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9

Epipolar Geometry and the Fundamental Matrix

The epipolar geometry is the intrinsic projective geometry between
two views. It is independent of scene structure, and only depends on
the cameras’ internal parameters and relative pose.

The fundamental matrix F encapsulates this intrinsic geometry. It is
a 3 × 3 matrix of rank 2. If a point in 3-space X is imaged as x in the
first view, and x′ in the second, then the image points satisfy the
relation .

We will first describe epipolar geometry, and derive the fundamental
matrix. The properties of the fundamental matrix are then elucidated,
both for general motion of the camera between the views, and for
several commonly occurring special motions. It is next shown that the
cameras can be retrieved from F up to a projective transformation of
3-space. This result is the basis for the projective reconstruction
theorem given in chapter 10. Finally, if the camera internal calibration
is known, it is shown that the Euclidean motion of the cameras
between views may be computed from the fundamental matrix up to a
finite number of ambiguities.

The fundamental matrix is independent of scene structure. However,
it can be computed from correspondences of imaged scene points
alone, without requiring knowledge of the cameras’ internal
parameters or relative pose. This computation is described in chapter
11.
 

9.1 Epipolar geometry
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The epipolar geometry between two views is essentially the geometry
of the intersection of the image planes with the pencil of planes
having the baseline as axis (the baseline is the line joining the camera
centres). This geometry is usually motivated by considering the search
for corresponding points in stereo matching, and we will start from
that objective here.

Suppose a point X in 3-space is imaged in two views, at x in the
first, and x′ in the second. What is the relation between the
corresponding image points x and x′? As shown in figure 9.1a the
image points x and x′, space point X, and camera centres are
coplanar. Denote this plane as π. Clearly, the rays back-projected from
x and x ′intersect at X, and the rays are coplanar, lying in π. It is this
latter property that is of most significance in searching for a
correspondence.

Fig. 9.1. Point correspondence geometry. (a) The two cameras are
indicated by their centres C and C′ and image planes. The camera centres, 3-
space point X, and its images x and x′ lie in a common plane π. (b) An image
point x back-projects to a ray in 3-space defined by the first camera centre, C,
and x. This ray is imaged as a line l′ in the second view. The 3-space point X
which projects to x must lie on this ray, so the image of X in the second view
must lie on l′.

Supposing now that we know only x, we may ask how the
corresponding point x′ is constrained. The plane π is determined by
the baseline and the ray defined by x. From above we know that the
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ray corresponding to the (unknown) point x′ lies in π, hence the point
x′ lies on the line of intersection l′ of π with the second image plane.
This line l′ is the image in the second view of the ray back-projected
from x. It is the epipolar line corresponding to x. In terms of a stereo
correspondence algorithm the benefit is that the search for the point
corresponding to x need not cover the entire image plane but can be
restricted to the line l′.

The geometric entities involved in epipolar geometry are illustrated
in figure 9.2. The terminology is

Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image
plane at the epipoles e and e′. Any plane π containing the baseline is an epipolar
plane, and intersects the image planes in corresponding epipolar lines l and l′.
(b) As the position of the 3D point X varies, the epipolar planes “rotate” about
the baseline. This family of planes is known as an epipolar pencil. All epipolar
lines intersect at the epipole.

The epipole is the point of intersection of the line joining the
camera centres (the baseline) with the image plane.
Equivalently, the epipole is the image in one view of the camera
centre of the other view. It is also the vanishing point of the
baseline (translation) direction.
An epipolar plane is a plane containing the baseline. There is a
one-parameter family (a pencil) of epipolar planes.
An epipolar line is the intersection of an epipolar plane with
the image plane. All epipolar lines intersect at the epipole. An
epipolar plane intersects the left and right image planes in
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epipolar lines, and defines the correspondence between the
lines.

Examples of epipolar geometry are given in figure 9.3 and figure
9.4. The epipolar geometry of these image pairs, and indeed all the
examples of this chapter, is computed directly from the images as
described in section 11.6(p290).

Fig. 9.3. Converging cameras. (a) Epipolar geometry for converging cameras.
(b) and (c) A pair of images with superimposed corresponding points and their
epipolar lines (in white). The motion between the views is a translation and
rotation. In each image, the direction of the other camera may be inferred from
the intersection of the pencil of epipolar lines. In this case, both epipoles lie
outside of the visible image.
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Fig. 9.4. Motion parallel to the image plane. In the case of a special motion
where the translation is parallel to the image plane, and the rotation axis is
perpendicular to the image plane, the intersection of the baseline with the image
plane is at infinity. Consequently the epipoles are at infinity, and epipolar lines
are parallel. (a) Epipolar geometry for motion parallel to the image plane. (b)
and (c) a pair of images for which the motion between views is (approximately)
a translation parallel to the x-axis, with no rotation. Four corresponding epipolar
lines are superimposed in white. Note that corresponding points lie on
corresponding epipolar lines.

 
9.2 The fundamental matrix F

The fundamental matrix is the algebraic representation of epipolar
geometry. In the following we derive the fundamental matrix from the
mapping between a point and its epipolar line, and then specify the
properties of the matrix.

Given a pair of images, it was seen in figure 9.1 that to each point x
in one image, there exists a corresponding epipolar line l′ in the other
image. Any point x′ in the second image matching the point x must lie
on the epipolar line l′. The epipolar line is the projection in the second
image of the ray from the point x through the camera centre C of the
first camera. Thus, there is a map

Page 8 of 69



from a point in one image to its corresponding epipolar line in the
other image. It is the nature of this map that will now be explored. It
will turn out that this mapping is a (singular) correlation, that is a
projective mapping from points to lines, which is represented by a
matrix F, the fundamental matrix.

9.2.1 Geometric derivation
We begin with a geometric derivation of the fundamental matrix. The
mapping from a point in one image to a corresponding epipolar line in
the other image may be decomposed into two steps. In the first step,
the point x is mapped to some point x′ in the other image lying on the
epipolar line l′. This point x′ is a potential match for the point x. In
the second step, the epipolar line l′ is obtained as the line joining x′ to
the epipole e′.

Step 1: Point transfer via a plane. Refer to figure 9.5. Consider a
plane π in space not passing through either of the two camera
centres. The ray through the first camera centre corresponding to the
point x meets the plane π in a point X. This point X is then projected
to a point x′ in the second image. This procedure is known as transfer
via the plane π. Since X lies on the ray corresponding to x, the
projected point x′ must lie on the epipolar line l′ corresponding to the
image of this ray, as illustrated in figure 9.1b. The points x and x′ are
both images of the 3D point X lying on a plane. The set of all such
points xi in the first image and the corresponding points x′i in the
second image are projectively equivalent, since they are each
projectively equivalent to the planar point set Xi. Thus there is a 2D
homography Hπ mapping each xi to .
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Fig. 9.5. A point x in one image is transferred via the plane π to a matching
point x in the second image. The epipolar line through x′ is obtained by joining
x′ to the epipole e′. In symbols one may write x′ = Hπx and
l′ = [e′]×x′ = [e′]×Hπx = Fx where F = [e′]×Hπ is the fundamental matrix.

Step 2: Constructing the epipolar line. Given the point x′ the
epipolar line l′ passing through x′ and the epipole e′ can be written as

 (the notation  is defined in (A4.5–p581)).
Since x′ may be written as x′ = Hπx, we have

where we define , the fundamental matrix. This shows

Result 9.1. The fundamental matrix F may be written as 
, where Hπ is the transfer mapping from one image to another via any
plane π. Furthermore, since  has rank 2 and Hπ rank 3, F is a
matrix of rank 2.
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Geometrically, F represents a mapping from the 2-dimensional
projective plane  of the first image to the pencil of epipolar lines
through the epipole e′. Thus, it represents a mapping from a 2-
dimensional onto a 1-dimensional projective space, and hence must
have rank 2.

Note, the geometric derivation above involves a scene plane π, but
a plane is not required in order for F to exist. The plane is simply used
here as a means of defining a point map from one image to another.
The connection between the fundamental matrix and transfer of
points from one image to another via a plane is dealt with in some
depth in chapter 13.

9.2.2 Algebraic derivation
The form of the fundamental matrix in terms of the two camera
projection matrices, P, P′, may be derived algebraically. The following
formulation is due to Xu and Zhang [Xu-96].

The ray back-projected from x by P is obtained by solving PX = x.
The one-parameter family of solutions is of the form given by (6.13–
p162) as

where P+ is the pseudo-inverse of P, i.e. PP+ = I, and C its null-vector,
namely the camera centre, defined by PC = 0. The ray is parametrized
by the scalar . In particular two points on the ray are P+x (at  = 0),
and the first camera centre C (at  = ∞). These two points are
imaged by the second camera P′ at P′P+x and P′C respectively in the
second view. The epipolar line is the line joining these two projected
points, namely l′ = (P′C) × (P′P+x). The point P′C is the epipole in
the second image, namely the projection of the first camera centre,
and may be denoted by e′. Thus, l′ = [e′]×(P′P+)x = Fx, where F is
the matrix

(9.1)
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This is essentially the same formula for the fundamental matrix as the
one derived in the previous section, the homography Hπ having the
explicit form Hπ = P′P+ in terms of the two camera matrices. Note that
this derivation breaks down in the case where the two camera centres
are the same for, in this case, C is the common camera centre of both
P and P′, and so P′C = 0. It follows that F defined in (9.1) is the zero
matrix.

Example 9.2. Suppose the camera matrices are those of a calibrated
stereo rig with the world origin at the first camera

Then

and

(9.2

where the various forms follow from result A4.3(p582). Note that the
epipoles (defined as the image of the other camera centre) are

(9.3)

Thus we may write (9.2) as
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(9.4

The expression for the fundamental matrix can be derived in many
ways, and indeed will be derived again several times in this book. In
particular, (17.3–p412) expresses F in terms of 4 × 4 determinants
composed from rows of the camera matrices for each view.

9.2.3 Correspondence condition
Up to this point we have considered the map x → l′ defined by F. We
may now state the most basic properties of the fundamental matrix.

Result 9.3. The fundamental matrix satisfies the condition that for
any pair of corresponding points x ↔ x′ in the two images

This is true, because if points x and x′ correspond, then x′ lies on
the epipolar line l′ = Fx corresponding to the point x. In other words

. Conversely, if image points satisfy the relation
 then the rays defined by these points are coplanar. This is

a necessary condition for points to correspond.
The importance of the relation of result 9.3 is that it gives a way of

characterizing the fundamental matrix without reference to the camera
matrices, i.e. only in terms of corresponding image points. This
enables F to be computed from image correspondences alone. We
have seen from (9.1) that F may be computed from the two camera
matrices, P, P′, and in particular that F is determined uniquely from
the cameras, up to an overall scaling. However, we may now enquire
how many correspondences are required to compute F from

, and the circumstances under which the matrix is uniquely
defined by these correspondences. The details of this are postponed
until chapter 11, where it will be seen that in general at least 7
correspondences are required to compute F.
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9.2.4 Properties of the fundamental matrix
Definition 9.4. Suppose we have two images acquired by cameras
with non-coincident centres, then the fundamental matrix F is the
unique 3×3 rank 2 homogeneous matrix which satisfies

(9.5)

for all corresponding points x ↔ x′.

We now briefly list a number of properties of the fundamental
matrix. The most important properties are also summarized in table
9.1.

•  F is a rank 2 homogeneous matrix with 7 degrees of freedom.
•  Point correspondence: If x and x are corresponding image

points, then
xTFx = 0.

•  Epipolar lines:
   l = Fx is the epipolar line corresponding to x.
   l = FTx is the epipolar line corresponding to x′.

•  Epipoles:
   Fe = 0.
   FTe′ = 0.

•  Computation from camera matrices P, P :
   General cameras,
 F = [e ]×P P+, where P+ is the pseudo-inverse of P, and
e′ = P′C, with PC = 0.

   Canonical cameras, P = [I | 0], P′= [M | m],
 F = [e′]×M = M−T[e]×, where e′ = m and e = M−1m.

   Cameras not at infinity P = K[I | 0], P′ = K′[R | t],
F = K′−T[t]×RK−1 = [K′t]×K′RK−1 = K′−TRKT[KRTt]×.
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Table 9.1. Summary of fundamental matrix properties.

(i)  Transpose: If F is the fundamental matrix of the pair of
cameras (P, P′), then FT is the fundamental matrix of the pair in
the opposite order: (P′, P).

(ii)  Epipolar lines: For any point x in the first image, the
corresponding epipolar line is l′ = Fx. Similarly, l = FTx′
represents the epipolar line corresponding to x′ in the second
image.

(iii) The epipole: for any point x (other than e) the epipolar line
l′ = Fx contains the epipole e′. Thus e′ satisfies

 for all x. It follows that , i.e.
e′ is the left null-vector of F. Similarly Fe = 0, i.e. e is the right
null-vector of F.

(iv)  F has seven degrees of freedom: a 3×3 homogeneous matrix
has eight independent ratios (there are nine elements, and the
common scaling is not significant); however, F also satisfies the
constraint det F = 0 which removes one degree of freedom.

(v)  F is a correlation, a projective map taking a point to a line (see
definition 2.29-(p59)). In this case a point in the first image x
defines a line in the second l′ = Fx, which is the epipolar line of
x. If l and l′ are corresponding epipolar lines (see figure 9.6a)
then any point x on l is mapped to the same line l′. This means
there is no inverse mapping, and F is not of full rank. For this
reason, F is not a proper correlation (which would be invertible).
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Fig. 9.6. Epipolar line homography. (a) There is a pencil of epipolar lines in
each image centred on the epipole. The correspondence between epipolar lines,

, is defined by the pencil of planes with axis the baseline. (b) The
corresponding lines are related by a perspectivity with centre any point p on the
baseline. It follows that the correspondence between epipolar lines in the pencils
is a 1D homography.

9.2.5 The epipolar line homography
The set of epipolar lines in each of the images forms a pencil of lines
passing through the epipole. Such a pencil of lines may be considered
as a 1-dimensional projective space. It is clear from figure 9.6b that
corresponding epipolar lines are perspectively related, so that there is
a homography between the pencil of epipolar lines centred at e in the
first view, and the pencil centred at e′ in the second. A homography
between two such 1-dimensional projective spaces has 3 degrees of
freedom.

The degrees of freedom of the fundamental matrix can thus be
counted as follows: 2 for e, 2 for e′, and 3 for the epipolar line
homography which maps a line through e to a line through e′. A
geometric representation of this homography is given in section 9.4.
Here we give an explicit formula for this mapping.

Result 9.5. Suppose l and l′ are corresponding epipolar lines, and k
is any line not passing through the epipole e, then l and l′ are related
by l′ = F[k]×l. Symmetrically, l = FT[k′]×l′.

Proof. The expression [k]×l = k × l is the point of intersection of the
two lines k and l, and hence a point on the epipolar line l – call it x.
Hence, F[k]×l = Fx is the epipolar line corresponding to the point x,
namely the line l′.

Furthermore a convenient choice for k is the line e, since kTe = eTe
≠ 0, so that the line e does not pass through the point e as is
required. A similar argument holds for the choice of k′ = e′. Thus the
epipolar line homography may be written as
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9.3 Fundamental matrices arising from special motions
A special motion arises from a particular relationship between the
translation direction, t, and the direction of the rotation axis, a. We
will discuss two cases: pure translation, where there is no rotation;
and pure planar motion, where t is orthogonal to a (the significance of
the planar motion case is described in section 3.4.1(p77)). The ‘pure’
indicates that there is no change in the internal parameters. Such
cases are important, firstly because they occur in practice, for example
a camera viewing an object rotating on a turntable is equivalent to
planar motion for pairs of views; and secondly because the
fundamental matrix has a special form and thus additional properties.

9.3.1 Pure translation
In considering pure translations of the camera, one may consider the
equivalent situation in which the camera is stationary, and the world
undergoes a translation −t. In this situation points in 3-space move on
straight lines parallel to t, and the imaged intersection of these
parallel lines is the vanishing point v in the direction of t. This is
illustrated in figure 9.7 and figure 9.8. It is evident that v is the
epipole for both views, and the imaged parallel lines are the epipolar
lines. The algebraic details are given in the following example.
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Fig. 9.7. Under a pure translational camera motion, 3D points appear to slide
along parallel rails. The images of these parallel lines intersect in a vanishing
point corresponding to the translation direction. The epipole e is the vanishing
point.
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Fig. 9.8. Pure translational motion. (a) under the motion the epipole is a
fixed point, i.e. has the same coordinates in both images, and points appear to
move along lines radiating from the epipole. The epipole in this case is termed
the Focus of Expansion (FOE). (b) and (c) the same epipolar lines are overlaid in
both cases. Note the motion of the posters on the wall which slide along the
epipolar line.

Example 9.6. Suppose the motion of the cameras is a pure
translation with no rotation and no change in the internal parameters.
One may assume that the two cameras are P = K[I | 0] and P′ = K[I |
t]. Then from (9.4) (using R = I and K = K′)

If the camera translation is parallel to the x-axis, then e′ = (1, 0, 0)T,
so
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The relation between corresponding points, x′TFx = 0, reduces to
y = y′, i.e. the epipolar lines are corresponding rasters. This is the
situation that is sought by image rectification described in section
11.12(p302).

Indeed if the image point x is normalized as x = (x, y, 1)T, then
from x = PX = K[I | 0]X, the space point’s (inhomogeneous)
coordinates are (X, Y, Z)T = ZK−1x, where Z is the depth of the point
X (the distance of X from the camera centre measured along the
principal axis of the first camera). It then follows from x′ = P′X = K[I
| t]X that the mapping from an image point x to an image point x′ is

(9.6)

The motion x′ = x + Kt/Z of (9.6) shows that the image point “starts”
at x and then moves along the line defined by x and the epipole
e = e′ = v. The extent of the motion depends on the magnitude of
the translation t (which is not a homogeneous vector here) and the
inverse depth Z, so that points closer to the camera appear to move
faster than those further away – a common experience when looking
out of a train window.

Note that in this case of pure translation F = [e′]× is skew-
symmetric and has only 2 degrees of freedom, which correspond to
the position of the epipole. The epipolar line of x is l′ = Fx = [e]×x,
and x lies on this line since xT[e]×x = 0, i.e. x, x′ and e = e′ are
collinear (assuming both images are overlaid on top of each other).
This collinearity property is termed auto-epipolar, and does not hold
for general motion.

General motion. The pure translation case gives additional insight
into the general motion case. Given two arbitrary cameras, we may
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rotate the camera used for the first image so that it is aligned with the
second camera. This rotation may be simulated by applying a
projective transformation to the first image. A further correction may
be applied to the first image to account for any difference in the
calibration matrices of the two images. The result of these two
corrections is a projective transformation H of the first image. If one
assumes these corrections to have been made, then the effective
relationship of the two cameras to each other is that of a pure
translation. Consequently, the fundamental matrix corresponding to
the corrected first image and the second image is of the form

, satisfying , where  is the corrected point
in the first image. From this one deduces that , and
so the fundamental matrix corresponding to the initial point
correspondences x ↔ x′ is F = [e′]×H. This is illustrated in figure 9.9.

Fig. 9.9. General camera motion. The first camera (on the left) may be
rotated and corrected to simulate a pure translational motion. The fundamental
matrix for the original pair is the product F = [e′]×H, where [e′]× is the
fundamental matrix of the translation, and H is the projective transformation
corresponding to the correction of the first camera.

Example 9.7. Continuing from example 9.2, assume again that the
two cameras are P = K[I | 0] and P′ = K′[R | t]. Then as described in
section 8.4.2(p204) the requisite projective transformation is
H = K′RK−1 = H∞, where H∞ is the infinite homography (see section
13.4(p338)), and F = [e′]×H∞.
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If the image point x is normalized as x = (x, y, 1)T, as in example
9.6, then (X, Y, Z)T = ZK−1x, and from x = P′X = K′[R | t]X the
mapping from an image point x to an image point x′ is

(9.7)

The mapping is in two parts: the first term depends on the image
position alone, i.e. x, but not the point’s depth Z, and takes account of
the camera rotation and change of internal parameters; the second
term depends on the depth, but not on the image position x, and
takes account of camera translation. In the case of pure translation
(R = I, K = K′) (9.7) reduces to (9.6).

9.3.2 Pure planar motion
In this case the rotation axis is orthogonal to the translation direction.
Orthogonality imposes one constraint on the motion, and it is shown
in the exercises at the end of this chapter that if K′ = K then Fs, the
symmetric part of F, has rank 2 in this planar motion case (note, for a
general motion the symmetric part of F has full rank). Thus, the
condition that det Fs = 0 is an additional constraint on F and reduces
the number of degrees of freedom from 7, for a general motion, to 6
degrees of freedom for a pure planar motion.

9.4 Geometric representation of the fundamental
matrix

This section is not essential for a first reading and the reader may
optionally skip to section 9.5.

In this section the fundamental matrix is decomposed into its
symmetric and skew-symmetric parts, and each part is given a
geometric representation. The symmetric and skew-symmetric parts of
the fundamental matrix are
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so that F = Fs + Fa.
To motivate the decomposition, consider the points X in 3-space

that map to the same point in two images. These image points are
fixed under the camera motion so that x = x′. Clearly such points are
corresponding and thus satisfy xTFx = 0, which is a necessary
condition on corresponding points. Now, for any skew-symmetric
matrix A the form xTAx is identically zero. Consequently only the
symmetric part of F contributes to xTFx = 0, which then reduces to
xTFsx = 0. As will be seen below the matrix Fs may be thought of as a
conic in the image plane.

Geometrically the conic arises as follows. The locus of all points in
3-space for which x = x′ is known as the horopter curve. Generally
this is a twisted cubic curve in 3-space (see section 3.3(p75)) passing
through the two camera centres [Maybank-93]. The image of the
horopter is the conic defined by Fs. We return to the horopter in
chapter 22.

Symmetric part. The matrix Fs is symmetric and is of rank 3 in
general. It has 5 degrees of freedom and is identified with a point
conic, called the Steiner conic (the name is explained below). The
epipoles e and e′ lie on the conic Fs. To see that the epipoles lie on
the conic, i.e. that eTFse = 0, start from Fe = 0. Then eTFe = 0 and
so eTFse + eTFae = 0. However, eTFae = 0, since for any skew-
symmetric matrix S, xTSx = 0. Thus eTFse = 0. The derivation for e′
follows in a similar manner.

Skew-symmetric part. The matrix Fa is skew-symmetric and may be
written as Fa = [xa]×, where xa is the null-vector of Fa. The skew-
symmetric part has 2 degrees of freedom and is identified with the
point xa.

The relation between the point xa and conic Fs is shown in figure
9.10a. The polar of xa intersects the Steiner conic Fs at the epipoles e
and e′ (the pole–polar relation is described in section 2.2.3(p30)). The
proof of this result is left as an exercise.
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Fig. 9.10. Geometric representation of F. (a) The conic Fs represents the
symmetric part of F, and the point xa the skew-symmetric part. The conic Fs is
the locus of intersection of corresponding epipolar lines, assuming both images
are overlaid on top of each other. It is the image of the horopter curve. The line
la is the polar of xa with respect to the conic Fs. It intersects the conic at the
epipoles e and e′. (b) The epipolar line l′ corresponding to a point x is
constructed as follows: intersect the line defined by the points e and x with the
conic. This intersection point is xc. Then l′ is the line defined by the points xc
and e′.

Epipolar line correspondence. It is a classical theorem of
projective geometry due to Steiner [Semple-79] that for two line
pencils related by a homography, the locus of intersections of
corresponding lines is a conic. This is precisely the situation here. The
pencils are the epipolar pencils, one through e and the other through
e′. The epipolar lines are related by a 1D homography as described in
section 9.2.5. The locus of intersection is the conic Fs.

The conic and epipoles enable epipolar lines to be determined by a
geometric construction as illustrated in figure 9.10b. This construction
is based on the fixed point property of the Steiner conic Fs. The
epipolar line l = x × e in the first view defines an epipolar plane in 3-
space which intersects the horopter in a point, which we will call Xc.
The point Xc is imaged in the first view at xc, which is the point at
which l intersects the conic Fs (since Fs is the image of the horopter).
Now the image of Xc is also xc in the second view due to the fixed-
point property of the horopter. So xc is the image in the second view
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of a point on the epipolar plane of x. It follows that xc lies on the
epipolar line l′ of x, and consequently l′ may be computed as
l′ = xc × e′.

The conic together with two points on the conic account for the 7
degrees of freedom of F: 5 degrees of freedom for the conic and one
each to specify the two epipoles on the conic. Given F, then the conic
Fs, epipoles e, e′ and skew-symmetric point xa are defined uniquely.
However, Fs and xa do not uniquely determine F since the identity of
the epipoles is not recovered, i.e. the polar of xa determines the
epipoles but does not determine which one is e and which one e′.

9.4.1 Pure planar motion
We return to the case of planar motion discussed above in section
9.3.2, where Fs has rank 2. It is evident that in this case the Steiner
conic is degenerate and from section 2.2.3(p30) is equivalent to two
non-coincident lines:

as depicted in figure 9.11a. The geometric construction of the epipolar
line l′ corresponding to a point x of section 9.4 has a simple algebraic
representation in this case. As in the general motion case, there are
three steps, illustrated in figure 9.11b: first the line l = e × x joining e
and x is computed; second, its intersection point with the “conic”
xc = ls × l is determined; third the epipolar line l′ = e′ × xc is the join
of x cand e′. Putting these steps together we find
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Fig. 9.11. Geometric representation of F for planar motion. (a) The lines
ls and lh constitute the Steiner conic for this motion, which is degenerate.
Compare this figure with the conic for general motion shown in figure 9.10. (b)
The epipolar line l′ corresponding to a point x is constructed as follows:
intersect the line defined by the points e and x with the (conic) line ls. This
intersection point is xc. Then l′ is the line defined by the points xc and e′.

It follows that F may be written as

(9.8)

The 6 degrees of freedom of F are accounted for as 2 degrees of
freedom for each of the two epipoles and 2 degrees of freedom for
the line.

The geometry of this situation can be easily visualized: the horopter
for this motion is a degenerate twisted cubic consisting of a circle in
the plane of the motion (the plane orthogonal to the rotation axis and
containing the camera centres), and a line parallel to the rotation axis
and intersecting the circle. The line is the screw axis (see section
3.4.1(p77)). The motion is equivalent to a rotation about the screw
axis with zero translation. Under this motion points on the screw axis
are fixed, and consequently their images are fixed. The line ls is the
image of the screw axis. The line lh is the intersection of the image
with the plane of the motion. This geometry is used for auto-
calibration in chapter 19.

9.5 Retrieving the camera matrices

Page 26 of 69



To this point we have examined the properties of F and of image
relations for a point correspondence x ↔ x′. We now turn to one of
the most significant properties of F, that the matrix may be used to
determine the camera matrices of the two views.

9.5.1 Projective invariance and canonical cameras
It is evident from the derivations of section 9.2 that the map l′ = Fx
and the correspondence condition x′TFx = 0 are projective
relationships: the derivations have involved only projective geometric
relationships, such as the intersection of lines and planes, and in the
algebraic development only the linear mapping of the projective
camera between world and image points. Consequently, the
relationships depend only on projective co-ordinates in the image, and
not, for example on Euclidean measurements such as the angle
between rays. In other words the image relationships are projectively
invariant: under a projective transformation of the image coordinates

, there is a corresponding map  with
 the corresponding rank 2 fundamental matrix.

Similarly, F only depends on projective properties of the cameras P,
P′. The camera matrix relates 3-space measurements to image
measurements and so depends on both the image coordinate frame
and the choice of world coordinate frame. F does not depend on the
choice of world frame, for example a rotation of world coordinates
changes P, P′, but not F. In fact, the fundamental matrix is unchanged
by a projective transformation of 3-space. More precisely,

Result 9.8. If H is a 4 × 4 matrix representing a projective
transformation of 3-space, then the fundamental matrices
corresponding to the pairs of camera matrices (P, P′) and (PH, P′H)
are the same.

Proof. Observe that PX = (PH)(H−1X), and similarly for P′. Thus if
x ↔ x′ are matched points with respect to the pair of cameras (P, P′),
corresponding to a 3D point X, then they are also matched points with
respect to the pair of cameras (PH, P′H), corresponding to the point
H−1X.
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Thus, although from (9.1–p244) a pair of camera matrices (P, P′)
uniquely determine a fundamental matrix F, the converse is not true.
The fundamental matrix determines the pair of camera matrices at
best up to right-multiplication by a 3D projective transformation. It will
be seen below that this is the full extent of the ambiguity, and indeed
the camera matrices are determined up to a projective transformation
by the fundamental matrix.

Canonical form of camera matrices. Given this ambiguity, it is
common to define a specific canonical form for the pair of camera
matrices corresponding to a given fundamental matrix in which the
first matrix is of the simple form [I | 0], where I is the 3 × 3 identity
matrix and 0 a null 3-vector. To see that this is always possible, let P
be augmented by one row to make a 4 × 4 non-singular matrix,
denoted P∗. Now letting H = P∗−1, one verifies that PH = [I | 0] as
desired.

The following result is very frequently used

Result 9.9. The fundamental matrix corresponding to a pair of
camera matrices P = [I | 0] and P′ = [M | m] is equal to [m]×M.

This is easily derived as a special case of (9.1–p244).

9.5.2 Projective ambiguity of cameras given F
It has been seen that a pair of camera matrices determines a unique
fundamental matrix. This mapping is not injective (one-to-one)
however, since pairs of camera matrices that differ by a projective
transformation give rise to the same fundamental matrix. It will now
be shown that this is the only ambiguity. We will show that a given
fundamental matrix determines the pair of camera matrices up to right
multiplication by a projective transformation. Thus, the fundamental
matrix captures the projective relationship of the two cameras.

Theorem 9.10. Let F be a fundamental matrix and let (P, P′) and ( ,
′) be two pairs of camera matrices such that F is the fundamental
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matrix corresponding to each of these pairs. Then there exists a non-
singular 4 × 4 matrix H such that  = PH and ′ = P′H.

Proof. Suppose that a given fundamental matrix F corresponds to two
different pairs of camera matrices (P, P′) and ( , ′). As a first step,
we may simplify the problem by assuming that each of the two pair of
camera matrices is in canonical form with P =  = [I | 0], since this
may be done by applying projective transformations to each pair as
necessary. Thus, suppose that P =  = [I | 0] and that P′ = [A | a]
and . According to result 9.9 the fundamental matrix may
then be written 
We will need the following lemma:

Lemma 9.11. Suppose the rank 2 matrix F can be decomposed in
two different ways as F = [a]×A and ; then  and

 for some non-zero constant k and 3-vector v.

Proof. First, note that aTF = aT[a]×A = 0, and similarly, .
Since F has rank 2, it follows that  as required. Next, from

 it follows that , and so
 for some v. Hence,  as required.

Applying this result to the two camera matrices P′ and ′ shows that
P′ = [A | a] and  if they are to generate the
same F. It only remains now to show that these camera pairs are

projectively related. Let H be the matrix H = .

Then one verifies that , and furthermore,

so that the pairs P, P′ and , ′ are indeed projectively related.
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This can be tied precisely to a counting argument: the two cameras
P and P′ each have 11 degrees of freedom, making a total of 22
degrees of freedom. To specify a projective world frame requires 15
degrees of freedom (section 3.1(p65)), so once the degrees of
freedom of the world frame are removed from the two cameras 22 −
15 = 7 degrees of freedom remain – which corresponds to the 7
degrees of freedom of the fundamental matrix.

9.5.3 Canonical cameras given F
We have shown that F determines the camera pair up to a projective
transformation of 3-space. We will now derive a specific formula for a
pair of cameras with canonical form given F. We will make use of the
following characterization of the fundamental matrix F corresponding
to a pair of camera matrices:

Result 9.12. A non-zero matrix F is the fundamental matrix
corresponding to a pair of camera matrices P and P′ if and only if
P′TFP is skew-symmetric.

Proof. The condition that P′TFP is skew-symmetric is equivalent to
XTP′TFPX = 0 for all X. Setting x′ = P′X and x = PX, this is equivalent
to x′TFx = 0, which is the defining equation for the fundamental
matrix.

One may write down a particular solution for the pairs of camera
matrices in canonical form that correspond to a fundamental matrix as
follows:

Result 9.13. Let F be a fundamental matrix and S any skew-
symmetric matrix. Define the pair of camera matrices

where e′ is the epipole such that e′TF = 0, and assume that P′ so
defined is a valid camera matrix (has rank 3). Then F is the
fundamental matrix corresponding to the pair (P, P′).
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To demonstrate this, we invoke result 9.12 and simply verify that

(9.9)

which is skew-symmetric.
The skew-symmetric matrix S may be written in terms of its null-

vector as S = [s]×. Then [[s]×F | e′] has rank 3 provided sTe′ ≠ 0,
according to the following argument. Since e′F = 0, the column space
(span of the columns) of F is perpendicular to e′. But if sTe′ = 0, then
s is not perpendicular to e′, and hence not in the column space of F.
Now, the column space of [s]×F is spanned by the cross-products of s
with the columns of F, and therefore equals the plane perpendicular to
s. So [s]×F has rank 2. Since e ′is not perpendicular to s, it does not
lie in this plane, and so [[s]×F | e′] has rank 3, as required.

As suggested by Luong and Viéville [Luong-96] a good choice for S
is S = [e′]×, for in this case e′Te′ ≠ 0, which leads to the following
useful result.

Result 9.14. The camera matrices corresponding to a fundamental
matrix F may be chosen as P = [I | 0] and P′ = [[e′]×F | e′].

Note that the camera matrix P′ has left 3 × 3 submatrix [e′]×F which
has rank 2. This corresponds to a camera with centre on π∞. However,
there is no particular reason to avoid this situation.

The proof of theorem 9.10 shows that the four parameter family of
camera pairs in canonical form  have
the same fundamental matrix as the canonical pair, P = [I | 0],
P′ = [A | a]; and that this is the most general solution. To summarize:

Result 9.15. The general formula for a pair of canonic camera
matrices corresponding to a fundamental matrix F is given by
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(9.10)

where v is any 3-vector, and  a non-zero scalar.

9.6 The essential matrix
The essential matrix is the specialization of the fundamental matrix to
the case of normalized image coordinates (see below). Historically, the
essential matrix was introduced (by Longuet-Higgins) before the
fundamental matrix, and the fundamental matrix may be thought of as
the generalization of the essential matrix in which the (inessential)
assumption of calibrated cameras is removed. The essential matrix has
fewer degrees of freedom, and additional properties, compared to the
fundamental matrix. These properties are described below.

Normalized coordinates. Consider a camera matrix decomposed as
P = K[R | t], and let x = PX be a point in the image. If the calibration
matrix K is known, then we may apply its inverse to the point x to
obtain the point  = K−1x. Then  = [R | t]X, where  is the image
point expressed in normalized coordinates. It may be thought of as
the image of the point X with respect to a camera [R | t] having the
identity matrix I as calibration matrix. The camera matrix K−1P = [R |
t] is called a normalized camera matrix, the effect of the known
calibration matrix having been removed.

Now, consider a pair of normalized camera matrices P = [I | 0] and
P′ = [R | t]. The fundamental matrix corresponding to the pair of
normalized cameras is customarily called the essential matrix, and
according to (9.2–p244) it has the form

Definition 9.16. The defining equation for the essential matrix is

(9.11)
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in terms of the normalized image coordinates for corresponding points
x ↔ x′.

Substituting for  and  gives x′TK′−TEK−1x = 0. Comparing this with
the relation x′TFx = 0 for the fundamental matrix, it follows that the
relationship between the fundamental and essential matrices is

(9.12)

9.6.1 Properties of the essential matrix
The essential matrix, E = [t]×R, has only five degrees of freedom:
both the rotation matrix R and the translation t have three degrees of
freedom, but there is an overall scale ambiguity – like the fundamental
matrix, the essential matrix is a homogeneous quantity.

The reduced number of degrees of freedom translates into extra
constraints that are satisfied by an essential matrix, compared with a
fundamental matrix. We investigate what these constraints are.

Result 9.17. A 3×3 matrix is an essential matrix if and only if two of
its singular values are equal, and the third is zero.

Proof. This is easily deduced from the decomposition of E as
[t]×R = SR, where S is skew-symmetric. We will use the matrices

(9.13)

It may be verified that W is orthogonal and Z is skew-symmetric. From
Result A4.1-(p581), which gives a block decomposition of a general
skew-symmetric matrix, the 3 × 3 skew-symmetric matrix S may be
written as S = kUZUT where U is orthogonal.

Noting that, up to sign, Z = diag(1, 1, 0)W, then up to scale, S = U
diag(1, 1, 0)WUT, and E = SR = U diag(1, 1, 0)(WUTR). This is a
singular value decomposition of E with two equal singular values, as
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required. Conversely, a matrix with two equal singular values may be
factored as SR in this way.

Since E = U diag(1, 1, 0)VT, it may seem that E has six degrees of
freedom and not five, since both U and V have three degrees of
freedom. However, because the two singular values are equal, the
SVD is not unique – in fact there is a one-parameter family of SVDs for
E. Indeed, an alternative SVD is given by

 for any 2 × 2
rotation matrix R.

9.6.2 Extraction of cameras from the essential matrix
The essential matrix may be computed directly from (9.11) using
normalized image coordinates, or else computed from the
fundamental matrix using (9.12). (Methods of computing the
fundamental matrix are deferred to chapter 11). Once the essential
matrix is known, the camera matrices may be retrieved from E as will
be described next. In contrast with the fundamental matrix case,
where there is a projective ambiguity, the camera matrices may be
retrieved from the essential matrix up to scale and a four-fold
ambiguity. That is there are four possible solutions, except for overall
scale, which cannot be determined.

We may assume that the first camera matrix is P = [I | 0]. In order
to compute the second camera matrix, P′, it is necessary to factor E
into the product SR of a skew-symmetric matrix and a rotation matrix.

Result 9.18. Suppose that the SVD of E is U diag(1, 1, 0)VT. Using
the notation of (9.13), there are (ignoring signs) two possible
factorizations E = SR as follows:

(9.14)

Proof. That the given factorization is valid is true by inspection. That
there are no other factorizations is shown as follows. Suppose E = SR.
The form of S is determined by the fact that its left null-space is the
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same as that of E. Hence S = UZUT. The rotation R may be written as
UXVT, where X is some rotation matrix. Then

from which one deduces that ZX = diag(1, 1, 0). Since X is a rotation
matrix, it follows that X = W or X = WT, as required.

The factorization (9.14) determines the t part of the camera matrix
P′, up to scale, from S = [t]×. However, the Frobenius norm of
S = UZUT is  which means that if S = [t]× including scale then
||t|| = 1, which is a convenient normalization for the baseline of the
two camera matrices. Since St = 0, it follows that t = U (0, 0,
1)T = u3, the last column of U. However, the sign of E, and
consequently t, cannot be determined. Thus, corresponding to a given
essential matrix, there are four possible choices of the camera matrix
P′, based on the two possible choices of R and two possible signs of t.
To summarize:

Result 9.19. For a given essential matrix E = U diag(1, 1, 0)VT, and
first camera matrix P = [I | 0], there are four possible choices for the
second camera matrix P′, namely

9.6.3 Geometrical interpretation of the four solutions
It is clear that the difference between the first two solutions is simply
that the direction of the translation vector from the first to the second
camera is reversed.

The relationship of the first and third solutions in result 9.19 is a
little more complicated. However, it may be verified that
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and  is a rotation through 180°
about the line joining the two camera centres. Two solutions related in
this way are known as a “twisted pair”.

The four solutions are illustrated in figure 9.12, where it is shown
that a reconstructed point X will be in front of both cameras in one of
these four solutions only. Thus, testing with a single point to
determine if it is in front of both cameras is sufficient to decide
between the four different solutions for the camera matrix P′.

Fig. 9.12. The four possible solutions for calibrated reconstruction from
E. Between the left and right sides there is a baseline reversal. Between the top
and bottom rows camera B rotates 180° about the baseline. Note, only in (a) is
the reconstructed point in front of both cameras.

Note. The point of view has been taken here that the essential matrix
is a homogeneous quantity. An alternative point of view is that the
essential matrix is defined exactly by the equation E = [t]×R, (i.e.
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including scale), and is determined only up to indeterminate scale by
the equation x′TEx = 0. The choice of point of view depends on which
of these two equations one regards as the defining property of the
essential matrix.

9.7 Closure
9.7.1 The literature
The essential matrix was introduced to the computer vision community
by Longuet-Higgins [LonguetHiggins-81], with a matrix analogous to E
appearing in the photogrammetry literature, e.g. [VonSanden-08].
Many properties of the essential matrix have been elucidated
particularly by Huang and Faugeras [Huang-89], [Maybank-93], and
[Horn-90].

The realization that the essential matrix could also be applied in
uncalibrated situations, as it represented a projective relation,
developed in the early part of the 1990s, and was published
simultaneously by Faugeras [Faugeras-92b, Faugeras-92a], and
Hartley et al. [Hartley-92a, Hartley-92c].

The special case of pure planar motion was examined by [Maybank-
93] for the essential matrix. The corresponding case for the
fundamental matrix is investigated by Beardsley and Zisserman
[Beardsley-95a] and Viéville and Lingrand [Vieville-95], where further
properties are given.

9.7.2 Notes and exercises
(i)  Fixating cameras. Suppose two cameras fixate on a point in

space such that their principal axes intersect at that point. Show
that if the image coordinates are normalized so that the
coordinate origin coincides with the principal point then the F33
element of the fundamental matrix is zero.

(ii)  Mirror images. Suppose that a camera views an object and its
reflection in a plane mirror. Show that this situation is equivalent
to two views of the object, and that the fundamental matrix is
skew-symmetric. Compare the fundamental matrix for this
configuration with that of: (a) a pure translation, and (b) a pure
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planar motion. Show that the fundamental matrix is auto-
epipolar (as is (a)).

(iii)  Show that if the vanishing line of a plane contains the epipole
then the plane is parallel to the baseline.

(iv)  Steiner conic. Show that the polar of xa intersects the Steiner
conic Fs at the epipoles (figure 9.10a). Hint, start from
Fe = Fse + Fae = 0. Since e lies on the conic Fs, then l1 = Fse is
the tangent line at e, and l2 = Fae = [xa]×e = xa × e is a line
through xa and e.

(v)  The affine type of the Steiner conic (hyperbola, ellipse or
parabola as given in section 2.8.2(p59)) depends on the relative
configuration of the two cameras. For example, if the two
cameras are facing each other then the Steiner conic is a
hyperbola. This is shown in [Chum-03] where further results on
oriented epipolar geometry are given.

(vi)  Planar motion. It is shown by [Maybank-93] that if the rotation
axis direction is orthogonal or parallel to the translation direction
then the symmetric part of the essential matrix has rank 2. We
assume here that K = K′. Then from (9.12), F = K−TEK−1, and
so

 

It follows from det(Fs) = det(K−1)2 det(Es) that the symmetric part
of F is also singular. Does this result hold if K ≠ K′?

(vii)  Any matrix F of rank 2 is the fundamental matrix corresponding
to some pair of camera matrices (P, P′) This follows directly from
result 9.14 since the solution for the canonical cameras depends
only on the rank 2 property of F.

(viii)  Show that the 3D points determined from one of the ambiguous
reconstructions obtained from E are related to the corresponding
3D points determined from another reconstruction by either (i)
an inversion through the second camera centre; or (ii) a
harmonic homology of 3-space (see section A7.2(p629)), where
the homology plane is perpendicular to the baseline and through
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the second camera centre, and the vertex is the first camera
centre.

(ix) Following a similar development to section 9.2.2, derive the form
of the fundamental matrix for two linear pushbroom cameras.
Details of this matrix are given in [Gupta-97] where it is shown
that affine reconstruction is possible from a pair of images.
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13

Scene planes and homographies

This chapter describes the projective geometry of two cameras and a
world plane.

Images of points on a plane are related to corresponding image
points in a second view by a (planar) homography as shown in figure
13.1. This is a projective relation since it depends only on the
intersections of planes with lines. It is said that the plane induces a
homography between the views. The homography map transfers
points from one view to the other as if they were images of points on
the plane.

Fig. 13.1. The homography induced by a plane. The ray corresponding to a
point x is extended to meet the plane π in a point xπ; this point is projected to
a point x′ in the other image. The map from x to x′ is the homography induced
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by the plane π. There is a perspectivity, x = H1πxπ, between the world plane π
and the first image plane; and a perspectivity, x′ = H2πxπ, between the world
plane and second image plane. The composition of the two perspectivities is a
homography,  between the image planes.

There are then two relations between the two views: first, through
the epipolar geometry a point in one view determines a line in the
other which is the image of the ray through that point; and second,
through the homography a point in one view determines a point in
the other which is the image of the intersection of the ray with a
plane. This chapter ties together these two relations of 2-view
geometry.

Two other important notions are described here: the parallax with
respect to a plane, and the infinite homography.

13.1 Homographies given the plane and vice versa
We start by showing that for planes in general position the
homography is determined uniquely by the plane and vice versa.
General position in this case means that the plane does not contain
either of the camera centres. If the plane does contain one of the
camera centres then the induced homography is degenerate.

Suppose a plane π in 3-space is specified by its coordinates in the
world frame. We first derive an explicit expression for the induced
homography.

Result 13.1. Given the projection matrices for the two views

and a plane defined by πTX = 0 with π = (vT, 1)T, then the
homography induced by the plane is x′ = Hx with

(13.1)
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We may assume that π4 = 1 since the plane does not pass through
the centre of the first camera at (0, 0, 0, 1)T.

Note, there is a three-parameter family of planes in 3-space, and
correspondingly a three-parameter family of homographies between
two views induced by planes in 3-space. These three parameters are
specified by the elements of the vector v, which is not a
homogeneous 3-vector.

Proof. To compute H we back-project a point x in the first view and
determine the intersection point X of this ray with the plane π. The
3D point X is then projected into the second view.
For the first view x = PX = [I | 0]X and so any point on the ray
X = (xT, ρ)T projects to x, where ρ parametrizes the point on the ray.
Since the 3D point X is on π it satisfies πTX = 0. This determines ρ,
and X = (xT, −vTx)T. The 3D point X projects into the second view
as

as required.

Example 13.2. A calibrated stereo rig.
Suppose the camera matrices are those of a calibrated stereo rig

with the world origin at the first camera

and the world plane πE has coordinates πE = (nT, d)T so that for
points on the plane  We wish to compute an
expression for the homography induced by the plane.

From result 13.1, with v = n/d, the homography for the cameras
P = [I | 0], P′ = [R | t] is
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Applying the transformations K and K′ to the images we obtain the
cameras PE =  and the resulting induced
homography is

(13.2)

This is a three-parameter family of homographies, parametrized by
n/d. It is defined by the plane, and the camera internal and relative
external parameters.

 
13.1.1 Homographies compatible with epipolar
geometry
Suppose four points Xi are chosen on a scene plane. Then the
correspondence  of their images between two views defines
a homography H, which is the homography induced by the plane.
These image correspondences also obey the epipolar constraint, i.e.

 since they arise from images of scene points. Indeed,
the correspondence x ↔ x′ = Hx obeys the epipolar constraint for
any x, since again x and x′ are images of a scene point, in this case
the point given by intersecting the scene plane with the ray back-
projected from x. The homography H is said to be consistent or
compatible with F.

Now suppose four arbitrary image points are chosen in the first
view and four arbitrary image points chosen in the second. Then a
homography  may be computed which maps one set of points into
the other (provided no three are collinear in either view). However,
correspondences  may not obey the epipolar
constraint. If the correspondence  does not obey the
epipolar constraint then there does not exist a scene plane which
induces .
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The epipolar geometry determines the projective geometry
between two views, and can be used to define conditions on
homographies which are induced by actual scene planes. Figure 13.2
illustrates several relations between epipolar geometry and scene
planes which can be used to define such conditions. For example,
since correspondences x ↔ Hx obey the epipolar constraint if H is
induced by a plane, then from 

Fig. 13.2. Compatibility constraints. The homography induced by a plane is
coupled to the epipolar geometry and satisfies constraints. (a) The epipole is
mapped by the homography, as e′ = He, since the epipoles are images of the
point on the plane where the baseline intersects π. (b) Epipolar lines are
mapped by the homography as  (c) Any point x mapped by the
homography lies on its corresponding epipolar line 

This is true for all x, so:
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A homography H is compatible with a fundamental matrix F if
and only if the matrix HTF is skew-symmetric:

(13.3)

The argument above showed that the condition was necessary. The
fact that this is a sufficient condition was shown by Luong and Viéville
[Luong-96]. Counting degrees of freedom, (13.3) places six
homogeneous (five inhomogeneous) constraints on the 8 degrees of
freedom of H. There are therefore 8 − 5 = 3 degrees of freedom
remaining for H; these 3 degrees of freedom correspond to the three-
parameter family of planes in 3-space.

The compatibility constraint (13.3) is an implicit equation in H and
F. We now develop an explicit expression for a homography H
induced by a plane given F which is more suitable for a computational
algorithm.

Result 13.3. Given the fundamental matrix F between two views,
the three-parameter family of homographies induced by a world
plane is

(13.4)

where [e′]×A = F is any decomposition of the fundamental matrix.

Proof. Result 13.1 has shown that given the camera matrices for the
view pair P = [I | 0], P′ = [A | a] a plane π induces a homography
H = A−avT where π = (vT, 1)T. However, according to result
9.9(p254), for the fundamental matrix F = [e′]×A one can choose the
two cameras to be [I | 0] and [A | e′].

 
Remark. The above derivation, which is based on the projection of
points on a plane, ensures that the homographies are compatible
with the epipolar geometry. Algebraically, the homography (13.4) is

Page 45 of 69



compatible with the fundamental matrix since it obeys the necessary
and sufficient condition (13.3) that FTH is skew-symmetric. This
follows from

using  since  is skew-symmetric.
Comparing (13.4) with the general decomposition of the

fundamental matrix, as given in lemma 9.11(p255) or (9.10–p256) it
is evident that they involve an identical formula (except for signs). In
fact there is a one-to-one correspondence between decompositions
of the fundamental matrix (up to the scale factor ambiguity k in
lemma 9.11) and homographies induced by world planes, as stated
here.

Corollary 13.4. A transformation H is the homography between two
images induced by some world plane if and only if the fundamental
matrix F for the two images has a decomposition F = [e′]×H.

This choice in the decomposition simply corresponds to the choice of
projective world frame. In fact, H is the transformation with respect
to the plane with coordinates (0, 0, 0, 1)T in the reconstruction with
P = [I | 0] and P′ = [H | e′].

Finding the plane that induces a given homography is a simple
matter given a pair of camera matrices, as follows.

Result 13.5. Given the cameras in the canonical form P = [I | 0],
P′ = [A | a], then the plane π that induces a given homography H
between the views has coordinates π = (vT, 1)T where v may be
obtained linearly by solving the equations λH = A−avT, which are
linear in the entries of v and λ.

Note, these equations have an exact solution only if H satisfies the
compatibility constraint (13.3) with F. For a homography computed
numerically from noisy data this will not normally be true, and the
linear system is over-determined.
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13.2 Plane induced homographies given F and image
correspondences

A plane in 3-space can be specified by three points, or by a line and a
point, and so forth. In turn these 3D elements can be specified by
image correspondences. In section 13.1 the homography was
computed from the coordinates of the plane. In the following the
homography will be computed directly from the corresponding image
elements that specify the plane. This is a quite natural mechanism to
use in applications.

We will consider two cases: (i) three points; (ii) a line and a point.
In each case the corresponding elements are sufficient to determine
a plane in 3-space uniquely. It will be seen that in each case:

(i)  The corresponding image entities have to satisfy consistency
constraints with the epipolar geometry.

(ii)  There are degenerate configurations of the 3D elements and
cameras for which the homography is not defined. Such
degeneracies arise from collinearities and coplanarities of the
3D elements and the epipolar geometry. There may also be
degeneracies of the solution method, but these can be avoided.

The three-point case is covered in more detail.

13.2.1 Three points
We suppose that we have the images in two views of three (non-
collinear) points Xi, and the fundamental matrix F. The homography H
induced by the plane of the points may be computed in principle in
two ways:

First, the position of the points Xi is recovered in a projective
reconstruction (chapter 12). Then the plane π through the points is
determined (3.3–p66), and the homography computed from the
plane as in result 13.1. Second, the homography may be computed
from four corresponding points, the four points in this case being the
images of the three points Xi on the plane together with the epipole
in each view. The epipole may be used as the fourth point since it is
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mapped between the views by the homography as shown in figure
13.2. Thus we have four correspondences,

 from which H may be computed.
We thus have two alternative methods to compute H from three

point correspondences, the first involving an explicit reconstruction,
the second an implicit one where the epipole provides a point
correspondence. It is natural to ask if one has an advantage over the
other, and the answer is that the implicit method should not be used
for computation as it has significant degeneracies which are not
present in the explicit method.

Consider the case when two of the image points are collinear with
the epipole (we assume for the moment that the measurements are
noise-free). A homography H cannot be computed from four
correspondences if three of the points are collinear (see section
4.1.3(p91)), so the implicit method fails in this case. Similarly if the
image points are close to collinear with the epipole then the implicit
method will give a poorly conditioned estimate for H. The explicit
method has no problems when two points are collinear or close to
collinear with the epipole – the corresponding image points define
points in 3-space (the world points are on the same epipolar plane,
but this is not a degenerate situation) and the plane π and hence
homography can be computed. The configuration is illustrated in
figure 13.3.
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Fig. 13.3. Degenerate geometry for an implicit computation of the
homography. The line defined by the points X1 and X2 lies in an epipolar
plane, and thus intersects the baseline. The images of X1 and X2 are collinear
with the epipole, and H cannot be computed uniquely from the
correspondences  This configuration is not
degenerate for the explicit method.

We now develop the algebra of the explicit method in more detail.
It is not necessary to actually determine the coordinates of the points
Xi, all that is important is the constraint they place on the three-
parameter family of homographies compatible with F (13.4), H = A −
e′vT, parametrized by v. The problem is reduced to that of solving for
v from the three point correspondences. The solution may be
obtained as:

Result 13.6. Given F and the three image point correspondences
, the homography induced by the plane of the 3D points is

where A = [e′]×F and b is a 3-vector with components

Page 49 of 69



and M is a 3 × 3 matrix with rows .

Proof. According to result 9.14(p256), F may be decomposed as
F = [e′]×A. Then (13.4) gives H = A − e′vT, and each
correspondence  generates a linear constraint on v as

(13.5)

From (13.5) the vectors  and Axi − e′(vTxi) are parallel, so their
vector product is zero:

Forming the scalar product with the vector  × e′ gives

(13.6)

which is linear in v. Note, the equation is independent of the scale of
x′, since x′ occurs the same number of times in the numerator and
denominator. Each correspondence generates an equation 
and collecting these together we have Mv = b.

Note, a solution cannot be obtained if MT = [x1, x2, x3] is not of full
rank. Algebraically, det M = 0 if the three image points xi are
collinear. Geometrically, three collinear image points arise from
collinear world points, or coplanar world points where the plane
contains the first camera centre. In either case a full rank
homography is not defined.
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Consistency conditions. Equation (13.5) is equivalent to six
constraints since each point correspondence places two constraints
on a homography. Determining v requires only three constraints, so
there are three constraints remaining which must be satisfied for a
valid solution. These constraints are obtained by taking the cross
product of (13.5) with e′, which gives

Objective
Given F and three point correspondences  which are the
images of 3D points Xi, determine the homography x′ = Hx
induced by the plane of Xi.
Algorithm

(i)  For each correspondence  compute the corrected
correspondence  using algorithm 12.1(p318).

(ii)  Choose A = [e′]×F and solve linearly for v from Mv = b as in
result 13.6.

(iii)  Then H = A − e′vT.

 
Algorithm 13.1. The optimal estimate of the homography induced by a plane
defined by three points.

The equation e′ ×  = Fxi is a consistency constraint between xi
and , since it is independent of v. It is simply a (disguised) epipolar
constraint on the correspondence : the LHS is the epipolar
line through , and the RHS is Fxi which is the epipolar line for xi in
the second image, i.e. the equation enforces that  lie on the
epipolar line of xi, and hence the correspondence is consistent with
the epipolar geometry.
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Estimation from noisy points. The three point correspondences
which determine the plane and homography must satisfy the
consistency constraint arising from the epipolar geometry. Generally
measured correspondences  will not exactly satisfy this
constraint. We therefore require a procedure for optimally correcting
the measured points so that the estimated points  satisfy the
epipolar constraint. Fortunately, such a procedure has already been
given in the triangulation algorithm 12.1(p318), which can be
adopted here directly. We then have a Maximum Likelihood estimate
of H and the 3D points under Gaussian image noise assumptions. The
method is summarized in algorithm 13.1.

13.2.2 A point and line
In this section an expression is derived for a plane specified by a
point and line correspondence. We start by considering only the line
correspondence and show that this reduces the three-parameter
family of homographies compatible with F (13.4) to a 1-parameter
family. It is then shown that the point correspondence uniquely
determines the plane and corresponding homography.

The correspondence of two image lines determines a line in 3-
space, and a line in 3-space lies on a one parameter family (a pencil)
of planes, see figure 13.4. This pencil of planes induces a pencil of
homographies between the two images, and any member of this
family will map the corresponding lines to each other.

Fig. 13.4. (a) Image lines l and l′ determine planes π and π′ respectively. The
intersection of these planes defines the line L in 3-space. (b) The line L in 3-
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space is contained in a one parameter family of planes π (µ). This family of
planes induces a one parameter family of homographies between the images.

Result 13.7. The homography for the pencil of planes defined by a
line correspondence l ↔ l′ is given by

(13.7)

provided l′Te′ ≠ 0, where µ is a projective parameter.

Proof. From result 8.2(p197) the line l back-projects to a plane PTl
through the first camera centre, and l′ back-projects to a plane P′Tl′
through the second, see figure 13.4a. These two planes are the basis
for a pencil of planes parametrized by µ. As in the proof of result 13.3
we may choose P = [I | 0], P′ = [A | e′], then the pencil of planes is

From result 13.1 the induced homography is H(µ) = A − e′v(µ)T,
with

(13.8)

Using the decomposition A = [e′]×F we obtain

where the last equality follows from result A4.4(p582) that
[e′]×[e′]×F = F. This is equivalent to (13.7) up to scale.
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The homography for a corresponding point and line. From the
line correspondence we have that H(µ) = [l′]×F+µe′lT, and now solve
for µ using the point correspondence x ↔ x′.

Result 13.8. Given F and a corresponding point x ↔ x′ and line
l ↔ l′, the homography induced by the plane of the 3-space point
and line is

The derivation is analogous to that of result 13.6. As in the three-
point case, the image point correspondence must be consistent with
the epipolar geometry. This means that the measured (noisy) points
must be corrected using algorithm 12.1(p318) before result 13.8 is
applied. There is no consistency constraint on the line, and no
correction is available.

Geometric interpretation of the point map H(µ). It is worth
exploring the map H(µ) further. Since H(µ) is compatible with the
epipolar geometry, a point x in the first view is mapped to a point
x′ = H(µ)x in the second view on the epipolar line Fx corresponding
to x. In general the position of the point x′ = H(µ)x on the epipolar
line varies with µ. However, if the point x lies on l (so that lTx = 0)
then

which is independent of the value of µ, depending only on F. Thus as
shown in figure 13.5 the epipolar geometry defines a point-to-point
map for points on the line.
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Fig. 13.5. The epipolar geometry induces a homography between
corresponding lines l ↔ l′ which are the images of a line L in 3-space. The
points on l are mapped to points on l′ as x′ = [l′]×Fx, where x and x′ are the
images of the intersection of L with the epipolar plane corresponding to le and

.

Degenerate homographies. As has already been stated, if the
world plane contains one of the camera centres, then the induced
homography is degenerate. The matrix representing the homography
does not have full rank, and points on one plane are mapped to a line
(if rank H = 2) or a point (if rank H = 1). However, an explicit
expression can be obtained for a degenerate homography from
(13.7). The degenerate (singular) homographies in this pencil are at
µ = ∞ and µ = 0. These correspond to planes through the first and
second camera centres respectively. Figure 13.6 shows the case
where the plane contains the second camera centre, and intersects
the image plane in the line l′. A point x in the first view is imaged on
l′ at the point x′ where
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Fig. 13.6. A degenerate homography. (a) The map induced by a plane
through the second camera centre is a degenerate homography H = [l′]×F. The
plane π′ intersects the second image plane in the line l′. All points in the first
view are mapped to points on l′ in the second. (b) A point x in the first view is
imaged at x′, the intersection of l′ with the epipolar line Fx of x, so that
x′ = l′ × Fx.

The homography is thus H = [l′]×F. This is a rank 2 matrix.

13.3 Computing F given the homography induced by a
plane

Up to now it has been assumed that F is given, and the objective is
to compute H when various additional information is provided. We
now reverse this, and show that if H is given then F may be
computed when additional information is provided. We start by
introducing an important geometric idea, that of parallax relative to a
plane, which will make the algebraic development straightforward.

Plane induced parallax. The homography induced by a plane
generates a virtual parallax (see section 8.4.5(p207)) as illustrated
schematically in figure 13.7 and by example in figure 13.8. The
important point here is that in the second view x′, the image of the
3D point X, and ′ = Hx, the point mapped by the homography, are
on the epipolar line of x; since both are images of points on the ray
through x. Consequently, the line x′ × (Hx) is an epipolar line in the
second view and provides a constraint on the position of the epipole.
Once the epipole is determined (two such constraints suffice), then
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as shown in result 9.1(p243) F = [e′]×H where H is the homography
induced by any plane. Similarly it can be shown that F = H−T[e]×.

Fig. 13.7. Plane induced parallax. The ray through X intersects the plane π
at the point Xπ. The images of X and Xπ are coincident points at x in the first
view. In the second view the images are the points x′ and  = Hx
respectively. These points are not coincident (unless X is on π), but both are on
the epipolar line  of x. The vector between the points x′ and  is the
parallax relative to the homography induced by the plane π. Note that if X is on
the other side of the plane, then  will be on the other side of x′.

Fig. 13.8. Plane induced parallax. (a) (b) Left and right images. (c) The left
image is superimposed on the right using the homography induced by the
plane of the Chinese text. The transferred and imaged planes exactly coincide.
However, points off the plane (such as the mug) do not coincide. Lines joining
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corresponding points off the plane in the “superimposed” image intersect at the
epipole.

As an application of virtual parallax it is shown in algorithm 13.2
that F can be computed uniquely from the images of six points, four
of which are coplanar and two are off the plane. The images of the
four coplanar points define the homography, and the two points off
the plane provide constraints sufficient to determine the epipole. The
six-point result is quite surprising since for seven points in general
position there are 3 solutions for F (see section 11.1.2(p281)).

Objective
Objective Given six point correspondences  which are the
images of 3-space Xi, with the first four 3-space points i ∈ {1, . . . ,
4} coplanar, determine the fundamental matrix F.
Algorithm

(i)  Compute the homography H, such that 

(ii)  Determine the epipole e′ as the intersection of the lines

(iii)  Then F = [e′]×H.

See figure 13.9.

 
Algorithm 13.2. Computing F given the correspondences of six points of which
four are coplanar.
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Fig. 13.9. The fundamental matrix is defined uniquely by the image of six 3D
points, of which four are coplanar. (a) The parallax for one point X. (b) The
epipole determined by the intersection of two parallax lines: the line joining

 and the join of 

Projective depth. A world point X = (xT, ρ)T is imaged at x in the
first view and at

(13.9)

in the second. Note that x′, e′ and Hx are collinear. The scalar ρ is
the parallax relative to the homography H, and may be interpreted as
a “depth” relative to the plane π. If ρ = 0 then the 3D point X is on
the plane, otherwise the “sign” of ρ indicates which ‘side’ of the plane
π the point X is (see figure 13.7 and figure 13.8). These statements
should be taken with care because in the absence of oriented
projective geometry the sign of a homogeneous object, and the side
of a plane have no meaning.

Example 13.9. Binary space partition. The sign of the virtual
parallax (sign(ρ)) may be used to compute a partition of 3-space by
the plane π. Suppose we are given F and three space points are
specified by their corresponding image points. Then the plane defined
by the three points can be used to partition all other correspondences
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into sets on either side of (or on) the plane. Figure 13.10 shows an
example. Note, the three points need not actually correspond to
images of physical points so the method can be applied to virtual
planes. By combining several planes a region of 3-space can be
identified.

Fig. 13.10. Binary space partition. (a) (b) Left and right images. (c) Points
whose correspondence is known. (d) A triplet of points selected from (c). This
triplet defines a plane. The points in (c) can then be classified according to
their side of the plane. (e) Points on one side. (f) Points on the other side.

Two planes. Suppose there are two planes, π1, π2, in the scene
which induce homographies H1, H2 respectively. With the idea of
parallax in mind it is clear that because each plane provides off-plane
information about the other, the two homographies should be
sufficient to determine F. Indeed F is over-determined by this
configuration which means that the two homographies must satisfy
consistency constraints.
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Consider figure 13.11. The homography  is a mapping
from the first image onto itself. Under this mapping the epipole e is a
fixed point, i.e. He = e, so may be determined from the (non-
degenerate) eigenvector of H. The fundamental matrix may then be
computed from result 9.1(p243) as F = [e′]×Hi, where e′ = Hie for
i = 1 or 2. The map H has further properties which may be seen from
figure 13.11. The map has a line of fixed points and a fixed point not
on the line (see section 2.9(p61) for fixed points and lines). This
means that two of the eigenvalues of H are equal. In fact H is a
planar homology (see section A7.2(p629)). In turn, these properties
of  define consistency constraints on H1 and H2 in order
that their composition has these properties.

Fig. 13.11. The action of the map  on a point x in the first image is
first to transfer it to x′ as though it were the image of the 3D point X1, and
then map it back to the first image as though it were the image of the 3D point
X2. Points in the first view which lie on the imaged line of intersection of the
two planes will be mapped to themselves, so are fixed points under this action.
The epipole e is also a fixed point under this map.
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Up to this point the results of this chapter have been entirely
projective. Now an affine element is introduced.

13.4 The infinite homography H∞
The plane at infinity is a particularly important plane, and the
homography induced by this plane is distinguished by a special name:

Definition 13.10. The infinite homography, H∞, is the homography
induced by the plane at infinity, π∞.

The form of the homography may be derived by a limiting process
starting from (13.2–p327), H = K′ (R − tnT/d) K−1, where d is the
orthogonal distance of the plane from the first camera:

This means that H∞ does not depend on the translation between
views, only on the rotation and camera internal parameters.
Alternatively, from (9.7–p250) corresponding image points are related
as

(13.10)

where Z is the depth measured from the first camera. Again it can be
seen that points at infinity (Z = ∞) are mapped by H∞. Note also that
H∞ is obtained if the translation t is zero in (13.10), which
corresponds to a rotation about the camera centre. Thus H∞ is the
homography that relates image points of any depth if the camera
rotates about its centre (see section 8.4(p202)).

Since e′ = K′t, (13.10) can be written as x′ = H∞x + e′/Z, and
comparison with (13.9) shows that (1/Z) plays the role of ρ. Thus
Euclidean inverse depth can be interpreted as parallax relative to π∞.
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Vanishing points and lines. Images of points on π∞ are mapped
by H∞. These images are vanishing points, and so H∞ maps
vanishing points between images, i.e. v′ = H∞v, where v′ and v are
corresponding vanishing points. See figure 13.12. Consequently, H∞
can be computed from the correspondence of three (non-collinear)
vanishing points together with F using result 13.6. Alternatively, H∞
can be computed from the correspondence of a vanishing line and
the correspondence of a vanishing point (not on the line), together
with F, as described in section 13.2.2.

Fig. 13.12. The infinite homography H∞ maps vanishing points between the
images.

Affine and metric reconstruction. As we have seen in chapter 10,
specifying π ∞ enables a projective reconstruction to be upgraded to
an affine reconstruction. Not surprisingly, because of its association
with π∞, H∞ arises naturally in the rectification. Indeed, if the camera
matrices are chosen as P = [I | 0] and P′ = [H∞ | λe′] then the
reconstruction is affine.

Conversely, suppose the world coordinate system is affine (i.e. π∞
has its canonical position at π∞ = (0, 0, 0, 1)T); then H∞ may be
determined directly from the camera projection matrices. Suppose M,
M′ are the first 3 × 3 submatrix of P and P′ respectively. Then a point

 is imaged at
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 in the two views.
Consequently x′ = M′M−1x and so

(13.11)

The homography H∞ may be used to propagate camera calibration
from one view to another. The absolute conic Ω∞ resides on π∞, and
its image, ω, is mapped between images by H∞ according to result
2.13(p37):  Thus if ω = (KKT) −1 is specified in one
view, then ω′, the image of Ω∞ in a second view, can be computed
via H∞, and the calibration for that view determined from
ω′ = (K′K′T)−1. Section 19.5.2(p475) describes applications of H∞ to
camera auto-calibration.

Stereo correspondence. H∞ limits the search region when
searching for correspondences. The region is reduced from the entire
epipolar line to a bounded line. See figure 13.13. However, a correct
application of this constraint requires oriented projective geometry.

Fig. 13.13. Reducing the search region using H∞. Points in 3-space are no
‘further’ away than π∞. H∞ captures this constraint and limits the search on
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the epipolar line in one direction. The baseline between the cameras partitions
each epipolar plane into two. A point on one “side” of the epipolar line in the
left image will be imaged on the corresponding “side” of the epipolar line in the
right image (indicated by the solid line in the figure). The epipole thus bounds
the search region in the other direction.

13.5 Closure
This chapter has illustrated a raft of projective techniques for a plane
that may be applied to many other surfaces. A plane is a simple
parametrized surface with 3 degrees of freedom. A very similar
development can be given for other surfaces where the degrees of
freedom are determined from images of points on the surface. For
example in the case of a quadric the surface can be determined both
from images of points on its surface, and/or (an extension not
possible for planes) from its outline in each view [Cross-98, Shashua-
97]. The ideas of surface induced transfer, families of surfaces when
the surface is not fully determined from its images, surface induced
parallax, consistency constraints, implicit computations, degenerate
geometries etc. all carry over to other surfaces.

13.5.1 The literature
The compatibility of epipolar geometry and induced homographies is
investigated thoroughly by Luong & Viéville [Luong-96]. The six-point
solution for F appeared in Beardsley et al. [Beardsley-92] and [Mohr-
92]. The solution for F given two planes appeared in Sinclair [Sinclair-
92]. [Zeller-96] gives many examples of configurations whose
properties may be determined using only epipolar geometry and their
image projections. He also catalogues their degenerate cases.

13.5.2 Notes and exercises
(i)  Homography induced by a plane (13.1–p326).

(a) The inverse of the homography H is given by
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provided A−1 exists. This is sometimes called the
Sherman-Morrison formula.

(b) Show that the homography H is degenerate if the plane
contains the second camera centre. Hint, in this case
vTA−1a = 1, and note that H = A(I − A−1avT).

(ii)  Show that if the camera undergoes planar motion, i.e. the
translation is parallel to the plane and the rotation is parallel to
the plane normal, then the homography induced by the plane is
conjugate to a planar Euclidean transformation. Show that the
fixed points of the homography are the images of the plane’s
circular points.

(iii)  Using (13.2–p327) show that if a camera undergoes a pure
translation then the homography induced by the plane is a
planar homology (as defined in section A7.2(p629)), with a line
of fixed points corresponding to the vanishing line of the plane.
Show further that if the translation is parallel to the plane then
the homography is an elation (as defined in section
A7.3(p631)).

(iv)  Show that a necessary, but not sufficient, condition for two
space lines to be coplanar is  Why is it
not a sufficient condition?

(v)  Intersections of lines and planes. Verify each of the
following results by sketching the configuration assuming
general position. In each case determine the degenerate
configurations for which the result is not valid.

(a)  Suppose the line L in 3-space is imaged as l and l′, and
the plane π induces the homography x′ = Hx. Then the
point of intersection of L with π is imaged at
x = l × (HTl′) in the first image, and at x′ = l′ × (H−Tl)
in the second.
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(b)  The infinite homography may be used to find the
vanishing point of a line seen in two images. If l and l′
are corresponding lines in two images, and v, v′ their
vanishing points in each image, then v = l × 

(c)  Suppose the planes π1 and π2 induce homographies
x′ = H1x and x′ = H2x respectively. Then the image of
the line of intersection of π1 with π2 in the first image
obeys  and may be determined from the real
eigenvector of the planar homology  (see figure
13.11).

(vi)  Coplanarity of four points. Suppose F is known, and four
corresponding image points  are supplied. How can it
be determined whether their pre-images are coplanar? One
possibility is to use three of the points to determine a
homography via result 13.6(p331), and then measure the
transfer error of the fourth point. A second possibility is to
compute lines joining the image points, and determine if the
line intersection obeys the epipolar constraint (see [Faugeras-
92b]). A third possibility is to compute the cross-ratio of the
four lines from the epipole to the image points – if the four
scene points are coplanar then this cross-ratio will be the same
in both images. Thus this equality is a necessary condition for
co-planarity, but is it a sufficient condition also? What statistical
tests should be applied when there is measurement error
(noise)?

(vii)  Show that the epipolar geometry can be computed uniquely
from the images of four coplanar lines and two points off the
plane of the lines. If two of the lines are replaced by points can
the epipolar geometry still be computed?

(viii)  Starting from the camera matrices P = [M | m], P′ = [M′ | m′]
show that the homography x′ = Hx induced by a plane

 is given by
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(ix)  Show that the homography computed as in result 13.6(p331) is
independent of the scale of F. Start by choosing an arbitrary
fixed scale for F, so that F is no longer a homogeneous quantity,
but a matrix  with fixed scale. Show that if

 with  then replacing
 by λ  simply scales H by λ.

(x)  Given two perspective images of a (plane) conic and the
fundamental matrix between the views, then the plane of the
conic (and consequently the homography induced by this plane)
is defined up to a two-fold ambiguity. Suppose the image conics
are C and C′, then the induced homography is
H(µ) = [C′e′]×F−µe′(Ce)T, with the two values of µ obtained
from

Details are given in [Schmid-98].
(a)  By considering the geometry, show that to be compatible

with the epipolar geometry the conics must satisfy the
consistency constraint that epipolar tangents are
corresponding epipolar lines (see figure 11.6-(p295)).
Now derive this result algebraically starting from H(µ)
above.

(b)  The algebraic expressions are not valid if the epipole lies
on the conic (since then eTCe = e′TC′e′ = 0). Is this a
degeneracy of the geometry or of the expression alone?

(xi)  Fixed points of a homography induced by a plane. A
planar homography H has up to three distinct fixed points
corresponding to the three eigenvectors of the 3 × 3 matrix
(see section 2.9(p61)). The fixed points are images of points on
the plane for which x′ = Hx = x. The horopter is the locus of
all points in 3-space for which x = x′. It is a twisted cubic curve
passing through the two camera centres. A twisted cubic
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intersects a plane in three points, and these are the three fixed
points of the homography induced by that plane.

(xii)  Estimation. Suppose n > 3 points Xi lie on a plane in 3-space
and we wish to optimally estimate the homography induced by
the plane given F and their image correspondences .
Then the ML estimate of the homography (assuming
independent Gaussian measurement noise as usual) is obtained
by estimating the plane  (3 dof) and the n points i (2 dof
each, since they lie on a plane) which minimizes reprojection
error for the n points.
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