

• Any other relevant voltages and currents.

This section communicates the power dissipation and required voltages for
the chip to correctly operate.

6.8.5 AC Specifications
The following timing specifications should be presented:

• Setup and hold times on all inputs (slowest and fastest).

6.8 DATA SHEETS 457

Micron Ex. 1037, p. 497
Micron v. YMTC
IPR2025-00119

458 CHAPTER 6 CMOS DESIGN METHODS

• Clock (and all other relevant inputs) to output delay times (slowest
and fastest).

• Other critical timing, such as minimum pulse widths,.

This data should be tabulated in table form and supported by a timing dia­
gram where necessary. This is probably the most important section and an
area where data provided ahead of the chip fabrication will aid the board
designer. Designs are frequently snagged, for instance, when chip designers
assume infinitely fast external memories and do not allow enough time
between outputs changing and the next rising edge of the clock.

6.8.6 Package Diagram

A diagram of the package with the pin names attached should be supplied.

6.9 Summary

This chapter has covered a broad spectrum of design issues that may be
encountered when designing CMOS chips. The structured design strategies
that were introduced early in the chapter are useful for any kind of CMOS­
chip design method. A range of implementation options was given to give
the reader an appreciation for the wide spectrum of solutions that are avail­
able today. In addition a summary of the design styles was given. Increas­
ingly, the level of design is being pushed upward as logic synthesizers are
refined, compilers are optimized, and knowledge is capture_d from libraries
of reusable components. You as a designer must keep abreast of such tech­
niques to ensure that you can bring to bear a productivity that results in
timely, cost-effective, and reliable silicon that may be shipped after the first
manufacturing run.

6.10 Exercises

1. Explain how you would assess the required design-method for a
function that has to be performed by a single chip. Draw a decision
chart that shows the various questions that have to be answered, and
the resulting actions.

2. Explain the following terms with respect to CMOS-chip design: hier­
archy, regularity, modularity, and locality. Give an example of each.

Micron Ex. 1037, p. 498
Micron v. YMTC
IPR2025-00119

3. Summarize the differences between a SOG chip and a standard-cell
chip. What benefits does each implementation style have?

6.11 References

1. Daniel D. Gajski, Silicon Compilation, Reading, Mass.: Addison-Wesley, 1988.
2. D. D. Gajski and R.H. Kuhn, "New VLSI tools,'' IEEE Computer, vol. 16, no. 12,

1983, pp. 11-14.
3. Carver Mead and Lynn Conway, Introduction to VLSI Systems, Reading, Mass.:

Addison-Wesley, 1980.
4. Irene Buchanan, "Modelling and verification in structured integrated circuit

design," Ph.D. thesis, Dept. of Computer Science, University of Edinburgh,
Scotland, 1980.

5. PAL Device Data Book, Sunnyvale, Calif.: Advanced Micro Devices Inc., 1988.
6. GAL Data Book, Hillsboro, Ore.: Lattice Semiconductor Corp., 1990.
7. Clinton Kuo, Mark Weidner, Thomas Toms, Henry Choe, Ko-Min Chang, Ann

Harwood, Joseph Jelemensky and Philip Smith, "A 512-kb Flash EEPROM
Embedded in a 32-b Microcontroller,'' IEEE Journal of Solid State Circuits, vol.
27, no. 4? Apr. 1992, pp. 574-582.

8. Takaaki Nozaki, Toshiaki Tanaka, Yoshiro Kijiya, Eita Kinoshita, Tatsuo
Tsuchiya, and Yutaka Hayashi, "A 1-Mb EEPROM with MONOS memory cell
for semiconductor disk application,'' IEEE JSSC, vol. 26, no. 4, Apr. 1991, pp.
497-501.

9. Masaki Momodomi, Tomoharu Tanaka, Yoshihisa Iwata, Yoshiyuki Tanaka,
Hideko Oodaira, Yasuo Itoh, Riichiro Shirota, Kazunori Ohuchi and Fujio
Masuoka, "A 4-Mb NAND EEPROM with tight programmable Vt distribution,"
IEEE JSSC, vol. 26, no. 4, Apr. 1991, pp. 492-496.

10. ACT Family Field Programmable Gate Array DATABOOK, San Jose, Calif.:
Actel Corporation, 1990.

11. "Very-High-Speed FPGAs,'' pASIC 1 Family Data Book, Santa Clara, Calif.:
QuickLogic Corporation, 1992.

12. Esmat Hamdy, John McCollum, Shih-ou Chen, Steve Chiang, Shafy Eltoukhy,
Jim Chang, Ted Speers and Amr Mohsen, "Dielectric-based antifuse for logic and
memory I Cs," Proceedings of the International Electron Devices Meeting, 1988,
pp. 786-789, Washington, D.C.

13. Abbas El Gamal, Jonathan Greene, Justin Reyneri, Eric Rogoyski, Khaled A. El­
Ayat, and Amr Mohsen, "An architecture for electrically configurable gate
arrays," IEEE JSSC, vol. 24, no. 2, Apr. 1989, pp. 394-398.

14. Khaled A. El-Ayat, Abbas El Gamal, Richard Guo, John Chang, Ricky K. H.
Mak, Frederick Chiu, Esmat Z. Hamdy, John McCollum, and Amr Mohsen, "A
CMOS electrically configurable gate array,'' IEEE JSSC, vol. 24, no. 3, Jun.
1989,pp. 752-762.

15. The Programmable Gate Array Data Book, San Jose, Calif.: XILINX, Inc., 1990.
16. Thomas Andrew Kean, "Configurable logic: a dynamically programmable cellu­

lar architecture and its VLSI implementation," Ph.D. thesis, Department of Com­
puter Science, University of Edinburgh, Scotland, 1989.

6.11 REFERENCES 459

Micron Ex. 1037, p. 499
Micron v. YMTC
IPR2025-00119

460 CHAPTER 6 CMOS DESIGN METHODS

17. CAll 024 Datasheet, Edinburgh, Scotland: Algotrinix Ltd., 1990.
18. J. P. Gray and T. A. Kean, "Configurable hardware: a new paradigm for compu­

tation," Proceedings of the 1989 Decennial Caltech Conference, Pasadena, CA,
Cambridge, Mass.: MIT Press, pp. 1-17.

19. CLi6000 Series Field-Programmable Gate Arrays, (data sheet), Sunnyvale,
Calif.: Concurrent Logic Inc., 1992.

20. Michiel A. Beunde~, Juergen P. Kernhof, and Bernd Hoefflinger, "The CMOS
gate forest: an efficient and flexible high-performance ASIC design environ­
ment," IEEE JSSC, vol. 23, no. 2, Apr. 1988, pp. 387-399.

21. Harry J. M. Veendrick, Dre A. J. M. Van Den Elshout, Dick W. Harberts, and.
Teus Brand, "An efficient and flexible architecture for high-density gate arrays,"
IEEE JSSC, vol. 25, no. 5, Oct. 1990, pp. 1153-1157.

22. Philippe Duchene and Michel J. Declercq, "A highly flexible sea-of-gates struc­
ture for digital and analog applications," IEEE JSSC, vol. 24, no. 3, Jun. 1989,
pp. 576-584 ...

23. 1.5 Micron Compacted Array Technology Databook, Milpitas, Calif.: LSI Logic
Corp., 1987.

24. Masatomi Okabe, Yoshihiro Okuno, Takahiko Arakawa, Ichiro Tomioka, Takio
Ohno, Tomoyoshu Noda, Masahiro Hatanaka, and Yoichi Kuramitsu, "A 400K­
transistor CMOS sea-of-gates array with continuous track allocation," IEEE
JSSC, vol. 24, no. 5, Oct. 1989, pp. 1280-1286.

25. 1.0-Micron Cell-Based Products Databook, Milpitas, Calif.: LSI Logic, Feb.
1991.

26. Dennis V. Heinbruch, CMOSJ Cell Library, Reading, Mass.: Addison-Wesley,
1988.

27. Curt F. Fey and Demetris E. Paraskevopoulos, "Studies in LSI technology eco­
nomics IV: models for gate array design productivity," IEEE JSSC, vol. SC-24,
no. 4, Aug. 1989, pp. 1085-1091.

28. D. Gibson and S. Nance, "SLIC-symbolic layout of integrated circuits,"
IEEE Proceedings of the 13th Design Automation Conference, Jun. 1976,
pp. 434-440. .

29. D. Clary, R. Kirk, and S. Sapiro," SIDS-a symbolic interactive design system,"
IEEE/ACM Proceedings of the 17th Design Automation Conference, Jun. 1980,
Minneapolis, Minnesota, pp. 292-295.

30. R. P. Larson, "Versatile mask generation techniques for customer microelec­
tronic devices," IEEE/ACM Proceedings of the 15th Design Automation Confer­
ence, Jun. 1978, Las Vegas, Nev., pp. 193-198.

31. A. D. Lopez and H-F. S. Law, "A defense gate matrix layout style for MOS LSI,"
IEEE JSSC, vol. SC-15, no. 4, Aug. 1980, pp. 736-740.

32. C. Piguet, J. Zahnd, A. Stauffer, and M. Bertarionne, "A metal-oriented layout
for CMOS logic," IEEE JSSC, vol. SC-19, no. 3, Jun. 1984, pp. 425-436.

33. J. Williams, "STICKS-a graphical compiler for high level LSI design," Pro­
ceedings of the National Computer Conference, May 1978, pp. 289-295.

34. A. Dunlop, "SLIM-the translation of symbolic layouts into mask data," IEEE!
ACM Proceedings of the 17th Design Automation Conference, Jun. 1980, Minne­
apolis, Minnesota, pp. 595-602.

35. M. Y. Hsueh and D. 0. Pederson, "Computer-aided layout of LSI building
blocks," IEEE Proceedings of the 1979 International Symposium on Circuits and
Systems, Jul. 1979, Tokyo, Japan, pp. 474-477.

Micron Ex. 1037, p. 500
Micron v. YMTC
IPR2025-00119

36. G. Kedem and H. Watanabe, "Graph optimization techniques for IC layout and
compaction," IEEE/ACM Proceedings of the 20th Design Automation Confer­
ence, Jun. 1983, Miami Beach, Fla., pp. 113-120.

37. R. C. Mosteller, "Rest-a leaf cell design system,'' Proceedings of IFIP VLSI '81
(J. Gray, ed.), Edinburgh 1981, pp. 163-172.

38. Werner Bonath and Manfred Glesner, "Process-independent 2D-compaction in a
symbolic design environment," Proceedings of IFIP VLSI '89 (G. Musgrave and
V. Lauther, eds.), Munich, 1989, pp. 433-443.

39. David G. Boyer, "Symbolic layout compaction review,'' IEEE/ACM Proceedings
of the 25th Design Automation Conference, Jun. 1988, Anaheim, Calif., pp. 383-
389.

40. W. H. Crocker, C. Y. Lo, and R. Varadarahan, "MACS: a module assembly and
compaction system,'' Proceedings of the IEEE International Conference on
Computer Design, Nov. 1985, Santa Clara, Calif., pp. 205-208.

41. J. L. Burns and A. R. Newton, "SPARCS: a new constraint-based IC layout sym­
bolic spacer," Proc. IEEE Custom Integrated Circuits Conference, May 1986,
Rochester, N.Y., pp. 534-539.

42. H. Shin, A. Sangiovanni-Vincentelli, and C. Sequin, "Two-dimensional module
compactor based on zone-refining,'' Proceedings of the IEEE International Con­
ference on Computer design, Oct. 1987, Port Chester, N.Y., pp. 201-204.

43. Johan K. J. Van Ginderdeuren, Hugo J. De Man, Bart J. S. De Loore, Hilbradb
Vanden Winjingaert, Atoine DeLaruelle, and Guy R. J. Van Den Audenaerde, "A
high-quality digital audio filter set designed by silicon compiler CATHEDRAL­
!,'' IEEE JSSC, vol. SC-21, no. 6, Dec. 1986, pp. 1067-1075.

44. N. Weste, "Virtual grid symbolic layout," IEEE/ACM Proc. of the 18th Design
Automation Conference, Nashvllle, Tenn., Jun. 1981, pp. 225-233.

45. I. Buchanan, "Modelling and verification in structured integrated circuit design,"
Ph.D. thesis, Dept. of Computer Science, University of Edinburgh, Scotland,
1980.

46. N. Weste, "MULGA-an interactive symbolic layout system for the design of
integrated circuits,'' Bell System Technical Journal, vol. 60, no. 6, Jul.-Aug.
1981, pp. 823-858.

47. N. Weste and B. Ackland, "A pragmatic approach to topological symbolic IC
design," IFIP Proc. VLSI '81 (J. Gray, ed.), Edinburgh, Scotland, August 1981,
pp. 117-129.

48. James J. Cherry, "CAD programming in an object oriented programming envi­
ronment," VLSI CAD Tools and Applications, (Wolfgang Fichtner and Martin
Morf, eds.), Norwell, Mass.: Kluwer Academic Publishers, 1987, Chapter 9.

49. K. Ramachandran, R.R. Cordell, D. F. Daly, D. N. Deutsch and A. F. Kwan,
"SYMCELL-a symbolic standard cell system," IEEE JSSC, vol. 26, no. 3,
Mar. 1991, pp. 449-452.

50. M. C. Revett and P. A. Ivey, "ASTRA-a CAD system to support a structured
approach to IC design," IFIP VLSI '83, (F. Anceav and E. J. Aas, eds.), 1983, pp.
413-422.

51. Bill Lin and A. Richard Newton, "A circuit disassembly technique for synthesiz­
ing symbolic layouts from mask descriptions," IEEE Transactions on CAD, vol.
9,no. 9, Sept. 1990,pp. 959-969.

52. Rajeev J~in, Francky Catthoor, Jan VanHoof, Bart J. S. De Loore, Gert Goossens,
Nelson F. Goncalvez, Luc. J. M. Claesen, Johan K. J. Van Gindereuren, Joos

6.11 REFERENCES 461

Micron Ex. 1037, p. 501
Micron v. YMTC
IPR2025-00119

462 CHAPTER 6 CMOS DESIGN METHODS

VanDe Walle, and Hugo J. De Man, "Custom design of a VLSI PCM-FDM trans­
multiplexer from system specifications to circuit layout using a computer-aided
design system," IEEE JSSC, vol. SC-21, no. 1, Feb. 1986, pp. 73-85; and Johan
K. J. Van Ginderdeuren et al., op. cit.

53. J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Catthor, "Cathedral II: a
synthesis system for multiprocessor DSP systems," Silicon Compilation (Daniel
D. Gajski, ed.), Reading, Mass.: Addison-Wesley, 1988.

54. F. Catthoor and H. De Man, "Application-specific architectural methodologies
for high-throughput digital signal and image processing," IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 38, Feb. 1990, pp. 339-349.

55. C. Bernard Shung, Rajeev Jain, Ken Rimey, Edward Wang, Mani B. Srivastava,
Brian C. Richards, Erik Lettang, S. Khalid Azim, Lars Thon, Paul N. Hilfinger,
Jan M. Rabaey, and Robert W. Brodersen, "An integrated CAD system for
algorithm-specific IC design," IEEE Transactions on CAD, vol. 10, no. 4, Apr.
1991, pp. 447-463.

56. R. K. Brayton, R. Campansano, G. De Micheli, R. H. J. M. Otten, J. van Eijnd­
hoven, "The Yorktown Silicon Compiler system," Silicon Compilation (Daniel
D. Gajski, ed.), Reading, Mass.: Addison-Wesley, 1988.

57. David R. Coelho, "The VHDL handbook," Norwell, Mass.: Kluwer Academic
Press, 1989.

58. Jean-Michel Berge, Alain Fonkova, Serge Maginot, and Jacques Roilland,
"VHDL designer's reference," Norwell, Mass.: Kluwer Academic Press, 1992.

59. Douglas L. Perry, "VHDL," Summitt, Penn.: McGraw-Hill, 1992.

60. Steve Carlson, Introduction to HDL-Based Design Using VHDL, Mountain View,
Calif.: Synopsys, 1991.

61. Srinivas Devadas, Hi-Keung Ma, Richard Newton, and A. Sangiovanni­
Vincentelli, "MUSTANG: state assignment of finite state machines targeting
multilevel logic implementations," IEEE Transactions on CAD, vol. 27, no. 12,
Dec. 1988,pp. 1290-1300.

62. R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, "Multilevel
logic synthesis," Proceedings of the IEEE, vol. 78, no. 2, Feb. 1990, pp. 264-
300.

63. Richard Rudell, "Logic Synthesis," Custom Integrated Circuits Conference '91
Educational Session; Session III: Design Automation (lecture notes).

64. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincentelli,
ESPRESSO-UC: Logic Minimization Algorithms for VLSI Synthesis, The Nether­
lands, Norwell, Mass.: Kluwer Academic, 1984.

65. R. K. Brayton and C. McMullen, "The decomposition and factorization of Bool­
ean expressions," Proc. IEEE Int. Symposium on Circuits and Systems, 1982, pp.
49-54.

66. Kurt Keutzer, "DAGON: technology binding and local optimization by DAG
matching," IEEE Proc. 24th DAC, 1987, pp. 341....:347.

67. David Gregory, Karen Bartlett, Aart De Geus, and Gary Hachtel, "Socrates: a
system for automatically synthesizing and optimizing combinational logic," Pro­
ceedings of the 23rd DAC, Jun.-Jul., 1986, pp. 79-85.

68. Kurt Keutzer, op. cit.
69. R. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N. Phillips, R.

Rudell, R. Segal, A Wang, R. Yung, and A. Sangiovanni-Vincentelli, "Multiple­
level logic optimization system," Proc. IEEE ICCAD 1986, pp. 356-359; and R.
Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, "MIS: a multi-

Micron Ex. 1037, p. 502
Micron v. YMTC
IPR2025-00119

ple-level logic optimization system," IEEE Transactions on CAD of Integrated
Circuits and Systems, vol. CAD-6, no. 6, Nov. 1987, pp. 1062-1081.

70. D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas, C. R. Mor­
rison, and D. Ravenscroft, "The Boulder Optimal Logic Design system," Proc.
Int. Conj on Computer-Aided Design, Nov. 1987, pp. 62-65.

71. EDIF Electronic Design Interchange Format Version 2 0 0 (Paul Stanford and
Paul Mancuso, eds.), Washington, D.C.: Electronic Industries Association, 1989.

72. Ulrich Lauther, "A min-cut placement algorithm for general cell assemblies
based on a graph," Proceedings of the 16th Design Automation Conference,
1979, pp. 1-10.

73. S. Kirkpatrick, C. Gelatt, and M. Vecchi, "Optimization by simulated annealing,"
Science, vol. 220, no. 4598, May 13, 1983, pp. 671-680.

7 4. C. Sechen and A. Sangiovanni-Vincentelli, "TimberWolf3 .2: a new standard cell
placement and global routing package," Proceedings of the 23rd Design Automa­
tion Conference, Las Vegas, Nev., 1986, pp. 432-439.

75. A. Sangiovanni-Vincentelli, A. Santamauro, and J. Reed, "A new gridless chan­
nel router: Yet Another Channel Router the second (YACRII)," Proceedings of
the International Conference on Computer-Aided Design, 1984, pp. 72-75.

76. Ronald L. Rivest and Charles Fiducia, "A 'greedy' channel router," Proceedings
of the 19th Design Automation Conference, 1982, pp. 418-424.

77. J. Soukup, "Fast maze router," Proceedings of the 15th Design Automation Con­
ference, Las Vegas, Nev., 1978, pp. 100-102.

78. J. Soukup, "Global router," Proceedings of the 16th Design Automation Confer­
ence, Las Vegas, Nev., 1978, pp. 481-484.

79. Hung-fai Steven Law, Graham Wood, and Mindy Lam, "An Intelligent Compo­
sition Tool for Regular and Semiregular VLSI Structures," Silicon Compilation
(Daniel D. Gajski, ed.), Reading, Mass.: Addison-Wesley, 1988.

80. Steven M. Rubin, Computer Aids for VLSI Design, Reading, Mass.: Addison­
Wesley, 1987, Chapter 11.

81. James J. Cherry, op. cit.

82. William R. Heller, G. Sorkin, and Klim Maling, "The planar package planner for
system designers," Proceedings of the 19th Design Automation Conference,
Jun. 1982,pp.253-260.

83. Ralph H.J. M. Otten, "Automatic floorplan design," Proceedings of the 19th
Design Automation Conference, Jun. 1982, pp. 261-267.

84. C. L. Wardle, C.R. Watson, C. A. Wilson, J.C. Mudge, and B. J. Nelson, "A
declarative design approach for combining macrocells by directed placement and
constructive routing," Proceedings of the 21st Design Automation Conference,
1984, pp. 594-601.

85. Christopher J. Terman, "Simulation tools for VLSI," VLSI CAD Tools and Appli­
cations (Wolfgang Fichtner and Martin Morf, eds.), Norwell, Mass.: Kluwer
Academic, 1987, Chapter 3.

86. L. W. Nagel, "SPICE2: a computer program to simulate semiconductor circuits,"
Memo ERL-M520, Dept. Electrical Engineering and Computer Science, Univer­
sity of California at Berkeley, May 9, 1975.

87. W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Qasemzadeh, and T. R.
Scott, "Algorithms for ATSAP-a network analysis program," IEEE Transac­
tions on Circuit Theory, vol. CT-20, Nov. 1973, pp. 628-634.

88. HSPICE User's Manual H9001, Campbell, Calif.: Meta-Software, 1990.

6.11 REFERENCES 463

Micron Ex. 1037, p. 503
Micron v. YMTC
IPR2025-00119

464 CHAPTER 6 CMOS DESIGN METHODS

89. B. R. Chawla, H.K. Gummel, and P. Kozak, "MOTIS-an MOS timing simula­
tor," IEEE Transactions on Circuits and Systems, vol. 22, no. 12, Dec. 1975,
pp. 901-910.

90. J. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simula­
tion of VLSI Circuits, Hingham, Mass.: Kluwer Academic, 1987.

91. C. Terman, "Timing simulation for large digital MOS circuits," in Advances in
Computer-Aided Engineering Design, Volume 1 (A. Sangiovanni-Vincentelli,
ed.), JAI Press, 1984, pp. 1-91.

92. Thomas G. Szymanski, "LEADOUT: a static timing analyzer for MOS cir­
cuits," IEEE International Conference on Computer-Aided Design, Santa Clara,
Calif., Nov. 1986, pp. 130-133.

93. James J. Cherry, "Pearl: a CMOS timing analyzer," IEEE/ACM Proceedings of
the 25th Design Automation Conference, Anaheim, Calif., 1988, pp. 148-153,
and "Pearl User's Guide," Parsec, Inc., Palo Alto, Calif. 1992.

94. C. Ebeling and 0. Zajicek, "Validating VLSI circuit layout by wirelist compar­
ison," Proceedings of IEEE Int. Conf on CAD, Sept. 1983, pp. 172-173.

95. M. Hofmann and V. Lauther, "HEX: an instruction driven approach to feature
extraction," Proceedings of the 20th Design Automation Conference, Jun. 1983,
pp. 331-336 ..

96. C. M. Baker and C. J. Terman, "Tools for verifying integrated circuit designs,"
Lambda Magazine (VLSI Design), 4th quarter 1980, pp. 22-30.

97. T. G. Szymanski and C. J. Van Wyk, "Space efficient algorithms for VLSI art­
work analysis," Proceedings of the 20th Design Automation. Conference, June
1983, pp. 734-739.

98. C. M. Baker and C. J. Terman, op. cit.
99. H. S. Baird, "Fast algorithms for LSI artwork analysis," Proceedings of the 14th

Design Automation Conference, 1977, pp. 303-311.

100. T. Whitney, "A Hierarchial Design Analysis Front End," VLSI '81, 1981, pp.
217-225.

101. Steven M. Rubin, op. cit., Appendix E.
102. Curt F. Fey and Demetris E. Paraskevopoulos, "Studies in LSI technology eco­

nomics II: a comparison of product costs using MSI, gate arrays, standard cells,
and full custom VLSI," IEEE JSSC, vol. SC-21, no. 2, Apr. 1986, pp. 297-303.

103. Demetris E. Paraskevopoulos and Curt F. Fey, "Studies in LSI technology eco­
nomics III: design schedules for application-specific integrated circuits," IEEE
JSSC, vol. SC-22, no. 2, Apr. 1987, pp. 223-229.

104. Curt F. Fey, "Custom LSI/VLSI chip design productivity," IEEE JSSC, vol.
SC-20, no. 2, Apr. 1985, pp. 555-561.

105. Curt F. Fey and Demetris E. Paraskevopoulos, "Studies in LSI technology eco­
nomics IV: models for gate array design productivity," IEEE JSSC, vol. SC-24,
no.4,Aug. 1989,pp. 1085-1091.

Micron Ex. 1037, p. 504
Micron v. YMTC
IPR2025-00119

CMOS
TEST
METHODS

7 .1 The Need for Testing

While in real estate the refrain is "Location! Location! Location!," the com­
parable 'advice in IC design should be "Testing! Testing! Testing!" While
most problems in VLSI design have been reduced to algorithms in readily
available software, the responsibilities for the various levels of testing and
testing methodology can be a significant burden on the designer.

In Chapter 4 we noted that the yield of a particular IC was the number of
good die divided by the total number of die per wafer. Due to the complexity
of the manufacturing process not all die on a wafer correctly operate. Small
imperfections in starting material, processing steps, or in photomasking may
result in bridged connections or missing features. It is the aim of a test pro­
cedure to determine which die are good and should be used in end systems.

Testing a die (chip) can occur:

• at the wafer level.

• at the packaged-chip level.

• at the board level.

• at the system level.

• in the field.

465

Micron Ex. 1037, p. 505
Micron v. YMTC
IPR2025-00119

466 CHAPTER 7 CMOS TEST METHODS

By detecting a malfunctioning chip at an earlier level, the manufactur­
ing cost may be kept low. For instance, the approximate cost to a company of
detecting a fault at the above levels is 1:

• wafer

• packaged-chip

• board

• system

• field

$0.01-$.1

$0.10-$1

$1-$10

$10-$100

$100-$1000.

Obviously, if faults can be detected at the wafer level, the cost of manu­
facturing is kept the lowest. In some circumstances, the cost to develop ade­
quate tests at the wafer level, mixed signal requirements or speed
considerations may require that further testing be done at the packaged-chip
level or the board level. A component vendor can only test at the wafer or
chip level. Special systems, such as satellite-borne electronics, might be
tested exhaustively at the system level.

Tests may fall into two main categories. The first set of tests verifies .that
the chip performs its intended function; that is, that it performs a digital fil­
tering function, acts as a microprocessor, or communicates using a particular
protocol. In other words, these tests assert that all the gates in the chip, acting
in concert, achieve a desired function. These tests are usually used early in
the design cycle to verify the functionality of the circuit. These will be called
functionality tests in this book. They may be lumped into the verification
activity. The second set of tests verifies that every gate and register in the
chip functions correctly. These tests are used after the chip is manufactured
to verify that the silicon is intact. They will be called manufacturing tests in
this book. In many cases these two sets of tests may be one and the same,
although the natural fl.ow of design usually has a designer considering func­
tion before manufacturing concerns.

It is interesting to note that of most first-time failures of silicon, it is the
functionality of the design that is to blame; that is, the chip does exactly what
the simulator said it would but for some reason (almost always human error)
that function is not what the rest of the system expects.

7.1.1 Functionality Tests

Functionality tests are usually the first tests a designer might construct as
part of the design process. Does this adder add? Does this counter count?
Does this state-machine yield the right outputs at the right clock cycles?

For most systems, functionality tests involve proving that the circuit is
functionally equivalent to some specification. That specification might be a
verbal description, a plain-language textual specification, a description in

Micron Ex. 1037, p. 506
Micron v. YMTC
IPR2025-00119

7.1 THE NEED FOR TESTING 467

some high-level computer language such as C, FORTRAN, Pascal, or Lisp
or in a hardware-description language such as VHDL, ELLA, or Verilog®,
or simply a table of inputs and required outputs. Functional equivalence
involves running a simulator at some level on the two descriptions of the
chip (say, one at the gate level and one at a functional level) and ensuring for
all inputs applied that the outputs are equivalent at some convenient check­
points in time. The most detailed check might be on a cycle-by-cycle basis.

Functional equivalence may be carried out at various levels of the design
hierarchy. If the description is in a behavioral language (such as the last two
categories mentioned), the behavior at a system level may be verifiable. For
instance, in the case of a microprocessor, the operating system might be
booted and key programs might be run for the behavioral description. How­
ever, this might be impractical (due to long simulation times) for a gate-level
model and extremely impractical for a transistor-level model. The way out of
this impasse is to use the hierarchy inherent within a system to verify chips and
modules within chips. That, combined with well-defined modular interfaces,
goes a long way in increasing the likelihood that a system composed of many
VLSI chips will be first-time functional. Remember too, at the lowest levels of
the hierarchy, timing tests must be run to validate that a particular function
such as addition is achieved at a given clock frequency.

There is no good theory on how to ensure that good functional tests be
written. The best advice is to simulate the chip or system as closely as possi­
ble to the way it will be used in the real world. Often this is impractical due
to slow simulation times and very long verification sequences. One approach
is to move up the simulation hierarchy as modules become verified at lower
levels. For instance, the gate-level adder and register modules in a video fil­
ter might be replaced by functional models and then the filter itself might be
replaced by a functional model. At each level, small tests are written to ver­
ify the equivalence between the new higher-level functional model and the
lower-level gate or functional level. At the top level, the filter functional­
model may be surrounded with a software environment that models the real­
world use of the filter. For instance, a carefully selected subsample of a video
frame might be fed to the filter and the output of the functional model com­
pared with what is expected theoretically. The video output might also be
observed on a video frame buffer to check that it looks correct (by no means
an exhaustive test, but a confidence builder). Finally, if enough time is avail­
able, all or part of the functional test may be appplied to the gate level and
even the transistor level if transistor primitives have been used. One
approach that is becoming more popular and feasible is to model chips as
collections of reprogrammable gate arrays (see Chapter 6). Commercial
hardware is available to aid this activity.

Remember the following statement, culled from many years of IC­
design experience, whenever you are tempted to give test work short shrift:

"If you don't test it, it won't work! (Guaranteed.)"

Micron Ex. 1037, p. 507
Micron v. YMTC
IPR2025-00119

468 CHAPTER 7 CMOS TEST METHODS

7.1.2 Manufacturing Tests

Whereas functionality tests seek to verify the function of a chip as a whole,
manufacturing tests are used to verify that every gate operates as expected.
The need to do this arises from a number of manufacturing defects that might
occur during chip fabrication or during accelerated life testing (where the
chip is stressed by over-voltage and over-temperature operation). Typical
defects include:

• layer-to-layer shorts (i.e., metal to metal).

• discontinous wires (i.e., metal thins when crossing vertical topology
jumps).

• thin-oxide shorts to substrate or well.

These in turn lead to particular circuit maladies, including:

• nodes shorted to power or ground.

• nodes shorted to each other.2

• inputs floating/outputs disconnected.

Tests are required to verify that each gate and register is operational and
has not been compromised by a manufacturing defect. Tests are normally
carried out at the wafer level to cull out bad die, and then on the packaged
parts. The length of the tests at the wafer level might be shortened to reduce
test time based on experience with the test sequence.

Apart from the verification of internal gates, 1/0 integrity is also tested
through completing the following tests:

• l/0-level test (i.e., checking the noise margin for TTL, ECL, or
CMOS I/O pads).

• Speed test.

• !DD test.

The last of these tests checks the leakage if the circuit is composed of com­
plementary logic. Any value markedly above the expected value for a given
wafer normally indicates an internal shorting failure (or very bad leakage).
Wafer tests may be done at high speed or low speed (1 MHz) due to possible
power and ground bounce effects that may be present in older testers.

In general, manufacturing-test generation assumes that the circuit/chip
functions correctly, and ways of exercising all gate inputs and of monitoring
all gate outputs are required.

To illustrate the difference between a functional test and a manufacturing
test, consider the testing of a microprocessor at a functional level, which might

Micron Ex. 1037, p. 508
Micron v. YMTC
IPR2025-00119

7.1 THE NEED FOR TESTING 469

be the first concern of the designer (to see whether the microprocessor worked
as a whole). To test any instruction, a sequence of instructions that use that
instruction might be used (i.e., does the ADD instruction add?). While this
might prove that the control logic that yields that instruction is intact, it does
not, for instance, prove that the instruction works for all possible addresses and
data. At this level of test it is assumed that the adders, muxes, gates, and regis­
ters in the microprocessor datapaths operate correctly.

Tests that exercise all bits in the datapaths have to be written to verify
the chip at the manufacturing level. These tests might include a test to
check that registers can store a 1 and a 0 and a test that exercises each bit
in any adder and ensures that the carry chain is not broken (i.e., does the
adder add for all inputs?). The inputs have to be chosen carefully to check
for all possible manufacturing defects. The manufacturing tests may be the
only tests applied to a microprocessor prior to its being placed in a socket
and booted.

7.1.3 A Walk Through the Test Process

As a designer you may be responsible for part or all of the tests that are writ­
ten to test a particular chip (often called the stimulus). "Written" might
include a number of methods of test specification from applying waveforms
or logic values manually to a simulator to, more probably, writing a program
in a high-level language to apply stimuli to a description of the circuit. When
the stimulus is applied to a circuit via a simulator, the output of the simulator
may be dumped to a file (often called an activity file). If this output is filtered
so that only the chip inputs and chip outputs are retained and further filtered
so that only the quiescent signal values are kept after an input or inputs
change, then the resulting file may be used to generate a "test program."

Depending on whether you are testing a wafer or a packaged part, a
probe card or "device-under-test" (DUT) board would be needed to connect
the tester outputs and inputs to the die I/O pads or chip package pins. Probe
cards are normally constructed by experts,·while DUT boards are well within
the capabilities of the electronic hobbyist.

The next requirement for a chip tester is the existence of this "test pro­
gram." This is a file with a format of inputs and outputs that suit the chip
tester that is to be used to test your chip. A simple format is shown below for
the case of a single-bit adder:

III 00

SC
UA
MR

R

ABC Y

0 000 00

Micron Ex. 1037, p. 509
Micron v. YMTC
IPR2025-00119

470 CHAPTER 7 CMOS TEST METHODS

1 001 10
2 010 10
3 011 01
4 100 10
5 101 01
6 110 01
7 111 11

The first line designates the signal directions and shows three inputs and
two outputs. The next five lines designate the signal names. Thereafter, each
line designates a new test vector. The first column is the test vector number.
The next three columns are the binary value of the inputs, and the next two
columns are the expected output values. Each line represents a certain length
clock cycle that is asserted by the tester. Signals normally change soon after
an internal clock running at the tester period. Clock generation may be car­
ried out in two different ways. First, the clock can be regarded as any other
signal, in which case it takes two tester cycles to complete a single clock
cycle-one for the clock low and one for the clock high. Alternatively, a tim­
ing generator may be used, which allows the clock rising edge (for instance)
to be placed anywhere in the tester cycle. So, for instance, if the inputs are
changed at the start of the tester cycle, the clock might be programmed to
rise at the middle of the cycle.

Sundry other setup files are normally required by the tester. Normally a
mapping file is required that maps a given input or output in the test program
to a physical connection (pin) in the tester. This pin may be programmed to
be an input, output, tristate, bidirect, or, in some cases, a multiplexed data
pin. Each pin on the tester is driven by a function memory that is used either
to assert a value or to check a value at a DUT pin. In addition, various control
memories may be present to control the drive on the tester pin (i.e., to control
a tristate pin) or to mask data from the chip (i.e., to ignore certain pins at cer­
tain times). These memories have finite length, so sometimes with older
testers more than one vector load has to be used to test a part. This normally
slows testing because the reload procedure may be slow. Modern testers sel­
dom suffer from this problem.

The clock speed is specified (by specifying a test cycle time, Tc), as are
supply-voltage levels and pins on the tester and probe card or DUT board.
The time at which outputs are asserted or inputs are sampled is also specified
on a pin-by-pin basis (Ts). The format of the test data may usually be chosen
from Non Return to Zero (NRZ), Return To Zero (RTZ), or other formats,
such as Surround By Zero (SBZ). For instance, an RTZ output would transi­
tion (if the pin were driven high) at Ts and return to zero at Tc·

The probe card or DUT board is connected to the tester. The test pro­
gram is compiled and downloaded into the tester, and the tests are applied to
the circuit. The tester samples the chip outputs and compares the values with

Micron Ex. 1037, p. 510
Micron v. YMTC
IPR2025-00119

7.2 MANUFACTURING TEST PRINCIPLES 471

those provided by the test program. If there are any differences, the chip is
marked as faulty (with an ink dot) and the miscomparing vectors may be dis­
played for reference. In the case of a probe card, the card is raised, moved to
the next die on the wafer, and lowered, and the test procedure is repeated. In
the case of a DUT board with automatic part handling, the tested part is
binned into a good or bad bin and a new part is fed to the DUT board, and the
test is repeated. In most cases these procedures take a few seconds for each
part tested.

The ability to vary the voltage and timing on a per-pin basis with a tester
allows a process known as "schmooing" to be carried out. For instance, one
might vary the Vvv voltage from 3 to 6 volts on a 5-volt part while varying
the tester cycle time.This yields a graph that shows the speed sensitivity of
the part with respect to voltage. Another "schmoo" test that is frequently
exercised is to skew the timing on inputs with respect to the chip clock to
look for setup and hold variations.

7.2 Manufacturing Test Principles

A critical factor in all LSI and VLSI design is the need to incorporate meth­
ods of testing circuits. This task should proceed concurrently with any archi­
tectural considerations and not be left until fabricated parts are available
(which is a recurring temptation to designers).

Figure 7.l(a) shows a combinational circuit with n-inputs. To test this
circuit exhaustively a sequence of 2n inputs (or test vectors) must be applied
and observed to fully exercise the circuit. This combinational circuit is con­
verted to a sequential circuit with addition of m-storage registers, as shown
in Fig. 7 .1 (b). The state of the circuit is determined by the inputs and the pre-

n Combinational
Logic

2" inputs required to exhaustively test circuit

(a)

n
Combinational
Logic

Registers

elk

m

2" + m inputs required to exhaustively test circuit

For n = 25 m = 50, 1 µS/test, the test time is
over 1 billion years (Williams)

(b)

FIGURE 7.1 The combin­
ational explosion in test
vectors

Micron Ex. 1037, p. 511
Micron v. YMTC
IPR2025-00119

472 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.2 CMOS stuck-at
faults

vious state. A minimum of 2Cn+m) test vectors must be applied to exhaus­
tively test the circuit. To quote Williams3:

With LSI, this may be a network with n = 25 and m = 50, or 2 75 patterns,
which is approximately 3.8 x 1022. Assuming one had the patterns and
applied them at an application rate of 1 µs per pattern, the test time would
be over a billion years (109).

Clearly, this is an important area of design that has to be well under­
stood.

7.2.1 Fault Models

7.2.1.1 Stuck-At Faults

In order to deal with the existence of good and bad parts it is necessary to pro­
pose a "fault model," that is, a model for how faults occur and their impact on
circuits. The most popular model is called the "Stuck-At" model. With this
model, a faulty gate input is modeled as a "stuck at zero" (Stuck-At-0, S-A-0,
SAO) or "stuck at one" (Stuck-At-1, S-A-1, SAl). This model dates from board­
level designs where this was determined to be an adequate set of models for
modeling faults. Figure 7 .2 illustrates how an S-A-0 or S-A-1 fault might
occur. These faults most frequently occur due to thin-oxide shorts (the n-tran­
sistor gate to Vss or the p-transistor gate to V DD) or metal-to-metal shorts.

~E>OUT Stuck-At-0
SAO Fault

Micron Ex. 1037, p. 512
Micron v. YMTC
IPR2025-00119

7.2 MANUFACTURING TEST PRINCIPLES 473

7.2. 1.2 Short-Circuit and Open-Circuit Faults

Other models include "stuck-open"4 or "shorted" models. Two shorted faults
are shown in Fig. 7.3. Considering the faults shown in Fig. 7.3, the short SJ
is modeled by an S-A-0 fault at input A, while short S2 modifies the function
of the gate. What becomes evident is that to ensure the most accurate mod­
eling, faults should be modeled at the transistor level, because it is only at
this level that the complete circuit structure is known. For instance, in the
case of a simple NAND gate, the intermediate node in the series n-pair is
"hidden" by the schematic. What this implies is that test generation must be
done in such a way as to take account of possible shorts and open circuits at
the switch level.5 Although the switch level may be the mpst appropriate
level, expediency dictates that most existing systems rely on Boolean logic
representations of circuits and S-A-0 and S-A-1 fault modeling.

A particular problem that arises with CMOS is that it is possible for a
fault to convert a combinational circuit into a sequential circuit. This is illus­
trated for the case of a 2-input NOR gate in which one of the transistors is
rendered ineffective (stuck open or stuck closed) in Fig. 7.4. This might be
due to a missing source, drain, or gate connection. If one of then-transistors
(A connected to gate) is stuck open, then the function displayed by the gate
will be

F =(not (A+ B)) +(A. (not B). Fn),

fr-o

A

B

82 modifies function of gate

\\\\\\\\\\\\\\\\\\\\\\\\\\\h

H
H

FIGURE 7.3 CMOS bridging
faults

Micron Ex. 1037, p. 513
Micron v. YMTC
IPR2025-00119

474 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.4 A CMOS open
fault that causes sequential
faults

A B F

FIGURE 7.5 A
defect that causes
static 100 current

F=-(A+B)

F=-(A+B)+A. -B. Fn

'
~'

=='"'"*"l''nlimmTili>l<=mi ~PHH~H' '~~h 'HH~ ''n''
nhnnn~ hnL nn~~ HHH,

A B F

where F n is the previous state of the gate. Similarly if the B n-transistor drain
connection is missing, the function is

F =(not (A+ B)) +((not A). B. Fn).

If either p-transistor is open, the node would be arbitrarily charged (i.e., it
might be high due to some weird _charging sequence) until one of the n-tran­
sistors discharged the node. Thereafter it would remain at zero, bar charge­
leakage effects. This problem has caused researchers to search for new meth­
ods of test generation to detect such behavior.6

Currently debate ranges over whether an SAO/SAl approach to testing
is adequate for testing CMOS. It is also possible to have switches (transis­
tors) exhibit a "stuck-open" or "stuck-closed" state. Stuck-closed states can
be detected by observing the static V DD current (I DD) while applying test
vectors. Consider the gate fault shown in Fig. 7.5, where a p-transistor in a
2-input NAND gate is shorted. This could physically occur if stray metal
overlapped the source and drain connections or if the source and drain diffu­
sions shorted. If we apply test vector 11 to the A and B input and measure the
static I DD current, we will notice that it rises to some value determined by
the ~ ratios of the n- and p-transistors. While the debate continues and test
cycles are at a premium, the SAO/SAl model will suffice for some time to
come.

7.2.2 Observability

The observability of a particular internal circuit node is the degree to which
one can observe that node at the outputs of an integrated circuit (i.e., the
pins). This measure is of importance when a designer/tester desires to mea­
sure the output of a gate within a larger circuit to check that it operates cor-

Micron Ex. 1037, p. 514
Micron v. YMTC
IPR2025-00119

7.2 MANUFACTURING TEST PRINCIPLES 475

rectly. Given a limited number of nodes that may be directly observed, it is
the aim of well-designed chips to have easily observed gate outputs, and the
adoption of some basic test design techniques can aid tremendously in this
respect. Ideally, one should be able to observe directly or with moderate
indirection (i.e., one may have to wait a few cycles) every gate output within
an integrated circuit. While at one time this aim was hindered by limited
gate-count processes and a lack of design methodology, current design prac­
tices and processes allow one to approach this ideal. Section 7 .3 examines a
range of methods for increasing observability.

7.2.3 Controllability

The controllability of an internal circuit node within a chip is a measure of
the ease of setting the node to a 1 or 0 state. This measure is of importance
when assessing the degree of difficulty of testing a particular signal within a
circuit. An easily controllable node would be directly settable via an input
pad. A node with little controllability might require many hundreds or thou­
sands of cycles to get it to the right state. Often one finds it impossible to
generate a test sequence to set a number of poorly controllable nodes into the
right state. It should be the aim of a well-designed circuit to have all nodes
easily controllable. In common with observability, the adoption of some sim­
ple design for test techniques can aid tremendously in this respect.

7 .2.4 Fault Coverage

A measure of goodness of a test program is the amount of fault coverage it
achieves; that is, for the vectors applied, what percentage of the chip's inter­
nal nodes were checked. Conceptually, the way in which the fault coverage
is calculated is as follows. Each circuit node is taken in sequence and held to
0 (S-A-0), and the circuit is simulated, comparing the chip outputs with a
known "good machine"-a circuit with no nodes artificially set to 0 (or 1).
When a discrepancy is detected between the "faulty machine" and the good
machine, the fault is marked as detected and the simulation is stopped. This
is repeated for setting the node to 1 (S-A-1). In turn, every node is stuck at 1
and 0, sequentially. The total number of nodes that, when set to 0 or 1, do
result in the detection of the fault, divided by the total number of nodes in the
circuit, is called the percentage-fault coverage.

The above method of fault analysis is called sequential fault grading.
While this might be practical for small circuits, or by using hardware simu­
lation accelerators on medium circuits, the time to complete the fault grading
may be very long. On average KN cycles (assuming that, on average, N/2
cycles are needed to detect each fault) need to be simulated, where K is the
number of nodes in the circuit and N is the length of the test sequence. For
K = 1000 and N = 12,000, 12 million cycles are required. At 1 ms per cycle,
this yields 12,000 seconds or 3 hrs 20 minutes. For K = 100,000 and

Micron Ex. 1037, p. 515
Micron v. YMTC
IPR2025-00119

476 CHAPTER 7 CMOS TEST METHODS

N = 360,000, 3.6 x 109 cycles are required. At I s per cycle, 1040 years
would be required to do sequential fault grading.

To overcome these long simulation times many ingenious techniques
have been invented to deal with fault simulation.

7.2.5 Automatic Test Pattern Generation (ATPG)

Historically in the IC industry, designers designed circuits, layout drafts­
people completed the layout, and the test engineer wrote the tests. In many
ways, the test engineers were the Sherlock Holmes of the industry, reverse
engineering circuits and devising tests that would test the circuits in an ade­
quate manner. For the longest time, test engineers implored circuit designers
to include extra circuitry to ease the burden of test generation. Happily, as
processes have increased in density and chips have increased in complexity,
the inclusion of test circuitry has become less of an overhead for both the
designer and the manager worried about the cost of the die. In addition, as
tools have improved, more of the burden for generating tests has fallen on
the circuit/logic designer. To deal with this burden, methods for automati­
cally generating tests have been invented. Collectively these are known as
ATPG, for Automatic Test Pattern Generation. This section summarizes one
approach to ATPG to provide background for the reader. In practice, one may
find that ATPG is of great use in the generation of test vectors or that for a
variety of reasons it is not applicable.

Historically, most ATPG approaches have been based on simulation. A
five-valued logic 7 form is commonly used to implement test generation algo­
rithms (more advan~ed algorithms use up to 10 level logic). This consists of
the states I, 0, D, D, and X. 0 and 1 represent logical zero and logical one
respectively. X represents the unknown or DON'T-CARE state. D re.E_resents
a logic I in a good machine and a logic 0 in a faulty machine while D repre­
sents a logic 0 in a good machine and a logic I in a faulty machine. The truth
tables for inverters, AND, and OR gates are shown in Tables 7.1, 7.2, and 7.3.

TABLE 7.1 Inverter
Z= NOTA

A z

0 1
1 0
x x
D D
D D

Micron Ex. 1037, p. 516
Micron v. YMTC
IPR2025-00119

7.2 MANUFACTURING TEST PRINCIPLES 477

TABLE 7.2 2-input AND gate Z =A AND B

A B 0 1 x D D

0 0 0 0 0 0
1 0 x D D

x 0 x x x x
D 0 D x D 0
D 0 D x 0 D

We oan examine the use of this five-valued logic by considering the cir­
cuit shown in Fig. 7.6 where an S-A-0 fault is to be detected at node h. We
will alternatively call a circuit a machine, which is customary in test nomen­
clature. Thus node h would have value D. There are two objectives. The first
is to propagate the Don node h to one or more primary outputs (POs). A pri­
mary output is a directly observable signal, such as a pad or, as we shall learn
later, a scan output. This path to the primary output (or outputs) is called the
sensitized path. The second objective is to set node h to state D via a set of
primary inputs (Pis). A primary input is one that can be directly set via a pad
or some other means. The gate driving node his the Gate Under Test or
GUT. From node h we backtrack to the primary inputs (a, b, c, d, e) to find
the necessary input vector required to set node h to a 1. Because the gate
driving node his an AND gate from the above definition (a Dis a 1 in a good
machine), both inputs (f, g) have to be set to 1 to set h to 1. Proceeding fur­
ther toward the inputs, to assert node fas a 1, both nodes a and b have to be
set to a 1. Because node g is driven by an OR gate, either node c or node d
need to be set to a 1 to assert node g. Thus a vector {a,b,c,d} of { 1,1,1,0} or
{ 1, 1,0, 1} is required to control node h. To observe that node g has been set to
a D, input node e has to be set to a 1. Thus the resultant test vector is

TABLE 7.3 2-input OR gate Z =A OR B

A B 0 1 x D D

0 0 1 x D D
1 1 1 1 1 1
x x 1 x x x
D D 1 x D 1
D D 1 x 1 D

Micron Ex. 1037, p. 517
Micron v. YMTC
IPR2025-00119

I .

478 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.6 The D
algorithm-sensitization
step

{a,b,c,d,e} = {l,l,O,l,l} or {l,l,1,0,l}. If we are checking for an S-A-1
fault at node h, we must be able to set it to 0. By similar reasoning to that for
the S-A-0 case the test vector would be {a, b, c, d, e} = { 0, 1, X,X, 1} or
{1,0,X,X,1} or {0,0,X.X,1) or {l,l,0,0,1}. Similarly, for other nodes a sum­
mary of the vectors is as in Table 7.4.

The next step is to collapse the vectors into the least set that covers all
nodes.Apossiblesetis {l,1,0,l,l}, {O,O,l,0,1}, {l,l,0,0,1}.

The reason for using a five-valued logic is shown in Fig. 7.7. Here an
additional AND gate and INVERT gate have been added to the circuit. We
can se.e that a fault at node his essentially unobservable (due here to the non­
sensical logic). This circuit suffers from what is called reconvergent fan-out.

The usual basis for manual generation of tests by test engineers and
many current automatic test-pattern generation programs is the D-algorithm
(DALG). 8 PODEM9 and PODEM-X10 are improved algorithms that are
more efficient than the original DALG and in addition treat error-correcting
circuits composed of XOR gates with reconvergent fan-out. Another ATPG
algorithm is called FAN 11 and an improved efficiency algorithm 12 dealing
with tristate drivers called ZALG has been developed. 13 Other work has
concentrated on dealing at a module level rather that a gate level.14 In basis,
these algorithms.start by propagating the D value on an internal node to a
primary output. This is called the D-propagation phase. The selection of
which gates to pass through to the output is guided by observability indexes
assigned to gates. At any particular gate input, the gate with the highest
observability is selected. Once the D value is observable at a primary output,
the next step is to determine the primary input values that are required to

TABLE 7.4 Node-vector Summary of D Algorithm (Fig. 7.6)

NODE

h
h

f
f
g

g

TEST

S-A-0
S-A-1
S-A-0
S-A-1
S-A-0
S-A-1

VECTOR {a,b,c,d,e}

{l,1,0,l,l}, {l,l,1,0,l}
_{0,1,X,X, 1}, { 1,0,X,X, 1}, {0,0,X,X, 1}, { 1,1,0,0,1}
{l,l,0,1,l}, {l,1,1,0,l}
{0,0,0,l,l}, {0,0,1,0,1}
{ l,l,O,l,1}, { l,l,l,0,1}, {l,l,l,1,1}
{ 1,l,0,0,l}

Micron Ex. 1037, p. 518
Micron v. YMTC
IPR2025-00119

7.2 MANUFACTURING TEST PRINCIPLES 479

1 a
b

1 c
d

0

D 0 j

enable the fault to be observed and tested. This proceeds by backtracking
from the faulted signal and sensitized path-enables toward the primary
inputs. The selection of which path to proceed along toward the inputs is
aided by controllability indices assigned to nodes. This is known as the
backtrace step.

Controllabilities and observabilities can be assigned statically (that is,
without regard to the logic state of the network) or dynamically15 (that is,
according to the current state of the network). The SCOAP16 algorithm is
one method of assigning controllabilities and observabilities. In the SCOAP
system the following six testability measures (TMs) are defined for each cir­
cuit node:

• CCO(n)-combinatorial 0 controllability of node n (i.e., the extent to
which a combinatorial node can be forced to a zero).

• CCI(n)-combinatorial I controllability of node n.

• CO(n)-combinatorial observability of node n.

• SCO(n)-sequential 0 controllability of node n.

• SCI(n)-sequential I controllability of node n.

• SO(n)-sequential observability of node n.

The combinatorial measures are applied to the ouputs of logic gates,
while the sequential measures apply to registers and other "sequential" mod­
ules. As an example, for the AND gate shown in Fig. 7 .8 the CCI value is

CCI(z) = CCI(a) + CCI(b) + 1.

That is, the I-controllability of the output of the AND gate is the sum of the
I-controllabilities of each input because each input has to be set to I to set
the output to I. The I is added at the end because the AND gate represents
one stage of combinatorial logic. The sequential I-controllability is given by.

SCI(z) = SCI(a) + SCI(b).

FIGURE 7.7 Reconvergent
fan-out with D notation

FIGURE 7.8.
NANO gate

Micron Ex. 1037, p. 519
Micron v. YMTC
IPR2025-00119

480 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.9 SCOAP test-
ability measure example:
(a) controllabilities;
(b) observabilities

The combinatorial 0-controllability is given by

CCO(z) = min[CCO(a), CCO(b)] + 1.

This arises due to the fact that either a 0 on a orb forces a 0 at the output.
Therefore the easiest controllable input may be used (the lowest combinato­
rial controllability). The sequential controllability is given by

SCO(z) = min[SCO(a), SCO(b)].

The combinatorial observability of a is given by

CO(a) = CO(z) + CCl(b) + 1;

that is, the observability of z added to the combinatorial I-controllability of
b. This occurs because b has to be forced to a 1 to make a observable. The
sequential observability of a is given by

SO(a) = SO(z) + SO(b).

Similar equations may be derived for other gate types. The SCOAP
algorithm proceeds by first calculating the circuit controllabities by propa­
gating controllabilites from the logic inputs. Following this, the observabili­
ties are propagated from the logic outputs. Figure 7 .9(a) shows a logic circuit
with the 1-controllabities annotated. Figure 7 .9(b) shows the observabilities.

3
x

3
6

Y·
k 2

g 1

(a)

a
b x

c
d

y
e k

g

(b)

Micron Ex. 1037, p. 520
Micron v. YMTC
IPR2025-00119

7.2 MANUFACTURING TEST PRINCIPLES 481

In cases of multiple fan-out, the minimum observability measure is used.
The presence of high controllability numbers indicates a node that is difficult
to control, while the presence of high observability numbers indicates nodes
that are difficult to observe. As mentioned above, the testability measures are
used to guide the selection of paths in the D-propagation and backtrace
phase of the D-algorithm-based ATPG procedures.

Other testability measures, such as COP17 and LEVEL, 18 are also used.
COP testability measures are probablistic in nature.

More recently authors have proposed the use of massively parallel
methods for ATPG. 19 Methods have also been developed that model faults as
changes to a Boolean network. Equivalence checking is used to prove that
the two networks are not equivalent. These methods, when combined with
random-fault generation and fault simulation, have demonstrated a great
deal of success.20

7.2.6 Fault Grading and Fault Simulation
Fault grading consists of two steps. First, the node to be faulted is selected.
Normally global nodes such as rese·t lines and clock lines are excluded
because faulting them can lead to unnecessary simulation (i.e., if the reset or
clock line is stuck, then not much is going to happen in the circuit). A simu­
lation is run with no faults inserted, and the results of this simulation (that is,
the primary output responses for each input test vector) are saved. Following
this process, in principle, each node or line to be faulted is set to 0 and then
1 and the test vector set is applied. If,. and when, a discrepancy is detected
between the faulted circuit response and the good circuit response, the fault
is said to be detected and the simulation is stopped, and the process is
repeated for the next node to be faulted. If the number of nodes to be faulted
is K, and the average number of test vectors is N, the number of simulation
cycles, SK' is approximately given by

N
SK=22K+N

= K(N+ 1) ~KN. (7.1)

This serial fault simulation process is therefore running K sets of the test
vector set. With a small vector set, simple circuit, or very fast simulator, this
approach is feasible. However, for large test sets and circuits, it is highly
impractical.

To deal with this problem, a number of ideas have been developed to
increase the speed of fault simulation.

Parallel Simulation is one method for speeding up simulation of multi­
ple machines. In this method m words in an n-bit computer are used to

Micron Ex. 1037, p. 521
Micron v. YMTC
IPR2025-00119

482 CHAPTER 7 CMOS TEST METHODS

encode the state of n "machines" for a 2m-state simulator. Two n-bit words
may be used to encode n machines for a three-state simulator. More com­
puter words may be used to encode simulators with more states. Moreover
this principle has been extended to special-purpose hardware where the com­
puter word length could be optimized to deal with substantially more circuits
in parallel. Now if M circuits can be simulated in parallel, then

(7.2)

Concurrent Simulation21 is currently the most popular method for soft­
ware-based fault simulators. The technique uses a nonfaulted version of the
circuit to create a "good" machine model. Each fault creates a new faulty
machine that is simulated in parallel with the good machine. Thus N + 1 sim­
ulations may have to be completed, where N is the number of faults. Concur­
rent simulators rely on a number of heuristics to reduce the amount of
simulation. For instance, when a difference is noted between a faulted
machine and a good machine at an externally observable point (i.e., the
pads), the faulty machine is dropped from the simulation queue and the fault
is "detected." If the bad machine has an X or Z compared to a 1 or 0 for the
good machine, the fault is a "possible detect." Obviously, the more exter­
nally observable nodes a circuit has, the quicker bad machines get dropped
from the simulation. Normally, only the good machine state is stored, with
each node listing the fault machines that differ with the good machine. The
different state is often small, which implies that there is a small amount of
extra simulation to be done. In other words, most simulation for a faulty
machine is exactly the same as the good machine. This is what concurrent
simulation exploits. Fault collapsing occurs when two different faults result
in the same faulty machine. This is noted, and one of the faulty machines
may be dropped. Some machines perform static fault collapsing prior to sim­
ulation. For instance, an SAO fault on the input of an inverter is the same as
an SAl fault at the output of the same inverter. With some fault simulators it
is possible to create a fault dictionary. This is a cross reference that maps an
observed fault to a set of possible internal faults. It is of use when the tester
wishes to track down the actual internal failure (such as to perform yield
improvement) rather than just cull the part.

Apart from software-based simulations, hardware-fault simulation
accelerators that can provide a speedup over software-based simulators are
also available.

7.2.7 Delay Fault Testing
The fault models we have dealt with to this point have neglected timing.
Failures that occur in CMOS could leave the functionality of the circuit
untouched, but affect the timing. For instance, consider the layout shown in

Micron Ex. 1037, p. 522
Micron v. YMTC
IPR2025-00119

7.2 MANUFACTURING TEST PRINCIPLES 483

Fig. 7 .10 for a high-power NAND gate composed of paralleled n- and p-tran­
sistors. If the link illustrated was opened, the gate would still function, but
with increased pull-down time. In addition, the fault now becomes sequen­
tial because the detection of the fault depends on the previous state of the
gate and the simulation clock speed.

7.2.8 Statistical Fault Analysis

Conventional fault analysis can consume large CPU resources and take a
long time. An alternative to this is what is called statistical fault analysis
(STAFAN).22 This method of fault analysis relies on estimating the probabil­
ity that a fault will be detected. In summary, a fault free simulation is per­
formed on a circuit in which some extra statistics are gathered by a modified
simulator on a per-input vector basis. These are as follows:

• Zero-counter-The 0 count on each gate input when a l--70 change of
the output is detected.

• One-counter-The 1 count on each gate input when a 0--71 change of
the output is detected.

• Sensitization-counter-incremented if the input change causes the
output to be sensitized.

• Loop-counter-used to detect and deal with feedback.

The one-controllability of line l is given by

Cl (Z) = one-count/N,

where N is the number of vectors.
The zero-controllability is given by

CO(l) = zero-count/N.

FIGURE 7.10 An example
of a delay fault

Micron Ex. 1037, p. 523
Micron v. YMTC
IPR2025-00119

484 CHAPTER 7 CMOS TEST METHODS

TABLE 7.5 Statistical Fault Analysis 1 And O Observabilities

GATE TYPE Bl(l) BO(l)

AND
Cl (m)

BO (m) ·
S (l) - Cl (m)

Bl (m) · Cl (l) co (l)

OR BI (m) ·
S(l)-CO(m) CO (m)

Cl (l) BO (m) · CO (l)

NAND
CO(m)

BO (m) · Cl (l)
S(l) - Cl (m)

Bl (m) CO (l)

NOR
S(l) - Cl (m)

BO (m) Cl (l)
Cl (m)

Bl (m) · CO (l)

NOT BO (m) BI(m)

The one-level sensitization probability is

SC[) = sensitization-count/N.

The observabilities are calculated by propagating from gate outputs to gate
inputs. For common gates, Jain and Agrawal derive the one-observabilities
(Bl) and zero-observabilities (BO) for common gates, as shown in Table 7.5.

Methods also exist to deal with fan-out where two observabilities must be
combined. Once these observability and controllability measures have been
determined, the probability of fault detection may be calculated as follows:

Dl(l) = BO(l). CO(l),

where Dl(l) is the probability of detection that line l is SAl.

DO(l) = Bl(l) . Cl(!),

where DO(l) is the probability of detection that line l is SAO.
From these values the fault coverage of the circuit may be calculated.

The results of using this technique follow very closely the results generated
by conventional fault simulation.

7.2.9 Fault Sampling
Another approach to fault analysis is known as fault sampling. This is used
in circuits where it is impossible to fault every node in the circuit. Nodes are
randomly selected and faulted. The resulting fault-detection rate may be sta-

Micron Ex. 1037, p. 524
Micron v. YMTC
IPR2025-00119

7.3 DESIGN STRATEGIES FOR TEST 485

tistically inferred from the number of faults that are detected in the fault set
and the size of the set. As with all probabalistic methods it is important that
the randomly selected faults be unbiased. Although this approach does not
yield a specific level of fault coverage, it will determine whether the fault
coverage exceeds a desired level. The level of confidence may be increased
by increasing the number of samples.

7 .3 Design Strategies for Test

7 .3.1 Design for Testability
The key to designing circuits that are testable are the two concepts that we
have introduced called controllability and observability. Restated, controlla­
bility is the ability to set (to 1) and reset (to 0) every node internal to the cir­
cuit. Observability is the ability to observe either directly or indirectly the
state of any node in the circuit.

We will first cover three main approaches to what is commonly called
Design for Testability. These may be categorized as:

• ad-hoc testing.

• scan-based approaches.

• self-test and built-in testing.

Following this we will look at the application of these techniques to particu­
lar types of circuits. In this treatment we will look at:

• random logic (multilevel standard-cell, two-level PLA).

• regular logic arrays (datapaths).

• memories (RAM, ROM).

7.3.2 Ad-Hoc Testing
Ad-hoc test techniques, as their name suggests, are collections of ideas
aimed at reducing the combinational explosion of testing. Common tech­
niques involve:

• partitioning large sequential circuits.

• adding test points.

• adding multiplexers.

• providing for easy state reset.

Micron Ex. 1037, p. 525
Micron v. YMTC
IPR2025-00119

486 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.11 Ad-hoc test
techniques applied to a
counter

Long-counters are good examples of circuits that can be tested by ad-hoc
techniques. For instance imagine you have designed an 8-bit counter and
want to test it. Figure 7 .11 (a) shows a naive implementation in which the
counter only has a RESET and a CLOCK input, with the terminal count (TC)
being observable. The designer probably thought that a reset and 256 dock
cycles, followed by the observation of TC, would be adequate for testing
purposes. Apart from the noriobservability of the count value (Q<7:0>), the

(a)

(b)

(c)

C0<6:0>,Vdd --<>--------1

test-in

elk
load

C0<7:0>

REG
8-bit

0 q

SEL

C0<7:0>

REG
8-bit

1-----.-- 0<7:0>

8

0<7:0>

8

q 1-----0<7:0>

8

C0<7:0>

C0<3>==0-
-test ctest

TC

TC

TC

Micron Ex. 1037, p. 526
Micron v. YMTC
IPR2025-00119

7.3 DESIGN STRATEGIES FOR TEST 487

main problem is the number of cycles required to test a single counter. Pos­
sible ad-hoc test techniques are shown in Fig. 7.ll(b) and Fig. 7.ll(c). In
Fig. 7 .11 (b), a parallel-load feature is added to the counter. This enables the
counter to be preloaded with appropriate values to check the carry propaga­
tion within the counter. Another technique is to reduce the length of each
counter to, say, 4 bits, as shown in Fig. 7.ll(c). This is achieved by having
the test signal block the carry propagate at every 4-bit boundary. With this
method 16 vectors exhaustively can test each 4-bit section. The carry propa­
gate between 4-bit sections may be tested with a few additional vectors.

Another technique classified in this category is the use of the bus in a
bus-oriented system for test purposes. This is shown on Fig. 7.12(a) for a
very simple accumulator. Each register has been made loadable from the bus
and capable of being driven onto the bus. Here the internal logic values that
exist on a data bus are enabled onto the bus for testing purposes. A more gen­
eral scheme is illustrated in Fig. 7 .12(b), where the normally inaccessible
inputs are set and the outputs are observed via the bus.

bus "
16

(a)

bus "
16

(b)

load-a SEL

REG
16-bit

·read-a

read-b

0 q >---+---~

elk
load-b SEL

Functional Unit Functional Unit

2

read-ace

load-ace SEL

Functional Unit

2

Functional Unit

N

FIGURE 7.12 Bus-oriented
test techniques

Micron Ex. 1037, p. 527
Micron v. YMTC
IPR2025-00119

488 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.13 Multiplexer
based testing

Frequently, multiplexers may be used to provide alternative signal paths
during testing. In CMOS, transmission gate multiplexers provide low area
and speed overhead. Figure 7 .13 (a) shows a scheme called a Design for
Autonomous Test23, which uses multiplexers. Figure 7 .13(b) shows the cir­
cuit configured for normal use, while Fig. 7.13(c) shows the circuit config­
ured to test module A.

Any design should always have a method of resetting the internal state
of the chip within a single cycle or at most a few cycles. Apart from making
testing easier, this also makes simulation faster because a few cycles are
required to initialize the chip.

a inputs b inputs

0 0

a control

Module A Module B

>----+-<>-< b control

0

0

a outputs test b outputs
(a)

t t

Module A Module B

(b) t t

Module A Module B

(c)

Micron Ex. 1037, p. 528
Micron v. YMTC
IPR2025-00119

7.3 DESIGN STRATEGIES FOR TEST 489

In general, ad-hoc testing techniques represent a bag of tricks developed
over the years by designers to avoid the overhead of a systematic approach to
testing, which will be described in the next section. While these general
approaches are still quite valid, process densities and chip complexities
necessitate a structured approach to testing.

7.3.3 Scan-Based Test Techniques

A collection of approaches have evolved for testing that lead to a structured
approach to testability. The approaches stem from the basic tenets of control­
lability and observability outlined earlier in this chapter.

7.3.3.1 Level Sensitive Scan Design (LSSD)

A popular approach is called Level Sensitive Scan Design, or the LSSD
approach, introduced by IBM.24,25,26 This is based on two tenets. First, that
the circuit is level sensitive. According to Williams27,

A logic system is level-sensitive if, and only if, the steady state response to
any allowed input state change is independent of the circuit and wire delays
within the system. Also, if an input state change involves the changing of
more than one input signal, then the response must be independent of the
order in which they change. Steady state response is the final value of all
logic gate outputs after all change activity has terminated.

The second principle of LSSD is that each register may be converted to a
serial shift register.

The basic building block in LSSD is the Shift Register Latch, or SRL. A
block-level implementation of a polarity-hold SRL is shown in Fig. 7.14(a). It
consists of two latches, L1 and L2. L1 has a serial data port, I, and an enable, A.
It also has a data port, D, and an enable, C. When A is high, the value of L1 (T1)

is set by the value of L while when C is high, L1 is set by D. A and C can not
be simultaneously high. When signal Bin L2 is high, T1 is passed to T2. A gate­
level implementation of the SRL is shown in Figs. 7. l 4(b) and 7 .14(c). In nor­
mal operation, the D input is the normal input to the register, while the T2 sig­
nal is the output. L1 is the master while L2 is the slave. SRLs may be connected
in series by using the T2 output and the I input of successive latches. During
normal system operation, A is held low and C and B may be thought of as a
two-phase nonoverlapping clock. When data is to be loaded into the SRLs or
dumped out of the SRLs, A and B are used as a two-phase shift clock.

Figure 7.15(a) shows a typical LSSD scan system. An expanded view is
shown in Fig. 7.15(b). The first rank of SRLs have inputs driven from a pre­
ceding stage and have outputs QAl, QA2, and QA3. These outputs feed a
block of combinational logic. The output of this logic block feeds a second

Micron Ex. 1037, p. 529
Micron v. YMTC
IPR2025-00119

490 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.14 A shift regis-
ter latch

D
D T2
B

L, L2

(a)

D

T,

c

A

L,

(b)

D
T2

-T2
B

L2

(c)

rank of SRLs with outputs QBl, QB2, and QB3. Figure 7.15(c) shows a typ­
ical clocking sequence. Initially the shift-elk and c2 are clocked three times
to shift data into the first rank of SRLs (QAl-3). cl is asserted, and then c2
is asserted, clocking the output of the logic block into the second rank of
SRLs (QBl-3). shift-elk and c2 are then clocked three times to shift QBl,
QB2, and QB3 out via the serial-data-out line. Testing proceeds in this man­
ner of serially clocking the data through the SRLs to the right point in the cir­
cuit, running a single "system" clock cycle and serially clocking the data out
for observation. In this scheme, every input to the combinational block may
be controlled and every output may be observed. In addition, running a serial
sequence of 1 's and O's (such as 110010) through the SRLs can test them.

Test generation for this type of test architecture may be highly auto­
mated. ATPG techniques may be used for the combinational blocks, and as
mentioned, the SRLs are easily tested. The prime disadvantage is the com­
plexity of the SRLs (i.e., impacting density and speed).

7.3.3.2 Serial Scan

Level Sensitive Scan went to great pains to provide a hazard-free latching
scheme. Faster clock speeds and design for smaller overhead in the registers

Micron Ex. 1037, p. 530
Micron v. YMTC
IPR2025-00119

7.3 DESIGN STRATEGIES FOR TEST 491

Scan Register

--------Inputs

scan-in--~

(a)

shift-elk serial-data-in
c1

(b)

c1

shift-elk

c2

Combinational Logic

I

c2

shift data in to regA

scan-out

Combinational Logic
t Scan Register

/
1---- Outputs

QB3

QB2

QB1

serial-data-out

shift regB out
clock results

serial-data-in X bit3 X bit2 X bit1 X'-[n_to_r_e"'--g2 _________ _

serial-data-outX~-~X~--X~--~:__j(QB1 X QB2 X QB3 X QA3

(c)

has led to simplifications in the SRL that give up a little on the hazard front
but retain tlie scan principles mentioned above. (The hazard is moved inside
the register, which with careful design can be guaranteed to be race free for
a particular process and environmental characteristics.)

A schematic for a commonly used CMOS edge-sensitive scan-register is
shown in Fig. 7 .16. A MUX is added before the master latch in a conventional
D register. TE is the Test Enable pin, and TI is the Test Input pin. When TE is
enabled, TI is clocked into the register by the rising edge of CLK. Figure 7 .17

FIGURE 7.15 An LSSD
scan chain: (a) basic architec­
ture; (b) example circuit;
(c) example timing

Micron Ex. 1037, p. 531
Micron v. YMTC
IPR2025-00119

492 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.16 A typical
CMOS scan-register

FIGURE 7.17 Various
CMOS scan-latch options

LATCH
1-bit

D 0

Tl
d q

S CLKA CLKB

TE

CLKA

CLK~CLKB

LATCH
1-bit

d q Q

shows some circuit-level diagrams of CMOS SRL implementations. Figure
7.17(a) shows a frequently used implementation, which uses transmission
gates to implement the multiplexers. The layout density overhead for this latch
is minimal. In addition, because the addition of the testability MUX places two
transmission gates in series, the increase in delay is minimized. Two further
implementations of the input MUX are shown in Figs. 7 .17 (b) and 7 .17 (c).
Figure 7.17(b) shows the addition of only two transistors and a single control
line. A register so implemented does have the normal problems associated

TE

CLK CLKB

CLKA

TE CLKB CLKA

D Q

Tl

CLKB CLKA

(a)

CLKB

D x x

(b) (c)

Micron Ex. 1037, p. 532
Micron v. YMTC
IPR2025-00119

7.3 DESIGN STRATEGIES FOR TEST 493

with used single-polarity transmission gates (see Chapter 5). Alternatively, the
clocks may be gated, as shown in Fig. 7.17(c). While this minimizes transis­
tors, it may lead to unacceptable hold-time constraints on the register. Because
the signals applied to the master latch are delayed with respect to the main
clock, the data has to be held for a longer time at the input.

7.3.3.3 Partial Serial Scan

Quite often in a design, one may not find it area- and speed-efficient to
implement scan registers in every location where a register is used. This
occurs, for instance, in signal-processing circuits where many pipeline reg­
isters might be used to achieve high speed. If these are in the data-flow sec­
tion of the chip, then one can think of the logic that has to be tested as the
logic with the pipeline registers removed. In this case only the input and out­
put registers need be made scannable.28 This technique of testing is known
as partial scan, and depends on the designer making decisions about which
registers need to be made scannable.

Consider the design shown in Fig .. 7.18 (from Gupta et al.29). In a full­
scan test strategy all registers would have to be scannable. A partial-scan
design is shown in Fig. 7. l 8(a) where only two registers have been made
scannable (R6 and R3). In addition, these registers have the ability to hold
their state dependent on a HOLD control. The part of the circuit that is being
tested and monitored by the scan registers (known as the kernel) is shown in
Fig. 7.18(b). It may be proven that, by holding the vectors at the input of the
kernel for three clock cycles, the kernel may be represented by the combina­
tional-equivalent circuit shown in Fig. 7.18(c). This circuit may be used by
an ATPG program to generate test vectors.

7.3.3.4 Parallel scan

One can imagine that serial-scan chains can become quite long, and the load­
ing and unloading sequence can dominate testing time. An extension of
serial scan is called random-access or parallel scan. 30

The basic idea is shown in Fig. 7 .19. Each register in the design is
arranged on an imaginary (or real) grid where registers on common rows
receive common data lines and registers in common columns receive com­
mon read- and write-control signals. In the figure, an array of 2-by-2 registers
is shown. The D and Q signals of the registers are connected to the normal cir­
cuit connections. Any register output may be observed by enabling the appro­
priate column read line and setting the appropriate address on an output data
multiplexer. Similarly, data may be written to any register.

Figure 7.20 shows a D-register implementation called a Cross-Con­
trolled Latch.31 It consists of a normal CMOS master-slave edge-triggered
register augmented by two small n-transistors, N1 and N2. When -test-write­
enable is high, Probe[)} is high, and elk is low, the value of node Y (D) may

Micron Ex. 1037, p. 533
Micron v. YMTC
IPR2025-00119

494 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.18 The applica­
tion of scan techniques to
employ partial scan: (a) pipe­
line circuit; (b) kernel of pipe­
line circuit; (c) combinational

(a)

(b)

equivalent of kernel (c)

be sensed on Sense[i] via transistor N2. When -test-write-enable is low,
Probe[j] is high, and elk is high, the value on Sense[i] can be driven onto
node Y. This is seen immediately at the output of the register. The net effect
on the register-timing parameters of the extra transistors is to slightly
increase the minimum clock-pulse width. The area impact for an ASIC­
based register is around 3%.

The large number of observable outputs (one for every register in the
design) are compressed using signature analysis (see Section 7.3.4.1). The large
number of observable outputs leads to very efficient concurrent-fault simulation.

Micron Ex. 1037, p. 534
Micron v. YMTC
IPR2025-00119

7.3 DESIGN STRATEGIES FOR TEST 495

\
horizontal data lines

I
customized register

column access lines

master slave

elk

-elk
y

-elk

. elk -elk

Probe[j] ---i
N2

-test-write- 1~~·r------+------+--------------­
enable

Sense[i]

7.3.4 Self-Test Techniques

Self-test and built-in test techniques, as their names suggest, rely on aug­
menting circuits to allow them to perform operations on themselves that
prove correct operation.

7.3.4. 1 Signature Analysis and BILBO

One method of incorporating a built-in test module is to use signature anal­
ysis32·33 or cyclic-redundancy checking. This involves the use of a pseudo-

FIGURE 7.19 Parallel
scan-basic structure

FIGURE 7.20 Parallel scan
register (a cross-controlled
latch)

Micron Ex. 1037, p. 535
Micron v. YMTC
IPR2025-00119

496 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.21 Pseudo­
random sequence generator
(PRSG)

random sequence generator (PRSG) to generate the input signals for a sec­
tion of combinational circuitry and then using a signature analyzer to
observe the output signals.

A PRSG implements a polynomial of some length N. It is constructed
from a linear feedback shift register (LFSR), which is constructed, in turn,
from a number of 1-bit registers connected in a serial fashion, as shown in
Fig. 7.21. The outputs of certain shift bits are XORed and fed back to the
input of the LFSR to calculate the required polynomial. For instance, in
Fig. 7.21, the 3-bit shift register is computing the polynomialf(x) = 1 + x +
x 3. For an n-bit LFSR, the output will cycle through 2n - 1 states before
repeating the sequence. Tables for determining suitable shift registers may
be found in Golumb.34 A complete feedback shift register (CFSR) includes
the zero state, which may be required in some test situations. Methods for
designing these may be found in Wang and McCluskey.35

A signature analyzer is constructed by cyclically adding the outputs of a
circuit to a shift register or an LFSR if successive logic blocks are to be
tested in a like manner. A typical circuit is shown in Fig. 7.22(a). As each test
vector is run, the incoming data is XO Red with the contents of the LFSR. At
the end of a test sequence, the LFSR contains a number, known as the syn­
drome, which is a function of the current output and all previous outputs.
This can be compared with the correct syndrome (derived by running a test
program on the good logic) to determine whether the circuit is good or bad.

Signature analysis can be merged with the scan technique to create a
structure known as BILBO-for Built-In Logic Block Observation.36

A 3-bit register is shown with the associated circuitry. In mode D (CO =
Cl = 1), the registers act as conventional parallel registers. In mode A (CO =
Cl = 0), the registers act as scan registers. In mode C (CO= 1, Cl = 0), the
registers act as a signature analyzer or pseudo-random sequence generator
(PRSG). The registers are reset if CO= 0 and Cl = 1. Thus a complete test­
generation and observation arrangement can be implemented, as shown in
Fig. 7.22(b). In this case two sets ofregisters have been added in addition to
some random logic to effect the test structure.

0<0> 0<1> 0<2>

REG REG REG
1-bit 1-bit 1-bit

d q d q d q

1 + x + x3

Micron Ex. 1037, p. 536
Micron v. YMTC
IPR2025-00119

7.3 DESIGN STRATEGIES FOR TEST 497

0<0> 0<2>
c1~~~~~-t-~~~~----+-~~-1-~~~~----..-~~-+-~~

co~..,--+-~-.--+-~~~~-t-~--,c--+-~~~~--1-~~...-+-~~

Scan­
Data-In

(a)

(b)

~-------

MODE C0 C1

A 0 0 Scan Mode
B 0 1 Reset

C 0 PRSG or Signature Analyzer

D 1 Parallel Registers

PRSG Combinational
Logic

Signature
Analyzer

A chip set for FFT applications was designed with local testing based on
pseudo-random pattern generation and signature analysis.37 With a 28-bit pat­
tern generator and a 17-bit signature at 10 MHz it took 26 seconds to test the part.

7.3.4.2 Memory Self-Test

Embedding self-test circuits for memories in higher-speed circuits not only
may be the way of testing the structures at speed but can save on the number
of external test vectors that have to be run. A typical read/write memory
(RAM) test program for an M-bit address memory might be as follows38•39:

FOR i=O to M-1 write (data)

FOR i=O to M-1 read(data) then write(data)

FOR i=O to M-1 read(data) then write (data)

FOR i=M-1 to 0 read(data) then write(data)

FOR i=M-1 to 0 read(data) then write (data)

data is 1 and data is 0 for a I-bit memory or a selected set of patterns for
an n-bit word. For an 8-bit memory data, might be xOO, x55, x33, and xOF.
An address counter, some multiplexers, and a simple-state machine result in
a fairly low overhead self-test structure for read/write memories. Oshawa et
aI.40 describe a 4-Mbit RAM with self-test. The self-test consists of 256K
cycles that input a checkerboard pattern to test for cell-to-cell interference.

FIGURE 7.22 Built-in logic
block observation (BILBO):
(a) individual register; (b) use
in a system

Micron Ex. 1037, p. 537
Micron v. YMTC
IPR2025-00119

498 CHAPTER 7 CMOS TEST METHODS

This is followed by 256K cycles in which the data is read out. Then a com­
plemented checkerboard is written and read. A total of 1 million cycles pro­
vide a test sufficient for system maintenance.

ROM memories may be tested by placing a signature analyzer at the
output of the ROM and incorporating a test mode that cycles through the
contents of the ROM. A significant advantage of all self-test methods is that
testing may be completed when the part is in the field. With care, self-test
may even be performed during normal system operation.

7.3.4.3 Iterative Logic Array Testing

Arrays of logic41 •42 present an interesting problem to the test architect
because the replication can be used to advantage in reducing the number of
tests. In addition, by augmenting the logic extremely high fault coverage
rates are possible. An iterative logic array (ILA) is a collection of identical
logic modules (such as an n-bit adder). An ILA is C-testable if it can be ·
tested with a constant number of input vectors independent of the iteration
count. An ILA is I-testable if a particular fault that occurs in any module as
a result of an applied input vector is identical for all modules in the ILA.
Assuming that only one module is faulty, the detection of a fault may be
made by using an equality test on the ILA outputs.

7.3.5 IDDQ Testing

An increasingly popular method of testing for bridging faults is called IDDQ
(V DD supply current Quiescent) or current-supply monitoring.43 •44 This
relies on the fact that when a complementary CMOS logic gate is not switch­
ing, it draws no DC current (except for leakage). When a bridging fault
occurs, for some combination of input conditions a measurable DC I DD will
flow. Testing consists of applying the normal vectors, allowing the signals to
settle, and then measuring !DD· To be effective any circuits that draw DC
power such as pseudo-nMOS gates or analog circuits have to be disabled.
Because many circuits now require SLEEP modes to reduce power, this may
not be a substantial additional overhead.

Because current measuring is slow, the tests must be run slower than
normal, thus increasing the test time. However, this technique gives a form
of indirect massive observability at little circuit overhead.

7.4 Chip-Level Test Techniques

In this chapter we have discussed the principles behind testing ICs, and cov­
ered some techniques aimed at making testing easier. In the past the design

Micron Ex. 1037, p. 538
Micron v. YMTC
IPR2025-00119

7.4 CHIP-LEVEL TEST TECHNIQUES 499

process was frequently divided between a designer who designed the circuit
and a test engineer who designed the test to apply to that circuit. The advent
of the ASIC, small design teams, the desire for reliable I Cs, and rapid times
to market have all forced the "test problem" earlier in the design cycle. In
fact, the designer who is only thinking about what functionality has to be
implemented and not about how to test the' circuit will quite likely cause
product deadlines to be slipped and in extreme cases products to be stillborn.
In this section we will examine some practical methods of incorporating test
requirements into a design. This discussion is structured around the main
types of circuit structure that will be encountered in a digital CMOS chip.

7.4.1 Regular Logic Arrays

Partial serial scan or parallel scan is probably the best approach for struc­
tures such as datapaths. One approach that has been used in a Lisp micropro­
cessor is shown in Fig. 7 .23. 45 Here the input busses may be driven by a
serially loaded register. These in turn may be used to load the internal data­
path registers. The datapath registers may be sourced onto a bus, and this bus
may be loaded into a register that may be serially accessed. All of the control
signals to the datapath are also made scannable.

data path scan out

serial/parallel register

existing data path busses

parallel/serial register

data path scan in

reg logic reg logic

control scan in- control scan path control scan out

control logic

FIGURE 7.23 Datapath test
scheme

Micron Ex. 1037, p. 539
Micron v. YMTC
IPR2025-00119

500 CHAPTER 7 CMOS TEST METHODS

7.4.2 Memories

Memories may use the self-testing techniques mentioned in Section 7.3.4.2.
Alternatively, the provision of multiplexers on data inputs and addresses and
convenient external access to data outputs enables the testing of embedded
memories. It is a mistake to have memories indirectly accessible (i.e., data is
written by passing through logic, data is observed after passing through
logic, addresses can not be conveniently sequenced). Because memories
have to be tested exhaustively, any overhead on writing and reading the
memories can substantially increase the test time and, probably more signif­
icantly, turn the testing task into an effort in inscrutability.

7.4.3 Random Logic

Random logic is probably best tested via full serial scan or parallel scan.

7 .5 System-Level Test Techniques

Up to this point we have concentrated on the methods of testing individual
chips. Traditionally at the board level, "bed-of-nails" testers have been used
to test boards. In this type of a tester, the board under test is lowered onto a
set of test points (nails) that probe points of interest on the board. These may
be sensed (the observable points) and driven (the controllable points) to test
the complete board. At the chassis level, software programs are frequently
used to test a complete board set. For instance, when a computer boots, it
might run a memory test on the installed memory to detect possible faults.

The increasing complexity of boards and the movement to technologies
like Multichip Modules (MCMs) and surface-mount technologies (with an
absence of through-board vias) resulted in system designers agreeing on a
unified scan-based methodology for testing chips at the board (and system
level). This is called Boundary Scan.

7 .5.1 Boundary Scan

7.5. 1. 1 Introduction

The IEEE 1149 Boundary Scan architecture46 is shown in Fig. 7.24. In
essence it provides a standardized serial scan path through the I/O pins of an
IC. At the board level, ICs obeying the standard may be connected in a vari­
ety of series and parallel combinations to enable testing of a complete board
or, possibly, collection of boards. The description here is a precis of the pub-

Micron Ex. 1037, p. 540
Micron v. YMTC
IPR2025-00119

7.5 SYSTEM-LEVEL TEST TECHNIQUES 501

;ackage Interconnect Serial Test Interconnect

,...-~_c__--1~~~~~~--,/"

1/0 Pad and Boundary Scan Cell
Serial Data In Serial Data Out

lished standard. The standard allows for the following types of tests to be run
in a unified testing framework:

• Connectivity tests between components.

• Sampling and setting chip I/Os.

• Distribution and collection of self-test or built-in-test results.

7.5. 1.2 The Test Access Port (TAP)

The Test Access Port (or TAP) is a definition of the inter~ace that needs to be
included in an IC to make it capable of being included ~n a Boundary-Scan
architecture. The port has four or five single-bit connections, as follows:

• TCK (The Test Clock Input)-used to clock tests into and out of chips.

• TMS (The Test Mode Select)-used to control test operations.

• TD/ (The Test Data Input)-used to input test data to a chip.

• TDO (The Test Data Output) used to output test data from a chip.

It also has an optional signal

• TRST* (The Test Reset Signal) used to asynchronously reset the TAP
controller; also used if a power-up reset signal is not available in the
chip being tested.

FIGURE 7.24 Boundary
scan architecture

Micron Ex. 1037, p. 541
Micron v. YMTC
IPR2025-00119

502 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.25 TAP architec­
ture

The TDO signal is defined as a tristate signal that is only driven when
the TAP controller is outputting test data.

7.5. 1.3 The Test Architecture

The basic test architecture that must be implemented on a chip is shown in
Fig. 7 .25. It consists of:

• the TAP interface pins.

• a set of test-data registers to collect data from the chip.

• an instruction register to enable test inputs to be applied to the chip.

• a TAP controller, which interprets test instructions and controls the
flow of data into and out of the TAP.

Data that is input via the TD! port may be fed to one or more test data regis­
ters or an instruction register. An output MUX selects between the instruc­
tion register and the data registers to be output to the tristate TDO pin.

7.5.1.4 The TAP Controller

The TAP controller is a 16-state FSM that proceeds from state to state based
on the TCK and TMS signals. It provides signals that control the test data
registers, and the instruction register. These include serial-shift clocks and
update clocks.

The state diagram is shown in Fig. 7 .26. The state adjacent to each state
transition is that of the TMS signal at the rising edge of TCK.

The reader is referred to the standard for complete descriptions of these
states. It is probably best to understand them by examining a typical test
sequence. Starting initially in the Test-Logic-Reset state, a low on TMS tran-

TDI 7

TMS 177:>------t
TCK 177>-----1

TRST* 1+7 >-----1

Test Data Registers

Instruction Decode

Instruction Register

Clocks/Control

TAP
Controller

Micron Ex. 1037, p. 542
Micron v. YMTC
IPR2025-00119

7.5 SYSTEM-LEVEL TEST TECHNIQUES 503

1 Test-Logic-Reset !<---------------------,
0

Run-Test/Idle Select-DR-Scan

0

Select-IR-Scan

0

1 1
Exit1-DR Exit1-IR

0 0
Pause-DR Pause-IR

1 1
Exit2-DR Exit2-IR

1 1
Update-DR Update-IR

~---1----+-~o ________ -+__,o

sitions the FSM to the Run-Test/Idle mode. Holding TMS high for the next
three TCK cycles places the FSM in the Select-DR-Scan, Select-IR-Scan,
and finally Capture-IR mode. In this mode two bits are input to the TD! port
and shifted into the instruction register. Asserting TMS for a cycle allows the
instruction register to pause while serially loading to allow tests to be carried
out. Asserting TMS for two cyeles, allows the FSM to enter the Exit2-IR
mode on exit from the Pause-IR state and then to enter the Update-IR mode
where the Instruction Register is updated with the new IR value. Similar
sequencing is used to load the data registers.

A CMOS implementation of the Tap Controller based on that in the stan­
dard is shown in Fig. 8.89.

7.5. 1.5 The Instruction Register (IR)

The instruction register has to be at least two bits long, and logic detecting
the state of the instruction register has to decode at least three instructions,
which are as follows:

• BYPASS-This instruction is represented by an IR having all zeroes
in it. It is used to bypass any serial-data registers in a chip with a 1-bit
register. This allows specific chips to be tested in a serial-scan chain
without having to shift through the accumulated SR stages in all the
chips.

• EXTEST-This instruction allows for the testing of off-chip circuitry
and is represented by all ones in the IR.

• SAMPLB/PRELOAD-This instruction places the boundary-scan
registers (i.e., at the chips' 1/0 pins) in the DR chain, and samples or
preloads the chips I/Os.

FIGURE 7.26 TAP controller
state diagram

Micron Ex. 1037, p. 543
Micron v. YMTC
IPR2025-00119

504 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.27 Instruction­
register bit implementation

~----To Next IR bit

Data

From Last Cell

0

s ClocklR

ShiftlR

TRST*
-Reset

REG REG
1-bit 1-bit

d q !----<>--------! d q IR bit

UpdatelR

In addition to these instructions, the following are also recommended:

• INTEST-This instruction allows for single-step testing of internal
circuitry via the boundary-scan registers.

• RUNBIST-This instruction is used to run internal self-testing proce­
dures within a chip.

Further instructions may be defined as needed to provide other testing func­
tions.

A typical IR bit is shown in Fig. 7.27.

7.5.1.6 Test-Data Registers (DRs)

The test-data registers are used to set the inputs of modules to be tested, and
to collect the results of running tests. The simplest data-register configura­
tion would be a boundary-scan register (passing through all I/O pads) and a
bypass register (1-bit long). Figure 7.28 shows a generalized view of the data
registers where one internal data register has been added. A multiplexer
under the control of the Tap controller selects which particular data register
is routed to the TDO pin.

7.5.1.7 Boundary Scan Registers

The boundary scan register is a special case of a data register. It allows cir­
cuit-board interconnections to be tested, external components tested, and the
state of chip digital I/Os to be sampled. Apart from the bypass register, it is
the only data register required in a Boundary Scan compliant part.

A single structure (in addition to the existing I/O circuitry) can be used
for all I/O pad types, depending on the connections made to the cell. It con­
sists of two multiplexers and two edge-triggered registers. Figure 7 .29(a)
shows this cell used as an input pad. Two register bits allow the serial shift­
ing of data through the boundary-scan chain and the local storage of a data

Micron Ex. 1037, p. 544
Micron v. YMTC
IPR2025-00119

7.5 SYSTEM-LEVEL TEST TECHNIQUES 505

Boundary Scan Registers

From TOI ------1 Internal Data Register To TOO

Bypass Register

Clocks and Control
from Instruction Register and TAP Controller

bit. This data bit may be directed to internal circuitry in the INTEST or
RUNBIST modes (Mode= 1). When Mode= 0, the cell is in EXTEST or
SAMPLE/PRELOAD mode. A further multiplexer under the control of
ShiftDR controls the serial/parallel nature of the cell. The signal ClockDR
and UpdateDR generated by the Tap Controller load the serial and parallel
register, respectively.

An output cell is shown in Fig. 7.29(b). When Mode= 1, the cell is in
EXTEST, INTEST, or RUNBIST modes, communicating the internal data to

FIGURE 7.28 TAP data reg­
isters

Micron Ex. 1037, p. 545
Micron v. YMTC
IPR2025-00119

506 CHAPTER 7 CMOS TEST METHODS

FIGURE 7.30 Boundary
scan tristate cell

NextCell
Mode

ShiftDR

enable

ClockDR UpdateDR

LastCell

NextCell
Mode

ShiftDR

FromChip

ClockDR UpdateDR

LastCell

the output pad. When Mode= 0, the cell is in the SAMPLE/PRELOAD
mode.

Two output cells may be combined to form a tristate boundary-scan cell, as
shown in Fig. 7 .30. The output signal and tristate-enable each have their own
muxes and registers. The Mode control is the same for the output-cell example.

Finally, a bidirectional pin combines an input and tristate cell, as shown
in Fig. 7.31.

7 .5.2 Summary
At the system ~evel, the Boundary Scan-Test Access Port approach has been
summarized. There are, however, other related methods of dealing with testing
at the system level. For instance, a boundary-scan method used in a multichip
workstation, which uses a central controller rather than implementing the con­
troller in each chip, has been reported.47 A system designer has to trade off
aspects, such as chip area versus implementation time, when deciding on a test
strategy. However, the important thing is to have a strategy.

7 .6 Layout Design for Improved Testability

In this chapter a number of models for failure were postulated and methods
for detecting the faults in working circuits were proposed. We have already

Micron Ex. 1037, p. 546
Micron v. YMTC
IPR2025-00119

7.6 LAYOUT DESIGN FOR IMPROVED TESTABILITY 507

NextCell
Mode

ShiftDR

enable

ClockDR UpdateDR

AST

Mode

ShiftDR

FromChip

ClockDR UpdateDR

Mode

ShiftDR

ClockDR UpdateDR

LastCell
ToChip---------------------'

discussed a circuit-design technique to detect stuck-open faults in CMOS in
Section 7.3.3.2. An interesting question arises. Can we construct the physical
layouts to reduce the likelihood of such failures? This question has interested
many researchers, and there is a body of literature that discusses the possible
answers.48- 52

In order to predict layout styles that improve testability, a designer has
to have some idea of the nature and frequency of defects for a particular pro­
cess. The types of defects that commonly occur may be divided into those
that short together conductors and those that create open circuits. Shorts are
possible intralayer in all layers used for connections, i.e., diffusion, polysil­
icon, metall, metal2, and metal3, if used. The gate oxide may also short to
the substrate or to either the source or drain. The source and drain regions
may also short. Similarly for open circuits, all conducting layers might have
open circuits. In addition, contacts may be misaligned, missing, or badly
etched, leading to interlayer opens.

For open circuits, the ideas proposed in the literature to increase the
immunity to open-circuit faults usually involve incorporating connection
redundancy.

FIGURE 7.31 Boundary
scan bidirectional cell

Micron Ex. 1037, p. 547
Micron v. YMTC
IPR2025-00119

508 CHAPTER 7 CMOS TEST METHODS

7.7 Summary

This chapter has summarized the important issues in CMOS chip testing and
has provided some methods for incorporating test considerations into chips
from the start of the design. The importance of writing adequate tests for
both functional verification and manufacturing verification can not be under­
stated. It is probably the single most important activity in any CMOS chip
design cycle and usually takes the longest time no matter what design meth­
odology is used. If a single message should be left in the reader's mind after
reading this chapter, it should be that a chip designer should be absolutely
rigorous about the testing activity surrounding a chip project and that testing
should rank first in any design trade-offs.

7 .8 Exercises

1. Explain what is meant by a Stuck-At-l(SAl) fault and a Stuck-At-0
(SAO) fault.

2. How are sequential faults caused in CMOS? Give an example.

3. Explain the different kinds of physical faults that can occur on a
CMOS chip, and relate them to typical circuit failures.

4. Explain the terms controllability, observability, and fault coverage.

5. Explain how serial-scan testing is implemented.

6. Explain how a pseudo-random sequence generator (PRSG) may be
used to test a 16-bit datapath. How would the outputs be collected
and checked?

7. Design a block diagram of a test generator for an 8 x 4K static RAM.

7 .9 References

1. T. W. Williams, "Design for testability," in Computer Design Aids for VLSI Cir­
cuits (P. Antogneti, D. 0. Pederson, and H de Man, eds.), NATO AIS Series, The
Netherlands: Martinus Nijhoff Publishers, 1986, pp. 359-416.

2. G. S. Visweswaran, Akhtar-uz-zaman M. Ali, Parang K. Lala, and Carlos R. P.
Hartmann, "The effects of transistor source-to-gate bridging faults in complex
CMOS gates," IEEE Journal of Solid State Circuits, vol. 26, no. 6, Jun. 1991,
pp. 893-896.

Micron Ex. 1037, p. 548
Micron v. YMTC
IPR2025-00119

3. Thomas W. Williams and Kenneth P. Parker, "Design for testability-a survey,"
Proceedings of the IEEE, vol. 71, no. 1, Jan. 1983, pp. 98-112.

4. Anura P. Jayasumana, Yashwant K. Malaiya, and Rochit Rajsuman, "Design of
CMOS circuits for stuck-open fault testability," IEEE JSSC, vol. 26, no. 1,
Jan. 1991,pp. 58-61.

5. J. Galiay, Y. Crouzet, and M. Verginiault, "Physical versus logical fault models
MOS LSI circuits: impact on their testability," IEEE Transactions on Computers,
vol. C-29, no. 6, Jun. 1980, pp. 527-531.

6. Y. M. El-zig and R. J. Cloutier, "Functional level test generation for stuck-open
faults in CMOS VLSI," Digest of Papers, IEEE International Test Conference,
Oct. 1981, pp. 536-546.

7. J.P. Roth, "Diagnosis of automata failures: a calculus and a method," IBM Jour­
nal of Research and Development, vol. 10, Jul. 1966, pp. 278-291.

8. Ibid.
9. Prabhakar Goel, "An implicit enumeration algorithm to generate tests for combi­

national logic circuits," IEEE Transactions on Computers, vol. c-30, no. 3,
Mar. 1981, pp. 215-222.

10. Prabhakar Goel and Barry C. Rosales, "PODEM-X-an automatic test genera­
tion system for VLSI logic structures," IEEE Proceedings of the 18th Design
Automation Conference, Jun. 1981, pp. 260-268.

11. H. Fuijiwara and T. Shimono, "On the acceleration of test generation algo­
rithms," IEEE Transactions on Computers, vol. C-32, no. 12, Dec. 1983,
pp. 1137-1144.

12. Michael H. Schulz, Erwin Trischler, and Thomas M. Sarfert, "SOCRATES: a
highly efficient automatic test pattern generation system," IEEE Transactions on
CAD, vol. 7, no. 1, Jan. 1988, pp. 126-137.

13. Noriyoshi Itazaki and Kozo Kinoshita, "Test pattern generation for circuits with
tri-state modules by Z-algori.thm," IEEE Transactions on CAD, vol. 8, no. 12,
Dec. 1989,pp. 1327-1333.

14. John D. Calhoun and Franc Brglez, "A framework and method for hierarchical
test generation," IEEE Transactions on CAD, vol. 11, no. 1, Jan. 1992, pp.45-67.

15. Andre Ivanov and Vinod K. Agarwal, "Dynamic testability measures for ATPG,"
IEEE Transactions on CAD, vol. 7, no. 5, May 1988, pp. 598-608.

16. Lawrence H. Goldstein and Evelyn L. Thigpen, "SCOAP: Sandia controllability/
observability analysis program," Proceedings of the 17th Design Automation
Conference, Jun. 1980, pp. 190-196.

17. F. Brglez, P. Pownall, and R. Hum, "Application of testability analysis: from
ATPG to critical delay path tracing," Proceedings 1984 Test Conference, Oct.
1984, pp. 705-712.

18. A. Lioy and M. Mezzalama, "On parameters affecting ATPG performance,"
Proc. CompEuro 1987, May 1987, pp. 394-397.

19. Srimat T. Chakradhar, Michael L. Bushnell, and Vishwani D. Agrawal, "Toward
massively parallel automatic test generation," IEEE Transactions on CAD, vol.
9,no. 9, Sept. 1990,pp. 981-994.

20. Michael H. Schulz et al., op. cit.

21. E. G. Ulrich and T. Baker, "The concurrent simulation of nearly identical digital
networks," IEEE/ACM Proceedings of the 10th Design Automation Conference,
Jun. 1973,pp. 145-150.

7.9 REFERENCES 509

Micron Ex. 1037, p. 549
Micron v. YMTC
IPR2025-00119

5.10 CHAPTER 7 CMOS TEST METHODS

22. Sunil K. Jain and Vishwani D. Agrawal, "STAFAN: an alternative to fault simu­
lation," Proceedings of the ACM IEEE 21st Design Automation Conference, June
1984, Albuquerque, N.M., pp. 18-23.

23. E. J. McCluskey and S. Bozorgui-Nesbat, "Design for autonomous test," IEEE
Transactions on Computers, vol. C-30, no. 11, Nov. 1981, pp. 866-875.

24. E. B. Eichelberger and T. W. Williams, "A logic design structure for LSI testing,"
IEEE/ACM Proceedings of the 14th Design Automation Conference, June 1977,
New Orleans, Louisiana, pp. 462-468.

25. E. B. Eichelberger and T. W. Williams, "A logic design structure for LSI testing,"
Journal of Design Automation and Fault Tolerant Computing, vol. 2, no. 2, May
1978,pp. 165-178.

26. S. DasGupta, E. B. Eichelberger, and T. W. Williams, "LSI chip design for test­
ability," Digest of Technical Papers, IEEE International Solid State Circuits
Conference, San Francisco, Feb. 1978, pp. 216-217.

27. T. W. Williams, op. cit.

28. Rajesh Gupta, Rajiv Gupta, and Melvin A. Breuer, "An efficient implementation
of the BALLAST partial scan architecture," IFIP Proceedings of the Interna­
tional VLSI '89 Conference, Aug. 1990, Munich, pp. 133-142.

29. Ibid.
30. H. Ando, "Testing VLSI with random access scan," IEEE/ACM Digest of Papers

COMPCON 80, Feb. 1980, pp. 50-52.
31. Susheel J. Chandra, Tom Ferry, Tushar Gheewala, and Kerry Pierce, "ATPG

based on a novel grid-addressable latch element," IEEE/ACM Proceedings of the
28th IEEE Design Automation Conference, June 1991, San Francisco, Calif.,
pp. 282-286.

32. R. A. Frowerk, "Signature analysis-a new digital field service method," Hewlett
Packard Journal, May 1977, pp. 2-8.

33. H. J. Nadig, "Signature analysis-concepts, examples and guidelines," Hewlett
Packard Journal, May 1977, pp. 15-21.

34. S. W. Golumb, Shift Register Sequences, Revised Edition, Laguna Hills, Calif.:
Aegean Park Press, 1982.

35. Laung-Terng Wang and Edward J. McCluskey, "Complete feedback shift register
design for built-in self test," Proceedings of 1986 IEEE International Conference on
Computer-Aided Design (ICCAD-86), Nov. 1986, Santa Clara, Calif., pp. 56-59.

36. B. Koenemann, J. Mucha, and G. Zwiehoff, "Built-in logic block observation
techniques," Digest 1979 IEEE Test Conference, 79CH1509-9C, Oct. 1979,
pp. 37-41.

37. John Fox, Giuseppe Surace, and Paul A. Thomas, "A self-testing 2-µm CMOS
chip set for FFT applications," IEEE JSSC, vol. SC-22, no. 1, Feb. 1987, pp. 15-
19.

38. Ravindra Nair, Staish M. Satte, and Jacob A. Abraham, "Efficient algorithms for
testing semiconductor random-access memories," IEEE Transactions on Com­
puters, vol. C-27, no. 6, June 1978, pp. 572-576.

39. Rob Dekker, Frans Beenker, and Loek Thijssen, "A realistic fault model and test
algorithms for static random access memories," IEEE Transactions on CAD, vol.
9, no. 6, June 1990, pp. 567-572.

40. Takashi Oshawa, Tohru Furuyama, Yohji Watanabe, Hiroto Tanaka, Natsuki
Kushiyama, Kenji Tsuchida, Yohsei Nagahama, Satoshi Yamano, Takeshi
Tanaka, Satoshi Shinozaki, and Kenji Natori, "A 60ns 4-Mbit CMOS DRAM

Micron Ex. 1037, p. 550
Micron v. YMTC
IPR2025-00119

with built-in self-test function," IEEE JSSC, vol. SC-22, no. 5, Oct. 1987,
pp. 663-668.

41. W. H. Kautz, "Testing for faults in cellular logic arrays," Proceedings of the 8th
Annual Symposium on Switching and Automation Theory, 1967, pp. 161-174.

42. Thirumalai Sridar and John P. Hayes, "Design of easily testable bit-sliced sys­
tems," IEEE Transactions on Computers, vol. C-30, no. 11, Nov. 1981, pp. 842-
854.

43. John M. Acken, "Testing for bridging faults (shorts) in CMOS circuits," Pro­
ceedings of the 20th IEEE/ACM Design Automation Conference, June 1983,
Miami Beach, Fla., pp. 717-718.

44. Kuen-Jong Lee and Melvin A. Breuer, "Design and test rules for CMOS circuits
to facilitate IDDQ testing of bridging faults," IEEE Transactions on CAD, vol.
11, no. 5, May 1992, pp. 659-670.

45. Patrick Bosshart and Thirumalai Sridhar, "Test methodology for a 32-bit proces­
sor chip," IEEE Digest of Technical Papers, ICCAD-86, Nov. 1986, pp. 12-14.

46. IEEE Standard 1149.1: "IEEE standard test access port and boundary-scan archi­
tecture," New York: IEEE Standards Board.

47. Bulent I. Dervisoglu, "Application of scan hardware and software for debug and
diagnostics in a workstation environment," IEEE Transactions on CAD, vol. 9,
no. 6, June 1990, pp. 612-620.

48. J. Galiay, Y. Crouzet, and M. Vergniault, "Physical versus logical fault models
MOS LSI circuits: impact on their testability," IEEE Transactions on Computers,
vol. C-29, no. 6, pp. 527-531.

49. Wojciech Malay, "Realistic fault modeling for VLSI testing," IEEE/ACM Pro­
ceedings of the 24th IEEE Design Automation Conference, Miami Beach, Fla.,
1987, pp. 173-180.

50. Siegmar Koeppe, "Optimal layout to avoid CMOS stuck-open faults," IEEE/
ACM Proceedings of the 24th Design Automation Conference, Miami Beach,
Florida, 1987, pp. 829-835.

51. Jose Joao H. T. de Sousa, Fernando M. Goncalves, and J. Paulo Teixeira, "Phys­
ical design of testable CMOS digital integrated circuits," IEEE JSSC, vol. 26, no.
7, July 1991, pp. 1064-1072.

52. Marc E. Levitt and Jacob A. Abraham, "Physical design of testable VLSI: tech­
niques and experiments," IEEE JSSC, vol. 25, no. 2, April 1990, pp. 474-481.

7.9 REFERENCES 511

Micron Ex. 1037, p. 551
Micron v. YMTC
IPR2025-00119

SUBSYSTEM
DESIGN

8.1 Introduction

Most digital functions can be divided into the following categories:

• datapath operators.

• memory elements.

• control structures.

• I/O cells.

CMOS system design consists of partitioning the system to be designed into
components that may be categorized into the above groups. Once those
groupings have been determined, CMOS subsystems that implement those
functions are designed. Many options exist that trade speed, density, pro­
grammability, ease of design, and many other variables. In this chapter we
present a number of subsystems built with the circuits developed in Chapter
5. These subsystems may be used to build systems (chips, chip sets, or
boards) of considerable complexity.

8.2 Datapath Operators

Datapath operators form an important subclass of VLSI circuit design that
benefit from the structured design principles of hierarchy, regularity, modular- 513

Micron Ex. 1037, p. 552
Micron v. YMTC
IPR2025-00119

514 CHAPTER 8 SUBSYSTEM DESIGN

FIGURE 8.1 Datapath
Example

(a)

m bits

(b)

A
B

if (A 5 B) Z =A;
else

Z=B;

control

if

=0 if

if

=0 if

subtractor equal-zero mux

!;''"'"" b;t-•'""

~ less-than-or-equal

metal2 data flow

z,

meta11 control flow

=0 if 1---- z

ity, and locality. This arises because n-bit data is generally processed, which
naturally leads to the ability to use n identical circuits to implement the func­
tion. In addition, data operations may generally be sequenced in time or space,
which leads to the notion of physically placing linked data operators adjacent
to each other. Generally, data may be arranged to flow in one direction, while
any control signals are introduced in an orthogonal direction to the dataftow.
This mirrors the physical reality of a CMOS chip, which usually has at least
two good routing layers (i.e., metall and metal2, or metal2 and metal3).

Consider the magnitude comparator shown in Fig. 8.l(a). This may be
implemented by the layout shown in Fig. 8 .1 (b), where data operators are
arranged horizontally and data bits are arranged vertically. Data is relayed
from operator to operator by horizontal wires (say, in metal2), while control
information is routed vertically (say, in metall). Datapaths allow optimiza­
tion of the area of the layout by incorporating the regular routing strategy
into the operator cell design. Usually, the data routing may be passed over

Micron Ex. 1037, p. 553
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 515

the active circuitry, while the control signals are passed over or through the
cells. Little area more than the basic area that the transistors take to imple­
ment a function is consumed. This efficiency is hard to achieve in random
logic. The VLSI designer can exploit the regularity of datapaths by having to
design one "bit-slice" of the design, which is a horizontal slice through the
structure, shown in Fig. 8.l(b).

The rest of this section is devoted to describing a variety of data-pro­
cessing elements that can be cast as datapaths.

8.2.1 Addition/Subtraction

Addition forms the basis for many processing operations from counting to
multiplication to filtering. As a result, adder circuits that add two binary
numbers are of great interest to digital system designers. A wide variety of
adder implementations are available to serve different speed/density require­
ments. The truth table for a binary full adder was introduced in Chapter 1 and
is reproduced in Table 8 .1, along with some functions that will be of use dur­
ing the discussion of adders.

A and Bare the adder inputs, C is the carry input, SUM is the sum output,
and CARRY is the carry output. The generate signal, G (A.B), occurs when a
carry output (CARRY) is internally generated within the adder. When the
propagate signal, P (A+ B), is true, the carry-in signal (C) is passed to the
carry output (CARRY) when C is true. (In some adders A EB B is used as the
P term because it may be reused to generate the sum term.)

8.2. 1. 1 Single-Bit Adders

Probably the simplest approach to designing an adder is to implement gates
to yield the required majority logic functions. From the truth table these are:

SUM= ABC+ABC+ABC+ABC, (8.1)

TABLE 8.1 Adder Truth Table

c A B A.B(G) A+B(P) AEBB SUM CARRY

0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0
0 1 0 0 1 1 1 0
0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0
1 0 1 0 1 0 1
1 1 0 0 1 1 0 1
1 1 1 1 1 0 1 1

Micron Ex. 1037, p. 554
Micron v. YMTC
IPR2025-00119

516 CHAPTER 8 SUBSYSTEM DESIGN

FIGURE 8.2 Single-bit
adder schematic (3-input
XOR)

which may be factored as follows:

= C(AB+AB) + C(AB+AB)

= AEBBEBC

CARRY= AB +AC+ BC,
which may be factored as follows

=AB + C (A + B).

(8.2)

(8.3)

The gate schematic for the direct implementation of Eqs. (8.2) and (8.3) is
shown in Fig. 8.2(a). This implementation uses a 3-input XOR gate. A tran­
sistor-level implementation is shown in Fig. 8.2(b). This uses a total of 32
transistors. An implementation that does not use XOR gates is shown in
Fig. 8.3(a). This uses an alternative implementation that is achieved by real­
izing that the CARRY term may be reused in the SUM term as a common
subexpression. In this implementation, shown in Fig. 8.3(b),

SUM= ABC+ (A+B+C)CARRY

= ABC+ (A+ B + C) (AB+ C (A+ B)). (8.4)

~-)-~-~SUM

E:t:rJ=DD>----CARRY
(a)

A~-A B -B
C -C

(b)

Micron Ex. 1037, p. 555
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 517

A---+-t-------1---~

B-----<>-+----~

c---------~

(a)

A----4 f-s
s----4 f-c
A----4
c-i f-A

A-i f-s

(b)

SUM

'>------ CARRY

The transistor schematic for this implementation is shown in Fig. 8.3(b). It
uses 28 transistors.

8.2. 1.2 Bit-Parallel Adder

An n-bit adder may be constructed by cascading n 1-bit adders, as shown in
Fig. 8.4(a). This is called a Ripple Carry Adder. The inputs are n-bitA and B
values. The CARRY signal of stage i is fed to the C signal of stage i + 1 and
the SUM signal forms then-bit output. The nth bit of the SUM indicates the
sign of the result, while the nth CARRY signal indicates whether an overflow
condition has occurred. Because the carry-output signal (CARRY) is used in
the generation of SUM in the circuit shown in Fig. 8.3(a), SUM will be
delayed with respect to CARRY. In the case of an n-bit parallel adder, the
carry delay has to be minimized, because the delay associated with the adder
is Tn = nTc, where Tn is the total add time, n is the number of stages, and Tc
is the delay of one carry stage. To optimize the carry delay, the inverter at the
output of the carry gate can be omitted. In this case, every other stage oper-

FIGURE 8.3 Single-bit
adder schematic (cascaded
logic gates)

Micron Ex. 1037, p. 556
Micron v. YMTC
IPR2025-00119

518 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.4 Parallel adder
implementations

C<n+1> C<n+1>

B<O>* B<n> + S<n> S<n>
A<n> A<n>

C<n> C~n>
I
I I

I
I

C<3> C<3>

B<3> B<3>
S<3>

A<3> A<3>

B<2>
S<2> S<2>

A<2>

B<1> B<1>
S<1>

A<1> A<1>

B<O>
S<O> S<O>

A<O>

Gin Gin

(a) (b)

ates on complement data, as shown in Fig. 8.4(b). This may result in a sig­
nificant decrease in carry delay. The delay in inverting the adder inputs or
sum outputs is finessed out of the critical-ripple carry path.

An n-bit subtractor may be constructed by inverting one operand to an
n-bit adder and adding 1 to the adder via the carry input, as shown in
Fig. 8.5(a). An adder/subtractor may be constructed from XOR gates and
adders, as shown in Fig. 8.5(b).

The transistor schematic for the adder in Fig. 8.3(a) is shown redrawn in
Fig. 8.6(a). The propagate term (A+ B) and generate term (A.B) can be
clearly seen. To aid in a uniform layout, the p-chain is not the exact dual of
then-chain. It is left to the reader to verify the equivalence. Figure 8.6(b)
shows how the transistors in the carry stage might be sized to optimize the
delay through the carry stage. Sizing up the transistors in the carry gate while
keeping the other transistors small decreases the effective load of these tran­
sistors and any parasitic routing capacitance. Using the styles of layout pre­
sented so far, two possible mask layouts for the combinational adder are
depicted in Fig. 8.7 (also Plate 7). The choice of aspect ratio would depend
very much on the environment. In a standard-cell environment, the layout in
Fig. 8.7(a) might be appropriate where a single row of n- and p-transistors is
used. The routing for the A, B, and C inputs is shown inside the cell although
it is quite possible it could be placed outside the cell because external routing

Micron Ex. 1037, p. 557
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 519

C<3>
C<3>

B<3>
8<3>

8<3>

B<2> B<2>
8<2>

8<2>

B<1> B<1>
8<1>

8<1>

B<O> B<O>
8<0> 8<0>

SUBTRACT
vdd

ii(SUBTRACT ==0)

A-B
{S =A+ B;}
else
{S =A- B;}

(a) (b)

tracks have to be assigned to these signals anyway. Figure 8.7(b) shows a
layout that might be appropriate for a datapath. Here the transistors are
rotated and all of the wiring is completed in polysilicon and metall. This
allows metal2 bus lines to pass over the cell horizontally. In addition, the
size of the transistors in the adder may be increased without impacting the
bit-pitch (height) of the datapath. The following optimizations may be made
to the combinational adder (Fig. 8.6):

1. Arrange the transistors switched by the carry in signal (C) close to
the output. This will enable the input signals to settle the gate such
that the C transistors are least influenced by body effect.

2. Make all transistors in the sum gate whose gate signals are connected
to CARRY minimum size. This minimizes the capacitive load on this
signal. Keep routing on this signal to a minimum and minimize the
use of diffusion as a routing layer.

3. Sizing of series transistors can be determined by simulation. It may
or may not pay to increase the size of the series n-transistors and
p-transistors. For instance, it may not pay to increase the size of the
series transistors connected to A and B in the carry gate in a ripple­
carry adder, because these signals will have time to settle in the
upper bits of the adder while the carry is rippling. It may be of advan­
tage to increase the size of the C transistors in the carry gate to over­
ride the effects of stray capacitance. For a parallel adder, the SUM

FIGURE 8.5 Arithmetic
operators: (a) subtractor;
(b) adder/subtractor

Micron Ex. 1037, p. 558
Micron v. YMTC
IPR2025-00119

520 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.6 Optimized com­
binational adder schematic

gate transistors may be made minimum size, while for a serial adder
the CARRY and SUM delays would have to be more balanced.

8.2. 1.3 Bit-Serial Adders, Carry-save Addition,
and Pipelining

Rather than construct a ripple carry adder, a serial adder, shown in Fig. 8.8,
may be constructed. This uses a single adder and constructs the SUM

Micron Ex. 1037, p. 559
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 521

{a)

{b)

sequentially. At time t, the SUM is calculated and the CARRY stored in a reg­
ister. At time t + 1, the sum uses CARRY[t] to calculate a new SUM.

CARRY[t+ 1] =A[t+ l].B[t+ 1] + C[t].(A[t+ 1] +B[t+ 1])

SUM[t + l] = CARRY[t + l].(A[t + 1] + B[t + 1] + C[t])
+ A[t + l].B[t + 1].C[t] (8.5)

The two inputs to the adder are stored inn-bit registers. The SUM output
is stored in an n-bit result register. An illustrative add cycle is shown in
Fig. 8.8. Addition is commenced by clearing the carry register. Then the

FIGURE 8.7 Combinational
adder layouts: (a) standard
cell; (b) datapath

Micron Ex. 1037, p. 560
Micron v. YMTC
IPR2025-00119

522 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.8 Bit-serial adder
implementation

n+ 1 bit register
addend

cout

CLK
SET

CLEAR

clk-+----n+_1 _bi_t r--'eg'--is_te_r _____ __,

REG
1-Bit

i:I q

n bit register

result

Illustrative Add Cycle

elk llIUlJlJlJlJ
-cir~

addend________r;-L.__

augand~
cinL_fl__

cout__JL_

output~

operands are serially applied to the inputs of the adder, the least significant
bit first. The example shows 1 added to 5 to form 6 at the output. It takes n
clock cycles to complete an n-bit add. In a serial adder, equal SUM and
CARRY delays are advantageous, because these delays determine the fastest
clock frequency at which the adder can operate.

Bit-serial architectures have been used successfully for a variety of sig­
nal-processing applications, especially with technologies in the 2-5µ
range. 1 Reasons for using bit-serial architectures include reduced signal
routing (1-bit signals instead of n-bit signals), reduced module sizes, and
higher-speed operation (one adder and a register rather than an n-bit adder).
Multilevel-metal CMOS technologies have largely solved the signal routing
problems while more advanced processes have drastically reduced the size
and increased the speed of adders and registers to the point where the design
problems lie elsewhere (for instance, in correctly completing a large design
on schedule). However, the general principle of breaking an n-bit addition
into smaller additions may be applicable to current design situations. Apart
from bit-serial adders, nibble (4-bit) and byte (8-bit) adders are frequently
used. The reason for using reduced-size adders might range from size to
power dissipation considerations.

Adders, such as the 1-bit serial adder shown in Fig. 8.8, where both the
carry and sum are registered on each cycle, are often called carry-save
adders (CSAs).2 This can be extended to an n-bit adder by registering n car­
ries and n sums. The carries are left shifted, with a new carry input intro­
duced to the D of the LSB carry register and the carry output available at the
MSB carry register Q. Ann-bit CSA would have 2n registers. Figure 8.9
illustrates a circuit which uses two 4-bit CSAs, which is representative of a
structure that might be used in a digital filter. The inputs SIN<3:0> and
CIN<2:0> are added to constant A<3:0> in the left column (first rank) of
CSA bits, and then B<3:0> is added in the next column (second rank). Each
bit of a CSA has the binary output encoded in the sum and carry of each bit.
The carry output of each CSA stage is left shifted to feed the carry input of

Micron Ex. 1037, p. 561
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 523

1--1--COUT

81N<3>

l--t--8<3>

81N<2>

1---t--- 8<2>

81N<1>

C8AAdders

the next rank. The binary output may be extracted by feeding the sum and
carry of each bit of the CSA to the inputs of a carry-propagate adder (CPA),
as illustrated by the ripple-carry adder in Fig. 8.9 (or Fig. 8.4a). Usually a
different, faster, architecture is used for the final carry-propagate adder. In
applications such as filtering where many additions have to occur and many
n-bit adders have to be used, use.of cascaded carry-save adders reduces the
critical path to the sum of the clock to Q time of the register, the adder delay,
and the setup time into the register. Current CMOS processes allow opera­
tion in excess of 200 MHz, and operation above 1 GHz is very close. Figure
8.10 shows a CPA adder structure that can be used for the CPA shown in
Fig. 8.9. Registers are used at the input and output of the CPA to ensure that
the inputs arrive at the same time as the carry and that the outputs all appear

FIGURE 8.9 Carry-save
adder (CSA) example

Micron Ex. 1037, p. 562
Micron v. YMTC
IPR2025-00119

524 CHAPTER 8 SUBSYSTEM DESIGN

A<3>-----<
8<3>

A<2>--1-----<
8<2>

A<1>--t----l

A<O>--+----~

Figure 8.1 O Pipelined carry-
propagate (CPA) example clk-------------<i-~.._____,

at the correct time. Figures 8.9 and 8.10 illustrate two methods of increasing
the speed of a basic n-bit adder by the use of pipelining. The cost of pipelin­
ing is latency; that is, the time it takes from when operands are introduced to
the data processing element to when outputs are available from the module.
The adder in Fig. 8.9 has a latency of two clock cycles, while .the adder in
Fig. 8.10 has a latency of three cycles. A filter built with k CS As would have
a latency of k + 3 cycles. The throughput is k adds/cycle. Latency is usually
not important in DSP applications, such as filtering, but is important in appli­
cations such as microprocessors where for a variety of reasons (including
control) an add operation (32 bits or more) has to occur in a single clock
cycle. On the other hand, throughput is all important to DSP applications. In
the rest of this section some alternative techniques for improving adder
speed will be introduced. In so doing, we will discover some classical exam­
ples of trading space for time. In other words, by increasing the size of a data
element, we can often improve the speed.

8.2. 1.4 Transmission-Gate Adder

A rather different implementation of an adder uses a novel exclusive-or
(XOR) gate. The schematic for this XOR gate is shown in Fig. 8.1 i. As a

Micron Ex. 1037, p. 563
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 525

point to note, switch-level simulators have problems with this gate. The
operation of the gate is explained as follows:

1. When signal A is high, -A is low. Transistor pair P 1 and N 1 thus act as
an inverter, with -B appearing at the output. The transmission gate
formed by transistor pair P2 and N2 is open.

2. When signal A is low, -A is high. The transmission gate (P2,N2) is
now closed, passing B to the output. The inverter (P1, N1) is partially
disabled (level reduced B passed to output by P1, N1).

Thus this transistor configuration forms a 6-transistor XOR gate. By revers­
ing the connections of A and -A, an exclusive-nor (XNOR) gate is con­
structed.

By using four transmission gates, four inverters, and two XOR gates, an
adder may be constructed according to Fig. 8.12.3 A EBB and the comple­
ment are formed using the TG XOR gate shown in Fig. 8.11. The SUM (A EB
B EB C) is formed by a multiplexer controlled by A EBB (and complement).
Examining the adder truth-table reveals that CARRY= C when A EBB is true.
When A EBB is false, CARRY= A (or B). This adder has 24 transistors, the
same as the combinational adder, but has the advantage of having equal SUM
and CARRY delay times. In addition, the SUM and CARRY signals are non­
inverted. The number of transistors may be reduced if speed is not the ulti-

FIGURE 8.11 Transmission­
gate XOR (tiny XOR)

FIGURE 8.12 Transmission­
gate adder

Micron Ex. 1037, p. 564
Micron v. YMTC
IPR2025-00119

526 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.13 Optimized­
area TG adder

SUM

CARRY

mate goal. Two transistors may be eliminated by using an inverter on the
output of the XOR gate. In addition with some optimization, the output buff­
ers may be eliminated, as shown in Fig. 8.13.4

8.2. 1.5 Carry-Lookahead Adders

The linear growth of adder carry-delay with the size of the input word for an
n-bit adder may be improved by calculating the carries to each stage in par­
allel. The carry of the ith stage, Ci, may be expressed as

where

Gi =Ai. Bi

Pi =Ai+ Bi

Expanding this yields

The sum Si is generated by

generate signal

propagate signal.

or C· 1ffip. (if P· =A· ffi B·) l- l l l l.

(8.6)

(8.8)

The size and fan-in of the gates needed to implement this carry-fookahead
scheme can clearly get out of hand. As a result, the number of stages of look-

Micron Ex. 1037, p. 565
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 527

ahead is usually limited to about four. For four stages of lookahead, the
appropriate terms are

Co= Go +PoCI

C1 = Gi + P1 Go+ P1PoCI

C2 = G2 + P2G1 + P2P1Go + P2P1PoCI

C3 = G3 + P3G2 + P3P2G1 + P3P2P1Go + P3P2P1PoCI. (8.9)

Figure 8.14 shows a generic carry-lookahead adder. The PG generation
and SUM generation circuits surround a carry-generate block. A possible
implementation of the carry gate for this kind of carry-lookahead adder for 4
bits is shown in Fig. 8.15. Note that the gates have been partitioned to keep
the number of inputs less than or equal to four. This is typical of the type of
carry lookahead that would be used in a gate-array or. standard-cell design.
The circuit and layout are quite irregular. Taking the term of C3, we note that
it may be expressed as

(8.10)

This function may be implemented as a domino CMOS (nMOS) gate, as
shown in Fig. 8.16(d). Carry C0 - C2 are generated similarly. Note that the
worst-case delay path in this circuit has six n-transistors in series. A high­
speed static version of the carry-lookahead gate for C3 is shown in Fig. 8.17.5

P<3>

D-SUM<3> C<2>

B<3>
G<3>

A<3>

P<2>

D-SUM<2> C<1>

B<2>
G<2>

A<2>

P<1>

D-SUM<1> C<O>

B<1>
G<1>

A<1>

P<O>

D-SUM<O> Cl

B<O>
G<O>

A<O>

PG Generator Carry Sum Generator
Generate

Block

FIGURE 8.14 Generic
carry-lookahead adder (CLA)

Micron Ex. 1037, p. 566
Micron v. YMTC
IPR2025-00119

528 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.15 4-bit CLA

Cl~-CO

Carry<2>

P<2>

p:~~~ G<2>

i:~: ~c~'--~~~~~~~~~~~~~~~~--'

G<1>----/~ I
-CO

P<O>
P<1>
P<2>

G<1>
P<2>
G<2>----t

G<O>
P<1>
P<2>
P<3>

G<2>
P<3>
G<3>----1

t
Carry Generation

P<3:0>
-G<3:0>

Sum Generator

A<3:0>~
6<3:0>~ . P<3:0>

PG Generator

This uses pseudo-nMOS gates to achieve high-speed static operation. An
adder using this stage may be constructed by using a 4-bit adder block with
local ripple carry and this gate as the block carry generator.

The Manchester adder stage improves on the carry-lookahead implemen­
tation by using a single C3 gate, as shown in Fig. 8.16(d). A selection of the
elemental carry stages is shown in Fig. 8.18. The first, shown in Fig. 8.18(a),
is a dynamic stage. Operation proceeds as follows. When CLK is low, the
output node is precharged by the p pull-up transistor. When CLK goes high,
the n pull-down transistor turns on. If carry generate (A.B) is true, then the
output node discharges. If carry propagate (A + B) is true, then a previous
carry may be coupled to the output node, conditionally discharging it. Note
that in this circuit CARRY is actually propagated. A static stage is shown in
Fig. 8.18(b). This requires P to be generated as A E9 B. A multiplexer-based

Micron Ex. 1037, p. 567
Micron v. YMTC
IPR2025-00119

P<0>--4
c1--4

(c)

p~

g~

(a)

clk--4
P<2>--4

G;d

clk--4

f ~O>

f Cd>

c1--4

(d)

Cl --4

(b)

~----------+----+---~

FIGURE 8.16 Dynamic
carry gates

FIGURE 8.17 High-speed
carry lookahead logic

Micron Ex. 1037, p. 568
Micron v. YMTC
IPR2025-00119

530 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.18 Manchester­
adder circuits: (a) dynamic
stage; (b) static stage;
(c) MUX stage; (d) 4-bit
section; (e) PG logic;
(f) SUM logic

(a)

olk=t
Cl

(d)

A<n> ---.------1
B<n>--i-~

(e)

-C<n>

G<O>P<O>

(b)

G<1> P<1>

G P
Cl co

-P

-P<1>

-P<n>

-C<n>

G<n>

(c) -P<n>

G<2> P<2> G<3> P<3>

C<3>

-P<2> -P<3>

-C<n-1>=)[>- ·
P

SUM<n>
<n>

(f)

implementation is shown in Fig. 8.18(c). A 4-bit adder may be constructed by
cascading four such stages and adding the circuitry to supply the required sig­
nals. This is commonly called a Manchester carry adder. Thus a 4-bit adder
would be constructed as shown in Fig. 8.18(d). There is some similarity with
the d01p.ino carry circuit. However, the intermediate carry gates are no longer
needed, because the carry values are available in a distributed fashion. The
4-bit adder is chosen to reduce the number of series-propagate transistors,
which improves the speed. Note that if all propagate signals are true, and CI is
high, six series n-transistors pull the output node low in the case of the
dynamic gate while five transistors are in series in the static gate. In addition to
four Manchester stages, the adder requires four PG generator blocks, one rep­
resentative implementation being shown in Fig. 8.18(e). Four SUM generate
blocks (an XNOR gate), shown in Fig. 8.18(f), complete the adder. This worst­
case propagation time can be improved by bypassing the four stages if all
carry-propagate signals are true.6 The additional circuitry needed to achieve
this is shown in Fig. 8.19(a). It consists of an AND gate, which turns on a
carry-bypass signal if all carry propagates are true. The optimum number of
cascaded stages may be calculated for a given technology by simulation. A
final implementation of a 4-bit Manchester adder is shown in Fig. 8.19(b).

Micron Ex. 1037, p. 569
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 531

Cl

(a)

-P<O> -P<1> -P<2>

Cl --.~---1

-P<1>

(b)

This implementation7 uses a "conflict-free" bypass circuit, which improves
the speed by using a 3-input multiplexer that prevents conflicts at the wired
OR node in the adder, shown in Fig. 8.19(a). The control signals T1, T2, and T3
are respectively generated by

Ti= -(PoP1P2).P3

T2 =-P3

T3 = PoP1P2P3.

Note that in this version the inverter present on the cin signal has been
moved to the center of the carry chain to improve speed (there are now a
maximum of two transmission gates in series with an inverter). Very wide,
fast adders may be constructed by extending the carry bypass shown in
Fig. 8.19(b).8

FIGURE 8.19 Manchester
adder with carry bypass:
(a) simple; (b) conflict free

Micron Ex. 1037, p. 570
Micron v. YMTC
IPR2025-00119

532 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.20 Carry-select
adder: (a) basic architecture;

8.2. 1. 6 Carry-Select Adder

An additional approach to increase the speed of a parallel adder that expends
area in favor of speed is to use a carry-select adder. The basic scheme is
shown in Fig. 8.20(a).9 Usually, two ripple-carry-adder structures are built
(although any adder structure may be used), one with a zero carry-in and the

· other with a one carry-in. This is repeated for a certain sized adder, say, of
4-bits. The previous carry then selects the appropriate sum using a multi­
plexer or tristq.te adder gates. The stage carries and the previous carry are
gated to form the carry for the sµcceeding stage. As a further optimization,
each succeeding ripple adder may be extended by one stage to account for
the delay in the carry-lookahead gate. Thus for a 32-bit adder, the stage num­
bers are 4-4-5-6-7-6, as shown in Fig. 8.20(b). This yields an adder with
approximately (4 + 1+1+1 + 1+1), or 9, gate delays for a 32-bit addition.

8.2. 1. 7 Conditional-Sum Adder

A CMOS implementation of a conditional-sum adder10 is shown in
Fig. 8.21. 11 A conditional block generates C0, C1, S0, and S1 signals, as

SUM<3:0>

4

Cl

4 4

A<3:0> 8<3:0>

adders need only
replicate carry chains
and sum generation
logic, PG generation
is common

(a)

4

Cl 3-0

A<7:4> 8<7:4>

4 4

-C<7>
4 4

A<7:4> 8<7:4>

-C<31>

(b) 32-bit carry-select adder (b)

example

Micron Ex. 1037, p. 571
Micron v. YMTC
IPR2025-00119

b

-a
a

(a)

A<2>
B<2>

(b)

_ta

b

i: a@b

~
.. so

a
-a

~

CONDITIONAL-CELL
-A C1
-B co

S1
so

CONDITIONAL-CELL
-A C1
-B co

S1
so

CONDITIONAL-CELL
- A C1
-B co

S1
so

CONDITIONAL-CELL
-A C1
-B co

S1
so

_ta

b

i: a@b

~
.. S1

a

~ ·:e=-· b .. -b

- -

-

-nc

>--nc

~
b

Ta
a.b

.. co

a

la

- f"\.

~11
-

-0--

-ID--

8.2 DATAPATH OPERATORS 533

_ta

i:

la

SUM<3>

SUM<2>

SUM<1>

SUM<O>

a+b

.. C1

FIGURE 8.21 Conditional­
sum adder: (a) basic circuits;
(b) 4-bit adder example

shown in Fig. 8.21(a). Here pass logic has been used to generate

So= -(A EBB)

S1=AEBB

Co=A.B

C1=A+B.

Micron Ex. 1037, p. 572
Micron v. YMTC
IPR2025-00119

534 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.22 A 64-bit adder
block diagram

The C0 and C 1 signals are fed to successive stages, selecting between the S0
and S1 signals using transmission gate multiplexers. SUMs and CARRYs are
generated in a tree-like fashion as shown in Fig. 8.21(b). For a 32-bit adder
there are six transmission gates in series. If the stray capacitance in the series­
transmission gates can be minimized, it is claimed that this adder can be
quite fast.

8.2. 1.8 Very Wide Adders

Adders with very large word sizes (>32 bits) can be constructed hierarchi­
cally by combining smaller "block" adders typically with a word width of 16
bits. Figure 8.22 shows a 64-bit adder composed of four 16-bit blocks. Each
16-bit block outputs a block P and block G signal that are fed to a block­
carry generator. This module in turn feeds the carry-in to each 16-bit block.

A single bit of a typical block adder12 is shown logically in Fig. 8.23(a),
while a transmission-gate and inverter implementation is shown in
Fig. 8.23(b). This is divided into three sections, which generate the local
propagate signal (P), the block propagate (Pout), and the block generate
(Gout) signals and the sum: signal (SUM). These single bits are cascaded to
form a 16-bit adder block. The block propagate and block-generate signals
pass through series connections of transmission gates and inverters. These
can be accelerated by using bypass techniques similar to that shown in
Fig. 8.19(b). Figure 8.24(a) shows a representation of the block-generate
chain for a 16-bit adder with bypassing. For example the final transmission
gates are controlled by signals S1, S2, and S3. These are generated as follows:

S1 = -T2.P15 (passes G<15> to output)

S2 = -T1.T2.P15 (passes G<lO> to output)

(passes G<5> to output),

A<63:48> B<63:48> A<47:32> B<47:32> A<31:16> B<31:16> A<15:0> B<15:0>

Cout

A
Pout
Gout

SUM<63:48>

A
Pout
Gout

SUM<47:32> SUM<31:16>

Block Carry Generate

SUM<15:0>

Gin

Micron Ex. 1037, p. 573
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 535

1-bit

A 0
... Gout

Gin-+

s Gin

p

-+ Pout

(a)

Carry Propagate

(b)

where

1-bit
1-bit

0
0

s Pin

s
p

Block Propagate and Block Generate

Pout Gout

Pin Gin

Ti= P6.P7.Pg.P9.P10

T2 = P11.P12.P13.P14·

... SUM

Sum Generate

The block-carry generator for the 112-bit adder is shown in Fig. 8.24(b). The
block generates and propagates from seven 16-bit adders are combined into
seven carry-bypass multiplexers. These in turn are bypassed by the transmis­
sion gates, reducing the maximum number of series transmission gates from
seven to four. The -BC signals are the block carries that are fed to each
16-bit adder. The 112-bit adder that Figs. 8.23 and 8.24 are based on yielded
a 8.5 ns 112-bit adder in a 0.8µ three-level-metal technology.

FIGURE 8.23 The cells in a
16-bit adder block used in the
64-bit adder: (a) gate diagram;
(b) circuit diagram

Micron Ex. 1037, p. 574
Micron v. YMTC
IPR2025-00119

536 CHAPTER 8 SUBSYSTEM DESIGN

Stage Number

Gin<O> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bypass Network

(a)

-BC<15> -BC<31> -BC<47> -BC<63> -BC<79> -BC<95>

Figure 8.24 Bypass tech- C<1>

niques used in a 112-bit -BC<15>

adder: (a) 16-bit adder gener-
ate bypass logic; (b) 112-bit
carry-bypass logic (bl

8.2.1.9 Summary

With the number of adders presented, the natural question is "What adder
should be used where?" In general, a ripple adder (Fig. 8.2, Fig. 8.3, Fig. 8.6,
or Fig. 8.12) should be used as the first choice because they are small, sim­
ple, and relatively fast. The adder shown in Figs. 8.6 and 8.7 is one of the
smallest that can be designed and is especially suited to pipelined adders. If
a faster nonpipelined adder is required, standard-cell libraries frequently
supply the adder shown in Fig. 8.15 or some other 4-bit adder with a.look­
ahead generator. The carry-select adder is a good choice for a faster h-bit
adder because it can easily be assembled from ripple adders and multiplexers
and the speed can be improved by adding adders and multiplexers. This ease
of construction comes at the expense of area. The Manchester adders are
good choices for custom-designed datapaths with word widths from 16 to 32
bits because they are regular, small and fast. The transmission-gate adder
(Fig. 8.12 or 8.13) is of use where the SUM and CARRYpropagation times
must be similar (e.g., in multiplier arrays). For adders used in floating-point
ALUs, the adder outlined in Figs. 8.23 and 8.24 may be suitable.

Micron Ex. 1037, p. 575
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 537

8.2.2 Parity Generators
A function related to binary addition is parity generation, that is, detecting
whether the number of ones in an input word is odd or even. Frequently it is
necessary to generate the parity of, say, a 16- or 32-bit word. The function is

(8.11)

Figure 8.25(a) shows a conventional implementation. A dynamic dual-rail
logic version is shown in Fig. 8.25(b). A number of these may be cascaded to
perform a 32-bit parity function. 13 A static 4-input XOR that could be used is
shown in Fig. 8.25(c). 14 In a data path, Fig. 8.25(a) may be implemented as
a linear column with a tree-routing channel connecting the XOR gates.

8.2.3 Comparators
A magnitude comparator is useful to compare the magnitude of two binary
numbers. One can build a comparator from an adder and a complementer, as
shown in Fig. 8.26. A zero detect (NOR gate) provides theA = B signal while
the final carry output provides the B > A signal. Other signals-such as
A < B or A ~ B-may be generated by logical combinations of these signals.
The generation of B <A is shown in Fig. 8.26.

If equality comparison is required, then XNOR gates and an AND gate
are all that is required, as shown in Fig. 8.27(a). Rather than a gate imple­
mentation, a pass-gate logic structure may be used, as shown in Fig. 8.27(b).
Single-polarity transmission gates have been used here as might be appropri­
ate in a low-power circuit, but of course complementary transmission gates
may also be used. This structure does not draw any DC current but may be
slow for long comparators. The final circuit shown in Fig. 8.27(c) is a
merged XNOR/NOR gate using pseudo-nMOS. This gate draws DC current
but is very small and very fast.

8.2.4 Zero/One Detectors
Detecting all ones or all zeros on wide words requires large fan-in AND or
OR gates. One can build a tree of AND gates, as shown in Fig. 8.28(a). Here
alternate NAND and NOR gates have been used. The delay to the output is
proportional to log N, where N is the bit width of the word. If the word being
checked has a natural skew in the outputs (such as at the output of a ripple
adder), the designer might consider mimicking the adder delay in the zero or
one detect as shown in Fig. 8.28(b). Here the delay from the last changing
output to the zero/one detect is a constant one gate delay. Similar to the com­
parator example in the last section, a small and fast ONE/ZERO detection

Micron Ex. 1037, p. 576
Micron v. YMTC
IPR2025-00119

538 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.25 Parity genera­
tion: (a) static XOR tree;
(b) dynamicversion; (c) static

(a)

(b)

A -B

_L _L
-C
_L

-D

_L _r'k

elk

4-input XOR (c)

circuit for word widths of less that 32 bits is the pseudo-nMOS NOR gate. At
large word widths, self-loading may require the pseudo-nMOS gate to be
split into 8- or 16-bit chunks.

Micron Ex. 1037, p. 577
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 539

B>A

B<3> B<A

A<3>

B<2>

A<2>

B<1> A=B

A<1>

B<O>

A<O>

8.2.5 Binary Counters

Binary counters are used to cycle through a sequence of binary numbers. An
asynchronous counter has outputs that change at varying times with respect
to the clock edge, whereas a synchronous counter has outputs that change at
substantially the same time.

8.2.5. 1 Asynchronous Counters

A "ripple-carry" binary counter is shown in Fig. 8.29. This is based on the
toggle register introduced in Chapter 5. The T register (which is a single­
counter stage) is reproduced in Fig. 8.29(a). This counter stage may be cas­
caded, as shown in Fig. 8.29(b). Note that the clocking of each stage is car­
ried out by the previous counter stage, and thus the time it takes the last
counter stage to settle can be quite large for a long counter chain. This
counter is shown mainly for historical and reference purposes and should not
be used as shown. Note that it has no reset signal, thus making it extremely
difficult to test.

8.2.5.2 Synchronous Counters

A general synchronous up/down counter is shown in Fig. 8.30. It uses an
adder and a D register per bit position. The speed that this counter can oper­
ate is determined by the ripple-carry time from the LSB to the MSB. This
can be improved using any of the carry-lookahead techniques discussed in
Section 8.2. If only an incrementer is required, the adder circuit degenerates
into a syncll;ronous counter stage, comprising an XOR gate, an AND gate,

FIGURE 8.26 Comparator
using an adder

Micron Ex. 1037, p. 578
Micron v. YMTC
IPR2025-00119

540 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.27 Comparator cir­
cuits: (a) XNOR based;
(b) pass gate based;
(c) pseudo-nMOS based

a=b

(a)

(b)

(c)

and a D register, as shown in Fig. 8.31. A multiplexer on the D input of the
register allows a value to be loaded into the register for initialization.
Remembering that an XOR can be implemented with a multiplexer yields
the counter structure shown in Fig. 8.32(a). A reset register allows initializa­
tion, while the XOR function is provided by the multiplexer on the register D
input. The multiplexer selects between the true and complement values of
the register, based on the carry-input value. A more detailed version of the
counter cell is shown in Fig. 8.32(b).

Micron Ex. 1037, p. 579
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 541

a<7>
a<6>

a<5>
a<4>

a== one
a<3>
a<2>

a<1>
a<O>

a<3>
a<2>

a== zero
a<1>
a<O>

(a)

a<7>
a<6>

a<5>
a<4>
a<3> a== one

a<2>

a<1>
a<O>

(b)

-T T

elk 0<3>

-elk -0<3>
-0<0> -0<1 > -0<2>

8.2.6 Boolean Operations-ALUs
Boolean operations are most easily accomplished by using the multiplexer­
based circuit shown in Fig. 5.35. This is shown in multiplexer format in
Fig. 8.33. An Arithmetic Logic Unit (ALU) requires both arithmetic (add,

FIGURE 8.28 One- and
zero-detect circuits: (a) tree;
(b) "ripple"

FIGURE 8.29 Asynchron­
ous counter

Micron Ex. 1037, p. 580
Micron v. YMTC
IPR2025-00119

542 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.30 Synchronous
up/down counter using
adders and registers

down/-up

TC elk

REG
1-Bit

d q 0<3>

REG
1-Bit

1--1-t--i d q 0<2>

REG
1-Bit

1--1-t--i d q 0<1 >

-clear

REG
1-Bit

d q 0<0>

subtract) and Boolean operations. One may either multiplex between an
adder and a Boolean unit or merge the Boolean unit into the adder as in the
classic TTL 181 ALU. 15 A 1-bit CMOS implementation of the latter circuit
that uses a Manchester carry stage is shown in Fig. 8.34. Signal mode is false
for arithmetic operations and true for Boolean operations. Signals S<3:0>
control the operation type. For instance, in Boolean mode for S<3>=0,
S<2>=0, S<l>=O, S<l>=l, bis passed to the output.

8.2.7 Multiplication
In many digital signal processing operations-such as correlations, convolu­
tion, filtering, and frequency analysis-one needs to perform multiplication.
Multiplication algorithms will be used to illustrate methods of designing dif­
ferent cells so that they fit into a larger structure. In order to introduce these
designs, simple serial and parallel multipliers will be introduced. The appro­
priate texts should be consulted for more definitive system architectures. The
most basic form of multiplication consists of forming the product of two

Micron Ex. 1037, p. 581
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 543

in<O>-> 0

elk 1->->:,___.--+--+-----oi

load.I !->->:>---+--+-----;

SEL

SEL

SEL

~---+--<~->->! 0<2>

~----+--<->->! 0<1>

~----+---<O->->I 0<0>

positive binary numbers. This may be accomplished through the traditional
technique of successive additions and shifts in which each addition is condi­
tional on one of the multiplier bits. For example, the multiplication of two
positive binary integers, 1210 and 510, may proceed using the shift-and-add
method in the following manner:

multiplicand:
multiplier

1100 : 1210

0101 : 510
1100

0000

1100

0000

0111100 : 6010

Therefore, the multiplication process may be viewed to consist of the
following two steps:

1. Evaluation of partial products.

2. Accumulation of the shifted partial products.

FIGURE 8.31 lncrementer

Micron Ex. 1037, p. 582
Micron v. YMTC
IPR2025-00119

544 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.32 Compact syn­
chronous counter

p0----10

p1----1

p2--t---10

p3--1---1

s

a

elk

reset.I

(a)

reset.I

-Cin

Cin

elk-[:>o- -elk

(b)

0<1>

-elk

It should be noted that binary multiplication is equivalent to a logical
AND operation. Thus evaluation of partial products consists of the logical
ANDing of the multiplicand and the relevant multiplier bit. Each column of
partial products must then be added and, if necessary, any carry values

F passed to the next column. There are a number of techniques that may be
used to perform multiplication. In general, the choice is based on factors
such as speed, throughput, numerical accuracy, and area. As a rule, multipli­
ers may be classified by the format in which data words are accessed,
namely:

• serial form.

FIGURE 8.33 Boolean logic
unit as MUXes

• serial/parallel form.

• parallel form.

Micron Ex. 1037, p. 583
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 545

s~

a _,

~-p
S<3> fr-g
S<2>

(a)

cin 1->->>--------<--1

(b)

)----10

-p c:i>-----\
-g c:i>-----)

(c) FIGURE 8.34 181 ALU

8.2. 7. 1 Array Multiplication

A parallel multiplier is based on the observation that partial products in the
multiplication process may be independently computed in parallel. For
example, consider the unsigned binary integers X and Y.

m-1

X = L Xi2i
i = 0

n-1

Y= L,.Ypj
j=O

Micron Ex. 1037, p. 584
Micron v. YMTC
IPR2025-00119

546 CHAPTER 8 SUBSYSTEM DESIGN

p c

y~~:c:;:==t====:;;z;---~-y

co
PO

x

FIGURE 8.35 Array
multiplier cell

x

The product is found by

m-l n-l

P =Xx Y = I, Xi2i · I, Y/Y
i=O j=O

m- l n- l

= I I (XiY) 2i+j

i=O j=O

m+n- l

= I Pk2k.

k=O

Thus Pk are the partial product terms called summands. There are mn sum­
mands, which are produced in parallel by a set of mn AND gates. For 4-bit
numbers, the expression above may be expanded as in Table 8.2.

An n x n multiplier requires n(n - 2) full adders, n half adders, and n2

AND gates. The worst-case delay associated with such a multiplier is
(2n + l)'tg, where 'tg is the worst-case adder delay. Figure 8.35 shows a cell
that may be used to construct a parallel multiplier. The Xi term is propagated
diagonally from top right to bottom left, while the Yj term is propagated hori­
zontally. Incoming partial products enter at the top. Incoming .CARRY IN val­
ues enter at the top right of the cell. The bit-wise AND is performed in the cell,
and the SUM is passed to the next cell below. The CARRY 0 UT is passed to the
bottom left of the cell. Figure 8.36 shows the multiplier array with the partial
products enumerated. This arrangement may be drawn as a square array, as
shown in Fig. 8.37, which is the most convenient for implementation. In this
version the degeneracy of the first two rows of the multiplier are shown. The
first row of the multiplier adders has been replaced with AND gates while the
second row employs half-adders rather than full adders. This optimization
might not be done if a completely regular multiplier were required (i.e., one

TABLE 8.2 4-bit Multiplier Partial Products

X3 X2 Xl XO Multiplicand
Y3 Y2 Yl YO Multiplier

X3YO X2YO XlYO XOYO
X3Yl X2Yl XlYl XOYl

X3Y2 X2Y2 X1Y2 XOY2
X3Y3 X2Y3 X1Y3 XOY3

P7 P6 PS P4 P3 P2 Pl PO Product

Micron Ex. 1037, p. 585
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 547

array cell). In this case the appropriate inputs to the first and second row would
be connected to ground, as shown in Fig. 8.36.

The cell design for this multiplier is relatively straightforward, with the
main attention paid to the adder. An adder with equal carry and sum propa­
gation times is advantageous, because the worst-case multiply time depends
on both paths.

8.2. 7.2 Radix-n Multiplication

The structure shown in Figs. 8.36 and 8.37 computes the partial-products in
a Radix-2 manner, that is by observing one bit of the multiplicand at a time.
Higher radix multipliers may be designed to reduce the number of adders
and hence the delay required to compute the partial sums. The best known
method is called Booth recoding, which is a Radix-4 multiplication scheme.

A Booth-recoded multiplier examines three bits of the multiplicand at a
time to determine whether to add zero, 1 *, -1 *, 2 *, or -2 * of that rank of the
multiplicand. Table 8.3 shows the operation to be performed based on the
current two bits of the multiplicand and the previous bit. In addition three
control values are shown: ZERO zeroes the operand, NEG inverts the oper­
and, and TWO multiplies the value by 2 (left shift).

Figure 8.38 shows a 16 x 16 Booth-recoded multiplier. Figure 8.38(a)
shows the top level schematic and a possible floorplan. The schematic shows
the multiplier divided into two parts-one the Booth array and the other a

FIGURE 8.36 A 4 x 4 array
multiplier

Micron Ex. 1037, p. 586
Micron v. YMTC
IPR2025-00119

548 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.37 A square
version of the 4 x 4 array
multiplier

TABLE 8.3

Xi-I xi

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

X<2>

P<7>

Booth-recoding Values

Xi+! OPERATION

0 addO
1 add2
0 sub 1
1 add 1
0 sub 1
1 add 1
0 sub2
1 addO

X<1> X<O>

P<3>

P<4>

NEG ZERO TWO

1 1 0
0 0 1
1 0 0
0 0 0
1 0 0
0 0 0
1 0 1
0 1 0

Micron Ex. 1037, p. 587
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 549

carry propagate adder (CPA). The Booth array accepts two 16-bit inputs,
MIER<15:0> (the multiplier) and MCAND<15:0> (the multiplicand) and
feeds the CPA. The CPA also accepts a 32-bit input (SUM-IN<31 :0>), which
is used to perform multiple-accumulates. The floorplan divides the layout
according to the schematic hierarchy using an array block and a CPA block.
As the only 32-bit datapath is the final CPA, this structure is folded to obtain
a set of datapaths that are roughly 16 bits high. Figure 8.38(b) shows the
schematic and floorplan for the array section of the multiplier. It consists of
8 ranks of adders each 17 bits wide (or tall for the floorplan shown). The first
rank (Booth-First-16) degenerates to the schematic shown in Fig. 8.38(c),
while the remaining ranks are represented by the schematic in Fig. 8.38(e).
Both ranks use a Booth decode cell which is shown in Fig. 8.38(d). This cell
observes 3 bits of the multiplier (MIER) and produces the control signals
XI, X2 and N<l:O> which are used in the array adders (Figs. 8.38f) and

MIER ->
16

Booth-Array

MIER * CRY
SUM

SUM-IN l->->1>--'-
3+2 ---------'

MIER<15:0>

CPA

+
CRY PRODUCT 32

-> PRODUCT
SUM
SUM-IN

PRODUCT
MCAND
<15:0>

<31:0> FIGURE 8.38 Radix-2 multi-

(a) 16*16 Booth Multiplier

Manchester CPA
(2 columns)

TG CSA Adder
(for accumulate)
2 columns of 16 adders

SUM-IN<31 :0>

plier (Booth-recoded):
(a) 16 x 16 multiplier top level
schematic and floorplan;
(b) array schematic and floor­
plan; (c) first rank schematic;
(d) Booth decoder; (e) adder
ra!lk schematic, rank floor­
plan, and bit floorplan;
(f) Booth gate; (g) array adder
schematic and mask layout;
(h) final adder

Micron Ex. 1037, p. 588
Micron v. YMTC
IPR2025-00119

550 CHAPTER 8 SUBSYSTEM DESIGN

BOOTH-Fl RST-16
SUM<16:2>
CRY<16:2>

MCAN0<15:0> MCAN0<15:0> CRY<1:0>
MIER<1 :O>,VSS MIER<2:0> SUM<1:0>

BOOTH-A00-16
A<14:0> A<14:0> SUM<16:2>
B<14:0> B<14:0> CRY<16:2>

MCAN0<15:0> MCAN0<15:0> CRY<1:0>
MIER<3:1> MIER<2:0> SUM<1:0>

BOOTH-A00-16
C<14:0> A<14:0> SUM<16:2>
0<14:0> B<14:0> CRY<16:2>

MCAN0<15:0> MCAN0<15:0> CRY<1:0>
MIER<5:3> MIER<2:0> SUM<1:0>

BOOTH-A00-16
E<14:0> A<14:0> SUM<16:2>
F<14:0> B<14:0> CRY<16:2>

MCAN0<15:0> MCAN0<15:0> CRY<1:0>
MIER<7:5> MIER<2:0> SUM<1:0>

MIER~
MCANO~

MC ANO
<15:0>

(b) Booth Array

Figure 8.38 (continued)

MIER<15:0>

A<14:0>
B<14:0>
CRY<1:0>
SUM<1:0>

C<14:0>
0<14:0>
CRY<3:2>
SUM<3:2>

E<14:0>
F<14:0>
CRY<5:4>
SUM<5:4>

G<14:0>
H<14:0>
CRY<7:6>
SUM<7:6>

G<14:0>
H<14:0>

MCAN0<15:0>
MIER<9:7>

1<14:0>
J<14:0>

MCAN0<15:0>
MIER<11:9>

K<14:0>
L<14:0>

MCAN0<15:0>
MIER<13:11 >

M<14:0>
N<14:0>

MCAN0<15:0>
MIER<15:13>

SUM
<30:16>

CRY
<30:16>

CRY<15:0>

BOOTH-A00-16
A<14:0> SUM<16:2> 1<14:0>
B<14:0> CRY<16:2> J<14:0>
MCAN0<15:0> CRY<1:0> CRY<9:8>
MIER<2:0> SUM<1:0> SUM<9:8>

BOOTH-A00-16
A<14:0> SUM<16:2> K<14:0>
B<14:0> CRY<16:2> L<14:0>
MCAN0<15:0> CRY<1:0> CRY<11:10>
MIER<2:0> SUM<1:0> SUM<11:10>

BOOTH-A00-16
A<14:0> SUM<16:2> M<14:0>
B<14:0> CRY<16:2> N<14:0>
MCAN0<15:0> CRY<1:0> CRY<13:12>
MIER<2:0> SUM<1:0> SUM<13:12>

BOOTH-A00-16
A<14:0> SUM<16:2> SUM<30:16>
B<14:0> CRY<16:2> CRY<30:16>
MCAN0<15:0> CRY<1:0> CRY<15:14>
MIER<2:0> SUM<1:0> SUM<15:14>

~CRY
~SUM

Micron Ex. 1037, p. 589
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 551

MCAND<15>,MCAND<15:0>E Booth
X1

x17
MCAND<15:0>,VSS l\D-

X2 } PP<16:0>
N<1 :0> ----'

SUM<16:0>

PP<16>~6
4/4

15:0
PP<15:0>

BOOTH-DECODE
N<1:0> N<1:0> VSS,VDD#15

MIER<2:0> -> MIER<2:0> X1 X1

MCAND<15:0> ~

(c) Booth-First-16

Mier<2:0> G>--~l:=-M2
M1
MO

.g N<1:0>

X2 X2 N<1> -----~O

.qi CRY <16:2>

.qi CRY<1:0>

.qi SUM<16:2>

.qi SUM<1 :0>

-~~~·X1
-MO • 32/16
M1 8/8

Mier N X1 X2
000 0 0 0
001 0 1 0
010 0 1 0
011 0 0 1
100 1 0 1
101 1 1 0
110 1 1 0
111 1 0 0

MO -----,,..----~
M1
-M2~-~

-MO -----,---...
-M1
M2~-~

(d) Booth-Decode

8.38g). From Fig. 8.38(b) it may be seen that MIER<l:O> and Vss are fed to
the first rank (Booth-First-16), MIER<3:1> to the second rank and so on.
Each rank "retires" two bits of the partial product sum (SUM) and carry
(CRY) so by the last adder rank (lower right of schematic in Fig. 8.38b) 31
SUM, CRY pairs have been produced. These are used by the CPA to produce
a 32-bit result. A possible floorplan of the Booth array is shown in
Fig. 8.38(b). It consists of the 8 ranks of adder abutted horizontally. The cir­
cuit diagram for an adder rank appears in Fig. 8.38(e). It consists of a Booth
decode (Fig. 8.38d), 17 Booth gates (Fig. 8.38f), and a 17-bit carry-save
adder. The latter circuit consists of a 15-bit CSA for the LSBs and two
inverters for the top 2 bits. The fl.oorplan of the adder rank and adder bit is
shown in Fig. 8.38(e). The adder rank consists of 15 Booth-Adder modules,

FIGURE 8.38 (continued)

Micron Ex. 1037, p. 590
Micron v. YMTC
IPR2025-00119

552 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.38 (continued)

X1 Booth
MCAND<15>,MCAND<15:0>S3

x17
MCAND<15:0>,VSS ~)\D- SUM<16:0> CRY<16:0>

X2~ PP<16:0> 16
N<1:0> PP<15>--------+---~

BOOTH-DECODE
N<1:0> N<1:0>

X1 MIER<2:0>-> MIER<2:0> X1

MCAND<15:0>~
A<14:0>~

B<14:0>~

X2 X2

.EJ CRY<16:2>

.EJ CRY<1:0>

.EJ SUM<16:2>

.EJ SUM<1:0>

CARRY<n+1>
SUM-IN<n+2>

PP<16:15>

A<14:0>
B<14:0>

PP<14:0>

16:15

15:1

0
N<1>----------~

X1 X2 N<1:0>

CARRY<n-2>

(e) Booth-Add-16

Micron Ex. 1037, p. 591
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 553

N<1>

N<1>

(f) Booth

(g) FIGURE 8.38 (continued)

Micron Ex. 1037, p. 592
Micron v. YMTC
IPR2025-00119

554 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.38 (continued)

RSUM 1'>->~>--"3'-"'1 '----+-----7

R CRY H->; >----'3"-71 '------1-----1

SUM-IN ,_,_,,__3"-""'2-~

(h) CPA - Carry Propagate Adder

- PRODUCT <31 :0> ~- 32
' '=" PRODUCT
~

P31

B<31:1>

A<30:0>

v55,B<31:1>

V55,P31,A<30:1>

A<O>

NC,C<6:0>

c4
a MAN-4

-s
b x8

co

C<6:o>,v88

- PRODUCT <32:0>

32:1

0

2 inverters and the Booth Decoder vertically abutted. The Booth-Adder con­
sists of a Booth gate and adder stage horizontally abutted. The Xl, X2 and
N<l:O> lines feed vertically from the Booth-Decode logic to the Booth gate
in each adder (or inverter). At each rank the SUM shifts right by two bit posi­
tions while the CRY shifts right by one bit position. The adder shown in
Fig. 8.38(g) shows one possible adder implementation that has been opti­
mized for size by using the transmission-gate adder with n-pass transistors.
A possible mask layout is also shown. Figure 8.38(h) shows the final adder
(CPA). It consists of a CSA to add in the SUM-IN signal and 32 stages of
Manchester adder (8 MAN-4) to produce the final output. Any fast 32-bit
CPA could be used here. Of course this multiplier may be made faster by
including appropriate pipeline registers.

Figure 8.39 shows some alternative Booth related circuits. Figure
8.39(a) shows an alternative Booth-decoder stage along with a generic mul­
tiplier cell (Fig. 8.39b). It is implemented with a multiplexer, an XOR gate,
an AND gate, and an adder. This circuit may be highly optimized at the cir­
cuit level. Figure 8.39(c) shows one particular implementation for the pre­
adder gating that uses n-channel pass transistors.

Radix-8 multiplication carries Radix-4 multiplication one step further
by requiring that+ 1,-l,+2,-2,+3,-3,+4,-4 and 0 times the multiplicand need
to be calculated. The *3 is the hard term to calculate, requiring an adder.
However, in some circumstances a Radix-8 multiplier might be appropriate.

8.2. 7.3 Wallace Tree Multiplication

If Table 8.1, showing the truth table for an adder, is examined, it may be seen
that an adder is in effect a "one's counter" that counts the number of 1 'son
the A, B, and C inputs and encodes them on the SUM and CARRY outputs.
Table 8.4 below summarizes this.

Micron Ex. 1037, p. 593
Micron v. YMTC
IPR2025-00119

q<1>
q<O>

q<1>
q<O>

q~-q

(a)

1* -1* 2* -2* zero

(c)

TABLE 8.4 An Adder as a 1 's Counter

ABC cs Number of 1 's

000 00 0
001 10
010 10 1
011 01 2
100 01
101 10 2
110 10 2
111 11 3

8.2 DATAPATH OPERATORS 555

FIGURE 8.39 Booth­
recoded multiplier cells

Micron Ex. 1037, p. 594
Micron v. YMTC
IPR2025-00119

556 CHAPTER 8 SUBSYSTEM DESIGN

A 1-bit adder provides a 3:2 compression in the number of bits. The
addition of partial products in a column of an array multiplier may be
thought of as totaling up the number of 1 's in that column, with any carry
being passed to the next column to the left. Consider the 6 x 6 multiplication
table shown in Table 8.5.

Considering the product PS, it may be seen that it requires the summa­
tion of six partial products and a possible column carry from the summation
of P4. Figure 8.40 enumerates the adders required in a multiplier based on
this style of addition. The adders have been arranged vertically into ranks
that indicate the time at which the adder output becomes available. While
this small example shows the general Wallace addition technique, it does not
show the real speed advantage of a Wallace tree. In Fig. 8.40 there is an iden­
tifiable "array part" and a CPA part, which is at the top right. While this has
been shown as a tipple-carry adder, any fast CPA can be used here. The delay
through the array addition (not including the CPA) is proportional to log
(base3/2) n, where n is the width of the Wallace tree. In a simple array mul­
tiplier it is proportional to n. So in a 32-bit multiplier where the maximum
number of partial products is 32, the compressions (3:2 compressors) are

Thus there are 9 adder delays in the array. In an array multiplier (Booth­
recoded) there are 16 (note that the Booth recoding may also be used with a
Wallace tree adder). To get the total addition time, the final CPA time has to
be added to the array propagation times. For a 64-bit multiplier the compar­
ison is 11 for a Wallace tree versus 32 for an array.

Apart from 3:2 compression, 4:2 compression (really 5:3) is often used.
An improvement over two cascaded adders may be achieved by using the 4:2
compressor shown in Fig. 8.41. This has three XOR delays in the sum path
rather than the four that would be present if two adders were used. A regular

TABLE 8.5 A 6 x 6 Multiplier

XS X4 X3 X2 Xl XO Multiplicand
YS Y4 Y3 Y2 Yl YO Multiplier

XSYO X4YO X3YO X2YO XlYO XOYO
XSYl X4Yl X3Yl X2Yl XlYl XOYl

XSY2 X4Y2 X3Y2 X2Y2 X1Y2 XOY2
XSY3 X4Y3 X3Y3 X2Y3 X1Y3 XOY3

XSY4 X4Y4 X3Y4 X2Y4 X1Y4 XOY4
XSYS X4YS X3YS X2YS XlYS XOYS

Pll PlO P9 PS P7 P6 PS P4 P3 P2 Pl PO Product

Micron Ex. 1037, p. 595
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 557

x5y5
P11

x4y5
x5y4

pg
x3y5
x4y4
x5y3

PS

x2y5
x3y4

P7 x4y3
x5y2

x1y5
x2y4 P6
x3y3
x4y2
x5y1

x0y5
x1y4
x2y3
x3y2
x4y1
x5y0

PS
x0y4
x1y3
x2y2
x3y1

P4 x4y0

x0y3
x1y2
x2y1 P3
x3yO

xOy2
x1y1
x2yO P2

xOy1
P1 x1y0

xOyO PO

layout for a 54-by-54 bit multiplier using the compressor shown in Fig. 8.41
may be found in Goto et al. 16

8.2. 7.4 Serial Multiplication

Multiplication may be performed serially. The simplest form of serial multi­
plier, shown in Fig. 8.42, uses the successive addition algorithm and is
implemented using a full adder, a logical AND circuit, a delay element (i.e.,
either static or dynamic flip-flop), and a serial-to-parallel register.

FIGURES.40 Wallace adder
tree (for 6 x 6 multiplier)

Micron Ex. 1037, p. 596
Micron v. YMTC
IPR2025-00119

558 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.41 A 4:2 (5:3)
compressor circuit

FIGURE 8.42 Serial multi­
plier

11 I->->; ~-.-----I

12 H->;~~----1

13 H->; ~+-+---.-----1

14 I->->) ~+-+---+--+-J

Cout

Gin

The two numbers X and Y are presented serially to the circuit (at differ­
ent rates to account for multiplier and multiplicand word-lengths). The par­
tial product is evaluated for every bit of the multiplier, and a serial addition
is performed with the partial additions already stored in the register. The
AND gate (G2) between the input to the adder and the output of the register
is used to reset the partial sum at the beginning of the multiplication cycle. If
the register is made of N - 1 stages, then the 1-bit shift required for each par­
tial product is obtained automatically. As far as the speed of operation is con­
cerned, the complete product of M + N bits can be obtained in MN intervals
of the multiplicand clock.

REG
1-Bit

elk d q

elk

Micron Ex. 1037, p. 597
Micron v. YMTC
IPR2025-00119

8.2 DATAPATH OPERATORS 559

Serial Stream
LSB First
x---.....--+--1

delay

Y<1> Y<2> Y<3>

Using the general approach discussed previously, it is possible to realize
a serial/parallel multiplier with a very modular structure that can easily be
modified to obtain a pipelined system. The basic implementation is illus­
trated by Fig. 8.43. In this structure, the multiplication is performed by
means of successive additions of columns of the shifted partial products
matrix. As left-shifting by one bit in serial systems is obtained by a I-bit
delay element, the multiplier is successively shifted and gates the appropri­
ate bit of the multiplicand. The delayed, gated instances of the multiplicand
must all be in the same column of the shifted partial-product matrix. They
are then added to form the required product bit for the particular column.

This structure requires M + N clock cycles to produce a product. The
main limitation is that the maximum frequency is limited by the propagation
through the array of adders. The structure of Fig. 8.43 can be pipelined with
the introduction of two delay elements in each cell, as shown in Fig. 8.44. If
rounding or truncation of the product term to the same word length as the
input is tolerated, then the time necessary to produce a product is 2M clock
cycles. In this case the multiplier accumulates partial product sums, starting
with the least significant partial product. After each addition, the result is an

Yn

Xj

Partial Sum Out
Partial Sum In-----~

FIGURE 8.43 Serial/
parallel multiplier

FIGURE 8.44 Pipelined
serial/parallel multiplier

Micron Ex. 1037, p. 598
Micron v. YMTC
IPR2025-00119

560 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.45 Lyon serial mul­
tiplier

Yj f--------------Yj+1

Xj

Partial Sum In------~

o----- control out

f----+-------- Xj+1

reset

Partial Sum Out

This multiplier uses LSB first
because this is the format
that more naturally caters
for addition and multiplication.

N-bit number that shortens to N-1 bits before the next partial product is
added. Here, it can be noted that the chip area increases linearly with the
length of the multiplier.

Figure 8.45 shows a schematic of a two-stage serial-multiplier stage
based on the work of Lyon 17 , in which the basic solution described so far has
been modified so that both words are in serial form. 18 Multipliers of this type
are frequently useful in FPGAs.

8.2.8 Shifters

Shifters are important elements in many microprocessor designs for arith­
metic shifting, logical shifting, and rotation functions. A 4-by-4 barrel
shifter is shown in Fig. 8.46(a), constructed from complementary transmis­
sion gates. The input to the shifter is the value to be shifted a (literal<6:0>)
and the shift amount (shift<3:0>). Table 8.6 shows the value of the output
(result<3:0>) for various values of shift and literal.

The function performed depends on the connections of the literal bus.
These connections may be made with an additional multiplexer on the front
of the shift matrix. Table 8.7 shows the functions.

Both arithmetic and logical shifts are implemented as well as rotates.
Figure 8.46(b) shows a symbolic layout for the core transmission gate. The
control lines have been run in polysilicon, assuming either that silicided poly
is used or that these signals are set up well in advance of the literal input.
Other layouts that do not use polysilicon are of course possible. While the

Micron Ex. 1037, p. 599
Micron v. YMTC
IPR2025-00119

shift<3> -+ shifl<2> -+ shifl<1> -+ shifl<O> -+

literai<6> -+

literai<5> '-+-+>--~

literai<4> !-+-+>----___;

literai<3> 1->-+>--------¥

literai<2> 1-+-+.>---------__;

literai<1> '-+-+>-------------~

literai<O> '-+-+>----------------~

(a:)

-shift

(b)

TABLE 8.6 Shifter Operations

SHIFT RESULT

1 LITERAL<3 :0>
2 LITERAL<4: 1>
4 LiTERAL<5:2>
8 LITERAL<6:3>

8.2 DATAPATH OPERATORS 561

FIGURE 8.46 Array shifter
using transmission gates:
(a) circuit; (b) cell layout

Micron Ex. 1037, p. 600
Micron v. YMTC
IPR2025-00119

562 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.47 Multiplexer­
hHsed shifter

TABLE 8.7 Modified Shifter Operations

LITERAL<6:0>

VSS,VSS,VSS,A<3:0>
A<3>,A<3>,A<3>,A<3:0>

A<3:0>,VSS,VSS,VSS
A<3:0>,A<2:0>
A<2:0>,A<3:0>

OPERATION

LOGICAL RIGHT SHIFT
ARITHMETIC RIGHT SHIFT

LOGICAL LEFT SHIFT
LEFT ROTATE

RIGHT ROTATE

circuit shown in Fig. 8.46(a) is fine for transistor level design, it is not really
appropriate for a gate-level implementation.

Figure 8.47 shows a shifter that uses multiplexers (which of course can
be transmission gates). An implementation for a logical left shift, arithmetic
right shift is shown. The shifter is divided into two halves, one of which

shift<O> shif1<1> shif1<2> shif1<3>

in ~ 8

7

6

5

4

3

2

0

7

6

5

4

3

2

0

shift<O> shift<1> shift<2>

Micron Ex. 1037, p. 601
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 563

shifts right and one of which shifts left. The fill values can be set by appro­
priate connections at the ends of the shifter ranks. The output of the two
shifters is muxed to form a final result. The value of SHIFT<2:0> gives the
amount of the shift with SHIFT<3> = 1 producing a left shift, while
SHIFT<3> = 0 produces an arithmetic right shift. Left and right rotates may
be implemented by wrapping the end connections conditionally to the oppo­
site end bits.

Shifters implemented with transmission gates are notorious for fooling
timing analyzers unless the directionality of the pass transistors are somehow
communicated to the timing analyzer. The multiplexer shifter may use buff­
ered (inverting, if need be) multiplexers, which can aid in speeding up the long
lines in large shifters. The multiplexer version directly takes the shift amount
as control, while the array version requires an n:m decoder (2:4 for the one
shown in Fig. 8.46a). For these reasons the multiplexer version may be
favored in CMOS although the version shown in Fig. 8.46 can be compact.

Other shift options are frequently required, for instance, shuffles, bit­
reversals, and interchanges. One can either use the complementary transmis­
sion gate, static single-pass transistors (usually n-channel). Precharged ver­
sions of single-pass transistor shifter circuits are generally cumbersome.
Large capacitances can be associated with the intermediate mux nodes and
these must all be precharged to prevent charge-sharing problems. The speed
of an n-bit shifter is proportional to log(n), so combined with the fast speed
of transmission gates, shifting can be a fast operation.

8.3 Memory Elements

Memory elements form critical components in the implementation of CMOS
systems. While off-the-shelf memories are limited by the number of I/O
pins, the speed of driving into the chip, and large off-chip output nodes, on­
chip memories can be engineered to be very fast and to have unique access
paths. In general, CMOS ASIC processes will not compete with the density
of state-of-the-art DRAM memory, but may be very competitive with high­
speed static memories. Memory elements may be divided into the following
categories:

• Random access memory.

• Serial access memory.

• Content access memory.

Random access memory at the chip level is classed as memory that has
an access time independent of the physical location of the data. This is con­
trasted with serial-access memories, which have some latency associated

Micron Ex. 1037, p. 602
Micron v. YMTC
IPR2025-00119

564 CHAPTER 8 SUBSYSTEM DESIGN

FIGURE 8.48 Memory-chip
architecture

m+k
memory cells

n bit decoder 2 bits

row decoder t
row decoder n-k

2 words
row decoder

l n-k
row decoder

column decoder

k bit decoder

n bit address
column mux, sense amp, write buffers

with the reading or writing of a particular datum and with content-address­
able memories. Within the general classification of random access memory,
we can consider read only memory (ROM) or read/write memory (com­
monly called RAM). ROMs usually have a write time much greater than
their read time (programmable ROMs have write times of the order of milli­
seconds), while RAMs have very similar read and write times. Both types of
memory may be further divided into static-load, synchronous, and asynchro­
nous categories. Static-load memories require no clock. Synchronous RAMs
or ROMs require a clock edge to enable memory operation. The address to a
synchronous memory only needs to be valid for a certain setup time after the
clock edge. Asynchronous RAMs recognize address changes and output new
data after any such change. Static-load and synchronous memories are easier
to design and usually form the best choice for a system-level building block,
because tpey can generally be clocked by the system clock.

The memory cells used in RAMs can further be divided into static struc­
tures and dynamic structures. Static cells use some form of latched storage,
while dynamic cells use dynamic storage of charge on a capacitor. We will
concentrate on static RAMs because they are easier to design and potentially
less troublesome than dynamic RAMs. Static RAMs tend to be faster (but
much larger) than dynamic RAMs.

A typical memory-chip architecture is shown in Fig. 8.48. Central to the
design is a memory array consisting of 211 by 2m bits of storage (actually 2n-k

by 2m+k). A row (or word) decoder addresses one word of 2mbits out of 2n-k

words. The column (or bit) decoder addresses 2k of 2m bits of the accessed
row. This column decoder accesses a multiplexer, which routes the addressed
data to and from interfaces to the external world.

8.3.1 Read/Write Memory

8.3.1.1 RAM

Figure 8.49 shows one row and one column of a generic RAM architecture with
the support circuits required by the RAM cell. The row decoder is a 1 of n-k
riPrnrlP.r whkh mav !!enerallv be thought of as an AND gate. One of the 2n-k

Micron Ex. 1037, p. 603
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 565

Row Decoder

2
n-1:k

Column Decoder

2
k-1:0

Address

Bit Line
Conditioning

Sense Amp
Column Mux
Write Buffers

write-data read-data

clocks

RAM cell

write
clocks

row lines is accessed at one time. The bit-line-conditioning circuitry, the ram­
cell, the sense amplifiers, column multiplexers, and the write buffers form a
tightly coupled circuit that provides for the hazard-free reading and writing of
the memory cell. The bit lines are normally run as complementary signals.
There are many variations of these circuits to achieve varying density/speed/
noise-margin requirements. We shall look at a variety of schemes for imple­
menting static RAMs. The column decoder is similar to the row decoder but is
a 1 of k decoder. k is normally less than n and the decoder drives a multiplexer
(rather than a selector). Frequently, the column decoder may be merged with
the column multiplexer.

Starting with the RAM cell itself, various circuits are shown in
Fig. 8.50. 19 The most commonly used in ASIC memories is the 6-transistor,
cross-coupled inverter circuit shown in Fig. 8.50(a). A typical mask-level
layout for a 6-transistor circuit is shown in Fig. 8.51 (also Plate 8). The
p-transistors may be replaced with high-value polysilicon resistors if the
process supports this option (Fig. 8.50b). The value of the resistor has to be
such that it prevents leakage from changing any value stored in the RAM
cell. Generally the resistors are in the lOO's to lOOO's of Megaohms. Delet­
ing one of the bit-line pass transistors results in a 5-transistor RAM cell.
Writing such a cell has to be considered carefully (see later in this section). A
4-transistor dynamic RAM cell may be achieved by deleting the p loads of
the static cell, as shown in Fig. 8.52(a). This cell and the other dynamic cells
have to be refreshed to retain the contents of the memory. A 3-transistor cell
is shown in Fig. 8.52(b). The cell stores data on the gate of the storage tran­
sistor. Separate read and write control lines are used. Multiple read-ports
may be added easily, by adding read transistors. In addition, separate or

FIGURE 8.49 Generic RAM
circuit

Micron Ex. 1037, p. 604
Micron v. YMTC
IPR2025-00119

566 CHAPTER 8 SUBSYSTEM DESIGN

-bit bit
(a)

Figure 8.50 Static RAM cell
circuits (b)

-bit bit

merged read and write data busses may be used. A I-transistor cell is shown
in Fig. 8.52(c).20 The memory value is again stored on a capacitor. The
capacitor can be implemented as a transistor as shown in Figs. 8.52(d) and
8.52(e). Sense amplifiers sense the small change in voltage that results when
a particular cell is switched onto the bit line. This type of cell (Fig. 8.52c)
forms the basis for most high-density DRAMs.21- 28 The cell shown in Fig.
8.52(d) can be implemented in a conventional two metal, single poly pro­
cess. The dominant problem that arises with this type of memory when used
in an ASIC process is the loss of the stored charge due to leakage or stray
substrate currents created by surrounding digital logic.

As far as the average CMOS-system design is concerned, the static
6-transistor cell should be used since it involves the least amount of detailed
circuit design and process knowledge and is the safest with respect to noise
and other effects that may be hard to estimate before silicon is available. In
addition, current processes are dense enough to allow large static RAM
arrays. As a general system-design principle, large amounts of memory
should only be included in a design if the performance of the system is
affected. Commercial RAM manufacturers are much better at designing
RAMs than the average system designer. If dense memory can be partitioned

Micron Ex. 1037, p. 605
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 567

off-chip with no performance degradation or cost impact, then this is a good
approach to take.

8.3.1.1.1 Static RAM-read

We will begin our examination of CMOS static RAMs by considering a read
operation. Imagine that the bit lines of the circuit shown in Fig. 8.49 are at
some value and that the word line is asserted. The one node on the memory
cell will attempt to pull the bit line up through the access transistor and the p
load. The zero node will attempt to pull the bit line down through the access
transistor and the n channel pull-down. As an n-channel transistor is poor at
passing a one and the p-channel transistors in the RAM cell are generally
small (or in the case of a resistive load, the resistors are very large), design of

FIGURE 8.51 Mask layout
for 6-transistor static RAM

Micron Ex. 1037, p. 606
Micron v. YMTC
IPR2025-00119

568 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.52 Dynamic RAM
circuits: (a) 4-transistor; (b) 3
transistor; (c) 1 transistor with
capacitor; (d) 1 transistor with
transistor capacitor; (e) rep­
resentative layout for (d)

-bit bit

(a)

bit

(c)

bit

(e)

write-+----------+--+­

read-+---------~-

write-data read-data

(b)

bit

(d)

the RAM circuit concentrates on pulling the bit line from high to low. Thus
one method of reading a RAM cell would be to precharge the bit lines high
and·then enable the word-line decoder. For a given pair of bit lines, one
RAM cell will attempt to pull down either the bit or -bit line depending on
the stored data. The bit-line pull-up circuit may use p-channel transistors to
precharge each bit line (Fig. 8.53a). In this example, the sense amplifier is an
inverter that forms a single-ended sense amplifier. The sense time is roughly

Micron Ex. 1037, p. 607
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 569

precharge

bit

data

(a)

precharge

bit

data

(b)

=1 \ bit, -bit

n word

I data

fl_ precharge

Voo -
bit,-bit

____[___ word

~I data

the time it takes one RAM cell pull-down and access transistor to reach the
inverter threshold. To optimize speed, one might set the inverter threshold
above the V DD midpoint, but below an adequate noise margin down from the
V DD rail. Alternatively, one can precharge the bit lines with n-channel tran­
sistors, which results in ~he bit lines being precharged to an n threshold down
from VDD (Fig. 8.53b). This can dramatically improve the speed of the RAM
cell access. In addition, it reduces power dissipation because the bit lines do
not change by the supply voltage. The key aspect of the precharged RAM
read cycle is the timing relationship between the RAM addresses, the pre­
charge pulse, and the enabling of the row decoder. If the word-line assertion
precedes the end of the precharge cycle, the RAM cells on the active word­
line will see both bit lines pulled high and the RAM cells may flip state. If

FIGURE 8.53 RAM read
options: (a) V00 precharge;
(b) V DfJ Vtn precharge

Micron Ex. 1037, p. 608
Micron v. YMTC
IPR2025-00119

570 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.54 RAM read oper-

the addresses change after the precharge cycle has finished, more than one
word line will be accessed and more than one RAM cell will have the chance
to pull the bit lines down, leading to erroneous READ data. Normally, RAM
designers generate a carefully designed timing chain than ensures the correct
temporal relationships between precharge, row access, and sense operations.

A RAM access method that does not require precharge is shown in
Fig. 8.54(a). Here n-channel load transistors pull up the bit lines statically.
When the word line is asserted, the bit line being pulled down by the RAM
cell, falls to a value that is a function of the pull-up size, the pass-transistor
size, and the RAM inverter pull-down size. At the same time, the pull-up
must not be able to flip the RAM cell. A differential amplifier is used to
amplify the bit-line difference. Figure 8.54(b) shows the equivalent circuit
of the pull-down circuit during a read operation. Voltage V1 must safely clear
the input threshold of the RAM cell inverters. A value of .5-1 Vis appropri­
ate. Voltage V2 yields the bit-line difference voltage, which must be ampli­
fied to detect a transition on the bit line. The size of the bit-line load
determines how fast the bit line can recover (to prevent false writes) after a
write operation where the bit line may have been driven to Vss· The sense
amplifier is designed in conjunction with the bit-line pull-up and RAM cell
to amplify this bit-line change. Design margins must be valid over all pro­
cess, temperature, and voltage extremes. Figure 8.55 shows the zero bit volt­
age (Vbit(O)) and the pull-down voltage (~Julldown) for various ratios of pull­
up beta to pull-down betas. As the pull-up becomes weaker, the Vbit(O) volt­
age approaches Vss and the differential voltage between a high and a low on
the bit lines increases. However, as the pull-down transistors are limited in
size by the desire to keep the RAM cell small, a design trade-off has to be
made between speed and the differential bit voltage, which affects the noise

--- bit, -bit

~word

data

ation model (a) {b)

Micron Ex. 1037, p. 609
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 571

5

4
1--------------------Vbit(1)

3

V(volts)

2

2 4 6 8
Pull- upBeta/SumPull-Down Betas

immunity of the cell and the write characteristics. To a first order, the bit-line
voltage (V2) is given by

1

l + ~pullup
~driver- eff

where ~pullup is the gain of the load and ~driver-eff is the gain of the combina­
tion of the pass and pull-down transistor in series. When the gain of the pull­
up is high compared with the pull-down path, the bit-line voltage rises
towards VDD - Vtn. When the gain of the pull-up is very small, the bit-line
voltage approaches zero. The pull-down voltage V1 is a result of resistive
divider action between the word-access transistor and the RAM-cell pull­
down. While these transistors are in the linear region, V1 is roughly given by

~
V _ V pass

I - 2 ·
~pass+ ~ pulldown

The RAM cell and the sense amplifier draw static current, which affects power
dissipation. Figure 8.56 shows typical SPICE waveforms for the word line, bit
lines, and sense amplifier. In this design the bit line pulls down to about
2 volts, while the bit-line high level is about 4 volts. During access, the RAM
cell low value is pulled up to about 1 volt, leaving about 1 volt of margin to the
switching point of the RAM cell inverter. The sense amplifier can be seen
starting to switch just as the bit lines start diverging. The period between word
line deassertion and bit nearing-bit is the recovery time (during which no other
word line should be asserted in order to prevent false writes).

FIGURE 8.55 RAM bit-line
voltage levels versus transis­
tor size for static pull-up RAM

Micron Ex. 1037, p. 610
Micron v. YMTC
IPR2025-00119

572 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.56 Static RAM­
read waveforms

word -bit

V(volts)

Sense Common

---------time

Current mode sensing may also be used.29•30•31 In this technique, the
current change in the bit lines is detected using special circuits. The theory is
that by using low-impedance circuits, the RC delay inherent in driving the
bit lines may be decreased.

8.3.1.1.2 Static RAM-write

The objective of the RAM write operation is to apply voltages to the RAM
cell such that it will flip state (a condition we do not desire during the read
operation). Figure 8.57(a) shows a straightforward write circuit. In this cir­
cuit, the write-enable transistors (N1,N2) are enabled to allow the data and
complement to move to the bit lines. The word line is then asserted (actually
the turn-on order is not important). Either the bit or -bit line is driven to V88,

while the other bit line is driven to a threshold down from VvD· Figure
8.57(b) shows a more detailed view of the situation. The figure shows a zero
stored in the cell. During a WRITE cycle where a one is to be written, node
-Cell has to be pulled below the RAM-cell inverter threshold and at the same
time node Cell has to be pulled abqve the RAM-cell inverter threshold. In the
former case, n-transistors Nv (the driver n-transistor), N1 (the write-access
transistor), and N3 (the word-access transistor) have to pull Pbit (the RAM
inverter pull-up) below the inverter threshold. In addition N5 (the bit-line
pull-up) has to be pulled low by N1 and Nv. On the other bit-line side, Pv, N2
and N 4 have to pull Nbit as high as possible. To augment the write operations
it may be necessary to use complementary write-access transistors, as shown
in Fig. 8.57(c). Correct WRITE operation must be verified over all process,
temperature, and voltage extremes. Figure 8.58 shows a plot of the wave­
forms during a WRITE operation. The SPICE circuit used to model the RAM
write operation is shown at the top of the figure. write-data and -write-data
were driven antiphase into the write transistors N2 and N6. The cell switches
when -write-data = 3V and write-data = 2V.

Micron Ex. 1037, p. 611
Micron v. YMTC
IPR2025-00119

-bit

write-data

(a)

(b}

-bit bit

write-data---<

(c)

bit

~write-data

_)_write

__fl___ word

bit,-bit

cell,-cell
'-----

8.3 MEMORY ELEMENTS 573

FIGURE 8.57 Static RAM­
write circuits: (a) n-channel
pass transistors; (b) circuit
model during write; (c) com­
plementary transmission gate
version

Micron Ex. 1037, p. 612
Micron v. YMTC
IPR2025-00119

574 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.58 Static RAM­
write waveforms and circuit
model

Ns

-bit bit

~ [
Wd\1 t-wdt
(a)

write-data

5 -write-data (bold)

4
bit

3

V(volts)

2

Vin (-Write-Data)

(b)

8.3.1.1.3 Row decoders

The simplest row decoder is an AND gate. Figure 8.59 shows two straight­
forward implementations. The first in Fig. 8.59(a) is a static complementary
NAND gate followed by an inverter. This structure is useful for up to 5-6
inputs or more if speed is not critical. The NAND transistors are usually
made minimum size to reduce the load on the buffered address lines because
there are 2n-k (N1oad + P1oad)'s on each address line. The second implemen­
tation, shown in Fig. 8.59(b), uses a pseudo-nMOS NOR gate buffered with
two inverters. The NOR gate transistors can be made minimum size, and the
inverters can be scaled appropriately to drive the word line. Large fan-in
AND gates can also be constructed from smaller NAND and NOR gates, as
shown in Fig. 8.59(c). Figure 8.60 shows two possible layout styles (in sym-

Micron Ex. 1037, p. 613
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 575

word<3> word<O>

word<2> word<1>

word<1> word<2>

word<O> word<3>

a<1> a<O> a<1> a<O>

~[: word
16/1

a1

ao

(a) (b)

word

(c)

bolic form) for the row decoders. One passes the address lines over the
decode gates, while the other uses a more standard cell style. Choice would
depend on the size of the decoder in relation to the size of the RAM cell.
Often, speed requirements or size restrict the use of single-level decoding,
such as that shown in Fig. 8.59. The alternative is a predecoding scheme,
which is il.lustrated in Fig. 8.6l(a). Here the (n-k) row address lines are split
into a p-bit predecode field and a q-bit direct decode field. The q-bit decode
field requires a gate per word line, so q is chosen to suit the pitch of the RAM
cell. The p-bit predecode field generates 2P predecode lines (4 in this exam­
ple), each of which is fed vertically to 2n-k_row decode gates (8 in this exam­
ple). Figure 8.6l(b) shows a possible implementation of a predecode
scheme, where the predecode gate is a NAND gate and the word-decode gate
is a NOR gate. An additional input (-elk) has been included in the NOR gate

FIGURE 8.59 Row-decoder
circuits: (a) complementary
AND gate; (b) pseudo-nMOS
gate; (c) cascaded NANO,
NOR gates

Micron Ex. 1037, p. 614
Micron v. YMTC
IPR2025-00119

Figure 8.60 Typical sym­
bolic layouts of row decoders

~~ ~~ ~~ H H
H H n H
H H H n
H n n " " n ~~ ~~ ~ H H H n H n n ~~ ~~ ~~ n n H n n H n H n n n n ~~
H ~~ H H H
H n n n ~~ n n H H ,\ H
~~ ~~ ~~ H ~~ H n H H H ,\

H H H
H

H
~~ n g H H

H n n H
~~ H n H H

~~ ,\
~~ H ~~ H n n H H n n H H H

NANO gate buffer inverter

(a)

address lines in poly (could be strapped with metal 2)

~\ programming via transistor placement

NANO gate buffer inverter

(b)

to allow the enabling of the gate, which is necessary to ensure correct timing
of the word signal. A slow rise time and fast fall time on a word-decode gate
might be advantageous because it ensures that any RAM cells on a word line
transitioning low are isolated before RAM cells on a high-transitioning word
line are accessed. Figure 8.6l(c) shows a pseudo-nMOS AND row decode
gate. Finally, Fig. 8.62 shows a few more row decoder circuits. Figure
8.62(a) shows some obvious ways of building large fan-in AND gates from
smaller fan-in gates. Figure 8.62(b) is a pseudo-nMOS decoder that mini­
mizes draw static power. Figure 8.62(c) shows a predecode scheme where
the predecode gates power the word-line driver.32 Figure 8.62(d) shows a
domino dynamic AND gate implementation.

8.3.1.1.4 Column decoders

The column decoder is responsible for selecting 2k out of 2m bits of the
accessed row. A tree decoder is shown in Fig. 8.63. Here the data is routed

Micron Ex. 1037, p. 615
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 577

Row Decode Gates

Predecode Gates word<7>

word<6>

word<5>

word<4>

word<3>

word<2>

word<1>

word<O>

a<1> a<2>

(a)

a<4> a<3>
a<2> a<1 > __ '--__./ 1-----word

-a<O> -elk

(b)

a<1> a<2> en

(c)

via pass gates enabled by the column-address lines. The address decoding is
in essence distributed. Decoders for bit and -bit lines are shown, although
one of these may be omitted for single-ended read operations. The read (and,
usually of lesser importance, write) operations are somewhat delayed by the
series-transmission gates. However, in comparison with gate delays these

FIGURE 8.61 Predecode
circuits: (a) basic approach;
(b) actual implementation;
(c) pseudo-nMOS example

Micron Ex. 1037, p. 616
Micron v. YMTC
IPR2025-00119

Figure 8.62 Various other
row decoder circuits:
(a) methods of building large
fan-in AND gates; (b) power
saving pseudo-nMOS gate;
(c) decoder powered;
(d) domino

(a)

(b)

(c)

(d)

usually are small for a low number of series transistors (2 to 4). Complemen­
tary transmission gates may also be used, if required, by either the read oper­

::itinn or write ooeration.

Micron Ex. 1037, p. 617
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 579

bil<7>

+----.- selected-data

to sense amps and write ckts

-bil<7>

+----+---selected-data

-a<D> -a<1 > -a<2>
a<D> a<1> a<2>

If the delay of the series-pass gates was troublesome, the decoder shown
in Fig. 8.64 could be used. Here a NAND decoder is employed on a bit-by­
bit basis to enable complementary transmission gates (single transistors may
be used where possible) onto a common pair of data lines. These are then
routed to a sense amplifier and write circuitry.

8.3.1.1.5 Sense amplifiers

Many sense amplifiers have been invented to provide faster sensing, smaller
layouts, and lower power-dissipation sensing. 33 The simple inverter sense
amplifier provides for low power sensing at the expense of speed. The differ­
ential sense amplifier can consume a significant amount of DC power
(Fig. 8.54). Alternatively, one can employ clocked sense amplifiers similar
to the SSDL gate shown in Fig. 5.40.

8.3.1.1.6 RAM timing budget

The critical path in a static RAM read cycle includes the clock to address
delay time, the row address driver time, row decode time, bit-line sense time,
and the setup time to any data register. The column decode is usually not in

FIGURE 8.63 Tree-style
column decoder

Micron Ex. 1037, p. 618
Micron v. YMTC
IPR2025-00119

Figure 8.62 Various other
row decoder circuits:
(a) methods of building large
fan-in AND gates; (b) power
saving pseudo-nMOS gate;
(c) decoder powered;
(d) domino

(a)

(b)

(c)

(d)

usually are small for a low number of series transistors (2 to 4). Complemen­
tary transmission gates may also be used, if required, by either the read oper­
ation or write operation.

Micron Ex. 1037, p. 619
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 579

bil<7>

+------.- selected-data

to sense amps and write ckts

-bil<7>

-------------- -selected-data

-bil<1>

-a<O> -a<1> -a<2>
a<O> a<1> a<2>

If the delay of the series-pass gates was troublesome, the decoder shown
in Fig. 8.64 could be used. He~e a NAND decoder is employed on a bit-by­
bit basis to enable complementary transmission gates (single transistors may
be used where possible) onto a common pair of data lines. These are then
routed to a sense amplifier and write circuitry.

8.3.1.1.5 Sense amplifiers

Many sense amplifiers have been invented to provide faster sensing, smaller
layouts, and lower power-dissipation sensing.33 The simple inverter sense
amplifier provides for low power sensing at the expense of speed. The differ­
ential sense amplifier can consume a significant amount of DC power
(Fig. 8.54). Alternatively, one can einploy clocked sense amplifiers similar
to the SSDL gate shown in Fig. 5.40.

8.3.1.1.6 RAM timing budget

The critical path in a static RAM read cycle includes the clock to address
delay time, the row address driver time, row decode time, bit-line sense time,
and the setup time to any data register. The column decode is usually not in

FIGURE 8.63 Tree-style
column decoder

Micron Ex. 1037, p. 620
Micron v. YMTC
IPR2025-00119

580 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.64 Decoded
column decoder

bik3>

-bik3>

bit<3>

-bik3>

bik3>

-bik3>

bit<3>

-bit<3>

~------DATA

.--------DATA

to sense amp and write ckts

the critical path because the decoder is usually smaller and the decoder has
the row access time and bit-line sense time to operate. The write operation is
usually faster than the read cycle because the bit lines are being actively
driven by larger transistors than the memory cell transistors. However, the
bit lines may have to be allowed to recover to their quiescent values before
any more access cycles take place. In the static load RAM, this speed
depends on the size of the static pull-up. Apart from carefully sizing transis­
tors, the RAM speed may be increased by pipelining the row decode signal.

8.3.1.2 Register Files

Register files are generally fast RAMs with multiple read and write ports.
C:onventional RAM cells may be made multiported by adding pass transis-

Micron Ex. 1037, p. 621
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 581

tors. Such a configuration is shown in Fig. 8.65(a). A single-write-port, dou­
ble-read-port memory is shown. For a cross-coupled inverter RAM cell, the
write lines generally have to be differential. However, the read lines can be
single ended. Figure 8.65(b) shows a modified RAM cell with a single write
port and two read ports. This general technique has been used on a 17-port
register file that had an overall bandwidth of 1.4 Gigabytes/s.34

An alternative register file structure that can be easily changed for a
wide variety of read and write ports is shown in Fig. 8.66.35 Figure 8.66(a)
shows a single-write-port, double-read-port cell. The write port is a single­
ended implementation where the write pass transistor (N1) is used to over­
drive a weak feedback inverter (N3,P3). The threshold of storage inverter
(N2,P2) is biased towards Vss by increasing the size of N2 with respect to P2
to aid in the writing of the cell. The storage inverters drive a buffer inverter
(N4,P4) which in turn drives two read lines through pass transistors (N5,N6).

Additional read ports are constructed by adding transistors at the output of
inverter (N4,P 4) and adding additional read-row decode lines. Additional
write lines are added by adding transistors that drive inverters (N2,P2) and
(N3,P3). A benefit of this design is that no matter what load appears on the
output of the buffer inverter, the state of the memory cell can not be flipped.

write ---t--1------i--+---+-_._-------+---+-+-+--+--+­

readO --+-1---1-+--+-----------+--+-+--t--1-
read1 ---1--<>--J--+-----------+--+--+--1-

-rbit1 -rbitO -wr_data wr_data rbitO rbit1

(a)

write ----+-+--+--+-------------e--+--+--+-­

readO ----+-+--+-----------+---.--+--­

read1 ----1--+---t----------+----1----

-rbit1 -wr_data wr_data rbitO

(b)

FIGURE 8.65 Multiported
(2R-1W) RAM cell: (a) fully
differential; (b) single-ended
read

Micron Ex. 1037, p. 622
Micron v. YMTC
IPR2025-00119

582 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.66 Expandable
register file cell: (a) row
accessed; (b) column
accessed and row accessed

wr-b-addr<3:0>

rd-a-addr<3:0>

rd-b-addr<3:0>

write-data read-dataO read-data 1

(a)

write-enable (row) ---t---t--t---+-----------+--+-1--+-----------+-+
readO --+---t--+-+-----------+--ic------------+-+
read1 --+---+------------+--i:--------------+

write-enable (column)

(b)

The design in Fig. 8.66(a) is used where there is no column multiplexing.
The version shown in Fig. 8.66(b) is used where column multiplexing is
required. An additional transistor (two in this design for symmetry) is added
per column to enable a column for writing.

8.3.1.3 FIFOs, UFOs, S/POs

Using the basic RAM memory cell, multiport register cells, or variations of
these, a variety of special-purpose memories can be constructed.

A First In First Out (FIFO) memory is useful for buffering data between
two asynchronous data streams. Figure 8.67 shows a block diagram that out­
lines the operation of a FIFO. A stream writes into the FIFO when a WRITE

Micron Ex. 1037, p. 623
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 583

Write-Data Read-Data

Write-Address Read-Address

Write-Clock Read-Clock

Full Empty

clock is asserted and observes a FULL flag, which is raised when the FIFO
can accept no more input data. Another stream reads data when a READ
clock is asserted until an EMPTY flag is asserted. Ideally, the two ports can
read and write independently. Due to other system delays and latencies it
may be desirable to have ALMOST-FULL and ALMOST-EMPTY flags so that
impending fullness or emptiness can be communicated. The simplest imple­
mentation of a FIFO uses a dual port RAM or register file with a read and
write counter. An example design of the addressing logic that is useful for
synchronous read and write signals is shown in Fig. 8.68. Two counters con­
trol the read pointer (RP) and the write pointer (WP) that are addresses to the
dual port memory. A further difference circuit is incremented, in the case of
a write, or decremented, in the case of a read. The output of this counter is
examined to determine the EMPTY and FULL flags. In this case a ZERO
detect determines when the FIFO is EMPTY. Alternative implementations of
FIFOs may use distributed forms of row decoders, where full and empty bits
are propagated by serial shift registers in the word direction of the memory.

A Last In First Out (LIFO) memory, or push-down stack, is of use in
such applications as subroutine stacks in microcontrollers. In common with
FIFOs, regular RAMs or register files may be used or special distributed row
decoders may be designed as the address pointer moves sequentially from
row to row. The former usually are more straightforward to design, while the
latter may save some space. (See also Section 9.2.4.3.)

A Serial In Parallel Out (SIPO) memory is of use to convert serial data
to a parallel form. These memories are often of use in signal-processing
applications. An example of the memory cell used in this type of memory is
shown in Fig. 8.69. Data is shifted in at a high rate via the complementary
clocks elk and -elk, which should be nonoverlapping to prevent data
feedthrough. Data may be read in parallel through access transistor N1 with
an appropriately timed clock pulse (i.e., when the Q data is valid).

8.3. 1.4 Serial-Access Memory

Serial-access memories (shift registers) are also of use in signal-processing
applications for storage and delaying signals. A serial-access memory may

FIGURE 8.67 FIFO inter­
face signals

Micron Ex. 1037, p. 624
Micron v. YMTC
IPR2025-00119

584 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.68 f I FO address
control design

10-bit

0

s

read ,_,_,>----+-~

write H->>-----l--'

0

REG
10-bit

REG
10-bit

q

q

incrementer

10

incrementer

decrementer

incrementer

~-r-~~~~~~~~~-1-10~-ZERO

be simulated by a RAM, and probably for most applications this provides the
smallest implementation because the CMOS static RAM cell is a very area­
efficient structure. However, the RAM is surrounded by peripheral circuits,
such as row and column decoders and sense amplifiers, and in the case of a
serial-access memory, a counter. In some circumstances, a dedicated shift­
register memory may be appropriate from a density, speed, or floorplanning
viewpoint. (See Chapter 9.)

Micron Ex. 1037, p. 625
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 585

2/4 2/4

211 i--__ _,

Clk B J
Clk.L 8>----------------~

delay<5> delay<4> delay<3> delay<2> delay<1> delay<O>

dout

32-stage SR 16-stage SR 8-stage SR 4-stage SR 2-stage SR 1-stage SR

(a)

D _,

(b)

Figure 8.70(a) shows an example of a 64-byte tapped delay line that
might be used in a video processing system. Blocks of byte-wide shift regis­
ters are delayed by 32, 16, 8, 4, 2, and 1 clock cycles, and multiplexers con­
trol the pass-around of the delay blocks to yield the appropriate delay
amount. Each memory cell is a shift register, as shown in Fig. 8.70(b). A typ­
ical layout for the shift register cell is shown in Fig. 8.70(c). Here the
2-phase clocks are run horizontally between bits of the shift register. The
horizontal metal2 power busses are run over the transistors.

8.3.2 Read Only Memory

Read Only Memory cells may be implemented with only one transistor per
bit of storage. A ROM is a static memory structure in that the state is retained

FIGURE 8.69 SIPO cell
design

FIGURE 8.70 Tapped delay
line: (a) architecture;
(b) circuit; (c) symbolic layout

Micron Ex. 1037, p. 626
Micron v. YMTC
IPR2025-00119

586 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.71 Basic ROM
architecture

indefinitely-even without power. A ROM array is usually implemented as a
NOR array, as shown in Fig. 8.71. Note that a NAND array may be used if
ultra-small R0Ms36•37 are required, but as discussed in Chapter 5, these
implementations will be quite slow.

The.electrical details of the NOR structure may embody any of the NOR
gate structures studied so far, including the pseudo-nMOS NOR and the
domino NOR gate. One problem with the domino gate is that the pull-down
path passes through two transistors, one the programmed transistor and the
other the virtual ground pull-down. This can slow the bit-line transition for
large ROMs. A dynamic CMOS alternative to the domino NOR is shown in
Fig. 8.72. Here the word lines are forced low while the bit lines are being
precharged. This ensures that DC current does not flow. After the bit-line
pull-ups have been turned off, the word-line drivers are asserted and one
word line is active. The timing chain to ensure this sequence of events has to
be carefully designed and simulated. Where DC power dissipation is accept­
able and the speed is sufficient, the pseudo-nMOS ROM is the easiest to
design, requiring no timing. The DC power dissipation may be significantly
reduced by turning the pull-ups on according to the column address decod­
ing. Figure 8.73 shows an example of this where only one bit line in four is
being pulled up at any one time. Row decoders for ROMs are similar to those
for RAMs except that they are usually. very constrained by the ROM bit
pitch. This usually means that some form of a predecode structure is
required. Column decoders for ROMs are usually simpler than those for

Row Decoder

data<O> data<1> data<2>

Micron Ex. 1037, p. 627
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 587

ROW NOR
Array

Row Predecode

precharge

bit line

Column Decode Signals

I I .><}---data

Column Mux

Row Decoders Column Decoders

RAMs because only read operations are employed and single-ended sensing
is usually employed.

Mask programmability may be achieved via contact programming, pres­
ence or absence of a transistor, or an implant to turn a transistor permanently

Figure 8. 72 Dynamic ROM
circuitry

FIGURE 8.73 A power­
saving ROM circuit

Micron Ex. 1037, p. 628
Micron v. YMTC
IPR2025-00119

588 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.74 ROM layouts:
(a) circuit; (b) poly word lines;
(c) poly and meta12 strapped
word lines

off or on. Other technology options may be possible, such as electrically
erasable random access memories.

Several symbolic layouts for ROM cells are shown in Fig. 8.74, along
with a programming techinque. Running word lines in polysilicon is only
appropriate for slow speed ROMS or (perhaps) silicided poly. In a micro­
code ROM in a microprocessor, transistor programming would be prefer­
able, because this would minimize the dynamic power dissipation (less
capacitance on word lines). It can also affect speed if the load on word lines
can be balanced in a sparse ROM~ In a generic circuit that is mask-program­
mable, metal programming may be desirable. Strapping the poly with
metal2 every 4 to 8 ROM sites is appropriate for higher speed ROMs
(Fig. 8.74c).

bit<3> bik2> bik1> bit<O>

(a)

(b)

Micron Ex. 1037, p. 629
Micron v. YMTC
IPR2025-00119

8.3 MEMORY ELEMENTS 589

8.3.3 Content-Addressable Memory

A content addressable memory38•39 is shown in Fig. 8.75(a). The CAM por­
tion examines a data word and compares this data with internally stored data.
If any data word internally matches the input data word, the CAM signals
that there is a match. These match signals can be passed as word lines to a
RAM to enable a specific data word to be output (Fig. 8.75b). This structure
may be used as a translation look-aside buffer in the virtual memory lookup
in a microprocessor.

A typical CMOS CAM memory cell is shown in Fig. 8.76(a). It consists
of a normal static RAM cell with additional transistors N 1 and N2, which
form an XOR gate, and N3 , which is a distributed NOR pull-down. The
memory cell may be written and read in the conventional manner. Writes are
used to store the match data in the cells, whereas reads are used for testing
purposes. A MATCH operation proceeds by placing the data to be matched
on the bit lines but not asserting the word line. A 1 appears on the gate of N3
if the data in the cell is not equal to the data on the bit lines. The drains of N3
transistors of cells in the same row are commoned, as shown in Fig. 8.76(b).
These form a distributed NOR gate, which may be dynamic (with appropri­
ate timing) or pseudo-nMOS (if speed is not critical). Each match line
(match<3 :0>) remains high if the data in the row matches the data placed on
the bit lines. These lines may be used to assert the word lines on a RAM.

CAM Memory Array

Data _____ _,

Nm bit words

(a) Match

CAM Memory Array

Data In ____ _,

Nm bit words

CAM match lines I RAM word lines

RAM Memory Array

,___ ____ Data Out

N k bit words

(b)

FIGURE 8.75 CAM architec­
ture: (a) basic CAM;
(b) typical application as
translation lookaside buffer

Micron Ex. 1037, p. 630
Micron v. YMTC
IPR2025-00119

590 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.76 CAM: (a) cell;
(b) array circuit

-bit

(a)

Row Decoder
for writing and
reading CAM cell

(b)

bit

Match Data In Read Data (Test)

Normal RAM Read/Write Circuitry

CAM cells

match-precharge

Another NOR gate, which looks at all the match lines, yields an overall
match signal.

8.4 Control

While arithmetic and memory structures benefit from regularity, control
structures usually do not. They perennially form the really hard part of a
design-the part that takes the longest time to design, verify, and test. Usu-

Micron Ex. 1037, p. 631
Micron v. YMTC
IPR2025-00119

ally the control portion of a design is also the last to solidify in the design
cycle. Thus it is prudent to look for methods of designing control structures
that are highly automated and therefore quick to design. This section begins
with a discussion of finite-state machines (FSMs) and then examines various
methods for implementing these and other control structures.

8.4.1 Finite-State Machines

A finite-state machine (Fig. 5.43a) provides an organized structure for cap­
turing control sequencing and operation. Diagrammatically, a state machine
may be represented by a state-transition diagram (or graph) in which the
labelled nodes of the graph represent states and the labelled directed arcs
represent transitions between states. A state-transition diagram can be con­
structed in which the nodes are drawn as circles and the transitions are drawn
as lines with arrows. Two basic types of state machines can be designed. A
Mealy state machine uses logic to determine the outputs from the inputs and
the current state, stored in state registers. A Moore machine determines the
outputs from the current state alone. Figure 8.77 shows the two types of
machine.

8.4. 1. 1 FSM Design Procedure

While the design of complex state machines is liable to be machine assisted,
small state machines may be designed by hand. As an example, a state
machine that might control a toll-booth on a highway will be used. In the idle
state, the tollbooth, with its gate lowered and its green "proceed" light off,
awaits a car. When a car enters the tollbooth, a pressure sensor detects the car
and passes a signal to the controller. The controller then awaits the correct
toll signal and on receiving this, raises the gate and turns the green light on.
When the car exits the tollbooth, the controller reenters the idle state (green
light off and gate down).

The following steps are illustrative of the design of a state machine to
perform this function.

1. Draw the state-transition diagram

First the state machine is captured in a state-transition diagram. The inputs to the
controller are three signals: a RESET (R for short) signal, a CAR-IN-BOOTH (A
for short) signal (indicating the car is in the tollbooth), and the CHANGE-OK (C
for short) signal indicating the correct toll has been tendered. There is one output
from the controller, the GREEN-LIGHT signal used to raise the gate and tum the
green light on. The example above may be represented by three states: the IDLE
state, the WAIT-FOR-COIN state and the WAIT-FOR-CAR-TO-EXITstate. These
are represented as circles in Fig. 8.78(a). Arcs are drawn between states to repre­
sent the state transitions. For example, when the controller is in the IDLE state it

8.4 CONTROL 591

Micron Ex. 1037, p. 632
Micron v. YMTC
IPR2025-00119

592 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.77 Mealy and
Moore state machines

feedback

inputs--+-----<

MOORE MACHINE

feedback

inputs,--.----1--1

MEALY MACHINE

transitions to the WAIT-FOR-COIN state when there is a car in the booth (i.e., the
input CAR-IN-BOOTH or A, is true). When CAR-IN-BOOTH is false, the IDLE
state loops to itself (-A). Additionally, the RESET signal causes the IDLE state to
be entered.

2. Check the state diagram

There are some simple checks that may be made on the state-transition dia­
gram. These are as follows:

A. Ensure that all states are represented, including the IDLE state.

B. Check that the OR of all transitions leaving a state is TRUE. This is
a simple method of determining that there is a way out of a state once
entered.

C. Verify that the pairwise XOR of all exit transitions is TRUE. This
ensures that there are not conflicting conditions that would lead to
more than one exit-transition becoming active at any one time.

Micron Ex. 1037, p. 633
Micron v. YMTC
IPR2025-00119

IDLE RESET

WAIT-FOR-CAR-TO-EXIT

c

(a)

S1

s~=tJ
-R

S1

-S1 -S1

-s~§=J -s~§::J -SO -so -R -C§=J so -R so
-C=o so -so so -SO

-S1
-R

-R

A*=-A A*=-A C -C C -C
R -R R -R

(b) (c)

D. Insert loops into any state if it is not guaranteed to otherwise change
on each cycle. In other words, if a machine enters a state and stays
there until some condition occurs, insert the appropriate transition,
which is a loop to the state itself. For instance, in the WAIT-FOR­
COIN state, if the toll is not correct, the controller stays in the WAIT­
FOR-COIN state.

3. Write the state equations

For each transition, the state equation may be represented as follows:

if(state == oldstate & condition) next-state = newstate

8.4 CONTROL 593

FIGURE 8.78 State-
machine transition diagram

Micron Ex. 1037, p. 634
Micron v. YMTC
IPR2025-00119

594 CHAPTER 8 SUBSYSTEM DESIGN

For instance, for the state transition diagram shown in Fig. 8.78, the state
equations may be written as

next-state IDLE when state==IDLE & !CAR-IN-BOOTH
OR state==WAIT-FOR-CAR-TO-EXIT & !CAR-IN-BOOTH

next-state WAIT-FOR-COIN when state==IDLE & CAR-IN-BOOTH
OR state==WAIT-FOR-COIN & !CHANGE-OK

next-state WAIT-FOR-CAR-TO-EXIT
when state==WAIT-FOR-COIN & CHANGE-OK
OR state==WAIT-FOR-CAR-TO-EXIT & CAR-IN-BOOTH

The first state equation states that the next state is IDLE if any of the fol­
lowing conditions are true:

The current state is IDLE and the input CAR-IN-BOOTH is false.

The current state is WAIT-FOR-CAR-TO-EXIT and the input CAR-IN­
BOOTH is false.

4. Assign the states

The minimum number of state bits that can represent a state machine is log2K
where K is the number of states. To ease the problem of state assignment, more
states than the minimum may be used. In this example, there are three states,
so two state bits (S1,S0) are required. Alternatively, unary state assignment
would require three bits. The following design guidelines are useful:

A. Assign the ZERO state (S1,S0=0,0) to the most complex state (state
IDLE).

B. Assign the adjacent states in a Gray code manner (such that they dif­
fer by one bit).

C. Otherwise assign states to minimize logic.

Thus for this example an assignment would be:

IDLE 0 0
WAIT-FOR-COIN 0 1

WAIT-FOR-CAR-TO-EXIT 1 0

The state assignments are labelled at the center of each state (the bolded cir­
cles) in Fig. 8.78. At this point a truth table may be constructed that describes
the state machine (see Table 8.8).

Each line of Table 8.8 describes an arc on the state-transition diagram.
For instance, the first row shows that the IDLE state is entered (00) when
RESET is set to 1. The second line shows that when in state IDLE, the next
state is IDLE if there is no car in the tollbooth. The CHANGE-OK is a don't-

Micron Ex. 1037, p. 635
Micron v. YMTC
IPR2025-00119

TABLE 8.8 Tollbooth-state table

current state

reset car-in-booth change-ok state<l> state<O>

1 x x x x
0 0 x 0 0
0 1 x 0 0
0 x 0 0 1
0 x 0 1
0 1 x 1 0
0 0 x 1 0

care in this case. Examining the state bits one by one, logic equations may be
written for each bit. For instance,

next-state<O>

next-state<l>

!reset & car-in-booth & !state<O> & !state<l>
+ !reset & !change-ok & state<O> & !state<l>
!reset & !change-ok & state<O> & !state<l>
+ !reset & car-in-booth & !state<O> & !state<l>

The logic for any outputs must also be generated. In this example, the
output GREEN-LIGHT is simply state<l>. Notice that the state assignment
may have been done in a way that would have necessitated some logic to
decode this signal (i.e., state WAIT-FOR-CAR-TO-EXIT= 11).

5. Construct the resulting logic and registers

The resulting logic and registers are shown in Fig. 8.78(b). This may be sim­
plified to yield the design in Fig. 8.78(c).

8.4.2 Control Logic Implementation

Control logic in CMOS is constructed in two main ways, with two-level
sum-of-products logic and with multilevel logic. Two-level sum-of-products
representations have a straightforward geometric implementation in the
form of a Programmable Logic Array (PLA). Both two-level and multilevel­
logic may be implemented in terms of CMOS logic gates (either static or
dynamic).

8.4.2. 1 PLA Control Implementation

A programmable logic array (PLA) is a structure that provides a regular
structure for implementing combinatorial and sequential logic functions. A

8.4 CONTROL 595

next state

state<l> state<O>

0 0
0 0
0
0 1

0
1 0
0 0

Micron Ex. 1037, p. 636
Micron v. YMTC
IPR2025-00119

596 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.79 PLA Architec­
ture

PLA may be used to take inputs and perform some combinatorial function of
these inputs to yield outputs, or additionally some of the outputs may be fed
back to the inputs via registers, thus forming a finite-state machine. Two­
level logic minimization is a well-understood problem. The program
Espresso40 is representative of programs that minimize sum-of-products
forms.

A typical PLA uses a two-level sum-of-products AND-OR structure
similar to that shown in Fig. 8.79. This implementation also shows clocks to
latch inputs and outputs. The basis of a PLA is a sum-of-products form of
representation of binary expressions. For example, consider the following
expressions that have to be evaluated:

ZQ =Xo

z1 = x1 + (-xo. -xi . -x2)

Z2 = -X1. -X2

z3 = (-x0 . -x1 . x2) + (-x0 . x 1 . -x2)

where z0, z1, z2, and z3 are the four output terms (or sums) and x0, x1,

and x2 are the input variables. There are five product terms, namely, x0, x1,

-xo . -x1 . x2, -x1 . x2, and -xo . x 1 . -x2. Thus these terms would be formed
in the AND array of the PLA, as shown in Fig. 8.80. The four outputs are
formed by ORing the appropriate product terms. Normally, high-speed PLAs
are implemented as two NOR arrays, as shown in Fig. 8.79 (although NAND
arrays may be used for slow applications). By using inverting inputs and out­
puts, the AND-OR structure is maintained.

The electrical design of a CMOS PLA depends on the generic style of
PLA. A straightforward physical implementation for a PLA is represented

input~

~~ output

!
input

output

NOR NOR

elk latch/buffers elk latch/buffers

inputs outputs

Micron Ex. 1037, p. 637
Micron v. YMTC
IPR2025-00119

Zo = Xo

Z1 = X1 + (-Xo·-X1 .-X2)

Z2 =-X1--X2

Z3 = (-Xo--X1 .X2) +(-Xo.X1 .-X2)

Sum of Products Form

AND PLANE OR PLANE

Inputs

.,, .;
~ Q_

'.,,

Q_

Outputs

X1

Xo

-Xo.X1·-X2

-X1--X2

-Xo.X1·-X2

by Fig. 8.80. Variations of this involve multiple-sided access (Fig. 8.81) and
various folded structures.

A generic floorplan for a "simple" PLA is shown in Fig. 8.82. This has
been designed as a set of tiles, designated by letters. In the treatment of var­
ious circuit options this naming convention will be used to designate partic­
ular cells. Brief descriptions of the cells are as follows:

AN AND-plane programming cell

OR OR-plane programming cell

v)

~
y
Q_

8.4 CONTROL 597

FIGURE 8.80 PLA example

FIGURE 8.81 Multisided
PLA access

Micron Ex. 1037, p. 638
Micron v. YMTC
IPR2025-00119

598 CHAPTER 8 SUBSYSTEM DESIGN

TL Tl Tl TM TO TO TR

LA AN AN AO OR OR RO

LA AN AN AO OR OR RO

BL Bl Bl BM BO BO BR

FIGURE 8.82 Generic PLA
floorplan

Figure 8.83 Pseudo-nMOS
PLA

AO AND-OR communication cell

TI Top AND-plane input cell

BI Bottom-AND plane input cell

TO Top OR-plane output cell

BO Bottom OR-plane output cell

LA Left AND-plane cell

RO Right OR-plane cell

BL Bottom-left cell

BM Bottom-middle cell

BR Bottom-right cell

TL Top-left cell

TA Top AND cell

TM Top-middle cell

TO Top OR cell

TR Top-right cell

The most straightforward PLA design uses a pseudo-nMOS NOR gate.
Figure 8.83 shows the circuit diagram with the key cell positions identified.
Cell AO can either be a layer-change cell or can be used to buffer the AND
array outputs. Figure 8.84 shows a PLA for the tollbooth example. Design of

LA

~
LA

clock2

IN OU

IN OUT0 OUT1

Micron Ex. 1037, p. 639
Micron v. YMTC
IPR2025-00119

J
'-~~---,-~-t---t--,--~---t--~-,-,r-t----cril--~~-r--~--,

J
'-~r-t--~~-t---t-,-~--t-~+--r-+--r-t--~---.-t-~~-t-~-

J
'-+---+--~~-t--.---+-,-~--t-~+--t-~l--,~~-t-~~

c A R

elk

the pseudo-nMOS NOR gates would follow the guidelines given in previous
chapters. Advantages of this PLA include simplicity and small size. Disadvan­
tages occur due to the static power dissipation of the NOR gates and possible
speed problems (the pull-ups may become slow on large terms). Any conve­
nient register may be used; a static register is shown. This PLA could be fairly
independent of the overall system-clocking strategy. Cells TL, TA, BL, BM,
TM, TR, RO, and BR are used to route power and clocks as necessary.

By using dynamic CMOS, the circuit shown in Fig. 8.85(a) may be
used. Both the AND plane and OR plane have to be supplied with clocks
similar to those shown at the bottom of the diagram (Fig. 8.85b). On the ris­
ing edge of the clock the input latches store the input data. Following this the
AND and OR planes are precharged and then evaluated. When the AND
plane outputs are valid, the OR plane may be evaluated. The waveforms in
Fig. 8.85(b) may be generated from a multiphase clock or, more probably, in
a single-phase clocking scheme by self-timed circuits. Figure 8.86 shows
some possible circuits for self timing the PLA operation. The AND pre­
charge may be timed of the rising edge of the clock and the worst case time
it takes an AND line to pullup. This may be accomplished by using the cir­
cuit shown in Fig. 8.86(a), which uses a dummy AND row. This row has
every AND programming transistorinserted (NPD) to ensure the load capac-

8.4 CONTROL 599

FIGURE 8.84 PLA for toll­
booth example

Micron Ex. 1037, p. 640
Micron v. YMTC
IPR2025-00119

600 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.85 Dynamic PLA

discharge AND

elk -elk elk -elk

Inputs

(a)

elk

precharge AND u
discharge AND LJ

precharge OR

discharge OR
(b)

precharge OR ---<>+-----a

precharge AND

discharge OR ---H---+---i

-elk elk -elk

Outputs

itance (Cload) is a maximum. In addition, the p pull-up (PU) is made smaller
than the normal p pull-ups to give some timing margin. An inverter and a
NAND gate complete the timing circuit. The OR precharge clock may be
self-timed using the circuit shown in Fig. 8.86(b). Here a dummy AND row

Micron Ex. 1037, p. 641
Micron v. YMTC
IPR2025-00119

precharge AND

elk

Dummy AND row

(a)

precharge AND

precharge OR

Input Lines

(b)

is used to determine the worst-case fall time of an AND row. The row is fully
populated, with transistors turned off. One smaller-than-normal n pull-down
(Nweak) in conjunction with a smaller-than-usual ground switch (Nswitch) is
used to pull down the heavily loaded AND line. This is delayed by a few
inverters and fed to the OR-place precharge/discharge.

A single-clock PLA that combines a pseudo-nMOS AND plane and a
dynamic OR plane is shown in Fig. 8.87.41 When the clock is high, the OR
plane is precharged while all the product ter~s are forced low by the clocked
n-transistor in the AND plane. When the clock transitions low, the product
terms conditionally evaluate and then the precharged OR-plane outputs eval­
uate. The AND plane-transistor ratios are designed according to normal
pseudo-nMOS techniques. The inputs must be held constant during the
period when the clock is low. This PLA cuts down on the DC dissipation of
a fully pseudo-nMOS PLA;while requiring only one clock.

In general PLAs have not found as much acceptance in CMOS as in
nMOS technologies. This is due to a number of reasons, some due to CMOS
technology and some to the passage of time:

• PLAs have a fixed fioorplan and fairly fixed 1/0, so extra routing often
overshadows any area benefit.

• Dynamic PLAs are cumbersome to design in CMOS, whereas pseudo­
nMOS PLAs dissipate DC power.

8.4 CONTROL 601

FIGURE 8.86 Self-timed
PLA circuits: (a) AND pre­
charge; (b) OR precharge

Micron Ex. 1037, p. 642
Micron v. YMTC
IPR2025-00119

602 CHAPTER 8 SUBSYSTEM DESIGN

Figure 8.87 Hybrid
dynamic pseudo-nMOS PLA

-clk----41---d

elk

IN

• PLAs are not very compatible with Gate Array technologies, which
are popular for ASICs.

• Automatic multilevel logic synthesis has improv'ed dramatically.

• Processes are smaller, hence logic gates are cheaper.

• Large PLAs can be slow.

However, PLAs are compact in themselves and provide a very straightfor­
ward way to automate the generation of control logic.

8.4.2.2 ROM Control Implementation

Frequently, control structures may be implemented as a sequenced ROM. A
ROM is a special case of a PLA where the AND plane is fully populated.
Figure 8.88 shows a simple example of a ROM controller that has a condi­
tion-code input and a jump capability implemented by a mux. The ROM has
five fields: a next-address field, which provides the next address to the ROM
if a branch is not taken; a jump-address field, which is the address taken if
the condition code is true; a condition-code select field, which selects which
of a number of external conditions to select and the polarity; and an output
field, which provides control outputs. Programming consists of writing a
microprogram that controls the values of different fields of the ROM. For
instance, for the tollbooth example the symbolic microcode might be given
as in Table 8.9.

Micron Ex. 1037, p. 643
Micron v. YMTC
IPR2025-00119

ROM
1--------------<r---- jump-address
o----------+---i,__ next-address

Data 0---------.---+--<c--- condition-code-select
1---------.--1--+-1,__ condition-code-polarity
o----+-----1--1--+--<- condition-code-enable address

1---+--+- car- in -booth
1---+--+- change-ok

Here an instruction field has been constructed from the condition-code
field as follows:

nop = select true input 00

car-in-booth= select car-in-booth input 01

change-ok = select change-ok input 10

The polarity of the condition controls the XOR gate.
If a metal-programmed ROM is constructed, then a readily changed

microsequencer may be constructed. With the addition of a simple datapath,
the microsequencer can be extended into a more general microcontroller,
which can be used in many low-speed control applications. Megacell librar­
ies frequently contain core microcontrollers that implement standard instruc­
tion sets that are supported by a wealth of software.

TABLE 8.9 Symbolic Microcode for the Tollbooth Example

ADDRESS LABEL INSTRUCTION JUMP-ADDRESS OUTPUT

0 idle: nop
1 !car-in-booth jmp idle
2 cib: change-ok jmp exit

3 nop jmp cib

4 exit: !car-in-booth jmp idle green
5 car-in-booth jmp exit green

8.4 CONTROL 603

FIGURE 8.88 ROM micro­
controller

Micron Ex. 1037, p. 644
Micron v. YMTC
IPR2025-00119

604 CHAPTER 8 SUBSYSTEM DESIGN

8.4.2.3 Multilevel Logic

The most commonly used method for implementing control logic in CMOS
is to use multilevel logic, that is, cascaded groups of regular gates such as
INVERTERS, BUFFERS, NANDs, NORs, XORS, and AOis. There are
many CAD systems available today that will automatically minimize the
logic for a set of Boolean equations or other algorithmic description. Fur­
thermore, some design systems can do state assignment and can synthesize
state machines from a high-level description. After a set of gates have been
generated, automatic layout programs can produce a layout in gate-array or
standard-cell technology. Even in full-custom chips, this is now a preferred
method of generating control logic for the following reasons:

• Standard-cell logic is fluid in shape and can be "reflowed" into gaps
that occur in chip layouts due to fixed blocks like memories and data­
paths.

• The designer (or synthesis program) has a large amount of control
over speed through basically fast gates, gate sizing, and the ability to
trade area for speed.

• The automatic logic-gate layout generation is a mature technology­
in double-level metal it might be half as dense as a customized layout,
but in triple-level metal the density difference is even less.

Most standard-cell control-logic layout is composed of rows of pre­
defined logic and storage cells separated by routing. Programs have been
written to automate the generation of control logic from the transistor level.
Many of these use the gate-matrix layout style (see Chapter 6). While for
small sections of control logic this technique works, there are a number of
problems for large sections of control logic. In particular, the layouts get
sparse, and internal gate connections completed by long horizontal metal
lines tend to produce low-performance gates. Other techniques for custom
generating the required logic gates on the fly have included generating
dynamic CVSL gate layouts and connecting them in a standard cell style.

8.4.2.4 An Example of Control-Logic Implementation

Figure 8.89 shows the logic schematic for the Boundary Scan-state machine
described in Chapter 7. The state-transition diagram appears in Fig. 7.26. A
target cycle time of 100 ns was desired.

A state-machine description was written that was automatically fed to
the MISII42 logic-synthesis program. This Lisp-based state-machine lan­
guage description is shown below:

(defpal TAP-FSM-AOI-MUX prototype
(ipin 2 reset)

Micron Ex. 1037, p. 645
Micron v. YMTC
IPR2025-00119

(ipin 3 TMS)
(ipin 4 -TCK)

(opin. 100 clockir)
(opin 101 updateir)
(rpin 102 shiftir)
(opin 103 clockdr)
(opin 104 updatedr)
(rpin 105 shiftdr)
(rpin 106 enable)
(opin 107 select)
(rpin 108 -reset)
(rpin 20 state<O> h :polarity-fuse)
(rpin 21 state<l> h :polarity-fuse)
(rpin 22 state<2> h :polarity-fuse)
(rpin 23 state<3> h :polarity-fuse)

(setq updateir (and state-update-ir -TCK))
(setq updatedr (and state-update-dr -TCK))
(setq clockir (not (and (or state-shift-ir state-capture-ir)

-TCK)))

(setq clockdr (not (and (or state-shift-dr state-capture-dr)
-TCK)))

(setq shiftir state-shift-ir :clock -tck)
(setq -reset (not state-test-logic-reset) : clock -tck)
(setq shiftdr state-shift-dr :clock -tck)
(setq enable (or state-shift-ir state-shift-dr) :clock -tck)
(setq select (not (or state-exit2-ir state-exitl-ir

(macro

state-shift-ir
state-pause-ir state-run-test-idle

state-update-ir
state-capture-ir state-test-logic-reset)))

(state-machine
;;State transitions
'(;;Idle-wait for car

(test-logic-reset
(:next run-test-idle (not tms))
(:next test-logic-reset tms)
(: reset reset))

(run-test-idle
(:next select-dr-scan tms)
(:next run-test-idle (not tms)))

(select-dr-scan
(:next select-ir-scan tms)
(:next capture-dr (not tms)))

(capture-dr

(:next exitl-dr tms)
(:next shift-dr (not tms)))

8.4 CONTROL 605

Micron Ex. 1037, p. 646
Micron v. YMTC
IPR2025-00119

606 CHAPTER 8 SUBSYSTEM DESIGN

(shift-dr
(:next exitl-dr tms)
(:next shift-dr (not tms)))

(exitl-dr
(:next update-dr tms)
(:next pause-dr (not tms)))

(pause-dr
(:next exit2-dr tms)
(:next pause-dr (not tms)))

(exit2-dr
(:next update-dr tms)
(:next shift-dr (not tms)))

(update-dr
(:next select-dr-scan tms)
(:next run-test-idle (not tms)))

(select-ir-scan
(:next test-logic-reset tms)
(:next capture-ir (not tms)))

(capture-ir
(:next exitl-ir tms)
(:next shift-ir (not tms)))

(shift-ir
(:next exitl-ir tms)
(:next shift-ir (not tms)))

(exitl-ir
(:next update-ir tms)
(:next pause-ir (not tms)))

(pause-ir
(:next exit2-ir tms)
(:next pause-ir (not tms)))

(exit2-ir
(:next update-ir tms)
(:next shift-ir (not tms)))

(update-ir
(:next select-dr-scan tms)

(:next run-test-idle (not tms)))
)

;;State number assignments

' ((exit2-dr 0)
(exitl-dr 1)
(shift-dr 2)
(pause-dr 3)
(select-ir-scan 4)
(update-dr 5)
(capture-dr 6)
(select-dr-scan 7)
(exit2-ir 8)

Micron Ex. 1037, p. 647
Micron v. YMTC
IPR2025-00119

(exitl-ir 9)
(shift-ir #xA)
(pause-ir #xB)
(run-test-idle #xC)
(update-ir #xD)
(capture-ir #xE)
(test-logic-reset #xF))

;;Base name for state variables (optional)
"state"))

This simple language defines the inputs and outputs and then lists the
states and their transitions. State assignment is done manually, although in
general, software is available to do this task.

-TMS
Y1

-Y3 --,__------"

TMS

-Y1

TMS

-Y2
TMS - - -- ___ .-----....._

Y3
Y4 --;_ __ ____./

-TMS

-Y3

-Y1

Y2 --,__------"
-TMS

-Y1

_;;~ ==:::i--<
Y2

-Y4 --,____,­
TMS

-Y2

T~~=:J--<
Y1
Y3
Y4 --,___------"

-Y2

Y3

Y1

Y3

TMS

-Y2

Y2

Y4

-Y3

Y4
-Y1 _ _,------------.._
-Y2

Y3
-Y4 --,____.;

-TMS
-Y2

(a)
TRST

REG
1-bit

REG
1-bit

q

q

REG
1-bit

q

REG
1-bit

q

-Y1
Y1

-Y2
Y1

Y4,Y3,Y2,Y1 --
4
-r-/--<<±J state

Y3~Select

-Y3

Y3

-Y4

Y4

. SELECT

8.4 CONTROL 607

FIGURE 8.89 Boundary­
scan tap controller design

Micron Ex. 1037, p. 648
Micron v. YMTC
IPR2025-00119

FIGURE 8.89 (continued)

608

-TCK~
Y2 Y4 -> ClocklR

-Y1

-TCK~ Y4
Y3 _ y 2 -> UpdatelR
Y1

-TCK~
Y2 - y 4 -> ClockDR

-Y1

-TCK~y4
Y3 _ y

2
-> UpdateDR

Y1

-TRST~TRST
TCK~-TCK

TMS~-TMS

(b)

REG
1-bit

0 q
Vss

-TCK

TRST SELECT

-> -reset

REG
1-bit

q

REG
1-bit

q

-> ShiftlR

-> ShiftDR

When compiled, this state-machine description built the following set of
logic equations that were fed to MISII.

INORDER = RESET TMS STATE<2> -TCK STATE<O> STATE<l> STATE<3> ;

OUTORDER=NEXT_STATE<3>NEXT_STATE<2>NEXT_STATE<l>NEXT_STATE<0>

NEXT_-RESET SELECT NEXT_ENABLE NEXT_SHIFTDR UPDATEDR CLOCKDR
NEXT_SHIFTIR UPDATEIR CLOCKIR ;

CLOCKIR = ! (-TCK * !STATE<O> * STATE<l> * STATE<3>);

UPDATEIR = ! (! -TCK + ! STATE<O> + STATE<l> + ! STATE<2> + ! STATE<3>);

NEXT_SHIFTIR = ! (STATE<O> + !STATE<l> + STATE<2> + !STATE<3>);

CLOCKDR = ! (-TCK * !STATE<O> * STATE<l> * !STATE<3>);

UPDATEDR = ! (! -TCK + ! STATE<O> + STATE<l> + ! STATE<2> + STATE<3>);

NEXT_SHIFTDR = ! (STATE<O> + !STATE<l> + STATE<2> + STATE<3>);

NEXT_ENABLE = ! (STATE<O> + !STATE<l> + STATE<2>);

Micron Ex. 1037, p. 649
Micron v. YMTC
IPR2025-00119

SELECT = ! (STATE<3>);

NEXT_-RESET = ! (STATE<O> * STATE<l> * STATE<2> * STATE<3>);

NEXT_STATE<O> = (!STATE<l>*TMS + !STATE<O>*STATE<l>*TMS +
STATE<0>*!STATE<2>*!TMS +RESET+

STATE<0>*STATE<l>*STATE<2>*STATE<3>*TMS);

NEXT_STATE<l>=(!STATE<2>*!TMS+STATE<l>*STATE<2>*!STATE<3>*!TMS+
!STATE<0>*!STATE<l>*STATE<2>*!STATE<3> +RESET+

STATE<0>*STATE<l>*STATE<2>*STATE<3>*TMS +
!STATE<0>*STATE<l>*STATE<2>*STATE<3>*!TMS +

STATE<0>*!STATE<l>*STATE<2>*TMS +
!STATE<0>*!STATE<l>*STATE<2>*STATE<3>*TMS);

NEXT_STATE<2>=(!STATE<0>*!STATE<l>*STATE<2>+STATE<0>*STATE<2>+
!STATE<l>*!STATE<2>*TMS +RESET);

NEXT_STATE<3> = (!STATE<0>*STATE<2>*STATE<3>*!TMS +
STATE<l>*STATE<3>*TMS + !STATE<2>*STATE<3>*!TMS +

!STATE<0>*!STATE<l>*STATE<2>*!STATE<3> +RESET+
!STATE<l>*!STATE<2>*STATE<3>*TM£TATE<0>*!STATE<l>*STATE<2>tTM£
STATE<0>*STATE<l>*STATE<2>*STATE<3>*!TMS);

This description is read into MISH, converted to sum-of-products form and
written out as a PLA description. The following is the expanded input in sum
of products form:

.i 7

.0 13

.ilb RESET TMS STATE<2> -TCK STATE<O> STATE<l>

STATE<3>
.ob NEXT_STATE<3> NEXT_STATE<2> NEXT_STATE<l> NEXT_­

STATE<O> NEXT_-RESET SELECT NEXT_ENABLE NEXT_SHIFTDR

UPDATEDR CLOCKDR NEXT_SHIFTIR UPDATEIR CLOCKIR

.p 41
1------ 1000000000000

-0----1 1000000000000

--0---1 1000000000000
-----11 1000000000000

--1-000 1000000000000

001-10- 1000000000000
1------ 0100000000000

--1-1-- 0100000000000

-1---0- 0100000000000

--1--0- 0100000000000

1------ 0010000000000

000---- 0010000000000

-00--1- 0010000000000

-0--01- 0010000000000

-11--0- 0010000000000

-0---10 0010000000000

-11-1-1 0010000000000
--1-000 0010000000000

1------ 0001000000000

8.4 CONTROL 609

Micron Ex. 1037, p. 650
Micron v. YMTC
IPR2025-00119

610 CHAPTER 8 SUBSYSTEM DESIGN

-1--0-- 0001000000000

-1---0- 0001000000000

000-1-- 0001000000000

-11-111 0001000000000

--0---- 0000100000000

----0-- 0000100000000

------0 0000109000000

-----0- 0000100000000

------0 0000010000000

--0-01- 0000001000000

--0-010 0000000100000

--11100 0000000010000

---0--- 0000000001000

----1-- 0000000001000

-----0- 0000000001000

------1 0000000001000

--0-011 0000000000100

--11101 0000000000010

---0--- 0000000000001

----1-- 0000000000001

-----0- 0000000000001

------0 0000000000001

.e

The initial statements indicate the number of inputs (. i), outputs (. o), and
product terms (. p). For each product term (line), the six inputs on the left
are coded in terms of zero (O), one (1) or don't care (-). The inputs are
ordered according to the . i lb statement. The outputs on the right are
ordered according to the . ob statement. This description is then minimized
by the Espresso sum-of-products minimizer. The output in sum-of-products
form is shown below:

.i 7

.o 13

.ilb RESET TMS STATE<2> -TCK STATE<0> STATE<l> STATE<3>

.ob NEXT_STATE<3> NEXT_STATE<2> NEXT_STATE<l> NEXT_STATE<O>
NEXT_-RESET SELECT NEXT_ENABLE NEXT_SHIFTDR UPDATEDR CLOCKDR

NEXT_SHIFTIR UPDATEIR CLOCKIR

.p 21

--11100 0000000010000

--11101 0000000000010

--0-010 0000001100000

--0-011 0000001000100

-11-1-1 0011000000000

--1-000 1010000000000

-0---10 0010000000000

-00-1-- 0011000000000

-0--01- 0010100000000

Micron Ex. 1037, p. 651
Micron v. YMTC
IPR2025-00119

-11--0- 0010100000000

-00--0- 0010000001001
--1-1-- 0100000000000

-1--0-- 0001100000000

--0---1 1000100000000

-----11 1000000001000

-01--0- 1100100001001

-1---0- 0101000001001
---0--- 0000000001001

------0 0000110000001
----1-- 0000000001001
1------ 1111000000000
.e

This reduced sum-of-products form has 21 product terms. A representative
pseudo-nMOS PLA layout is shown in Fig. 8.90. The registers have been
arrayed across the bottom of the PLA because this allows the inputs and out­
puts to the PLA to be placed on the bottom of the PLA. If the registers are
incorporated into the PLA itself, the inputs and outputs have to be placed on
the top and bottom of the PLA to achieve a small pitch. In this implementa­
tion, the input pitch was 7.5µ, the minterm pitch was 5.25µ, and the output
pitch was 4.5µ. The layout shown was 181µ wide by 270µ high. Minimum­
sized n-trarisistors were used, although these could be increased in size to
improve the speed if necessary. As designed, the state machine implemented
with a PLA could operate at a worst-case cycle time of 10 ns. The PLA dis­
sipates 8 mW at 10 MHz. Of this around 5 to 6 mW are due to DC dissipation
in the p pull-ups. A dynamic version was estimated to dissipate about 3 mW.

A manual schematic design was also completed for the design shown in
Fig. 8.89. In addition, a library file, describing the standard-cell library, was
input to MISH. Each gate denotes its name, size, logic equation, and timing
behavior. The library is shown below:

Area is approximate virtual grid squares
Name Area Equation
<phase> <input load> <max load>
<rise-block-delay> <rise-fanout-delay> <fall-block-delay>
<fall-fanout-delay>
GATE ZERO 0 O=CONSTO;
GATE ONE 0 O=CONSTl;
GATE XOR 420 O=A*!B+!A*B; PIN * UNKNOWN 2 50

0.52 0.4 .45 .54
GATE XNOR 420 O=A*B+!A*!B; PIN * UNKNOWN 2 50

0.5 0.4 .31 0.4
GATE OR3 300 O=A+B+C; PIN * NONINV 1 50

0.33 0.14 .81 0.12
GATE OR2 240 O=A+B; PIN * NONINV 1 50

0.36 0.13 .49 0.10
GATE NOR4 300 0= ! (A+B+C+D); PIN * INV 1 50

0.31 0.5 .35 0.12

8.4 CONTROL 611

Micron Ex. 1037, p. 652
Micron v. YMTC
IPR2025-00119

,·.>.

FIGURE 8.90 PLA layout for boundary-scan tap controller design

612

Micron Ex. 1037, p. 653
Micron v. YMTC
IPR2025-00119

GATE NOR3 240 0= ! (A+B+C); PIN * INV 1 50
0.29 0.4 .35 0.12

GATE NOR2 180 0= ! (A+B); PIN * INV 1 50
0.17 0.26 .29 0.12

GATE NAND4 300 0= ! (A*B*C*D); PIN * INV 1 50
0.16 0.14 .36 0.4

GATE NAND3 240 0= ! (A*B*C); PIN * INV 1 50
0.14 0.14 .33 0.3

GATE NAND2 180 0= ! (A*B); PIN * INV 1 50
0.18 0.14 .28 0.2

GATE INVERTER 120 O=!A; PIN * INV 1 50
0.29 0.14 .1 0.12

GATE BUFFER 180 O=A; PIN * NONINV 1 50
0.6 0.14 .2 0.12

GATE AND4 3 60 O=A*B*C*D; PIN * NONINV 1 50
0.73 0.14 .37 0.2

GATE AND3 300 O=A*B*C; PIN * NONINV 1 50
0.37 0.12 .64 0.1

GATE AND2 240 O=A*B; PIN * NONINV 1 50
0.47 0.12 .31 0.1

GATE AOI21 240 0= ! (A+ (B*C)); PIN * INV 1 50
0.17 0.2 .28 0.2

GATE OAI21 240 0=! (A* (B+C)); PIN * INV 1 50
0.17 0.2 . 28 0.2

GATE MUX2 480 0= ((A*! S) + (B*S)); PIN * NONINV 1 50
0.14 0.2 .28 0.3

GATE MUX2-INV 420 O=!((A*!S)+(B*S));PIN * INV 1 50
0.45 0.14 . 6 0.1

MISH examined the logic equations, minimized the logic, and cr~ated a
netlist in terms of the library gates. The netlist output of MISH is shown
below:

.model tap-fsm-aoi.eqn

.inputs RESET TMS STATE<2> -TCK STATE<O> STATE<l> STATE<3>

.outputs NEXT_STATE<3> NEXT_STATE<2> NEXT_STATE<l> NEXT_­
STATE<O> NEXT_-RESET \

SELECT NEXT_ENABLE NEXT_SHIFTDR UPDATEDR CLOCKDR NEXT_­

SHIFTIR UPDATEIR CLOCKIR
.default_input_arrival 0.00 0.00

.default_output_required 0.00 0.00

.default_input_drive 0.14 0.12

.default_output_load 1.00

.gate INVERTER A=STATE<O> 0=[324)

.gate INVERTER A=STATE<2> 0=[323]

.gate NOR2 A=STATE<O> B=[323) 0=[312]

.gate INVERTER A=STATE<3> O=SELECT

.gate INVERTER A=STATE<l> 0=[327)

.gate OR2 A=STATE<O> B=[327) 0=[329)

.gate NAND2 A=[329) B=STATE<2> 0=[481]

.gate INVERTER A=RESET 0=[350)

8.4 CONTROL 613

Micron Ex. 1037, p. 654
Micron v. YMTC
IPR2025-00119

614 CHAPTER 8 SUBSYSTEM DESIGN

.gate INVERTER A=TMS 0=(326]

.gate OAI21 A=[350] B=STATE<l> C=[326] 0=(328]

.gate INVERTER A=[328] 0=(449]

.gate NAND2 A=[481] B=[449] 0=NEXT_STATE<2>

.gate NAND3 A=[312] B=SELECT C=NEXT_STATE<2> 0=(471]

.gate NOR2 A=[323] B=[324] 0=[302]

.gate NOR2 A=SELECT B=[327] 0=[299]

.gate NAND2 A=[302] B=[299] O=NEXT_-RESET

.gate NAND2 A=NEXT_-RESET B=STATE<O> 0=[461]

.gate NAND2 A=[461] B=TMS 0=[479]

.gate NAND2 A=[326] B=STATE<O> 0=(331]

.gate OAI21 A=[479] B=NEXT_STATE<2> C=[331] 0=[334]

.gate OR2 A=[328] B=[334] O=NEXT_STATE<O>

.gate NAND2 A=[327] B=STATE<O> 0=(335]

.gate OAI21 A=[471] B=NEXT_STATE<O> C=[335] 0=[336]

.gate NOR3 A=STATE<l> B=[323] C=[326] 0=(202]

.gate OAI21 A=[350] B=SELECT C=[202] 0=(338]

.gate OR2 A=[336] B=[338] 0=NEXT_STATE<3>

.gate AND2 A=NEXT_STATE<2> B=STATE<2> 0=(272]

.gate AND2 A=NEXT_STATE<O> B=[272] 0=[205]

.gate NOR2 A=STATE<O> B=STATE<3> 0=[268]

.gate AOI21 A=[205] B=NEXT_STATE<3> C=[268] 0=(258]

.gate NAND2 A=NEXT_-RESET B=STATE<l> 0=[469]

.gate NAND2 A=NEXT_STATE<2> B=[469] 0=[459]

.gate AOI21 A=RESET B=[326] C=[459] 0=[255]

.gate NAND2 A=[258] B=[255] O=NEXT_STATE<l>

.gate OR2 A=STATE<2> B=[329] 0=[343]

.gate INVERTER A=[343] O=NEXT_ENABLE

.gate OR2 A=STATE<3> B=[343] 0=[433]

.gate INVERTER A=[433] O=NEXT_SHIFTDR

.gate INVERTER A=-TCK 0=(344]

.gate NOR2 A=[323] B=[344] 0=[248]

.gate NOR2 A=STATE<l> B=[324] 0=(245]

.gate NAND2 A=[248] B=[245] 0=(347]

.gate NOR2 A=STATE<3> B=[347] O=UPDATEDR

.gate NAND2 A=SELECT B=-TCK 0=(348]

.gate OR2 A=[329] B=[348] O=CLOCKDR

.gate AND2 A=[433] B=NEXT_ENABLE O=NEXT_SHIFTIR

.gate NOR2 A=SELECT B=[347] O=UPDATEIR

.gate NAND2 A=STATE<3> B=-TCK 0=(349]

.gate OR2 A=[329] B=[349] O=CLOCKIR

.end

This was fed to the NS Design System43 , where a program-generated
schematic was created. This schematic was extracted, and netlist information
and physical cell details were fed to the TimberWolt44 placement program.
The placement information was then returned to the NS VLSI design system
where the circuit was automatically routed and a symbolic standard-cell lay-

Micron Ex. 1037, p. 655
Micron v. YMTC
IPR2025-00119

out created. After compaction to a set of CMOS-process design rules, the
final mask layouts were available for backannotation, simulation, timing
analysis, and size comparison. This complete integrated process (Fig. 8.91)
completes automatically from changing any of the primary inputs in about
five minutes. A number of "knobs" may be turned to affect the size of the
layout. Starting from the top, a number of different logic-synthesis scripts
and a variety of standard-cell libraries, varying from a 2-input NAND, a
two-input NOR, and an INVERTER to more extensive collections of gates
were tried. The number of rows that Timber Wolf used was also varied.

Finally, the standard-cell height may be varied to create "performance"
(large) or "area" (small) conscious layouts. Alternatively with the system
described above, additional characterized symbolic standard cells may be added in
about 5 minutes. The process may also be changed, thus creating a further dimen­
sion for optimization. Because all the characterization tools (simulation, timing
analysis) work at the transistor level, new cells may be added with ease. Moreover
with sophisticated placement programs, standard-cell layouts may be "reflowed"
into unused space between larger fixed blocks. Table 8.10 summarizes the results.

Designer

RTL

Logic

Script Library Logic

Logic

NS Schematic Library Circuit

Aspect Ratio
TimberWolf

Critical Nets

Layout Param

Cell Type
Symbolic Layout

Process File

GDS2 Layout
Mask Layout

Vendor

8.4 CONTROL 615

FIGURE 8.91 Control-logic
design process

Micron Ex. 1037, p. 656
Micron v. YMTC
IPR2025-00119

616 CHAPTER 8 SUBSYSTEM DESIGN

In Table 8.10, the basic library had (in addition to registers):

inverter

nand2

nor2.

The tlw library had the following gates (in addition to registers):

inverter

nand2,nand3,nand4,and2,and3,and4

nor2,nor3,nor4,or2,or3,or4

xor,xnor.

The tlw-aoi library had, in addition to the tlw library, the following four
gates:

mux2,mux-inverting

and-or-invert Z = !(A. (B + C))

or-and-invert Z = !(A+ (B . C)).

Table 8.10 shows the flexibility in aspect ratio that can be gained with stan­
dard-cell layouts. It also illustrates that metal3 provides layouts that are
about half the size of the metal2 counterparts. Combined with RTL synthesis
and logic optimization, the standard-cell approach provides an excellent
means of capturing control logic (and other logic styles also). The final lay­
out after compaction for one of the standard-cell layouts for a two-level­
metal process is shown in Fig. 8.92. A metal3 layout is shown in Fig. 8.93
(also Plate 9).

Finally, because this state machine was very small, a gate-matrix layout
was completed by hand (assuming that an automatic synthesis program was

TABLE 8.10 Standard-cell Layout Options

SIZE STD-CELL METAL DIMXxY
LOGIC #ROWS (mm2) LIBRARY HEIGHT LAYERS (mm)

Fig. 8.89 2 .120 tlw soµ 2 .67 x .18
MISH 2 .118 basic soµ 2 .62X.19
MISH 2 .099 tlw-aoi soµ 2 .S2X .19
MISH 3 .1 tlw-aoi soµ 2 .4 x ~25
MISH 4 .122 tlw-aoi SOµ 2 .34X .33
MISH 2 .OS8 tlw-aoi soµ 3 .49 x .12
MISH 3 .OS8 tlw-aoi soµ 3 .34 x .17
MISH 3 .074 tlw-aoi 30µ 2 .4 x .19

Micron Ex. 1037, p. 657
Micron v. YMTC
IPR2025-00119

FIGURE 8.92 Metal2 standard-cell layout for boundary-scan tap controller

617

Micron Ex. 1037, p. 658
Micron v. YMTC
IPR2025-00119

FIGURE 8.93 Metal3 stan­
dard-cell layout for boundary­
scan tap controller

618

Micron Ex. 1037, p. 659
Micron v. YMTC
IPR2025-00119

-TMS--1

f--v2

-vs--J
-TMS~

'--~~~~~~-==-~~~~---'

available for production designs). In this design minimum-size transistors
were used and large AOI gates were used to implement the more complex
terms. Figure 8.94 shows the gate used to implement the Yrnext term. The
design could use dynamic logic and dynamic registers to reduce the size and
power even further. The registers were placed to the right of the gate-matrix
logic section. The layout is shown in Fig. 8.95.

Table 8.11 summarizes the area, speed, and power of the three implemen­
tations. The various implementations exhibit their strong points. The PLA is
easy to design in a fully automated manner, is small, and for this application is
fast enough. A dynamic version would have lower power dissipation. It is,
however, fairly fixed in size. The standard-cell design may also be fully auto­
mated, as with the PLA, from a state-machine description. The speed and size
may be varied over some range by logic-synthesis techniques and the avail-

Table 8.11 Area, Speed, and Power of
Control Implementations

STYLE AREA SPEED POWER

PLA .050mm2 lOns 8mW
Standard Cell (DLM) .099mm2 lOns 6.3mW
Standard Cell (TLM) .058 mm2 -lOns -6mW
Gate Matrix .032mm2 15 ns l.5mW

8.4 CONTROL 619

FIGURE 8.94 An example of
a complex CMOS gate used
in the gate-matrix implemen­
tation

Micron Ex. 1037, p. 660
Micron v. YMTC
IPR2025-00119

Figu,re 8.95 Gate-matrix
layout for boundary-scan tap
controller

620

gate matrix logic registers

ability of a continuously variable symbolic layout library. The aspect ratio and
shape of the resulting layout is primarily dictated by the placement program
and in theory may be varied with a granularity down to the size of a gate (-20µ
x 50µ). Finally, the gate-matrix layout represents the smallest and lowest
power-dissipation case (which is largely due to the fact that this example is so
simple). This comes at the cost of speed (although this is not important in this
application) and time to design because an automated approach was not avail­
able. This approach is not recommended when suitable automation is not
available except under extreme power or size restrictions.

8.5 Summary

This chapter has presented a range of sub-system designs in terms of data­
path, memory, and control elements. Coupled with I/O structures, these form
the basic building blocks from which larger systems may be hierarchically

Micron Ex. 1037, p. 661
Micron v. YMTC
IPR2025-00119

structured. How one goes about designing and implementing a given CMOS
chip is largely affected by the availability of tools, the schedule, the com­
plexity of the system, and the final cost goals of the chip. In general, the sim­
plest and least expensive (in terms of time and money) approach that meets
the target goals should be chosen. Given an ideal tool set that can draw on
large libraries of predefined components, synthesis tools, and integrated
VLSI backend tools, an almost continuous trade-off may be made to select a
particular approach. The following rules may be applied. Where the design is
of moderate complexity (a description that changes with time) and time to
silicon is of paramount importance, an FPGA approach is probably suitable.
If speed or complexity eliminate this approach, a gate-array is the next logi­
cal choice. To cost-reduce a gate-array or include sizable memories, a stan­
dard-cell approach is the next option. The next step to symbolic layout of
regular arrays (i.e., datapaths, special memories, cellular arrays) and stan­
dard-cell control logic, is a big one. This step is usually taken on large-vol­
ume chips where the complexity, speed, and area dictate a custom approach.
At this time in the evolution of VLSI, the final step of a full-custom, micron­
tweaked design should almost never occur except for small, highly opti­
mized circuits. As for capture methods, both HDLs and schematics have
their strong points. It is likely that an increasing number of designers will
move to HDLs, but schematics will be around for some time yet.

8.6 Exercises

1. Design an 8-bit parallel accumulator (adder and register) that is opti­
mized for low power and has a power-down capability. Show how
your circuit would retain the stored state.

2. Design a 32-bit parallel adder optimized for speed, single-cycle oper­
ation, and regularity of layout. Repeat the exercise with no layout
restrictions.

3. Show how the layout of the parity generator in Fig. 8.25(a) may be
designed as a linear column of XOR gates with a tree-routing chan­
nel.

4. Design an 8-bit barrel shifter (i.e., arbitrary left or right rotate) using
multiplexers. Explain what the performance limitations of your
design might be.

5. A four-section Finite Impulse Response (FIR) filter employs fixed
coefficients and implements the function

Y= [2 xX(t)] + [4 xX(t-1)] + [8 xX(t-2)] + [2 xX(t-2)] +
[4 x X(t- 3)],

8.6 EXERCISES 621

Micron Ex. 1037, p. 662
Micron v. YMTC
IPR2025-00119

622 CHAPTER 8 SUBSYSTEM DESIGN

where X(t) is the sampled value of an 8-bit input at time t. Design a
circuit to implement this function.

6. Design an FSM to control the stop lights at a four-way intersection
with pedestrian crossing. Implement the control logic as a PLA, as
multiple-level logic, and as a ROM microcontroller.

7. Tong and Jha45 describe a binary divider. Design the base cell and
show how you would complete a layout for the divider.

8. Complete a fioorplan (showing clock and power and ground routing)
and the circuit design for key cells (i.e., memory cell, row decoder,
column decoder, sense amplifier) in a three-read-port, two-write-port
register file. What simulations would you carry out to ensure the per­
formance and justify the selection of power and ground bus widths?

8. 7 References

1. Peter Denyer and David Renshaw, VLSI Signal Processing: A Bit-Serial
Approach, Reading, Mass.: Addison-Wesley, 1985.

2. P. B. Denyer and D. J. Myers, "Carry-save arrays for VLSI signal processing,"
VLSI 81 (John Gray, ed.), Edinburgh, Scotland: Academic Press, pp. 151-160.

3. Yasoji Suzuki, Kaichiro Odagawa, and Toshio Abe, "Clocked CMOS Calculator
Circuitry," IEEE Journal of Solid State Circuits, vol. SC-8, no. 6, Dec. 1973,
pp. 734-739.

4. Nan Zhuang and Haomin Wu, "A new design of the CMOS full adder," IEEE
JSSC, vol. 27, no. 5, May 1992, pp. 840-844.

5. Kazuo Yano, Toshiaki Yamanaka, Takashi Nishida, Masayoshi Saito, Katsuhiro
Shimohigashi, and Akihiro Shimizu, "A 3.8-ns CMOS 16*16-b multiplier using
complementary pass-transistor logic," IEEE JSSC, vol. 25, no. 2, Apr. 1990,
pp. 388-395.

6. M. Pomper, W. Biefuss, K. Horinger, and W. Kaschite, "A 32-bit execution unit
in an advanced nMOS technology," IEEE JSSC, vol. SC-17, no. 3, Jun. 1982,

. pp. 533-538.
7. T. Sato, M. Sakate, H. Okada, T. Sukemara, and G. Goto, "An 8.5ns 112-b trans­

mission gate adder with a conflict-free bypass circuit," IEEE JSSC, vol. 27, no. 4,
Apr. 1992, pp. 657-659.

8. T. Sato, et al., op. cit.
9. M. Uya, K. Kaneko, and J. Yasui, "A CMOS floating point multiplier, IEEE

International Solid-State Circuits Conference, Digest of Technical Papers, Feb.
1984, pp. 90-91.

10. J. Slansky, "Conditional-sum addition logic," IRE Transactions on Electronic
Computers, vol. EC-9, Jun. 1960, pp. 226-231.

11. Albrecht Rothermel, Bedrich J. Hosticka, Gerhard Troster, and Juergen Arndt,
"Realization of transmission-gate conditional-sum (TGCS) adders with low
latency time," IEEE JSSC, vol. 24, no. 3, Jun. 1989, pp. 558-561.

Micron Ex. 1037, p. 663
Micron v. YMTC
IPR2025-00119

12. T. Sato et al., op. cit.

13. M. Y. Tsai, "High density parity-checking circuits with pass transistors," IBM
Technical Disclosure Bulletin, vol. 26, no. 3A, Aug. 1983, pp. 959-960.

14. W.R. Grifton and J. A. Hiltebeitel, "CMOS four-way XOR circuit," IBM Techni­
cal Disclosure Bulletin, vol. 25, no. l IB, Apr. 1983, pp. 6066-6067.

15. "TTL Databook," Texas Instruments, Dallas, Tex.

16. Gensuke Goto, Tomio Sato, Masao Nakajima, and Takao Sukemura, "A 54 * 54
regularly structured tree multiplier," IEEE JSSC, vol. 27, no. 9, Sept. 1992,
pp. 1229-1236.

17. R. F. Lyon, "Two's complement pipeline multiplier," IEEE Transactions on
Communications, vol. COM-24, Apr. 1976, pp. 418-425.

18. Peter Denyer and David Renshaw, op. cit.

19. Kunihiko Yamaguchi, Hiroaki Nambu, Kazuo Kanetani, Youji Idei, Noriyuki
Homma, Toshiro Hiramoto, Nobuo Tamba, Kunihiko Watanbe, Masanori Odaka,
Takahide Ikeda, Kenichi Ohhata, and Yoshiaki Sakurai, "A 1.5-ns access time,
78-µm 2 memory-cell size, 64-kb ECL-CMOS SRAM," IEEE JSSC, vol. 27,
no.2,Feb. 1992,pp. 167-174.

20. V. L. Rideout, "One-device cells for dynamic random-access memories," IEEE
Transactions on Electron Devices, vol. ED-26, Jun. 1979, pp. 839-852.

21. Hideto Hidaka, Kazutami Arimoto, and Kazuyasu Fujishima, "A high density
dual-port memory cell operation and array architecture for ULSI DRAM's,"
IEEE JSSC, vol. 27, no. 4, Apr. 1992, pp. 610-617.

22. Dong-Sun Min, Sooin Cho, Dong Soo Jun, Dong-Jae Lee, Yongsik Seok, and
Daeje Chin, "Temperature-compensation circuit techniques for high-density
CMOS DRAM's, IEEE JSSC, vol. 27, no. 4, Apr. 1992, pp. 626-631.

23. Hideto Hidaka, Kazutami Arimoto, Kazutoshi Hirayama, Masanori Hayashiko­
shi, Mikio Asakura, Masaki Tsukude, Tsukasa Oishi, Shinji Kawai, Katsuhiro
Suma, Yasuhiro Konishi, Koji Tanaka, Wataru Wakamiya, Yoshikazu Ohno, and
Kazuyasu Fujishima, "A 34-ns 16-Mb DRAM with controllable voltage down­
converter," IEEE JSSC, vol. 27, no. 7, Jul. 1992, pp. 1020-1027.

24. Toshiaki Kirihata, Sang H. Dhong, Koji Kitamura, Toshio Sunaga, Yasuano
Katayama, Roy E. Scheuerlein, Akashi Satoh, Yoshinori Sakaue, Kentaroh Tobi­
matsu, Koji Hosokawa, Takaki Saitoh, Takefumi Yoshikawa, Hideki Hashimoto,
and Michiya Kazusawa, "A 14-ns 4-Mb CMOS DRAM with 300-mW active
power," IEEE JSSC, vol. 27, no. 9, Sept. 1992, pp. 1222-1228.

25. Hideto Hidaka, Yoshio Matsuda, and Kazuyasu Fujishima, "A divided/shared
bit-line sensing scheme for ULSI DRAM cores," IEEE JSSC, vol. 26, no. 4, Apr.
1991,pp.473-478.

26. Toshio Yamada, Yoshiro Nakata, Junko Hasegawa, Noriaki Amano, Akinori
Shibayama, Masaru Sasago, Naoto Matsuo, Toshiki Yabu, Susumu Matsumoto,
Shozo Okada, and Michihiro Inoue, "A 64-Mb DRAM with meshed power line,"
IEEE JSSC, vol. 26, no. 11, Nov. 1991, pp. 1506-1510.

27. Walter H. Henkels, Duen-Shun Wen, Rick L. Mohler, Robert L. Franch, Thomas
J. Bucelot, Christopher W. Long, John A. Bracchitta, W. J. Cote, Gary B. Bron­
ner, Yuan Taur, and Robert H. Dennard, "A 4-Mb low-temperature DRAM,"
IEEE JSSC, vol. 26, no. 11, Nov. 1991, pp. 1519-1529.

28. Takeshi Nagai, Kenji Numata, Masaki Ogihara, Mitsuru Shimizu, Kimimasa
Imai, Takahiko Hara, Munehiro Yoshida, Yoshikazu Saito, YoshiakiAsao, Shizuo
Sawada, and Syuso Fujii, "A 17-ns 4-Mb CMOS DRAM," IEEE JSSC, vol. 26,
no. 11,Nov. 1991,pp. 1538-1543.

8.7 REFERENCES 623

Micron Ex. 1037, p. 664
Micron v. YMTC
IPR2025-00119

624 CHAPTER 8 SUBSYSTEM DESIGN

29. Travis N. Blalock and Richard C. Jaeger, "A high-speed sensing scheme for 1 T
dynamic RAM's utilizing the clamped bit-line sense amplifier," IEEE JSSC, vol.
27, no. 4, Apr. 1992, pp. 618-625.

30. Evert Seevinck, Petrus J. van Beers, and Hana Ontrop, "Current-mode tech­
niques for high-speed VLSI circuits with application to current sense amplifier
for CMOS SRAM's," IEEE JSSC, vol. 26, no. 4, Apr. 1991, pp. 525-536.

31. Travis N. Blalock and Richard C. Jaeger, "A high-speed clamped bit-line current­
mode sense amplifier," IEEE JSSC, vol. 26, no. 4, Apr. 1991, pp. 542-548.

32. Shingo Aizaki, Toshiyuki Shimizu, Masayoshi Ohkawa, Kazuhiko Abe, Akane
Aizaki, Manabu Ando, Osamu Kudoh, and Isao Sasaki, "A 15-ns 4-Mb CMOS
SRAM," IEEE JSSC, vol. 25, no. 5, Oct. 1990, pp. 1063-1067.

33. Heribert Geib, Werner Weber, Erdi Wohlrab, and Lothar Risch, "Experimental
investigation of the minimum signal for reliable operation of DRAM sense
amplifiers," IEEE JSSC, vol. 27, no. 7, Jul. 1992, pp. 1028-1035.

34. Richard D. Jolly, "A 9-ns, 1.4-Gigabyte/s, 17-ported CMOS register file," IEEE
JSSC, vol. 26, no. 10, Oct. 1991, pp. 1407, 1412.

35. Hirofumi Shinohara, Noriaki Matsumoto, Kumiko Fijimori, Yoshiki Tsujihashi,
Hiroomi Nakao, Shuishi Kato, Yasutaka Horiba, and Akiharu Tada, "A flexible
multiport RAM compiler for data path," IEEE JSSC, vol. 26, no. 3, Mar. 1991,
pp. 343-349.

36. Alfredo R. Linz, "A low-power PLA for a signal processor," IEEE JSSC, vol. 26,
no. 2,Feb. 1991,pp. 107-115.

37. Yoshihisha Iwata, Masaki Momodomi, Tomoharu Tanaka, Hideko Oodaira,
Yasuo Itoh, Ryozo Makayama, Ryouhei Kirisawa, Seiichi Aritome, Tetsuo
Endoh, Riichiro Shirota, Kazunori Ohuchi, and Fujio Masuoka, "A high-density
NAND EEPROM with block-page programming for microcomputer applica­
tions," IEEE JSSC, vol. 25, no. 2, Apr. 1990, pp. 417-424.

38. Sateh M. S. Jalaledine and Louis G. Johnson, "Associative IC memories with
relational search and nearest-match capabilities," IEEE JSSC, vol. 27, no. 6, Jun.
1992,pp. 892-900.

39. Sargur N. Srihari, "A special-purpose content addressable memory chip for real­
time image processing," IEEE JSSC, vol. 27, no. 5, May 1992, pp. 737-744.

40. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincentelli,
ESPRESSO-IIC: Logic Minimization Algorithms for VLSI Synthesis, The Nether­
lands: Kluwer Academic, 1984.

41. Gerard M. Blair, "PLA design for single-clock CMOS," IEEE JSSC, vol. 27,
no. 8, Aug. 1992, pp. 1211-1213.

42. R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, "MIS: a
multiple-level logic optimization system," IEEE Transactions on CAD of Inte­
grated Circuits and Systems, vol. CAD-6, no. 6, Nov. 1987, pp. 1062-1081.

43. James J. Cherry, "CAD programming in an object oriented programming envi­
ronment," in VLSI CAD Tools and Applications (Wolfgang Fichtner and Martin
Morf, eds.), Boston, Mass.: Kluwer Academic, 1987, Chapter 9.

44. C. Sechen and A. Sangiovanni-Vincentelli, "TimberWolf3.2: a new standard cell
placement and global routing package," Proceedings of the 23rd Design Automa­
tion Conference, Las Vegas, Nev., 1986, pp. 432-439.

45. Qiao Tong and Niraj K. Jha, "Design of C-Testable DCVS Binary Array Divid­
ers," IEEE JSSC, vol. 26, no. 2, Feb. 1991, pp. 134-141.

Micron Ex. 1037, p. 665
Micron v. YMTC
IPR2025-00119

CMOS SYSTEM
CASE STUDIES

Part 3 comprises three case studies of CMOS chips or modules. They are
included as examples to show the use of sub-systems introduced in Chapter
8 and Chapter 5. In addition, the designs were chosen to illustrate three dif­
ferent levels of design.

The first example describes an embeddable RISC microcontroller. This
was implemented as a custom chip but could be implemented as a standard
cell, gate array, or even an FPGA. The design emphasis here is from the
architectural level down to the gate level.

In the second example, describing a television ghost cancellation chip,
the architecture is also important but the detailed circuit and layout design
have a huge impact on the commercial viability of the chip. The emphasis
extends from the architectural level to the circuit level.

The final example illustrates a simple analog-to-digital converter where
an individual inverter is the ultimate focus of attention.

The three case studies represent decreasing logic complexity and
increasing emphasis on circuit design. As the complexity of a given CMOS
system increases, the ability to individually address individual transistors,
gates and sub-systems decreases. This trend is illustrated by these examples.

PART3

625

Micron Ex. 1037, p. 666
Micron v. YMTC
IPR2025-00119

CMOS SYSTEM
DESIGN
EXAMPLES

9.1 Introduction

Many times VLSI design mirrors board-level system design, where standard
components such as ALUs, memories, and logic gates are combined to form
a specified function. This reality is reflected in CMOS standard-cell or gate­
array libraries. However, the VLSI medium affords the designer the possibil­
ity of creating new components that break the barriers created by packaging.
This might be a section of logic, phase-locked to a lower external clock, that
operates at extremely high speed. Or it might be a special memory structure
that merges logic and the structure of an algorithm to meet a speed, power, or
cost objective.

In the first edition of this book, this chapter contained a number of
examples that illustrated this principle. Implemented in today's technology
many of these examples would form small components of much larger chips.

In this chapter, three examples are given that illustrate how the compo­
nents developed in Chapter 8 and previous chapters are used in larger sys­
tems. The first is a contemporary high-speed RISC microcontroller that may
be used for a variety of high-speed DSP applications. It provides an illustra­
tion of the flow of constraints from high-level decisions to the low-level
implementation that results. The example also provides an example of three
kinds of CMOS layout-datapath, memory, and control logic. While the
implementation style used in this example is symbolic custom layout, the

627

Micron Ex. 1037, p. 667
Micron v. YMTC
IPR2025-00119

628 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

FIGURE 9.1 RISC micro­
controller system use block
diagram

design could also be implemented (at an area and perhaps performance cost)
as a standard-cell, sea-of-gates design or even an FPGA.

The second example might be thought of as a "classical" regularly struc­
tured CMOS VLSI design, in which one basic core cell is replicated many
times to form the major portion of the chip. Many times such structures find
application in high-speed digital-signal processing applications, such as
video filtering and image processing.

The final example bridges the analog/digital gap by describing a simple
6-bit flash AID converter. Each example demonstrates increasing emphasis
on the detail of circuit and layout.

9.2 A Core RISC Microcontroller t

The first example presented is a RISC microcontroller that was designed as
part of a much larger image processing chip. A block diagram of the proces­
sor is shown in Fig. 9 .1. The processor had an on-chip instruction RAM and
connected via a system address and data bus to the rest of the chip and spe­
cial function units. As it is shown in Fig. 9 .1, the processor'is typical of

tThis processor was designed by B. Edwards, C. Terman and N. Weste ofTLW.

system address bus

address

instruction

Micron Ex. 1037, p. 668
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 629

embedded programmable cores which provide control for other dedicated
processing elements.

The 16-bit processor had to run at 40MHz and affords a good example
of an embedded processor that can be used for a wide variety of control and
signal-processing applications. While a little more corp.plicated than a mini­
mal microcontroller, the concepts demonstrated iri this example can be
applied to a wide range of CMOS VLSI system problems.

We begin with the design of the instruction set, which in turn must be
able to implement the operations required of the processor. We follow with a
description of the pipeline architecture or the arrangement of memory and
logic to enable the implementation of the instruction set in the required cycle
time. The major logic blocks are then summarized. The layout of these
blocks is then summarized. Finally, the methods of testing and verifying the
processor are described.

9.2.1 Instruction Set

The instruction set defines what basic operations are possible with the pro­
cessor and forms a high-level specification for the processor. The instruc­
tions in this instance are divided into two groups, namely,

• the control-transfer class.

• the ALU class.

The control-transfer class includes jump and call instructions. The ALU
class includes arithmetic and logic operations. Other types of instructions
might include operating system instructions (for a full microprocessor) and
specialized I/O instructions (say, for a graphics accelerator).

9.2. 1. 1 Address Architecture

At this point there is a decision to make concerning the type of address archi­
tecture that the microcontroller is to implement. Options include a stack­
address architecture, an accumulator architecture, and a multiple-register
(two- or three-register) address architecture. Each dictates a particular regis­
ter architecture. Figure 9.2 indicates some of the possibilities.

An accumulator architecture has a special register associated with the
ALU that holds the intermediate results of computation (Fig. 9.2a). The
computation for

c = a + b

would be

load a
plus b
store c

Micron Ex. 1037, p. 669
Micron v. YMTC
IPR2025-00119

630 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.2 Alternative pro­
cessor address architectures

memory
accumulator

1 read/write port
(a)

2 ports - 1 read, 1 write
(b)

3 ports - 2 read, 1 write
(c)

In this example the register file has to be able to do one read or write at
a time. At any one time only a single port is required, at the expense of taking
three clock cycles to complete the add. However, a single-port register file
can be implemented with a six-transistor static RAM cell, the smallest all­
transistor static memory that can be implemented.

In a stack architecture (Fig. 9.2b), the register file implements a stack.
The ALU uses the stack and a special register called the top-of-stack (TOS)
to perform arithmetic operations. For instance, to complete the operation

c = a + b;

the following operations would be completed:

push a

push b

pop add

pushes a onto stack (TOS=a)

pushes b onto stack (TOS=b)

pops a and b, pushes a+b onto stack (TOS = a+b = c)

This requires that the register be read and written in a single cycle as the pop
operation reads (a) and writes (c= a+b). The static RAM cell shown in
Figs. 8.53 and 8.65 can achieve this by single-ended sensing of the bit lines
and differential driving for write operations. This RAM cell is not much
larger than the RAM cell that would be used in the stack architecture. Two
decoders are needed, so the overall register file would be slightly larger than
for the stack case. Although the add operation takes three cycles in the exam­
ple above, in general as one operand may already be on the top of the stack,
the add can be completed in two cycles.

Micron Ex. 1037, p. 670
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 631

A three-address architecture is what most modern RISC processors use
(Fig. 9.2c). It completes the operation

c = a + b

(and most other operations) in one cycle. To do this requires a three-ported
register file that can independently read two operands and write a third. This
register file can be implemented using the structures shown in Fig. 8.65 (a
regular RAM cell with multiple ports) or Fig. 8.66 (a register file). This reg­
ister file is larger than the static RAMs for the accumulator and stack archi­
tectures due to the increase in memory-cell size and the three address­
decoders that are required, but the architecture is potentially two or three
times faster (for various reasons this speed increase is not always reflected in
real programs).

The size (in words) of the register file has to be estimated. This is related
to the maximum number of intermediate results that need to be held at one
time. This might be estimated by implementing the chip function in a high­
level language (C, FORTRAN, Pascal, Lisp) first and using this as a basis for
estimation. In this case, 128 registers were dictated by the system architects.

At this point the designer might assess the areas of each type of register
structure (if area was of importance) by completing a layout for each mem­
ory cell and decoder or, in the case of a gate-array or standard-cell design,
finding the most appropriate register architecture. In the case at hand, the
three-port address register architecture is chosen for the following reasons:

• Potentially provides the fastest architecture.

• Easy to program.

• Increase in area deemed not important (a custom layout is assumed).

• No complicated clocking required (minimizes design time).

An equal address space was allowed for random "external registers," yield­
ing an 8-bit address field for reads and writes. A 1 in the MSB of the read or
write address indicates a read or a write to a register on an external bus. This
provides for a register-mapped I/O space for communication with external
devices through the implementation of extra hardware if required.

9.2.1.2 ALU Class Instructions

With the register architecture fixed, an encoding for the instruction set may
be proposed (Hex numbers are used). Because there are three addresses of
8-bits required, the following encoding for the ALU class was used, resulting
in a 32-bit instruction. In the following description,

WR (write address) is one of
O 0 - 7 F register file address

Micron Ex. 1037, p. 671
Micron v. YMTC
IPR2025-00119

632 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

8 0 - FF external interface address
RA (read port A address) is one of

0 0 - 7 F register file address
8 0-FF external inte1face address

RB (read port B address) is one of
0 0 - 7 F register file address
8 0 - FF external interface address

OP is the op-code for the instruction.
IT is the instruction type.

The first type of instruction is used for general arithmetic and logic opera­
tions.

IT = 1 three-address arithmetic instruction

I #bits= 2

IT=l 1~
The general operation is as follows:

WR = RA op RB

So for instance, a specific operation might include

WR[lO] = RA[S] + RB[4]

In the instruction above, location 10 in the register file is replaced with the
sum of locations 5 and 4.

A two-address literal instruction is provided as follows:

IT= 2 two-address with sign-extended 8-bit literal

The general operation is as follows:

WR = RA op LITERAL

A specific operation might be

WR[lOO] = RA[20] + 24

I LITERAL

In the instruction above, location 100 in the register file is replaced with the
sum of location 10 and the constant 24.

A single-address literal instruction is also provided. This allows a 16-bit
literal to be loaded into the register file.

IT= 3 one-address with sign-extended 12-bit literal

Micron Ex. 1037, p. 672
Micron v. YMTC
IPR2025-00119

The general operation is as follows:

WR = op LITERAL (B is undefined}

A specific operation might be

WR[lOO) = -1 (#xFFFF}

that is, placing the constant FFFF in location 100.
The opcode, OP, is defined as follows

00
01
02
03

A+B
A+B+l
A

A+l
08-0F Undefined
10
11

12
13
18
19
lA

all zeros
A and B
notA and B
B

notA and notB
A xnor B
notA

04

05
06
07

14
15
16

17
lC
lD
lE

A-B-1
A-B
A-1
A

A and notB
A

A xor B
A or B
notB
A or notB
A nand B

1B notA or B lF all ones
logical left shift by SHIFTR

9.2 A CORE RISC MICROCONTROLLER 633

20
21-2F
30
31-3F

logical left shift by 1 to 15 bits
arithmetic right shift by SHIFTR
arithmetic right shift by 1 to 15 bits

SHIFTR is a special register (external address = 21) that allows a shift
amount to be externally specified.

Although these assignments may seem random, they are linked to the
implementation. For instance, bit 0 of the ALU opcode is the carry-in to the
adder in the ALU, bit 1 forces the B bus to zero, and bit 3 inverts the B bus.
Similarly, bits 3-0 are used directly by the Boolean logic to implement the
functions outlined above (see Section 9.2.3.1). These assignments are used
to eliminate control logic.

9.2. 1.3 Control Transfer Instructions

The control transfer instructions implement jumps, call, and return. They are
defined as follows:

I IT=O lop 6 bits icoND 8 bits

where

OP=20 Jump True
OP=22 Jump False

IJA 12 bits

Micron Ex. 1037, p. 673
Micron v. YMTC
IPR2025-00119

634 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

and

OP=lO Call
OP=08 Return

COND defines a condition code as follows:

00 ALU result negative
01 ALU result zero
02 Adder result had carry
03 ALU result was negative or zero
04 Boolean/Shifter result zero
05-0F <Illegal>
lF-34 External conditions selectable by multiplexer
3F True
40-FF <Illegal>

JA specifies a 12-bitjump or call address. In the case of a CALL, the current
program counter (PC) is pushed onto a stack, while a RETURN pops the PC
from the stack.

9.2.2 Pipeline Architecture

The design was partitioned into six major blocks (Fig. 9.3a). TheALU_DP is
responsible for performing arithmetic and logic operations. It also contains
an interface to an external system-address and data bus. The register file is
responsible for providing operands for the ALU_DP and storing the results
of ALU operations. The PC (Program Counter) data path is responsible for
calculating the next program counter value. It therefore has to deal with
JUMPs, CALLs, and RETURNs. For the latter instructions, it implements an
eight-deep stack. The Instruction Pipe datapath stores the instruction for a
number of pipeline stages and performs comparisons to permit pass-around
(see Section 9.2.2.1). The instruction RAM provides instructions for the pro­
cessor and the control section provides for instruction decode and various
other control operations.

The ALU_DP, register file, instruction pipe, and PC datapath were con­
structed using datapath techniques although they could be implemented as
standard cells or sea-of-gates structures. A high-speed static RAM was used
for program storage. A separate write port was provided to load the program
RAM. A single control block was used to control all sections.

The operation of the microcontroller is as follows:

1. The PC presents an address to the instruction RAM, which in turn
looks up an instruction to be applied to the machine. This includes
the opcode for the ALU and the addresses to the register file.

2. The register file accesses the operands addressed by the instruction

Micron Ex. 1037, p. 674
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 635

(a)

System Address and Data busses

Register File
read data B

Instruction Pipe ALU_DP
read dataA
write data - ,-- write address - read addresses

I •
Control

CT''
Condition Cod

Instruction

es

Data Out

Address

'°"'~tioo RAM Add'~ Program Counter Control Logic
PC_DP

Data In

i External Address i
Write Data External PC

(either from the register file or external registers), and places them on
the ALU input busses.

3. The ALU calculates the result including condition flags such as carry
and zero.

4. The result is written to the register file or external registers.

If all of these operations were placed in one cycle, the cycle could be
quite long. For instance, consider the following representative times:

Instruction RAM access 15 ns
Register file read 10 ns
ALU operation 15 ns
Register write 10 ns

which results in a total cycle time of around 50 ns. This exceeds the desired
cycle time by more than a factor of two. Fortunately, this problem may be
solved by the use of pipelining.

The microcontroller may be conveniently pipelined according to the
steps outlined above, calling the stages the I, R, E, and W stages for Instruc­
tion fetch, register Read, Execute, and Write operations. One may of course
choose to pipeline the machine differently; this scheme is chosen based on

FIGURE 9.3 Processor­
block diagram: (a) overview;
(b) schematic

Micron Ex. 1037, p. 675
Micron v. YMTC
IPR2025-00119

636 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

WC<15:0>

IRAM_DATA<14:8>
IRAM_DATA<6:0>

W_C_ADD<6:0>
W_WE.L

CLK

RAO
RA1
WA
-WE
CLK

(b)

IRAM_DATA<15:0>
ALT_SEL

STACK_EN

l_NEXT.L
CLK

IRAM_DATA ->

REGWAR
E_ALU
W_ALU

CLK

E_BZERO
E ZERO
E CRY
(::NEG

SYSBUS_OE ->
IRAM_ACCESS ->

SKIP ->
INTERRUPT ->

XCOND ->
IRAM_DATA<21:16>
IRAM_DATA<31 :24>

R_EXT_ADD.L
WC ADD<2:0>
w::::c::::ADD<7:6>

SHFREG
RST ->
CLK ->

Figure 9.3 (continued)

16
EXT_PC
R_JPC

PC_DP

ALT_SEL
STACK_EN

l_NEXT.L
CLK

INST_PIPE

l_PC

R_INST W_C_ADD
REGWAR ALU_OP
E_ALU R_EXT _ADD.L
W_ALU A_SEL
CLK B_SEL

SPROC-CONTROL
ALT SEL
USfACK

E_BZERO l_NEX~L
E_ZERO EXTOE
E_CRY EXT EN
E_NEG INC_ADDR
SYSBUS_OE SHIFT_COUNT
IRAM_ACCESS E_ALU

W_ALU
SKIP W_WE.L
INTERRUPT

~gg~g SEL SYSBUS_RD
R_OP - SYSBUS_WR

-R_EXT_ADD
W_EXT_ADD
W_EXT _ADD_SEL
SHFREG
RESET
CLK

16
IRAM_ADDR

WC ADD<7:0>
ACu_::-op
R_EXT_ADD.L
A_SEL
B_SEL

ALT_SEL
STACK_EN
l_NEXT.L
EXTOE
EXT EN
INC_ADDR
SHIFT_COUNT
E_ALU
W_ALU
W_WE.L

the fact that the microcontroller has to run at 40 MHz and on some experi­
ence of how fast modules will run. In practice, a number of pipeline schemes
might be explored, with the one that meets the speed requirement with the
least design effort selected.

In the signal nomenclature, I_, R_, E_, or W _preceding a name indi-

Micron Ex. 1037, p. 676
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 637

cates that the data is valid in that pipeline stage. The pipeline operation can
be visualized using the following pipeline diagram:

Cycle I stage R stage E stage W stage

0 Inst 1

1 Inst 2 Inst 1

2 Inst 3 Inst 2 Inst 1

3 Inst 4 Inst 3 Inst 2 Inst 1

4 Inst 5 Inst 4 Inst 3 Inst 2

In cycle 0, instruction 1 is in the I stage, having been fetched from the instruc­
tion RAM. In cycle 1, it moves to the R stage and is used to address the register
file to access the read operands in the instruction (RA and RB). Instruction 2
enters the I stage. Instruction 1 enters the E-stage in cycle 2, where it presents
the opcode to the ALU. The read operands have also been fetched from the
register file. Instruction 3 enters the I stage, and Instruction 2 moves to the R
stage. Finally, in cycle 3 Instruction 1 enters the W stage, where the WR
address is used to write the result of the ALU operation into the register file.

9.2.2. 1 Bypassing, Result Forwarding, or Pass-around

In the above pipeline diagram it may be seen that the operands for instruction
2 and 3 have been read by the time that the result of instruction 1 is written
back to the register file. This requires that the W stage write data be for­
warded to the R stage or E stage if these stages require the data that is being
written to the register file. For instance, if the result of instruction 1 were
used in instruction 2, then the data being written to the register file in cycle 3
would also have to be passed to the E stage for instruction 2. This is done by
comparing the operand addresses in the R stage and E stage with those in the
W stage and controlling a set of multiplexers that feed the appropriate oper­
and to the ALU.

Consider the following code fragment:

ADD A,B,C

SUB D,C,F

xxx

Add A, B and place in C

Subtract C from D and place in F

yyy

The following pipeline diagram represents the code sequence:

Cycle I stage R stage E stage

0 ADD A,B,C

1 SUB D,C,F ADD A,B,C

2 xxx SUB D,C,F ADD A,B,C

3 yyy xxx SUB D,C,F

W stage

ADD A,B,C

Micron Ex. 1037, p. 677
Micron v. YMTC
IPR2025-00119

638 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

In cycle 3, the result of adding A and B is being written to location C. How­
ever, C is required in the E stage to compute D - C. Thus the normal read
path from the register file has to be bypassed to allow the current (W stage)
value of C to be passed to the ALU.

9.2.2.2 Conditional Branching

The condition code (if coming from the ALU) is calculated late in the E
stage. Any jump occurs in the cycle after the condition is calculated and, due
to the pipelining, the instruction after a jump is executed.

Consider the following code sequence that implements a branch based
on the result of an ADD instruction:

ADD A,B,C
JMP ZERO,FOO

SUB E,F,G
AND X,Y,Z

FOO: OR P,Q,R
ADD A,R,C

Add A, B and place in C
Jump to location FOO if the result of
A+B(C)=O
Subtract F from E and place in G
AND X and Y and place in Z
Branch Target FOO

The following pipeline diagram represents the code sequence where the
branch is not taken:

Cycle I stage R stage E stage W stage

0 SUB E,F,G JMP ZERO ADD C,A,B

1 AND D,G,H SUB E,F,G JMP ZERO,FOO ADD C,A, B

2 AND D,G,H SUB E,F,G JMP ZERO

3 AND D,G,H SUB E,F,G

In cycle 0 the ADD instruction is executed and the ZERO condition is calcu­
lated. The JMP instruction is executed in cycle 1, the condition being regis­
tered to the W stage. In cycle 2 the SUB instruction is unconditionally
executed, and in cycle 3 the AND instruction is executed.

The following pipeline diagram represents the code sequence where the
branch is taken:

Cycle I stage R stage E stage Wstage

0 SUB E,F,G JMP ZERO ADD C,A, B

1 OR P,Q,R SUB E,F,G JMP ZERO,FOO ADD C,A, B

2 ADD A,R,C OR P,Q,R SUB E,F,G JMP ZERO

3 ADD A,R,C OR P,Q,R SUB E,F,G

Micron Ex. 1037, p. 678
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 639

The sequence here is the same except that in cycle 1 the OR instruction
moves to the I stage. In cycle 3 this instruction is executed. Note that the
SUB instruction is still executed in cycle 2.

9.2.2.3 Subroutine Call and Return

Consider the following code sequence, which demonstrates a Call and
Return Sequence:

ADD A,B,C
CALL FOO
SUB E,F,G

BAZ: XXX
yyy

FOO : ADD J, K, L
RETURN
SUB X,Y,Z

The execution of this sequence is shown below:

Cycle I stage R stage E stage

0 SUB E,F,G CALL FOO ADD A,B,C

1 ADD J,K,L SUB E,F,G CALL FOO

2 RETURN ADD J,K,L SUB E,F,G

3 SUB X,Y,Z RETURN ADD J,K,L

4 xxx SUB X,Y,Z RETURN

5 yyy xxx SUB X,Y,Z

6 yyy xxx

7 yyy

W stage

ADD A,B,C

CALL FOO

SUB E,F,G

ADD J,K,L

RETURN

SUB X,Y,Z

xxx

As with the JUMP instruction, the instructions after the CALL and RETURN

instructions are also executed.

9.2.2.4 110 Architecture

The 1/0 architecture in this example is a condensed version of the real 1/0
architecture to keep the example simple. Five registers are provided in the
1/0 space of the processor (seven are listed below but some are read/write or
otherwise utilize the same physical register). They are as follows:

• SBRAR (address= 0) Sysbus Read Address Register. When this regis­
ter is written, it causes a read on the system bus. If an SBRAR is written

Micron Ex. 1037, p. 679
Micron v. YMTC
IPR2025-00119

640 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

on cycle i, then on cycle i + 1, the SBRAR address is output to the SYS­
ADDR bus. On cycle i + 2, the data is returned on the SYS-DATA lines.
On cycle i + 3, the data may be used in the ALU. Thus a code segment
to read data from the system bus and increment it might be

WR[20] = RA[80] (SBRAR)

xx
yy

WR[20] = RA[20] + 1

• SBWAR (address= 81 (hex)) Sysbus Write Address Register. This
register holds the next address of a Sysbus write. It uses the same reg­
ister as SBRAR.

• SBWDR (WR= 82) Sys bus Write Data Register. When this register is
written, it causes a write on the system bus.

• SBWDR-INC (address = 83) This causes an autoincrement in the
SB WAR register, which provides for a simple DMA capability.

• SBRDR (address = 84-read-only) This register contains the data from
the last system bus read.

• REGWAR (address = 85) This register is used as a register-file write
address in ALU class instructions when WR = CO - DF.

• SHFREG (address = 86) This register allows a shift amount to be
specified for the shifter when the ALU-OP is 20 or 30.

9.2.3 Major Logic Blocks
With the instruction set defined, and address and pipeline architectures
decided, the next step is to define logic and storage elements that will realize
these architectures. Just how one translates architecture into an RTL design
varies. It usually requires a stepwise refinement process where a design is pro­
posed, simulated, and modified to correspond more closely to the required
behavior. Most often, previous experience will aid in determining good direc­
tions. It is a skill that improves as more designs are completed.

In this section, an RTL design will be presented in schematic form as a
finished design. Because the style of processor design is fairly generic, it is
hoped that this example will provide readers with a starting point for their
own designs. The complete schematic for design for the controller core (sans
instruction memory and I/O devices) is shown in detail in Fig. 9.3(b).

9.2.3. 1 ALU_OP

The ALU_DP module is responsible for computing collecting operands, col­
lecting the results, and interfacing with external modules. It is divided into

Micron Ex. 1037, p. 680
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 641

three main sections:

• The I/0-REGS.

• The ALU proper.

• The EXT-BUS-DP.

The module is shown in Fig. 9.4.
The inputs are:

R A DATA and R_B_DATA busses-These are the read data busses
from the register file.

R_LITERAL-Literal bus from the instruction RAM.

A_SEL and B_SEL-A and B operand select control.

ALU_OP-TheALU op-code.

SHFT-The shift amount for the shifter.

EXTOE, EXTEN controls-Various controls to the EXT-BUS-DP mod­
ule for loading registers and tristating busses.

INC_ADDR-An increment control for the autoincrementing address
register (SBWDR_INC) in the external-bus module.

CLK-The clock.

The outputs are:

SYS_ADDR (system address bus)-Used to address external modules.

SYS_DATA (system data bus)-Used to transfer data to and from exter­
nal modules.

10-REGS

R_LITERAL 1->->.r--r-"'""~~----1 R_LITERAL A
R_A_DATA _, 16 R_A_DATA B

E-ABUS<15:0>

ALU

A
E BZERO
-E NEG

B E CARRY R_B_DATA _, R B DATA
__ _, EXT-DATA W_C_DATA
~~E_RESULT

'~~~~ ALU OP E_ZERO
<->>-+-"--< SHFT ALU_OUT

A_SEL l->->~>---7"-+~f-+----1 SEL_A
B_SEL _, SEL_B

CLK _, ._C.._L__,K ____ __.
16 _, W_C_DATA

'-+---------------~ EXT_RDATA<15:0>

EXT_BUS_DP

~E __ R_E_s_u_LT_<_1S_:O_> ___ ---l E RESUctXT_RDATA

- SYS ADDA 1
INC_ADDR l->->;>-----1 INC_ADDR -

EXTOE _, 7 EXTOE SYS_DATA
EXTEN _, 5 EXTEN SHFREG

CLK CLK REGWAR

FIGURE 9.4 ALU_DP-block diagram

" SYS_ADDR

<-> SYS_DATA
_, SHFREG
_, REGWAR

Micron Ex. 1037, p. 681
Micron v. YMTC
IPR2025-00119

642 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.5 10-REGS mod­
ule schematic

W_C_DATA-Write data bus to the register file.

SHFREG -Shifts amount to control block.

REGWAR-Alternates register write address to INST_PIPE.

CONDITION-CODES-Flags from ALU operation such as ZERO
(E_BZERO and E_ZERO), NEGATIVE (E_NEG), and CARRY
(E_CARRY).

First we will deal with the two modules that surround the ALU.

9.2.3.1.1 IO-REGS

The IO-REGS are responsible for providing the appropriate operands to the
ALU. The A and B port of the ALU have identical structures (IO-REG) that
provide operands from:

• the register file.

• the literal bus (from the instruction RAM).

• W-stage data (for pass-around) and E-stage data.

• external data from the external bus (EXT _DATA).

The IO-REGS circuit is shown in Fig. 9.5 and the IO-REG subblock is
shown in Fig. 9.6. The modules are composed of multiplexers, registers, and

EXT_DATA ., 16

CLK

D-REG
D Q

R_LITERAL ., 16 ,___ __ E_LIT <15:0>

CLK

E_LIT<15:0> R LIT IO-REG OUT ~~'~'
R_A_DATA R->>--'

1
->;<
6
'---+-------! ~=~~~_DAT:_RESULT

E_RESULT ., 16 E_RESULT

SEL
CLK

E_LIT <7>#8,E_LIT <7:0> -------+-----+-----1 R_LIT IO-REG OUT
R_B_DATA ., 16 R_REG W_RESULT

L--+------1 E_EXT_DATA
~-----< E_RESULT

SEL
CLK

16 ., B

Micron Ex. 1037, p. 682
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 643

16
E_EXT_DATA 1-+-+:>----r-----.

W_RESULT

sel<2>
sel<1>---I

sel<3>

CLK

4 16
SEL ~ ~ W_RESULT

CLK~

buffers. As a single clock is being used, the register structure in Fig. 9.25(a)
was chosen for the following reasons:

• Static (A habit; dynamic registers could be used but if area is not that
affected, static allows the clock to be stopped and the static registers
are not as susceptible to noise). Static registers also allow IDDQ test­
ing (see Chapter 7).

• Small number of transistors.

In Fig. 9.5 the literal field from the instruction RAM, R_LIT­
ERAL<l 5:0>, is registered to create the E-stage version of this data,
E_LIT<l5:0>. Note that port A receives the full 16-bit field of the literal,
while the B port receives an 8-bit sign-extended version (E_LIT<7>#7,
E_LIT<7:0>). The register-file write data is taken from the BIO-REG mod­
ule. A further register stores the EXT_DATA bus. In the IO-REG module
(Fig. 9.6), a register stores the R-stage data from the register file. The deci­
sion to place this register here rather than in the register file relates to the dif­
ference in critical path between the ALU and the read access of the register
file. In this case, the relatively long delay of driving a bus from the register
file to the ALU is placed in the R stage. If the register were placed in the reg­
ister file, this delay would be in the E stage (because it would be added to the

FIGURE 9.6 10-REG mod­
ule schematic

Micron Ex. 1037, p. 683
Micron v. YMTC
IPR2025-00119

644 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.7 EXT-BUS-DP
module schematic

clock-to-Q delay of the register). Because the register-file read time was
shorter than the ALU critical path, this placement was used. Two other reg­
isters store the ALU result (E_RESULT) and the subsequent W _RESULT.
The latter represents the data that will be stored in the register file in the W
stage. A large buffer drives the A or B data to the ALU. There is some repli­
cation in registers and muxes between the two IO-REG sections. This was
done for layout regularity and bus optimization reasons.

9.2.3.1.2 EXT-BUS-DP

The EXT-BUS-DP (Fig. 9.7) provides an interface between the external sys­
tem bus and the processor. A write-data register (SBWDR) is provided to

EXTOE B / 7

EXTEN B >' 5

CLK ~

SBRDR

REG
SYS_DATA ----i

RDATA_EN
CLK

ADDR_LD

3:0

CLK

6:0

REGWAR_EN
CLK

SBWDR

SHFREG

REGWAR

REGWAR_OEE
VDD#9,WAR<6:0>

SHFREG_OEE
VDD#12,SH<3:0>

RDATA_OEE,ADDR_OES,ADDR_OEE,WDATA_OES,
WDATA_OEE,SHFREG_OEE,REGWAR_OEE

RDATA_EN,ADDR_LD,WDATA_EN,SHREG_EN,REGWAR_EN

ADDR_OES

ADDR_OEE

EXT_RDATA

WDATA_OES

WDATA_OEE

Micron Ex. 1037, p. 684
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 645

which data may be written from the ALU to the SYS_DATA bus. An address
register (SBRAR/WAR) is provided to supply addresses to the system
address bus (SYS_ADDR). An incrementer is provided with the address reg­
ister to aid in simple DMA-type operations. The SYS_DATA may also be reg­
istered (SBRDR) for reads from the SYS_DATA bus. These registers may be
tristated onto the EXT_RDATA bus, which is an input of the IO-REGS mod­
ule. The SHFREG stores a shift amount that may be used by the shifter. In
the actual chip, this module had a few extra registers for other special oper­
ations. As mentioned previously, REGWAR provides a write address for the
register file for ALU operations with addresses in the range CO-DF.

9.2.3.1.3 i\l.,lJ

The ALU is divided into three subsections, namely,

• the adder.

• the Boolean unit.

• the shifter.

While it would be possible to merge the Boolean unit with the adder (a la the
181 ALU), the designers happened to like this partitioning because the
instruction decode is simple and the modularity allows the Boolean and
shifter to be dropped if those blocks are not required. Also a range of adders
may be used to achieve different size and speed requirements. As shown in
Fig. 9.8, each functional unit takes its inputs from theA and B buses and con­
ditionally tristates the result onto the ALU _OUT bus.

16 ADDER
A..:!- A ALU_OUT

B
E_NEG <.:!.I E_NEG

E CARRY .:t. E_CARR - ALU_OP E_ZERO d. E_ZERO
y

BOOLE 16
16 A ALU_OUT <.:!.I ALU_OUT

B ..:!- B - ALU_OP E_BZERO d. E_BZER 0

IN
SHIFTER

ALU_OP <5:4>,SHFT <3:0> ALU_OP
ALU_OUT

4
SHFT G>-+-o

6
ALU_OP ..:!,

FIGURE 9.8 ALU module
schematic

Micron Ex. 1037, p. 685
Micron v. YMTC
IPR2025-00119

646 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.9 Manchester
stage used in adder

The adder module chosen for this design is the static Manchester carry
stage shown in Fig. 8.19(a). The reasons are as follows:

• It is a static design requiring no clocking (straightforward design).

• It could be designed to have a very small pitch, which is important in
keeping datapath height small and delays low.

• It had been used in previous designs successfully.

• It provides a better speed trade-off for the adder (simpler PG and
SUM generators-see Figs. 8.18 and 8.34).

The adder module is designed in 4-bit sections and consists of a PG gen­
erator, a carry lookahead section, and a SUM generator. Figure 9.9 shows a
schematic of a single-bit section that also represents the physical layout­
i.e., the carry section is sandwiched between the PG generator on the left and
the SUM logic on the right. Figure 9.10 shows the schematic for a 4-bit sec­
tion. Complementary CMOS logic is used throughout the adder except for
the carry lookahead gate, which is a pseudo-nMOS NAND gate. Variations
of this adder might include the pseudo-nMOS carry-lookahead gate shown
in Fig. 8.17. Other adders that might be used if the speed is not too stringent
might include the adder shown in Fig. 8.7(b). This is potentially the smallest
adder that might be used, and the speed can be altered somewhat by adjust­
ing the size of the CARRY gate transistors. This adder, used as a carry-select
adder, might also prove useful. If in doubt, the designer might complete
some initial simulations of various adders at this point. If possible, you
should actually design the layouts and backannotate the schematics or HDL
when simulating because this will give the best indication of the final speed
that might be attained. Remember to simulate at the Worst Case Speed cor­
ner of the process. Figure 9.11 shows the complete 16-bit adder complete
with control circuitry. A zero and negate circuit (called BUS-OP in this

Piook Gout

-G

A .. A PG
SUM

B .. B
-P -P

-SUM _,-SUM
p

-Ci

Gin

A Gout P1ook
MAN-STAGE

B Gin -SUM

Micron Ex. 1037, p. 686
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 647

C4

4
4 _, -SUM

A_,
4

B _,

3
A Gout P1ook

3 MAN-STAGE
B Cjn -SUM

2
A Gout P1ook

2 MAN-STAGE
B Cin -SUM

A Gout P1ook

B
MAN-STAGE

Cin -SUM

0
Gout P1ook

0
A

MAN-STAGE 0
B Cin -SUM

A C4

MAN4 -SUM

co B co

design) is required on one input (B) to zero the operand or set B to all ones
(for adding zero, -1 or just passing A) and conditionally inverting the oper­
and for subtraction operations. While this could be implemented using an
XOR gate and an AND gate as shown at the bottom of Fig. 9 .11, the pass­
gate implementation shown in Fig. 9.25(b) is faster and smaller and was
used in this design. A zero detect is placed on the output of the adder
(E_ZERO). It is placed here rather than on theALU_OUTbus in Fig. 9.8
because this implementation is faster by the time it takes the tristate buffers
in the adder and Boolean unit to drive that bus. As a result, the zero circuit is
replicated in the Boolean unit (E_BZERO). The circuit used for this is a
pseudo-nMOS NOR gate. Other complementary CMOS solutions could also
be used (see Fig. 8.28). The ALU-OP instruction decode is also shown. This
is fairly straightforward. For instance, ALU-0P=5 is A-B. Thus INVERT=
1, CIN = 1, andALU-OP<5:4> = 0. This inverts the B operand, adds 1 to the
adder via the carry in, and enables the adder tristate buffer.

The module used for the Boolean unit is a transmission-gate circuit
based on the structure shown in Fig. 8.33, and is shown in Fig. 9.12. The

FIGURE 9.10 4-bit
Manchester adder

Micron Ex. 1037, p. 687
Micron v. YMTC
IPR2025-00119

648 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.11 16-bit adder
schematic

Figure 9.12 Boolean bit

16 ~ ~
~--/------+--~ E_ZERO

16
A i~~;i---,~--------------

16

ALU_OP<1>

ALU_OP<2>

6
ALU_OP G>--+--

BUS-OP
in out

zero x16
invert

\
ALU_OP<O>

ALU_OP<5>
ALU_OP<4>

inve~)~BOP

inve~)~BOP

2/2

1<2> --1---l

1<3> --1---l

2

Micron Ex. 1037, p. 688
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 649

complete Boolean unit is shown in Fig. 9 .13 that includes a tristate output
buffer, decoding logic, and a zero detect. As an example of a Boolean
instruction, consider that ALU-OP=16 is AffiB. In Fig. 9.12, f<0>=0,
f<l>=l,f<2>=l, andf<3>=0. Thus the truth table is

A B OP
0 0 0
1 0 1
0 1 1
1 1 0

which implements the XOR operation.ALU-OP<5:4>=0l enables the Boal­
. ean unit onto theALU_OUTbus.

The shifter is a tristate-buffer multiplexer structure using a left shifter
and a right shifter with direct decoding of the shift amount (see Fig. 8.47
with tristate-buffers replacing transmission gate muxes). Tristate buffers
were used to achieve the desired speed.

A word about the critical path. In the ALU section, the critical path starts
in a register, passes through the IO-REG muxes, through the BUS-OP circuit
(conditionally negating and zeroing the operand), through the adder and into
the condition code logic where the conditions are registered. The critical
path as reported by the timing analyzer is shown below.

Summary of path-clock rising to clock rising delay of 22.7 ns due to a
delay of 21.8 ns at node 3836 and a .9 ns setup time into the register:

CK to CK 22.7ns (setup time 0.9) data node 3836 at CK+ 21.8
S>sproc>SPROC-CONTROL-l>REG-17>D-REG-MUXSTANDARD

The delays have the form:

Node name cumulative-delay (this-node-delay)
node-path

16~ ~ c...::.r-= E_BZERO

BOOLE-BIT

A H-+>---T'-'1,,_6 ----1 a zbuf 1-----' 16

B _, 16 b x16 z 1--------+---+---<->~11 ALU_OUT
f s

ALU_OP<3:0>

in<15> --j 1611

ALU_OP<5>

FIGURE 9.13 Boolean unit
schematic

Micron Ex. 1037, p. 689
Micron v. YMTC
IPR2025-00119

650 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Clock buffer delay:

Node CK O.Ons (0.9ns)
S>sproc>INST_PIPE-2>CLOCK-BUFFER-3>CG-INVERTER-3>NMOS-4
Node 4329 0.9ns (0.6ns)
S>sproc>INST_PIPE-2>CLOCK-BUFFER-3>CG-INVERTER-4>PMOS-4

Clock-to-Q delay of register:

Node 4338 1.5ns (1.6ns)
S>sproc>INST_PIPE-2>DP-D-REG-10

Instruction Pipe logic-Figure 9.18:

Node 4277 3.lns (0.9ns)
S>sproc>INST_PIPE-2>CG-INVERTER_.47>PMOS-4

IO-REGS delay (Fig. 9.6):

Node 1364 4.0ns (1.6ns)
S>sproc>SP-DP-l>IO-REGS-l>I0-REG-2>MUX-DRIVER-1>

CG-INVERTER-3>NM0S-4
Node 3007 5.6ns (1.0ns)
S>sproc>SP-DP-l>IO-REGS-l>I0-REG-2>MUX-DRIVER-1>

CG-INVERTER-4>PMOS-4
Node 3008 6.7ns (1.0ns)
S>sproc>SP-DP-l>I0-REGS-l>I0-REG-2>DP-MUX2-3#2>

CG-TG-2>NMOS-1
Node 3082 7.6ns (0.7ns)
S>sproc>SP-DP-l>I0-REGS-l>I0-REG-2>BUS-DRV-2#2>

CG-INVERTER-9>PMOS-4
Node 3126 8.3ns (0.6ns)
S>sproc>SP-DP-l>IO-REGS-l>I0-REG-2>BUS-DRV-2#2>

CG-INVERTER-lO>NMOS-4

BUS-OP gate (Figure 9.11):

Node 2372 9.0ns (0.9ns)
S>sproc>SP-DP-l>ALU-l>ADDER-l>BUS-OP-2#2>

CG-INVERTER-14>PMOS-4

Manchester-adder delay (Figure 9.11):

Node 2313 9.9ns (4.0ns)
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-LSB-1
Node 2381 13.9ns (0.7ns)
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-1#0
Node 2379 14.6ns (0.7ns)
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-1#1
Node 2380 15.3ns (4.0ns)
S>sproc>SP-DP-l>ALU-l>ADDER-l>MAN-16-2>MAN-4-1#2

Micron Ex. 1037, p. 690
Micron v. YMTC
IPR2025-00119

9;2 A CORE RISC MICROCONTROLLER 651

Node 2306 19.3ns (1.6ns)
S>sproc>SP-DP-l>ALU-l>ADDER-l>CG-INVERTER-15#15>NMOS-4
Node 2343 20.9ns (0.7ns)
S>sproc>SP-DP-l>ALU-l>ADDER-l>CG-INVERTER-7>PMOS-4

LE gate in control.logic (Figure 9.21):

Node 1436 21.7ns (0.lns)
S>sproc>SPROC-CONTROL-1>0R-17>NOR2STANDARD>

N-CHANNEL-MOSFET-94
Node 3836 21.8ns

From this, it may be seen that -48% of the timing budget is used by the 16-bit
adder, 18% is spent in the register, and 22% is spent in the input-operand
switching. Because this was not the overall worst path in the design and the
timing was close to the design goal of 40 MHz, this timing was deemed suffi­
cient. If improvements were required, the adder and IO-REGS could be further
scrutinized (or the design could be transferred to a smaller process).

9.2.3.2 Register File

The register is arranged as a 32 x 64 memory with 4: 1 column multiplexing.
The register-file structure shown in Fig. 8.66(a) is used as the three-port reg­
ister file. Figure 9 .14(a) shows the transistor sizes used in the memory cell
along with the read- and write-row decoders. The ratios of the write-path
transistors and the storage inverter are chosen to ensure correct writes over
all process corners. Two read-access transistors are used to provide dual read
ports. Two read-row decoders and a write-row decoder that are based on a
complementary 5-bit AND gate are used.

A 2-bit write address performs a column select for write operations,
while 2-bit read addresses employ a multiplexer decoder (Fig. 8.63) to yield
a 16-bit result. The column circuit, which is a 4-bit section, is shown in Fig.
9.15(a). It includes two 4:1 multiplexers (using single n-channel transistors),
a sense inverter, and a buffer, which select the data to be routed to the IO­
REGS. The write circuitry consists of a register to hold the write data and
buffers for the four write-data lines (WD<3:0>) and write-strobe logic to
allow the selective writing of any of the four columns (WAS<3:0>).

A write operation proceeds by placing an address on the write-address
lines and then deasserting the clock. This causes one of four column
WRITE-STROBE (WAS) signals to be asserted, which writes data into the
cells with the word line asserted. Latches were added to the WRITE­
ADDRESS (WA) lines to improve the speed.

Reads are totally static. For read operations, the critical path begins in
the Instruction RAM, the output of which is passed to the word-line decoder
of the register file. This in turn drives the row line of the register file, access­
ing a register. This triggers bit-line changes, which are demultiplexed and

Micron Ex. 1037, p. 691
Micron v. YMTC
IPR2025-00119

652 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.14 Register file
partial schematic

32*64 memory array
4/1 ---r-+-

64
-<->->1 RDO

To column decoder

To column decoder

elk

32

write row decoder

buff er and gate

""~ RAO~
---+-~·

32
x32

read row decoder - port A

buffer and gate
32 =----~~ RA1~ x32 1--r------------~

--1-~

read row decoder - port B

driven to the IO-REGS module in the ALU-DP. There is a large spectrum
over which the speed (and power) of the register file may be changed by siz­
ing the row-decoder drivers, the decoder, AND gates, and the word-line driy­
ers. In addition, moving the read registers into the register file could also be
used to improve speed if necessary. Additionally, the bit lines could have
been precharged to improve speed. In this case none of these improvements
were required. A typical SPICE simulation for verifying the read-access time
is shown in Fig. 9.15(b). This includes parasitic capacitances that are deter­
mined from a mask extraction of the layout of key cells of the register file
(for instance, from a layout of the register file memory cell, the word-line
and bit-line capacitances may be estimated). Figure 9.15(c) shows an
address-input changing and the word-line response and the bit-line change.
Figure 9.15(d) shows the bit-line response, the delay through then-channel
column multiplexer, and the final output. This shows that the delay from the
address change to valid output is around 10 ns. The bit-line sense amplifier is
ratioed to move the threshold voltage toward V88, which improves the sense
time. For simplicity, the bit-line is not precharged, although some speed
increase could be achieved by precharging and using a more exotic sensing
scheme. However, this met the speed goals by almost half a clock cycle, so
no further design effort was required.

Micron Ex. 1037, p. 692
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 653

RD0<3>

I
RAO<O>

RD0<2>

I
-RAO<O>

RD0<1>

I
RA0<0>

RDO<O>

I
-RAO<O>

RA1

4

(a)

REG

T

T
-RA0<1>

\

RAO

CLK

LATCH

WAB<1 >#2,-WAB<1 >#2
WAB<0>,-WAB<0>,WAB<0>,-WAB<0>

f-------'-----'----'----'-----n q d ,_-WE

column buffer (one)

WAB<1 :0> ----71___~----/(:"1 WA
-WAB<1:0>~

A point that arises here is the importance of being able to rapidly proto­
type a design to assess where the speed bottlenecks are. Frequently this can
be done with pencil and paper or more conveniently with a good top-to-bot­
tom VLSI CAD system. Completing a rough "first draft" of a design can
often highlight critical parts of the design ahead of time. This prevents work
on areas that do not affect the performance of the overall system. Frequently,
designers tend to take a myopic view of the design and can spend unneces­
sary time optimizing something that does not matter ("disappearing down
the optimization rat-hole").

FIGURE 9.15 Register file
read: (a) column decoder cir­
cuit; (b) SPICE model;
(c) waveforms; (d) wave­
forms

Micron Ex. 1037, p. 693
Micron v. YMTC
IPR2025-00119

654

data

...column mux .. - sense amp -

word
>--~---~

I1.32pf

--- row driver ----~ 1.25pf

- row decoder-

(b)

addr addr addr data

word

word

bit bit v v

time time
(c) (d)

Figure 9.15 (continued)

9.2.3.3 PC Datapath (PC_DP)

The PC datapath computes the next program-counter address (!_PC)
(Fig. 9. l 6a). During normal operation the !_PC selects the incremented
version of the PC (l-NOR-PC<15:0>). When a JUMP, CALL, or RETURN
operation occurs, the I_PC register is loaded with the R_JPC (from
the instruction) in the case of a JUMP or a CALL, or with the stack in
the case of a RETURN (l-ALT-PC<l5:0>). The multiplexers to achieve
this can be seen in the figure. The signal !_NEXT selects either the "normal"
PC (I-NOR-PC) on ALU operations or conditional jumps that fail. It selects
the "alternate" PC (I-ALT-PC) on subroutine call, return, and conditional
jumps that are taken. Note that the !_PC signal is duplicated, feeding the
!_PC to the incrementer. This was done to improve speed because a critical
path exists from the l_NEXT.L signal, through the incrementer and into regis­
ter NPC, that switches the !_PC multiplexer. The regular !_PC output of the

Micron Ex. 1037, p. 694
Micron v. YMTC
IPR2025-00119

. 9.2 A CORE RISC MICROCONTROLLER 655

STACK
D Q

1->>---+-"--l----l EN

CLK----il----l CLK ..__ __ ___...

R_JPC
16

l-ALT-PC<15:0>

CLK

l-NOR-PC<15:0>

2

l_NEXT.L

CLK

(a)

'7-4 211

16 D-LAT 16
D D -Q n-_..,,_----1

• • • • • •
16 D-LAT 16

D D -Q

(b)

module is heavily loaded because it drives external modules. The duplicated
path provides a faster !_PC to the incrementer, thereby improving speed.

The subroutine stack with a depth of eight is constructed from eight 16-
bit latches. The stack design is shown in Fig. 9. l 6(b). One of eight latches
may be conditionally written when the clock is low depending on an enable

FIGURE 9.16 PC_DP

Micron Ex. 1037, p. 695
Micron v. YMTC
IPR2025-00119

656 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

CLK S-.

32
R_INST ,_._.,..._.,,_~

signal generated by the control logic. The outputs of the 8 registers are
selected using a wired OR structure. One has to carefully design this circuit
as there is a race that can occur between the data and the gated clock.

The module can be a 10- to 16-bit datapath, depending on the size of the
program RAM or ROM.

9.2.3.4 Instruction Memory

In the first design that employed this processor, static RAM was used as the
program memory. This decision was made because a number of algorithms
were to be implemented by the processor and the algorithms were in a state
of flux at the time of design. The RAM was a conventional, fast, static RAM
employing a six-transistor cell similar to that described in Chapter 8.

9.2.3.5 Instruction Pipe

The Instruction Pipe (INST_PIPE) is shown in Figs. 9.17 and 9.18. This
module registers certain parts of the instruction and generates the select con-

~---------E_C_A00<7:0>

,.---- -W_C_AOO_UB<7:0>

0-REG 0-REG B

INO.L

~-......, x8 X>----10 Q 1---_.__--10 Q 1--,<-.__-1
23:16 6/3 C1

elk elk

Vss--~--1

REGWAR-+ 7

10:8

2:0

0-REG
X)--.-+-1--10 Q

UNST<15>

2
E_ALU_OP E_ALU_OP<7:6> --r- NC

6
E_ALU_OP<5:0> ----,.L-<:B ALU_OP

Figure 9.17 INST_PIPE
module registers

Micron Ex. 1037, p. 696
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 657

UNST<15>

z
-A:B

en.I

z
-A: B

en.I

D-REG
D Q

-E_C_ADD<7:0>

4

~--t----t--- -W_C_ADD_UB<7:0>
!_INST <15:8>-+------~

l_INST<7> D-REG
D Q

4

-!_INST <30> --..;--+---<----1

(a)

z
-A:B

en.I

z
-A:B

en.I

-E_C_ADD<7:0>

!_INST <7:0>---+---~_-__:::;----+--- -W_C_ADD_UB<7:0>

trols for the IO-REGS module that determine which operands are fed to the
ALU.

The Instruction RAM has a register that stores the I-stage instruction
!_INST <31 :0> and outputs R_INST<3 l :0>. In INST _PIPE, the
R_INST<31:24> bits are registered to form E_ALU_OP<7:0>, which is fed

FIGURE 9.18 INST_PIPE
address comparators:
(a) schematic; (b) equality
gate

Micron Ex. 1037, p. 697
Micron v. YMTC
IPR2025-00119

658 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

oat
en.I G>---j

8 COMP 8
-A , _,_,,_.,,_____,_A xS B f---"<--(<-<-1 B oat

Figure 9.18 (continued) (bl

to the ALU_DP to control the ALU operation. While only six bits are
required, a full 8-bit register was used because it maintains the regularity of
the layout (and does not take up any more space in a data path).

R_INST<23:16> is stored in two successive registers to form E_C_ADD
and W_C_ADD, the E-stage and W-stage register-file write addresses. These
addresses are compared with the R-stage RA and RB addresses to determine
whether bypassing is required (Fig. 9.18a). The select signals generated in this
module are routed to the IO-REGS module in the ALU-DP. F:or instance by
referring to Fig. 9.18(a), it may be seen thatA_SEL<l> is set when the E-stage
write address equals the R-stage address. Figures 9.4 and 9.5 show that when
this signal is asserted, the E-stage data is forwarded to the bypass register.
WhenA_SEL<3> is asserted, it selects between the register-file and the literal
field (A_SEL<O>). WhenA_SEL<2> is asserted, it selects external data; when
deasserted, it selects between E_RESULT and W_RESULT, as discussed
above. B_SEL is similarly generated. The logic required to achieve this is
shown in Fig. 9. l 8(a). Because this was a small amount of logic, it was placed
in the datapath under the metal2 bus signals.

The address comparators use an enabled pseudo-nMOS XNOR gate as
shown in Fig. 9.18(b). This gate is small and fast, and it fits unobtrusively
into the datapath.

9.2.3.6 Control Logic

The control-logic block is responsible for four main control functions:

• instruction decode.

• microstack address control.

Micron Ex. 1037, p. 698
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 659

• condition-code control.

• I/O control.

Figure 9.19 shows the instruction-decode logic. In addition to the R-RET
signal the signals,

E-CALL, a Call instruction

E-JFALSE, a Jump False instruction

E-JTRUE, a Jump True instruction

E-ALU, an ALU instruction

are generated. The write enable for the register file (W _WE) is generated
when there is a W-ALU signal while the W_EXT_ADD_SEL<I> signal is
generated if an external register is not addressed. The SHIFT-COUNT signal
is used by the shifter and is either derived from the op-code or an external
register in the EXT_BUS_DP section.

8

R_OP S:O
1~-------;

CLK

4
SHFREG _, O

REG
4-Bit

d q

R-RET.L

CLK

E-ALU

CLK

4-bit

s

E ALU
NC#3,E-ALU.L E-ALU.L~

1---~-- E-CALL

E-JFALSE
E-JTRUE
E-ALU

W_EXT _ADD_SEL<1 >

FIGURE 9.19 Control­
instruction decode

Micron Ex. 1037, p. 699
Micron v. YMTC
IPR2025-00119

660 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.20 Control-stack
address

XCOND_SEL~

8-bit

SP<0>,SP<7:1> O
SP<7:0>

E-CALL

The PC_DP-stack (microstack) address is generated using an 8-bit
shift register (Fig. 9.20). The shift register is reset with a 1 in the LSB. When
E-CALL is true, the register left-shifts, while w)1en R-RET is true the register
right-shifts. Thus this implements a pointer that points to the current return
address. This coulq have been implemented as a 3-bit counter and a set of row
decoders in the stack. However, this was deemed simpler and smaller for this
size stack.

The condition-code logic is responsible for collecting the conditions,
selecting the appropriate condition, and then controlling I_NEXT. multi­
plexer in the PC_DP, as shown in Fig. 9.18. The registers are shown in Fig.
9.21, and the condition-code logic is shown in Fig. 9.22. In Fig. 9.21 the con-

E_ZERO
E_NEG

E_CRY
E_ZERO

E_NEG
E_BZERO

REG
1-Bit

, XCOND "' d q 1------,

E-ALU LOAD

CLK
E-ALU

CLK

REG
4-Bit

d q
CC-LOGIC

XCOND
'----=~11 LE

CRY
AZERO
NEG
BZERO

2
-SEL INEXT.L 1----+-<·->>l l_NEXT.L

>-------< SEL

JF
JT

XCOND_SEL<2:0>

E-JFALSE
E-JTRUE

E-Al:U
-RST

ALU
-RST

~---< RST-01

RST

CLK
XCOND_SEL<5> 5
XCOND_SEL<4>

Figure 9.21 Control-condition code registers

Micron Ex. 1037, p. 700
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 661

6
SEL~

6
-SEL~

FIGURE 9.22 Control-condition code selection

ditions and the selection field (XCOND_SEL) are registered. Conditions that
come from the ALU are

E_CRY-carry from adder

E_ZERO-adder zero

E_NEG-high bit of ALU

E_BZERO-Boolean zero.

In addition extra conditions are generated. For instance, LE (less-than-or­
equal-to) is E_ZERO ORed with E_NEG. A condition may also be passed
from an external source (XCOND).

Figure 9.22 shows the condition-code logic. First, a 6-input multiplexer
selects the appropriate condition. This is then passed to a set of gates that
control the !NEXT signal dependent on JF (Jump False), JT (Jump True),
ALU (an ALU instruction-no jump can be taken), and reset.

Finally, the I/O control logic is shown in Fig. 9.23. This controls the writ­
ing of registers and the tristating of busses in the EXT_BUS_DP. The EXTOE
bus controls the enabling of external registers onto the external bus for reading
by the ALU. The EXTEN signals control the loading of various external regis­
ters caused by writes by the ALU or the returning SYSBUS data.

2
--+-<'41-+ INEXT.L

Micron Ex. 1037, p. 701
Micron v. YMTC
IPR2025-00119

662 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

FIGURE 9.23 Control-1/0
path

WR-SBWDATA-INC.L

CLK

2
W_EXT_ADD_SEL ~

W _EXT _ADD G>---7'-<

W_EXT _ADD_SEL<O>
WR-SBRADDR.L
WR-SBWADDR.L
WR-SBWDATA.L
WR-SBWDATA-INC.L
WR-REGWAR.L
WR-SHFREG.L

RD-SBADDR.L
RD-SBWDATA.L

RD-SBRDATA.L
RD-REGWAR.L
RD-SHFREG.L

RD-SBRDATA.L ---------~-"""'1
SYSBUS-OE.L ---------~1
RD-SBADDR.L ---------~1

SYSBUS_OE ----~
SYMDAT-SEL.L

SYS-RD-START.L
-SYS-READ-PENDING.L --.._,__--

RD-SBWDATA.L
RD-SHFREG.L ---------~1

RD-REGWAR.L ---------~

CLK~
x5

SYS-READ-PENDING.L ------,---u .:>--r---<->I

WR-SBRADDR.L
WR-SBWADDR.L

WR-SBWDATA.L
WR-SBWDATA-INC.L

WR-SHFREG.L -------1

WR-REGWAR.L -----~

WR-SBRADDR.L

CLK

LD-WDATA.L

CLK

,.. SYSBUS_RD

'" SYSBUS_OE

'"' SYSBUS_WR

Micron Ex. 1037, p. 702
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 663

9.2.4 Layout

The microcontroller was constructed using three styles of layout, namely,

• datapath elements

• standard-cell layout

• memory layout

and of course, routing.
A datapath layout strategy was selected for this design, which is based

on one its designers have used for a large Lisp microprocessor and which
has proved useful on numerous other datapath chip layouts (Fig. 9.24a).
Metal2 power busses run at the bottom and top of the cell. Sometimes these
may be omitted and the power busses run vertically in metall. Space is
allowed for four metal2 busses to run through the cell (or five without
metal2 power busses). The choice of four busses was originally made for

control

•••••••••••••• •••••••••• data

(a)

~~~~~~~~~~~~o 

~~~~~~~~~~~;--c 

~~~~~-r-~-----,-~~~r---B 

~~~~~+-~-+~~~r---A 

Block A Block B Block C Block D

(b)

t:::·::::::···:···::·::::::···:···::·::::::···::::::·::···:···:::::: V DD

" ' ~' \ ~\ • ·•• •••••• • •••• ,, ••••••••• · •••••• D

...............
"

•' ······ c
" '

••••••• B

~~
'l

••••• A

!:::.:::::: ... :.-::::.:::::: ... : ... ::.:::::: ... ::::::.:: ... : ... :::::: Vss
Block A Block B Block C Block D

(c)

FIGURE 9.24 Datapath
strategy

Micron Ex. 1037, p. 703
Micron v. YMTC
IPR2025-00119

664 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

the microprocessor, and most datapaths have been shoehorned into this
structure. A designer of course could choose more route-through busses but
probably not fewer. Active circuitry is placed under the route-throughs in
diffusion, polysilicon, and metall. In a nonsilicided process, metal control
lines are run vertically, while in a silicided process, the polysilicon may be
used as control lines as long as the delay does not impact speed (be warned:
in high-speed circuits silicide is really not adequate). More than four busses
may be run through cells for short distances. For instance, adjacent con­
nects between cells may be made in polysilicon or metal. Metal (or poly)
can pass over an intervening cell if metal (or poly) transparency is provided
in the cell. For instance, to achieve metal transparency, all vertical connec­
tions are made in: polysilicon. This normally elongates the cell but may pro­
vide the right trade-off of increasing the length of one cell rather than
adding an extra bus for every bit for the complete length of the datapath.
Figures 9 .24(b) and (c) show an example of 5 to 6 busses being routed. The
height of the cell is determined by a combination of the metal2 pitch and the
n-to-p spacing of the transistors. There is a maximum width of the horizon-

Table 9.1 Standard Cells

INVERTING FUNCTIONS

INVERTER
2-input NAND
3-input NAND
4-input NAND

2-inputNOR
3-inputNOR

NONINVERTING FUNCTIONS

2-inputAND
3-inputAND
4-inputAND

2-input OR
3-input OR
BUFFER lX, 2X, 4X, 8X drive

STORAGE ELEMENTS

DREGISTER
DREG/CLEAR
DREG/SET
DREG/MUXED

DLATCH
D LATCH/CLEAR
DLATCH/SET

OTHER LOGIC FUNCTIONS

2-inputMUX
4-inputMUX
XOR
XNOR
AND-OR-INVERT 221
OR-AND-INVERT 221

Tristate-Buffer

Micron Ex. 1037, p. 704
Micron v. YMTC
IPR2025-00119

Vss :m::. ..
d-register

(a)

2
ZERO~

INVERT~
2

T
-CLK CLK

zero<1> zero<1>
zero<O> zero<O>

neg-zero logic

(b)

inverl<O> inverkO>
inverk1> invert<1>

tally oriented n- and p-transistor that determines the minimum height of the
cell given a certain number of route-throughs. If wider transistors are
required, then they must be rotated or composed of multiple smaller transis­
tors. Figure 9.25 shows a number of examples of symbolic layouts of cells
designed using this style of layout. Figure 9.25(a) shows the D-register cell,
and Fig. 9.25(b) shows the BUS-OP cell used for conditionally negating
and zeroing the B operand to the ALU. Figure 9.26 shows 4 bits of the
Manchester adder (also Plate 10).

FIGURE 9.25 Datapath lay­
outs: (a) register; (b) SUS-OP
gate

665

Micron Ex. 1037, p. 705
Micron v. YMTC
IPR2025-00119

CIN
PG generation CARRY qeneration SUM qeneration

FIGURE 9.26 Manchester adder layout

666

The standard cells in the control section use a fairly standard two-level­
metal routing strategy (see Fig. 6.29b). Metall power busses run horizontally,
and polysilicon (silicide) runs vertically. Routing channels may be metall/
metal2 or metall/poly. Table 9.1 gives a list of all the standard cells used.

The standard cells are placed by the TimberWolf program 1 and routed sym­
bolically. The resulting layout is compacted to form a mask layout. Of course,
any place-and-route program may be used to build the standard-cell logic.

9.2.4. 1 Datapath F/oorplans

When using datapath elements with a constrained number of route-throughs, the
designer needs to determine an ordering of the functions on the datapath that
does not require the number of feedthroughs to be exceeded. The ordering of
functions on a datapath may be determined by permuting the order of the blocks
and counting the number of connections between the blocks. This is done in a
top-down manner from the highest level at which a single datapath is required.
Common tricks employed include using tristate drivers as multiplexers (thus
only requiring one common wire), replicating logic to reduce route-throughs, or
using routing layers other than metal2 on adjacent or nearly adjacent modules.
As noted previously, adjacent connections may be made in polysilicon or metal.

Micron Ex. 1037, p. 706
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 667

As an example of a typical floorplan, the ALU_DP module will be exam­
ined. The floorplan follows the schematic hierarchy, employing a layout
block for the IO-REGS, ALU, and EXT_BUS_DP. These are placed adjacent
to each other, as shown in Fig. 9.27. The register-file and literal ports enter
on the left, and the system-address and data ports are accessed at the right of
the ALU_DP. The control signals and clock enter at the bottom. From Fig.
9.4 it may also be seen that the R_EXT_BUS andALU_OUTbus have to con­
nect to all three modules. Just at this level it may be seen that IO-REGS is
going to have at least six horizontal busses passing through it, so some
thought has to be given to this potential problem.

Examining Fig. 9.28(a), the floorplan of the IO-REGS module may be
seen. This module consists of 16 bit-slice sections vertically abutted on top
of a control section. At this level R_A_DATA, R_B_DATA, R_LITERAL, and
W_C_DATA enter on the left of the module. A, B, and EXT_DATA enter on
the right. The bit-slice is shown in Fig. 9.28(b). It does not follow the sche­
matic hierarchy in order to meet the four-bus constraint. With the arrange­
ment shown in Fig. 9.28(b), no more than four busses are required in the
datapath bit-slices.

Figure 9.29(a) shows the floorplan of the EXT_BUS_DP module. It
consists of a number of 16-bit modules abutted to a common control section.
Each vertical 16-bit section is associated with a register, which is shown in
Fig. 9.7. Some registers (e.g., SHFREG and REGWAR) have bus-throughs
in their upper bits. Figure 9.29(b) shows the RDDATA register-block bit­
slice, which is composed of a register and tristate buffer abutted. The con­
trols run vertically.

Figure 9.30(a) shows a floorplan of the ALU. The ALU datapath is split
according to the schematic hierarchy (Fig. 9.8), that is, an adder, a Boolean unit,
and a shifter block. Figure 9 .30(b) shows the floorplan of the adder. It consists of
a 16-bit BUS-OP, Manchester adder, zero detect, and bus-driver horizontally
abutted, with a control block at the bottom. The adder is, in turn, four 4-bit
Manchester sections (Fig. 9.26). The Boolean-unit bit floorplan is shown in Fig.
9.30(c). Finally, the shifter floorplan is shown in Fig. 9.30(d). The shifter was

IO_REGS

W_C_DATA
R_A_DATA
R_B_DATA
R_LITERAL

ALU

CONTROL, CLOCK

EXT_BUS_DP

SYS_DATA
SYS_ADDR

Figure 9.27 ALU_DP floor­
plan

Micron Ex. 1037, p. 707
Micron v. YMTC
IPR2025-00119

668 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

FIGURE 9.28 10-REGS
floorplan: (a) complete mod-

(a)

10-REG bitslice

Control

literal reg a-reg

reg mux

ff-ff--.,------,

mux b-reg mux wrbuffer ext_data reg

ff - f f--'---____J

reg mux mux wr buffer -- This block is repeated twice horizontally.

ule; (b) 1-bit slice (bl

designed so that one module shifted left and the same module, reflected in X and
Y and abutted to a common central bus-buffer module, shifted right.

The other datapath modules are similarly constructed. As an example of a
memory structure, the ftoorplan of the register file is shown in Fig. 9 .31. The
storage array (the register file shown in Fig. 9.14a) is abutted at the right by 16
4-bit column circuits, represented in Fig. 9.14(b). The three row-decoders are
arrayed at the bottom of the memory array. Buffered address lines for the read
and write ports run horizontally and are buffered in the bottom-right comer. Col­
umn-address buffers are placed above these drivers.

The control standard cell does not have an ordered ftoorplan but was
specified as a two-row standard-cell layout that turns out to be about as long
as the ALU_DP cl.atapath so that it may be conveniently placed adjacent to
this module. Figure 9.32 shows a possible fioorplan of the processor.

Micron Ex. 1037, p. 708
Micron v. YMTC
IPR2025-00119

9.2 A CORE RISC MICROCONTROLLER 669

E_RESULT_REG WDATA ADDR RD DATA

--- SHFREG REGWAR

/

CONTROL 7
(a) /

Tristate Buffer Mux Register

~ l
sys_data

1----+----<------+~-i---;.-->---<· sys_addr

r_ext_data ..___,_ __ __._ ________ .._.

enable elk
(b)

9.2.5 Functional Verification and Testing

A schematic for the design was first captured and the functionality of various
modules checked. For instance, the adder, Boolean unit, and shifter had tests
written for them. In addition for this design a C register transfer model of the
processor was written as the RTL schematic was being developed. Once the
overall processor was captured at the schematic and RTL levels, an assembler
was written so that programs could be written using the instruction set of the
machine to verify the functionality. A suite of tests were written to check each
instruction class and type of operation. For instance, all arithmetic instructions
were checked, a test was written to check the register file, the pass-around
logic was checked, and the condition-code logic was checked. These vectors
were enhanced to increase fault coverage by running them on a fault simulator.

Apart from these initial functional tests, timing simulations were run on
the backannotated schematics to verify the performance of modules such as
the adder. A timing analyzer was then used to report overall worst-case tim­
ing paths for the processor (and its peripherals) as a whole. This was first
done with the layout incomplete, and as layouts were completed, the accu-

Figure 9.29 EXT _BUS_DP
floorplan: (a) complete mod­
ule; (b) an example bit

Micron Ex. 1037, p. 709
Micron v. YMTC
IPR2025-00119

670 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

FIGURE 9.30 ALU floor­
plans: (a) complete module;
(b) adder; (c) Boolean unit
bit; (d) shifter

(a)

bus-op

(b)

adder boole shifter

buffer

man-4

man-4

man-4

man-4

control inv

(c)

routing channels
(numbers indicate shift amounts)

mux

t-'-t--+--+---< 8 8 I--+--+--~

214 214

r--+--+--+---< 8

buffer

~
(d) tristate muxes

inv mux inv inv zero tristate mux inv

rate backannotated schematics were used to achieve increasingly accurate
timing analyses. Frequently, gates had to be moved between modules and
between pipeline stages to achieve the desired speed.

Micron Ex. 1037, p. 710
Micron v. YMTC
IPR2025-00119

32 x 64 memory array

~
32 row decoders

routing

Instruction RAM

4:1 column rd/wrt iE
column drivers r.-

r.-

r.-

R_A_DATA
R_B_DATA
W_C_DATA
clock

write address

read A address

row decoder drivers

r.- read B address

alu_dp

spree control

pc_dp j I inst_pipe /

register-file

9.2 A CORE RISC MICROCONTROLLER 671

Figure 9.31 Register-file
floorplan

Figure 9.32 Possible pro­
cessor floorplan

Micron Ex. 1037, p. 711
Micron v. YMTC
IPR2025-00119

672 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

In addition, extensive tests were written for the C functional model. The
vectors at the boundary of the symbol processor were captured and applied
to the schematic version and the corresponding outputs checked for consis­
tency.

The C RTL model was merged with other C-level models for the com­
plete chip, and the system as a whole was tested by pumping data though the
complete chip, and comparing the output values with a "golden" software
model. This kind of testing verifies that the processor can be programmed to
perform the required signal processing operations, but it does not give very
much insight into whether all instructions work for all operands in the pro­
cessor.

So in summary there were a number of levels of verification and testing:

• At the individual submodule level (functionality (C RTL simulator
and transistor level simulator) and timing tested (transistor level sim­
ulator)).

• At the processor level (functionality (C RTL simulator) and timing
tested (transistor level simulator and timing analyzer)).

• At the chip level (functionality and timing tested; C RTL simulator,
module level timing analyzer used).

A good strategy to have is a set of regression tests that are run anytime a
change is made to a module. These can be run in bottom-up mode so that
bugs in low-level modules are found without having to find the bugs in time­
consuming high-level simulations.

9.3 A TV Echo Canceller

The chip described in this section2 (designed by A. Corry, B. Edwards, and
N. Weste of TLW, and C. Greenberg of Philips Laboratories) is presented as
an example of the kind of structure that lends itself to implementation as a
regular structure. Because the chip is dominated by this regular structure, a
high proportion of the engineering of the chip may be directed at the
repeated structure, thereby providing effective use of the chip area.

9.3.1 Ghost Cancellation

This application is in the area of video-ghost cancellation.3,4 Terrestrial and
cable TV transmissions are subject to multiple-path propagation and
transmission-line impedance discontinuities. Both of these imperfections in
the communication channel lead to what is termed "ghosting," or echoes,
which is familiar to most TV viewers.

Micron Ex. 1037, p. 712
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 673

Figure 9.33(a) shows a representation of the transmission path subject to
ghosting. The signal at the receiver is given by

where

SR = the received signal

Sr= the transmitted signal

He= the contribution of ghosts to the signal at the receiver.

If the receiver incorporates a filter structure, as shown in Fig. 9.33(b), then.

where

Se = the processed signal

Hee = the response of the filter.

If Hee= He, then the original signal is restored.
A typical ghosted signal is shown in the time domain in Fig. 9.34(a). It

consists of the main signal and a set of ghosts that precede the main signal
(pre-ghosts) and a set of ghosts that follow the main signal (post-ghosts).
The filter structure shown in Fig. 9.34(b) may be used to cancel the ghosts
shown in Fig. 9.34(a). A filter with characteristic Heel prior to the adder
cancels the pre-ghosts, and the filter with characteristic Hee2 is used to can­
cel the post-ghosts. A delay line adds the main signal at the required point in
time via a three input adder.

(a) (b)

FIGURE 9.33 Ghosts:
(a) transmission channel;
(b) receive channel

Micron Ex. 1037, p. 713
Micron v. YMTC
IPR2025-00119

674 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure9.34 Ghosted signal:
(a) time domain; (b) possible

h(n)

nT

main signal

-- pre-ghosts_...,,___ ____ post-ghosts -------

(a)

cancellation filter (bl

The filters shown in Fig. 9.34(b) may be implemented with filters that
are called Finite Impulse Response (FIR) and Infinite Impulse Response
(UR) filters. By sending a known "training signal" as part of a regular TV
signal, the filter coefficients of the two filters may be determined and the
ghosts canceled.5•6

9.3.2 FIR and llR Filters

Mathematically, a sampled data FIR filter is represented by

n

y ct) = Li hix (t) ,
i = 0

where

y(t) = the filtered signal stream at time t

x(t) = the input signal stream at time t

hi = the filter coefficients

n = the order or length of the filter.

An IIR filter may be constructed by using an FIR filter with feedback.

(9.1)

Micron Ex. 1037, p. 714
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 675

There are a number of well-known forms for the sampled data FIR filter.
Some are shown in Fig. 9.35. Figures 9.35(a) and (b) show two straightfor­
ward implementations of a 4-tap FIR filter. In the first implementation a
delayed versiori of the incoming signal (X) is fed to a set of taps comprised of
a multiplier and an adder. The multiplier multiplies the coefficient (Hn) by
the delayed version of X. The adders are cascaded to form the final sum Y. In
the second implementation, the delay is placed between adders in the taps.
Each filter tap requires a register, an adder, and a multiplier. The precision of

(a)

(b)

(c)

XB>-----~------.--------1,___ ____ ---,

X H, X ~ X H, X Ho

+ ~ + ~ + ~ + ~v
(d)

FIGURE 9.35 FIR archi­
tectures

Micron Ex. 1037, p. 715
Micron v. YMTC
IPR2025-00119

676 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

the adder and multiplier depend on the precision of the coefficient, the length
of the filter, and the desired precision or result. Implementations vary from
just writing code on a microprocessor or DSP processor (for speech applica­
tions) to full hardware implementations. The multiplier can be a costly com­
ponent in high throughput situations (such as video). If the filter response is
fixed and the coefficients are therefore fixed, the multiplier may be simpli­
fied to contain only the product terms required. For instance, if an 8-bit coef­
ficient is 00110011, then only four adders are required to perform this fixed
multiplication. For 01111110, only two adders are required (the MSB and
LSB are subtracted from the signal). This is known as Canonic Signed Digit
representation.7 In fixed FIR filters, a great deal of signal-processing exper­
tise goes into designing the coefficients so that the number of adders is
reduced. Unfortunately, in the ghost-cancellation application, the filter
response is adaptive (i.e., it has to be programmable) and other methods have
to be sought to reduce the size of the filters.

Many times the coefficients are symmetric, that is H_n = Hn- A symmet­
ric filter is shown in Fig. 9.35(c). The cost of adding two taps in this structure
is only two adders, a multiplier, and two registers. Frequently, every other
coefficient is zero, in which case the structure in Fig. 9.35(d) is useful.

A single stage of an FIR filter requires one add and one multiply (called
a multiply-accumulate operation) at the appropriate resolution, which is dic­
tated by the data and coefficients. For m-bit data, if the data frequency is f D'

and n filter taps are required, then the number of m-bit multiply-accumulates
per second is

Nmult-acc = n xfv

For data sizes and speeds ranging from 1 bit at 100 Hz (for sigma-delta AID
converters) to 8 to 12 bits at 40 MHz (HDTV video) and beyond, the archi­
tecture and implementation styles for FIR filters vary widely.

9.3.3 System Architecture
Figure 9.36 shows a block diagram of a typical ghost cancellation system.
Analog baseband video is converted to digital form, and the synchronization
and phase-locked sample clock are extracted. The digital video is fed to the
ghost cancellation chip and to a DSP processor. The DSP processor exam­
ines a single captured TV line in which the training signal is embedded and
runs an algorithm that calculates the filter coefficients required to cancel any
imperfections in the transmission channel. These are downloaded into the
ghost-canceller chip, and the ghosts are canceled. The output of the ghost­
cancellation chip is fed to a D/ A converter and hence to the baseband port of
a TV receiver.

Micron Ex. 1037, p. 716
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 677

Video Input Ghost
@ ND Canceller

,_.. Chip

'---. Sync.
,_ DSP

9.3.4 Chip Architecture

9.3.4. 1 Filter Considerations

DIA

ROM

RAM

In this application, the following specifications are applicable:

Sampling rate = 4 x Fsc
= 14.32MHz

Ghost delays = -10 µ,s to +40 µ,s

Vi de o Output

~

= -150 samples to +580 samples
Coefficient precision = 8 bits
Sample precision = 8 or 9 bits

Ideally then, a total of 730 8-bit filter taps would be required. Each tap would
require an 8-bit multiply-accumulate block operating at 14.32 MHz. As an
example, a 50 MHz DSP processor (16 to 32 bits), could deal with -3.5 taps.
Based on some early area estimates, it was decided that a full implementa­
tion of 730 taps was too large to provide economic die sizes in current tech­
nology. In addition, most of the filter taps would be zero, making this direct
implementation very inefficient from a hardware resource point of view.

It was realized that if each tap could be positioned independently within
the time domain, the filter would require one tap for each nonzero filter coef­
ficient. The disadvantage of this approach is that a separate delay line is
required for each filter tap. An intermediate approach is to group a number of
successive taps into sections, with a delay line for each section. This yields
reasonably effective use of the taps, since a single ghost generally requires
many taps to cancel it. This architectural trade-off was verified at Philips
Research Labs with a prototype system with simulated and real echo situa­
tions. As a result, the number of taps required was reduced to around 150.
This was the first step toward creating a practical implementation.

The second optimization to improve chip size involves the filter-tap
design because it dominates the chip area. As a starting point we might con­
sider an 8 x 8 multiplier-accumulator based on the designs given in Chapter 8.

FIGURE 9.36 Ghost cancel­
lation system

Micron Ex. 1037, p. 717
Micron v. YMTC
IPR2025-00119

678 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.37 Ghost canceller

As a rough size estimate, an 8 x 8 Booth-recoded multiplier with an 18-bit
accumulator would require 16 adders, 8 half-adders, and an 18-bit CPA adder.
An alternative to a parallel multiplier is a word-serial multiplier. This requires
four cycles to compute an 18-bit product for 8-bit coefficients and employs a
single 18-bit adder. The former parallel implementation requires a cycle time
of -70 ns, while the latter requires a cycle time of 17.5 ns. While these deci­
sions are justified within a few sentences, they actually required quite a bit of
prototyping of various multipliers, which involved completing the layouts and
simulating backannotated schematics with a transistor-level timing simulator.
Simulation without the layout is usually not a good idea, because with com­
pact structures, delays are normally due to self-loading and are hence highly
affected by the actual layout.

9.3.4.2 Chip Overview

A block diagram of the chip is shown in Fig. 9.37. In essence it is the same
structure as shown in Fig. 9.34(b). The main modules consist of the IIR and
FIR filter sections, a 3-input adder, a main signal-variable-delay line, and
various scaling and rounding logic.

The filter sections were divided into nine sections of twenty contiguous
filter taps each, resulting in a total of 180 taps. Each section was designed so it
could be part of the FIR- or the HR-filter response. In addition, each section
may receive an input that has a fixed delay of 0-128 samples for a section used
in the FIR filter or 0-448 samples for a section used in the IIR filter. The signal
may then be delayed by a 0-63 stage programmable delay line.

In the FIR and IIR filters, a section may be placed at an arbitrary tempo­
ral location by virtue of the programmable delay lines. Figure 9.38 shows an
example where there are 40 FIR stages (Filter Blocks[8-7]) and 140 IIR
stages (Filter Block[6-0]). The bold lines show the signal flow in this con­
figuration.

Cascade Data Out

Chip architecture Cascade Data In

Micron Ex. 1037, p. 718
Micron v. YMTC
IPR2025-00119

1.7

Filter Block[8] Input o=f Filter
Logic Stages

FIR
I .

1.7

Filter Block[?] Input o=:j Filter
Logic Stages

FIR

I r

1.7

Filter Block[6] Input o=f Filter
Logic Stages

llR
I .

1.7

Filter Block[5] Input o=J Filter
Logic Stages

llR
I .

1.7

Filter Block[4] Input o=f Filter
Logic Stages

/IR
I r

1.7

Filter Block[3] Input o=J Filter
Logic Stages

llR
I .

1.7

Filter Block[2] Input o=f Filter
Logic Stages

llR

I r

1.7

Filter Block[1 J Input o=f Filter
Logic Stages

llR
I •

1.7

Filter Block[O] Input o-f Filter
Logic Stages

llR
v

4.14

J-1
Cascade 110

llRSum

FIR Sum

4.14

~ 4.14

lI K'
v

4.14

I'-....
I-

K
"""I-v

4.14

f'.......
K I==-v

4.14

I'-....
I-

K i-1-v
4.14

I'-.... -
k:' --v

4.14

I'-....
I-

K i-1-v
4.14

I'-....
I-

k:'
i--v

4.14

I'-....
I-

K i-1-v
4.14

I'-.... - K --v
4.14

'~ 1

llR Input 1.7

FIR Input 1.7 Final
Adder

Cascade Output 4.14

4.14

4.14

-....

The notati on n.m indicates
f precision with
he right of the
oint.

n+mbits o
mbitstot
decimal p

1.8

X Input

1.8 i ~Overflow Cascade OE
YOutput

FIGURE 9.38 An example of use of the chip with 40 FIR stages and 140 llR stages

679

Micron Ex. 1037, p. 719
Micron v. YMTC
IPR2025-00119

680 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

A 3-input adder is required to add in the main signal, the FIR signal, and
the IIR signal. In addition, it allows cascading of more than one chip, and
associated circuitry performs various rounding, limiting, and overflow­
detection operations.

A main signal-delay line is used to delay the main signal (by convention
the strongest) so that the FIR filter may be placed before this signal in time.

The control logic is required to interface with an external microprocessor
to allow the configuration of the filters and the loading of coefficients.

A phase-locked loop is used to multiply a 4 x Fsc clock (14.32 MHz) by
4 to achieve the required clock frequency for the filter. A 2-phase clock gen­
erator uses the PLL clock or an external clock to generate a 57 .28 MHz
2-phase clock for the chip.

9.3.5 Submodules

9.3.5.1 Filter Taps

The basic filter tap structure is reviewed in Fig. 9.39(a). An 8-bit resolution
and an accumulation to 18 bits was required. A number of filter architectures
were investigated, resulting in a tap based on a serial Modified-Booth
Recoded multiplier that requires four clock cycles to complete a multiply­
accumulate.

This basic filter tap is shown at an RTL level in Fig. 9.39(b). It consists
of an 18-bit adder and accumulator, a register to hold the coefficient, a shift
register to shift the coefficient, a Booth recoder, and a Booth gate. Initially,
the previous cascaded sum is loaded into the accumulator. On the next four
cycles, the coefficient shift register shifts left by two bits in each cycle. The
Booth recoder operates on the incoming sample and passes 0, 1, -1, 2, or-2
times the coefficient to the adder. The loading of the next tap accumulator
may be pipelined in the last cycle so that only four clock cycles are required.

Clearly some choices have to be made between circuit implementations
of elements such as adders, registers, and multiplexers. Three parameters
drove this design-size, speed and power dissipation. Turning to the adder
first, size constraints dictated a ripple-style adder (Figs. 8.6 and 8.7b). This
style of adder is the smallest that can be built with decent performance. The
registers could be static or dynamic. For size considerations, dynamic regis­
ters were selected except for the coefficient storage. This in part led to the
next decision which was the 2-phase clocking strategy. Again consistent
with reduced size and power consumption, n-channel pass gates with
p-feedback inverters were used where possible. For instance, the logic that
implements the Booth gating is shown in Fig. 9.40. As a matter of interest,
one can compare this with the BUS-OP gate shown in Fig. 9.25(b) (which is
a subset of this gate).

Micron Ex. 1037, p. 720
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 681

Coe ff

Tap Structure

(a)

SR

Next Sum
Booth Gate

Previous Sum

Booth Recode

Section Input Sample

(b)

Previous Carry

Next Carry

SR

Next Sum
Booth Gate

Previous Sum

Booth Recode

Section Input Sample
(c)

Why was one design used in one instance and not in the other? In the
design in Fig. 9.40 area was of paramount importance, so the extra design
time spent in verifying the correct operation of this gate (it is a ratioed gate)
was well spent. In the processor example, the BUS-OP gate is one of many
different modules that had to be designed, so a "fire and forget" philoso­
phy-that is, an approach that is guaranteed to function correctly and whose
speed is verified during the norrrial course of transistor-level timing analy-

FIGURE 9.39 Tap design:
(a) architecture; (b) RTL cir­
cuit; (c) carry save version

Micron Ex. 1037, p. 721
Micron v. YMTC
IPR2025-00119

682 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.40 Booth gate

Coeff --<-----~

Coeff*2 --<------+--+-~

r T
·1 ·-1 ·2 ·-2 Zero

sis-was used. If no transistor-level tools were available, a gate-level imple­
mentation (XOR and AND) gate would be used. This microexample
provides a model for the kinds of optimization that may occur in a CMOS
VLSI design. It is important to achieve a balance between optimization and
project completion time.

Power dissipation estimations showed that a 5-volt part would dissipate
around 2-3 watts. While this is satisfactory for a ceramic package, some­
thing nearer one watt was required for a plastic package. Thus the decision
was made to operate the chip at either 3.3 volts or 5 volts. As a result it was
found that an 18-bit ripple adder was marginal at the slow corner of the 3.3-
volt operating conditions (110°C, 3.0 volts). This forced a reevaluation of
the ripple-adder strategy and was solved by employing a carry-save
approach. This is shown in Fig. 9.39(c). While this increases the overall
power dissipation somewhat, it allows operation at the lower voltage, which
resulted in a power dissipation near one watt for a 3.3-volt operation. Both
sum and carry are pipelined, resulting in a critical path that is close to a
clock-to-Q delay, a worst-case adder delay, and a register setup delay. In the
process in which this chip was implemented, this was below 5 ns. A side
benefit of this architecture is that it is capable of much higher frequency
operation, thus extending the application of the basic filter to HDTV video
rates.

Figure 9.41 shows the final circuit diagram for a single bit of the filter
tap. The complete filter tap consists of 18 of these bits with a clock driver
and qualification block driving this datapath. An example of the symbolic
layout of the datapath is shown in Fig. 9.42 (also Plate 11). Typical simula­
tions that would be run on this datapath would include speed tests to ensure
that the stage operated at 17 .5 ns at all process corners. In addition, the power
dissipation could be estimated to aid in overall chip planning and power dis­
tribution.

The basic ftoorplan of a section is shown in Fig. 9.43. AU-shaped struc­
ture, ten taps wide, is used so that the input and output from the section are

Micron Ex. 1037, p. 722
Micron v. YMTC
IPR2025-00119

CARRY register

-ph1

~-----19>--------q~
ph2.-load-acc ph1

CARRY-IN B~----1

ph2. load- ace

CARRY gate

SUM register
-ph1

q ~
1 qk D

T
ph2.-load-acc ph1

SUM-IN 8•><--------i

BOOTH gate

ph2. load-ace

COEFFICIENT register

COEFF<i>.+2

j_
ph2. load-ace

COEFF<i-1> .+
1

_l
~

ph 1-buffered

ph 1-buffered ph2.-load-acc

FIGURE 9.41 Tap circuit

~CARRY-OUT
~ (Cour<i>)

683

Micron Ex. 1037, p. 723
Micron v. YMTC
IPR2025-00119

elk er CL CM1 GMO

COEFFICIENT register

BOOTH gate

CARRY register

ADDER

sum-out

SUM register

carry-out

-ph1 ph1 load-ace -load-ace

FIGURE 9.42 Representative tap layouts

684

Micron Ex. 1037, p. 724
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 685

Fixed Var. Vert.
Delay Del. Route
Line Line

tap

available at a central routing trunk. Because the Booth-re.coding logic
is common to all taps, one recoder is used for all twenty taps in a section. An
I/O section provides for driving the output of a section onto global IIR-sum
and FIR-sum busses. Each section is connected to its neighbors via a cascade
connection.

9.3.5.2 Delay Lines

There are at least two approaches to implementing the variable delay lines: a
multiport RAM and shift register. Although the per-bit area of the RAM
implementation is smaller than the shift register, the shift-register approach
was chosen because it provided a more compact floorplan when considered
in concert with the layout of the sections.

The programmable delay line for each section is placed at the left of
each section (Fig. 9.43). To the left of the variable delay line, the fixed-delay
block is situated (Fig. 9.43). This consists of the actual delay line and a dis­
tributed multiplexer. The distributed multiplexer consists of 11 8-bit busses
that run vertically for the height of the nine sections. Each fixed delay takes·
its input from one of these busses and outputs to another. The multiplexer
consists of tristate buffers placed under the vertical routing.

The shift-register bit is a simple 2-phase dynamic register and is shown
in Fig. 8.70(b), and the variable delay line is shown in Fig. 8.70(a).

9.3.5.3 Phase-locked Loop- and Clock-generation

The Phase-Locked Loop is a charge-pump type PLL s,9; it was first introduced
in Fig. 5 .61 and is repeated in Fig. 9 .44. A divide-by-4 counter in the feedback
loop provides one 16 x Fsc clock for a 4 x Fsc input-clock. The phase detector
measures the difference between the PLL VCO frequency (divided by 4 in this
case) and the incoming reference frequency (4 x Fsc-14.32 MHz). The phase

u

Phase Detector
D

Charge Pump Filter vco
16 x Fsc

4x Fsc

FIGURE 9.43 Section
floorplan

FIGURE 9.44 PLL

Micron Ex. 1037, p. 725
Micron v. YMTC
IPR2025-00119

686 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.45 Phase detector

detector produces a sequence of UP or DOWN pulses, which are used to
switch a charge pump. The charge pump either charges or discharges a capac­
itor with voltage or current pulses, as determined by the phase detector. A filter
is used to limit the rate of change of the capacitor voltage, and the result is a
slowly rising or falling voltage that depends on the frequency difference
between the PLL VCO and the reference frequency. The VCO increases or
decreases its frequency of operation as the control voltage is increased or
decreased. Together, the components form a closed-loop feedback system
whose phase and frequency response are determined by the characteristics of
the charge pump, the filter, and the VCO.

The phase-detector implementation is shown in Fig. 9.45. This is a con­
ventional phase detector implemented in static CMOS logic. If F 2 falls
before F 1 falls, the signal DN is asserted. If F 1 falls before F2 falls, UP is
asserted.

The charge pump is shown in Fig. 9.46. The charge pump feeds pulses
of current to a filter and capacitor, which has the effect of charging the capac­
itor up or down. This results in a voltage that rises or falls, and controls the
VCO, either increasing or decreasing the frequency. The charge pump con­
sists of a resistively biased constant current source (N1, N2, N3) with n (N4)

and p (P1) current mirror sources. These feed current mirror transistors N5
and P2. These in turn are switched to the filter via CMOS transmission gates,
with complementary clocks balanced for equal delay. The current-source
transistors are double the minimum length to improve the drain conductance.

Because the filter had to be monolithic (with no external components), an
RC filter was constructed from MOS transistors. A CMOS transmission gate is
used as a resistor, and MOS transistors are used as capacitors (Fig. 9.47a).

Micron Ex. 1037, p. 726
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 687

N-REF--j

swo

SW1

These are not ideal components but are adequate for this application.
P-diffusion resistors might also be used for the resistor, while the capacitors
can be poly-poly capacitors if a two-poly process is available. Alternatively,
the filter can be implemented off-chip at the expense of a pad and of possible
noise injection. The equivalent RC filter is shown in Fig. 9.47(b).

The VCO consists of 13 stages of a current-starved oscillator with a
buffered output (Fig. 9.48). This was chosen because it had a wide range of
operation and was verified to operate correctly over all process corners. The
main parameter of interest for the VCO is the frequency range and the oscil­
lator sensitivity in terms of MHz/volts. The transistors were made larger than
minimum to reduce the effects of geometry biases and to swamp the routing

FIGURE 9.46 Charge pump

Micron Ex. 1037, p. 727
Micron v. YMTC
IPR2025-00119

688 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLE$

Figure 9.47 Filter

Figure 9.48 VCO

3.5/2 and 7/2 = 10K in Worst Speed

2400/6 2400/6

0 D
(a)

capacitance (thereby ensuring high-speed performance). The n- and
p-transistors are sized to achieve equal rise and fall time.

The filter values and the VCO sensitivity vary widely over process cor­
ners. The lockup times for the VCO have a much longer time constant than
the VCO itself. Thus it is time consuming (and possibly impractical) to com­
pletely verify the VCO using circuit simulation (SPICE). In order to ensure
that the chosen parameters would work over the process corners, a simple
analytical model was constructed that modeled the PLL. This was used to
verify the VCO lock times. Various of these functional simulations were
spot-checked against full circuit simulations for accuracy in the analytical
model.

The output of the PLL is fed to the 2-phase clock generator, which is
shown in Fig. 9.49. This consists of a conventional cross-coupled 2-phase
clock generator with the final driver transistors being 4000µ (p) and 2000µ
(n) wide. The clock load was 1 OOpF per phase. A multiplexer allowed the on­
chip PLL to be bypassed. This was done as a system requirement and also as
a safety mechanism in case the analog PLL was inadequate (it wasn't).

vco

Micron Ex. 1037, p. 728
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 689

9.3.5.4 Peripheral Processing

A number of support modules surround the filters. These include

• a microprocessor interface.

• the final filter adder.

• an I/O block.

>-_._-<->->I Ph2
4000/2000

The microprocessor block is used to load the filter-block coefficients,
configure the filter sections, and monitor filter overflow. The I/O block is
responsible for converting the filter output to signed or unsigned form and
for managing the I/O communication busses for multiple chips. The final
adder combines the main pulse of the FIR with the output of the FIR and IIR
filters. In addition it rounds the filter output to 8 or 9 bits and can scale the
outputs or the FIR and IIR filters by factors of 2. In many ways it is this kind
of "glue" and support logic that can dominate the design after the core signal
processing section has been designed. One must always remember to count
in the "control" portions of a design when estimating design times.

9.3.6 Power Distribution

At 5-volt operation, the chip dissipates around 2.5 watts and draws 500 mA.
On average this is 55 mA per section with the peak current being much higher
than this. To both achieve metal migration requirements and reduce switching
noise, each section was effectively provided with a power and ground pad,
shown in Fig. 9.50(a). These connections were routed in metal3. In addition, to
reduce power-supply noise on-chip bypass capacitors were placed under the
power lines. These consist of large gate-area n-transistors, with their gates
connected to Vnn and source and drains connected to Vss (substrate).

FIGURE 9.49 Clock gen­
erator

Micron Ex. 1037, p. 729
Micron v. YMTC
IPR2025-00119

690 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

Figure 9.50 Power distribu­
tion to chip

Figure 9.51 Ghost chip:
(a) floorplan; (b) bond

VDD VDD

Vss
SECTION

Vss

VDD
SECTION

VDD

Vss Vss

VDD
SECTION

VDD

Vss Vss

VDD
SECTION

VDD

Vss Vss

VDD
SECTION

VDD

Vss Vss

VDD
SECTION

VDD

Vss Vss

VDD
SECTION

VDD

Vss Vss

VDD
SECTION

VDD

Vss Vss

VDD
SECTION

VDD

Vss Vss

Every filter section has a V DD and V ss pad on each side.

9.3.7 Chip Floorplan

The overall chip fioorplan is shown in Fig. 9.5l(a) (also Plate 12). The sec­
tions occupy the majority of the chip. The final datapath and 1/0 sections are
at the top of the design. The clock driver is placed in the pad ring at the top
left, while the PLL is placed in the pad ring at the top right. The PLL has its
own 5-volt supply.

Figure 9.Sl(b) shows the bond diagram for the chip for a 144-pin plastic
PGA package. This is a step of the design process in which the placement of

1/0

f-- Peripheral Processing f--

CLK PLL
- Filter Section -

(/) Filter Section QJ
c: Filter Section ::::;
>- Filter Section ro

1/0 Qi Filter Section 1/0
0
QJ Filter Section :;:;

Filter Section ro
g Filter Section

Filter Section

1/0

diagram (a)

Micron Ex. 1037, p. 730
Micron v. YMTC
IPR2025-00119

9.3 A TV ECHO CANCELLER 691

{b)

FIGURE 9.51 (continued)

the I/O pads of the chip and the package bond leads are checked for bond­
lead compliance. Usually, this means checking for correct bond angles (the
angle of the bond wire with respect to the center of the package, and check­
ing that bonds do not cross each other).

Micron Ex. 1037, p. 731
Micron v. YMTC
IPR2025-00119

692 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

9.3.8 Testing and Verification

Similarly to the testing of the RISC microcontroller, testing of this chip was
completed at various levels. Low-level SPICE simulations_ were completed
for key modules, such as the adder bit and registers. Timing simulation was
completed at the section level with backannotated schematics. Full chip sim­
ulation was completed at the gate level using a unit-delay logic simulator.
Functional models were also written for a filter tap, and simulations were
completed at a mixed transistor/functional level. The Lisp functional model
for a tap is shown below.

(deffunctional-model csa-filter-stage-dp
:inputs (("sum-in<17:0>" :capacitance .11)

("carry-in<17:0>" :capacitance .09)
(Z :capacitance .26)
(*+1 :capacitance .26)
{*+2 :capacitance .26)
(*-1 :capacitance .26)
{*-2 :capacitance .26)
(load-coeff :capacitance .08)
(-load-ace :capacitance .18)
(phl :capacitance .18)
(ph2 :capacitance .26))

:outputs (("sum-out<17:0>" :capacitance .08)
("carry-out<17:0>" :capacitance .11))

:local-state ((*-2or*-1 :initform 'X)
(creg-master :initform '0) (creg :initform '0)
(sreg-master :initform '0) (sreg :initform '0)
(recode-reg :initform '0)
(coeff-reg :initform '0)
(coeff-shifter :initform '0)
(coeff-shifter-reg :initform '0))

:model (progn
; most outputs advance on phasel

(when (eq phl 1)
(setq *-2or*-1 (sim-or *-1 *-2)

creg creg-master
sreg sreg-master
coeff-shifter (if (eq coeff-shifter-reg 'X) 'X

(lsh coeff-shifter-reg 2)))
,, recoding the coefficient

(setq recode-reg
(cond

((eq Z 1) 0)
((eq coeff-shifter-reg 'X) 'X)
((eq *+l 1) coeff-shifter-reg)
((eq *-1 1) (logxor coeff-shifter-reg #0777777))
((eq *+2 1) (lsh coeff-shifter-reg 1))

((eq *-2 1) (logxor (lsh coeff-shifter-reg 1) #0777777))
(t 'X))))

,, compute sum/carry output bits of the adder

Micron Ex. 1037, p. 732
Micron v. YMTC
IPR2025-00119

(if (or (eq recode-reg 'X) (eq sreg 'X)
(eq creg 'X) (eq *-2or*-1 'X))
(setq sum-out 'X

carry-out 'X)
(loop with sum = 0 and carry = 0

for i below 18.

9.3 A TV ECHO CANCELLER 693

for coeff-bit = (ldb (byte 1 i) recode-reg)
for sum-bit = (ldb (byte 1 i) sreg)
for carry-bit first *-2or*-1 then

(ldb (byte 1 (1- i)) creg)
for adder = (+ coeff-bit sum-bit carry-bit)

do (setq sum (dpb (logand adder 1) (byte 1 i) sum)
carry (dpb (lsh adder -1) (byte 1 i) carry))

finally (setq sum-out sum
carry-out carry)))

,, phase 2 clock asserted
(when (eq ph2 1)

;; coefficient load cycle
(when (eq load-coeff 1)

(setq coeff-reg sum-in))
;; accumulator-load cycle

(case -load-ace
;reload coefficient

(0 (setq coeff-shifter-reg coeff-reg
creg-master carry-in
sreg-master sum-in))

;shift coefficient

:delays

(1 (setq coeff-shifter-reg coeff-shifter
creg-master carry-out
sreg-master sum-out))))

((phli sum-outi :delay 11.4 :driver-size 12/1)
(phli sum-outi :delay 11.4 :driver-size 8/1)
(phli carry-outi :delay 11.4 :driver-size 12/1)
(phli carry-outi :delay 11.4 :driver-size 8/1))

:timing-constraints ((-load-accph2i:setupl.O :hold3.0)
(Z phli :setup 8.4 :hold 3.0)
{*+l phli :setup 8.4 :hold 3.0)
(*-1 phli :setup 8.4 :hold 3.0)
(*+2 phli :setup 8.4 :hold 3.0)
{*-2 phli :setup 8.4 :hold 3.0)
(sum-in ph2i :setup -3.0 :hold 3.0)
(carry-in ph2i :setup -3.0 :hold 3.0)
(load-coeff phi :setup 3.25)) ;write pulse setup

At the start of the model, inputs and outputs are defined by the keywords
inputs and : outputs. Each input is denoted by a name and a load

capacitance, while each output has a name, a capacitive load, and a drive
strength. The : 1oca1-state keyword denotes the internal registers in the
model and their initialization values. The functionality is specified within the

Micron Ex. 1037, p. 733
Micron v. YMTC
IPR2025-00119

694 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

: model section. Finally, the : delay section specifies important signal-to­
signal delays, while the : timing-constraints section specifies
: setup and : hold times for the registers in the design. The timing values
are derived from SPICE or timing simulations. The model above is useful for
both simulation and timing analysis. In the latter case, the modularity of the
tap is well specified by the I/O and timing specifications that are included.
Extensive timing analysis was completed, using backannotated schematics
with parasitics extracted from compacted mask layouts.

The critical path in this design consisted of the clock generator and dis­
tributed skew in the clock lines (remember that the design also had to operate
at 3.3 volts).

9.3.9 Summary
This section has presented an example of a CMOS VLSI design that employs
a high degree of regularity. Accordingly, the design style changes from the
processor design, with much more emphasis being placed on circuit and lay­
out design for the key replicated cells. A key talent in CMOS-system design
is knowing when and where to optimize. For example, had the ghost­
cancellation chip been implemented as a standard-cell or gate array, it would
have been from 4 to 10 times larger, resulting in a chip cost that would have
made the implementation economically infeasible.

9.4 A 6-bit Flash AID t

9.4.1 Introduction
This final example has been included as an example of a simple analog cir­
cuit that is almost digital (hence its inclusion in a digital CMOS text). The
circuit is a 6-bit AID converter implemented as a "flash" converter. This pro­
vides for a very fast converter at the expense of area. Although limited to
about 8 bits of resolution, as CMOS circuits are becoming smaller over time,
this circuit architecture is also becoming smaller, and faster. This style of
converter or variants is of particular use at video-sample rates.

Figure 9.52 shows the basic architecture. An analog input is presented to
a sample-and-hold circuit, which feeds one input of 2N comparators, where
N is the desired digital precision. A clock input samples the input and strobes
the sample-and-hold. The other input to the comparators is connected to a
resistor string connecting a reference voltage (+ V REF and -V REF). For a
given input voltage, after the sampling process and the comparators have

tDesigned by N. Weste.

Micron Ex. 1037, p. 734
Micron v. YMTC
IPR2025-00119

9.4 A 6-BIT FLASH AID 695

Analog Input Voltage

2n Resistors
and
Comparators

Sample/Hold

-VREF

Thermometer Decoder

l
000111

Digital Output Value

switched, the output of the comparators is a string of 1 s where the highest 1
represents the highest comparator that switched. This is represented in the
diagram by a gray bar. A decoder may be used to convert this "thermometer
code" to an N-bit number.

9.4.2 Basic Architecture

A CMOS implementation of a 6-bit flash AID converter is shown in Fig.
9.53. It consists of a polysilicon resistor string, 64 sampling comparators, 64
registers, and a thermometer decoder that consists of 64 3-input NOR gates

input
64 comparators
64 resistors

clock

64 registers 64 NOR gates PLA 6-bit digital output

FIGURE 9.52 Flash A/D
architecture

FIGURE 9.53 Flash circuit

Micron Ex. 1037, p. 735
Micron v. YMTC
IPR2025-00119

696 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

and a 64-term PLA. The analog parts that have to be designed include the
resistor string and the comparators. The digital parts consist of the register,
the NOR gate, and the PLA.

9.4.3 Resistor String

The resistors may be implemented as diffusion resistors, polysilicon resis­
tors, or metal in very high speed flash converters. In this design, polysilicon
resistors were used. The value of the resistor and the reference voltage deter­
mine the DC current drawn by the reference ladder. Choosing the value of
the resistors is a trade-off between limiting the DC power dissipation and
achieving a low impedance reference to supply the comparator. The value
chosen in this design was 20 Q, which is approximately 1 square of polysil­
icon. This yields a nominal resistance of 1280 Q for the string. For a 1-volt
reference the current drawn is approximately 0.8 mA.

9.4.4 The Comparator

The comparator is shown in Fig. 9.54. It consists of two cascaded, capaci­
tively coupled, auto-zeroed inverters 10 followed by a dynamic register. Dur­
ing the sample time, the input value is stored on the capacitor C 1 via pass
gate P 1, while the inverters are auto-zeroed via pass gates P3 and P 4. The
auto-zero step is used to reduce the effect of any offset voltages present in
the comparator. The transistors in each inverter have slightly different char­
acteristics (such as threshold voltage and beta). This in turn leads to slightly
different transfer characteristics. If the inverters were not auto-zeroed, the
comparators would switch at slightly different voltages. The auto-zero step
reduces this offset to below the precision of the converter.

When sample is false, the reference input is connected to the capacitor,
thereby transferring charge to or from the capacitor. This causes a voltage
change at the input of the first comparator, which causes the output of the
comparator to rise or fall by an amount proportional to the gain of the
inverter (and the capacitive divider formed by C1 and the input capacitance
of the inverter). This signal is further amplified by the second comparator.
This is then passed to a register.

As stated, the gain of the comparator depends on the gain of the inverter
and the ratio of C 1 (C2) to the input capacitance of the inverter. The input
capacitance of the inverter is approximately two minimum-size transistor
gate capacitances. In a two-polysilicon process, the coupling capacitor (C1)

can be made large compared to the gate capacitance. However in a single
poly process, this capacitor has to be made from a relatively low capacitance

Micron Ex. 1037, p. 736
Micron v. YMTC
IPR2025-00119

9.4 A 6-BIT FLASH AID 697

poly-metal-metal2 sandwich (poly and metal2 connected to one plate, metal
to the other). In this design this capacitor was made .05pF. The combined
gain of the capacitor and an inverter was around 10 (the capacitor value used
roughly halves the gain). Thus two comparators result in a gain of about 100.
Figure 9.54(b) shows the frequency response of two capacitively coupled
comparators. This would indicate a sensitivity of around lOmV. In practice
the converter demonstrated 6-bit resolution with an input reference of
600mV, which agrees with these simulated results.

The transistor size and nip f3 ratio of the inverter transistors affect the
DC-transfer characteristic (gain, linearity, and dynamic range) and the AC
performance (bandwidth and phase response). A design often involves mak-

sample

sample sample

(a)

Latch
1000

100
2nd Comp

Gain

10
1st Comp

100 1K 10K 100K 1M 10M 100M

Frequency (Hz)

(b)

FIGURE 9.54 Comparator:
(a) circuit; (b) frequency
response

Micron Ex. 1037, p. 737
Micron v. YMTC
IPR2025-00119

698 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

ing a compromise between conflicting requirements. For instance, the
inverter gain is improved by using transistors with slightly longer than min­
imum length at the expense of input-loading capacitance. Increasing the
width of the p with respect to the n moves the quiescent point ("f11 = Vout) of
the DC~transfer characteristic toward midrail but increases the input capaci­
tance, which reduces the gain. The main point to note here is that with this
extremely simple analog circuit, a relatively large effort goes into the design
of one inverter compared with that of a logic inverter.

The maximum sample rate of the converter is dependent on the band­
width of the comparators (and reference resistor string) and the maximum
clock frequency of the digital circuitry. A SPICE-frequency analysis (Fig.
9.54b) revealed that the comparator used here (for the process used) had a
3dB bandwidth of 10 MHz. Measured devices were successfully operated at
10 MHz with supply voltages of both 3 and 5 volts.

Complementary transmission gates are used as analog switches. Charge
injection occurs when a changing gate signal couples charge to the source/drain
node via Cgd or Cgs· This can be minimized by using complementary switches
and delay-balanced clocks. The sample clock and its complement are buffered
with an equalized delay clock generator (shown in Fig. 5.52b). The CMOS
switches have to be made large enough to achieve speed goals.

The final piece of circuitry in the comparator is a dynamic register.
This consists of two cascaded tristate inverters followed by a pair of buff er
inverters.

9.4.5 Thermometer Code Logic
The output of the comparators is a thermometer code, which has to be con­
verted to a binary number. This is achieved using a logic gate, which checks
for a 011 code using a 3-input NOR gate (Fig. 9.55). This indicates the upper
boundary of the comparator output. This is then passed to a PLA-style
decoder, which has a term for every comparator. For instance, the 8th bit is
shown. When the signal at the output of the NOR gate is asserted, the PLA
NOR gate transistors are turned on, causing the code 000111 to appear at the
output. The PLA is implemented with a pseudo-nMOS NOR gates.

9.4.6 Floorplan and Layout
A basic cell horizontally joins a resistor, two comparators, the register, and
the thermometer gate. This structure is then arrayed 64 times vertically. The
decoder PLA is abutted horizontally on the right of this structure, and clock
and I/O buffers are placed on the top and bottom of the structure. This floor-

Micron Ex. 1037, p. 738
Micron v. YMTC
IPR2025-00119

9.4 A 6-BIT FLASH AID 699

Q-Above _ _,,----._
-0<0> 1-------+--+----+--l+-----il--+l-+--I

-Q-below --u_-----

plan is shown in Fig. 9 .56. A generator was written to automatically generate
the layout for a given resolution. A chip micrograph is shown in Plate 13.

A portion of a 2-bit section of the converter layout is shown in Fig. 9 .57.
The resistor string may be seen at the bottom, with the resistors placed ver­
tically. The input/reference switches are above the resistors. The comparator
capacitor is the long structure in the center of the layout. The capacitor is

output buffers

resistor string 64 comparators therm PLA -.... and registers gate

clock drivers

FIGURE 9.55 Thermometer
decode logic

FIGURE 9.56 Floorplan of
AID

Micron Ex. 1037, p. 739
Micron v. YMTC
IPR2025-00119

clock and-clock run vertically

FIGURE 9.57 Partial cell
layout for AID two-bit section

700

V ss (horizontal)

• transmission gate auto zero switch

Voo

inverter (NOTE: longer than
minimum gate length)

Vss

capacitor

(this capacitor is rather large
because the capacitor is formed
between metal sandwiched
between poly and metal 2.
In a two-poly process, th is
capacitor would be much smaller)

sampled input

V00 (only required here for well contacts)

input switches

Vss (only required here for substrate contacts)

resistor string (resistors run vertically)

Micron Ex. 1037, p. 740
Micron v. YMTC
IPR2025-00119

about 100,u long. This would be much smaller in a double polysilicon pro­
cess. Above the capacitor is the comparator inverter and auto-zero switch.
Another comparator, register, NOR gate, and PLA gate are placed above this
section in the converter.

9.4. 7 Summary
A modest implementation of a flash AID converter has been presented in
order to illustrate some of the issues that are addressed as we leave the digi­
tal world. There is a wealth of literature on AID conversion, and the reader is
encouraged to investigate these sources if this subject is of interest. For a
more efficient 8-bit AID converter employing a similar technique see Ding­
wall and Zazzu 11 and Tsukada et al. 12

9.5 Summary

This chapter has presented three case examples of CMOS designs. The first
described a contemporary RISC microcontroller with a mix of datapath,
memory, and control logic. This design could be implemented in a wide
range of CMOS logic styles and design methods. The second described a
high-performance signal-processing circuit that is representative of video­
rate architectures. To achieve commercial viability this design required cus­
tom layout and innovative architecture and circuit design. The final design
featured a straightforward flash AID converter representing the interface
between the analog world and the CMOS digital domain. In this design the
focus extends to basically one inverter which is extensively simulated. From
these examples it may be seen that the more complex a system becomes, the
less time is available to spend on low-level details; notwithstanding, it is
possible to create denser, faster designs in a given technology if the appro­
priate amount of design effort is invested. In these days of short product
cycles, time to market is almost always the dominant concern. This leads to
the requirement for short design times. This in turn is achieved by the use of
highly automated design systems, the use of libraries, and the reuse of other
components of interest.

9.6 Exercises

1. In order to achieve a short cycle time, the RISC microcontroller in
Sectiori 9.2 used four pipeline stages. Redesign the processor to run
in a single (albeit longer) cycle. How does each module change?
What simplifications may be made?

9.6 EXERCISES 701

Micron Ex. 1037, p. 741
Micron v. YMTC
IPR2025-00119

702 CHAPTER 9 CMOS SYSTEM DESIGN EXAMPLES

2. If the critical path of the processor is that shown in Section 9.2.3.1.3,
what changes to the architecture would you make to improve this
speed?

3. Sketch out the logic design for a multiplication-function block that
can be attached to the processor in the EXT_BUS_DP module.
(Could you implement multiplication on the processor as described?)

4. Examine alternative architectures to implement the FIR/IIR filters in
the ghost cancellation chip (i.e., 8 x 8 multiplier running 4 taps).

9.7 References

1. C. Sechen and A. Sangiovanni-Vincentelli, "TimberWolf3.2: a new standard cell
placement and global routing package," Proceedings of the 23rd Design Automa­
tion Conference, 1986, Las Vegas, Nev., pp. 432--439.

2. Bruce Edwards, Alan Corry, Neil Weste, and Craig Greenberg, "A Single Chip
Ghost Canceller," Proceedings of the IEEE 1992, Custom Integrated Circuits
Conference, May 1992, pp. 26.5.1-26.5.4.

3. Walter Ciciora, Gary Sgrignoli, and William Thomas, "A tutorial on ghost can­
celling in television systems," IEEE Transactions on Consumer Electronics, vol.
CE-25, Feb. 1979, pp. 9-44.

4. Stephen Herman, "The development of commercial echo cancellers for televi­
sion," National Association of Broadcasters, 1991 Broadcast Engineering Con­
ference Proceedings, pp. 102-106.

5. David Koo, "Developing a new class of high energy ghost cancellation reference
signals," International Conference on Consumer Electronics, Digest of Technical
Papers, Jun. 1992, Boston, Mass., pp. 76-77.

6. Craig B. Greenberg, "Ghost cancellation system for high energy GCE," Interna­
tional Conference on Consumer Electronics Digest of Technical Papers, June
1992, Boston, Mass. pp. 78-79.

7. H. Samueli, "An improved search algorithm for the optimization of the FIR filter
coefficients represented by a canonic signed digit code," IEEE Transactions on
Circuits and Systems, vol. CAS-34, Sept. 1987, pp. 1192-1202.

8. F. A. Gardner, "Charge-pump phase-locked loops," IEEE Transactions in Com­
munications, vol. COM-28, Nov. 1980, pp. 1849-1858.

9. Deog-Kyoon Jeong, Gaetano Borriello, David A. Hodges, and Randy H. Katz,
"Design of PLL-based clock generation circuits," IEEE Journal of Solid State
Circuits, vol. SC-22, no. 2,Apr. 1987, pp. 255-261.

10. Andrew G. F. Dingwall, "Monolithic expandable 6 bit 20 MHz CMOS/SOS AID
converter," IEEE JSSC, vol. SC-14, no. 6, Dec. 1979, pp. 926-932.

11. Andrew G. F. Dingwall and Victor Zazzu, "An 8-MHz CMOS subranging 8-bit
AID converter, IEEE JSSC, vol. SC-20, no. 6, Dec. 1985, pp. 1138-1143.

12. Toshiro Tsukada, Yuuischi Nakatani, Eiki Imaizumi, Yoshitomi Toba, and Seiichi
Ueda, "CMOS 8b 25MHz flash ADC," Proceedings IEEE InternatiOnal Solid
State Circuits Conference, New York, N.Y., Feb. 1985, pp. 34-35.

Micron Ex. 1037, p. 742
Micron v. YMTC
IPR2025-00119

INDEX

.MODEL- SPICE MOS model
call, 189

22Vl0, 392
3-D CMOS, 140
AID converter, 694
abstraction levels, 21
AC specifications, 457
accelerated lifetime testing, 250
acceptor, 110
acceptor silicon, 112
accumulation, 181
accumulation mode, 44
accumulator architecture, 629
Actel, 395
active mask, 118
active-matrix LCDs, 140
activity file, 469
AD - SPICE MOS model parameter,

190
ad-hoc testing, 485
adder as a compressor, 556

bit-serial, 520
block, 534
carry lookahead, 526

carry propagate, 523
carry select, 532
carry-save, 522
conditional sum, 532
Manchester, 528, 646, 667
one bit, 515
parallel, 517
ripple, 517
transmission gate, 524
wide, 534
truth table, 23

adders, 515-536
address architecture, 629

comparator, 658
algebraic decomposition, 428
Algotronix, 403
ALPHA microprocessor, 333
ALU, 640, 645
ALU 181, 542

instructions, 631
ambient temperature, 243
amorphous silicon, 140
amplifier, 71
AND function, I 0

703

Micron Ex. 1037, p. 743
Micron v. YMTC
IPR2025-00119

704 INDEX

gate 16
anisotropic etch, 126, 128
antifuse, 395
arithmetic logic units AL Us, 542
array multiplication, 545
AS - SPICE MOS model parameter, 190
ASTAP, 441
asychronous counters, 539
asynchronous RAM, 564
ATPG, 476
automatic gate layout, 280

test pattern generation ATPG, 476
avalanche breakdown, 47

phenomena, 362

back-annotation, 37, 448
backtrace, 479
barrel shifter, 560
base, 93
base-function set, 429
behavioral description, 31

domain, 21, 22
synthesis, 424

beta ratio, 68-69
BiCMOS, 96
BiCMOS logic, 297

processes, 136-138
bidirectional I/O, 364
BILBO, 494
binary adder truth table, 23

composition, 439
counters, 539

bipolar inverter, 94
transistor 93
transistor DC characteristics, 95

bird's beak, 121
bit-parallel adders, 517
bit-serial adders, 520
bloating masks, 165
block adder, 534
body effect, 51, 54, 223

ties, 123
BOLD, 429
bond diagram, 690
Boolean function unit, 305-306

operations, 541
unit, 647

Booth recoded multiplication, 547
bootstrapping, 217
Boron, 112
Boundary Scan techniques, 500-507

Bresenham algorithm, 23
built in logic block observation

BILBO, 494
bulk potential, 48
buried channel, 121

contact, 152
bypass capacitors on-chip, 689
bypassing, 637

C-SWITCH, 8
C2MOS, 301-303
C2MOS latch, 342
CALI 024, 403
call instruction, 634
Calma Stream format, 155
CAM, 589
Canonic Signed Digit CSD, 676
capacitance models, 192

values for 1 µm process, 202
capacitor chip, 696
capacitors chip, 134
carrier concentration, 49
carry function, 23

lookahead adders, 526
propagate adder CPA, 523
save adders, 522
select adder, 532

cascade voltage switch logic, 311
cascode inverter, 80
Cathedral I II III, 424
cdb• 183
cgb• 183
CGBO - SPICE MOS model

parameter, 189
cgd• 183
CGDO - SPICE MOS model

parameter, 189
cgs• 183
CGSO- SPICE MOS model parameter,

189
channel length modulation, 55

resistance, 60, 177
router, 431
stop, 116
stop implant, 119

charge pump, 334, 686
sharing, 240
storage, 333

chemical vapor deposition, 132
chip composition, 439
circuit extraction, 166

Micron Ex. 1037, p. 744
Micron v. YMTC
IPR2025-00119

circuit-level simulation, 441
CJ - SPICE MOS model parameter, 190
CJSW - SPICE MOS model parameter,

190
CLB, 400
clean V DD and Vss• 361
CLi6000, 406
clock buffer design, 364

buffers, 325
design, 333
distribution, 356
enabling, 350
generato,r 688
multiplication, 334
race, 323
skew,201,324,325,344,345
synchronization, 334
tree, 356

clocking schemes, 334
CMOS delays, 206-216

cell array, 286
complimentary logic, 295
gate design, 262
inverter, 9
inverter - DC characteristics, 61-68
inverter amplifier, 71
inverter layout, 273
layout guidelines, 287
multi-drain logic, 299
process enhancements, 130
transistor construction - mask, 150
transmission gate - DC operation,

86-90
CMRR - Common Mode Rejection

Ratio, 81
coarse grid symbolic-layout, 417
collector, 93
column decoders, 576
combinational logic, 10
common mode gain, 81
compaction, 420
comparator, 658
comparator analog, 696
comparators, 537
complex gate delays, 214

gate layout, 279
complimentary switch, 8
compound gates, 15
compressors 3 :2 4:2, 556
concurrent fault simulation, 482
Concurrent Logic 406
condition-code logic, 660

conditional branching, 638
conditional-sum adder, 532
conductor capacitance as a function of

spacing, 198
sheet resistance, 177

conductors sizing, 238
configurable array logic CAL, 403

logic block, CLB 400
conflict-free carry bypass, 531
constant current load inverter, 77

field scaling, 251
voltage scaling, 251

contact replication, 240
resistance, 179
rules, 151

content addressable memory CAM,
589

control logic, 590-620
logic example, 659
transfer, 633

controllability, 475
controllability measures, 479
COP, 481
core limited, 357
counter design, 487
counters, 539
CPA, 523
critical path, 644

paths, 263
cross-controlled latch, 494
crowbarred, 10
csb• 183
CSD, 676
current density, 238

mirror, 84, 336
starved inverter, 336

CVD, 132
CVSL, 311
cyclic redundancy checking, 494
Czochralski method, 110

D register, 325, 643
D-algorithm, 478
D-propagation, 478
DALG, 478
dark field, 147
data sheets, 456
datapath layout, 663, 684
datapaths, 513
DC specifications, 457
defects-manufacturing, 468

INDEX 705

Micron Ex. 1037, p. 745
Micron v. YMTC
IPR2025-00119

706 INDEX

delay fault testing, 482
lines, 685
model, 222
time, 206, 211

depletion, 181
depletion capacitance, 182

layer, 181
lod inverter, 79
mode, 44
mode transistors, 42

deposition, 112
design corners, 246

economics, 449
flow, 441
for testability, 485
margining, 243
rule verification, 448
rule waiver, 142

device failure, 57
under test DUT, 469

difference engine, 383
differential gain, 81

inverter, 81-86
split-level cascade logic, 314

diffusion capacitance, 186
capacitance values, 188
equation, 199

diode, 91
diode clamps, 362

current, 91
directed-acyclic-graph DAG technol-

ogy mapping, 429
dirty Vvv and Vss• 361
disjoint hierarchy, 384
distributed RC effects, 198-202
domino logic, 308, 341
donor, 110
donor silicon, 112
donut transistor, 278
dopant, 110
double guard ring, 162
double-edge triggered register, 328
DRACULA, 164
drain engineering, 122
DRAM cells, 135
DRC, 164
dummy collectors, 162
DUT, 469
dynamic CMOS logic, 301

D latches, 330
logic, 310
power dissipation, 233

RAM cells, 566

EAROM, 136
EBES, 449
EBL, 113
ECLI/O, 367
edge-triggered register, 19-20, 319
EDIF, 430
EEPROM, 394
EEROM, 136
effective resistance, 219
E8 band gap energy of silicon, 49
electon beam lithography, 113
electrically alterable ROM, 136
Electron Beam Exposure System

EBES, 449
ELLA, 22
Elmore delay, 219
emitter, 93
emphirical delays, 213
enhancement mode transistors, 42
environmental characteristics tempera-

ture, 243
characteristics voltage 244

epitaxial, 140
epitaxial layer, 124, 160
epitaxy, 111
Espresso, 428
estimating design schedules, 453
Euler path, 280
evaluate, 301
externally induced latchup, 159

fall time, 206, 208
FAN, 478
fan-in, 264
fan-out, 264
fat-metal, 154
fault coverage, 475

grading, 481
machine, 475
models, 472
sampling, 484
simulation, 481

field aiding, 163
device, 116

field-induced junction, 45
field-oxide, 116
field-programmable gate-array FPGA,

400

Micron Ex. 1037, p. 746
Micron v. YMTC
IPR2025-00119

FIFO, 582
final test yield, 452
Finite Impulse Response, 674

state machine, FSM 317
finned capacitor, 135
FIR filter, 674

filter tap design, 680
first in first out memory FIFO, 582
fixed costs, 452
flash AID converter, 694
fiat-band voltage, 48
fioorplan, 690, 698
fioorplan examples, 665-671
fioorplanning, 438
four-phase clocking, 351
Fowler-Nordheim tunneling, 57,136
FPGA, 400
frequency response, inverter, 698
fringing fields, 191
FSM, 317
full custom mask design, 417
fully restored, 15
function memory, 470
functional model, 692

verification, 669
functionality tests, 466
fusible links, 394

GaAs technology, 38
ganged CMOS, 300
gate capacitance, 181

extension, 150 .
isolation, 411
matrix symbolic-layout, 418
oxide, 43
oxide capacitance, 182

gate-array design, 407-413
layout, 285

gate-under-test, GUT, 477
gates compound, 15
GEMINI, 447
generate signal G, 515
generators, 434
geometric isolation, 410
Ghost canceller chip, 672
GND, 7
good machine, 4 7 5
graph compaction, 420
graphical editor, 437
gross die per wafer, 452
GROUND, 7

ground bounce, 239
GTL, 368
guard rings, 152, 361
Gunning I/O logic, 368

hardware description language, 437
stack, 655

HDL, 425, 437
Heil, 0., 3
hierarchy, 383
high-impedance, 8, 10
hold time, 318, 323
holding voltage, 156
hot electrons, 57
HSPICE, 441

I/O latchup prevention, 162
pads,357
structures, 357

IDD testing, 474
IDDQ testing, 74, 498
IIR filter, 67 4
impact ionization, 57
impurity, 110
incrementer, 539
inductance, 205
inertial delay, 443
input, 7
input pad, 361

protection, 362
waveform slope, 216

instruction set, 629
inter-layer contacts, 151
interdigitated pads, 357
internal latchup prevention, 161
intrinsic delay, 443

silicon, 109
inversion, 181
inversion mode, 44

notation, 19-20
inverter, 9
inverter BiCMOS, 96-98

bipolar, 94
current load, 72
layout, 273
resistive load, 72
threshold voltage, 228

ion implantation, 112
island, 118
isolation of MOS transistors, 50

INDEX 707

Micron Ex. 1037, p. 747
Micron v. YMTC
IPR2025-00119

708 INDEX

isomorphism network, 446
isotropic etch, 128
iterative logic array testing, 498

jamb latch, 326
JK register, 320
jump instruction, 634
junction capacitance, 187

diode, 91
pn, 110
temperature, 243

k Boltzmann's constant, 49
kink effect, 129

LAGER, 424
lambda design rules, 142

SPICE parameter, 51
laser pantography, 395
last in first out memory LIFO, 582
latch, 19-20, 318
latchup, 156-163
latchup prevention, 160

triggering, 158
latency, 524
lateral scaling, 251
layer assignments CIF, 155

assignments GDS2, 155
representations, 143

layout design rules, 142-156
extraction, 448
multiplexer, 294
synthesis, 434
transmission-gate, 291

layout-versus-schematic LVS, 447
LDD, 122
leaf cell, 35
leakage current, 231
LEVEL, 481
Level 3 SPICE model, 99-105

sensitive scan design LSSD, 489
level-sensitive latch, 19-20, 319
LFSR, 496
LIFO, 582
light field, 14 7
lightly doped drain LDD, 122
Lilienfeld, J. , 3
linear feedback shift register LFSR,

496
operating region, 45

Lisp, 692
literal, 632

local interconnect, 133
locality, 389
LOCOS, 121
logic levels, 8

optimization, 427
simulation, 443

loop filter, 334, 686
low power logic, 368-370

power standard cells, 414
LSSD, 489
LVS, 447

machine as applied in testing, 475
macromodeling, 221
Manchester addelj, 528, 646, 667
manufacturing defects, 468

tests, 468
maze router, 431
memory, 563-590
memory test, 497
merged contact, 152
mesa, 118
metal interconnect, 130

rules, 154
tab, 131

metal2 process steps, 132
rules, 154

metal3 rules, 154
metallization, 122
metallurgical junction, 45
metal migration, 238-239, 361
metastability, 337
Miller effect, 218
min-cut algorithm, 431
MIS, 429
mixed-mode simulation, 444
MJ - SPICE MOS model parameter,

190
MJSW - SPICE MOS model parame-

ter, 190
mobility, 52
mobility variation, 56
modularity, 387
MOS capacitor, 180

DC device equations, 51
device capacitances ,183
gate capacitance, 184
switches, 7
transistor DC characteristics, 53
transistor intoduction, 4
transistor invention, 3

Micron Ex. 1037, p. 748
Micron v. YMTC
IPR2025-00119

transistor symbols, 41
MOTIS, 442
MTBU, 339
MULGA, 421
multiple conductor capacitances, 192
multiplexer, 17-18, 140, 304
multiplexer layout, 294
multipliers, 542-560
multiport memories, 580

N-switch, 7
n-well CMOS process, 117-123

CMOS process flow, 168-172
construction, 118
rules, 150

NAND gate, 11
gate delay, 265

NAND-NOR delays, 267
layout, 278

native substrate, 117
net-list, 35
netlist comparison, 447
network isomorphism, 446
nichrome, 134
NMH, 70
NMv 70
nMOS transistor, 43
noise margin, 69-71
non-recurring costs NREs, 450
nonsaturated region, 45
NOR, 586
NOR gate, 12
not gate, 9

notation, 19-20
notation inversion, 19-20
NP domino logic, 310

dynamic logic, 341
NREs, 450
NRZ, 470
NS, 421, 434

observability, 474
observability measures, 479
ohmic contact, 121
one detectors, 537
one-bit adders, 515
ONO, 396
open-circuit faults, 473
operating conditions temperature, 243
OR function, 10

output, 7
output condunctance, 60

pads, 360
overglass, l 55
oxidation of Si02, 111
oxide breakdown, 361

capacitance, 182
oxide-nitride-oxide ONO, 396

p-well CMOS process, 123-124
packaging, 247
packaging yield, 452
pad limited, 357

pullups and pulldowns 365
PALs, 392
parallel fault simulation, 481

hierarchy, 383
plate capacitance model, 191
scan testing, 494
switches, 10

parasistic transistors, 116
parasitic capacitance, 183
parity generators, 537
partial products, 546

scan testing, 493
pass transistor logic, 304
pass-around, 637
passivation, I 55
pattern gates, 429

generation, 448
PB - SPICE MOS model parameter,

190
PC, see program counter, 654
PCMs, 225
PD - SPICE MOS model parameter,

190
Pearl, 445
Penfield-Rubenstein delay model, 219

slope delay mode, 220
peripheral capacitance, 187
personalization, 411
PG logic, 530
PGA, 247
phase detector, 686

Locked Loop PLL, 685
phased-locked loops, 334
Phosphorous, 112
phosphorous glass, 126
photoresist, 113
physical description, 28, 35-36

domain, 21

INDEX 709

Micron Ex. 1037, p. 749
Micron v. YMTC
IPR2025-00119

710 INDEX

hierarchy, 384
origin of latchup, 156

PIDL, 168
pinched off, 45
pipeline diagram, 637
pipelined system, 317
pipelining, 524, 634
PLA generator example, 435
placement, 431
planarization, 121
PLDs, 392
PUCE, 395
PLL, 685
PLLs, 334
pMOS transistor, 47
pn diode, 91

juntion, 45
pnp transistor layout, 153
PODEM, 478
PODEM-X, 478
poly2, 134
polycide, 132
polysilicon, 113
POWER, 7
power and ground bounce, 239

bounce, 239
dissipation, 231-237
dissipation dynamic, 233
dissipation short-circuit, 235
dissipation static, 231
distribution, 689
economy, 237
saving pseudo-nMOS, 587

PQFP, 247
PR, 113
precharge, 301
predecode gates, 575
preferential etch, 128
primary inputs, 477

outputs, 477
probe card, 470
process control monitors PCMs, 225

gain factor, 54
Input Desciption Language, 168
migration, 423
variation, 245

program counter, 634, 654
programmable array logic PALs, 392

interconnect, 395
logic devices PLDs, 392
logic structures, 392

propagate signal P, 515

PRSG, 496
PS - SPICE MOS model parameter,

190
pseudo random sequence generator

PRSG, 496
pseudo-nMOS, 537, 586, 646, 658,

698
pseudo-nMOS inverter, 73-77, 228

logic, 298
PSG, 137
PSWITCH, 8
punch-through, 47
punch-through devices, 362
punchthrough, 57
PWR, 7

q electronic charge, 49
QuickLogic, 396

race clock, 323
radiation tolerance, 129
radio frequency interference RPI

pads, 366
radix-2 multiplication, 547
RAM, 564
RAM read operation, 567

sense amplifier, 84
write operation, 572

rapid prototyping, 653
rats-nest, 438
RC delay clock, 334
read-only-memory, 585
recurring costs, 450, 452
refractory metal, 132
register, 19-20, 318
register file, 651

files, 580
registered pads, 365
regularity, 387
reliability, 250
resettable register, 330
resistance, 176
resistance extimation, 176

of nonrectangular regions, 178
resistivity, 176
resistor string, 696
resistors chip, 134
result forwarding, 637
return instruction, 634
reverse breakdown voltage, 93

Micron Ex. 1037, p. 750
Micron v. YMTC
IPR2025-00119

rip-up-and-reroute, 439
ripple adders, 517
RISC microcontroller, 628
rise time, 206, 210
ROM, 585
ROM layout, 588
round transistor, 278
routing, 431
routing capacitance, 191-198
row decoders, 574
RS-latch, 319
RSIM, 444
RTL synthesis, 425
RTZ, 470
Rubylith®, 448
rule based logic optimizer, 429

SAO, 472
SAl, 472
salicide, 132
sample-set differential logic SSDL,

313
sapphire, 126
saturated load inverters, 78-79

region, 45
SBZ, 470
scaling, 250
schematic design, 437

icon, 437
schmooing, 4 7 1
SCOAP, 479
scribe line, 155
sea-of-gates design, 407-413

layout, 286
seed layer, 140
select mask, 122
selective diffusion, 113
self test, 494
self-aligned process, 116
sense amplifier, 84

amplifiers, 579
sensitized path, 477
sequential fault grading, 475

faults, 473
serial in parallel out memory SIPO,

582
multiplication, 557
scan testing, 490

serial-access memory, 583
serial/parallel multiplication, 559
series switches, I 0

settable register, 330
setup time, 318

time, 323
SFPL, 314
sheet resistance, 176
shift register, 685

register latch SRL , 489
shifter, 649
shifters, 560
short-circuit dissipation, 235

faults, 473
sidewall capacitance, 187
signature analysis, 494
silicide, 132
silicon gate process, 113

nitride, 50
Silicon-on-insulator, 125-130
simulation, 441-445
simulation circuit-level, 441

logic, 443
mixed-mode, 444
switch-level, 444
timing, 442

simulator delay model, 222
SiN, 112, 120
single dynamic clock latches, 331

wire capacitance, 191
sinker layer, 140
Si02, 112
SIPO, 582
site, 285
sizing conductors, 238
slope delay model, 220

effect on delay, 216
small signal characteristics, 59
SOG, 407-413
SOI, 125-130
SOI advantages, 129

rules 156
source follower pull-up logic SFPL,

314
source-drain extension, 150
SPICE, 441
SPICE characterization example, 652

circuit description language, 27-28
modeling of capacitance, 188
MOS Model call, 189
MOS parameters - typical, 59

split contact, · 152
SRAM cell, 133, 139
SRL, 489
SSDL, 313

INDEX 711

Micron Ex. 1037, p. 751
Micron v. YMTC
IPR2025-00119

712 INDEX

stack address generator, 660
architecture, 630
hardware, 655

STAFAN, 483
stage ratio, 229
stage-ratio, 265
standard cell design, 413-416

cells 283
static load, 72

power dissipation 231
RAM cells 565

statistical fault modeling, 483
step coverage, 121, 131
sticks symbolic-layout, 420
strong 0, 8

1, 8
structural description, 32-35

domain, 21
representation, 24
synthesis, 431

structured design methods, 383
stuck-at faults, 472
stuck-at-0 fault, 472
stuck-at-1 fault, 472
subject graph, 429
submicron processes, 147
subroutine call and return, 639
substrate contacts, 123

resistance, 157
substrate-bias effect, 54
subthreshold region, 55
subtractor, 518
SUM logic, 530
sum-of-products, 428
summands, 546
surface state charge, 49
SWAMI, 121
switch-level RC models, 218

simulation, 444
switchbox router, 431
switches parallel, 10

series, 10
symbolic layout, 417-423
symbolic-layout coarse grid, 417

gate matrix, 418
sticks, 420
virtual-grid, 421

symmetric NOR gate, 300
synchronizer failure, 337
synchronizers, 337
synchronous counters, 539
Synopsys VHDL compiler, 425

T latch or register, 320
Tantalum, 132
tantalum silicide, 132
tapped delay line, 585
technology mapping, 428, 429
temperature effect on inverter transfer

characteristic, 69
variation - theshold voltage, 48
variation of resistance, 178

ternary, 405
test program format, 469
tester, 470
testing, 669
TG adder, 553

XOR gate, 525
thermal annealing, 431

impedance, 243
resistance, 253

thermometer code, 698
thin-film transistors, 139
thinox, 118
thinoxide, 118
three level metal standard cells, 415
threshold adjust, 49-50

voltage, 47-50, 47
throughput, 524
TimberWolf, 431, 432
timing analysis example, 649

analyzers, 445
budget, 651
generator, 470
simulation, 442
verifiers, 445

TiN, 133
topside connection, 123
transconductance, 60
transistor rules, 150

sizing, 226, 271
transmission gate - DC operation,

86-90
transmission-gate adder, 524

layout, 291
transparent routing, 289
trench capacitor, 135
triangle function, 31
trigger point, 156, 158
tristate I/O, 364

inverter, 91
tristate-buffer latch, 326
TTL interface inverter, 80

load, 361
tunnel oxide, 136

Micron Ex. 1037, p. 752
Micron v. YMTC
IPR2025-00119

twin-well CMOS process, 124-125
two phase clock generator, 349

phase clocking, 344
phase dynamic registers, 347

two-level minimization, 428
unsaturated load inverters, 77-78

region, 45

UV light, 113
UV-PROM, 394

Vse, 93
VCDL, 336
Vee, 93
VCO, 334, 687
VDD• 7
V DD and Vss pads, 360

contact, 123, 152
VHDL, 425
via construction, 131

resistance, 179
rules, 154

via2 rules, 154
ViaLink, 396
VIH, 70
VIL, 70
virtual-grid symbolic-layout, 421,434
VJ - SPICE MOS model parameter,

190
VoH• 70
Vov 70
voltage controlled delay line VCDL,

336
controlled oscillator, VCO 687
regulator, 296

voltage-controlled oscillator, 334
Vss· 7
Vss contact, 123, 152

wafer, 110
wafer processing, I 09-110
waiver-design rule, 142
Wallace tree multiplication, 554
Wanlass, Frank , 3
wave pipelining, 324
weak 0, 8

I, 8
division, 428

weak-feedback inverter, 326
Weimer, P.K. , 3
well contacts, 123

resistance, 157
ties, 123

white space, 288
wide adders, 534
wire length design guide, 204
work function, 49
worst-power corner, 246
worst-speed corner, 246

XC3000, 400
XC4000, 401
XILINX, 400
XNOR, gate 282, 304, 305, 658
XOR, 312, 525, 540

Y chart, 382
yield, 248
Yorktown Silicon Compiler, 425

zero and negate, 646
detect, 647

zero/one detectors, 537
Zipper CMOS, 310

INDEX 713

Micron Ex. 1037, p. 753
Micron v. YMTC
IPR2025-00119

TK7874/.W522/1993
Weste, Neil H. E.

Principles of CMOS VLSI design : a
systems perspeftive I Neil H.E. bimb

c. svo

----t-.· .. -. ---.. ~~· .. ----
····· . . i r

i

' ~~-·-~-r-~·--~-~-~--~---~-~

~
·-----··--·----!~·=--~== ·===··=·=··-··~--~·· -~~~··=····~····=··=-· -~~

I
l

- l
I ri•-' '1r: ,. ,.,,,- nt>t''-R '" · 2" • · , a.. ctv ~.-\,.): n,-; .. t,,. ·1 .•t:.: 1 i;-OO .,,,..1•1

TK7874/.W522/1993
Weste, Neil H. E.

Principles of CMOS VLSI design :
a systems perspective I Neil H.E. bimb

c. 1 svo

Micron Ex. 1037, p. 754
Micron v. YMTC
IPR2025-00119

