
US00793.42 12B2

(12) United States Patent (10) Patent No.: US 7,934.212 B2
Lakhdhir (45) Date of Patent: Apr. 26, 2011

(54) APPARATUS, SYSTEMAND METHOD FOR 85%. R R388 E. et al.
- 4 aaSSaa

DETECTING OLD YERSIONS OF AN APPLET 6.353,926 B1 3/2002 Parthesarathy et al.
INA CLIENT BROWSERSUVM 6,360,366 B1* 3/2002 Heath et al. 717/178

6,535,894 B1 3/2003 Schmidt et al.
(75) Inventor: Mansoor A. Lakhdhir, Austin, TX (US) 6,571,389 B1 5/2003 Spyker et al.

6,651,249 B2 11/2003 Waldin et al.
6,718,549 B1 * 4/2004 Narinet al. 717/178

(73) Assignee: International Business Machines 6,874,142 B1* 3/2005 Ogura 717? 17O
Corporation, Armonk, NY (US) 7,143,337 B2 * 1 1/2006 Landsman et al. 715/234

7,185,332 B1* 2/2007 Waldin et al. 717? 17O
(*) Notice: Subject to any disclaimer, the term of this 7.366,996 B2 4/2008 Hoyle T15,854

patent is extended or adjusted under 35 7,689,983 B2. 3/2010 Kitayama ... 717? 17O
U.S.C. 154(b) by 1281 days 7,711,922 B2 5/2010 Jerding et al. . T11 170

M YW- y yS. 7,734,721 B2 * 6/2010 Meyer et al. TO9.218
2002/0002703 A1 1/2002 Baentsch et al. 717/11

(21) Appl. No.: 11/466,481 2002/0092010 A1* 7, 2002 Fiske T17,168
2002/01 16702 A1* 8/2002 Aptus et al. 717/170

(22) Filed: Aug. 23, 2006 * cited by examiner

(65) Prior Publication Data Primary Examiner — Insun Kang
US 2007/OO78947 A1 Apr. 5, 2007 (74) Attorney, Agent, or Firm — Yee & Associates, P.C.;

Jeffrey S. LaBaw
Related U.S. Application Data (57) ABSTRACT

(62) 5. of apply N l 56, filed on Aug. An apparatus, system and method for checking the version of
s , now Fal. NO. f. 131, 1 Z.Z. a cached appleton a client device against version information

stored on a host server is provided. By checking the version of
(51) Int. Cl. h let, i be d ined wheth h let i G06F 9/44 (2006.01) t eapp et, it can e detern1ned Whether or not the app et is

i.o. still usable with the host server. If an applet is not usable with
(52) U.S. Cl. 717/170; 717/168; 717/171; 717/172; the host server, the applet is either automatically updated to a

717/173 current version or the user is provided with information as to
(58) Field of Classification Search None how to update the applet to the current version. If an applet is

See application file for complete search history. usable with the host server but is not a current version of the
applet, the user may be informed of this fact and given the

(56) References Cited

U.S. PATENT DOCUMENTS

530

330-1 update Applet

opportunity to either update the applet or continue to execute
the older version of the applet. If the user chooses to update
the applet, the update is performed in Substantially the same

SE A 6. M etd 1 manner as that described above. If the user chose to continue
a ca. - 0

6,003,042 A 12/1999 Melahn with the older version of the applet, the mainline code of the
6,074,434 A 6, 2000 Cole et al. older version of the applet is executed.
6,128,701 A 10, 2000 Malcolm et al.
6,138,141 A 10, 2000 DeSimone et al. 13 Claims, 6 Drawing Sheets

Charter and Plume Exhibit 1010, Page 1 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

U.S. Patent Apr. 26, 2011 Sheet 1 of 6 US 7,934.212 B2

Charter and Plume Exhibit 1010, Page 2 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

U.S. Patent Apr. 26, 2011 Sheet 2 of 6 US 7,934.212 B2

Processor Processor
202 204

206

Memory 208 210
Controller/ I/O Bridge
Cache

212

PC Bus Bridge
Local Memory 214

209 C
NetWork
Adapter

200

FC Bus 226

PC Bus Bridge W.
222 x .

228

Hard Disk PC Bus Bridge Y
232 224 i

Figure 2A

Charter and Plume Exhibit 1010, Page 3 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

U.S. Patent Apr. 26, 2011 Sheet 3 of 6 US 7,934.212 B2

Audio Adapter
26S

Hostdo Main Memory
254

{ Bus 256
- S 4 -
SCSI Host Expansion Bus
Bus Adapter Later Interface

262 264

Disk
276

ape
278

Keyboard and
CD- M Adapter Mim Memory
ROM 270 272 274

DVD
282 250

Figure 2B

Charter and Plume Exhibit 1010, Page 4 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

U.S. Patent Apr. 26, 2011 Sheet 4 of 6 US 7,934.212 B2

Java Virtual Machine Platform Specific
(JVM) Operating System
304 302

Java Application Applet

Class loader
subsystem

352

Method area Heap awa stacks PC registers
370 372 356 368

Runtime data areas 354

-H Class files

Execution engine
356 Native method Native

Compiler interpreter interface method
360 362 libraries

Figure 3B

Charter and Plume Exhibit 1010, Page 5 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

U.S. Patent Apr. 26, 2011 Sheet 5 of 6 US 7,934.212 B2

send

recuest

data
transfer

Figure 4

Charter and Plume Exhibit 1010, Page 6 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

U.S. Patent Apr. 26, 2011 Sheet 6 of 6 US 7,934.212 B2

510
tnitiate Applet

Figure 5
Send Request to
Host Server for
CurrentVersion

and latest Version
Flag

52O

is Applet
Current?

S Applet
Workable?

Provide User with
Option to Use

Applet or Update
Applet

Update Applet?

Update Applet

Execute Matnine
Code of Appet 580

Charter and Plume Exhibit 1010, Page 7 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

US 7,934,212 B2
1.

APPARATUS, SYSTEMAND METHOD FOR
DETECTING OLD VERSIONS OF AN APPLET

INA CLIENT BROWSERSUVM

This application is a divisional of application Ser. No.
09/645,156, filed Aug. 24, 2000, status allowed (U.S. Pat. No.
7,131,122), which is herein incorporated by reference.

BACKGROUND OF THE INVENTION

1. Technical Field
The present invention is directed to an apparatus, system

and method for detecting old versions of an applet in a client
browser's JavaTM Virtual Machine (JVM). In particular, the
present invention provides a mechanism by which old ver
sions of an applet are identified and a determination is made
as to whether the applet is still functional with the server or
needs to be updated.

2. Description of Related Art
An applet is a program written in the Java programming

language which can be included in HyperTextMarkup Lan
guage (HTML) pages much in the same way an image is
included. Applets provide functionality to Web pages for
providing users with information, entertainment, and for
gathering information from users.
Whenauser employs a Java technology enabled browser in

his/her client device to view a web page that contains an
applet, the applets bytecode is transferred to the client
device's browser system and executed by the browser's Java
Virtual Machine (JVM). Typically, a browser will cache the
Java classes which make up an applet. This becomes a prob
lem when a developer updates and deploys the Java code on
the server that makes up the applet. The problem arises in that
the cached version of the applet in the client JVM may not be
compatible with the updated Java code on the server.

In Such a case, a two principal situations may arise. First, if
the developer has added any new classes in this updated Java
code, the older cached Java classes will not work with these
new Java classes. In this case the applet will halt with an
exception.
The details of such an exception can be seen clearly in the

Java Console of the browser. However, most end users are lay
people and are notable to understand what happened to cause
the exception. As a result, the end user may become frus
trated, thereby creating a customer satisfaction issue.

To resolve this customer satisfaction issue, the end user
typically will either abandon their efforts on the web page and
search elsewhere or will contact a customer Support represen
tative. In the latter case, resolving this issue takes up customer
Support time because the Support representative must recreate
the user scenario and then guide the user in clearing the
cached Java classes.

Clearing the cached Java classes is not a simple operation.
Just clearing the regular browser cache does not clear the
cached Java classes in the JVM. Furthermore, the two most
popular browsers, Netscape CommunicatorTM and Microsoft
Internet ExplorerTM., have different procedures to clear the
cached classes.

Even if no new classes were added in the updated Java
code, if a database transaction message format with the host
server was changed by the update to the Java code, then the
cached applet will have problems communicating with the
host server. As a result, the user will experience a number of
communication errors which again results in a customersat
isfaction and Support issue.

Thus, it would be beneficial to have an apparatus, system
and method for detecting old versions of an applet in a client

5

10

15

25

30

35

40

45

50

55

60

65

2
browser's JVM. It would further be beneficial to have an
apparatus, system and method that identifies old versions of
an applet and a determines whether the applet is still func
tional with the host server or needs to be updated.

SUMMARY OF THE INVENTION

The present invention provides an apparatus, system and
method for checking the version of a cached appleton a client
device against version information stored on a host server. By
checking the version of the applet, it can be determined
whether or not the applet is still usable with the host server. If
an applet is not usable with the host server, the applet is either
automatically updated to a current version or the user is
provided with information as to how to update the applet to
the current version.

Ifan applet is usable with the host server but is not a current
version of the applet, the user may be informed of this fact and
given the opportunity to either update the applet or continue
to execute the older version of the applet. If the user chooses
to update the applet, the update is performed in Substantially
the same manner as that described above. If the user chose to
continue with the older version of the applet, the mainline
code of the older version of the applet is executed.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode ofuse, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany
ing drawings, wherein:

FIG. 1 is an exemplary block diagram of a distributed data
processing system according to the present invention;

FIG. 2A is an exemplary block diagram of a data process
ing system according to the present invention;

FIG. 2B is an exemplary block diagram of a data process
ing system according to the present invention;

FIG. 3A is a block diagram illustrates the relationship of
Software components operating within a computer system
that may implement the present invention;

FIG. 3B is an exemplary block diagram of a Java Virtual
Machine (JVM) according to the present invention;

FIG. 4 is a diagram illustrating components and data flow
used to provide communication between a client and a host in
accordance with a preferred embodiment of the present
invention; and

FIG. 5 is a flowchart outlining an exemplary operation of
the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference now to the figures, and in particular with
reference to FIG. 1, a pictorial representation of a distributed
data processing system in which the present invention may be
implemented is depicted. Distributed data processing system
100 is a network of computers in which the present invention
may be implemented. Distributed data processing system 100
contains a network 102, which is the medium used to provide
communications links between various devices and comput
ers connected together within distributed data processing sys
tem 100. Network 102 may include permanent connections,
Such as wire or fiber optic cables, or temporary connections
made through telephone connections.

Charter and Plume Exhibit 1010, Page 8 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

US 7,934,212 B2
3

In the depicted example, a server 104 is connected to net
work 102 along with storage unit 106. In addition, clients 108,
110, and 112 also are connected to a network 102. These
clients 108, 110, and 112 may be, for example, personal
computers or network computers. For purposes of this appli
cation, a network computer is any computer, coupled to a
network, which receives a program or other application from
another computer coupled to the network. In the depicted
example, server 104 provides data, such as boot files, operat
ing system images, and applications to clients 108-112. Cli
ents 108, 110, and 112 are clients to server 104. Distributed
data processing system 100 may include additional servers,
clients, and other devices not shown. In the depicted example,
distributed data processing system 100 is the Internet with
network 102 representing a worldwide collection of networks
and gateways that use the TCP/IP suite of protocols to com
municate with one another. At the heart of the Internet is a
backbone of high-speed data communication lines between
major nodes or host computers, consisting of thousands of
commercial, government, educational, and other computer
systems, that route data and messages. Of course, distributed
data processing system 100 also may be implemented as a
number of different types of networks, such as, for example,
an Intranet or a local area network.

FIG. 1 is intended as an example, and not as an architec
tural limitation for the processes of the present invention. The
present invention may be implemented in the depicted dis
tributed data processing system or modifications thereof as
will be readily apparent to those of ordinary skill in the art.

With reference now to FIG. 2A, a block diagram of a data
processing system which may be implemented as a server,
such as server 104 in FIG. 1, is depicted in accordance to the
present invention. Data processing system 200 may be a
symmetric multiprocessor (SMP) system including a plural
ity of processors 202 and 204 connected to system bus 206.
Alternatively, a single processor System may be employed.
Also connected to system bus 206 is memory controller/
cache 208, which provides an interface to local memory 209.
I/O Bus Bridge 210 is connected to system bus 206 and
provides an interface to I/O bus 212. Memory controller/
cache 208 and I/O Bus Bridge 210 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/O bus 212 provides an interface to PCI local
bus 216. A modem 218 may be connected to PCI local bus
216. Typical PCI bus implementations will support four PCI
expansion slots or add-in connectors. Communications links
to network computers 108-112 in FIG. 1 may be provided
through modem 218 and network adapter 220 connected to
PCI local bus 216 through add-in boards.

Additional PCI bus bridges 222 and 224 provide interfaces
for additional PCI buses 226 and 228, from which additional
modems or network adapters may be supported. In this man
ner, server 200 allows connections to multiple network com
puters. A memory mapped graphics adapter 230 and hard disk
232 may also be connected to I/O bus 212 as depicted, either
directly or indirectly.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 2A may vary. For example, other
peripheral devices, such as optical disk drive and the like also
may be used in addition or in place of the hardware depicted.
The depicted example is not meant to imply architectural
limitations with respect to the present invention.
The data processing system depicted in FIG. 2A may be,

for example, an IBM RISC/System 6000 system, a product of

10

15

25

30

35

40

45

50

55

60

65

4
International Business Machines Corporation in Armonk,
N.Y., running the Advanced Interactive Executive (AIX)
operating system.

With reference now to FIG. 2B, a block diagram of a data
processing system in which the present invention may be
implemented is illustrated. Data processing system 250 is an
example of a client computer. Data processing system 250
employs a peripheral component interconnect (PCI) local bus
architecture. Although the depicted example employs a PCI
bus, other bus architectures such as Micro Channel and ISA
may be used. Processor 252 and main memory 254 are con
nected to PCI local bus 256 through PCI Bridge 258. PCI
Bridge 258 also may include an integrated memory controller
and cache memory for processor 252. Additional connections
to PCI local bus 256 may be made through direct component
interconnection or through add-in boards. In the depicted
example, local area network (LAN) adapter 260, SCSI host
bus adapter 262, and expansion bus interface 264 are con
nected to PCI local bus 256 by direct component connection.
In contrast, audio adapter 266, graphics adapter 268, and
audio/video adapter (A/V) 269 are connected to PCI local bus
266 by add-in boards inserted into expansion slots. Expansion
bus interface 264 provides a connection for a keyboard and
mouse adapter 270, modem 272, and additional memory 274.
SCSI hostbus adapter 262 provides a connection for hard disk
drive 276, tape drive 278, and CD-ROM 280 in the depicted
example. Typical PCI local bus implementations will support
three or four PCI expansion slots or add-in connectors.
An operating system runs on processor 252 and is used to

coordinate and provide control of various components within
data processing system 250 in FIG.2B. The operating system
may be a commercially available operating system such as
OS/2, which is available from International Business
Machines Corporation.
An objectoriented programming system such as JAVA may

run in conjunction with the operating system and may provide
calls to the operating system from Java programs or applica
tions executing on data processing system 250. Instructions
for the operating system, the object-oriented operating sys
tem, and applications or programs are located on storage
devices, such as hard disk drive 276 and may be loaded into
main memory 254 for execution by processor 252. Hard disk
drives are often absent and memory is constrained when data
processing system 250 is used as a network client.

Those of ordinary skill in the art will appreciate that the
hardware in FIG. 2B may vary depending on the implemen
tation. For example, other peripheral devices, such as optical
disk drives and the like may be used in addition to or in place
of the hardware depicted in FIG.2B. The depicted example is
not meant to imply architectural limitations with respect to
the present invention. For example, the processes of the
present invention may be applied to a multiprocessor data
processing System.

Although the present invention may operate on a variety of
computer platforms and operating systems, it may also oper
ate within an interpretive environment, such as a REXX,
Smalltalk, or Java runtime environment, and the like. For
example, the present invention may operate in conjunction
with a Java Virtual Machine (JVM) yet within the boundaries
of a JVM as defined by Java standard specifications. In order
to provide a context for the present invention with regard to an
exemplary interpretive environment, portions of the opera
tion of a JVM according to Java specifications are herein
described.

With reference now to FIG.3A, a block diagram illustrates
the relationship of Software components operating within a
computer system that may implement the present invention.

Charter and Plume Exhibit 1010, Page 9 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

US 7,934,212 B2
5

Java-based system 300 contains platform specific operating
system 302 that provides hardware and system support to
software executing on a specific hardware platform.JVM 304
is one software application that may execute in conjunction
with the operating system. Alternatively, JVM 304 may be
imbedded inside a Java enabled browser application such as
Microsoft Internet ExplorerTM or Netscape Communica
torTM. JVM 304 provides a Java run-time environment with
the ability to execute Java application or applet 306, which is
a program, servlet, or Software component written in the Java
programming language. The computer system in which JVM
304 operates may be similar to data processing system 200 or
computer 100 described above. However, JVM 304 may be
implemented in dedicated hardware on a so-called Java chip,
Java-on-silicon, or Java processor with an embedded pico
Java core. At the center of a Java run-time environment is the
JVM, which supports all aspects of Java's environment,
including its architecture, security features, mobility across
networks, and platform independence.
The JVM is a virtual computer, i.e. a computer that is

specified abstractly. The specification defines certain features
that every JVM must implement, with some range of design
choices that may depend upon the platform on which the JVM
is designed to execute. For example, all JVMs must execute
Java bytecodes and may use a range of techniques to execute
the instructions represented by the bytecodes. AJVM may be
implemented completely in Software or somewhat in hard
ware. This flexibility allows different JVMs to be designed
for mainframe computers and PDAS.
The JVM is the name of a virtual computer component that

actually executes Java programs. Java programs are not run
directly by the central processor but instead by the JVM,
which is itself a piece of Software running on the processor.
The JVM allows Java programs to be executed on a different
platform as opposed to only the one platform for which the
code was compiled. Java programs are compiled for the JVM.
In this manner, JAVA is able to Support applications for many
types of data processing systems, which may contain a variety
of central processing units and operating systems architec
tures. To enable a Java application to execute on different
types of data processing systems, a compiler typically gener
ates an architecture-neutral file format—the compiled code is
executable on many processors, given the presence of the Java
run-time system.
The Java compiler generates bytecode instructions that are

nonspecific to a particular computerarchitecture. A bytecode
is a machine independent code generated by the Java com
piler and executed by a Java interpreter. A Java interpreter is
part of the JVM that alternately decodes and interprets a
bytecode or bytecodes. These bytecode instructions are
designed to be easy to interpret on any computer and easily
translated on the fly into native machine code.
A JVM must load class files and execute the bytecodes

within them. The JVM contains a class loader, which loads
class files from an application and the class files from the Java
application programming interfaces (APIs) which are needed
by the application. The execution engine that executes the
bytecodes may vary across platforms and implementations.
One type of Software-based execution engine is a just-in

time (JIT) compiler. With this type of execution, the byte
codes of a method are compiled to native machine code upon
successful fulfillment of some type of criteria for jitting a
method. The native machine code for the method is then
cached and reused upon the next invocation of the method.
The execution engine may also be implemented in hardware
and embedded on a chip so that the Java bytecodes are
executed natively. JVMs usually interpret bytecodes, but

5

10

15

25

30

35

40

45

50

55

60

65

6
JVMs may also use other techniques, such as just-in-time
compiling, to execute bytecodes.
When an application is executed on a JVM that is imple

mented in Software on a platform-specific operating system, a
Java application may interact with the host operating system
by invoking native methods. A Java method is written in the
Java language, compiled to bytecodes, and stored in class
files. A native method is written in Some other language and
compiled to the native machine code of a particular processor.
Native methods are stored in a dynamically linked library
whose exact form is platform specific.

With reference now to FIG.3B, a block diagram of a JVM
is depicted in accordance with a preferred embodiment of the
present invention. JVM 350 includes a class loader subsystem
352, which is a mechanism for loading types, such as classes
and interfaces, given fully qualified names. JVM 350 also
contains runtime data areas 354, execution engine 356, native
method interface 358, and memory management 374. Execu
tion engine 356 is a mechanism for executing instructions
contained in the methods of classes loaded by class loader
subsystem 352. Execution engine 356 may be, for example,
Java interpreter 362 or just-in-time compiler 360. Native
method interface 358 allows access to resources in the under
lying operating system. Native method interface 358 may be,
for example, a Java native interface.

Runtime data areas 354 contain native method stacks 364,
Java stacks 366, PC registers 368, method area 370, and heap
372. These different data areas represent the organization of
memory needed by JVM 350 to execute a program.

Java stacks 366 are used to store the state of Java method
invocations. When a new thread is launched, the JVM creates
a new Java stack for the thread. The JVM performs only two
operations directly on Java stacks: it pushes and pops frames.
A threads Java stack stores the state of Java method invoca
tions for the thread. The state of a Java method invocation
includes its local variables, the parameters with which it was
invoked, its return value, if any, and intermediate calcula
tions. Java stacks are composed of Stack frames. A stack
frame contains the state of a single Java method invocation.
When a thread invokes a method, the JVM pushes a new
frame onto the Java stack of the thread. When the method
completes, the JVM pops the frame for that method and
discards it.
The JVM does not have any registers for holding interme

diate values; any Java instruction that requires or produces an
intermediate value uses the stack for holding the intermediate
values. In this manner, the Java instruction set is well-defined
for a variety of platform architectures.
PC registers 368 are used to indicate the next instruction to

be executed. Each instantiated thread gets its own pc register
(program counter) and Java stack. If the thread is executing a
JVM method, the value of the pc register indicates the next
instruction to execute. If the thread is executing a native
method, then the contents of the pc register are undefined.

Native method stacks 364 store the state of invocations of
native methods. The state of native method invocations is
stored in an implementation-dependent way in native method
stacks, registers, or other implementation-dependent
memory areas. In some JVM implementations, native method
stacks 364 and Java stacks 366 are combined.
Method area 370 contains class data while heap 372 con

tains all instantiated objects. The JVM specification strictly
defines data types and operations. Most JVMs choose to have
one method area and one heap, each of which are shared by all
threads running inside the JVM. When the JVM loads a class
file, it parses information about a type from the binary data
contained in the class file. It places this type information into

Charter and Plume Exhibit 1010, Page 10 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

US 7,934,212 B2
7

the method area. Each time a class instance or array is created,
the memory for the new object is allocated from heap 372.
JVM 350 includes an instruction that allocates memory space
within the memory for heap 372 but includes no instruction
for freeing that space within the memory.
Memory management 374 in the depicted example man

ages memory space within the memory allocated to heap 370.
Memory management 374 may include a garbage collector
which automatically reclaims memory used by objects that
are no longer referenced. Additionally, a garbage collector
also may move objects to reduce heap fragmentation.
The present invention provides a mechanism by which the

versions of applets executed by the JVM may be checked to
determine if the applets are still operational with the host
server. With the present invention, an applet may have one of
three version states: old and in need of updating, old and
workable with the host server, and current. Only when the
applet is old and in need of updating will the present invention
not run the applet’s mainline code which would result in an
exception when the JVM attempts to execute the applets
bytecode. If the appletis current, no updating is necessary and
the applet functions normally. If the applet is old and work
able, the JVM may provide the user of the client device with
the option of updating the applet before proceeding or con
tinuing with the old version of the applet.

With reference now to FIG. 4, a diagram illustrating com
ponents and data flow used to provide communication
between a client and a host is depicted in accordance with a
preferred embodiment of the present invention. In this
example, communication is provided between host 400 and
client 402. In this example, host 400 includes a database
server 404, an application server 406, and a web server 408.
Web server 408 also is referred to as an HTTP server. Web
server 408 handles all the HTTP requests coming into a
website. Then, web server 408 hands off the request to the
application server 406, which then talks to the database server
404 if necessary to access data or write data. Also, all
responses from the website go out, to the client, through web
Server 408.
Web server 408 also includes a directory that contains the

Java class files and the graphics files Such as gifs, jpegs, etc.
In this example, web server 408 includes applet class files
410. Application server 406 runs the Common Gateway Inter
face (CGI) scripts. This server has a servlet engine to run
servlets. In this example, application server 406 contains CGI
scripts and servlets 412. Database server 404 is used to store
and access data, such as in data storage 414. These three
servers (daemon processes) can all run on one machine or
each server can run on its own separate dedicated machine.
The data storage 414 stores a version table for applets

supported by the host 400. The version table contains infor
mation identifying the applet, the various versions of the
applet that have been released, and the current status of each
version. Each version of an applet may have one of three
statuses: current, old and in need of update, or old and work
able, as will be discussed in greater detail hereafter.

There are many different ways in which the version table
may be stored for use by the present invention. The present
invention is intended to encompass all possible version table
storage mechanisms and methods. However, as an example of
one embodiment, the version table may be stored on a back
end DB2 application version table. DB2 is a Relational Data
base Management System (RDBMS), available from Inter
national Business Machines, Inc., that is a full-featured
Structured Query Language (SQL) language RDBMS. An
example of Such a version table may be:

10

15

25

30

35

40

45

50

55

60

65

CREATE TABLE MASTRAPPL VERSION

APPL NAME VARCHAR(30) NOT NULL,
VERSION NBRVARCHAR(10) NOT NULL,
--formatWv.Rr.Mmmm

LATEST VERSION FLG CHAR(1) NOT NULL,
PRIMARY KEY (APPL NAME, VERSION NBR),
FOREIGN KEY FLG(LATEST VERSION FLG)

REFERENCES MASTRYES NO DOMAIN ON
DELETERESTRICT

The version table may take the form of that shown in Table
1 below, for example. As shown in Table 1, there are entries
for applet name, applet version, and a latest version flag. For
each applet name and applet version, there is a corresponding
latest version flag identifying the applet version as being old
and in need of update, old and workable or current.

TABLE 1

Example of Version Table

Application Name Application Version No. Latest Version Flag

login Screen W1.R2MOOO6 Current (C)
login Screen W1.R2MOOOS Workable (W)
login Screen W1.R1.MOOO4 Expired (E)
login Screen W1.R1.MOOO3 Expired (E)

The version table is used to check the version of an applet
416 cached or otherwise stored by the client 402, in order to
determine if the applet416 may be properly used with the host
400. When an applets code execution is initiated by the client
402, the applet checks its version against those stored in the
version table to determine if the applet needs to be updated or
if it can be used with the host 400, as will be described
hereafter.

In the example shown in FIG. 4, applet 416 is executing
within browser 418 on client 402. Applet 416 was down
loaded from applet class files 410 in response to a user input
to browser 418. Applet 416 performs a data transfer with host
400, in response to various user inputs. For example, applet
416 may provide a form to retrieve data about client 402, such
as operating system type, processor type, amount of memory,
adapter types, and storage capacity. Also, applet 416 may
receive data for display to a user on client 402.
To avoid connection problems with a firewall, applet 416

uses HyperText Transport Protocol (HTTP) to create and
open a Uniform Resource Locator (URL) connection to a
CGI program or servlet on host 400. In this example, the
communication is to a CGI script or a servlet 412. When
invoking the CGI script or a servlet 412, Some parameters
may be passed to these programs through the use of a “Path
info' and/or “Ouery string.” These parameters may be option
ally included in the URL used to establish the connection. The
value of these parameters may be used to cause the CGI script
or a servlet 412 to execute a selected operation on the data.
The “Path info' or “Query string is part of the URL string,
and as Such is sent to the host, or more appropriately to the
CGI script or servlet at the host, as part of the creation of the
URL connection.

All of the data from the applet 416 may be passed to the
CGI script or a servlet 412 in an output stream, simulating a
POST method used by a browser. A POST method is used to
send data in an HTML form, in a client browser, to the server.

Charter and Plume Exhibit 1010, Page 11 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

US 7,934,212 B2
9

Next, the CGI script or a servlet 412 may process the data and
store the data in data storage 414 or retrieve other data from
data storage 414. Return data may be returned to the applet
416 by the CGI script or a servlet 412 in an input stream of the
applet 416.

With the present invention, when a user initiates the applet
416 by, for example, visiting a web page that contains an
applet with his/her browser, the applet 416 initiates commu
nication with the host 400 it was launched from. By stating
that the applet 416 initiates communication with the host 400
and performs the functions described hereafter, what is meant
is that the applet 416 contains classes whose function is to
perform the version check of the present invention. Thus, the
applet 416 contains not only the bytecode necessary to per
form the functions specific to the applet 416 but also the
bytecode for version verification.
Upon initiation, the applet416 passes two pieces of data to

a servlet or CGI script 412 at the host 400:
1. Applet Name. This is the APPL NAME column in the

APPL VERSION table in the data storage 414, described
above. An example would be “PBDApplet” or “login
screen'; and

2. The version number that is burned into the byte code of
the applet class. An example would be “V1.R2.M0005'. The
preferred method to tie the version number of the applet to the
applet itself is to “burn’ the version number into the applet
bytecode. This is done by defining a constant in the applet
Java source code, Such as:

private static final
APPLET VERSION=“V1R2.M005”

Next, the servlet or CGI script 412 uses this data to query
the data storage 414. The data storage 414 looks-up the applet
name and version number in the version table and returns two
pieces of data back to the servlet or CGI script 412:

1. The current version number for this applet in the data
storage 414. This is the VERSION NBR in the APPL VER
SION table. Specifically, this is the row which matches the
APPL NAME sent in by the applet416 and where the LAT
EST VERSION FLG is set to 'C' by the applet developer.
An example would be “V1.R2.M0006'; and

2. The LATEST VERSION FLG from the APPL VER
SION table. Specifically, this is the row which matches the
APPL NAME and the VERSION NBR that was sent in by
the applet416. An example would be “W'. The servlet or CGI
script 412 then passes these two pieces of data back to the
applet 416.
As described above, the LATEST VERSION FLG can

contain one of the following three values:
1. C Current (latest version of the applet);
2. W. Workable (user can continue working with applet

with reduced functionality); and
3. E. Expired (new applet class(es) must be reloaded

into the browser's JVM).
Based on the LATEST VERSION FLG value returned to
the applet 416, the applet416 performs one of three functions.
If the LATEST VERSION FLG is “C indicating that the
applet 416 is the latest version of the applet, then the applet
start executing the mainline code of the applet 416. If the
LATEST VERSION FLG is E the applet416 does not run
the mainline code but instead either provides the user with
instructions on how to clear the applet classes from the cache
and reload the applet 416 from the server, or will attempt to
automatically clear the applet classes from the cache.

If the LATEST VERSION FLG is W, the applet 416
first provides the user of the client 402 with a selection of
either continuing with the version of the applet 416 cached
with the possibility that the cached version has less function

String

10

15

25

30

35

40

45

50

55

60

65

10
ality than the current version of the applet416, or updating the
applet 416 from the host 400 and then executing the mainline
code of the applet 416. If the user selects to continue with the
version of the applet 416 that is cached, the mainline code of
the cached version of the applet 416 is executed. If the user
selects to update the applet 416, the applet416 either provides
the user with instructions on how to clear the applet classes
from the cache and reload the applet416 from the host 400, or
will attempt to automatically clear the applet classes from the
cache.

Because there a plurality of browsers in use today, in order
to clear applet classes from a cache, it may be necessary to
know the type of browser for which the applet is designed.
This is because the command to clear the cache may be
different in each browser. Thus, for example, the command to
clear the cache and reload the applet classes in NetscapeTM is
to hold the shift key and select the “reload command. Simi
larly, the command in Microsoft Internet ExplorerTM is to
hold the control key and select the “refresh' command.
The present invention may inform the user of the proper

sequence to be used to clear the applet classes from the cache.
The present invention may inform the user using a dialog box
that provides each of the proper commands for each of the
possible browsers thereby relying on the user to select the
command sequence that is specified for the browser being
used by the client 402.

Alternatively, the applet 416 may look at the system prop
erty of the applet using the system.getproperty class and
java.vendor class to identify the browser being used with the
applet 416. After identifying the browser, the applet may then
provide the proper command sequence to the user via a dialog
box, or the like, to thereby inform the user how to clear the
applet classes and reload them.

Moreover, after identifying the browser in the manner
described above, the present invention may automatically
enter the command sequence to clear the applet classes from
the cache and reload them. To automatically enter the com
mand sequence, the applet provides the proper command
string to the browser to cause the browser to perform the
functions of clearing the cache and sending a request to the
host 400 for the applet.

FIG. 5 is a flowchart outlining an exemplary operation of
the present invention. As shown in FIG. 5, the operation starts
with initialization of an applet (step 510). The applet sends a
request to the host server for current version and latest version
flag information (step 520). A determination is then made as
to whether the latest version flag indicates that the applet is
current (step 530). If so, the mainline code of the applet is
executed (step 580).

If the applet is not the current version, a determination is
made as to whether the applet is a workable version (step
540). If not, the applet is updated (step 550) and the operation
returns to step 510. If so, the user is provided with the option
of either continuing with the applet version that is cached or
to update the applet (step 560). If the user selects to update the
applet (step 570), the operation continues to step 550. If the
user selects to continue with the version of the applet cached,
the operation continues to step 580 wherein the mainline code
of the applet is executed and the operation then ends.

Thus, the present invention provides a mechanism by
which versions of applets may be checked for compatibility
with Java code stored on the host server from which the applet
was launched. The present invention further provides a
mechanism by which the user may be informed of the proper
procedure for updating the applet and, in the alternative, for
automatically updating the applet based on the type of
browser being used.

Charter and Plume Exhibit 1010, Page 12 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

US 7,934,212 B2
11

While the present invention has been described with regard
to an embodiment in which an applet contains classes to
perform the version verification, the present invention is not
limited to such. Rather, the version verification may be per
formed by a Software/hardware element, such as a Java appli
cation, outside the applet without departing from the spirit
and scope of the present invention. A Java application, in
contrast to a Java applet, has a main() method, runs in the Java
Runtime Environment (JRE) installed on the operating sys
tem of a client machine and does not need a JVM enabled
browser for execution.

For example, the JVM may contain Java application byte
code that is used to perform the version verification in accor
dance with the present invention. In Such an embodiment,
upon for example, initial user login of the Java application,
the application will Suspend execution of the mainline code
until the version verification is performed.

It is important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer read
able medium of instructions and a variety of forms and that
the present invention applies equally regardless of the par
ticular type of signal bearing media actually used to carry out
the distribution. Examples of computer readable media
include recordable-type media Such a floppy disc, a hard disk
drive, a RAM, and CD-ROMs and transmission-type media
Such as digital and analog communications links.
The description of the present invention has been presented

for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
Suited to the particular use contemplated.

What is claimed is:
1. An apparatus for verifying a version of an applet, com

prising:
a communications device; and

a processor coupled to the communications device, wherein
the processor sends, via the communications device, a request
for latest version information for the applet to a host, receives
the latest version information for the applet via the commu
nications device, determines if the applet is usable with the
host based on the latest version information by determining if
the latest version information identifies the applet as being a
current version, a workable version oran expired version, and
if the latest version information identifies the applet as being
a workable version, provides a user with an option to either
continue with executing the applet or to update the applet.

10

15

25

30

35

40

45

50

12
2. The apparatus of claim 1, wherein if the latest version

information identifies the applet as being a current version,
the processor executes the applet.

3. The apparatus of claim 1, wherein if the latest version
information identifies the applet as being an expired version,
the processor updates the applet.

4. The apparatus of claim 1, wherein the processor updates
the applet based on results of determining if the applet is
usable with the host based on the latest version information,
and wherein the processor updates the applet by clearing
applet classes from a cache and requesting the applet from the
host.

5. The apparatus of claim3, wherein the processor updates
the applet by providing a user with instructions on how to
clear applet classes from a cache and request the applet from
a SWC.

6. The apparatus of claim 5, wherein the processor deter
mines a browser being used with the applet, and wherein the
instructions are specific to the browser.

7. The apparatus of claim 1, wherein the processor and the
communications device are part of a client device and the host
is a server.

8. The apparatus of claim 1, wherein the processor updates
the applet if the applet is not usable with the host.

9. An apparatus for verifying a version of an applet, com
prising: a communications device; a processor coupled to the
communications device; and a storage device coupled to the
processor, the storage device containing a first version of the
applet; wherein the processor sends, via the communications
device, a request for latest version information for the applet
to a host, receives the latest version information for the applet
via the communications device, determines from the latest
version information whether the first version of the applet is a
latest version, if the first version is not the latest version,
determines whether the first version is usable with the host by
determining if the latest version information identifies the
applet as being a current version, a workable version or an
expired version, and if the latest version information identi
fies the applet as being a workable version, provides a user
with an option to either continue with executing the applet or
to update the applet.

10. The apparatus of claim 9, wherein if the first applet is
identified as being a current version, the processor executes
the applet.

11. The apparatus of claim 9, wherein the processor
updates the applet by clearing applet classes from a cache and
requesting the current version of the applet from the host.

12. The apparatus of claim 9, wherein the processor
updates the applet by providing a user with instructions on
how to clear applet classes from a cache and request the applet
from a server.

13. The apparatus of claim 12, wherein the processor deter
mines a browser being used with the applet, and wherein the
instructions are specific to the browser.

k k k k k

Charter and Plume Exhibit 1010, Page 13 of 13
Charter Communications, Inc. and Plume Design, Inc. v. Adaptive Spectrum and Signal Alignment, Inc.

IPR2025-00088

