
Understanding Web Internals

HTTP
The Definitive Guide

!I

O'REILLY®
David Gourley & Brian Totty

with Marjorie Sayer, Sailu Reddy & Anshu Aggarwal

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 1
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

HTTP
The Definitive Guide

David Gourley and Brian Totty
with Marjorie Sayer, Sailu Reddy, and Anshu Aggarwal

O'REILLY®
Beijing • Boston • Farnham • Sebastopol • Tokyo

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 2
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

HTTP: The Definitive Guide
by David Gourley and Brian Totty
with Marjorie Sayer, Sailu Reddy, and Anshu Aggarwal

Copyright © 2002 O'Reilly Media, Inc. All rights reserved.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O'Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. On-
line editions are also available for most titles (safari.oreilly.com). For more information, contact our cor-
porate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Linda Mui

Production Editor: Rachel Wheeler

Cover Designer: Ellie Volckhausen

Interior Designers: David Futato and Melanie Wang

Printing History:

September 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. HTTP: The Definitive Guide, the image of a thirteen-lined ground squirrel, and
related trade dress are trademarks of O'Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 1-56592-509-2
ISBN-13: 978-1-56592-509-0
[LSI1 [03/20191

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 3
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

CHAPTER 4

Connection Management

The HTTP specifications explain HTTP messages fairly well, but they don't talk
much about HTTP connections, the critical plumbing that HTTP messages flow
through. If you're a programmer writing HTTP applications, you need to under-
stand the ins and outs of HTTP connections and how to use them.

HTTP connection management has been a bit of a black art, learned as much from
experimentation and apprenticeship as from published literature. In this chapter,
you'll learn about:

• How HTTP uses TCP connections

• Delays, bottlenecks and clogs in TCP connections

• HTTP optimizations, including parallel, keep-alive, and pipelined connections

• Dos and don'ts for managing connections

TCP Connections
Just about all of the world's HTTP communication is carried over TCP/IP, a popular
layered set of packet-switched network protocols spoken by computers and network
devices around the globe. A client application can open a TCP/IP connection to a
server application, running just about anywhere in the world. Once the connection is
established, messages exchanged between the client's and server's computers will
never be lost, damaged, or received out of order."

Say you want the latest power tools price list from Joe's Hardware store:

http://www.joes-hardware.com:80/power-tools.html

When given this URL, your browser performs the steps shown in Figure 4-1. In Steps
1-3, the IP address and port number of the server are pulled from the URL. A TCP

Though messages won't be lost or corrupted, communication between client and server can be severed if a
computer or network breaks, In this case, the client and server are notified of the communication breakdown.

74

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 4
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

t they don't talk
'P messages flow
a need to under-

.ed as much from
. In this chapter,

d connections

'CP/IP, a popular
.ters and network
' connection to a
the connection is
s computers will

:ore:

pure 4-1. In Steps
the URL. A TCP

ver can be severed if a
unication breakdown.

•

connection is made to the web server in ̀ Step 4, and a request message is sent across

the connection in Step 5. The response is read in Step 6, and the connection is closed

in Step 7.

http://www.joes-hardware.com:1040wer-tools.html

(1) The browser extracts the hostname

(2) The browser looks up the IP address for this hostname (DNS)

(3) The browser gets the port number (80)

(4) The browser makes aTCP connection to 202.43.78.3 port 80

www.joes-hardware.com

202.43.78.3

80-4

aunt

ril(5) The browser sends an HTTP GET request message to the server

Client

Internet

Internet

12 (6) The browser reads the HTTP response message from the server .444•0”-- yen...

Internet

(7) The browser closes the connection

Client

12
Client

Internet

80

Server
(202.43.78.3)

Server

Server

Server

Figure 4-1. Web browsers talk to web servers over TCP connections

TCP Reliable Data Pipes
HTTP connections really are nothing more than TCP connections, plus a few rules
about how to use them. TCP connections are the reliable connections of the Inter-
net. To send data accurately and quickly, you need to know the basics of TCP."

TCP gives HTTP a reliable bit pipe. Bytes stuffed in one side of a TCP connection
come out the other side correctly, and in the right order (see Figure 4-2).

• If you are trying to write sophisticated HTTP applications, and especially if you want them to be fast, you'll
want to learn a lot more about the internals and performance of TCP than we discuss in this chapter. We
recommend the "TCP/IP Illustrated" books by W. Richard Stevens (Addison Wesley).

TCP Connections I 75

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 5
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

AIR

Internet

I n

Client Server

Figure 4-2. TCP carries HTTP data in order, and without corruption

TCP Streams Are Segmented and Shipped by IP Packets
TCP sends its data in little chunks called IP packets (or IP datagrams). In this way,
HTTP is the top layer in a "protocol stack" of "HTTP over TCP over IP," as depicted
in Figure 4-3a. A secure variant, HTTPS, inserts a cryptographic encryption layer
(called TLS or SSL) between HTTP and TC:P (Figure 4-3b).

HTTP Application layer

HTTP Application layer TSL or SSL Security layer

TCP Transport layer TCP Transport layer

IP Network layer IP Network layer

Network interfaces Data link layer Network interfaces Data link layer

(a) HTTP (b) HTTPS

Figure 4-3. HTTP and HTTPS network protocol stacks

When HTTP wants to transmit a message, it streams the contents of the message data, in order, through an open TCP connection. TCP takes the stream of data, chops up the data stream into chunks called segments, and transports the segments across the Internet inside envelopes called IP packets (see Figure 4-4). This is all han-dled by the TCP/IP software; the HTTP programmer sees none of it.
Each TCP segment is carried by an IP packet from one IP address to another IP
address. Each of these IP packets contains:

• An IP packet header (usually 20 bytes)
• A TCP segment header (usually 20 bytes)
• A chunk of TCP data (0 or more bytes)

The IP header contains the source and destination IP addresses, the size, and other flags. The TCP segment header contains TCP port numbers, TCP control flags, and numeric values used for data ordering and integrity checking.

76 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 6
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

ets
rams). In this way,
Ter IP," as depicted
c encryption layer

Application layer

Security layer

Transport layer

Network layer

Data link layer

Lts of the message
e stream of data,
Torts the segments
4). This is all han-
:.

ess to another IP

ie size, and other
control flags, and

Client

E

TCP TCP TCP
segment segment segment

#1 #2 #3

..-----"---

Hdr length Version (words)
Type of service

(T0S)

I

•

Server

Total datagram length
(bytes)

Packet D
(16-bit number)

Fla — Fragmentation offset

Time to live
(TTL)

Upper-level protocol Header checksum

Source IP address

Destination IP address

Source port Destination port

TCP sequence number

Piggybacked acknowledgment

(words)
1 Reserved S ¢;K2 ..̀2 LL. length Window size

TCP checksum Urgent pointer

GET /index.html HTTP/1.1<CR><LF>
Host: www.joes-hardware.c

Figure 4-4. IP packets carry TCP segments, which carry chunks of the TCP data stream

Keeping TCP Connections Straight

A computer might have several TCP connections open at any one time. TCP keeps

all these connections straight through port numbers.

Port numbers are like employees' phone extensions. Just as a company's main phone

number gets you to the front desk and the extension gets you to the right employee,

the IP address gets you to the right computer and the port number gets you to the

right application. A TCP connection is distinguished by four values:

<source-IP-address, source-port, destination-IP-address, destination-port>

Together, these four values uniquely define a connection. Two different TCP connec-

tions are not allowed to have the same values for all four address components (but

different connections can have the same values for some of the components).

TCP Connections I 77

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 7
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

In Figure 4-5, there are four connections: A, B, C and D. The relevant information
for each port is listed in Table 4-1.

Table 4-1. TCP connection values

Connection Source IP address Source port Destination IP address Destination port

A 209.1.32.34 2034 204.62.128.58 4133

B 209.1.32.35 3227 204.62.128.58 4140
C 209.1.32.35 3105 207.25.71.25 80
D 209.1.33.89 5100 207.25.71.25 80

.,• ••••••

••• ••••

.1 •=6

204.62.12838 207.25.71.25
4,00410

ATiK
A

2034

209.1.3234

3227 3105 5100

209.132.35 209.1.33.89

Figure 4-5. Four distinct TCP connections

Note that some of the connections share the same destination port number (C and D
both have destination port 80). Some of the connections have the same source IP
address (B and C). Some have the same destination IP address (A and B, and C and
D). But no two different connections share all four identical values.

Programming with TCP Sockets
Operating systems provide different facilities for manipulating their TCP connec-
tions. Let's take a quick look at one TCP programming interface, to make things
concrete. Table 4-2 shows some of the primary interfaces provided by the sockets
API. This sockets API hides all the details of TCP and IP from the HTTP program-
mer. The sockets API was first developed for the Unix operating system, but variants
are now available for almost every operating system and language.

Table 4-2. Common socket interface functions for programming TCP connections

Sockets API call

s = socket(<parameters>)

bind(s, <local IP:port>)

Description

Creates a new, unnamed, unattached socket.

Assigns a local port number and interface to the socket.

78 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 8
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

levant information

Destination port

4133

4140

80

80

stop
II

.1.3319

rt number (C and D
the same source IP
k. and B, and C and
s.

their TCP connec-
ice, to make things
ided by the sockets
:he HTTP program-
system, but variants

:tions

rcket.

-

Table 4-2. Common socket interface functions for programming TCP connections (continued)

Sockets API call

connect(s, <remote IP:port>)

listen(s,—)

s2 = accept(s)

n = read(s,buffer,n)

n = write(s,buffer,n)

close(s)

shutdown(s,<side>)

getsockopt(s, ...)

setsockopt(s, ...)

Description

Establishes a TCP connection to a local socket and a remote host and port.

Marks a local socket as legal to accept connections.

Waits for someone to establish a connection to a local port.

Tries to read n bytes from the socket into the buffer.

Tries to write n bytes from the buffer into the socket.

Completely closes the TCP connection.

Closes just the input or the output of the TCP connection.

Reads the value of an internal socket configuration option.

Changes the value of an internal socket configuration option.

The sockets API lets you create TCP endpoint data structures, connect these end-

points to remote server TCP endpoints, and read and write data streams. The TCP

API hides all the details of the underlying network protocol handshaking and the seg-

mentation and reassembly of the TCP data stream to and from IP packets.

In Figure 4-1, we showed how a web browser could download the power-tools.html

web page from Joe's Hardware store using HTTP. The pseudocode in Figure 4-6

sketches how we might use the sockets API to highlight the steps the client and

server could perform to implement this HTTP transaction.

U
Client

(C1) get IP address & port
(C2) create new socket (socket)
(C3) connect to server IP:port (connect)

....
(C4) connection successful 4
(C5) send HTTP request (write)--
(C6) wait for HTTP response (read)

(C7) process HTTP response
(C8) close connection (close)

Server

(51) create new socket (socket)
($2) bind socket to port 80 (bind)
(S3) permit socket connections (listen)
(54) wait for connection (accept)

......'(SS) application notified of connection
(S6) start reading request (read)

`(57) process HTTP request message

(58) send back HTTP response (write)
(59) close connection (close)

Figure 4-6. Flow TCP clients and servers communicate using the TCP sockets interface

TCP Connections I 79

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 9
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

We begin with the web server waiting for a connection (Figure 4-6, S4). The client
determines the IP address and port number from the URL and proceeds to establish
a TCP connection to the server (Figure 4-6, C3). Establishing a connection can take a
while, depending on how far away the server is, the load on the server, and the con-
gestion of the Internet.

Once the connection is set up, the client sends the HTTP request (Figure 4-6, C5)
and the server reads it (Figure 4-6, $6). Once the server gets the entire request mes-
sage, it processes the request, performs the requested action (Figure 4-6, S7), and
writes the data back to the client. The client reads it (Figure 4-6, C6) and processes
the response data (Figure 4-6, C7).

TCP Performance Considerations
Because HTTP is layered directly on TCP, the performance of HTTP transactions
depends critically on the performance of the underlying TCP plumbing. This section
highlights some significant performance considerations of these TCP connections. By
understanding some of the basic performance characteristics of TCP, you'll better
appreciate HTTP's connection optimization features, and you'll be able to design
and implement higher-performance HTTP applications.

This section requires some understanding of the internal details of the TCP proto-
col. If you are not interested in (or are comfortable with) the details of TCP perfor-
mance considerations, feel free to skip ahead to "HTTP Connection Handling."
Because TCP is a complex topic, we can provide only a brief overview of TCP perfor-
mance here. Refer to the section "For More Information" at the end of this chapter
for a list of excellent TCP references.

HTTP Transaction Delays
Let's start our TCP performance tour by reviewing what networking delays occur in
the course of an HTTP request. Figure 4-7 depicts the major connect, transfer, and
processing delays for an HTTP transaction.

..•••• •••••

Server

LIDNS lookup Connect Request Process Response Close Client

I I 6 Time

Figure 4-7. Timeline of a serial HTTP transaction

80 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 10
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

4-6, S4). The client
roceeds to establish
>nnection can take a
server, and the con-

est (Figure 4-6, C5)
entire request mes-

7igure 4-6, S7), and
, C6) and processes

HTTP transactions
tubing. This section
'CP connections. By
TCP, you'll better

1 be able to design

of the TCP proto-
tails of TCP perfor-
riection Handling."
view of TCP perfor-
end of this chapter

:ing delays occur in
inect, transfer, and

Time

Notice that the transaction processing time can be quite small compared to the time

required to set up TCP connections and transfer the request and response messages.

Unless the client or server is overloaded or executing complex dynamic resources,

most HTTP delays are caused by TCP network delays.

There are several possible causes of delay in an HTTP transaction:

1. A client first needs to determine the IP address and port number of the web
server from the URI. If the hostname in the URI was not recently visited, it may
take tens of seconds to convert the hostname from a URI into an IP address
using the DNS resolution infrastructure.'

2. Next, the client sends a TCP connection request to the server and waits for the
server to send back a connection acceptance reply. Connection setup delay
occurs for every new TCP connection. This usually takes at most a second or
two, but it can add up quickly when hundreds of HTTP transactions are made.

3. Once the connection is established, the client sends the HTTP request over the
newly established TCP pipe. The web server reads the request message from the
TCP connection as the data arrives and processes the request. It takes time for
the request message to travel over the Internet and get processed by the server.

4. The web server then writes back the HTTP response, which also takes time.

The magnitude of these TCP network delays depends on hardware speed, the load of
the network and server, the size of the request and response messages, and the dis-
tance between client and server. The delays also are significantly affected by techni-
cal intricacies of the TCP protocol.

Performance Focus Areas
The remainder of this section outlines some of the most common TCP-related delays
affecting HTTP programmers, including the causes and performance impacts of:

• The TCP connection setup handshake

• TCP slow-start congestion control

• Nagle's algorithm for data aggregation

• TCP's delayed acknowledgment algorithm for piggybacked acknowledgments

• TIME_WAIT delays and port exhaustion

If you are writing high-performance HTTP software, you should understand each of
these factors. If you don't need this level of performance optimization, feel free to
skip ahead.

Luckily, most HTTP clients keep a small DNS cache of IP addresses for recently accessed sites. When the IP
address is already "cached" (recorded) locally, the lookup is instantaneous. Because most web browsing is
to a small number of popular sites, hostnames usually are resolved very quickly.

TCP Performance Considerations I 81

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 11
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

TCP Connection Handshake Delays
When you set up a new TCP connection, even before you send any data, the TCP
software exchanges a series of IP packets to negotiate the terms of the connection
(see Figure 4-8). These exchanges can significantly degrade HTTP performance if the
connections are used for small data transfers.

Server

U
Client

(a)

/

(C) ACK
GET/ HTTP. . .

(b)ISYN+ACK /
(d) HTTP/1.1 304 Not modified

• • •

Connect
Connection handshake delay Data transfer 6 Time

Figure 4-8. TCP requires two packet transfers to set up the connection before it can send data

Here are the steps in the TCP connection handshake:

1. To request a new TCP connection, the client sends a small TCP packet (usually
40-60 bytes) to the server. The packet has a special "SYN" flag set, which means
it's a connection request. This is shown in Figure 4-8a.

2. If the server accepts the connection, it computes some connection parameters
and sends a TCP packet back to the client, with both the "SYN" and "ACK"
flags set, indicating that the connection request is accepted (see Figure 4-8b).

3. Finally, the client sends an acknowledgment back to the server, letting it know
that the connection was established successfully (see Figure 4-8c). Modern TCP
stacks let the client send data in this acknowledgment packet.

The HTTP programmer never sees these packets—they are managed invisibly by the
TCP/IP software. All the HTTP programmer sees is a delay when creating a new TCP
connection.

The SYN/SYN+ACK handshake (Figure 4-8a and b) creates a measurable delay
when HTTP transactions do not exchange much data, as is commonly the case. The
TCP connect ACK packet (Figure 4-8c) often is large enough to carry the entire
HTTP request message,' and many HTTP server response messages fit into a single
IP packet (e.g., when the response is a small HTML file of a decorative graphic, or a
304 Not Modified response to a browser cache request).

IP packets are usually a few hundred bytes for Internet traffic and around 1,500 bytes for local traffic.

82 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 12
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

ly data, the TCP
If the connection
erformance if the

odified

6 Time

can send data

P packet (usually
set, which means

ction parameters
YN" and "ACK"
Figure 4-8b).

:, letting it know
1c). Modern TCP

I invisibly by the
'ating a new TCP

aeasurable delay
rely the case. The
carry the entire

3 fit into a single
Live graphic, or a

for local traffic.

The end result is that small HTTP transactions may spend 50% or more of their time
doing TCP setup. Later sections will discuss how HTTP allows reuse of existing con-
nections to eliminate the impact of this TCP setup delay.

Delayed Acknowledgments
Because the Internet itself does not guarantee reliable packet delivery (Internet rout-
ers are free to destroy packets at will if they are overloaded), TCP implements its
own acknowledgment scheme to guarantee successful data delivery.

Each TCP segment gets a sequence number and a data-integrity checksum. The
receiver of each segment returns small acknowledgment packets back to the sender
when segments have been received intact. If a sender does not receive an acknowl-
edgment within a specified window of time, the sender concludes the packet was
destroyed or corrupted and resends the data.

Because acknowledgments are small, TCP allows them to "piggyback" on outgoing
data packets heading in the same direction. By combining returning acknowledg-
ments with outgoing data packets, TCP can make more efficient use of the network.
To increase the chances that an acknowledgment will find a data packet headed in
the same direction, many TCP stacks implement a "delayed acknowledgment" algo-
rithm. Delayed acknowledgments hold outgoing acknowledgments in a buffer for a
certain window of time (usually 100-200 milliseconds), looking for an outgoing data
packet on which to piggyback. If no outgoing data packet arrives in that time, the
acknowledgment is sent in its own packet.

Unfortunately, the bimodal request-reply behavior of HTTP reduces the chances that
piggybacking can occur. There just aren't many packets heading in the reverse direc-
tion when you want them. Frequently, the disabled acknowledgment algorithms
introduce significant delays. Depending on your operating system, you may be able
to adjust or disable the delayed acknowledgment algorithm.

Before you modify any parameters of your TCP stack, be sure you know what you
are doing. Algorithms inside TCP were introduced to protect the Internet from
poorly designed applications. If you modify any TCP configurations, be absolutely
sure your application will not create the problems the algorithms were designed to
avoid.

TCP Slow Start
The performance of TCP data transfer also depends on the age of the TCP connec-
tion. TCP connections "tune" themselves over time, initially limiting the maximum
speed of the connection and increasing the speed over time as data is transmitted
successfully. This tuning is called TCP slow start, and it is used to prevent sudden
overloading and congestion of the Internet.

TCP Performance Considerations I 83

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 13
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

•
TCP slow start throttles the number of packets a TCP endpoint can have in flight at
any one time. Put simply, each time a packet is received successfully, the sender gets
permission to send two more packets. If an HTTP transaction has a large amount of
data to send, it cannot send all the packets at once. It must send one packet and wait
for an acknowledgment; then it can send two packets, each of which must be acknowl-
edged, which allows four packets, etc. This is called "opening the congestion window."
Because of this congestion-control feature, new connections are slower than "tuned"
connections that already have exchanged a modest amount of data. Because tuned
connections are faster, HTTP includes facilities that let you reuse existing connec-
tions. We'll talk about these HTTP "persistent connections" later in this chapter.

Nagle's Algorithm and TCP_NODELAY
TCP has a data stream interface that permits applications to stream data of any size
to the TCP stack—even a single byte at a time! But because each TCP segment car-
ries at least 40 bytes of flags and headers, network performance can be degraded
severely if TCP sends large numbers of packets containing small amounts of data.*
Nagle's algorithm (named for its creator, John Nagle) attempts to bundle up a large
amount of TCP data before sending a packet, aiding network efficiency. The algo-
rithm is described in RFC 896, "Congestion Control in IP/TCP Internetworks."
Nagle's algorithm discourages the sending of segments that are not full-size (a
maximum-size packet is around 1,500 bytes on a LAN, or a few hundred bytes
across the Internet). Nagle's algorithm lets you send a non-full-size packet only if all
other packets have been acknowledged. If other packets are still in flight, the partial
data is buffered. This buffered data is sent only when pending packets are acknowl-
edged or when the buffer has accumulated enough data to send a full packet.t
Nagle's algorithm causes several HTTP performance problems. First, small HTTP
messages may not fill a packet, so they may be delayed waiting for additional data
that will never arrive. Second, Nagle's algorithm interacts poorly with disabled
acknowledgments—Nagle's algorithm will hold up the sending of data until an
acknowledgment arrives, but the acknowledgment itself will be delayed 100-200
milliseconds by the delayed acknowledgment algorithm.t

HTTP applications often disable Nagle's algorithm to improve performance, by setting
the TCP_NODELAY parameter on their stacks. If you do this, you must ensure that
you write large chunks of data to TCP so you don't create a flurry of small packets.

Sending a storm of single-byte packets is called "sender silly window syndrome." This is inefficient, anti-
social, and can be disruptive to other Internet traffic.

t Several variations of this algorithm exist, including timeouts and acknowledgment logic changes, but the
basic algorithm causes buffering of data smaller than a TCP segment.
These problems can become worse when using pipelined connections (described later in this chapter),
because clients may have several messages to send to the same server and do not want delays.

84 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 14
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

:an have in flight at
ully, the sender gets
.s a large amount of
Dne packet and wait
:h must be acknowl-
ongestion window."

lower than "tuned"
lata. Because tuned
se existing connec-
in this chapter.

am data of any size
TCP segment car-

:e can be degraded
mounts of data.'

t bundle up a large
Eficiency. The algo-
ternetworks."

ire not full-size (a
Few hundred bytes
ce packet only if all
n flight, the partial
ickets are acknowl-

packet.t

First, small HTTP
for additional data
orly with disabled

of data until an
delayed 100-200

Drmance, by setting
u must ensure that
small packets.

This is inefficient, anti-

c logic changes, but the

later in this chapter),
int delays.

TIME_WAIT Accumulation and Port Exhaustion
TIME_WAIT port exhaustion is a serious performance problem that affects perfor-

mance benchmarking but is relatively uncommon in real deployments. It warrants

special attention because most people involved in performance benchmarking even-

tually run into this problem and get unexpectedly poor performance.

When a TCP endpoint closes a TCP connection, it maintains in memory a small con-

trol block recording the IP addresses and port numbers of the recently closed con-
nection. This information is maintained for a short time, typically around twice the
estimated maximum segment lifetime (called "2MSL"; often two minutes"), to make
sure a new TCP connection with the same addresses and port numbers is not cre-
ated during this time. This prevents any stray duplicate packets from the previous
connection from accidentally being injected into a new connection that has the same
addresses and port numbers. In practice, this algorithm prevents two connections
with the exact same IP addresses and port numbers from being created, closed, and
recreated within two minutes.

Today's higher-speed routers make it extremely unlikely that a duplicate packet will
show up on a server's doorstep minutes after a connection closes. Some operating
systems set 2MSL to a smaller value, but be careful about overriding this value. Pack-
ets do get duplicated, and TCP data will be corrupted if a duplicate packet from a
past connection gets inserted into a new stream with the same connection values.

The 2MSL connection close delay normally is not a problem, but in benchmarking
situations, it can be. It's common that only one or a few test load-generation com-
puters are connecting to a system under benchmark test, which limits the number of
client IP addresses that connect to the server. Furthermore, the server typically is lis-
tening on HTTP's default TCP port, 80. These circumstances limit the available
combinations of connection values, at a time when port numbers are blocked from
reuse by TIME_WAIT.

In a pathological situation with one client and one web server, of the four values that
make up a TCP connection:

<source-IP-address, source-port, destination-IP-address, destination-port>

three of them are fixed—only the source port is free to change:

<client-IP, source-port, server-IP, 80>

Each time the client connects to the server, it gets a new source port in order to have
a unique connection. But because a limited number of source ports are available
(say, 60,000) and no connection can be reused for 2MSL seconds (say, 120 sec-
onds), this limits the connect rate to 60,000 / 120 = 500 transactions/sec. If you keep

The 2MSL value of two minutes is historical. Long ago, when routers were much slower, it was estimated
that a duplicate copy of a packet might be able to remain queued in the Internet for up to a minute before
being destroyed. Today, the maximum segment lifetime is much smaller.

TCP Performance Considerations I 85

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 15
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

making optimizations, and Your server doesn't get faster than about 500 transac-
tions/sec, make sure you are not experiencing TIME_WAIT port exhaustion. You
can fix this problem by using more client load-generator machines or making sure
the client and server rotate through several virtual IP addresses to add more connec-
tion combinations.

Even if you do not suffer port exhaustion problems, be careful about having large
numbers of open connections or large numbers of control blocks allocated for con-
nection in wait states. Some operating systems slow down dramatically when there
are numerous open connections or control blocks.

HTTP Connection Handling
The first two sections of this chapter provided a fire-hose tour of TCP connections
and their performance implications. If you'd like to learn more about TCP network-
ing, check out the resources listed at the end of the chapter.

We're going to switch gears now and get squarely back to HTTP. The rest of this
chapter explains the HTTP technology for manipulating and optimizing connec-
tions. We'll start with the HTTP Connection header, an often misunderstood but
important part of HTTP connection management. Then we'll talk about HTTP's
connection optimization techniques.

The Oft-Misunderstood Connection Header
HTTP allows a chain of HTTP intermediaries between the client and the ultimate
origin server (proxies, caches, etc.). HTTP messages are forwarded hop by hop from
the client, through intermediary devices, to the origin server (or the reverse).

In some cases, two adjacent HTTP applications may want to apply a set of options to
their shared connection. The HTTP Connection header field has a comma-separated
list of connection tokens that specify options for the connection that aren't propa-
gated to other connections. For example, a connection that must be closed after
sending the next message can be indicated by Connection: close.

The Connection header sometimes is confusing, because it can carry three different
types of tokens:

• HTTP header field names, listing headers relevant for only this connection

• Arbitrary token values, describing nonstandard options for this connection

• The value close, indicating the persistent connection will be closed when done

If a connection token contains the name of an HTTP header field, that header field
contains connection-specific information and must not be forwarded. Any header
fields listed in the Connection header must be deleted before the message is for-
warded. Placing a hop-by-hop header name in a Connection header is known as

86 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 16
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

about 500 transac-
lort exhaustion. You
tines or making sure
to add more connec-

.1 about having large
ks allocated for con-
natically when there

of TCP connections
about TCP network-

IT. The rest of this
optimizing connec-

t misunderstood but
talk about HTTP's

t and the ultimate
led hop by hop from
:he reverse).

)1y a set of options to
; a comma-separated
n that aren't propa-
nust be closed after

carry three different

connection

his connection

closed when done

:1d, that header field
vvarded. Any header
the message is for-

header is known as

"protecting the header," because the rConnection header protects against accidental
forwarding of the local header. An example is shown in Figure 4-9.

The Connection header says the Meter header
should not be forwarded the hypothetical
"bill-my-rredit-cord"option applies, and the
persistent connection will be dosed when this
transaction is done.

- - _ • _
.........

HTTP/1.1 200 OK
Cache-control: max-age=3600
Connection: meter, close, bill-my-credit-card
Meter: max-uses=3, max-refuses=6, dont-report

Proxy

Client Server

E. I

Figure 4-9. The Connection header allows the sender to specify connection-specific options

When an HTTP application receives a message with a Connection header, the
receiver parses and applies all options requested by the sender. It then deletes the
Connection header and all headers listed in the Connection header before forward-

ing the message to the next hop. In addition, there are a few hop-by-hop headers that
might not be listed as values of a Connection header, but must not be proxied. These
include Proxy-Authenticate, Proxy-Connection, Transfer-Encoding, and Upgrade.

For more about the Connection header, see Appendix C.

Serial Transaction Delays
TCP performance delays can add up if the connections are managed naively. For
example, suppose you have a web page with three embedded images. Your browser
needs to issue four HTTP transactions to display this page: one for the top-level
HTML and three for the embedded images. If each transaction requires a new con-
nection, the connection and slow-start delays can add up (see Figure 4-10).

Transaction 1 Transaction 2 Transaction 3 Transaction 4

4. 4', 4',

I V . /

i o..?
5 I ,s

A

a•Psp.I

 ;I 4+ id

Con
-
nec

-
t- --

Connect- 2 Connect- 3 6 Time

1,

Client

Figure 4-10. Four transactions (serial)

• For the purpose of this example, assume all objects are roughly the same size and are hosted from the same
server, and that the DNS entry is cached, eliminating the DNS lookup time.

HTTP Connection Handling I 87

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 17
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

In addition to the real delay imposed by serial loading, there is also a psychological
perception of slowness when a single image is loading and nothing is happening on
the rest of the page. Users prefer multiple images to load at the same time."

Another disadvantage of serial loading is that some browsers are unable to display
anything onscreen until enough objects are loaded, because they don't know the
sizes of the objects until they are loaded, and they may need the size information to
decide where to position the objects on the screen. In this situation, the browser may
be making good progress loading objects serially, but the user may be faced with a
blank white screen, unaware that any progress is being made at all.t

Several current and emerging techniques are available to improve HTTP connection
performance. The next several sections discuss four such techniques:

Parallel connections
Concurrent HTTP requests across multiple TCP connections

Persistent connections
Reusing TCP connections to eliminate connect/close delays

Pipelined connections
Concurrent HTTP requests across a shared TCP connection

Multiplexed connections
Interleaving chunks of requests and responses (experimental)

Parallel Connections
As we mentioned previously, a browser could naively process each embedded object
serially by completely requesting the original HTML page, then the first embedded
object, then the second embedded object, etc. But this is too slow!

HTTP allows clients to open multiple connections and perform multiple HTTP
transactions in parallel, as sketched in Figure 4-11. In this example, four embedded
images are loaded in parallel, with each transaction getting its own TCP connection.t

Parallel Connections May Make Pages Load Faster
Composite pages consisting of embedded objects may load faster if they take advan-
tage of the dead time and bandwidth limits of a single connection. The delays can be

* This is true even if loading multiple images at the same time is slower than loading images one at a time!
Users often perceive multiple-image loading as faster.

t HTML designers can help eliminate this "layout delay" by explicitly adding width and height attributes to
HTML tags for embedded objects such as images. Explicitly providing the width and height of the embedded
image allows the browser to make graphical layout decisions before it receives the objects from the server.

The embedded components do not all need to be hosted on the same web server, so the parallel connections
can be established to multiple servers.

88 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 18
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

also a psychological
ing is happening on
ime time.'

re unable to display
-ley don't know the
size information to

3n, the browser may
nay be faced with a
ll.t

.e HTTP connection
aes:

:h embedded object
the first embedded

rm multiple HTTP
pie, four embedded
n TCP connection.t

• if they take advan-
i. delays can be

ng images one at a time!

and height attributes to
d height of the embedded
objects from the server.
) the parallel connections

O' '_ILLY'

•

•

........

.....

......

Client

Internet

Server2

Server 1

Figure 4-11. Each component of a page involves a separate HTTP transaction

overlapped, and if a single connection does not saturate the client's Internet band-
width, the unused bandwidth can be allocated to loading additional objects.

Figure 4-12 shows a timeline for parallel connections, which is significantly faster
than Figure 4-10. The enclosing HTML page is loaded first, and then the remaining
three transactions are processed concurrently, each with their own connection.'
Because the images are loaded in parallel, the connection delays are overlapped.

•.••••• ••JI

Server

Client

Transaction 2,3, 4
Transaction 1 (parallel connections)

4r,

:ft
Connect- 1 Connect- 2

Connect- 3
ri

Connect- 4
Moony o small software delay
between each connection)

4.

 i t
6 Time

Figure 4-12. Four transactions (parallel)

Parallel Connections Are Not Always Faster
Even though parallel connections may be faster, however, they are not always faster.
When the client's network bandwidth is scarce (for example, a browser connected to

' There will generally still be a small delay between each connection request due to software overheads, but
the connection requests and transfer times are mostly overlapped.

Parallel Connections I 89

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 19
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

the Internet through a 28 8-Kbps modem), most of the time might be spent just
transferring data. In this situation, a single HTTP transaction to a fast server could
easily consume all of the available modem bandwidth. If multiple objects are loaded
in parallel, each object will just compete for this limited bandwidth, so each object
will load proportionally slower, yielding little or no performance advantage.'

Also, a large number of open connections can consume a lot of memory and cause
performance problems of their own. Complex web pages may have tens or hundreds
of embedded objects. Clients might be able to open hundreds of connections, but
few web servers will want to do that, because they often are processing requests for
many other users at the same time. A hundred simultaneous users, each opening 100
connections, will put the burden of 10,000 connections on the server. This can cause
significant server slowdown. The same situation is true for high-load proxies.

In practice, browsers do use parallel connections, but they limit the total number of
parallel connections to a small number (often four). Servers are free to close exces-
sive connections from a particular client.

Parallel Connections May "Feel" Faster
Okay, so parallel connections don't always make pages load faster. But even if they
don't actually speed up the page transfer, as we said earlier, parallel connections
often make users feel that the page loads faster, because they can see progress being
made as multiple component objects appear onscreen in parallel.t Human beings
perceive that web pages load faster if there's lots of action all over the screen, even if
a stopwatch actually shows the aggregate page download time to be slower!

Persistent Connections
Web clients often open connections to the same site. For example, most of the
embedded images in a web page often come from the same web site, and a signifi-
cant number of hyperlinks to other objects often point to the same site. Thus, an
application that initiates an HTTP request to a server likely will make more requests
to that server in the near future (to fetch the inline images, for example). This prop-
erty is called site locality.

For this reason, HTTP/1.1 (and enhanced versions of HTTP/1.0) allows HTTP
devices to keep TCP connections open after transactions complete and to reuse the
preexisting connections for future HTTP requests. TCP connections that are kept

In fact, because of the extra overhead from multiple connections, it's quite possible that parallel connections
could take longer to load the entire page than serial downloads.

t This effect is amplified by the increasing use of progressive images that produce low-resolution approxima-
tions of images first and gradually increase the resolution.

90 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 20
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

might be spent just
D a fast server could
Le objects are loaded
'idth, so each object
advantage.'

memory and cause
[ye tens or hundreds
of connections, but
)cessing requests for
-s, each opening 100
aver. This can cause
Dad proxies.

the total number of
free to close exces-

ter. But even if they
?arallel connections

see progress being
lel.t Human beings

the screen, even if
be slower!

ample, most of the
D site, and a signifi-
same site. Thus, an
make more requests
K ample). This prop-

/1.0) allows HTTP
Lte and to reuse the
:tions that are kept

that parallel connections

)w-resolution approxima-

open after transactions complete are called persistent connections. Nonpersistent
connections are closed after each transaction. Persistent connections stay open

across transactions, until either the client or the server decides to close them.

By reusing an idle, persistent connection that is already open to the target server, you

can avoid the slow connection setup. In addition, the already open connection can
avoid the slow-start congestion adaptation phase, allowing faster data transfers.

Persistent Versus Parallel Connections

As we've seen, parallel connections can speed up the transfer of composite pages.

But parallel connections have some disadvantages:

• Each transaction opens/closes a new connection, costing time and bandwidth.

• Each new connection has reduced performance because of TCP slow start.

• There is a practical limit on the number of open parallel connections.

Persistent connections offer some advantages over parallel connections. They reduce

the delay and overhead of connection establishment, keep the connections in a tuned
state, and reduce the potential number of open connections. However, persistent
connections need to be managed with care, or you may end up accumulating a large
number of idle connections, consuming local resources and resources on remote cli-
ents and servers.

Persistent connections can be most effective when used in conjunction with parallel
connections. Today, many web applications open a small number of parallel connec-
tions, each persistent. There are two types of persistent connections: the older
HTTP/1.0+ "keep-alive" connections and the modern HTTP/1.1 "persistent" con-
nections. We'll look at both flavors in the next few sections.

HTTP/1.0+ Keep-Alive Connections
Many HTTP/1.0 browsers and servers were extended (starting around 1996) to sup-
port an early, experimental type of persistent connections called keep-alive connec-
tions. These early persistent connections suffered from some interoperability design
problems that were rectified in later revisions of HTTP/1.1, but many clients and
servers still use these earlier keep-alive connections.

Some of the performance advantages of keep-alive connections are visible in
Figure 4-13, which compares the timeline for four HTTP transactions over serial con-
nections against the same transactions over a single persistent connection. The time-
line is compressed because the connect and close overheads are removed."

Additionally, the request and response time might also be reduced because of elimination of the slow-start
phase. This performance benefit is not depicted in the figure.

Persistent Connections I 91

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 21
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

L

(a) Serial connections

Transaction 1 Transaction 2 Transaction 3 Transaction 4
ammimmoll

Server

Client

i' s' 1 er f 0
g ,

cri
(=Kt- l ,Connect- 1,

Comect-3 Connect- 4
, ,

Time

(b) Persistent connection

w.mmeamel.

Server

Client

Transaction 1 Transaction 2 Transaction 3 Transaction 4

I.

f‘,
''"••' 't "1

g,
cc, I

4,

.., ,*1.

'i
 ,_..,,

' ' c‘6,-v a,

%..., cc, yp.

6 Time

Figure 4-13. Four transactions (serial versus persistent)

Keep-Alive Operation
Keep-alive is deprecated and no longer documented in the current HTTP/1.1 specifi-
cation. However, keep-alive handshaking is still in relatively common use by brows-
ers and servers, so HTTP implementors should be prepared to interoperate with it.
We'll take a quick look at keep-alive operation now. Refer to older versions of the
HTTP/1.1 specification (such as RFC 2068) for a more complete explanation of
keep-alive handshaking.

Clients implementing HTTP/1.0 keep-alive connections can request that a connec-
tion be kept open by including the Connection: Keep-Alive request header.

If the server is willing to keep the connection open for the next request, it will
respond with the same header in the response (see Figure 4-14). If there is no Con-
nection: keep-alive header in the response, the client assumes that the server does
not support keep-alive and that the server will close the connection when the
response message is sent back.

Keep-Alive Options
Note that the keep-alive headers are just requests to keep the connection alive. Cli-
ents and servers do not need to agree to a keep-alive session if it is requested. They

92 Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 22
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

14

Time

Time 6

HTTP/1.1 specifi-
non use by brows-
.teroperate with it.
ler versions of the
to explanation of

est that a connec-
t header.

xt request, it will
.f there is no Con-
at the server does
riection when the

.nection alive. Cli-
is requested. They

Client

GET /index.html HTTP/1.0
Host: www.joes-hardware.com
Connection: Keep-Alive

Internet

7;,

HTTP/1.0 200 OK
Content-type: text/html
Content-length: 3104
Connection: Keep-Alive

Server

Figure 4-14. HTTP/1.0 keep-alive transaction header handshake

can close idle keep-alive connections at any time and are free to limit the number of
transactions processed on a keep-alive connection.

The keep-alive behavior can be tuned by comma-separated options specified in the
Keep-Alive general header:

• The timeout parameter is sent in a Keep-Alive response header. It estimates how
long the server is likely to keep the connection alive for. This is not a guarantee.

• The max parameter is sent in a Keep-Alive response header. It estimates how
many more HTTP transactions the server is likely to keep the connection alive
for. This is not a guarantee.

• The Keep-Alive header also supports arbitrary unprocessed attributes, primarily
for diagnostic and debugging purposes. The syntax is name [= value].

The Keep-Alive header is completely optional but is permitted only when Connec-
tion: Keep-Alive also is present. Here's an example of a Keep-Alive response header
indicating that the server intends to keep the connection open for at most five more
transactions, or until it has sat idle for two minutes:

Connection: Keep-Alive
Keep-Alive: max=5, timeout=120

Keep-Alive Connection Restrictions and Rules
Here are some restrictions and clarifications regarding the use of keep-alive
connections:

• Keep-alive does not happen by default in HTTP/1.0. The client must send a
Connection: Keep-Alive request header to activate keep-alive connections.

• The Connection: Keep-Alive header must be sent with all messages that want to
continue the persistence. If the client does not send a Connection: Keep-Alive
header, the server will close the connection after that request.

Persistent Connections I 93

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 23
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

• Clients can tell if the server will close the connection after the response by
detecting the absence of the Connection: Keep-Alive response header.

• The connection can be kept open only if the length of the message's entity body
can be determined without sensing a connection close this means that the entity
body must have a correct Content-Length, have a multipart media type, or be
encoded with the chunked transfer encoding. Sending the wrong Content-Length
back on a keep-alive channel is bad, because the other end of the transaction will
not be able to accurately detect the end of one message and the start of another.

• Proxies and gateways must enforce the rules of the Connection header; the proxy
or gateway must remove any header fields named in the Connection header, and
the Connection header itself, before forwarding or caching the message.

• Formally, keep-alive connections should not be established with a proxy server
that isn't guaranteed to support the Connection header, to prevent the problem
with dumb proxies described below. This is not always possible in practice.

• Technically, any Connection header fields (including Connection: Keep-Alive)
received from an HTTP/1.0 device should be ignored, because they may have
been forwarded mistakenly by an older proxy server. In practice, some clients
and servers bend this rule, although they run the risk of hanging on older proxies.

• Clients must be prepared to retry requests if the connection closes before they
receive the entire response, unless the request could have side effects if repeated.

Keep-Alive and Dumb Proxies
Let's take a closer look at the subtle problem with keep-alive and dumb proxies. A
web client's Connection: Keep-Alive header is intended to affect just the single TCP
link leaving the client. This is why it is named the "connection" header. If the client
is talking to a web server, the client sends a Connection: Keep-Alive header to tell the
server it wants keep-alive. The server sends a Connection: Keep-Alive header back if
it supports keep-alive and doesn't send it if it doesn't.

The Connection header and blind relays
The problem comes with proxies—in particular, proxies that don't understand the
Connection header and don't know that they need to remove the header before proxy-
ing it down the chain. Many older or simple proxies act as blind relays, tunneling bytes
from one connection to another, without specially processing the Connection header.
Imagine a web client talking to a web server through a dumb proxy that is acting as a
blind relay. This situation is depicted in Figure 4-15.

Here's what's going on in this figure:

1. In Figure 4-15a, a web client sends a message to the proxy, including the Connec-
tion: Keep-Alive header, requesting a keep-alive connection if possible. The client
waits for a response to learn if its request for a keep-alive channel was granted.

94 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 24
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

ter the response by
e header.

iessage's entity body
means that the entity
:-t media type, or be
•ong Content-Length
f the transaction will
ie start of another.

xi header; the proxy
inection header, and
se message.

with a proxy server
prevent the problem
ble in practice.

section: Keep-Alive)
ause they may have
-actice, some clients
ing on older proxies.

n closes before they
effects if repeated.

ad dumb proxies. A
just the single TCP
header. If the client
Eve header to tell the
Alive header back if

an't understand the
leader before proxy-
lays, tunneling bytes
---'onnection header.

cy that is acting as a

zluding the Connec-
possible. The client
nel was granted.

4

(b) Server won't close connection
when done because it thinks it has

(a) Connection: Keep-Alive b (b) Connection: Keep-Alive • been asked to speak keep-alive

• J
/---6-..

. (d) Connection:Keep-Alive Dumb proxy (c) Connection:Keep-Alive
rya

Client .: ', 4 Server

-• (c) Proxy waits for connection
Next request .-- to close, ignoring any new
..... requests on the connection '- - .. - - - -

(e) Client's second request on
the keep-alive connection just
hangs because the proxy never
processes it

Figure 4-15. Keep-alive doesn't interoperate with proxies that don't support Connection headers

2. The dumb proxy gets the HTTP request, but it doesn't understand the Connec-
tion header (it just treats it as an extension header). The proxy has no idea what
keep-alive is, so it passes the message verbatim down the chain to the server
(Figure 4-15b). But the Connection header is a hop-by-hop header; it applies to
only a single transport link and shouldn't be passed down the chain. Bad things
are about to happen.

3. In Figure 4-15b, the relayed HTTP request arrives at the web server. When the
web server receives the proxied Connection: Keep-Alive header, it mistakenly
concludes that the proxy (which looks like any other client to the server) wants
to speak keep-alive! That's fine with the web server—it agrees to speak keep-
alive and sends a Connection: Keep-Alive response header back in Figure 4-15c.
So, at this point, the web server thinks it is speaking keep-alive with the proxy
and will adhere to rules of keep-alive. But the proxy doesn't know the first thing
about keep-alive. Uh-oh.

4. In Figure 4-15d, the dumb proxy relays the web server's response message back to
the client, passing along the Connection: Keep-Alive header from the web server.
The client sees this header and assumes the proxy has agreed to speak keep-alive.
So at this point, both the client and server believe they are speaking keep-alive,
but the proxy they are talking to doesn't know anything about keep-alive.

5. Because the proxy doesn't know anything about keep-alive, it reflects all the
data it receives back to the client and then waits for the origin server to close the
connection. But the origin server will not close the connection, because it
believes the proxy explicitly asked the server to keep the connection open. So
the proxy will hang waiting for the connection to close.

6. When the client gets the response message back in Figure 4-15d, it moves right
along to the next request, sending another request to the proxy on the keep-alive
connection (see Figure 4-15e). Because the proxy never expects another request

Persistent Connections I 95

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 25
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

on the same connection, the request is ignored and the browser just spins, mak-
ing no progress.

7. This miscommunication causes the browser to hang until the client or server
times out the connection and closes it.'

Proxies and hop-by-hop headers
To avoid this kind of proxy miscommunication, modern proxies must never proxy
the Connection header or any headers whose names appear inside the Connection
values. So if a proxy receives a Connection: Keep-Alive header, it shouldn't proxy
either the Connection header or any headers named Keep-Alive.

In addition, there are a few hop-by-hop headers that might not be listed as values of
a Connection header, but must not be proxied or served as a cache response either.
These include Proxy-Authenticate, Proxy-Connection, Transfer-Encoding, and
Upgrade. For more information, refer back to "The Oft-Misunderstood Connection
Header."

The Proxy-Connection Hack
Browser and proxy implementors at Netscape proposed a clever workaround to the
blind relay problem that didn't require all web applications to support advanced ver-
sions of HTTP. The workaround introduced a new header called Proxy-Connection
and solved the problem of a single blind relay interposed directly after the client—
but not all other situations. Proxy-Connection is implemented by modern browsers
when proxies are explicitly configured and is understood by many proxies.
The idea is that dumb proxies get into trouble because they blindly forward hop-by-
hop headers such as Connection: Keep-Alive. Hop-by-hop headers are relevant only
for that single, particular connection and must not be forwarded. This causes trou-
ble when the forwarded headers are misinterpreted by downstream servers as
requests from the proxy itself to control its connection.

In the Netscape workaround, browsers send nonstandard Proxy-Connection exten-
sion headers to proxies, instead of officially supported and well-known Connection
headers. If the proxy is a blind relay, it relays the nonsense Proxy-Connection header
to the web server, which harmlessly ignores the header. But if the proxy is a smart
proxy (capable of understanding persistent connection handshaking), it replaces the
nonsense Proxy-Connection header with a Connection header, which is then sent to
the server, having the desired effect.

Figure 4-16a—d shows how a blind relay harmlessly forwards Proxy-Connection head-
ers to the web server, which ignores the header, causing no keep-alive connection to

• There are many similar scenarios where failures occur due to blind relays and forwarded handshaking.

96 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 26
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

vser just spins, mak-

the client or server

s must never proxy
side the Connection

it shouldn't proxy

be listed as values of
tche response either.
tsfer-Encoding, and
lerstood Connection

r workaround to the
ipport advanced ver-
:d Proxy-Connection
tly after the client—
by modern browsers
ly proxies.

idly forward hop-by-
[ers are relevant only
:d. This causes trou-
vnstream servers as

.y-Connection exten-
1-known Connection
y-Connection header
the proxy is a smart
.king), it replaces the
which is then sent to

xy-Connection head-
p-alive connection to

:warded handshaking.

be established between the client ancrproxy or the proxy and server. The smart proxy

in Figure 4-16e—h understands the Proxy-Connection header as a request to speak

keep-alive, and it sends out its own Connection: Keep-Alive headers to establish

keep-alive connections.

The server does not recognize the Proxy-Connection header, and ignores it.
No keep-alive Connection is established.

(a) Proxy-Connection: Keep-Alive (b) Proxy-Connection: Keep-Alive

.....
.....

(d) No Connection header Dumb proxy (c) No Connection header

Client Server

A dumb proxy forwards the Proxy-Connection header, which the server ignores.

The proxy recognizes the Proxy-Co n nection heade r, ag rees to talk
keep-alive with the client,and may also (optionally) decide to
set up a keep-alive connection with the server.

(e) Proxy-Connection:Keep-Alive 1. (f) Connection: Keep-Alive

(h) Connection: Keep-Alive Smart proxy (g) Connection: Keep-Alive

Client Server

A smart proxy understands the Prary-Connection header and actively sends
a Connection: Keep-Alive header to the server.

Figure 4-16. Proxy-Connection header fixes single blind relay

This scheme works around situations where there is only one proxy between the cli-
ent and server. But if there is a smart proxy on either side of the dumb proxy, the
problem will rear its ugly head again, as shown in Figure 4-17.

Furthermore, it is becoming quite common for "invisible" proxies to appear in net-
works, either as firewalls, intercepting caches, or reverse proxy server accelerators.
Because these devices are invisible to the browser, the browser will not send them
Proxy-Connection headers. It is critical that transparent web applications implement
persistent connections correctly.

HTTP/1.1 Persistent Connections
HTTP/1.1 phased out support for keep-alive connections, replacing them with an
improved design called persistent connections. The goals of persistent connections are
the same as those of keep-alive connections, but the mechanisms behave better.

Persistent Connections I 97

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 27
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

(a)
Proxy-Connection: Keep-Alive

(b) (c)
Proxy-Connection: Keep-Alive Connection: Keep-Alive

12 (() Dumb (e) Smart
.Connection: Keep-Alive proxy Connection: Keep-Alive proxy (C donnection: Keep-Alive

r••••11
'mom

mmom..4

•

Client Server

A dumb proxy unwittingly advertises keep-Alive to browser and smart proxy.

(9)
Proxy-Connection: Keep-Alive

(h) (i)
Connection:Keep-Alive Connection:Keep-Alive

.--..,
/

0) . Smart (k)

',:-:•::.1......... /

Dumb CO
Connection:Keep-Alive proxy Connection:Keep-Alive proxy Connection: Keep-Alive

Client Server

••••

A dumb proxy unwittingly advertises keep-Alive to smart proxy and server.

Figure 4-17. Proxy-Connection still fails for deeper hierarchies of proxies

Unlike HTTP/1.0+ keep-alive connections, HTTP/1.1 persistent connections are
active by default. HTTP/1.1 assumes all connections are persistent unless otherwise
indicated. HTTP/1.1 applications have to explicitly add a Connection: close header
to a message to indicate that a connection should close after the transaction is com-
plete. This is a significant difference from previous versions of the HTTP protocol,
where keep-alive connections were either optional or completely unsupported.

An HTTP/1.1 client assumes an HTTP/1.1 connection will remain open after a
response, unless the response contains a Connection: close header. However, clients
and servers still can close idle connections at any time. Not sending Connection:
close does not mean that the server promises to keep the connection open forever.

Persistent Connection Restrictions and Rules
Here are the restrictions and clarifications regarding the use of persistent connections:

After sending a Connection: close request header, the client can't send more
requests on that connection.

• If a client does not want to send another request on the connection, it should
send a Connection: close request header in the final request.

• The connection can be kept persistent only if all messages on the connection
have a correct, self-defined message length—i.e., the entity bodies must have
correct Content-Lengths or be encoded with the chunked transfer encoding.

98 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 28
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

lye

live

lye

••• •••••...1.

Senor

•• •••••...

.I .•••••••a

Serer

tnt connections are
mt unless otherwise
ection: close header
transaction is corn-

the HTTP protocol,
unsupported.

2.main open after a
er. However, clients
ending Connection:
Lon open forever.

sistent connections:

nt can't send more

Innection, it should

on the connection
bodies must have

isfer encoding.

• HTTP/1.1 proxies must manage persistent connections separately with clients

and servers—each persistent connection applies to a single transport hop.

▪ HTTP/1.1 proxy servers should not establish persistent connections with an
HTTP/1.0 client (because of the problems of older proxies forwarding Connec-

tion headers) unless they know something about the capabilities of the client.

This is, in practice, difficult, and many vendors bend this rule.

• Regardless of the values of Connection headers, HTTP/1.1 devices may close the
connection at any time, though servers should try not to close in the middle of
transmitting a message and should always respond to at least one request before
closing.

• HTTP/1.1 applications must be able to recover from asynchronous closes. Cli-
ents should retry the requests as long as they don't have side effects that could
accumulate.

• Clients must be prepared to retry requests if the connection closes before they
receive the entire response, unless the request could have side effects if repeated.

• A single user client should maintain at most two persistent connections to any
server or proxy, to prevent the server from being overloaded. Because proxies
may need more connections to a server to support concurrent users, a proxy
should maintain at most 2N connections to any server or parent proxy, if there
are N users trying to access the servers.

Pipelined Connections
HTTP/1.1 permits optional request pipelining over persistent connections. This is a
further performance optimization over keep-alive connections. Multiple requests can
be enqueued before the responses arrive. While the first request is streaming across
the network to a server on the other side of the globe, the second and third requests
can get underway. This can improve performance in high-latency network condi-
tions, by reducing network round trips.

Figure 4-18a-c shows how persistent connections can eliminate TCP connection
delays and how pipelined requests (Figure 4-18c) can eliminate transfer latencies.

There are several restrictions for pipelining:

• HTTP clients should not pipeline until they are sure the connection is persistent.

• HTTP responses must be returned in the same order as the requests. HTTP mes-
sages are not tagged with sequence numbers, so there is no way to match
responses with requests if the responses are received out of order.

• HTTP clients must be prepared for the connection to close at any time and be
prepared to redo any pipelined requests that did not finish. If the client opens a
persistent connection and immediately issues 10 requests, the server is free to
close the connection after processing only, say, 5 requests. The remaining 5

Pipelined Connections I 99

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 29
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

(a) Serial connections

 ,

Transaction 1 Transaction 2

A . . . ,
#,
.

Server
I

"—

t--,1•,*
, t,-,' ..,

t .,,,
, no

'r.„ ,,a
o;

Ni ...,_., c,.....7, , g ,..,

1. .?..,,

.s , 0,
',^;

1
, i.l '

Connect- I Connect -1 Connect- 3 Connect-4
.

Client

Transaction 3 Transaction 4

A 4, I , , .
I I ,, to.: 1. ...,

,-1('f, ^-,, . ,..t,,,
it , 0 4.4: ,•=3,s. a', c:,-, o., ..,, \ I' 1,‘r?

(b) Persistent connection

Transaction 1 Transaction 2 Transaction 3 Transaction 4

, . l .I
4,, 4, . . A

I I

',1 I% ^1 . '. % v.: 1,74
41 t.-'„I yi t.„ 1N

. , u?„ `'.•', 17 . , ,-. ,
4; ,'"? ',I S .' '.Ai c?.: ',`,i

, r•-, - - "I I ,.... C t ., I r i...
1 I

I '
411 ;

Ii
 ; I I ,' i I

Server

Client

; , .p.

6 Time

(c) Pipelined, persistent connection

O Time

Server

Client

iTransoction-1
1 ' I

Transaction- 2
Transaction-3

Transaction-4

6 Time

Figure 4-18, Four transactions (pipelined connections)

requests will fail, and the client must be willing to handle these premature closes
and reissue the requests.

• HTTP clients should not pipeline requests that have side effects (such as
POSTs). In general, on error, pipelining prevents clients from knowing which of
a series of pipelined requests were executed by the server. Because nonidempo-
tent requests such as POSTs cannot safely be retried, you run the risk of some
methods never being executed in error conditions.

100

L
Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 30
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

The Mysteries of Connection Close
'ction 4

4;
vre.

L r 4;
,

•
%,Jp•

6 Time

5 Time

:se premature closes

le effects (such as
i knowing which of
ecause nonidempo-
in the risk of some

connection management—particularly knowing when and how to close connec-

tioannsy— is one of the practical black arts of HTTP. This issue is more subtle than

m developers first realize, and little has been written on the subject.

"At Will" Disconnection

Any HTTP client, server, or proxy can close a TCP transport connection at any time.

The connections normally are closed at the end of a message; but during error con-

ditions, the connection may be closed in the middle of a header line or in other

strange places.

This situation is common with pipelined persistent connections. HTTP applications

are free to close persistent connections after any period of time. For example, after a

persistent connection has been idle for a while, a server may decide to shut it down.

However, the server can never know for sure that the client on the other end of the

line wasn't about to send data at the same time that the "idle" connection was being

shut down by the server. If this happens, the client sees a connection error in the

middle of writing its request message.

Content-Length and Truncation
Each HTTP response should have an accurate Content-Length header to describe the

size of the response body. Some older HTTP servers omit the Content-Length header

or include an erroneous length, depending on a server connection close to signify the

actual end of data.

When a client or proxy receives an HTTP response terminating in connection close,

and the actual transferred entity length doesn't match the Content-Length (or there

is no Content-Length), the receiver should question the correctness of the length.

If the receiver is a caching proxy, the receiver should not cache the response (to mini-

mize future compounding of a potential error). The proxy should forward the ques-

tionable message intact, without attempting to "correct" the Content-Length, to

maintain semantic transparency.

Connection Close Tolerance, Retries, and Idempotency
Connections can close at any time, even in non-error conditions. HTTP applica-

tions have to be ready to properly handle unexpected closes. If a transport connec-

tion closes while the client is performing a transaction, the client should reopen the

- Servers shouldn't close a connection in the middle of a response unless client or network failure is suspected.

The Mysteries of Connection Close I 101

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 31
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

connection and retry one time, unless the transaction has side effects. The situation
is worse for pipelined connections. The client can enqueue a large number of requests, but the origin server can close the connection, leaving numerous requests unprocessed and in need of rescheduling.
Side effects are important. When a connection closes after some request data was sent but before the response is returned, the client cannot be 100% sure how much of the transaction actually was invoked by the server. Some transactions, such as GETting a static HTML page, can be repeated again and again without changing anything. Other transactions, such as POSTing an order to an online book store, shouldn't be repeated, or you may risk multiple orders.
A transaction is idempotent if it yields the same result regardless of whether it is exe-cuted once or many times. Implementors can assume the GET, HEAD, PUT, DELETE, TRACE, and OPTIONS methods share this property.* Clients shouldn't pipeline nonidempotent requests (such as POSTs). Otherwise, a premature termina-tion of the transport connection could lead to indeterminate results. If you want to send a nonidempotent request, you should wait for the response status for the previ-ous request.

Nonidempotent methods or sequences must not be retried automatically, although user agents may offer a human operator the choice of retrying the request. For exam-ple, most browsers will offer a dialog box when reloading a cached POST response, asking if you want to post the transaction again.

Graceful Connection Close
TCP connections are bidirectional, as shown in Figure 4-19. Each side of a TCP con-nection has an input queue and an output queue, for data being read or written. Data placed in the output of one side will eventually show up on the input of the other side.

112 44:Itin
Client

out

Sever

Figure 4-19. TCP connections are bidirectional

Full and half closes
An application can close either or both of the TCP input and output channels. A close() sockets call closes both the input and output channels of a TCP connection.

`Administrators who use GET-based dynamic forms should make sure the forms are idempotent.

102 Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 32
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

effects. The situation
le a large number of
ng numerous requests

>me request data was
100% sure how much
transactions, such as
ain without changing
in online book store,

s of whether it is exe-
GET, HEAD, PUT,

ty." Clients shouldn't
a premature termina-
:sults. If you want to

status for the previ-

omatically, although
.e request. For exam-
hed POST response,

side of a TCP con-
ing read or written.
on the input of the

mtput channels. A
a TCP connection.

idempotent.

This is called a "full close" and is depicted in Figure 4-20a. You can use the

hutdown() sockets call to close either the input or output channel individually. This

is called a "half close" and is depicted in Figure 4-20b.

(a) Server full close

out

Client

(b) Server output half close (graceful close)

out

out I

Server

out
••• •

•••••• 111.

Client Server

(c) Server input half close
in j out

out = .77 -11M,

Client Server

Figure 4-20. Full and half close

TCP close and reset errors

Simple HTTP applications can use only full closes. But when applications start talk-

ing to many other types of HTTP clients, servers, and proxies, and when they start

using pipelined persistent connections, it becomes important for them to use half

closes to prevent peers from getting unexpected write errors.

In general, closing the output channel of your connection is always safe. The peer on

the other side of the connection will be notified that you closed the connection by

getting an end-of-stream notification once all the data has been read from its buffer.

Closing the input channel of your connection is riskier, unless you know the other

side doesn't plan to send any more data. If the other side sends data to your closed

input channel, the operating system will issue a TCP "connection reset by peer" mes-

sage back to the other side's machine, as shown in Figure 4-21. Most operating sys-

tems treat this as a serious error and erase any buffered data the other side has not

read yet. This is very bad for pipelined connections.

Say you have sent 10 pipelined requests on a persistent connection, and the

responses already have arrived and are sitting in your operating system's buffer (but

the application hasn't read them yet). Now say you send request #11, but the server

decides you've used this connection long enough, and closes it. Your request #11

will arrive at a closed connection and will reflect a reset back to you. This reset will

erase your input buffers.

The Mysteries of Connection Close I 103

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 33
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

1 ,,,._ _____
...

RESET/.
. .)t \ •••••••••

... -si

' out

Arr

?
 I_it

--— m -1

.,ememwmi

.a maa1,

Client ..s. Server ..--

Figure 4-21. Data arriving at closed connection generates "connection reset by peer" error
When you finally get to reading data, you will get a connection reset by peer error, and the buffered, unread response data will be lost, even though much of it success-fully arrived at your machine.

Graceful close
The HTTP specification counsels that when clients or servers want to close a connec-tion unexpectedly, they should "issue a graceful close on the transport connection," but it doesn't describe how to do that.
In general, applications implementing graceful closes will first close their output channels and then wait for the peer on the other side of the connection to close its output channels. When both sides are done telling each other they won't be sending any more data (i.e., closing output channels), the connection can be closed fully, with no risk of reset.
Unfortunately, there is no guarantee that the peer implements or checks for half closes. For this reason, applications wanting to close gracefully should half close their output channels and periodically check the status of their input channels (look-ing for data or for the end of the stream). If the input channel isn't closed by the peer within some timeout period, the application may force connection close to save resources.

For More Information
This completes our overview of the HTTP plumbing trade. Please refer to the fol-lowing reference sources for more information about TCP performance and HTTP connection-management facilities.

HTTP Connections
http:11www.ietforglrfclrfc261 6. txt

RFC 2616, "Hypertext Transfer Protocol—HTTP/1.1," is the official specification for HTTP/1.1; it explains the usage of and HTTP header fields for implementing

104 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 34
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

by peer" error

t reset by peer error,
r much of it success-

nt to close a connec-
nsport connection,"

close their output
inection to close its
ey won't be sending
:an be closed fully,

or checks for half
y should half close
put channels (look-
t closed by the peer
ction close to save

ise refer to the fol-
rmance and HTTP

fficial specification
for implementing

parallel, persistent, and pipelined HTTP connections. This document does not

cover the proper use of the underlying TCP connections.

http://www.ietforg/rfc/rfc2068.txt

RFC 2068 is the 1997 version of the HTTP/1.1 protocol. It contains explanation

of the HTTP/1.0+ Keep-Alive connections that is missing from RFC 2616.

http://www.ics.uci.edu/publietf/http/draft-ietf-http-connection-00.txt

This expired Internet draft, "HTTP Connection Management," has some good

discussion of issues facing HTTP connection management.

HTTP Performance Issues

http://www.w3.org/Protocols/HTTP/Performance/

This W3C web page, entitled "HTTP Performance Overview," contains a few

papers and tools related to HTTP performance and connection management.

http://www.w3.org/Protocols/HTTP/1.0/HTIPPerformance.html

This short memo by Simon Spero, "Analysis of HTTP Performance Problems," is

one of the earliest (1994) assessments of HTTP connection performance. The

memo gives some early performance measurements of the effect of connection

setup, slow start, and lack of connection sharing.

ftp://gatekeeper.dec.com/pub/DEC/WRL/research-reports/WRL-TR-95.4.pdf

"The Case for Persistent-Connection I-ITTP."

http://www.isi.edullsam/publicationslphttp_tcp_interactions/paper.html

"Performance Interactions Between P-I-ITTP and TCP Implementations."

http://www.sun.com/sun-on-net/performance/tcp.slowstart.html

"TCP Slow Start Tuning for Solaris" is a web page from Sun Microsystems that

talks about some of the practical implications of TCP slow start. It's a useful

read, even if you are working with different operating systems.

TCP/IP
The following three books by W. Richard Stevens are excellent, detailed engineering

texts on TCP/IP. These are extremely useful for anyone using TCP:

TCP Illustrated, Volume I: The Protocols
W. Richard Stevens, Addison Wesley

UNIX Network Programming, Volume 1: Networking APIs

W. Richard Stevens, Prentice-Hall

UNIX Network Programming, Volume 2: The Implementation

W. Richard Stevens, Prentice-Hall

For More Information I 105

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 35
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

The following papers and specifications describe TCP/IP and features that affect its
performance. Some of these specifications are over 20 years old and, given the world-
wide success of TCP/IP, probably can be classified as historical treasures:

http://www. acm. org/sigcomm/ccr/archive/2001/jan01 /ccr-200101-mogul.pdf
In "Rethinking the TCP Nagle Algorithm," Jeff Mogul and Greg Minshall
present a modern perspective on Nagle's algorithm, outline what applications
should and should not use the algorithm, and propose several modifications.

http://www.ietforg/rfc/rfc2001.txt
RFC 2001, "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms," defines the TCP slow-start algorithm.

http://www.ietforg/rfc/rfc1122.txt
RFC 1122, "Requirements for Internet Hosts—Communication Layers," dis-
cusses TCP acknowledgment and delayed acknowledgments.

http://www.ietforg/rfc/rfc896.txt
RFC 896, "Congestion Control in IP/TCP Internetworks," was released by John
Nagle in 1984. It describes the need for TCP congestion control and introduces
what is now called "Nagle's algorithm."

http://www.ietf. org/rfc/rfc0813. txt
RFC 813, "Window and Acknowledgement Strategy in TCP," is a historical
(1982) specification that describes TCP window and acknowledgment imple-
mentation strategies and provides an early description of the delayed acknowl-
edgment technique.

http://www.ietf.org/rfc/rfc0793.txt
RFC 793, "Transmission Control Protocol," is Jon Postel's classic 1981 defini-
tion of the TCP protocol.

106 I Chapter 4: Connection Management

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 36
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

features that affect its
. and, given the world-
treasures:

1-mogul.pdf
I and Greg Minshall
Lne what applications
ral modifications.

Retransmit, and Fast
1.

ication Layers," dis-

xas released by John
ntrol and introduces

'CP," is a historical
iowledgment imple-
ie delayed acknowl-

classic 1981 defini-

11'
PART II

HTTP Architecture

The six chapters of Part II highlight the HTTP server, proxy, cache, gateway, and

robot applications, which are the building blocks of web systems architecture:

• Chapter 5, Web Servers, gives an overview of web server architectures.

• Chapter 6, Proxies, describes HTTP proxy servers, which are intermediary servers

that connect HTTP clients and act as platforms for HTTP services and controls.

• Chapter 7, Caching, delves into the science of web caches—devices that improve

performance and reduce traffic by making local copies of popular documents.

• Chapter 8, Integration Points: Gateways, Tunnels, and Relays, explains applica-

tions that allow HTTP to interoperate with software that speaks different proto-

cols, including SSL encrypted protocols.

• Chapter 9, Web Robots, wraps up our tour of HTTP architecture with web clients.

• Chapter 10, HTTP-NG, covers future topics for HTTP—in particular, HTTP-NG.

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 37
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

Web Programming

O'REILLY'
HTTP: The Definitive Guide

Behind every successful web transaction lurks the Hypertext Transfer Protocol (HI11),
the language by which web clients and servers exchange documents and information.
HTTP is commonly known as the workhorse behind the browsers we use every day to
access our company intranets, locate out-of-print books, or research census information.

But HTTP is used for far more than browsing the Web: the simplicity and ubiquity of HI IP also
have made it the choice protocol for many other networked applications, most notably through
web services such as SOAP and XML-RPC.

As the title suggests, HI IP: The Definitive Guide explains the HI IP protocol: how it works and
how to use it to develop web-based applications. However, this book is not just about H1 fP;
it's also about all the other core Internet technologies that HI -1'P depends on to work effectively.
Although HTTP is at the center of the book, the essence of HITIP: The Definitive Guide is in
understanding how the Web works and how to apply that knowledge to web programming and
administration. The book explains the technical workings, motivations, performance considerations,
and objectives of H FTP and the technologies around which it revolves.

HI IP: The Definitive Guide is the bible for the HI IP protocol and related web technologies.
Topics covered include:

• HTTP methods, headers, and status codes

• Optimizing proxies and caches

• Strategies for designing web robots and crawlers

• Cookies, authentication, and Secure HI IP

• Intemationalization and content negotiation

• Redirection and load-balancing strategies

Written by experts with years of practical experience, this book uses clear, concise language and a
plethora of detailed illustrations to help readers visualize what goes on behind the scenes, providing
a complete understanding of the story behind each query on the Web.

All web programmers. administrators, and application developers need to be familiar with HTTP

11111 11111 ill are many books that explain how to use the Web, but this is the

kleGk $zorks.

BB
;.3453763

1565925092

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 38
fuboTV MEDIA INC., and Yanka Industries, Inc., v. Dish Technologies L.L.C., IPR2024-00918

