
(12) United States Patent
Milner et al.

(10) Patent No.: US 10,055,576 B2
(45) Date of Patent: *Aug. 21, 2018

(54) DETECTION OF MALICIOUS SOFTWARE
PACKAGES

(71) Applicant: Red Hat, Inc., Raleigh, NC (US)

(72) Inventors: Steve Bradford Milner, Tallahassee,
FL (US); James Robert Bowes,
Remote, OR (US)

(73) Assignee: Red Hat, Inc., Raleigh, NC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 15/729,304

(22) Filed: Oct. 10, 2017

(65) Prior Publication Data

US 2018/0032720 Al Feb. 1, 2018

Related U.S. Application Data

(63) Continuation of application No. 12/898,876, filed on
Oct. 6, 2010, now Pat. No. 9,792,429.

(51) Int. Cl.
G06F 21/00 (2013.01)
G06F 21/51 (2013.01)
G06F 21/56 (2013.01)

(52) U.S. Cl.
CPC G06F 21/51 (2013.01); G06F 21/564

(2013.01)
(58) Field of Classification Search

CPC G06F 21/51; G06F 21/564
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,324,647 Bl* 11/2001 Bowman-Amuah H04L 63/0227
709/223

6,438,749 B1
7,240,336 B1
7,512,939 B2

8/2002 Chamberlain
7/2007 Baker
3/2009 Brookner

(Continued)

OTHER PUBLICATIONS

Seth Ketby Vidal, "Systems and Methods for Initiating Software
Repairs in Conjuction With Software Pac Kage Updates", U.S.
Appl. No. 12/714,200, filed Feb. 26, 2010.

(Continued)

Primary Examiner — Mahfuzur Rahman
Assistant Examiner — Narciso Victoria
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

Systems and methods for a security tool that verifies the
security of a software package. An example method may
involve identifying a plurality of components contained in a
software package comprising one of a JAR file, an Android
application package, a docker image, a container file, or a
virtual machine image; comparing the components con-
tained in the software package to a list of known compo-
nents; classifying the software package as insecure when at
least one of the components matches an insecure compo-
nent, or as secure when each of the compared components
matches a corresponding secure component on the list of
known components; preventing addition of the software
package to a software repository when the software package
is classified as insecure; and when insecure, providing an
interface to enable a user to request the components of the
software package be added as a secure component on the list
of known components.

SOFTWARE REPOSITORY
194

SOFTWARE
PACKAGES

1QB.

PACKA
1Z4

SECURITY 'POOL
118

WHITE
LIST
121

BLACK
LIST
122

RK

COMPUTING SYSTEM
192.

PACKAGE

112

MANAGER
TOOLS
VA

20 Claims, 7 Drawing Sheets

SOFTWARE
REPOSITORY

MIRRORS
1111

| HAO WATU MULT TIMOR EN KLA OO MUCH US010055576B2

(12) United States Patent
Milner et al .

(10) Patent No . : US 10 , 055 , 576 B2
(45) Date of Patent : * Aug . 21 , 2018

(56) References Cited (54) DETECTION OF MALICIOUS SOFTWARE
PACKAGES U . S . PATENT DOCUMENTS

(71) Applicant : Red Hat , Inc . , Raleigh , NC (US)
(72) Inventors : Steve Bradford Milner , Tallahassee ,

FL (US) ; James Robert Bowes ,
Remote , OR (US)

6 , 324 , 647 B1 * 11 / 2001 Bowman - Amuah H04L 63 / 0227
709 / 223

6 , 438 , 749 B18 / 2002 Chamberlain
7 , 240 , 336 B1 7 / 2007 Baker
7 , 512 , 939 B2 3 / 2009 Brookner

(Continued)
(73) Assignee : Red Hat , Inc . , Raleigh , NC (US)

OTHER PUBLICATIONS (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .
This patent is subject to a terminal dis
claimer .

Seth Ketby Vidal , “ Systems and Methods for Initiating Software
Repairs in Conjuction With Software Pac Kage Updates ” , U . S .
Appl . No . 12 / 714 , 200 , filed Feb . 26 , 2010 .

(Continued)

(21) Appl . No . : 15 / 729 , 304 Primary Examiner – Mahfuzur Rahman
Assistant Examiner - Narciso Victoria
(74) Attorney , Agent , or Firm — Lowenstein Sandler LLP (22) Filed : Oct . 10 , 2017

(65) Prior Publication Data
US 2018 / 0032720 A1 Feb . 1 , 2018

Related U . S . Application Data
(63) Continuation of application No . 12 / 898 , 876 , filed on

Oct . 6 , 2010 , now Pat . No . 9 , 792 , 429 .

(57) ABSTRACT
Systems and methods for a security tool that verifies the
security of a software package . An example method may
involve identifying a plurality of components contained in a
software package comprising one of a JAR file , an Android
application package , a docker image , a container file , or a
virtual machine image ; comparing the components con
tained in the software package to a list of known compo
nents ; classifying the software package as insecure when at
least one of the components matches an insecure compo
nent , or as secure when each of the compared components
matches a corresponding secure component on the list of
known components ; preventing addition of the software
package to a software repository when the software package
is classified as insecure ; and when insecure , providing an
interface to enable a user to request the components of the
software package be added as a secure component on the list
of known components .

(51) Int . Ci .
G06F 21 / 00 (2013 . 01)
G06F 21 / 51 (2013 . 01)
G06F 21 / 56 (2013 . 01)

(52) U . S . CI .
CPC GO6F 21 / 51 (2013 . 01) ; G06F 21 / 564

(2013 . 01)
(58) Field of Classification Search

CPC . GO6F 21 / 51 ; G06F 21 / 564
See application file for complete search history . 20 Claims , 7 Drawing Sheets

100

SOFTWARE REPOSITORY
104

SOFTWARE
PACKAGE

SOFTWARE 124 .
PACKAGES

108 SECURITY TOOL
118

WHITE
LIST

BLACK
LIST

NETWORK
106

SOFTWARE
REPOSITORY
MIRRORS Q5 110

COMPUTING SYSTEM
102

PACKAGE
MANAGER

112

MANAGER
TOOLS
114

WIZ, Inc. EXHIBIT - 1076
WIZ, Inc. v. Orca Security LTD.

US 10,055,576 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,624,393 B2 11/2009 Egan et al.
7,657,885 B2 2/2010 Anderson
7,836,341 B1 11/2010 Krishnan

2003/0051235 Al 3/2003 Simpson
2003/0229890 Al 12/2003 Lau et al.
2005/0210459 Al 9/2005 Henderson et al.
2006/0190773 Al 8/2006 Rao et al.
2006/0230398 Al 10/2006 Yokota
2007/0038991 Al 2/2007 Schuff et al.
2007/0157192 Al 7/2007 Hoefler et al.
2007/0169075 Al 7/2007 Lill et al.
2007/0180490 Al * 8/2007 Renzi G06F 21/577

726/1
2008/0134165 Al 6/2008 Anderson et al.
2008/0141240 Al 6/2008 Uthe
2008/0201705 Al 8/2008 Wookey
2009/0013319 Al 1/2009 Williams et al.
2009/0037897 Al 2/2009 Dull et al.
2009/0083852 Al * 3/2009 Kuo G06F 21/564

726/22
2009/0300595 Al 12/2009 Moran et al.
2010/0023933 Al 1/2010 Bryant et al.
2010/0058308 Al 3/2010 Demshur et al.
2010/0058314 Al 3/2010 Wang
2010/0083243 Al 4/2010 Miocarelli et al.
2010/0114939 Al * 5/2010 Schulman G06F 11/3672

707/769
2011/0166969 Al * 7/2011 Hughes G06F 8/20

705/30

OTHER PUBLICATIONS

Seth Kelby Vidal, Manager, U.S."Systems and Methods for Diag-
nostic Notification Via Package Update", U.S. Appl. No.
12/714,258, filed Feb. 26, 2010.
Seth Ketby Vidal, "Systems and Methods for Managing Software
Package Updates Using Commubication Pipes", U.S. Appl. No.
12/714,208, filed Feb. 26, 2010.
Seth Ketby Vidal, "Systems and Methods for Generating and
Storing Translation Information as Package Manager", U.S. Appl.
No. 12/714,171, filed Feb. 26, 2010.0.
Seth Kelby Vidal. "Systems and Methods for Generating Predictive
Diagnostics Via Package Update Manag Er", U.S. Appl. No.
12/714,222, filed Feb. 26, 2010.
James Antill, "Systems and Methods for Defining and Enforcing
Access Poucy for Package Update Proces Ses", U.S. Appl. No.
12/873,850, filed Sep. 1, 2010.

Seth Kelby Vidal, Systems and Methods for Generating Cached
Representations of Encoded Package Profile, U.S. Appl. No.
12/788,139, filed May 26, 2010.
Seth Kelby Vidal, Systems and Methods for Generating Cached
Representations of Host Package Inventories in Remote Package
Repositories, U.S. Appl. No. 12/790,699, filed May 28, 2010.
Seth Kelby Vidal, "Systems and Methods for Generating Package
Profiles in Software Package Repositories Using Selective Subsets
of Packages",U.S. Appl. No. 12/873,557, flied Sep. 1, 2010.
Se!h Kelby Vidal, Systems and Methods for Generating an Encoded
Package Profile Based on Executing Host Processes, U.S. Appl. No.
12/787,104, filed May 26, 2010.
Seth Kelby Vidal, "Systems and Methods for Restoring Machine
State History Related to Detected Faults in Package Update Pro-
cess", U.S. Appl. No. 12/788,036, filed May 26, 2010.
Seth Kelby Vidal, "Systems and Methods for Generating Cuent
Quaufication to Execute Package Update Manager", U.S. Appl. No.
12/788,458, flied May 27, 2010.
Seth Kelby Vidal, "Systems and Methods for Determining When to
Update a Package Manager Software", U.S. Appl. No. 12/790,752,
filed May 28, 2010.
Seth Kelby Vidal, "Systems and Methods for Generating Exportable
Encoded Identifications of Networked Machines Based on Installed
Package Profiles", U.S. Appl. No. 12/758,416, flied Apr. 27, 2010.
Seth Kelby Vida!, "Systems and Methods for Tracking Computing
Systems Utiuz!ng Software Repositories", U.S. Appl. No.
12/955,671, filed Nov. 29, 2010.
Seth Kelby Vidal, "Systems and Methods for Automatic Upgrade
and Downgrade in Package Update Operations", U.S. Appl. No.
12/892,227, filed Sep. 28, 2010.
Seth Kelby Vidal, "Systems and Methods for Managing Versions of
Software Packages", U.S. Appl. No. 13/037,363, filed Mar. 1, 2011.
Seth Kelby Vidal. "Systems and Methods for Space Efficient
Software Package Management", U.S. Appl. No. 12/610,006, filed
Oct. 30, 2009.
Spybot—Search & Destroy, Overview, http://www.safer-network-
ing.org/enlspybotsd/index.html, 4 pages.
LANDesk Patch Manager 9, LAN Desk Software, Inc., 4 pages.
Security for File Servers, Kaspersky Lab, http://usakaspersky.com/
products-services Ibusiness/security-for-file-servers.
"About Symantec Scan Engine", Symantec, 2008, 12 pages.
"SymantecTM Scan Engine Software Developer's Guide",
Symantec, 2008, 103 pages.
"SymantecTM Scan Engine Management Pack Integration Guide",
Symantec, 2008, 18 pages.
"Symantec198 Scan Engine Implementation Guide", Symantec,
2008, 247 pages.

* cited by examiner

US 10 , 055 , 576 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

7 , 624 , 393 B2
7 , 657 , 885 B2
7 , 836 , 341 B1

2003 / 0051235 AL
2003 / 0229890 Al
2005 / 02 10459 Al
2006 / 0190773 AL
2006 / 0230398 A
2007 / 0038991 A1
2007 / 0157192 A1
2007 / 0169075 A
2007 / 0180490 A1 *

2008 / 0134165 Al
2008 / 0141240 A1
2008 / 0201705 A1
2009 / 0013319 AL
2009 / 0037897 A1
2009 / 0083852 A1 *

11 / 2009 Egan et al .
2 / 2010 Anderson

11 / 2010 Krishnan
3 / 2003 Simpson

12 / 2003 Lau et al .
9 / 2005 Henderson et al .
8 / 2006 Rao et al .

10 / 2006 Yokota
2 / 2007 Schuff et al .
7 / 2007 Hoefler et al .
7 / 2007 Lill et al .
8 / 2007 Renzi G06F 21 / 577

726 / 1
6 / 2008 Anderson et al .
6 / 2008 Uthe
8 / 2008 Wookey
1 / 2009 Williams et al .
2 / 2009 Dull et al .
3 / 2009 Kuo GO6F 21 / 564

726 / 22
12 / 2009 Moran et al .
1 / 2010 Bryant et al .
3 / 2010 Demshur et al .
3 / 2010 Wang
4 / 2010 Miocarelli et al .
5 / 2010 Schulman GO6F 11 / 3672

707 / 769
7 / 2011 Hughes G06F 8 / 20

705 / 30

2009 / 0300595 Al
2010 / 0023933 Al
2010 / 0058308 Al
2010 / 0058314 AL
2010 / 0083243 A1
2010 / 0114939 A1 *

Seth Kelby Vidal , Systems and Methods for Generating Cached
Representations of Encoded Package Profile , U . S . Appl . No .
12 / 788 , 139 , filed May 26 , 2010 .
Seth Kelby Vidal , Systems and Methods for Generating Cached
Representations of Host Package Inventories in Remote Package
Repositories , U . S . Appl . No . 12 / 790 , 699 , filed May 28 , 2010 .
Seth Kelby Vidal , “ Systems and Methods for Generating Package
Profiles in Software Package Repositories Using Selective Subsets
of Packages ” , U . S . Appl . No . 12 / 873 , 557 , flied Sep . 1 , 2010 .
Se ! h Kelby Vidal , Systems and Methods for Generating an Encoded
Package Profile Based on Executing Host Processes , U . S . Appl . No .
12 / 787 , 104 , filed May 26 , 2010 .
Seth Kelby Vidal , “ Systems and Methods for Restoring Machine
State History Related to Detected Faults in Package Update Pro
cess " , U . S . Appl . No . 12 / 788 , 036 , filed May 26 , 2010 .
Seth Kelby Vidal , “ Systems and Methods for Generating Cuent
Quaufication to Execute Package Update Manager ” , U . S . Appl . No .
12 / 788 , 458 , flied May 27 , 2010 .
Seth Kelby Vidal , “ Systems and Methods for Determining When to
Update a Package Manager Software ” , U . S . Appl . No . 12 / 790 , 752 ,
filed May 28 , 2010 .
Seth Kelby Vidal , “ Systems and Methods for Generating Exportable
Encoded Identifications of Networked Machines Based on Installed
Package Profiles ” , U . S . Appl . No . 12 / 758 , 416 , flied Apr . 27 , 2010 .
Seth Kelby Vida ! , " Systems and Methods for Tracking Computing
Systems Utiuz ! ng Software Repositories ” , U . S . Appl . No .
12 / 955 , 671 , filed Nov . 29 , 2010 .
Seth Kelby Vidal , “ Systems and Methods for Automatic Upgrade
and Downgrade in Package Update Operations ” , U . S . Appl . No .
12 / 892 , 227 , filed Sep . 28 , 2010 .
Seth Kelby Vidal , “ Systems and Methods for Managing Versions of
Software Packages ” , U . S . Appl . No . 13 / 037 , 363 , filed Mar . 1 , 2011 .
Seth Kelby Vidal . “ Systems and Methods for Space Efficient
Software Package Management ” , U . S . Appl . No . 12 / 610 , 006 , filed
Oct . 30 , 2009 .
Spybot Search & Destroy , Overview , http : / / www . safer - network
ing . org / enlspybotsd / index . html , 4 pages .
LANDesk Patch Manager 9 , LAN Desk Software , Inc . , 4 pages .
Security for File Servers , Kaspersky Lab , http : / / usakaspersky . com
products - services / business / security - for - file - servers .
" About Symantec Scan Engine ” , Symantec , 2008 , 12 pages .
" SymantecTM Scan Engine Software Developer ' s Guide ” ,
Symantec , 2008 , 103 pages .
“ SymantecTM Scan Engine Management Pack Integration Guide ” ,
Symantec , 2008 , 18 pages .
" Symantec 198 Scan Engine Implementation Guide ” , Symantec ,
2008 , 247 pages .

2011 / 0166969 A1 *

OTHER PUBLICATIONS
Seth Kelby Vidal , Manager , U . S . “ Systems and Methods for Diag
nostic Notification Via Package Update ” , U . S . Appl . No .
12 / 714 , 258 , filed Feb . 26 , 2010 .
Seth Ketby Vidal , “ Systems and Methods for Managing Software
Package Updates Using Commubication Pipes ” , U . S . Appl . No .
12 / 714 , 208 , filed Feb . 26 , 2010 .
Seth Ketby Vidal , “ Systems and Methods for Generating and
Storing Translation Information as Package Manager ” , U . S . Appl .
No . 12 / 714 , 171 , filed Feb . 26 , 2010 . 0 .
Seth Kelby Vidal . “ Systems and Methods for Generating Predictive
Diagnostics Via Package Update Manag Er ” , U . S . Appl . No .
12 / 714 , 222 , filed Feb . 26 , 2010 .
James Antill , “ Systems and Methods for Defining and Enforcing
Access Poucy for Package Update Proces Ses ” , U . S . Appl . No .
12 / 873 , 850 , filed Sep . 1 , 2010 . * cited by examiner

U.S. Patent Aug. 21, 2018

100_

Sheet 1 of 7 US 10,055,576 B2

SOFTWARE REPOSITORY
104

SOFTWARE
PACKAGES

108

SOFTWARE
PACKAGE

124

SECURITY TOOL
118

WHITE
LIST
1.20.

BLACK
LIST
12Z

NETWORK
101 ..

COMPUTING SYSTEM
102

PACKAGE
MANAGER

112.

1-ti

MANAGER
TOOLS

114_

FIG„ 1

SOFTWARE
REPOSITORY

MIRRORS
110

U . S . Patent Aug . 21 , 2018 Sheet 1 of 7 US 10 , 055 , 576 B2

* *

100 MAMAHA
SOFTWARE REPOSITORY

104
SOFTWARE
PACKAGE

SOFTWARE 124
PACKAGES

108 SECURITY TOOL

wwwwwww
* * * * *

WHA 118
* * * * * * *

WHITE
LIST
120

BLACK
LIST
122

" WWWWWWWW
*

WEEEEEEEYYYYYY YYYYYYYYYYYYYY

NETWORK
106

SOFTWARE
REPOSITORY
MIRRORS

110

* * * * * * * * *

* *

COMPUTING SYSTEM
102

PACKAGE
MANAGER

112

MANAGER
TOOLS

114
WA

FIG . 1A

U.S. Patent Aug. 21, 2018 Sheet 2 of 7 US 10,055,576 B2

SOFTWARE REPOSITORY

SOFTWARE
PACKAGES

108

NETWORK

1.00_

SOFTWARE
REPOSITORY

MIRRORS
110

COMPUTING SYSTEM
102

SECURITY TOOL
PACKAGE
MANAGER

MANAGER
TOOLS

112 1.14. WHITE BLACK
LIST LIST

116

120. 122

FIG. 1B

U . S . Patent Aug . 21 , 2018 Sheet 2 of 7 US 10 , 055 , 576 B2

SOFTWARE REPOSITORY
104

100

SOFTWARE
PACKAGES

108

www

SOFTWARE
REPOSITORY
MIRRORS

110

NETWORK
106

COMPUTING SYSTEM
102

SECURITY TOOL
118 PACKAGE

MANAGER
112

MANAGER
TOOLS

114 . WHITE BLACK
LIST 11 LIST
120 122

FIG . 1B

U.S. Patent Aug. 21, 2018

I-

210 .<

Sheet 3 of 7 US 10,055,576 B2

205
 A

NAME VERSION SIZE HASH VENDOR
CVE

REFERENCE

PKGA.JAR V.1 100MB 512,85d2a... ABC.INC ACERT, INC.
CVE-2008-1234

• • •

PKGAI.JAR V.2 10MB 512,85a1a... AMC,INC ACERT, INC
CVE-2008-1234

• • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

200

122.

FIG. 2

U . S . Patent Aug . 21 , 2018 Sheet 3 of 7 US 10 , 055 , 576 B2

205

NAME VERSION SIZE HASH VENDOR CVE
REFERENCE

200DNOCHMOOOOO Xopo

PKGAJAR V . 1 100MB 512 , 85d2a . . . ABCINC ACERT , INC .
CVE - 2008 - 1234

PKGAI . JAR V . 2 10MB 512 , 85a1a . . . AMC , INC ACERT , INC
CVE - 2008 - 1234

210

*

*

200
122

FIG . 2

U.S. Patent Aug. 21, 2018 Sheet 4 of 7 US 10,055,576 B2

(---NETWORK
106

w
.

•

NETWORK
INTERFACE

310

PROCESSOR
101

COMPUTING
SYSTEM

MEMORY
3.04.

STORAGE
3_0.8.

OS
30.E

SECURITY
TOOL
118

FIG. 3

U . S . Patent Aug . 21 , 2018 Sheet 4 of 7 US 10 , 055 , 576 B2

NETWORK
106

COMPUTING
SYSTEM

300

NETWORK
INTERFACE

STORAGE
308

310
ANANAN

OS
306 A NARAMAMARAAMA

LAAMAS S A HUAWA PROCESSOR
302

SECURITY
TOOL
118

MEMORY
304 .

FIG . 3

U.S. Patent Aug. 21, 2018

400,

Sheet 5 of 7 US 10,055,576 B2

402
BEGIN

IDENTIFY A SOFTWARE PACKAGE TO VERIFY AND CERTIFY

IDENTIFY THE COMPONENTS OF THE SOFTWARE PACKAGE

COMPARE THE COMPONENTS OF THE SOFTWARE PACKAGE
TO A WHITE LIST

VERIFY AND CERTIFY THE SOFTWARE PACKAGE BASED ON
THE COMPAR€SON

412 r END

FIG. 4A

404

406

408

410

U . S . Patent Aug . 21 , 2018 Sheet 5 of 7 US 10 , 055 , 576 B2

400
402

BEGIN

404
om cort

IDENTIFY A SOFTWARE PACKAGE TO VERIFY AND CERTIFY
c

406

IDENTIFY THE COMPONENTS OF THE SOFTWARE PACKAGE
wwwwwwwwwwwwwwwwwwwwwwwwww

ROV * 408
A E & RE * TWARE 7 VO WI COMPARE THE COMPONENTS OF THE SOFTWARE PACKAGE

TO A WHITE LIST
WWWWWWWWWWWWWWWWWWWW

410 *

* * * * * * VERIFY AND CERTIFY THE SOFTWARE PACKAGE BASED ON
THE COMPARISON * * * * * * *

AWSKI SEKARKA KRAKKKKKKRAKARAKESKIKEKAAR Myynn

412

END

FIG . 4A

U.S. Patent Aug. 21, 2018

420

Sheet 6 of 7 US 10,055,576 B2

------ 422
C BEGIN

IDENTIFY A SOFTWARE PACKAGE TO VERIFY AND CERTIFY

IDENTIFY THE COMPONENTS OF THE SOFTWARE PACKAGE

COMPARE THE COMPONENTS OF THE SOFTWARE PACKAGE
TO A BLACK. LIST

VERIFY AND CERTIFY THE SOFTWARE PACKAGE BASED ON
THE COMPARISON

432
(END

FIG. 4B

424

426

428

430

U . S . Patent Aug . 21 , 2018 Sheet 6 of 7 US 10 , 055 , 576 B2

420
422

BEGIN

424 CONNA

IDENTIFY A SOFTWARE PACKAGE TO VERIFY AND CERTIFY WAD VV

wwwwwww

426
IDENTIFY THE COMPONENTS OF THE SOFTWARE PACKAGE

OnNWWW W WWWWWWWWWW wwwwwwwwwwwwwwwwwwwwwwwwwwww

428
COMPARE THE COMPONENTS OF THE SOFTWARE PACKAGE

TO A BLACK LIST

430
VERIFY AND CERTIFY THE SOFTWARE PACKAGE BASED ON

THE COMPARISON
m innowwwwwwwww

432
END END

UUUUUUUUUUA

FIG . 4B

U.S. Patent Aug. 21, 2018

440.

Sheet 7 of 7 US 10,055,576 B2

CEEGIN
4,

442

IDENTIFY A SOFTWARE PACKAGE TO VERIFY AND CERTIFY

IDENTIFY THE COMPONENTS OF THE SOFTWARE PACKAGE
COMPARE THE COMPONENTS OF THE SOFTWARE PACKAGE TO A WHITE LIST AND A BLACK LIST

4,VERIFY AND CERTIFY THE SOFTWARE PACKAGE BASED ON THE COMPARISON
452 (END Y.-N-4

FIG. 4C

444

446

448

po

U . S . Patent Aug . 21 , 2018 Sheet 7 of 7 US 10 , 055 , 576 B2

440
442

BEGIN
mo

444
IDENTIFY A SOFTWARE PACKAGE TO VERIFY AND CERTIFY

+ * % * XX I KERET KEYNEETR

446
IDENTIFY THE COMPONENTS OF THE SOFTWARE PACKAGE

448
COMPARE THE COMPONENTS OF THE SOFTWARE PACKAGE

TO A WHITE LIST AND A BLACK LIST
wwwwwwwwwwwwww w wwwwwwwwwwwww

450
VERIFY AND CERTIFY THE SOFTWARE PACKAGE BASED ON

THE COMPARISON
Wwwwwwwww

452 CENO 452 END

FIG . 4C

US 10,055,576 B2
1

DETECTION OF MALICIOUS SOFTWARE
PACKAGES

RELATED APPLICATIONS

This application is a continuation of application Ser. No.
12/898,876, filed Oct. 6, 2010, now U.S. Pat. No. 9,792,429,
entitled "Detection of Malicious Software Packages," which
is incorporated herein by reference herein.

TECHNICAL FIELD

This invention relates generally to computer software
installation for computing systems.

DESCRIPTION OF THE RELATED ART

Today, a person using a computing system has a variety of
avenues for obtaining software and installing the software
on the computing system, such as purchasing physical media
and downloading the software over a network. When down-
loading the software over a network, the person can acquire
and install the software using a software package delivery
system. The software package delivery system typically
consists of a software repository which stores and maintains
various software packages. The software packages typically
consist of software stored in an archive format that includes
data for installing the software.

The software repository, typically, stores software pack-
ages from different types of developers, such as software
development companies or individual developers. Because
the software packages originate from different developers,
there currently exist no process by which software packages
are certified as trusted and secure. Additionally, because of
the flexibility of software packages, individuals can repack-
age a software package to include additional components.
Because an individual can introduce new components into
the software package without the benefit of trusted verifi-
cation, the individual could possibly add exploitable code,
bugs, malicious code, or files to the software package.
Accordingly, the software repositories and the users of the
repositories lack the ability to identify a known exploitable,
malicious software package or trust that a software package
is believed to be secure.

BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments can be more fully
appreciated, as the same become better understood with
reference to the following detailed description of the
embodiments when considered in connection with the
accompanying figures, in which:

FIGS. IA and 1B illustrate examples of a software pack-
age delivery system including a security tool, in which
various embodiments of the present teachings can be prac-
ticed;

FIG. 2 illustrates an example of a black list according to
various embodiments;

FIG. 3 illustrates an exemplary hardware configuration
for a computing system capable of executing the security
tool, according to various embodiments;

FIG. 4A illustrates a flowchart of an exemplary process
for verifying and certifying a software package is secure
utilizing a white list, according to various embodiments;

FIG. 4B illustrates a flowchart of an exemplary process
for verifying and certifying a software package is secure
utilizing a black list, according to various embodiments; and

5

2
FIG. 4C illustrates a flowchart of an exemplary process

for verifying and certifying a software package is secure
utilizing a white list and a black list, according to various
embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

For simplicity and illustrative purposes, the principles of
the present teachings are described by referring mainly to

10 exemplary embodiments thereof. However, one of ordinary
skill in the art would readily recognize that the same
principles are equally applicable to, and can be implemented
in, all types of information and systems, and that any such
variations do not depart from the true spirit and scope of the

15 present teachings. Moreover, in the following detailed
description, references are made to the accompanying fig-
ures, which illustrate specific embodiments. Electrical,
mechanical, logical and structural changes may be made to
the embodiments without departing from the spirit and scope

20 of the present teachings. The following detailed description
is, therefore, not to be taken in a limiting sense and the scope
of the present teachings is defined by the appended claims
and their equivalents.

Embodiments of the present teachings relate to systems
25 and methods for verifying the security of software packages.

According to embodiments, a software repository offering a
software package or a computing system downloading a
software package can utilize a security tool to verify the
security of the software package. The security tool can be

30 configured to check and to verify the security of software
packages utilizing a black list of components. To check the
security, the security tool can be configured to compare the
components of the software package to the black list. The
components of the software package can include the archival

35 files (e.g. jar/egg files) contained in the software package.
The security tool can be configured to compare the base
archival file (package) and/or any archival sub-files (sub-
packages) contained in the base archival file to the black list.
A black list can include a list of archival files that are known

40 to be insecure, such as known insecure packages/subpack-
ages referenced in a Common Vulnerabilities and Exposures
(CVE) list. The black list can include a hash of the archival
files and details of the archival files that are insecure, such
as name of the archival file, version of the archival file, size

45 of the archival file, etc.
According to embodiments, to check the security of a

software package, the security tool can be configured to
examine the software package to identify the components of
the software package, e.g. the base archival file (package)

so and/or any archival sub-files (sub-packages). Once the com-
ponents are identified, the security tool can be configured to
compare the components to the black list. The security tool
can compare hashed versions of the identified components to
hashed versions of the known insecure components included

55 in the black list. The security tool can be configured to verify
the security of the software package based on the compari-
son. The security tool can verify that the software package
is insecure if an identified component of the software
package is found in the black list.

60 By utilizing the security tool, a software repository and/or
a user can verify that a software packages is secure and does
not pose a danger to computing system due to malicious
code, at the time of scanning. As such, the software reposi-
tory can ensure, at that time, that the software packages

65 offered are safe, and a user retrieving a software package can
ensure that the software packages downloaded will not
damage or compromise their computing systems.

US 10 , 055 , 576 B2

DETECTION OF MALICIOUS SOFTWARE
PACKAGES

FIG . 4C illustrates a flowchart of an exemplary process
for verifying and certifying a software package is secure
utilizing a white list and a black list , according to various
embodiments . RELATED APPLICATIONS

5
This application is a continuation of application Ser . No . DETAILED DESCRIPTION OF EMBODIMENTS

12 / 898 , 876 , filed Oct . 6 , 2010 , now U . S . Pat . No . 9 , 792 , 429 ,
entitled “ Detection of Malicious Software Packages , ” which For simplicity and illustrative purposes , the principles of
is incorporated herein by reference herein . the present teachings are described by referring mainly to

10 exemplary embodiments thereof . However , one of ordinary
TECHNICAL FIELD skill in the art would readily recognize that the same

principles are equally applicable to , and can be implemented
This invention relates generally to computer software in , all types of information and systems , and that any such

installation for computing systems . variations do not depart from the true spirit and scope of the
15 present teachings . Moreover , in the following detailed

DESCRIPTION OF THE RELATED ART description , references are made to the accompanying fig
ures , which illustrate specific embodiments . Electrical ,

Today , a person using a computing system has a variety of mechanical , logical and structural changes may be made to
avenues for obtaining software and installing the software the embodiments without departing from the spirit and scope
on the computing system , such as purchasing physical media 20 of the present teachings . The following detailed description
and downloading the software over a network . When down - is , therefore , not to be taken in a limiting sense and the scope
loading the software over a network , the person can acquire of the present teachings is defined by the appended claims
and install the software using a software package delivery and their equivalents .
system . The software package delivery system typically Embodiments of the present teachings relate to systems
consists of a software repository which stores and maintains 25 and methods for verifying the security of software packages .
various software packages . The software packages typically According to embodiments , a software repository offering a
consist of software stored in an archive format that includes software package or a computing system downloading a
data for installing the software . software package can utilize a security tool to verify the

The software repository , typically , stores software pack - security of the software package . The security tool can be
ages from different types of developers , such as software 30 configured to check and to verify the security of software
development companies or individual developers . Because packages utilizing a black list of components . To check the
the software packages originate from different developers , security , the security tool can be configured to compare the
there currently exist no process by which software packages components of the software package to the black list . The
are certified as trusted and secure . Additionally , because of components of the software package can include the archival
the flexibility of software packages , individuals can repack - 35 files (e . g . jarlegg files) contained in the software package .
age a software package to include additional components . The security tool can be configured to compare the base
Because an individual can introduce new components into archival file (package) and / or any archival sub - files (sub
the software package without the benefit of trusted verifi - packages) contained in the base archival file to the black list .
cation , the individual could possibly add exploitable code , A black list can include a list of archival files that are known
bugs , malicious code , or files to the software package . 40 to be insecure , such as known insecure packages / subpack
Accordingly , the software repositories and the users of the ages referenced in a Common Vulnerabilities and Exposures
repositories lack the ability to identify a known exploitable , (CVE) list . The black list can include a hash of the archival
malicious software package or trust that a software package files and details of the archival files that are insecure , such
is believed to be secure . as name of the archival file , version of the archival file , size

45 of the archival file , etc .
BRIEF DESCRIPTION OF THE DRAWINGS According to embodiments , to check the security of a

software package , the security tool can be configured to
Various features of the embodiments can be more fully examine the software package to identify the components of

appreciated , as the same become better understood with the software package , e . g . the base archival file (package)
reference to the following detailed description of the 50 and / or any archival sub - files (sub - packages) . Once the com
embodiments when considered in connection with the ponents are identified , the security tool can be configured to
accompanying figures , in which : compare the components to the black list . The security tool
FIGS . 1A and 1B illustrate examples of a software pack can compare hashed versions of the identified components to

age delivery system including a security tool , in which hashed versions of the known insecure components included
various embodiments of the present teachings can be prac - 55 in the black list . The security tool can be configured to verify
ticed ; the security of the software package based on the compari

FIG . 2 illustrates an example of a black list according to son . The security tool can verify that the software package
various embodiments ; is insecure if an identified component of the software

FIG . 3 illustrates an exemplary hardware configuration package is found in the black list .
for a computing system capable of executing the security 60 By utilizing the security tool , a software repository and / or
tool , according to various embodiments ; a user can verify that a software packages is secure and does

FIG . 4A illustrates a flowchart of an exemplary process not pose a danger to computing system due to malicious
for verifying and certifying a software package is secure code , at the time of scanning . As such , the software reposi
utilizing a white list , according to various embodiments ; tory can ensure , at that time , that the software packages

FIG . 4B illustrates a flowchart of an exemplary process 65 offered are safe , and a user retrieving a software package can
for verifying and certifying a software package is secure ensure that the software packages downloaded will not
utilizing a black list , according to various embodiments ; and damage or compromise their computing systems .

US 10,055,576 B2
3

FIG. 1A illustrates a software package delivery system
100, according to various embodiments of the present teach-
ings. While FIG. 1A illustrates various components that can
be included in the software package delivery system 100,
one skilled in the art will realize that additional components
can be added or existing components can be removed.

As illustrated in FIG. 1A, the software package delivery
system 100 can be designed to allow a computing system
102 to communicate with a software repository 104 via one
or more networks 106. The computing system 102 can
communicate with the software repository 104 in order to
obtain and install software packages 108. The software
repository 104 can be implemented as any type of open-
source or proprietary software repository, which can store
the software packages 108 and provide the software pack-
ages 108 to the computing system 102. For example, the
software repository 104 can be implemented as a Yum
repository, DebianTM repository, or any other type of con-
ventional software repository.

As described herein, the software packages 108 can
include one or more software programs or software program
updates that are packaged together in a format that allows a
software package manger or software package installer to
install the software programs or updates, contained in the
software packages 108. The software programs included in
the software packages 108 can be any type of software
programs such as operating systems (OS), application pro-
grams, and the like or updates to these software programs.
The software packages 108 can also include metadata that
describes the software packages, such as the name of the
software package, the software programs included in the
package, epoch, version and release of the software pack-
ages, architecture for which the software package was built,
description of the purpose of the software packages, etc. The
software packages 108 can also include metadata that aids in
the installation of the software programs contained in the
software packages, such as checksums, format of the check-
sums, and a list of dependencies of the software packages.
The checksums verify the integrity of the files of the
software packages 108, e.g. that the files of the software
packages are complete and correct. The list of dependencies
can describe the relationship of the software programs or
software program updates contained in the software pack-
ages 108 and any other software programs, file, software
libraries, etc. required by the software packages.

The software repository 104 can store the software pack-
ages 108 in any type of open-source or proprietary format
depending on the type of the software repository. For
example, the software packages 108 can be in conventional
formats such as RPM format for a Yum repository, .deb
format for a DebianTM repository, or other conventional
archival formats such as .jar .zip, tar.gz, and the like.

The software package delivery system 100 can also
include one or more software repository mirrors 110,
coupled to the one or more networks 106. The software
repository mirrors 110 can be configured to maintain copies
of the software packages 108 offered by the software reposi-
tory 104. The software repository mirrors 110 can be con-
figured to backup the software repository 104. For example,
the software repository mirrors 110 can provide the software
packages 108 to the computing system 102, in the event that
the software repository 104 is unavailable or the software
repository 104 is experiencing high traffic.

The software repository 104 and the software repository
mirrors 110 can be supported by any type of computing
systems capable of storing the software packages, capable of
communicating with the one or more networks 106 and

4
capable of running a repository application for cooperating
with a software package manager or software package
installer in order to deliver the software packages 108. For
example, the software repository 104 and the software

5 repository mirrors 110 can be supported by conventional
computing systems or other devices such as such as servers,
personal computers, laptop computers, network-enabled
media devices, networked stations, etc. As such, the com-
puting systems supporting the software repository 104 and

10 the software repository mirrors 110 can include conventional
hardware such as processors, memory, computer readable
storage media and devices (CD, DVD, hard drive, portable
storage memory, etc.), network devices, and the like.

The one or more networks 106 can be or include the
15 Internet, or other public or private networks. The one or

more networks 106 can be or include wired, wireless,
optical, and other network connections. One skilled in the art
will realize that the one or more networks 106 can be any
type of network, utilizing any type of communication pro-

20 tocol, to connect computing systems.
The computing system 102 can be any type of conven-

tional computing system or other device such as such as
servers, personal computers, laptop computers, network-
enabled media devices, networked stations, etc. As such, the

25 computing system 102 can include conventional hardware
such as processors, memory, computer readable storage
media and devices (CD, DVD, hard drive, portable storage
memory, etc.), network devices, and the like.

In order to communicate with the software repository 104
30 or the software repository mirrors 110, the computing sys-

tem 102 can include a software package manager 112. The
software package manager 112 can be configured to coop-
erate with the software repository 104 or the software
repository mirrors 110 to perform various actions associated

35 with the software packages. For example, the software
package manager 112 can be configured to retrieve one or
more of the software packages 108, maintained by the
software repository 104 and configured to install the soft-
ware packages 108 on the computing system 102. Likewise,

40 the software package manager 112 can be configured to
retrieve updates to the software packages 108, already
installed on the computing system 102, and install the
updates on the computing system 102.

The software package manager 112 can be configured to
45 cooperate with manager tools 114 to perform actions related

to the software packages. For example, the manager tools
114 can be configured to install and update particular
application programs, files, or software libraries maintained
by the software repository 104. As such, the manager tools

50 114 can be configured to provide a request to the software
package manager 112 to perform the installation or update.

The software package manager 112 can be configured to
allow a user of the computing system 102 to request the
various actions associated with installing and updating soft-

55 ware packages. To achieve this, the software package man-
ager 112 can be configured to provide command line inter-
faces and/or graphical user interfaces (GUIs) that allow the
user to direct the software package manager 112 to perform
the actions. For example, the software package manager 112

60 can provide GUIs that display the software packages, such
as new software packages and software package updates,
available in the software repositories and that allow the user
to select the action to be performed related to the software
packages. Likewise, in order to perform the various actions,

65 the software package manager 112 can be configured to
communicate with the software repository 104 or the soft-
ware repository mirrors 110 and retrieve data from the

US 10 , 055 , 576 B2

FIG . 1A illustrates a software package delivery system capable of running a repository application for cooperating
100 , according to various embodiments of the present teach with a software package manager or software package
ings . While FIG . 1A illustrates various components that can installer in order to deliver the software packages 108 . For
be included in the software package delivery system 100 , example , the software repository 104 and the software
one skilled in the art will realize that additional components 5 repository mirrors 110 can be supported by conventional
can be added or existing components can be removed . computing systems or other devices such as such as servers ,
As illustrated in FIG . 1A , the software package delivery personal computers , laptop computers , network - enabled

system 100 can be designed to allow a computing system media devices , networked stations , etc . As such , the com
102 to communicate with a software repository 104 via one puting systems supporting the software repository 104 and
or more networks 106 . The computing system 102 can 10 the software repository mirrors 110 can include conventional
communicate with the software repository 104 in order to hardware such as processors , memory , computer readable
obtain and install software packages 108 . The software storage media and devices (CD , DVD , hard drive , portable
repository 104 can be implemented as any type of open - storage memory , etc .) , network devices , and the like .
source or proprietary software repository , which can store The one or more networks 106 can be or include the
the software packages 108 and provide the software pack - 15 Internet , or other public or private networks . The one or
ages 108 to the computing system 102 . For example , the more networks 106 can be or include wired , wireless ,
software repository 104 can be implemented as a Yum optical , and other network connections . One skilled in the art
repository , DebianTM repository , or any other type of con - will realize that the one or more networks 106 can be any
ventional software repository . type of network , utilizing any type of communication pro

As described herein , the software packages 108 can 20 tocol , to connect computing systems .
include one or more software programs or software program The computing system 102 can be any type of conven
updates that are packaged together in a format that allows a tional computing system or other device such as such as
software package manger or software package installer to servers , personal computers , laptop computers , network
install the software programs or updates , contained in the enabled media devices , networked stations , etc . As such , the
software packages 108 . The software programs included in 25 computing system 102 can include conventional hardware
the software packages 108 can be any type of software such as processors , memory , computer readable storage
programs such as operating systems (OS) , application pro - media and devices (CD , DVD , hard drive , portable storage
grams , and the like or updates to these software programs . memory , etc .) , network devices , and the like .
The software packages 108 can also include metadata that In order to communicate with the software repository 104
describes the software packages , such as the name of the 30 or the software repository mirrors 110 , the computing sys
software package , the software programs included in the tem 102 can include a software package manager 112 . The
package , epoch , version and release of the software pack - software package manager 112 can be configured to coop
ages , architecture for which the software package was built , erate with the software repository 104 or the software
description of the purpose of the software packages , etc . The repository mirrors 110 to perform various actions associated
software packages 108 can also include metadata that aids in 35 with the software packages . For example , the software
the installation of the software programs contained in the package manager 112 can be configured to retrieve one or
software packages , such as checksums , format of the check more of the software packages 108 , maintained by the
sums , and a list of dependencies of the software packages . software repository 104 and configured to install the soft
The checksums verify the integrity of the files of the ware packages 108 on the computing system 102 . Likewise ,
software packages 108 , e . g . that the files of the software 40 the software package manager 112 can be configured to
packages are complete and correct . The list of dependencies retrieve updates to the software packages 108 , already
can describe the relationship of the software programs or installed on the computing system 102 , and install the
software program updates contained in the software pack - updates on the computing system 102 .
ages 108 and any other software programs , file , software The software package manager 112 can be configured to
libraries , etc . required by the software packages . 45 cooperate with manager tools 114 to perform actions related

The software repository 104 can store the software pack to the software packages . For example , the manager tools
ages 108 in any type of open - source or proprietary format 114 can be configured to install and update particular
depending on the type of the software repository . For application programs , files , or software libraries maintained
example , the software packages 108 can be in conventional by the software repository 104 . As such , the manager tools
formats such as RPM format for a Yum repository , deb 50 114 can be configured to provide a request to the software
format for a DebianTM repository , or other conventional package manager 112 to perform the installation or update .
archival formats such as . jar . zip , tar . gz , and the like . The software package manager 112 can be configured to

The software package delivery system 100 can also allow a user of the computing system 102 to request the
include one or more software repository mirrors 110 , various actions associated with installing and updating soft
coupled to the one or more networks 106 . The software 55 ware packages . To achieve this , the software package man
repository mirrors 110 can be configured to maintain copies ager 112 can be configured to provide command line inter
of the software packages 108 offered by the software reposi - faces and / or graphical user interfaces (GUIS) that allow the
tory 104 . The software repository mirrors 110 can be con - user to direct the software package manager 112 to perform
figured to backup the software repository 104 . For example , the actions . For example , the software package manager 112
the software repository mirrors 110 can provide the software 60 can provide GUIs that display the software packages , such
packages 108 to the computing system 102 , in the event that as new software packages and software package updates ,
the software repository 104 is unavailable or the software available in the software repositories and that allow the user
repository 104 is experiencing high traffic . to select the action to be performed related to the software

The software repository 104 and the software repository packages . Likewise , in order to perform the various actions ,
mirrors 110 can be supported by any type of computing 65 the software package manager 112 can be configured to
systems capable of storing the software packages , capable of communicate with the software repository 104 or the soft
communicating with the one or more networks 106 and ware repository mirrors 110 and retrieve data from the

US 10,055,576 B2
5

software repositories. For example, when providing the
GUIs to a user of the computing system 102, the software
package manager 112 can retrieve a list of the software
packages 108 from the software repository 104. Likewise,
for example, when installing or updating a particular soft-
ware package, the software package manager 112 can
retrieve the particular software package updates and any
other data associated with the particular software package.

When performing the various actions, the software pack-
age manager 112 can be configured to utilize the metadata
associated with the software packages 108 in order to
perform the actions. For example, when installing a particu-
lar software package or updating a particular software
package, the software package manager 112 can access the
metadata associated with the particular software package in
order to properly install or update the software package on
the computing system 102. For instance, the software pack-
age manager 112 can utilize the checksums and the list of
dependencies in the metadata in order to identify and verify
the software programs, files, and software libraries that are
affected. Additionally, when performing the various actions,
the software package manager 112 can be configured to store
the metadata in a database 116.

The software package manager 112 can be any application
program that is capable of executing on the computing
system 102 to perform the actions described above. For
example, the software package manager 112 can be any type
of conventional open-source or proprietary package man-
ager such as Yum package manager, DebianTM package
manager, and the like. The software package manager 112
can be stored on computer readable storage devices or media
(CD, DVD, hard drive, portable storage memory, etc.) of the
computing system 102 and executed by the computing
system 102.

As described above, the software packages 108 main-
tained by the software repository 104 can be provided to the
software repository 104 from a variety of sources. The
software packages 108 can be created and provided by
software development companies. Likewise, the software
packages 108 can be created and provided by individual
developers and users. Because the software packages 108
originate from a variety of sources, the software repository
104 may not be able to verify or certify that the software
packages 108 are secure and do not contain malicious files
or code. For example, if one of the software packages 108
is provided by an individual, the software repository 104
may not know or trust the individual and, accordingly,
cannot verify that the software package is secure based on its
relationship with the individual.

In embodiments, to verify and certify that the software
packages 108 are secure, the software repository 104 can
include a security tool 118. The security tool 118 can be
configured to examine the software packages 108 and com-
pare the components of the software packages 108 to a white
list 120 of known secure components and to a black list 122
of known insecure components. The security tool 118 can be
implemented as an application program that is capable of
executing on the computing systems supporting the software
repository 104 to perform the processes as described herein.
As such, the security tool 118 can be configured to include
the necessary logic, commands, instructions, and protocols
in order to perform the methods and processes described
herein. Likewise, the security tool 118 can be implemented
as a portion of another application program, such as the
software repository applications. In either case, the security
tool 118 can be stored on computer readable storage devices
or media (CD, DVD, hard drive, portable storage memory,

6
etc.) of the computing systems supporting the software
repository 104 and can be executed by the computing
systems supporting the software repository 104.

In embodiments, to check and verify the security of the
5 software packages 108, the security tool 118 can be config-

ured to examine the software packages 108 to identify the
components of the software packages 108. The components,
identified by the security tool 118, can include the archival
files (jar/egg files) contained in the software package, such

10 as rpm files, .zip files, tar.gz, .jar, etc. The components can
include the base archival file (package) and/or any archival
sub-files (sub-packages) contained in the base archival file.
The security tool 118 can be configured examine the archival
files of the software packages 108 and/or decompose the

15 archival files to identify the archival sub-files. For example,
a particular software package 108 can include a base RPM
file which contains several tar.gz sub-files. In this example,
the security tool 118 can be configured to identify, as
components, the base RPM file and/or the several tar.gz

20 sub-files. To achieve this, the security tool 118 can be
configured to include the necessary logic, commands,
instructions, and protocols to access the archival format of
the software packages 108 and to decompose the software
packages 108.

25 Once the components have been identified, the security
tool 118 can be configured to compare the identified com-
ponents to the white list 120 and/or to the black list 122. The
black list 122 can include a list of components (packages and
sub-packages) that are known to be insecure. For example,

30 the black list 122 can include known archival files that have
been identified as malicious, such as archival files that have
been referenced in a CVE list. The white list 120 can include
a list of components that are known to be secure. For
example, the white list 120 can include components that are

35 known to be secure because the components are developed
and produced by trusted developers, the components have
been previously tested and verified as secure, the compo-
nents have been included in software packages that have
been verified as being secure, and the like.

40 In order to match the components of the software pack-
ages to the white list 120 or black list 122, the white list 120
and the black list 122 can include hashed versions of the
components of the software packages that are known to be
secure or insecure. The the white list 120 and the black list

45 122 can include hashed versions of the base archival file
(package) and/or hashed versions of the archival sub-files
(sub-packages). The hashed versions of the components of
the software packages 108 can be generated using any
algorithm, procedure, or function to convert the components

50 of the software packages an/or the complete software pack-
ages to a fixed size. For example, the hashed versions of the
components can be created using any type of known hashing
algorithm, such as SHA (secure hash algorithm) 512, SHA
384, SHA 256, SHA 224. The security tool 118 can utilize

55 the hashed versions of the components in order to uniquely
identify the known insecure and secure components (archi-
val files), and to easily and quickly compare the known
insecure and secure components to other software packages.
Additionally, both the white list 120 and the black list 122

60 can include details of the components that are secure and
insecure, such as names of the components (name of the
archival files), versions of the components (version of the
archival files), sizes of the components (size of the archival
files), etc.

65 FIG. 2 illustrates an example of the black list 122. As
illustrated, the black list 122 can be formatted as a table 200
with columns 205 and rows 210 that include the details of

US 10 , 055 , 576 B2

software repositories . For example , when providing the etc .) of the computing systems supporting the software
GUIs to a user of the computing system 102 , the software repository 104 and can be executed by the computing
package manager 112 can retrieve a list of the software systems supporting the software repository 104 .
packages 108 from the software repository 104 . Likewise , In embodiments , to check and verify the security of the
for example , when installing or updating a particular soft - 5 software packages 108 , the security tool 118 can be config
ware package , the software package manager 112 can ured to examine the software packages 108 to identify the
retrieve the particular software package updates and any components of the software packages 108 . The components ,
other data associated with the particular software package . identified by the security tool 118 , can include the archival
When performing the various actions , the software pack - files (jarlegg files) contained in the software package , such

age manager 112 can be configured to utilize the metadata 10 as rpm files , . zip files , tar . gz , . jar , etc . The components can
associated with the software packages 108 in order to include the base archival file (package) and / or any archival
perform the actions . For example , when installing a particu - sub - files (sub - packages) contained in the base archival file .
lar software package or updating a particular software The security tool 118 can be configured examine the archival
package , the software package manager 112 can access the files of the software packages 108 and / or decompose the
metadata associated with the particular software package in 15 archival files to identify the archival sub - files . For example ,
order to properly install or update the software package on a particular software package 108 can include a base RPM
the computing system 102 . For instance , the software pack file which contains several tar . gz sub - files . In this example ,
age manager 112 can utilize the checksums and the list of the security tool 118 can be configured to identify , as
dependencies in the metadata in order to identify and verify components , the base RPM file and / or the several tar . gz
the software programs , files , and software libraries that are 20 sub - files . To achieve this , the security tool 118 can be
affected . Additionally , when performing the various actions , configured to include the necessary logic , commands ,
the software package manager 112 can be configured to store instructions , and protocols to access the archival format of
the metadata in a database 116 . the software packages 108 and to decompose the software

The software package manager 112 can be any application packages 108 .
program that is capable of executing on the computing 25 Once the components have been identified , the security
system 102 to perform the actions described above . For tool 118 can be configured to compare the identified com
example , the software package manager 112 can be any type ponents to the white list 120 and / or to the black list 122 . The
of conventional open - source or proprietary package man black list 122 can include a list of components (packages and
ager such as Yum package manager , DebianTM package sub - packages) that are known to be insecure . For example ,
manager , and the like . The software package manager 112 30 the black list 122 can include known archival files that have
can be stored on computer readable storage devices or media been identified as malicious , such as archival files that have
(CD , DVD , hard drive , portable storage memory , etc .) of the been referenced in a CVE list . The white list 120 can include
computing system 102 and executed by the computing a list of components that are known to be secure . For
system 102 . example , the white list 120 can include components that are
As described above , the software packages 108 main - 35 known to be secure because the components are developed

tained by the software repository 104 can be provided to the and produced by trusted developers , the components have
software repository 104 from a variety of sources . The been previously tested and verified as secure , the compo
software packages 108 can be created and provided by nents have been included in software packages that have
software development companies . Likewise , the software been verified as being secure , and the like .
packages 108 can be created and provided by individual 40 In order to match the components of the software pack
developers and users . Because the software packages 108 ages to the white list 120 or black list 122 , the white list 120
originate from a variety of sources , the software repository and the black list 122 can include hashed versions of the
104 may not be able to verify or certify that the software components of the software packages that are known to be
packages 108 are secure and do not contain malicious files secure or insecure . The the white list 120 and the black list
or code . For example , if one of the software packages 108 45 122 can include hashed versions of the base archival file
is provided by an individual , the software repository 104 (package) and / or hashed versions of the archival sub - files
may not know or trust the individual and , accordingly , (sub - packages) . The hashed versions of the components of
cannot verify that the software package is secure based on its the software packages 108 can be generated using any
relationship with the individual . algorithm , procedure , or function to convert the components

In embodiments , to verify and certify that the software 50 of the software packages an / or the complete software pack
packages 108 are secure , the software repository 104 can ages to a fixed size . For example , the hashed versions of the
include a security tool 118 . The security tool 118 can be components can be created using any type of known hashing
configured to examine the software packages 108 and com - algorithm , such as SHA (secure hash algorithm) 512 , SHA
pare the components of the software packages 108 to a white 384 , SHA 256 , SHA 224 . The security tool 118 can utilize
list 120 of known secure components and to a black list 122 55 the hashed versions of the components in order to uniquely
of known insecure components . The security tool 118 can be identify the known insecure and secure components (archi
implemented as an application program that is capable of val files) , and to easily and quickly compare the known
executing on the computing systems supporting the software insecure and secure components to other software packages .
repository 104 to perform the processes as described herein . Additionally , both the white list 120 and the black list 122
As such , the security tool 118 can be configured to include 60 can include details of the components that are secure and
the necessary logic , commands , instructions , and protocols insecure , such as names of the components (name of the
in order to perform the methods and processes described archival files) , versions of the components (version of the
herein . Likewise , the security tool 118 can be implemented archival files) , sizes of the components (size of the archival
as a portion of another application program , such as the files) , etc .
software repository applications . In either case , the security 65 FIG . 2 illustrates an example of the black list 122 . As
tool 118 can be stored on computer readable storage devices illustrated , the black list 122 can be formatted as a table 200
or media (CD , DVD , hard drive , portable storage memory , with columns 205 and rows 210 that include the details of

US 10,055,576 B2
7

known insecure components (archival files), such as a name
of the component (e.g. file name), a version of the compo-
nent, a size of the component, vendor of the component, etc.
Additionally, the black list 122 can include hashed versions
of the components (archival files). As illustrated, the black
list 122 can include the length of the hash value, e.g. 512,
and the hash value. Additionally, as illustrated, the black list
122 can include a reference to a CVE list, which identifies
further details of the insecure component, and the name of
the entity, company, corporation, that created or maintains
the CVE list. While FIG. 2 illustrates exemplary details that
can be included the black list 122, one skilled in the art will
realize that the black list 122 can include any details relevant
to the components of software packages. One skilled in the
art will also realize that the white list 120 can include similar
information as illustrated in FIG. 2.

In embodiments, the security tool 118 can be configured
to verify the security of the software packages 108 by
comparing the identified components to the white list 120
and/or to the black list 122. In particular, the security tool
118 can be configured to compare hashed versions of the
archival files of the software packages 108 to hashed ver-
sions of archival files in the white list 120 and/or in the black
list 122 to find a match. To achieve this, the security tool 118
can be configured to include the necessary logic, commands,
instructions, and protocols to generate hashed versions of
the base archival file (package) and/or the archival sub-files
(sub-packages) using hashing algorithms, such as SHA 512,
SHA 384, SHA 256, SHA 224.

When verifying the security of the software packages 108,
the security tool 118 can be configured to base the verifi-
cation and certification on a comparison to the white list 120,
a comparison to the black list 122, or a comparison to both.
If the security tool 118 utilizes the black list 122, the security
tool 118 can verify that a software package 108 is insecure
if none of the identified components (archival files) of the
software package 108 match known insecure components
(archival files) contained in the black list 122.

If the security tool 118 utilizes the white list 120, the
security tool 118 can verify that a software packages 108 is
secure if all the identified components of the software
package 108 match known secure components contained in
the white list 120. If the security tool 118 utilizes both the
white list 120 and the black list 122, the security tool 118 can
verify that a software package 108 is secure if identified
components of the software package 108, which do not
match known secure components contained in the white list
120, do not match any of the known insecure components
contained in the black list 122.

In embodiments, the security tool 118 can be configured
to check and verify the security of the software packages 108
at any time once the software packages 108 is received at the
software repository 104. The security tool 118 can be
configured to check the security of the software packages
108 as the software packages are initially received by the
software repository 104. For example, upon receipt of a new
software package 124 from a developer, the security tool 118
can run a security check on the new software package 124.
For example, an administrator can instruct the security tool
118 to run a security check or can instruct the security tool
118 to automatically run a security check. If the new
software package 124 is verified as being secure, the soft-
ware package 124 can be added to the software packages
108 offered by the software repository 104. If the new
software package 124 is determined to be insecure, the
software package 124 can be prevented from being added to
the software packages 108.

8
Likewise, the security tool 118 can be configured to check

the security of the software packages 108 as they are
requested by the computing system 102. For example, the
computing system 102 can request to download and install

5 the software package 124. Prior to installing the software
package 124, the security tool 118 can run a security check
on the software package 124. For example, an administrator
can instruct the security tool 118 to run a security check or
can instruct the security tool 118 to automatically run a

10 security check. If the software package 124 is determined to
be secure, the software package 124 can be installed on the
computing system 102. If the software package 124 is
determined to be insecure, the software package 124 can be

15 prevented from being installed on the computing system
102, and the computing system 102 can be notified of the
insecurity, for example, be notified of the name, version, and
a reference to a CVE list for further details of the insecure
component maintained in the white list 120 and/or black list

20 122.
 the security tool 118 can be configured to

allow a user to specify a particular software packages 108 to
verify. To achieve this, the security tool 118 can be config-
ured to include the necessary logic, commands, instructions,

25 and protocols to generate command line interfaces and/or
GUIs that allow a user to specify a software package 108 to
verify and certify.

In embodiments, the security tool 118 can be configured
to generate and update the white list 120 and the black list

30 122. For example, the security tool 118 can communicate
with trusted developers, security companies and consultants,
and the like to identify known secure and insecure compo-
nents to include in or removed from the white list 120 and
the black list 122. To achieve this, the security tool 118 can

35 be configured to include the necessary logic, commands,
instructions, and protocols to communicate with the trusted
developers, security companies and consultants and the like
via the one or more networks 106. Likewise, the security
tool 118 can be configured to allow a user of the software

40 repository 104 to enter components to be included in or
removed from the white list 120 and the black list 122. To
achieve this, the security tool 118 can be configured to
generate the command line interfaces and/or GUIs that allow
a user to enter components to be included in or removed

45 from the white list 120 and the black list 122.
In embodiments, the security tool 118 can be configured

to allow other users, such as a user of the computing system
102, to request that components be added to the white list
120 and/or the black list 122 via the one or more networks

50 106. To achieve this, the security tool 118 can be configured
to generate network-based command line interfaces and/or
GUIs that allow a user to enter components to be added to
the white list 120 and/or the black list 122 via the one or
more networks 106. For example, the security tool 118 can

55 be configured to generate and provide a web page that allows
the users to enter components to be added to the white list
120 and/or the black list 122 utilizing a web browser
application program executing on the computing system
102. When the other users request that components be added

60 to the white list 120 and/or the black list 122, the security
tool 118 can be configured to verify that the component
should be added to the white list 120 and/or the black list
122. For example, the security tool 118 can be configured to
allow the administrator of the software repository to verify

65 the component to be added. Likewise, the security tool 118
can be configured to contact other trusted entities, such as
trusted software developers or security companies or con-

US 10 , 055 , 576 B2

L : 1 , known insecure components (archival files) , such as a name Likewise , the security tool 118 can be configured to check
of the component (e . g . file name) , a version of the compo the security of the software packages 108 as they are
nent , a size of the component , vendor of the component , etc . requested by the computing system 102 . For example , the
Additionally , the black list 122 can include hashed versions computing system 102 can request to download and install
of the components (archival files) . As illustrated , the black 5 the software package 124 . Prior to installing the software
list 122 can include the length of the hash value , e . g . 512 , package 124 , the security tool 118 can run a security check
and the hash value . Additionally , as illustrated , the black list on the software package 124 . For example , an administrator 122 can include a reference to a CVE list , which identifies can instruct the security tool 118 to run a security check or further details of the insecure component , and the name of can instruct the security tool 118 to automatically run a the entity , company , corporation , that created or maintains 10
the CVE list . While FIG . 2 illustrates exemplary details that security check . If the software package 124 is determined to

be secure , the software package 124 can be installed on the can be included the black list 122 , one skilled in the art will computing system 102 . If the software package 124 is realize that the black list 122 can include any details relevant
to the components of software packages . One skilled in the determined to be insecure , the software package 124 can be
art will also realize that the white list 120 can include similar 15 prevented from being installed on the computing system
information as illustrated in FIG . 2 . 102 , and the computing system 102 can be notified of the

In embodiments , the security tool 118 can be configured insecurity , for example , be notified of the name , version , and
to verify the security of the software packages 108 by a reference to a CVE list for further details of the insecure
comparing the identified components to the white list 120 component maintained in the white list 120 and / or black list
and / or to the black list 122 . In particular , the security tool 20 122 .
118 can be configured to compare hashed versions of the Additionally , the security tool 118 can be configured to
archival files of the software packages 108 to hashed ver allow a user to specify a particular software packages 108 to
sions of archival files in the white list 120 and / or in the black verify . To achieve this , the security tool 118 can be config
list 122 to find a match . To achieve this , the security tool 118 ured to include the necessary logic , commands , instructions ,
can be configured to include the necessary logic , commands , 25 and protocols to generate command line interfaces and / or
instructions , and protocols to generate hashed versions of GUIs that allow a user to specify a software package 108 to
the base archival file (package) and / or the archival sub - files verify and certify .
(sub - packages) using hashing algorithms , such as SHA 512 , In embodiments , the security tool 118 can be configured
SHA 384 , SHA 256 , SHA 224 . to generate and update the white list 120 and the black list
When verifying the security of the software packages 108 , 30 122 . For example , the security tool 118 can communicate

the security tool 118 can be configured to base the verifi - with trusted developers , security companies and consultants ,
cation and certification on a comparison to the white list 120 , and the like to identify known secure and insecure compo
a comparison to the black list 122 , or a comparison to both . nents to include in or removed from the white list 120 and
If the security tool 118 utilizes the black list 122 , the security the black list 122 . To achieve this , the security tool 118 can
tool 118 can verify that a software package 108 is insecure 35 be configured to include the necessary logic , commands ,
if none of the identified components (archival files) of the instructions , and protocols to communicate with the trusted
software package 108 match known insecure components developers , security companies and consultants and the like
(archival files) contained in the black list 122 . via the one or more networks 106 . Likewise , the security

If the security tool 118 utilizes the white list 120 , the tool 118 can be configured to allow a user of the software
security tool 118 can verify that a software packages 108 is 40 repository 104 to enter components to be included in or
secure if all the identified components of the software removed from the white list 120 and the black list 122 . To
package 108 match known secure components contained in achieve this , the security tool 118 can be configured to
the white list 120 . If the security tool 118 utilizes both the generate the command line interfaces and / or GUIs that allow
white list 120 and the black list 122 , the security tool 118 can a user to enter components to be included in or removed
verify that a software package 108 is secure if identified 45 from the white list 120 and the black list 122 .
components of the software package 108 , which do not In embodiments , the security tool 118 can be configured
match known secure components contained in the white list to allow other users , such as a user of the computing system
120 , do not match any of the known insecure components 102 , to request that components be added to the white list
contained in the black list 122 . 120 and / or the black list 122 via the one or more networks

In embodiments , the security tool 118 can be configured 50 106 . To achieve this , the security tool 118 can be configured
to check and verify the security of the software packages 108 to generate network - based command line interfaces and / or
at any time once the software packages 108 is received at the GUIs that allow a user to enter components to be added to
software repository 104 . The security tool 118 can be the white list 120 and / or the black list 122 via the one or
configured to check the security of the software packages more networks 106 . For example , the security tool 118 can
108 as the software packages are initially received by the 55 be configured to generate and provide a web page that allows
software repository 104 . For example , upon receipt of a new the users to enter components to be added to the white list
software package 124 from a developer , the security tool 118 120 and / or the black list 122 utilizing a web browser
can run a security check on the new software package 124 . application program executing on the computing system
For example , an administrator can instruct the security tool 102 . When the other users request that components be added
118 to run a security check or can instruct the security tool 60 to the white list 120 and / or the black list 122 , the security
118 to automatically run a security check . If the new tool 118 can be configured to verify that the component
software package 124 is verified as being secure , the soft - should be added to the white list 120 and / or the black list
ware package 124 can be added to the software packages 122 . For example , the security tool 118 can be configured to
108 offered by the software repository 104 . If the new allow the administrator of the software repository to verify
software package 124 is determined to be insecure , the 65 the component to be added . Likewise , the security tool 118
software package 124 can be prevented from being added to can be configured to contact other trusted entities , such as
the software packages 108 . trusted software developers or security companies or con

US 10,055,576 B2
9

sultants to verify that the requested component should be
added to the white list 120 and/or the black list 122.

As described above, the security tool 118 can be stored
and executed on the computing systems of the software
repository 104 so that the software repository 104 can ensure
the software packages 108 maintained and offered by the
software repository 104 are safe. FIG. 113 illustrates another
example of the software package delivery system 100 in
which the security tool 118 can be stored and executed on
the computing system 102, according to various embodi-
ments of the present teachings. While FIG. 1B illustrates
various components that can be included in the software
package delivery system 100, one skilled in the art will
realize that additional components can be added or existing
components can be removed.

As illustrated in FIG. 1B, the security tool 118 can be
stored and executed on the computing system 102. In this
embodiment, the security tool 118 can be configured to
allow the computing system 102 to check the security of
software packages 108 prior to installing the software pack-
ages 108 on the computing system 102. When checking the
security, the security tool 118 can check and verify the
security of the software packages 108 as described above in
FIG. 1A.

The security tool 118 can be configured to check the
security of each software package 108 to be installed on the
computing system 102. For example, an user can instruct the
security tool 118 to run a security check or can instruct the
security tool 118 to automatically run a security check. To
achieve this, the security tool 118 can be configured to
include the necessary logic, commands, instructions, and
protocols to communicate with the software package man-
ager 112 in order to identify and check the software pack-
ages 108 that are being installed on the computing system
102. Likewise, the security tool 118 can be configured to
allow a user of the computing system 102 to select the
software packages 108 to check. To achieve this, the security
tool 118 can be configured to include the necessary logic,
commands, instructions, and protocols to generate command
line interfaces and/or GUIs that allow the user to select the
software packages 108 to check.

In embodiments, the security tool 118 can be configured
to retrieve and/or update the white list 120 and/or the black
list 122. For example, the security tool 118 can communicate
with an update service, via the one or more networks 106, to
retrieve and/or update the white list 120 and/or the black list
122. To achieve this, the security tool 118 can be configured
to include the necessary logic, commands, instructions, and
protocols to communicate with the update, service via the
one or more networks 106. Likewise, as described above, the
security tool 118 can be configured to allow the user of the
computing system 102 to requests that components be added
to the white list 120 and/or the black list 122 via the one or
more networks 106. To achieve this, the security tool 118
can be configured to generate network-based command line
interfaces and/or GUIs that allow a user to enter components
to be added to the white list 120 and/or the black list 122 via
the one or more networks 106. For example, the security tool
118 can be configured to generate and provide a web page
that allows the users to request that components be added to
the white list 120 and/or the black list 122 utilizing a web
browser application program executing on the computing
system 102. Once the software repository has verified the
requested components, the security tool 118 can be config-
ured to update the white list 120 and/or the black list 122 as
maintained on the computing system 102.

10
In embodiments, as described in FIG. 1B, the security tool

118 can be implemented as an application program that is
capable of executing on the computing system 102 to
perform the processes as described herein. As such, the

5 security tool 118 can be configured to include the necessary
logic, commands, instructions, and protocols in order to
perform the methods and processes described herein. Like-
wise, the security tool 118 can be implemented as a portion
of another application program, such as the software pack-

10 age manager 112 and/or the manager tools 114. In either
case, the security tool 118 can be stored on computer
readable storage devices or media (CD, DVD, hard drive,
portable storage memory, etc.) of the computing system 102
and can be executed by the computing system 102.

15 FIG. 3 illustrates an exemplary diagram of hardware and
other resources that can be incorporated in a computing
system 300, such as the computing system 102, computing
systems supporting the software repository 104, or comput-
ing systems supporting the software repository mirrors 110,

20 and configured to store and execute the security tool 118,
according to embodiments. In embodiments as shown, the
computing system 300 can comprise a processor 302 com-
municating with a memory 304, such as electronic random
access memory, operating under control of or in conjunction

25 with a operating system (OS) 306. The OS 306 can be, for
example, a distribution of the LinuxTM operating system,
such as Red HatTM. Enterprise Linux, Fedora, etc., the
UnixTM operating system, or other open-source or propri-
etary operating system or platform. The processor 302 also

30 communicates with one or more computer readable storage
devices or media 308, such as hard drives, optical storage,
and the like, for maintaining the OS 306 and the security tool
118. The processor 302 further communicates with network
interface 310, such as an Ethernet or wireless data connec-

35 tion, which in turn communicates with one or more networks
106, such as the Internet or other public or private networks.

The processor 302 also communicates with the security
tool 118 to execute the logic of the security tool 118 and to
allow performance of the processes as described herein.

40 Other configurations of the computing system 300, associ-
ated network connections, and other hardware and software
resources are possible.

While FIG. 3 illustrates the computing system 300 as a
standalone system including a combination of hardware and

45 software, the computing system 300 can include multiple
systems operating in cooperation. As described above, the
security tool 118 can be implemented as an application
program capable of being executed by the computing system
300, as illustrated, or other conventional computer plat-

s() forms. Likewise, the security tool 118 can also be imple-
mented as a software module or program module capable of
being incorporated in other software applications and pro-
grams, such as the OS 306 of the computing system 300, the
software package manager 112, the manager tools 114,

55 and/or combined in a single application or program. In any
example, the security tool 118 can be implemented in any
type of programming language. When implemented as an
application program, application module, or program code,
the security tool 118 can be stored in a computer readable

60 storage medium, such as the storage 308, accessible by the
computing system 300. Likewise, during execution, a copy
of the security tool 118 can be stored in the memory 304.

FIG. 4A illustrates a flow diagram for a process 400 of
verifying and certifying a software package is secure utiliz-

65 ing a white list, according to embodiments of the present
teachings. In 402, the process can begin. In 404, the security
tool 118 can identify a software package 108 to verify and

US 10 , 055 , 576 B2
10

sultants to verify that the requested component should be In embodiments , as described in FIG . 1B , the security tool
added to the white list 120 and / or the black list 122 . 118 can be implemented as an application program that is
As described above , the security tool 118 can be stored capable of executing on the computing system 102 to

and executed on the computing systems of the software perform the processes as described herein . As such , the
repository 104 so that the software repository 104 can ensure 5 security tool 118 can be configured to include the necessary
the software packages 108 maintained and offered by the logic , commands , instructions , and protocols in order to
software repository 104 are safe . FIG . 113 illustrates another perform the methods and processes described herein . Like
example of the software package delivery system 100 in wise , the security tool 118 can be implemented as a portion
which the security tool 118 can be stored and executed on of another application program , such as the software pack
the computing system 102 , according to various embodi - 10 i 10 age manager 112 and / or the manager tools 114 . In either

case , the security tool 118 can be stored on computer ments of the present teachings . While FIG . 1B illustrates readable storage devices or media (CD , DVD , hard drive , various components that can be included in the software portable storage memory , etc .) of the computing system 102 package delivery system 100 , one skilled in the art will and can be executed by the computing system 102 .
realize that additional components can be added or existing 15 d or existing 15 FIG FIG . 3 illustrates an exemplary diagram of hardware and 3 illust
components can be removed . other resources that can be incorporated in a computing
As illustrated in FIG . 1B , the security tool 118 can be system 300 , such as the computing system 102 , computing

stored and executed on the computing system 102 . In this systems supporting the software repository 104 , or comput
embodiment , the security tool 118 can be configured to ing systems supporting the software repository mirrors 110 ,
allow the computing system 102 to check the security of 20 and configured to store and execute the security tool 118 ,
software packages 108 prior to installing the software pack - according to embodiments . In embodiments as shown , the
ages 108 on the computing system 102 . When checking the computing system 300 can comprise a processor 302 com
security , the security tool 118 can check and verify the municating with a memory 304 , such as electronic random
security of the software packages 108 as described above in access memory , operating under control of or in conjunction
FIG . 1A . 25 with a operating system (OS) 306 . The OS 306 can be , for

The security tool 118 can be configured to check the example , a distribution of the LinuxTM operating system ,
security of each software package 108 to be installed on the such as Red HatTM Enterprise Linux , Fedora , etc . , the
computing system 102 . For example , an user can instruct the UnixTM operating system , or other open - source or propri
security tool 118 to run a security check or can instruct the etary operating system or platform . The processor 302 also
security tool 118 to automatically run a security check . To 30 communicates with one or more computer readable storage
achieve this , the security tool 118 can be configured to devices or media 308 , such as hard drives , optical storage ,
include the necessary logic , commands , instructions , and and the like , for maintaining the OS 306 and the security tool
protocols to communicate with the software package man - 118 . The processor 302 further communicates with network
ager 112 in order to identify and check the software pack - interface 310 , such as an Ethernet or wireless data connec
ages 108 that are being installed on the computing system 35 tion , which in turn communicates with one or more networks
102 . Likewise , the security tool 118 can be configured to 106 , such as the Internet or other public or private networks .
allow a user of the computing system 102 to select the The processor 302 also communicates with the security
software packages 108 to check . To achieve this , the security tool 118 to execute the logic of the security tool 118 and to
tool 118 can be configured to include the necessary logic , allow performance of the processes as described herein .
commands , instructions , and protocols to generate command 40 Other configurations of the computing system 300 , associ
line interfaces and / or GUIs that allow the user to select the ated network connections , and other hardware and software
software packages 108 to check . resources are possible .

In embodiments , the security tool 118 can be configured While FIG . 3 illustrates the computing system 300 as a
to retrieve and / or update the white list 120 and / or the black standalone system including a combination of hardware and
list 122 . For example , the security tool 118 can communicate 45 software , the computing system 300 can include multiple
with an update service , via the one or more networks 106 , to systems operating in cooperation . As described above , the
retrieve and / or update the white list 120 and / or the black list security tool 118 can be implemented as an application
122 . To achieve this , the security tool 118 can be configured program capable of being executed by the computing system
to include the necessary logic , commands , instructions , and 300 , as illustrated , or other conventional computer plat
protocols to communicate with the update , service via the 50 forms . Likewise , the security tool 118 can also be imple
one or more networks 106 . Likewise , as described above , the mented as a software module or program module capable of
security tool 118 can be configured to allow the user of the being incorporated in other software applications and pro
computing system 102 to requests that components be added grams , such as the OS 306 of the computing system 300 , the
to the white list 120 and / or the black list 122 via the one or software package manager 112 , the manager tools 114 ,
more networks 106 . To achieve this , the security tool 118 55 and / or combined in a single application or program . In any
can be configured to generate network - based command line example , the security tool 118 can be implemented in any
interfaces and / or GUIs that allow a user to enter components type of programming language . When implemented as an
to be added to the white list 120 and / or the black list 122 via application program , application module , or program code ,
the one or more networks 106 . For example , the security tool the security tool 118 can be stored in a computer readable
118 can be configured to generate and provide a web page 60 storage medium , such as the storage 308 , accessible by the
that allows the users to request that components be added to computing system 300 . Likewise , during execution , a copy
the white list 120 and / or the black list 122 utilizing a web of the security tool 118 can be stored in the memory 304 .
browser application program executing on the computing FIG . 4A illustrates a flow diagram for a process 400 of
system 102 . Once the software repository has verified the verifying and certifying a software package is secure utiliz
requested components , the security tool 118 can be config - 65 ing a white list , according to embodiments of the present
ured to update the white list 120 and / or the black list 122 as teachings . In 402 , the process can begin . In 404 , the security
maintained on the computing system 102 . tool 118 can identify a software package 108 to verify and

US 10,055,576 B2
11

certify. For example, the security tool 118 can verify and
certify a software package 108 is secure when the software
package 108 is added to the software repository 104 or when
the software package 108 is requested by the computing
system 102. Additionally, the security tool 118, which is
executing on the computing system 102, can verify and
certify a software package 108 at the time of install, or a user
of the computing system 102 can select the software pack-
age 108 to verify and certify.

In 406, the security tool 118 can identify the components
of the software package 108. For example, the security tool
118 can decompose the software package 108 into its
components (archival files).

In 408, the security tool 118 can compare the identified
components of the software package 108 to a white list 120.
For example, the security tool 118 can compare hashed
versions of the identified components to hashed versions of
the known secure components in the white list 120 in order
to find a match.

In 410, the security tool 118 can verify and certify the
software package 108 based on the results of the compari-
son. For example, the security tool 118 can verify that a
software packages 108 is secure if all the identified compo-
nents of the software package 108 match known secure
components contained in the white list 120. The security tool
118 can then take other actions based on the verification such
notifying an administrator or user of the results.

In 412, the process can end, repeat, or return to any point.
FIG. 4B illustrates a flow diagram for a process 420 of

verifying and certifying a software package is secure utiliz-
ing a black list, according to embodiments of the present
teachings. In 422, the process can begin. In 424, the security
tool 118 can identify a software package 108 to verify and
certify. For example, the security tool 118 can verify and
certify a software package 108 is secure when the software
package 108 is added to the software repository 104 or when
the software package 108 is requested by the computing
system 102. Additionally, the security tool 118, which is
executing on the computing system 102, can verify and
certify a software package 108 at the time of install, or a user
of the computing system 102 can select the software pack-
age 108 to verify and certify.

In 426, the security tool 118 can identify the components
of the software package 108. For example, the security tool
118 can identify the base archival file (package) can decom-
pose the software package 108 to identify any archival
sub-files (sub-packages).

In 428, the security tool 118 can compare the identified
components of the software package 108 to a black list 122.
For example, the security tool 118 can compare hashed
versions of the identified components (archival files) to
hashed version of known insecure components (archival
files) in the black list 122 in order to find a match.

In 430, the security tool 118 can verify and certify the
software package 108 based on the results of the compari-
son. For example, the security tool 118 can verify that the
software package 108 is insecure if any of the identified
components of the software package 108 match known
insecure components contained in the black list 122. The
security tool 118 can then take other actions based on the
verification such as notifying an administrator or user of the
insecurity. The notification can include the details of the
known insecure component such as name of the archival file
and a reference to a CVE list with further details.

In 432, the process can end, repeat, or return to any point.
FIG. 4C illustrates a flow diagram for a process 440 of

verifying and certifying a software package is secure utiliz-

12
ing a white list and a black list, according to embodiments
of the present teachings. In 442, the process can begin. In
444, the security tool 118 can identify a software package
108 to verify and certify. For example, the security tool 118

5 can verify and certify a software package 108 is secure when
the software package 108 is added to the software repository
104 or when the software package 108 is requested by the
computing system 102. Additionally, the security tool 118,
which is executing on the computing system 102, can verify

10 and certify a software package 108 at the time of install, or
a user of the computing system 102 can select the software
package 108 to verify and certify.

In 446, the security tool 118 can identify the components
of the software package 108. For example, the security tool

15 118 can decompose the software package 108 into its
components.

In 448, the security tool 118 can compare the identified
components of the software package 108 to a white list 120
and a black list 122. The security tool 118 can compare

20 hashed versions of the identified components of the software
package 108 to the hashed versions of known secure com-
ponents in the white list 120. If an identified component is
not found in the white list 120, the security tool 118 can
compare the hashed version of each identified component,

25 not found in the white list 120, to the hashed versions of
known insecure components in the black list 122 in order to
find a match.

In 450, the security tool 118 can verify and certify the
software package 108 based on the results of the compari-

30 son. For example, the security tool 118 can verify that a
software package 108 is secure if identified components of
the software package 108, which do not match known secure
components contained hi the white list 120, also do not
match any of the known insecure components contained in

35 the black list 122. The security tool 118 can then take other
actions based on the verification such as notifying an admin-
istrator or user of the results.

In 452, the process can end, repeat, or return to any point.
Certain embodiments can be performed as a computer

40 application program. The application program can exist in a
variety of forms both active and inactive. For example, the
application program can exist as software program(s) com-
prised of program instructions in source code, object code,
executable code or other formats. Any of the above can be

45 embodied on a computer readable medium, which include
computer readable storage devices and media, and signals,
in compressed or uncompressed form. Exemplary computer
readable storage devices and media include conventional
computer system RAM (random access memory), ROM

50 (read-only memory), EPROM (erasable, programmable
ROM), EEPROM (electrically erasable, programmable
ROM), and magnetic or optical disks or tapes. Exemplary
computer readable signals, whether modulated using a car-
rier or not, are signals that a computer system hosting or

55 running the present teachings can be configured to access,
including signals downloaded through the Internet or other
networks. Concrete examples of the foregoing include dis-
tribution of executable software of the computer application
program on a CD-ROM or via Internet download.

60 While the teachings have been described with reference to
the exemplary embodiments thereof, those skilled in the art
will be able to make various modifications to the described
embodiments without departing from the true spirit and
scope. The terms and descriptions used herein are set forth

65 by way of illustration only and are not meant as limitations.
In particular, although the method has been described by
examples, the steps of the method may be performed in a

US 10 , 055 , 576 B2

certify . For example , the security tool 118 can verify and ing a white list and a black list , according to embodiments
certify a software package 108 is secure when the software of the present teachings . In 442 , the process can begin . In
package 108 is added to the software repository 104 or when 444 , the security tool 118 can identify a software package
the software package 108 is requested by the computing 108 to verify and certify . For example , the security tool 118
system 102 . Additionally , the security tool 118 , which is 5 can verify and certify a software package 108 is secure when
executing on the computing system 102 , can verify and the software package 108 is added to the software repository
certify a software package 108 at the time of install , or a user 104 or when the software package 108 is requested by the
of the computing system 102 can select the software pack computing system 102 . Additionally , the security tool 118 ,
age 108 to verify and certify . which is executing on the computing system 102 , can verify

In 406 , the security tool 118 can identify the components 10 and certify a software package 108 at the time of install , or
of the software package 108 . For example , the security tool a user of the computing system 102 can select the software
118 can decompose the software package 108 into its package 108 to verify and certify .
components (archival files) . In 446 , the security tool 118 can identify the components

In 408 , the security tool 118 can compare the identified of the software package 108 . For example , the security tool
components of the software package 108 to a white list 120 . 15 118 can decompose the software package 108 into its
For example , the security tool 118 can compare hashed components .
versions of the identified components to hashed versions of In 448 , the security tool 118 can compare the identified
the known secure components in the white list 120 in order components of the software package 108 to a white list 120
to find a match . and a black list 122 . The security tool 118 can compare

In 410 , the security tool 118 can verify and certify the 20 hashed versions of the identified components of the software
software package 108 based on the results of the compari - package 108 to the hashed versions of known secure com
son . For example , the security tool 118 can verify that a ponents in the white list 120 . If an identified component is
software packages 108 is secure if all the identified compo - not found in the white list 120 , the security tool 118 can
nents of the software package 108 match known secure compare the hashed version of each identified component ,
components contained in the white list 120 . The security tool 25 not found in the white list 120 , to the hashed versions of
118 can then take other actions based on the verification such known insecure components in the black list 122 in order to
notifying an administrator or user of the results . find a match .

In 412 , the process can end , repeat , or return to any point . In 450 , the security tool 118 can verify and certify the
FIG . 4B illustrates a flow diagram for a process 420 of software package 108 based on the results of the compari

verifying and certifying a software package is secure utiliz - 30 son . For example , the security tool 118 can verify that a
ing a black list , according to embodiments of the present software package 108 is secure if identified components of
teachings . In 422 , the process can begin . In 424 , the security the software package 108 , which do not match known secure
tool 118 can identify a software package 108 to verify and components contained hi the white list 120 , also do not
certify . For example , the security tool 118 can verify and match any of the known insecure components contained in
certify a software package 108 is secure when the software 35 the black list 122 . The security tool 118 can then take other
package 108 is added to the software repository 104 or when actions based on the verification such as notifying an admin
the software package 108 is requested by the computing istrator or user of the results .
system 102 . Additionally , the security tool 118 , which is In 452 , the process can end , repeat , or return to any point .
executing on the computing system 102 , can verify and Certain embodiments can be performed as a computer
certify a software package 108 at the time of install , or a user 40 application program . The application program can exist in a
of the computing system 102 can select the software pack - variety of forms both active and inactive . For example , the
age 108 to verify and certify . application program can exist as software program (s) com

In 426 , the security tool 118 can identify the components prised of program instructions in source code , object code ,
of the software package 108 . For example , the security tool executable code or other formats . Any of the above can be
118 can identify the base archival file (package) can decom - 45 embodied on a computer readable medium , which include
pose the software package 108 to identify any archival computer readable storage devices and media , and signals ,
sub - files (sub - packages) . in compressed or uncompressed form . Exemplary computer

In 428 , the security tool 118 can compare the identified readable storage devices and media include conventional
components of the software package 108 to a black list 122 . computer system RAM (random access memory) , ROM
For example , the security tool 118 can compare hashed 50 (read - only memory) , EPROM (erasable , programmable
versions of the identified components (archival files) to ROM) , EEPROM (electrically erasable , programmable
hashed version of known insecure components (archival ROM) , and magnetic or optical disks or tapes . Exemplary
files) in the black list 122 in order to find a match . computer readable signals , whether modulated using a car

In 430 , the security tool 118 can verify and certify the rier or not , are signals that a computer system hosting or
software package 108 based on the results of the compari - 55 running the present teachings can be configured to access ,
son . For example , the security tool 118 can verify that the including signals downloaded through the Internet or other
software package 108 is insecure if any of the identified networks . Concrete examples of the foregoing include dis
components of the software package 108 match known tribution of executable software of the computer application
insecure components contained in the black list 122 . The program on a CD - ROM or via Internet download .
security tool 118 can then take other actions based on the 60 While the teachings have been described with reference to
verification such as notifying an administrator or user of the the exemplary embodiments thereof , those skilled in the art
insecurity . The notification can include the details of the will be able to make various modifications to the described
known insecure component such as name of the archival file embodiments without departing from the true spirit and
and a reference to a CVE list with further details . scope . The terms and descriptions used herein are set forth

In 432 , the process can end , repeat , or return to any point . 65 by way of illustration only and are not meant as limitations .
FIG . 4C illustrates a flow diagram for a process 440 of In particular , although the method has been described by

verifying and certifying a software package is secure utiliz examples , the steps of the method may be performed in a

US 10,055,576 B2
13

different order than illustrated or simultaneously. Further-
more, to the extent that the terms "including", "includes",
"having", "has", "with", or variants thereof are used in either
the detailed description and the claims, such terms are
intended to be inclusive in a manner similar to the term
"comprising." As used herein, the term "one or more of
with respect to a listing of items such as, for example, A and
B, means A alone, B alone, or A and B. Those skilled in the
art will recognize that these and other variations are possible
within the spirit and scope as defined in the following claims
and their equivalents.

What is claimed is:
1. A method comprising:
identifying, by a processor executing a security tool, a

plurality of components contained in a software pack-
age comprising one of a java archive (JAR) file, an
Android application package, a docker image, a con-
tainer file, or a virtual machine image;

comparing, by the processor, the plurality of components
contained in the software package to a list of known
components;

classifying, by the processor, the software package as
insecure when at least one of the plurality of compared
components matches an insecure component on the list
of known components, or as secure when each of the
plurality of compared components matches a corre-
sponding secure component on the list of known com-
ponents;

preventing, by the processor executing the security tool,
addition of the software package to a software reposi-
tory when the software package is classified as inse-
cure; and

in response to the at least one of the plurality of compared
components matching the insecure component, provid-
ing, by the processor executing the security tool, an
interface to enable a user to request the at least one of
the plurality of compared components of the software
package be added as a secure component on the list of
known components.

2. The method of claim 1, wherein comparing the plurality
of components comprises comparing a hashed version of the
plurality of components contained in the software package
to hashed versions of insecure components on the list of
known components.

3. The method of claim 1, wherein the software package
is a new software package added to the software repository.

4. The method of claim 1, wherein the plurality of
components contained in the software package comprises an
archival file contained in the software package.

5. The method of claim 1, wherein the software package
comprises a container file and wherein the software reposi-
tory comprises a container repository.

6. The method of claim 1, wherein the software package
comprises a virtual machine image and wherein the software
repository comprises a virtual machine repository.

7. The method of claim 1, wherein the software package
comprises a docker image file and wherein the software
repository comprises one of a docker registry and a docker
repository.

8. The method of claim 1 further comprising, allowing, by
the processor, addition of the software package to the
software repository when the software package is classified
as secure.

9. A non-transitory computer readable medium compris-
ing instructions to cause a processor to:

identify, by the processor executing a security tool, a
plurality of components contained in a software pack-

14
age comprising one of a Java archive (JAR) file, an
Android application package, a docker image, a con-
tainer file, or a virtual machine image;

compare, by the processor, the plurality of components
5 contained in the software package to a list of known

components;
classify, by the processor, the software package as inse-

cure when at least one of the plurality of compared
components matches an insecure component on the list

10 of known components, or as secure when each of the
plurality of compared components matches a corre-
sponding secure component on the list of known com-
ponents;

prevent, by the processor executing the security tool,
15 addition of the software package to a software reposi-

tory when the software package is classified as inse-
cure; and

in response to the at least one of the plurality of compared
components matching the insecure component, pro-

20 vide, by the processor executing the security tool, an
interface to enable a user to request the at least one of
the plurality of compared components of the software
package be added as a secure component on the list of
known components.

25 10. The non-transitory computer readable medium of
claim 9, wherein to compare the plurality of components
comprises the processor to compare a hashed version of the
plurality of components contained in the software package
to hashed versions of insecure components on the list of

30 known components.
11. The non-transitory computer readable medium of

claim 9, wherein the plurality of components contained in
the software package comprise an archival file contained in
the software package.

35 12. The non-transitory computer readable medium of
claim 9, wherein the software package comprises a container
file and wherein the software repository comprises a con-
tainer repository.

13. The non-transitory computer readable medium of
40 claim 9, wherein the software package comprises a virtual

machine image and wherein the software repository com-
prises a virtual machine repository.

14. The non-transitory computer readable medium of
claim 9, wherein the software package comprises a docker

45 image file and wherein the software repository comprises
one of a docker registry and a docker repository.

15. An apparatus comprising:
a memory to contain instructions; and
a processor, operatively coupled to the memory, to

50 execute a security tool, the processor to:
identify plurality of components contained in a software

package comprising one of a Java archive (JAR) file, an
Android application package, a docker image, a con-
tainer file, or a virtual machine image;

55 compare the plurality of components contained in the
software package to a list of known components;

classify the software package as insecure in response to at
least one of the plurality of compared components
matching an insecure component on the list of known

60 components, or as secure when each of the plurality of
compared components matches a corresponding secure
component on the list of known components;

prevent addition of the software package to a software
repository when the software package is classified as

65 insecure; and
in response to the at least one of the plurality of compared

components matching the insecure component, provide

13

P

US 10 , 055 , 576 B2
14

different order than illustrated or simultaneously . Further age comprising one of a Java archive (JAR) file , an
more , to the extent that the terms “ including ” , “ includes ” , Android application package , a docker image , a con
“ having ” , “ has ” , “ with ” , or variants thereof are used in either tainer file , or a virtual machine image ;
the detailed description and the claims , such terms are compare , by the processor , the plurality of components
intended to be inclusive in a manner similar to the term 5 contained in the software package to a list of known
" comprising . ” As used herein , the term “ one or more of ” components ;
with respect to a listing of items such as , for example , A and classify , by the processor , the software package as inse
B , means A alone , B alone , or A and B . Those skilled in the cure when at least one of the plurality of compared
art will recognize that these and other variations are possible components matches an insecure component on the list
within the spirit and scope as defined in the following claims 10 of known components , or as secure when each of the
and their equivalents . plurality of compared components matches a corre
What is claimed is : sponding secure component on the list of known com
1 . A method comprising : ponents ;
identifying , by a processor executing a security tool , a prevent , by the processor executing the security tool ,

plurality of components contained in a software pack - 15 addition of the software package to a software reposi
age comprising one of a java archive (JAR) file , an tory when the software package is classified as inse
Android application package , a docker image , a con cure ; and
tainer file , or a virtual machine image ; in response to the at least one of the plurality of compared

comparing , by the processor , the plurality of components components matching the insecure component , pro
contained in the software package to a list of known 20 vide , by the processor executing the security tool , an
components ; interface to enable a user to request the at least one of

classifying , by the processor , the software package as the plurality of compared components of the software
insecure when at least one of the plurality of compared package be added as a secure component on the list of
components matches an insecure component on the list known components .
of known components , or as secure when each of the 25 10 . The non - transitory computer readable medium of
plurality of compared components matches a corre - claim 9 , wherein to compare the plurality of components
sponding secure component on the list of known com comprises the processor to compare a hashed version of the
ponents ; plurality of components contained in the software package

preventing , by the processor executing the security tool , to hashed versions of insecure components on the list of
addition of the software package to a software reposi - 30 known components .
tory when the software package is classified as inse - 11 . The non - transitory computer readable medium of
cure ; and claim 9 , wherein the plurality of components contained in

in response to the at least one of the plurality of compared the software package comprise an archival file contained in
components matching the insecure component , provid - the software package .
ing , by the processor executing the security tool , an 35 12 . The non - transitory computer readable medium of
interface to enable a user to request the at least one of claim 9 , wherein the software package comprises a container
the plurality of compared components of the software file and wherein the software repository comprises a con
package be added as a secure component on the list of tainer repository .
known components . 13 . The non - transitory computer readable medium of

2 . The method of claim 1 , wherein comparing the plurality 40 claim 9 , wherein the software package comprises a virtual
of components comprises comparing a hashed version of the machine image and wherein the software repository com
plurality of components contained in the software package prises a virtual machine repository .
to hashed versions of insecure components on the list of 14 . The non - transitory computer readable medium of
known components . claim 9 , wherein the software package comprises a docker

3 . The method of claim 1 , wherein the software package 45 image file and wherein the software repository comprises
is a new software package added to the software repository . one of a docker registry and a docker repository .

4 . The method of claim 1 , wherein the plurality of 15 . An apparatus comprising :
components contained in the software package comprises an a memory to contain instructions ; and
archival file contained in the software package . a processor , operatively coupled to the memory , to

5 . The method of claim 1 , wherein the software package 50 execute a security tool , the processor to :
comprises a container file and wherein the software reposi - identify plurality of components contained in a software
tory comprises a container repository . package comprising one of a Java archive (JAR) file , an

6 . The method of claim 1 , wherein the software package Android application package , a docker image , a con
comprises a virtual machine image and wherein the software tainer file , or a virtual machine image ;
repository comprises a virtual machine repository . 55 compare the plurality of components contained in the

7 . The method of claim 1 , wherein the software package software package to a list of known components ;
comprises a docker image file and wherein the software classify the software package as insecure in response to at
repository comprises one of a docker registry and a docker least one of the plurality of compared components
repository . matching an insecure component on the list of known

8 . The method of claim 1 further comprising , allowing , by 60 components , or as secure when each of the plurality of
the processor , addition of the software package to the compared components matches a corresponding secure
software repository when the software package is classified component on the list of known components ;
as secure . prevent addition of the software package to a software

9 . A non - transitory computer readable medium compris repository when the software package is classified as
ing instructions to cause a processor to : 65 insecure ; and

identify , by the processor executing a security tool , a in response to the at least one of the plurality of compared
plurality of components contained in a software pack components matching the insecure component , provide

US 10,055,576 B2
15 16

an interface to enable a user to request the at least one
of the plurality of compared components of the soft-
ware package be added as a secure component on the
list of known components.

16. The apparatus of claim 15, wherein the plurality of 5
components contained in the software package comprises an
archival file contained in the software package.

17. The apparatus of claim 15, wherein the software
package comprises a container file and wherein the software
repository comprises a container repository. 10

18. The apparatus of claim 15, wherein the software
package comprises a virtual machine image and wherein the
software repository comprises a virtual machine repository.

19. The apparatus of claim 15, wherein the software
package comprises a docker image file and wherein the 15
software repository comprises one of a docker registry and
a docker repository.

20. The apparatus of claim 15, the processor further to,
allow addition of the software package to the software
repository when the software package is classified as secure. 20

* * * * *

US 10 , 055 , 576 B2
15 16

10

an interface to enable a user to request the at least one
of the plurality of compared components of the soft
ware package be added as a secure component on the
list of known components .

16 . The apparatus of claim 15 , wherein the plurality of 5
components contained in the software package comprises an
archival file contained in the software package .

17 . The apparatus of claim 15 , wherein the software
package comprises a container file and wherein the software
repository comprises a container repository .

18 . The apparatus of claim 15 , wherein the software
package comprises a virtual machine image and wherein the
software repository comprises a virtual machine repository .

19 . The apparatus of claim 15 , wherein the software
package comprises a docker image file and wherein the 15
software repository comprises one of a docker registry and
a docker repository .

20 . The apparatus of claim 15 , the processor further to ,
allow addition of the software package to the software
repository when the software package is classified as secure . 20

* * * *

