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CHAPTER 4 

Connection Management 

The HTTP specifications explain HTTP messages fairly well, but they don't talk 
much about HTTP connections, the critical plumbing that HTTP messages flow 
through. If you're a programmer writing HTTP applications, you need to under-
stand the ins and outs of HTTP connections and how to use them. 

HTTP connection management has been a bit of a black art, learned as much from 
experimentation and apprenticeship as from published literature. In this chapter, 
you'll learn about: 

• How HTTP uses TCP connections 

• Delays, bottlenecks and clogs in TCP connections 

• HTTP optimizations, including parallel, keep-alive, and pipelined connections 

• Dos and don'ts for managing connections 

TCP Connections 
Just about all of the world's HTTP communication is carried over TCP/IP, a popular 
layered set of packet-switched network protocols spoken by computers and network 
devices around the globe. A client application can open a TCP/IP connection to a 
server application, running just about anywhere in the world. Once the connection is 
established, messages exchanged between the client's and server's computers will 
never be lost, damaged, or received out of order." 

Say you want the latest power tools price list from Joe's Hardware store: 

http://www.joes-hardware.com:80/power-tools.html 

When given this URL, your browser performs the steps shown in Figure 4-1. In Steps 
1-3, the IP address and port number of the server are pulled from the URL. A TCP 

Though messages won't be lost or corrupted, communication between client and server can be severed if a 
computer or network breaks, In this case, the client and server are notified of the communication breakdown. 
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http://www.joes-hardware.com:1040wer-tools.html 

(1) The browser extracts the hostname 

(2) The browser looks up the IP address for this hostname (DNS) 

(3) The browser gets the port number (80) 

(4) The browser makes aTCP connection to 202.43.78.3 port 80 

www.joes-hardware.com 

202.43.78.3 

80-4 

aunt 

ril(5) The browser sends an HTTP GET request message to the server 

Client 

Internet 

Internet 

12 (6) The browser reads the HTTP response message from the server .444•0”-- yen... 

Internet 

(7) The browser closes the connection 

Client 

12 
Client 

Internet 

80

Server 
(202.43.78.3) 

Server 

Server 

Server 

Figure 4-1. Web browsers talk to web servers over TCP connections 

TCP Reliable Data Pipes 
HTTP connections really are nothing more than TCP connections, plus a few rules 
about how to use them. TCP connections are the reliable connections of the Inter-
net. To send data accurately and quickly, you need to know the basics of TCP." 

TCP gives HTTP a reliable bit pipe. Bytes stuffed in one side of a TCP connection 
come out the other side correctly, and in the right order (see Figure 4-2). 

• If you are trying to write sophisticated HTTP applications, and especially if you want them to be fast, you'll 
want to learn a lot more about the internals and performance of TCP than we discuss in this chapter. We 
recommend the "TCP/IP Illustrated" books by W. Richard Stevens (Addison Wesley). 
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AIR 

Internet 

I n 

Client Server 

Figure 4-2. TCP carries HTTP data in order, and without corruption 

TCP Streams Are Segmented and Shipped by IP Packets 
TCP sends its data in little chunks called IP packets (or IP datagrams). In this way, 
HTTP is the top layer in a "protocol stack" of "HTTP over TCP over IP," as depicted 
in Figure 4-3a. A secure variant, HTTPS, inserts a cryptographic encryption layer 
(called TLS or SSL) between HTTP and TC:P (Figure 4-3b). 

HTTP Application layer 

HTTP Application layer TSL or SSL Security layer 

TCP Transport layer TCP Transport layer 

IP Network layer IP Network layer 

Network interfaces Data link layer Network interfaces Data link layer 

(a) HTTP (b) HTTPS 

Figure 4-3. HTTP and HTTPS network protocol stacks 

When HTTP wants to transmit a message, it streams the contents of the message data, in order, through an open TCP connection. TCP takes the stream of data, chops up the data stream into chunks called segments, and transports the segments across the Internet inside envelopes called IP packets (see Figure 4-4). This is all han-dled by the TCP/IP software; the HTTP programmer sees none of it. 
Each TCP segment is carried by an IP packet from one IP address to another IP 
address. Each of these IP packets contains: 

• An IP packet header (usually 20 bytes) 
• A TCP segment header (usually 20 bytes) 
• A chunk of TCP data (0 or more bytes) 

The IP header contains the source and destination IP addresses, the size, and other flags. The TCP segment header contains TCP port numbers, TCP control flags, and numeric values used for data ordering and integrity checking. 
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Piggybacked acknowledgment 

(words) 
1 Reserved S ¢;K2 ..̀2 LL. length Window size 

TCP checksum Urgent pointer 

GET /index.html HTTP/1.1<CR><LF> 
Host: www.joes-hardware.c 

Figure 4-4. IP packets carry TCP segments, which carry chunks of the TCP data stream 

Keeping TCP Connections Straight 

A computer might have several TCP connections open at any one time. TCP keeps 

all these connections straight through port numbers. 

Port numbers are like employees' phone extensions. Just as a company's main phone 

number gets you to the front desk and the extension gets you to the right employee, 

the IP address gets you to the right computer and the port number gets you to the 

right application. A TCP connection is distinguished by four values: 

<source-IP-address, source-port, destination-IP-address, destination-port> 

Together, these four values uniquely define a connection. Two different TCP connec-

tions are not allowed to have the same values for all four address components (but 

different connections can have the same values for some of the components). 
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In Figure 4-5, there are four connections: A, B, C and D. The relevant information 
for each port is listed in Table 4-1. 

Table 4-1. TCP connection values 

Connection Source IP address Source port Destination IP address Destination port 

A 209.1.32.34 2034 204.62.128.58 4133 

B 209.1.32.35 3227 204.62.128.58 4140 
C 209.1.32.35 3105 207.25.71.25 80 
D 209.1.33.89 5100 207.25.71.25 80 

.,• •••••• 

••• •••• 

.1 •=6 

204.62.12838 207.25.71.25 
4,00410 

ATiK 
A 

2034 

209.1.3234 

3227 3105 5100 

209.132.35 209.1.33.89 

Figure 4-5. Four distinct TCP connections 

Note that some of the connections share the same destination port number (C and D 
both have destination port 80). Some of the connections have the same source IP 
address (B and C). Some have the same destination IP address (A and B, and C and 
D). But no two different connections share all four identical values. 

Programming with TCP Sockets 
Operating systems provide different facilities for manipulating their TCP connec-
tions. Let's take a quick look at one TCP programming interface, to make things 
concrete. Table 4-2 shows some of the primary interfaces provided by the sockets 
API. This sockets API hides all the details of TCP and IP from the HTTP program-
mer. The sockets API was first developed for the Unix operating system, but variants 
are now available for almost every operating system and language. 

Table 4-2. Common socket interface functions for programming TCP connections 

Sockets API call 

s = socket(<parameters>) 

bind(s, <local IP:port>) 

Description 

Creates a new, unnamed, unattached socket. 

Assigns a local port number and interface to the socket. 
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Table 4-2. Common socket interface functions for programming TCP connections (continued) 

Sockets API call 

connect(s, <remote IP:port>) 

listen(s,—) 

s2 = accept(s) 

n = read(s,buffer,n) 

n = write(s,buffer,n) 

close(s) 

shutdown(s,<side>) 

getsockopt(s, ...) 

setsockopt(s, ...) 

Description 

Establishes a TCP connection to a local socket and a remote host and port. 

Marks a local socket as legal to accept connections. 

Waits for someone to establish a connection to a local port. 

Tries to read n bytes from the socket into the buffer. 

Tries to write n bytes from the buffer into the socket. 

Completely closes the TCP connection. 

Closes just the input or the output of the TCP connection. 

Reads the value of an internal socket configuration option. 

Changes the value of an internal socket configuration option. 

The sockets API lets you create TCP endpoint data structures, connect these end-

points to remote server TCP endpoints, and read and write data streams. The TCP 

API hides all the details of the underlying network protocol handshaking and the seg-

mentation and reassembly of the TCP data stream to and from IP packets. 

In Figure 4-1, we showed how a web browser could download the power-tools.html 

web page from Joe's Hardware store using HTTP. The pseudocode in Figure 4-6 

sketches how we might use the sockets API to highlight the steps the client and 

server could perform to implement this HTTP transaction. 

U 
Client 

(C1) get IP address & port 
(C2) create new socket (socket) 
(C3) connect to server IP:port (connect) 

.... ..... 
(C4) connection successful 4 ............ 
(C5) send HTTP request (write)--
(C6) wait for HTTP response (read) 

(C7) process HTTP response  
(C8) close connection (close) 

Server 

(51) create new socket (socket) 
($2) bind socket to port 80 (bind) 
(S3) permit socket connections (listen) 
(54) wait for connection (accept) 

......'(SS) application notified of connection 
(S6) start reading request (read) 

`(57) process HTTP request message 

(58) send back HTTP response (write) 
(59) close connection (close) 

Figure 4-6. Flow TCP clients and servers communicate using the TCP sockets interface 
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We begin with the web server waiting for a connection (Figure 4-6, S4). The client 
determines the IP address and port number from the URL and proceeds to establish 
a TCP connection to the server (Figure 4-6, C3). Establishing a connection can take a 
while, depending on how far away the server is, the load on the server, and the con-
gestion of the Internet. 

Once the connection is set up, the client sends the HTTP request (Figure 4-6, C5) 
and the server reads it (Figure 4-6, $6). Once the server gets the entire request mes-
sage, it processes the request, performs the requested action (Figure 4-6, S7), and 
writes the data back to the client. The client reads it (Figure 4-6, C6) and processes 
the response data (Figure 4-6, C7). 

TCP Performance Considerations 
Because HTTP is layered directly on TCP, the performance of HTTP transactions 
depends critically on the performance of the underlying TCP plumbing. This section 
highlights some significant performance considerations of these TCP connections. By 
understanding some of the basic performance characteristics of TCP, you'll better 
appreciate HTTP's connection optimization features, and you'll be able to design 
and implement higher-performance HTTP applications. 

This section requires some understanding of the internal details of the TCP proto-
col. If you are not interested in (or are comfortable with) the details of TCP perfor-
mance considerations, feel free to skip ahead to "HTTP Connection Handling." 
Because TCP is a complex topic, we can provide only a brief overview of TCP perfor-
mance here. Refer to the section "For More Information" at the end of this chapter 
for a list of excellent TCP references. 

HTTP Transaction Delays 
Let's start our TCP performance tour by reviewing what networking delays occur in 
the course of an HTTP request. Figure 4-7 depicts the major connect, transfer, and 
processing delays for an HTTP transaction. 

..•••• ••••• 

Server 

LIDNS lookup Connect Request Process Response Close Client 

I I 6 Time 

Figure 4-7. Timeline of a serial HTTP transaction 
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Notice that the transaction processing time can be quite small compared to the time 

required to set up TCP connections and transfer the request and response messages. 

Unless the client or server is overloaded or executing complex dynamic resources, 

most HTTP delays are caused by TCP network delays. 

There are several possible causes of delay in an HTTP transaction: 

1. A client first needs to determine the IP address and port number of the web 
server from the URI. If the hostname in the URI was not recently visited, it may 
take tens of seconds to convert the hostname from a URI into an IP address 
using the DNS resolution infrastructure.' 

2. Next, the client sends a TCP connection request to the server and waits for the 
server to send back a connection acceptance reply. Connection setup delay 
occurs for every new TCP connection. This usually takes at most a second or 
two, but it can add up quickly when hundreds of HTTP transactions are made. 

3. Once the connection is established, the client sends the HTTP request over the 
newly established TCP pipe. The web server reads the request message from the 
TCP connection as the data arrives and processes the request. It takes time for 
the request message to travel over the Internet and get processed by the server. 

4. The web server then writes back the HTTP response, which also takes time. 

The magnitude of these TCP network delays depends on hardware speed, the load of 
the network and server, the size of the request and response messages, and the dis-
tance between client and server. The delays also are significantly affected by techni-
cal intricacies of the TCP protocol. 

Performance Focus Areas 
The remainder of this section outlines some of the most common TCP-related delays 
affecting HTTP programmers, including the causes and performance impacts of: 

• The TCP connection setup handshake 

• TCP slow-start congestion control 

• Nagle's algorithm for data aggregation 

• TCP's delayed acknowledgment algorithm for piggybacked acknowledgments 

• TIME_WAIT delays and port exhaustion 

If you are writing high-performance HTTP software, you should understand each of 
these factors. If you don't need this level of performance optimization, feel free to 
skip ahead. 

Luckily, most HTTP clients keep a small DNS cache of IP addresses for recently accessed sites. When the IP 
address is already "cached" (recorded) locally, the lookup is instantaneous. Because most web browsing is 
to a small number of popular sites, hostnames usually are resolved very quickly. 
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TCP Connection Handshake Delays 
When you set up a new TCP connection, even before you send any data, the TCP 
software exchanges a series of IP packets to negotiate the terms of the connection 
(see Figure 4-8). These exchanges can significantly degrade HTTP performance if the 
connections are used for small data transfers. 

Server 

U 
Client 

(a) 

/ 

(C) ACK 
GET/ HTTP. . . 

(b)ISYN+ACK / 
(d) HTTP/1.1 304 Not modified 

• • • 

Connect 
Connection handshake delay Data transfer 6 Time 

Figure 4-8. TCP requires two packet transfers to set up the connection before it can send data 

Here are the steps in the TCP connection handshake: 

1. To request a new TCP connection, the client sends a small TCP packet (usually 
40-60 bytes) to the server. The packet has a special "SYN" flag set, which means 
it's a connection request. This is shown in Figure 4-8a. 

2. If the server accepts the connection, it computes some connection parameters 
and sends a TCP packet back to the client, with both the "SYN" and "ACK" 
flags set, indicating that the connection request is accepted (see Figure 4-8b). 

3. Finally, the client sends an acknowledgment back to the server, letting it know 
that the connection was established successfully (see Figure 4-8c). Modern TCP 
stacks let the client send data in this acknowledgment packet. 

The HTTP programmer never sees these packets—they are managed invisibly by the 
TCP/IP software. All the HTTP programmer sees is a delay when creating a new TCP 
connection. 

The SYN/SYN+ACK handshake (Figure 4-8a and b) creates a measurable delay 
when HTTP transactions do not exchange much data, as is commonly the case. The 
TCP connect ACK packet (Figure 4-8c) often is large enough to carry the entire 
HTTP request message,' and many HTTP server response messages fit into a single 
IP packet (e.g., when the response is a small HTML file of a decorative graphic, or a 
304 Not Modified response to a browser cache request). 

IP packets are usually a few hundred bytes for Internet traffic and around 1,500 bytes for local traffic. 
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The end result is that small HTTP transactions may spend 50% or more of their time 
doing TCP setup. Later sections will discuss how HTTP allows reuse of existing con-
nections to eliminate the impact of this TCP setup delay. 

Delayed Acknowledgments 
Because the Internet itself does not guarantee reliable packet delivery (Internet rout-
ers are free to destroy packets at will if they are overloaded), TCP implements its 
own acknowledgment scheme to guarantee successful data delivery. 

Each TCP segment gets a sequence number and a data-integrity checksum. The 
receiver of each segment returns small acknowledgment packets back to the sender 
when segments have been received intact. If a sender does not receive an acknowl-
edgment within a specified window of time, the sender concludes the packet was 
destroyed or corrupted and resends the data. 

Because acknowledgments are small, TCP allows them to "piggyback" on outgoing 
data packets heading in the same direction. By combining returning acknowledg-
ments with outgoing data packets, TCP can make more efficient use of the network. 
To increase the chances that an acknowledgment will find a data packet headed in 
the same direction, many TCP stacks implement a "delayed acknowledgment" algo-
rithm. Delayed acknowledgments hold outgoing acknowledgments in a buffer for a 
certain window of time (usually 100-200 milliseconds), looking for an outgoing data 
packet on which to piggyback. If no outgoing data packet arrives in that time, the 
acknowledgment is sent in its own packet. 

Unfortunately, the bimodal request-reply behavior of HTTP reduces the chances that 
piggybacking can occur. There just aren't many packets heading in the reverse direc-
tion when you want them. Frequently, the disabled acknowledgment algorithms 
introduce significant delays. Depending on your operating system, you may be able 
to adjust or disable the delayed acknowledgment algorithm. 

Before you modify any parameters of your TCP stack, be sure you know what you 
are doing. Algorithms inside TCP were introduced to protect the Internet from 
poorly designed applications. If you modify any TCP configurations, be absolutely 
sure your application will not create the problems the algorithms were designed to 
avoid. 

TCP Slow Start 
The performance of TCP data transfer also depends on the age of the TCP connec-
tion. TCP connections "tune" themselves over time, initially limiting the maximum 
speed of the connection and increasing the speed over time as data is transmitted 
successfully. This tuning is called TCP slow start, and it is used to prevent sudden 
overloading and congestion of the Internet. 
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• 
TCP slow start throttles the number of packets a TCP endpoint can have in flight at 
any one time. Put simply, each time a packet is received successfully, the sender gets 
permission to send two more packets. If an HTTP transaction has a large amount of 
data to send, it cannot send all the packets at once. It must send one packet and wait 
for an acknowledgment; then it can send two packets, each of which must be acknowl-
edged, which allows four packets, etc. This is called "opening the congestion window." 
Because of this congestion-control feature, new connections are slower than "tuned" 
connections that already have exchanged a modest amount of data. Because tuned 
connections are faster, HTTP includes facilities that let you reuse existing connec-
tions. We'll talk about these HTTP "persistent connections" later in this chapter. 

Nagle's Algorithm and TCP_NODELAY 
TCP has a data stream interface that permits applications to stream data of any size 
to the TCP stack—even a single byte at a time! But because each TCP segment car-
ries at least 40 bytes of flags and headers, network performance can be degraded 
severely if TCP sends large numbers of packets containing small amounts of data.* 
Nagle's algorithm (named for its creator, John Nagle) attempts to bundle up a large 
amount of TCP data before sending a packet, aiding network efficiency. The algo-
rithm is described in RFC 896, "Congestion Control in IP/TCP Internetworks." 
Nagle's algorithm discourages the sending of segments that are not full-size (a 
maximum-size packet is around 1,500 bytes on a LAN, or a few hundred bytes 
across the Internet). Nagle's algorithm lets you send a non-full-size packet only if all 
other packets have been acknowledged. If other packets are still in flight, the partial 
data is buffered. This buffered data is sent only when pending packets are acknowl-
edged or when the buffer has accumulated enough data to send a full packet.t 
Nagle's algorithm causes several HTTP performance problems. First, small HTTP 
messages may not fill a packet, so they may be delayed waiting for additional data 
that will never arrive. Second, Nagle's algorithm interacts poorly with disabled 
acknowledgments—Nagle's algorithm will hold up the sending of data until an 
acknowledgment arrives, but the acknowledgment itself will be delayed 100-200 
milliseconds by the delayed acknowledgment algorithm.t 

HTTP applications often disable Nagle's algorithm to improve performance, by setting 
the TCP_NODELAY parameter on their stacks. If you do this, you must ensure that 
you write large chunks of data to TCP so you don't create a flurry of small packets. 

Sending a storm of single-byte packets is called "sender silly window syndrome." This is inefficient, anti-
social, and can be disruptive to other Internet traffic. 

t Several variations of this algorithm exist, including timeouts and acknowledgment logic changes, but the 
basic algorithm causes buffering of data smaller than a TCP segment. 
These problems can become worse when using pipelined connections (described later in this chapter), 
because clients may have several messages to send to the same server and do not want delays. 
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TIME_WAIT Accumulation and Port Exhaustion 
TIME_WAIT port exhaustion is a serious performance problem that affects perfor-

mance benchmarking but is relatively uncommon in real deployments. It warrants 

special attention because most people involved in performance benchmarking even-

tually run into this problem and get unexpectedly poor performance. 

When a TCP endpoint closes a TCP connection, it maintains in memory a small con-

trol block recording the IP addresses and port numbers of the recently closed con-
nection. This information is maintained for a short time, typically around twice the 
estimated maximum segment lifetime (called "2MSL"; often two minutes"), to make 
sure a new TCP connection with the same addresses and port numbers is not cre-
ated during this time. This prevents any stray duplicate packets from the previous 
connection from accidentally being injected into a new connection that has the same 
addresses and port numbers. In practice, this algorithm prevents two connections 
with the exact same IP addresses and port numbers from being created, closed, and 
recreated within two minutes. 

Today's higher-speed routers make it extremely unlikely that a duplicate packet will 
show up on a server's doorstep minutes after a connection closes. Some operating 
systems set 2MSL to a smaller value, but be careful about overriding this value. Pack-
ets do get duplicated, and TCP data will be corrupted if a duplicate packet from a 
past connection gets inserted into a new stream with the same connection values. 

The 2MSL connection close delay normally is not a problem, but in benchmarking 
situations, it can be. It's common that only one or a few test load-generation com-
puters are connecting to a system under benchmark test, which limits the number of 
client IP addresses that connect to the server. Furthermore, the server typically is lis-
tening on HTTP's default TCP port, 80. These circumstances limit the available 
combinations of connection values, at a time when port numbers are blocked from 
reuse by TIME_WAIT. 

In a pathological situation with one client and one web server, of the four values that 
make up a TCP connection: 

<source-IP-address, source-port, destination-IP-address, destination-port> 

three of them are fixed—only the source port is free to change: 

<client-IP, source-port, server-IP, 80> 

Each time the client connects to the server, it gets a new source port in order to have 
a unique connection. But because a limited number of source ports are available 
(say, 60,000) and no connection can be reused for 2MSL seconds (say, 120 sec-
onds), this limits the connect rate to 60,000 / 120 = 500 transactions/sec. If you keep 

The 2MSL value of two minutes is historical. Long ago, when routers were much slower, it was estimated 
that a duplicate copy of a packet might be able to remain queued in the Internet for up to a minute before 
being destroyed. Today, the maximum segment lifetime is much smaller. 
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making optimizations, and Your server doesn't get faster than about 500 transac-
tions/sec, make sure you are not experiencing TIME_WAIT port exhaustion. You 
can fix this problem by using more client load-generator machines or making sure 
the client and server rotate through several virtual IP addresses to add more connec-
tion combinations. 

Even if you do not suffer port exhaustion problems, be careful about having large 
numbers of open connections or large numbers of control blocks allocated for con-
nection in wait states. Some operating systems slow down dramatically when there 
are numerous open connections or control blocks. 

HTTP Connection Handling 
The first two sections of this chapter provided a fire-hose tour of TCP connections 
and their performance implications. If you'd like to learn more about TCP network-
ing, check out the resources listed at the end of the chapter. 

We're going to switch gears now and get squarely back to HTTP. The rest of this 
chapter explains the HTTP technology for manipulating and optimizing connec-
tions. We'll start with the HTTP Connection header, an often misunderstood but 
important part of HTTP connection management. Then we'll talk about HTTP's 
connection optimization techniques. 

The Oft-Misunderstood Connection Header 
HTTP allows a chain of HTTP intermediaries between the client and the ultimate 
origin server (proxies, caches, etc.). HTTP messages are forwarded hop by hop from 
the client, through intermediary devices, to the origin server (or the reverse). 

In some cases, two adjacent HTTP applications may want to apply a set of options to 
their shared connection. The HTTP Connection header field has a comma-separated 
list of connection tokens that specify options for the connection that aren't propa-
gated to other connections. For example, a connection that must be closed after 
sending the next message can be indicated by Connection: close. 

The Connection header sometimes is confusing, because it can carry three different 
types of tokens: 

• HTTP header field names, listing headers relevant for only this connection 

• Arbitrary token values, describing nonstandard options for this connection 

• The value close, indicating the persistent connection will be closed when done 

If a connection token contains the name of an HTTP header field, that header field 
contains connection-specific information and must not be forwarded. Any header 
fields listed in the Connection header must be deleted before the message is for-
warded. Placing a hop-by-hop header name in a Connection header is known as 
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"protecting the header," because the rConnection header protects against accidental 
forwarding of the local header. An example is shown in Figure 4-9. 

The Connection header says the Meter header 
should not be forwarded the hypothetical 
"bill-my-rredit-cord"option applies, and the 
persistent connection will be dosed when this 
transaction is done. 

- - _ • _ 
......... 

HTTP/1.1 200 OK 
Cache-control: max-age=3600 
Connection: meter, close, bill-my-credit-card 
Meter: max-uses=3, max-refuses=6, dont-report 

Proxy 

Client Server 

E. I 

Figure 4-9. The Connection header allows the sender to specify connection-specific options 

When an HTTP application receives a message with a Connection header, the 
receiver parses and applies all options requested by the sender. It then deletes the 
Connection header and all headers listed in the Connection header before forward-

ing the message to the next hop. In addition, there are a few hop-by-hop headers that 
might not be listed as values of a Connection header, but must not be proxied. These 
include Proxy-Authenticate, Proxy-Connection, Transfer-Encoding, and Upgrade. 

For more about the Connection header, see Appendix C. 

Serial Transaction Delays 
TCP performance delays can add up if the connections are managed naively. For 
example, suppose you have a web page with three embedded images. Your browser 
needs to issue four HTTP transactions to display this page: one for the top-level 
HTML and three for the embedded images. If each transaction requires a new con-
nection, the connection and slow-start delays can add up (see Figure 4-10).

Transaction 1 Transaction 2 Transaction 3 Transaction 4 

4. 4', 4',

I V . / 

i o..?
5  I ,s 

A 

a•Psp.I 

 ;I 4+ id  

Con
-
nec

-
t- --

Connect- 2 Connect- 3 6 Time 

1, 

Client 

Figure 4-10. Four transactions (serial) 

• For the purpose of this example, assume all objects are roughly the same size and are hosted from the same 
server, and that the DNS entry is cached, eliminating the DNS lookup time. 
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In addition to the real delay imposed by serial loading, there is also a psychological 
perception of slowness when a single image is loading and nothing is happening on 
the rest of the page. Users prefer multiple images to load at the same time." 

Another disadvantage of serial loading is that some browsers are unable to display 
anything onscreen until enough objects are loaded, because they don't know the 
sizes of the objects until they are loaded, and they may need the size information to 
decide where to position the objects on the screen. In this situation, the browser may 
be making good progress loading objects serially, but the user may be faced with a 
blank white screen, unaware that any progress is being made at all.t 

Several current and emerging techniques are available to improve HTTP connection 
performance. The next several sections discuss four such techniques: 

Parallel connections 
Concurrent HTTP requests across multiple TCP connections 

Persistent connections 
Reusing TCP connections to eliminate connect/close delays 

Pipelined connections 
Concurrent HTTP requests across a shared TCP connection 

Multiplexed connections 
Interleaving chunks of requests and responses (experimental) 

Parallel Connections 
As we mentioned previously, a browser could naively process each embedded object 
serially by completely requesting the original HTML page, then the first embedded 
object, then the second embedded object, etc. But this is too slow! 

HTTP allows clients to open multiple connections and perform multiple HTTP 
transactions in parallel, as sketched in Figure 4-11. In this example, four embedded 
images are loaded in parallel, with each transaction getting its own TCP connection.t 

Parallel Connections May Make Pages Load Faster 
Composite pages consisting of embedded objects may load faster if they take advan-
tage of the dead time and bandwidth limits of a single connection. The delays can be 

* This is true even if loading multiple images at the same time is slower than loading images one at a time! 
Users often perceive multiple-image loading as faster. 

t HTML designers can help eliminate this "layout delay" by explicitly adding width and height attributes to 
HTML tags for embedded objects such as images. Explicitly providing the width and height of the embedded 
image allows the browser to make graphical layout decisions before it receives the objects from the server. 

The embedded components do not all need to be hosted on the same web server, so the parallel connections 
can be established to multiple servers. 
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Figure 4-11. Each component of a page involves a separate HTTP transaction 

overlapped, and if a single connection does not saturate the client's Internet band-
width, the unused bandwidth can be allocated to loading additional objects. 

Figure 4-12 shows a timeline for parallel connections, which is significantly faster 
than Figure 4-10. The enclosing HTML page is loaded first, and then the remaining 
three transactions are processed concurrently, each with their own connection.' 
Because the images are loaded in parallel, the connection delays are overlapped. 

•.••••• ••JI 

Server 

Client 

Transaction 2,3, 4 
Transaction 1 (parallel connections) 

4r, 

:ft
Connect- 1 Connect- 2 

Connect- 3 
ri 

Connect- 4 
Moony o small software delay 
between each connection) 

4. 

 i t
6 Time 

Figure 4-12. Four transactions (parallel) 

Parallel Connections Are Not Always Faster 
Even though parallel connections may be faster, however, they are not always faster. 
When the client's network bandwidth is scarce (for example, a browser connected to 

' There will generally still be a small delay between each connection request due to software overheads, but 
the connection requests and transfer times are mostly overlapped. 
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the Internet through a 28 8-Kbps modem), most of the time might be spent just 
transferring data. In this situation, a single HTTP transaction to a fast server could 
easily consume all of the available modem bandwidth. If multiple objects are loaded 
in parallel, each object will just compete for this limited bandwidth, so each object 
will load proportionally slower, yielding little or no performance advantage.' 

Also, a large number of open connections can consume a lot of memory and cause 
performance problems of their own. Complex web pages may have tens or hundreds 
of embedded objects. Clients might be able to open hundreds of connections, but 
few web servers will want to do that, because they often are processing requests for 
many other users at the same time. A hundred simultaneous users, each opening 100 
connections, will put the burden of 10,000 connections on the server. This can cause 
significant server slowdown. The same situation is true for high-load proxies. 

In practice, browsers do use parallel connections, but they limit the total number of 
parallel connections to a small number (often four). Servers are free to close exces-
sive connections from a particular client. 

Parallel Connections May "Feel" Faster 
Okay, so parallel connections don't always make pages load faster. But even if they 
don't actually speed up the page transfer, as we said earlier, parallel connections 
often make users feel that the page loads faster, because they can see progress being 
made as multiple component objects appear onscreen in parallel.t Human beings 
perceive that web pages load faster if there's lots of action all over the screen, even if 
a stopwatch actually shows the aggregate page download time to be slower! 

Persistent Connections 
Web clients often open connections to the same site. For example, most of the 
embedded images in a web page often come from the same web site, and a signifi-
cant number of hyperlinks to other objects often point to the same site. Thus, an 
application that initiates an HTTP request to a server likely will make more requests 
to that server in the near future (to fetch the inline images, for example). This prop-
erty is called site locality. 

For this reason, HTTP/1.1 (and enhanced versions of HTTP/1.0) allows HTTP 
devices to keep TCP connections open after transactions complete and to reuse the 
preexisting connections for future HTTP requests. TCP connections that are kept 

In fact, because of the extra overhead from multiple connections, it's quite possible that parallel connections 
could take longer to load the entire page than serial downloads. 

t This effect is amplified by the increasing use of progressive images that produce low-resolution approxima-
tions of images first and gradually increase the resolution. 
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open after transactions complete are called persistent connections. Nonpersistent 
connections are closed after each transaction. Persistent connections stay open 

across transactions, until either the client or the server decides to close them. 

By reusing an idle, persistent connection that is already open to the target server, you 

can avoid the slow connection setup. In addition, the already open connection can 
avoid the slow-start congestion adaptation phase, allowing faster data transfers. 

Persistent Versus Parallel Connections 

As we've seen, parallel connections can speed up the transfer of composite pages. 

But parallel connections have some disadvantages: 

• Each transaction opens/closes a new connection, costing time and bandwidth. 

• Each new connection has reduced performance because of TCP slow start. 

• There is a practical limit on the number of open parallel connections. 

Persistent connections offer some advantages over parallel connections. They reduce 

the delay and overhead of connection establishment, keep the connections in a tuned 
state, and reduce the potential number of open connections. However, persistent 
connections need to be managed with care, or you may end up accumulating a large 
number of idle connections, consuming local resources and resources on remote cli-
ents and servers. 

Persistent connections can be most effective when used in conjunction with parallel 
connections. Today, many web applications open a small number of parallel connec-
tions, each persistent. There are two types of persistent connections: the older 
HTTP/1.0+ "keep-alive" connections and the modern HTTP/1.1 "persistent" con-
nections. We'll look at both flavors in the next few sections. 

HTTP/1.0+ Keep-Alive Connections 
Many HTTP/1.0 browsers and servers were extended (starting around 1996) to sup-
port an early, experimental type of persistent connections called keep-alive connec-
tions. These early persistent connections suffered from some interoperability design 
problems that were rectified in later revisions of HTTP/1.1, but many clients and 
servers still use these earlier keep-alive connections. 

Some of the performance advantages of keep-alive connections are visible in 
Figure 4-13, which compares the timeline for four HTTP transactions over serial con-
nections against the same transactions over a single persistent connection. The time-
line is compressed because the connect and close overheads are removed." 

Additionally, the request and response time might also be reduced because of elimination of the slow-start 
phase. This performance benefit is not depicted in the figure. 

Persistent Connections I 91 

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 21
fuboTV MEDIA INC., and Yanka Industries, Inc.,  v. Dish Technologies L.L.C., IPR2024-00918



L 

(a) Serial connections 

Transaction 1 Transaction 2 Transaction 3 Transaction 4 
ammimmoll 

Server 

Client 

i' s' 1 er f 0
g , 

cri 
(=Kt- l ,Connect- 1, 

Comect-3 Connect- 4
,   , 

Time 

(b) Persistent connection 

w.mmeamel. 

Server 

Client 

Transaction 1 Transaction 2 Transaction 3 Transaction 4 

I. 

f‘, 
''"••' 't "1 

g,
cc, I 

4, 

.., ,*1. 

'i 
 ,_.., ...., 

' ' c‘6,-v a,

%..., cc, yp. 

6 Time 

Figure 4-13. Four transactions (serial versus persistent) 

Keep-Alive Operation 
Keep-alive is deprecated and no longer documented in the current HTTP/1.1 specifi-
cation. However, keep-alive handshaking is still in relatively common use by brows-
ers and servers, so HTTP implementors should be prepared to interoperate with it. 
We'll take a quick look at keep-alive operation now. Refer to older versions of the 
HTTP/1.1 specification (such as RFC 2068) for a more complete explanation of 
keep-alive handshaking. 

Clients implementing HTTP/1.0 keep-alive connections can request that a connec-
tion be kept open by including the Connection: Keep-Alive request header. 

If the server is willing to keep the connection open for the next request, it will 
respond with the same header in the response (see Figure 4-14). If there is no Con-
nection: keep-alive header in the response, the client assumes that the server does 
not support keep-alive and that the server will close the connection when the 
response message is sent back. 

Keep-Alive Options 
Note that the keep-alive headers are just requests to keep the connection alive. Cli-
ents and servers do not need to agree to a keep-alive session if it is requested. They 
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Figure 4-14. HTTP/1.0 keep-alive transaction header handshake 

can close idle keep-alive connections at any time and are free to limit the number of 
transactions processed on a keep-alive connection. 

The keep-alive behavior can be tuned by comma-separated options specified in the 
Keep-Alive general header: 

• The timeout parameter is sent in a Keep-Alive response header. It estimates how 
long the server is likely to keep the connection alive for. This is not a guarantee. 

• The max parameter is sent in a Keep-Alive response header. It estimates how 
many more HTTP transactions the server is likely to keep the connection alive 
for. This is not a guarantee. 

• The Keep-Alive header also supports arbitrary unprocessed attributes, primarily 
for diagnostic and debugging purposes. The syntax is name [= value]. 

The Keep-Alive header is completely optional but is permitted only when Connec-
tion: Keep-Alive also is present. Here's an example of a Keep-Alive response header 
indicating that the server intends to keep the connection open for at most five more 
transactions, or until it has sat idle for two minutes: 

Connection: Keep-Alive 
Keep-Alive: max=5, timeout=120 

Keep-Alive Connection Restrictions and Rules 
Here are some restrictions and clarifications regarding the use of keep-alive 
connections: 

• Keep-alive does not happen by default in HTTP/1.0. The client must send a 
Connection: Keep-Alive request header to activate keep-alive connections. 

• The Connection: Keep-Alive header must be sent with all messages that want to 
continue the persistence. If the client does not send a Connection: Keep-Alive 
header, the server will close the connection after that request. 
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• Clients can tell if the server will close the connection after the response by 
detecting the absence of the Connection: Keep-Alive response header. 

• The connection can be kept open only if the length of the message's entity body 
can be determined without sensing a connection close this means that the entity 
body must have a correct Content-Length, have a multipart media type, or be 
encoded with the chunked transfer encoding. Sending the wrong Content-Length 
back on a keep-alive channel is bad, because the other end of the transaction will 
not be able to accurately detect the end of one message and the start of another. 

• Proxies and gateways must enforce the rules of the Connection header; the proxy 
or gateway must remove any header fields named in the Connection header, and 
the Connection header itself, before forwarding or caching the message. 

• Formally, keep-alive connections should not be established with a proxy server 
that isn't guaranteed to support the Connection header, to prevent the problem 
with dumb proxies described below. This is not always possible in practice. 

• Technically, any Connection header fields (including Connection: Keep-Alive) 
received from an HTTP/1.0 device should be ignored, because they may have 
been forwarded mistakenly by an older proxy server. In practice, some clients 
and servers bend this rule, although they run the risk of hanging on older proxies. 

• Clients must be prepared to retry requests if the connection closes before they 
receive the entire response, unless the request could have side effects if repeated. 

Keep-Alive and Dumb Proxies 
Let's take a closer look at the subtle problem with keep-alive and dumb proxies. A 
web client's Connection: Keep-Alive header is intended to affect just the single TCP 
link leaving the client. This is why it is named the "connection" header. If the client 
is talking to a web server, the client sends a Connection: Keep-Alive header to tell the 
server it wants keep-alive. The server sends a Connection: Keep-Alive header back if 
it supports keep-alive and doesn't send it if it doesn't. 

The Connection header and blind relays 
The problem comes with proxies—in particular, proxies that don't understand the 
Connection header and don't know that they need to remove the header before proxy-
ing it down the chain. Many older or simple proxies act as blind relays, tunneling bytes 
from one connection to another, without specially processing the Connection header. 
Imagine a web client talking to a web server through a dumb proxy that is acting as a 
blind relay. This situation is depicted in Figure 4-15. 

Here's what's going on in this figure: 

1. In Figure 4-15a, a web client sends a message to the proxy, including the Connec-
tion: Keep-Alive header, requesting a keep-alive connection if possible. The client 
waits for a response to learn if its request for a keep-alive channel was granted. 
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Figure 4-15. Keep-alive doesn't interoperate with proxies that don't support Connection headers 

2. The dumb proxy gets the HTTP request, but it doesn't understand the Connec-
tion header (it just treats it as an extension header). The proxy has no idea what 
keep-alive is, so it passes the message verbatim down the chain to the server 
(Figure 4-15b). But the Connection header is a hop-by-hop header; it applies to 
only a single transport link and shouldn't be passed down the chain. Bad things 
are about to happen. 

3. In Figure 4-15b, the relayed HTTP request arrives at the web server. When the 
web server receives the proxied Connection: Keep-Alive header, it mistakenly 
concludes that the proxy (which looks like any other client to the server) wants 
to speak keep-alive! That's fine with the web server—it agrees to speak keep-
alive and sends a Connection: Keep-Alive response header back in Figure 4-15c. 
So, at this point, the web server thinks it is speaking keep-alive with the proxy 
and will adhere to rules of keep-alive. But the proxy doesn't know the first thing 
about keep-alive. Uh-oh. 

4. In Figure 4-15d, the dumb proxy relays the web server's response message back to 
the client, passing along the Connection: Keep-Alive header from the web server. 
The client sees this header and assumes the proxy has agreed to speak keep-alive. 
So at this point, both the client and server believe they are speaking keep-alive, 
but the proxy they are talking to doesn't know anything about keep-alive. 

5. Because the proxy doesn't know anything about keep-alive, it reflects all the 
data it receives back to the client and then waits for the origin server to close the 
connection. But the origin server will not close the connection, because it 
believes the proxy explicitly asked the server to keep the connection open. So 
the proxy will hang waiting for the connection to close. 

6. When the client gets the response message back in Figure 4-15d, it moves right 
along to the next request, sending another request to the proxy on the keep-alive 
connection (see Figure 4-15e). Because the proxy never expects another request 
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on the same connection, the request is ignored and the browser just spins, mak-
ing no progress. 

7. This miscommunication causes the browser to hang until the client or server 
times out the connection and closes it.' 

Proxies and hop-by-hop headers 
To avoid this kind of proxy miscommunication, modern proxies must never proxy 
the Connection header or any headers whose names appear inside the Connection 
values. So if a proxy receives a Connection: Keep-Alive header, it shouldn't proxy 
either the Connection header or any headers named Keep-Alive. 

In addition, there are a few hop-by-hop headers that might not be listed as values of 
a Connection header, but must not be proxied or served as a cache response either. 
These include Proxy-Authenticate, Proxy-Connection, Transfer-Encoding, and 
Upgrade. For more information, refer back to "The Oft-Misunderstood Connection 
Header." 

The Proxy-Connection Hack 
Browser and proxy implementors at Netscape proposed a clever workaround to the 
blind relay problem that didn't require all web applications to support advanced ver-
sions of HTTP. The workaround introduced a new header called Proxy-Connection 
and solved the problem of a single blind relay interposed directly after the client—
but not all other situations. Proxy-Connection is implemented by modern browsers 
when proxies are explicitly configured and is understood by many proxies. 
The idea is that dumb proxies get into trouble because they blindly forward hop-by-
hop headers such as Connection: Keep-Alive. Hop-by-hop headers are relevant only 
for that single, particular connection and must not be forwarded. This causes trou-
ble when the forwarded headers are misinterpreted by downstream servers as 
requests from the proxy itself to control its connection. 

In the Netscape workaround, browsers send nonstandard Proxy-Connection exten-
sion headers to proxies, instead of officially supported and well-known Connection 
headers. If the proxy is a blind relay, it relays the nonsense Proxy-Connection header 
to the web server, which harmlessly ignores the header. But if the proxy is a smart 
proxy (capable of understanding persistent connection handshaking), it replaces the 
nonsense Proxy-Connection header with a Connection header, which is then sent to 
the server, having the desired effect. 

Figure 4-16a—d shows how a blind relay harmlessly forwards Proxy-Connection head-
ers to the web server, which ignores the header, causing no keep-alive connection to 

• There are many similar scenarios where failures occur due to blind relays and forwarded handshaking. 
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in Figure 4-16e—h understands the Proxy-Connection header as a request to speak 

keep-alive, and it sends out its own Connection: Keep-Alive headers to establish 

keep-alive connections. 

The server does not recognize the Proxy-Connection header, and ignores it. 
No keep-alive Connection is established. 

(a) Proxy-Connection: Keep-Alive (b) Proxy-Connection: Keep-Alive 

..... 
..... 

(d) No Connection header Dumb proxy (c) No Connection header 

Client Server 

A dumb proxy forwards the Proxy-Connection header, which the server ignores. 

The proxy recognizes the Proxy-Co n nection heade r, ag rees to talk 
keep-alive with the client,and may also (optionally) decide to 
set up a keep-alive connection with the server. 

(e) Proxy-Connection:Keep-Alive 1. (f) Connection: Keep-Alive 

(h) Connection: Keep-Alive Smart proxy (g) Connection: Keep-Alive 

Client Server 

A smart proxy understands the Prary-Connection header and actively sends 
a Connection: Keep-Alive header to the server. 

Figure 4-16. Proxy-Connection header fixes single blind relay 

This scheme works around situations where there is only one proxy between the cli-
ent and server. But if there is a smart proxy on either side of the dumb proxy, the 
problem will rear its ugly head again, as shown in Figure 4-17. 

Furthermore, it is becoming quite common for "invisible" proxies to appear in net-
works, either as firewalls, intercepting caches, or reverse proxy server accelerators. 
Because these devices are invisible to the browser, the browser will not send them 
Proxy-Connection headers. It is critical that transparent web applications implement 
persistent connections correctly. 

HTTP/1.1 Persistent Connections 
HTTP/1.1 phased out support for keep-alive connections, replacing them with an 
improved design called persistent connections. The goals of persistent connections are 
the same as those of keep-alive connections, but the mechanisms behave better. 

Persistent Connections I 97 

DISH TECHNOLOGIES L.L.C., Exhibit 2019, p. 27
fuboTV MEDIA INC., and Yanka Industries, Inc.,  v. Dish Technologies L.L.C., IPR2024-00918



(a) 
Proxy-Connection: Keep-Alive 

(b) (c) 
Proxy-Connection: Keep-Alive Connection: Keep-Alive 

12 (() Dumb (e) Smart
.Connection: Keep-Alive proxy Connection: Keep-Alive proxy (C donnection: Keep-Alive 

r••••11 
'mom 

mmom..4 

• 

Client Server 

A dumb proxy unwittingly advertises keep-Alive to browser and smart proxy. 

(9) 
Proxy-Connection: Keep-Alive 

(h) (i) 
Connection:Keep-Alive Connection:Keep-Alive 

. ...... .. .....--.., ..... 
/ ...... 

0) . Smart (k) 

',:-:•::.1......... / 

Dumb CO 
Connection:Keep-Alive proxy Connection:Keep-Alive proxy Connection: Keep-Alive 

Client Server 

•••• 

A dumb proxy unwittingly advertises keep-Alive to smart proxy and server. 

Figure 4-17. Proxy-Connection still fails for deeper hierarchies of proxies 

Unlike HTTP/1.0+ keep-alive connections, HTTP/1.1 persistent connections are 
active by default. HTTP/1.1 assumes all connections are persistent unless otherwise 
indicated. HTTP/1.1 applications have to explicitly add a Connection: close header 
to a message to indicate that a connection should close after the transaction is com-
plete. This is a significant difference from previous versions of the HTTP protocol, 
where keep-alive connections were either optional or completely unsupported. 

An HTTP/1.1 client assumes an HTTP/1.1 connection will remain open after a 
response, unless the response contains a Connection: close header. However, clients 
and servers still can close idle connections at any time. Not sending Connection: 
close does not mean that the server promises to keep the connection open forever. 

Persistent Connection Restrictions and Rules 
Here are the restrictions and clarifications regarding the use of persistent connections: 

After sending a Connection: close request header, the client can't send more 
requests on that connection. 

• If a client does not want to send another request on the connection, it should 
send a Connection: close request header in the final request. 

• The connection can be kept persistent only if all messages on the connection 
have a correct, self-defined message length—i.e., the entity bodies must have 
correct Content-Lengths or be encoded with the chunked transfer encoding. 
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• HTTP/1.1 proxies must manage persistent connections separately with clients 

and servers—each persistent connection applies to a single transport hop. 

▪ HTTP/1.1 proxy servers should not establish persistent connections with an 
HTTP/1.0 client (because of the problems of older proxies forwarding Connec-

tion headers) unless they know something about the capabilities of the client. 

This is, in practice, difficult, and many vendors bend this rule. 

• Regardless of the values of Connection headers, HTTP/1.1 devices may close the 
connection at any time, though servers should try not to close in the middle of 
transmitting a message and should always respond to at least one request before 
closing. 

• HTTP/1.1 applications must be able to recover from asynchronous closes. Cli-
ents should retry the requests as long as they don't have side effects that could 
accumulate. 

• Clients must be prepared to retry requests if the connection closes before they 
receive the entire response, unless the request could have side effects if repeated. 

• A single user client should maintain at most two persistent connections to any 
server or proxy, to prevent the server from being overloaded. Because proxies 
may need more connections to a server to support concurrent users, a proxy 
should maintain at most 2N connections to any server or parent proxy, if there 
are N users trying to access the servers. 

Pipelined Connections 
HTTP/1.1 permits optional request pipelining over persistent connections. This is a 
further performance optimization over keep-alive connections. Multiple requests can 
be enqueued before the responses arrive. While the first request is streaming across 
the network to a server on the other side of the globe, the second and third requests 
can get underway. This can improve performance in high-latency network condi-
tions, by reducing network round trips. 

Figure 4-18a-c shows how persistent connections can eliminate TCP connection 
delays and how pipelined requests (Figure 4-18c) can eliminate transfer latencies. 

There are several restrictions for pipelining: 

• HTTP clients should not pipeline until they are sure the connection is persistent. 

• HTTP responses must be returned in the same order as the requests. HTTP mes-
sages are not tagged with sequence numbers, so there is no way to match 
responses with requests if the responses are received out of order. 

• HTTP clients must be prepared for the connection to close at any time and be 
prepared to redo any pipelined requests that did not finish. If the client opens a 
persistent connection and immediately issues 10 requests, the server is free to 
close the connection after processing only, say, 5 requests. The remaining 5 
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(c) Pipelined, persistent connection 
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Figure 4-18, Four transactions (pipelined connections) 

requests will fail, and the client must be willing to handle these premature closes 
and reissue the requests. 

• HTTP clients should not pipeline requests that have side effects (such as 
POSTs). In general, on error, pipelining prevents clients from knowing which of 
a series of pipelined requests were executed by the server. Because nonidempo-
tent requests such as POSTs cannot safely be retried, you run the risk of some 
methods never being executed in error conditions. 
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connection management—particularly knowing when and how to close connec-

tioannsy— is one of the practical black arts of HTTP. This issue is more subtle than 

m developers  first realize, and little has been written on the subject. 

"At Will" Disconnection 

Any HTTP client, server, or proxy can close a TCP transport connection at any time. 

The connections normally are closed at the end of a message; but during error con-

ditions, the connection may be closed in the middle of a header line or in other 

strange places. 

This situation is common with pipelined persistent connections. HTTP applications 

are free to close persistent connections after any period of time. For example, after a 

persistent connection has been idle for a while, a server may decide to shut it down. 

However, the server can never know for sure that the client on the other end of the 

line wasn't about to send data at the same time that the "idle" connection was being 

shut down by the server. If this happens, the client sees a connection error in the 

middle of writing its request message. 

Content-Length and Truncation 
Each HTTP response should have an accurate Content-Length header to describe the 

size of the response body. Some older HTTP servers omit the Content-Length header 

or include an erroneous length, depending on a server connection close to signify the 

actual end of data. 

When a client or proxy receives an HTTP response terminating in connection close, 

and the actual transferred entity length doesn't match the Content-Length (or there 

is no Content-Length), the receiver should question the correctness of the length. 

If the receiver is a caching proxy, the receiver should not cache the response (to mini-

mize future compounding of a potential error). The proxy should forward the ques-

tionable message intact, without attempting to "correct" the Content-Length, to 

maintain semantic transparency. 

Connection Close Tolerance, Retries, and Idempotency 
Connections can close at any time, even in non-error conditions. HTTP applica-

tions have to be ready to properly handle unexpected closes. If a transport connec-

tion closes while the client is performing a transaction, the client should reopen the 

- Servers shouldn't close a connection in the middle of a response unless client or network failure is suspected. 
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connection and retry one time, unless the transaction has side effects. The situation 
is worse for pipelined connections. The client can enqueue a large number of requests, but the origin server can close the connection, leaving numerous requests unprocessed and in need of rescheduling. 
Side effects are important. When a connection closes after some request data was sent but before the response is returned, the client cannot be 100% sure how much of the transaction actually was invoked by the server. Some transactions, such as GETting a static HTML page, can be repeated again and again without changing anything. Other transactions, such as POSTing an order to an online book store, shouldn't be repeated, or you may risk multiple orders. 
A transaction is idempotent if it yields the same result regardless of whether it is exe-cuted once or many times. Implementors can assume the GET, HEAD, PUT, DELETE, TRACE, and OPTIONS methods share this property.* Clients shouldn't pipeline nonidempotent requests (such as POSTs). Otherwise, a premature termina-tion of the transport connection could lead to indeterminate results. If you want to send a nonidempotent request, you should wait for the response status for the previ-ous request. 

Nonidempotent methods or sequences must not be retried automatically, although user agents may offer a human operator the choice of retrying the request. For exam-ple, most browsers will offer a dialog box when reloading a cached POST response, asking if you want to post the transaction again. 

Graceful Connection Close 
TCP connections are bidirectional, as shown in Figure 4-19. Each side of a TCP con-nection has an input queue and an output queue, for data being read or written. Data placed in the output of one side will eventually show up on the input of the other side. 

112 44:Itin
Client 

out

Sever 

Figure 4-19. TCP connections are bidirectional 

Full and half closes 
An application can close either or both of the TCP input and output channels. A close( ) sockets call closes both the input and output channels of a TCP connection. 

`Administrators who use GET-based dynamic forms should make sure the forms are idempotent. 
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This is called a "full close" and is depicted in Figure 4-20a. You can use the 

hutdown( ) sockets call to close either the input or output channel individually. This 

is called a "half close" and is depicted in Figure 4-20b. 

(a) Server full close 

out 

Client 

(b) Server output half close (graceful close) 

out 

out I

Server 

out 
••• • 

•••••• 111.

Client Server 

(c) Server input half close 
in j  out 

out = .77 -11M, 

Client Server 

Figure 4-20. Full and half close 

TCP close and reset errors 

Simple HTTP applications can use only full closes. But when applications start talk-

ing to many other types of HTTP clients, servers, and proxies, and when they start 

using pipelined persistent connections, it becomes important for them to use half 

closes to prevent peers from getting unexpected write errors. 

In general, closing the output channel of your connection is always safe. The peer on 

the other side of the connection will be notified that you closed the connection by 

getting an end-of-stream notification once all the data has been read from its buffer. 

Closing the input channel of your connection is riskier, unless you know the other 

side doesn't plan to send any more data. If the other side sends data to your closed 

input channel, the operating system will issue a TCP "connection reset by peer" mes-

sage back to the other side's machine, as shown in Figure 4-21. Most operating sys-

tems treat this as a serious error and erase any buffered data the other side has not 

read yet. This is very bad for pipelined connections. 

Say you have sent 10 pipelined requests on a persistent connection, and the 

responses already have arrived and are sitting in your operating system's buffer (but 

the application hasn't read them yet). Now say you send request #11, but the server 

decides you've used this connection long enough, and closes it. Your request #11 

will arrive at a closed connection and will reflect a reset back to you. This reset will 

erase your input buffers. 
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Figure 4-21. Data arriving at closed connection generates "connection reset by peer" error 
When you finally get to reading data, you will get a connection reset by peer error, and the buffered, unread response data will be lost, even though much of it success-fully arrived at your machine. 

Graceful close 
The HTTP specification counsels that when clients or servers want to close a connec-tion unexpectedly, they should "issue a graceful close on the transport connection," but it doesn't describe how to do that. 
In general, applications implementing graceful closes will first close their output channels and then wait for the peer on the other side of the connection to close its output channels. When both sides are done telling each other they won't be sending any more data (i.e., closing output channels), the connection can be closed fully, with no risk of reset. 
Unfortunately, there is no guarantee that the peer implements or checks for half closes. For this reason, applications wanting to close gracefully should half close their output channels and periodically check the status of their input channels (look-ing for data or for the end of the stream). If the input channel isn't closed by the peer within some timeout period, the application may force connection close to save resources. 

For More Information 
This completes our overview of the HTTP plumbing trade. Please refer to the fol-lowing reference sources for more information about TCP performance and HTTP connection-management facilities. 

HTTP Connections 
http:11www.ietforglrfclrfc261 6. txt 

RFC 2616, "Hypertext Transfer Protocol—HTTP/1.1," is the official specification for HTTP/1.1; it explains the usage of and HTTP header fields for implementing 
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parallel, persistent, and pipelined HTTP connections. This document does not 

cover the proper use of the underlying TCP connections. 

http://www.ietforg/rfc/rfc2068.txt 

RFC 2068 is the 1997 version of the HTTP/1.1 protocol. It contains explanation 

of the HTTP/1.0+ Keep-Alive connections that is missing from RFC 2616. 

http://www.ics.uci.edu/publietf/http/draft-ietf-http-connection-00.txt 

This expired Internet draft, "HTTP Connection Management," has some good 

discussion of issues facing HTTP connection management. 

HTTP Performance Issues 

http://www.w3.org/Protocols/HTTP/Performance/ 

This W3C web page, entitled "HTTP Performance Overview," contains a few 

papers and tools related to HTTP performance and connection management. 

http://www.w3.org/Protocols/HTTP/1.0/HTIPPerformance.html 

This short memo by Simon Spero, "Analysis of HTTP Performance Problems," is 

one of the earliest (1994) assessments of HTTP connection performance. The 

memo gives some early performance measurements of the effect of connection 

setup, slow start, and lack of connection sharing. 

ftp://gatekeeper.dec.com/pub/DEC/WRL/research-reports/WRL-TR-95.4.pdf 

"The Case for Persistent-Connection I-ITTP." 

http://www.isi.edullsam/publicationslphttp_tcp_interactions/paper.html 

"Performance Interactions Between P-I-ITTP and TCP Implementations." 

http://www.sun.com/sun-on-net/performance/tcp.slowstart.html 

"TCP Slow Start Tuning for Solaris" is a web page from Sun Microsystems that 

talks about some of the practical implications of TCP slow start. It's a useful 

read, even if you are working with different operating systems. 

TCP/IP 
The following three books by W. Richard Stevens are excellent, detailed engineering 

texts on TCP/IP. These are extremely useful for anyone using TCP: 

TCP Illustrated, Volume I: The Protocols 
W. Richard Stevens, Addison Wesley 

UNIX Network Programming, Volume 1: Networking APIs 

W. Richard Stevens, Prentice-Hall 

UNIX Network Programming, Volume 2: The Implementation 

W. Richard Stevens, Prentice-Hall 
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The following papers and specifications describe TCP/IP and features that affect its 
performance. Some of these specifications are over 20 years old and, given the world-
wide success of TCP/IP, probably can be classified as historical treasures: 

http://www. acm. org/sigcomm/ccr/archive/2001/jan01  /ccr-200101-mogul.pdf 
In "Rethinking the TCP Nagle Algorithm," Jeff Mogul and Greg Minshall 
present a modern perspective on Nagle's algorithm, outline what applications 
should and should not use the algorithm, and propose several modifications. 

http://www.ietforg/rfc/rfc2001.txt 
RFC 2001, "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast 
Recovery Algorithms," defines the TCP slow-start algorithm. 

http://www.ietforg/rfc/rfc1122.txt 
RFC 1122, "Requirements for Internet Hosts—Communication Layers," dis-
cusses TCP acknowledgment and delayed acknowledgments. 

http://www.ietforg/rfc/rfc896.txt 
RFC 896, "Congestion Control in IP/TCP Internetworks," was released by John 
Nagle in 1984. It describes the need for TCP congestion control and introduces 
what is now called "Nagle's algorithm." 

http://www.ietf. org/rfc/rfc0813. txt 
RFC 813, "Window and Acknowledgement Strategy in TCP," is a historical 
(1982) specification that describes TCP window and acknowledgment imple-
mentation strategies and provides an early description of the delayed acknowl-
edgment technique. 

http://www.ietf.org/rfc/rfc0793.txt 
RFC 793, "Transmission Control Protocol," is Jon Postel's classic 1981 defini-
tion of the TCP protocol. 
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PART II 

HTTP Architecture 

The six chapters of Part II highlight the HTTP server, proxy, cache, gateway, and 

robot applications, which are the building blocks of web systems architecture: 

• Chapter 5, Web Servers, gives an overview of web server architectures. 

• Chapter 6, Proxies, describes HTTP proxy servers, which are intermediary servers 

that connect HTTP clients and act as platforms for HTTP services and controls. 

• Chapter 7, Caching, delves into the science of web caches—devices that improve 

performance and reduce traffic by making local copies of popular documents. 

• Chapter 8, Integration Points: Gateways, Tunnels, and Relays, explains applica-

tions that allow HTTP to interoperate with software that speaks different proto-

cols, including SSL encrypted protocols. 

• Chapter 9, Web Robots, wraps up our tour of HTTP architecture with web clients. 

• Chapter 10, HTTP-NG, covers future topics for HTTP—in particular, HTTP-NG. 
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Web Programming 

O'REILLY' 
HTTP: The Definitive Guide 

Behind every successful web transaction lurks the Hypertext Transfer Protocol (HI11 ), 
the language by which web clients and servers exchange documents and information. 
HTTP is commonly known as the workhorse behind the browsers we use every day to 
access our company intranets, locate out-of-print books, or research census information. 

But HTTP is used for far more than browsing the Web: the simplicity and ubiquity of HI IP also 
have made it the choice protocol for many other networked applications, most notably through 
web services such as SOAP and XML-RPC. 

As the title suggests, HI IP: The Definitive Guide explains the HI IP protocol: how it works and 
how to use it to develop web-based applications. However, this book is not just about H1 fP; 
it's also about all the other core Internet technologies that HI -1'P depends on to work effectively. 
Although HTTP is at the center of the book, the essence of HITIP: The Definitive Guide is in 
understanding how the Web works and how to apply that knowledge to web programming and 
administration. The book explains the technical workings, motivations, performance considerations, 
and objectives of H FTP and the technologies around which it revolves. 

HI IP: The Definitive Guide is the bible for the HI IP protocol and related web technologies. 
Topics covered include: 

• HTTP methods, headers, and status codes 

• Optimizing proxies and caches 

• Strategies for designing web robots and crawlers 

• Cookies, authentication, and Secure HI IP 

• Intemationalization and content negotiation 

• Redirection and load-balancing strategies 

Written by experts with years of practical experience, this book uses clear, concise language and a 
plethora of detailed illustrations to help readers visualize what goes on behind the scenes, providing 
a complete understanding of the story behind each query on the Web. 

All web programmers. administrators, and application developers need to be familiar with HTTP 

11111 11111 ill are many books that explain how to use the Web, but this is the 

kleGk $zorks. 
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