
c12) United States Patent
Rempell et al.

(54) SYSTEMS AND METHODS FOR

INTEGRATING WIDGETS ON MOBILE

DEVICES

(71) Applicant: Express Mobile, Inc., Novato, CA (US)

(72) Inventors: Steven H. Rempell, Novato, CA (US);
David Chrobak, Clayton, CA (US);
Ken Brown, San Martin, CA (US)

(73) Assignee: Express Mobile, Inc., Novato, CA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 14/708,074

May 8, 2015 (22) Filed:

(65) Prior Publication Data

US 2015/0317130 Al Nov. 5, 2015

Related U.S. Application Data

(63) Continuation of application No. 12/936,395, filed as
application No. PCT/US2009/039695 on Apr. 6,
2009, now Pat. No. 9,063,755.

(60) Provisional application No. 61/123,438, filed on Apr.
7, 2008, provisional application No. 61/113,471, filed
on Nov. 11, 2008, provisional application No.
61/166,651, filed on Apr. 3, 2009.

(51) Int. Cl.
G06F 3/048

G06F 9/44

H04L 29108

G06F 3/0484

G06F 3/0482

H04L 29106

H04L 12158

(2013.01)
(2006.01)
(2006.01)
(2013.01)
(2013.01)
(2006.01)
(2006.01)

100�

llQ Authoring
Platform

Content

I 11111 11111111 111 11111 11111 11111 11111 11111 11111 11111 11111 111111 1111 1111 1111
US009471287B2

(10) Patent No.:

(45) Date of Patent:

US 9,471,287 B2
*Oct. 18, 2016

(52) U.S. Cl.

CPC G06F 8/34 (2013.01); G06F 3/0482

(2013.01); G06F 3/04842 (2013.01); G06F

9/4443 (2013.01); H04L 511046 (2013.01);

H04L 65/60 (2013.01); H04L 67102 (2013.01)

(58) Field of Classification Search

CPC ... G06F 3/048
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0055017 Al 3/2004 Delpuch et al.
2004/0163020 Al 8/2004 Sidman
2004/0199614 Al* 10/2004 Shenfield H04L 29/06

709/220

(Continued)

OTHER PUBLICATIONS

Stina Nylander et al. "The Ubiquitous Interactor-Device Indepen­

dent Access to Mobile Services" (Computer-Aided Design for User

Interfaces IV, Proceedings of the Fifth International Conference on

Computer-Aided Design of User Interfaces CADUI'2004, Jan.

2004, pp. 271-282). *

(Continued)

Primary Examiner - Jennifer To

Assistant Examiner - Xuyang Xia

(74) Attorney, Agent, or Firm - Steven R. Vosen

(57) ABSTRACT

Embodiments of a system and method are described for
generating and distributing programming to mobile devices
over a network. Devices are provided with Players specific
to each device and Applications that are device independent.
Embodiments include a full-featured WYSIWYG authoring
environment, including the ability to bind web components
to objects.

28 Claims, 18 Drawing Sheets

r., ,;;;;: I � :==�I ill Memory I �
1 � Processor I

Booking, Exh. 1030, Page 1

US 9,471,287 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2005/01499.35 A1 7/2005 Benedetti
2005/0273705 A1* 12, 2005 McCain GO6F 17 24

T15,234
2006, OO63518 A1 3, 2006 Paddon et al.

OTHER PUBLICATIONS

Stina Nylander et at. “The Ubiquitous Interactor Device Indepen
dent Access to Mobile Services” (Computer-Aided Design for User
Interfaces IV, Proceedings of the Fifth international Conference on
Computer-Aided Design of User Interfaces CADUT2004, Jan.
2004, pp. 271-282).

International Search Report and Written Opinion —PCT/US2009/
039695–Aug. 21, 2009.
International Preliminary Report on Patentability and Written Opin
ion PCT/US2009/039695 Oct. 21, 2010.
Rempell et al, co-pending U.S. Appl. No. 14,708,087, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708,094, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708,097, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708, 100, filed May 8,
2015.
Rempell et al, co-pending U.S. Appl. No. 14,708, 108, filed May 8,
2015.

* cited by examiner

Booking, Exh. 1030, Page 2

U.S. Patent Oct. 18, 2016 Sheet 1 of 18 US 9,471,287 B2

OO
N

11 O Authoring
Platform

Network
1 11 Memory interface

112 Authoring 123 Memory

125 Processor
114 Device

Routines

3 Processor

5 Screen

13 Network

interface
40

- ful Server --- 133 Memory
4 Network a s O

Interface 135 Processor

FG. A

Booking, Exh. 1030, Page 3

U.S. Patent Oct. 18, 2016 Sheet 2 of 18 US 9,471,287 B2

OO
N O Authoring

Platform

Device

C-1, R-1

Booking, Exh. 1030, Page 4

U.S. Patent Oct. 18, 2016 Sheet 3 of 18 US 9,471,287 B2

2OO y

Players

Authoring
Patform

Load Registry
Applications

120 Registry 220
Server 3. - WebComponent

Registry

Deploy
Applications Registry

Web
Content

2O R Player- 3 s: SSe
p N evice

Director
Content
Recuest Proxy

HTTP/XM
Request
and

Response
23O

Web Service

F.G. 2A

Booking, Exh. 1030, Page 5

US 9,471,287 B2 U.S. Patent

4ÖSS3DO)

| |-legel

Booking, Exh. 1030, Page 6

US 9,471,287 B2 U.S. Patent

Booking, Exh. 1030, Page 7

US 9,471,287 B2 U.S. Patent

?608 p.608

%

D608 q608 e608

608

Booking, Exh. 1030, Page 8

U.S. Patent Oct. 18, 2016 Sheet 7 of 18 US 9,471,287 B2

S&S

3O9b 1
st ExSessi šes as Sesiasting Ci SS assista
Essexiesii is is age S.Essicises is is sistics
sts as specisit age fiel:
{} x's Saise age Sesiasig Saig SSS
stic tise sexiste sies
sectse S&SE:Sisies:
assessessfire &se isses:
Xscists Sississists

R is S&Eiit Site is is series

309b.5

FG. 3C

Booking, Exh. 1030, Page 9

U.S. Patent Oct. 18, 2016 Sheet 8 of 18 US 9,471,287 B2

Š SSS

Šiši-SS
See ESS
jSS38

Sessi
SeSt. Eise
tags: S.
is same'araws. :

3.
s
s
S.

FG. 3D

Booking, Exh. 1030, Page 10

U.S. Patent Oct. 18, 2016 Sheet 9 of 18 US 9,471,287 B2

309

309e9

FG.3E

Booking, Exh. 1030, Page 11

U.S. Patent Oct. 18, 2016 Sheet 10 of 18 US 9,471,287 B2

SSS is is is Y
Sississiest-SSEse:Siegss.setSEFe:Eoss 319C
Siassiss-Seisa Esa-sassissists

S Sistest-sease E-SSESSaSS
319a siastisest-Seti apiciuste-targas E

Siassist-SetRapissie -8.3sš
S$2:38:8siesis. ESSSSg-Sass,geSiasise:
SSSSSSSSSS Š
Siasiss-OiseER: 319C
Sisses
SeSSS

Flesher2 319e
Neather
SSEiss
SSESS
Báciegsgeisiesis
ESSESS...SeSats
SSSE3SSSSSSS:

FB&Siegsge:ER:

is gets::
Riigits-Spig
Ssss;
SE&SS
Seases -Riigi Ees
Siassissists
Š

FG, 3F

Booking, Exh. 1030, Page 12

US 9,471,287 B2 Sheet 11 of 18 Oct. 18, 2016 U.S. Patent

Booking, Exh. 1030, Page 13

US 9,471,287 B2

009

U.S. Patent

Booking, Exh. 1030, Page 14

U.S. Patent Oct. 18, 2016 Sheet 13 of 18 US 9,471,287 B2

7OO

"Nell asses
7O1b

S.

FG. 7

Booking, Exh. 1030, Page 15

U.S. Patent Oct. 18, 2016 Sheet 14 of 18 US 9,471,287 B2

3OO
N

8O1

Website System

O3
SMS Server

Content Server

FG. 9

Booking, Exh. 1030, Page 16

U.S. Patent Oct. 18, 2016 Sheet 15 of 18 US 9,471,287 B2

isis
fist

&esters&y SS&
St& S

O2
O3
O14

1 O5

&y& 88sts
its Sisse
if &c. &
is 8. Rg88 S&:

3O Y.

yassi: re
sers at Sea 4O

Booking, Exh. 1030, Page 17

Booking, Exh. 1030, Page 18

Booking, Exh. 1030, Page 19

U.S. Patent Oct. 18, 2016 Sheet 18 of 18

S&S

S&SSSSSSSSSSSSSSSSSSSSSSSSSSS

S. SS

S&reate

evice Appropriate isyer instaii

Player Briti Process
{Senerate RiaysFS for a

AEast actic inpatientations

F.G. 13

Response irector

US 9,471,287 B2

guery for
&fice Ca3Sexistics
sperator acticae

tiery and Receive
R. for Narciag layey

13O3

Bayer foie
fata: base

Booking, Exh. 1030, Page 20

US 9,471,287 B2
1.

SYSTEMIS AND METHODS FOR
INTEGRATING WIDGETS ON MOBILE

DEVICES

TECHNICAL FIELD

The present invention generally relates to providing soft
ware for mobile devices, and more particularly to a method
and system for authoring Applications for devices.

BACKGROUND ART

Internet-connected mobile devices are becoming ever
more popular. While these devices provide portability to the
Internet, they generally do not have the capabilities of
non-mobile devices including computing, input and output
capabilities.

In addition, the mobility of the user while using such
devices provides challenges and opportunities for the use of
the Internet. Further, unlike non-mobile devices, there are a
large number of types of devices and they tend to have a
shorter lifetime in the marketplace. The programming of the
myriad of mobile devices is a time-consuming and expen
sive proposition, thus limiting the ability of service provid
ers to update the capabilities of mobile devices.

Thus there is a need in the art for a method and apparatus
that permits for the efficient programming of mobile devices.
Such a method and apparatus should be easy to use and
provide output for a variety of devices.

DISCLOSURE OF INVENTION

In certain embodiments, a system is provided to generate
code to provide content on a display of a platform. The
system includes a database of web services obtainable over
a network and an authoring tool. The authoring tool is
configured to define an object for presentation on the dis
play, select a component of a web service included in said
database, associate said object with said selected compo
nent, and produce code that, when executed on the platform,
provides said selected component on the display of the
platform.

In certain other embodiments, a method is provided for
providing information to platforms on a network. The
method includes accepting a first code over the network,
where said first code is platform-dependent; providing a
second code over the network, where said second code is
platform-independent; and executing said first code and said
second code on the platform to provide web components
obtained over the network.

In certain embodiments, a method for displaying content
on a platform utilizing a database of web services obtainable
over a network is provided. The method includes: defining
an object for presentation on the display; selecting a com
ponent of a web service included in said database; associ
ating said object with said selected component; and produc
ing code that, when executed on the platform, provides said
selected component on the display of the platform.

In one embodiment, one of the codes is a Player, which is
a thin client architecture that operates in a language that
manages resources efficiently, is extensible, Supports a
robust application model, and has no device specific depen
dencies. In another embodiment, Player P is light weight and
extends the operating system and/or virtual machine of the
device to: Manage all applications and application upgrades,
and resolve device, operating system, VM and language
fragmentation.

10

15

25

30

35

40

45

50

55

60

65

2
In another embodiment, one of the codes is an Application

that is a device independent code that interpreted by the
Player.

These features together with the various ancillary provi
sions and features which will become apparent to those
skilled in the art from the following detailed description, are
attained by the system and method of the present invention,
preferred embodiments thereof being shown with reference
to the accompanying drawings, by way of example only,
wherein:

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A is an illustrative schematic of one embodiment of
a system including an authoring platform and a server for
providing programming instructions to a device over a
network;

FIG. 1B is schematic of an alternative embodiment sys
tem for providing programming instructions to device over
a network;

FIG. 2A is a schematic of an embodiment of system
illustrating the communications between different system
components;

FIG. 2B is a schematic of one embodiment of a device
illustrating an embodiment of the programming generated
by authoring platform;

FIGS. 3A and 3B illustrate one embodiment of a publisher
interface as it appears, for example and without limitation,
on a screen while executing an authoring tool;

FIG. 3C illustrates an embodiment of the Events Tab'
FIG. 3D illustrates one embodiment of an Animation Tab:
FIG. 3E illustrates one embodiment of Bindings Tab:
FIG.3F illustrates one embodiment of a pop-up menu for

adding web components;
FIG. 4A shows a publisher interface having a layout on a

canvas; and FIG. 4B shows a device having the resulting
layout on a device screen;

FIG. 5 shows a display of launch strips;
FIG. 6A is a display of a Channel Selection List;
FIG. 6B is a display of a Widget Selection List:
FIG. 6C is a display of a Phone List;
FIG. 7 shows a display of a mash-up:
FIG. 8 is a schematic of an embodiment of a push capable

system;
FIG. 9 is a schematic of an alternative embodiment of a

push capable system;
FIG. 10 is a schematic of one embodiment of a feed

collector;
FIG. 11 is a schematic of an embodiment of a Mobile

Content Gateway;
FIG. 12 is a schematic of one embodiment of a system that

includes a response director, a user agent database, an IP
address database, and a file database; and

FIG. 13 is a schematic of another embodiment of a system
that includes a response director, a user agent database, an IP
address database, and a file database.

Reference symbols are used in the Figures to indicate
certain components, aspects or features shown therein, with
reference symbols common to more than one Figure indi
cating like components, aspects or features shown therein.

MODE(S) FOR CARRYING OUT THE
INVENTION

FIG. 1A is an illustrative schematic of one embodiment of
a system 100 including an authoring platform 110 and a
server 120 for providing programming instructions to a

Booking, Exh. 1030, Page 21

US 9,471,287 B2
3

device 130 over a network N. In one embodiment, device
130 is a wireless device, and network N includes wireless
communication to the device. Alternatively, system 100 may
provide access over network N to other information, data, or
content, such as obtainable as a web service over the
Internet. In general, a user of authoring platform 110 may
produce programming instructions or files that may be
transmitted over network N to operate device 130, including
instructions or files that are sent to device 130 and/or server
120. The result of the authoring process is also referred to
herein, and without limitation, as publishing an Application.

Embodiments include one or more databases that store
information related to one or more devices 130 and/or the
content provided to the devices. It is understood that such
databases may reside on any computer or computer system
on network N, and that, in particular, the location is not
limited to any particular server, for example.

Device 130 may be, for example and without limitation,
a cellular telephone or a portable digital assistant, includes
a network interface 131, a memory 133, a processor 135, a
screen 137, and an input device 139. Network interface 131
is used by device 130 to communication over a wireless
network, such as a cellular telephone network, a WiFi
network or a WiMax network, and then to other telephones
through a public switched telephone network (PSTN) or to
a satellite, or over the Internet. Memory 133 includes
programming required to operate device 130 (Such as an
operating system or virtual machine instructions), and may
include portions that store information or programming
instructions obtained over network interface 131, or that are
input by the user (Such as telephone numbers or images from
a device camera (not shown). In one embodiment screen 137
is a touch screen, providing the functions of the screen and
input device 139.

Authoring platform 110 includes a computer or computer
system having a memory 111, a processor 113, a screen 115,
and an input device 117. It is to be understood that memory
111, processor 113, screen 115, and input device 117 are
configured such a program stored in the memory may be
executed by the processor to accept input from the input
device and display information on the screen. Further, the
program stored in memory 111 may also instruct authoring
platform 110 to provide programming or information, as
indicated by the line labeled “A” and to receive information,
as indicated by the line labeled “B.”
Memory 111 is shown schematically as including a stored

program referred to herein, and without limitation, as an
authoring tool 112. In one embodiment, authoring tool 112
is a graphical system for designing the layout of features as
a display that is to appear on screen 137. One example of
authoring tool 112 is the CDERTM publishing platform
(Express Mobile, Inc., Novato, Calif.).

In another embodiment, which is not meant to limit the
scope of the present invention, device 130 may include an
operating system having a platform that can interpret certain
routines. Memory 111 may optionally include programming
referred to herein, and without limitation, as routines 114
that are executable on device 130.

Routines 114 may include device-specific routines—that
is, codes that are specific to the operating system, program
ming language, or platform of specific devices 130, and may
include, but are not limited to, Java, Windows Mobile, Brew,
Symbian OS, or Open Handset Alliance (OHA). Several
examples and embodiments herein are described with ref
erence to the use of Java. It is to be understood that the
invention is not so limited, except as provided in the claims,
and that one skilled in the art could provide Players for

5

10

15

25

30

35

40

45

50

55

60

65

4
devices using routines provided on a platform. Thus as an
example, routines 114 may include Java APIs and an
authoring tool System Development Kit (SDK) for specific
devices 130.

Server 120 is a computer or computer system that
includes a network interface 121, a memory 123, and a
processor 125. Is to be understood that network interface
121, memory 123, and processor 125 are configured such
that a program stored in the memory may be executed by the
processor to: accept input and/or provide output to authoring
platform 110; accept input and/or provide output through
network interface 121 over network N to network interface
131; or store information from authoring platform 110 or
from device 130 for transmission to another device or
system at a later time.

In one embodiment, authoring platform 110 permits a user
to design desired displays for screen 137 and actions of
device 130. In other words, authoring platform 110 is used
to program the operation of device 130. In another embodi
ment, authoring platform 110 allows a user to provide input
for the design of one or more device displays and may
further allow the user to save the designs as device specific
Applications. The Applications may be stored in memory
123 and may then be sent, when requested by device 130 or
when the device is otherwise accessible, over network N,
through network interface 130 for storage in memory 133.

In an alternative embodiment, analytics information from
devices 130 may be returned from device 130, through
network N and server 120, back to authoring platform 110.
as indicated by line B, for later analysis. Analytics informa
tion includes, but is not limited to, user demographics, time
of day, and location. The type of analytic content is only
limited by which listeners have been activated for which
objects and for which pages. Analytic content may include,
but is not limited to, player-side page view, player-side
forms-based content, player-side user interactions, and
player-side object status.

Content server 140 is a computer or computer system that
includes a network interface 141, a memory 143, and a
processor 145. It is to be understood that network interface
141, memory 143, and processor 145 are configured such
that a stored program in the memory may be executed by the
processor to accepts requests R from device 130 and provide
content C over a network, such as web server content the
Internet, to device 130.

FIG. 1B is schematic of an alternative embodiment sys
tem 100 for providing programming instructions to device
130 over a network N that is generally similar to the system
of FIG. 1A. The embodiment of FIG. 1B illustrates that
system 100 may include multiple servers 120 and/or mul
tiple devices 130.

In the embodiment of FIG. 1B, system 100 is shown as
including two or more servers 120, shown illustratively and
without limitation as servers 120a and 120b. Thus some of
the programming or information between authoring plat
form 110 and one or more devices 130 may be stored,
routed, updated, or controlled by more than one server 120.
In particular, the systems and methods described herein may
be executed on one or more server 120.

Also shown in FIG. 1B are a plurality of devices 130,
shown illustratively and without limitation as device 130-1,
130-1, . . . 130-N. System 100 may thus direct communi
cation between individual server(s) 120 and specific
device(s) 130.
As described subsequently, individual devices 130 may be

provided with program instructions which may be stored in
each device's memory 133 and where the instructions are

Booking, Exh. 1030, Page 22

US 9,471,287 B2
5

executed by each device's processor 135. Thus, for example,
server(s) 120 may provide device(s) 130 with programming
in response to the input of the uses of the individual devices.
Further, different devices 130 may be operable using differ
ent sets of instructions, that is having one of a variety of
different “device platforms. Differing device platforms may
result, for example and without limitation, to different
operating systems, different versions of an operating system,
or different versions of virtual machines on the same oper
ating system. In some embodiments, devices 130 are pro
vided with some programming from authoring system 100
that is particular to the device.

In one embodiment, system 100 provides permits a user
of authoring platform 110 to provide instructions to each of
the plurality of devices 130 in the form of a device- or
device-platform specific instructions for processor 135 of
the device, referred to herein and without limitation as a
“Player,” and a device-independent program, referred to
herein and without limitation as an “Application' Thus, for
example, authoring platform 110 may be used to generate
programming for a plurality of devices 130 having one of
several different device platforms. The programming is
parsed into instructions used by different device platforms
and instructions that are independent of device platform.
Thus in one embodiment, device 130 utilizes a Player and an
Application to execute programming from authoring plat
form 110. A device having the correct Player is then able to
interpret and be programmed according to the Application.

In one alternative embodiment, the Player is executed the
first time by device 130 (“activated') through an Application
directory. In another alternative embodiment, the Player is
activated by a web browser or other software on device 130.
In yet another alternative embodiment, Player is activated
through a signal to device 130 by a special telephone
numbers, such as a short code.
When the Application and the Player are provided to

memory 133, the functioning of device 130 may occur in
accordance with the desired programming. Thus in one
embodiment, the Application and Player includes program
ming instructions which may be stored in memory 133 and
which, when executed by processor 135, generate the
designed displays on screen 137. The Application and Player
may also include programming instructions which may be
stored in memory 133 and which provide instructions to
processor 135 to accept input from input device 139.

Authoring tool 112 may, for example, produce and store
within memory 111 a plurality of Players (for different
devices 130) and a plurality of Applications for displaying
pages on all devices. The Players and Applications are then
stored on one or more servers 120 and then provided to
individual devices 130. In general, Applications are pro
vided to device 130 for each page of display or a some
number of pages. A Player need be provided once or updated
as necessary, and thus may be used to display a large number
of Applications. This is advantageous for the authoring
process, since all of the device-dependent programming is
provided to a device only once (or possibly for some Small
number of upgrades), permitting a smaller Application,
which is the same for each device 130.

Thus, for example and without limitation, in one embodi
ment, the Player transforms device-independent instructions
of the Application into device-specific instructions that are
executable by device 130. Thus, by way of example and
without limitation, the Application may include Java pro
gramming for generating a display on Screen 137, and the
Player may interpret the Java and instruct processor 135 to
produce the display according to the Application for execu

10

15

25

30

35

40

45

50

55

60

65

6
tion on a specific device 130 according to the device
platform. The Application may in general include, without
limitation, instructions for generating a display on Screen
137, instructions for accepting input from input device 139,
instructions for interacting with a user of device 130, and/or
instructions for otherwise operating the device. Such as to
place a telephone call.
The Application is preferably code in a device-indepen

dent format, referred to herein and without limitation as a
Portable Description Language (PDL). The device's Player
interprets or executes the Application to generate one or
more "pages” (“Applications Pages') on a display as defined
by the PDL. The Player may include code that is device
specific—that it, each device is provided with a Player that
is used in the interpretation and execution of Applications.
Authoring tool 112 may thus be used to design one or more
device-independent Applications and may also include
information on one or more different devices 130 that can be
used to generate a Player that specific devices may use to
generate displays from the Application.

In one embodiment, system 100 provides Players and
Applications to one server 120, as in FIG. 1A. In another
embodiment, system 100 provides Players to a first server
120a and Applications to a second server 120b, as in FIG.
1B.

In one embodiment, authoring tool 112 may be used to
program a plurality of different devices 130, and routines
114 may include device-specific routines. In another
embodiment, the Player is of the type that is commonly
referred to as a “thin client' that is, software for running
on the device as a client in client-server architecture with a
device network which depends primarily on a central server
for processing activities, and mainly focuses on conveying
input and output between the user and the server.

In one embodiment, authoring platform 110 allows user to
arrange objects for display on screen. A graphical user
interface (“GUI,” or “UI”) is particularly well suited to
arranging objects, but is not necessary. The objects may
correspond to one or more of an input object, an output
object, an action object, or may be a decorative display, Such
as a logo, or background color or pattern, such as a Solid or
gradient fill. In another embodiment, authoring platform 110
also permits a user to assign actions to one or more of an
input object, an output object, or an action object. In yet
another embodiment, authoring platform 110 also permits a
user to bind one or more of an input object, an output object,
or an action object with web services or web components, or
permits a user to provide instructions to processor 135 to
store or modify information in memory 133, to navigate to
another display or service, or to perform other actions, such
as dialing a telephone number.

In certain embodiments, the applicant model used in
developing and providing Applications is a PDL. The PDL
can be conceptually viewed as a device, operating system
and virtual machine agnostic representation of Java serial
ized objects. In certain embodiments, the PDL is the com
mon language for authoring tool 112, the Application, and
Player. Thus while either designing the Application with the
authoring tool 112, or programming with the SDK, the
internal representation of the programming logic is in Java.
In one embodiment the SDK is used within a multi-language
Software development platform comprising an IDE and a
plug-in system to extend it. Such as the Eclipse Integrated
Development Environment (see, for example, http://www.e-
clipse.org/). At publish time the Java code is translated into

Booking, Exh. 1030, Page 23

US 9,471,287 B2
7

a PDL. This translation may also occur in real-time during
the execution of any Web Services or backend business logic
that interacts with the user.
One embodiment for compacting data that may be used is

described in co-pending U.S. Pat. No. 6,546,397 to Rempell
(“Rempell”), the contents of which are incorporated herein
by reference. In that patent the compressed data is described
as being a database. The terminology used here is a PDL,
that is the “internal database' of Rempell is equivalent to the
PDL of the present Application.
The use of a PDL, as described in Rempell, permits for

efficient code and data compaction. Code, as well as vector,
integer and Boolean data may be compacted and then
compressed resulting in a size reduction of 40 to 80 times
that of the original Java serialized objects. This is important
not only for performance over the network but for utilizing
the virtual memory manager of the Player more efficiently.
As an example, the reassembled primitives of the Java
objects may first undergo logical compression, followed by
LZ encoding.
The use of a PDL also provides virtual machine and

operating system independence. Since the reassembled
primitives of the Application no longer have any dependen
cies from the original programming language (Java) that
they were defined in. The PDL architecture takes full advan
tage of this by abstracting all the virtual machine and/or
operating system interfaces from the code that processes the
PDL.

In one embodiment, the PDL is defined by the means of
nested arrays of primitives. Accordingly, the use of a PDL
provides extensibility and compatibility, with a minimal
amount of constraints in extending the Player seamlessly as
market demands and device capabilities continue to grow.
Compatibility with other languages is inherent based on the
various Player abstraction implementations, which may be,
for example and without limitation, Java CDC, J2SE or
MIDP2 implementations.

In one embodiment, the architecture of Player P includes
an abstraction interface that separates all device, operating
system and virtual machine dependencies from the Player's
Application model business logic (that is, the logic of the
server-side facilities) that extend the Application on the
Player so that it is efficiently integrated into a comprehensive
client/server Application. The use of an abstraction interface
permits the more efficient porting to other operating systems
and virtual machines and adding of extensions to the Appli
cation model so that a PDL can be implemented once and
then seamlessly propagated across all platform implemen
tations. The Application model includes all the currently
supported UI objects and their attributes and well as all of
the various events that are supported in the default Player.
Further, less robust platforms can be augmented by extend
ing higher end capabilities inside that platforms abstraction
interface implementation.

In one embodiment, authoring platform 110 provides one
or more pages, which may be provided in one Application,
or a plurality of Applications, which are stored in memory
123 and subsequently provided to memory 133. In certain
embodiments, the Application includes instructions R to
request content or web services C from content server 140.
Thus, for example and without limitation, the request is for
information over the network via a web service, and the
request R is responded to with the appropriate information
for display on device 130. Thus, for example, a user may
request a news report. The Application may include the
layout of the display, including a space for the news, which
is downloaded form content server 140 for inclusion on the

10

15

25

30

35

40

45

50

55

60

65

8
display. Other information that may be provided by content
server 140 may include, but is not limited to, pages, Appli
cations, multimedia, and audio.

FIG. 2A is a schematic of a system 200 of an embodiment
of system 100 illustrating the communications between
different system components. System includes a response
director 210, a web component registry 220, and a web
service 230. System 200 further includes authoring platform
110, server 120, device 130 and content server 140 are which
are generally similar to those of the embodiments of FIGS.
1A and 1B, except as explicitly noted.

Response director 210 is a computer or computer system
that may be generally similar to server 120 including the
ability to communicate with authoring platform 110 and one
or more devices 130. In particular, authoring platform 110
generates one or more Players (each usable by certain
devices 130) which are provided to response director 210.
Devices 130 may be operated to provide response director
210 with a request for a Player and to receive and install the
Player. In one embodiment, device 130 provides response
director 210 with device-specific information including but
not limited to make, model, and/or software version of the
device. Response director 210 then determines the appro
priate Player for the device, and provides the device with the
Player over the network.
Web service 230 is a plurality of services obtainable over

the Internet. Each web service is identified and/or defined as
an entry in web component registry 230, which is a database,
XML file, or PDL that exists on a computer that may be a
server previously described or another server 120. Web
component registry 230 is provided through server 120 to
authoring platform 110 so that a user of the authoring
platform may bind web services 230 to elements to be
displayed on device 130, as described subsequently.

In one embodiment, authoring platform 110 is used in
conjunction with a display that provides a WYSIWYG
environment in which a user of the authoring platform can
produce an Application and Player that produces the same
display and the desired programming on device 130. Thus,
for example, authoring tool 112 provides a display on Screen
115 that corresponds to the finished page that will be
displayed on screen 137 when an Application is intercepted,
via a Player, on processor 135 of device 130.

Authoring platform 110 further permits a user of the
authoring platform to associate objects, such as objects for
presenting on screen 137, with components of one or more
web services 230 that are registered in web component
registry 220. In one embodiment, information is provided in
an XML file to web component registry 220 for each
registered components of each web service 230. Web com
ponent registry 220 may contain consumer inputs related to
each web service 230, environmental data such as PIM, time
or location values, persistent variable data, outputs related to
the web service, and/or optional hinting for improving the
user's productivity.
A user of authoring platform 110 of system 200 may

define associations with web services as WebComponent
Bindings. In one embodiment, authoring platform 110
allows a user to associate certain objects for display that
provide input or output to components of web service 230.
The associated bindings are saved as a PDL in server 120.

In one embodiment, an XML web component registry 220
for each registered web service 230 is loaded into authoring
platform 110. The user of system 200 can then assign
components of any web service 230 to an Application
without any need to write code. In one embodiment, a
component of web service 230 is selected from authoring

Booking, Exh. 1030, Page 24

US 9,471,287 B2
9

platform 110 which presents the user with WYSIWYG
dialog boxes that enable the binding of all the inputs and
outputs of component of web service 230 to a GUI compo
nent of the Application as will be displayed on screen 137.
In addition, multiple components of one or more web service 5
230 can be assigned to any Object or Event in order to
facilitate mashups. These Object and/or Event bindings, for
each instance of a component of any web service 230, are
stored in the PDL. The content server 140 handles all
communication between device 130 and the web service 230
and can be automatically deployed as a web application
archive to any content server.

Device 130, upon detecting an event in which a compo
nent of a web service 230 has been defined, assembles and
sends all related inputs to content server 240, which proxies
the request to web service 230 and returns the requested
information to device 130. The Player on device 130 then
takes the outputs of web service 230 and binds the data to the
UI components in the Application, as displayed on Screen 20
137.

In one embodiment, the mechanism for binding the out
puts of the web service to the UI components is through
symbolic references that matches each output to the sym
bolic name of the UI component. The outputs, in one 25
embodiment, may include meta-data which could become
part of the inputs for subsequent interactions with the web
service.

For example, if a user of authoring platform 110 wants to
present an ATOM feed on device 130, they would search 30
through a list of UI Components available in the authoring
platform, select the feed they want to use, and bind the
output of the feed summary to a textbox. The bindings would
be saved into the PDL on server 120 and processed by device
130 at runtime. If the ATOM feed does not exist a new one 35
can be added to the web component registry that contains all
the configuration data required, such as the actual feed URL,
the web component manager URL, and what output fields
are available for binding.

In another embodiment, components of web services 230 40
are available either to the user of authoring platform 110 or
otherwise accessible through the SDK and Java APIs of
routines 114. System 200 permits an expanding set of
components of web services 230 including, but not limited
to: server pages from content server 120; third-party web 45
services including, but not limited to: Searching (Such
through Google or Yahoo), maps (such as through MapQuest
and Yahoo), storefronts (such as through ThumbPlay), SMS
share (such as through clickatel), Stock quotes, social net
working (such as through FaceBook), Stock quotes, weather 50
(such as through Accuweather) and/or movie trailers. Other
components include web services for communication and
sharing through chats and forums and rich messaging alerts,
where message alerts are set-up that in turn could have
components of Web Services 230 defined within them, 55
including the capture of consumer generated and Web Ser
Vice Supplied rich media and textual content.

System 200 also permits dynamic binding of real-time
content, where the inputs and outputs of XML web services
are bound to GUI components provided on screen 137. Thus, 60
for example, a user of authoring platform 110 may bind
attributes of UI Objects to a particular data base field on a
Server. When running the Application, the current value in
the referenced database will be immediately applied. During
the Application session, any other real time changes to these 65
values in the referenced database will again be immediately
displayed.

10

15

10
As an example of dynamic binding of real-time content,

an RSS feeds and other forms of dynamic content may be
inserted into mobile Applications, such as device 130, using
system 200. Authoring platform 110 may include a “RSS
display” list which permits a user to select RSS channels and
feeds from an extensible list of available dynamic content.
Meta data, such as titles, abstracts and Images can be
revealed immediately by the user as they traverse this RSS
display list, bringing the PC experience completely and
conveniently to mobile devices 130. In addition, Authoring
platform 110 may include a dialog box that dynamically
links objects to data and feeds determined by RSS and chat
databases. Any relevant attribute for a page view and/or
object can be dynamically bound to a value in a server-side
database. This includes elements within complex objects
Such as: any icon or text element within a graphical list; any
icon within a launch strip; any feature within any geographi
cal view of a GIS service object; and/or any virtual room
within a virtual tour.
As an example of third-party web services 230 that may

be provided using system 200, a user of authoring platform
110 can place, for example, Yahoo maps into device 130 by
binding the required component of the Yahoo Maps Web
Service, such as Yahoo Map’s Inputs and/or Outputs to
appropriate Objects of authoring platform 110. System 200
also provides binding to web services for text, image and
Video searching by binding to components of those web
services.

In one embodiment, an Application for displaying on
device 130 includes one or more Applications Pages, each
referred to herein as an “XSP.” that provides functionality
that extends beyond traditional web browsers. The XSP is
defined as a PDL, in a similar manner as any Application,
although it defines a single page view, and is downloaded to
the Player dynamically as required by the PDL definition of
the Application. Thus, for example, while JSPs and ASPs,
are restricted to the functionality supported by the web
browser, the functionality of XSPs can be extended through
authoring platform 110 having access to platform dependent
routines 114, such as Java APIs. Combined with dynamic
binding functionality, an XSP, a page can be saved as a page
object in an author’s “pages' library, and then can be
dynamically populated with real-time content simultane
ously as the page is downloaded to a given handset Player
based on a newly expanded API. XSP Server Pages can also
be produced programmatically, but in most cases authoring
platform 110 will be a much more efficient way to generate
and maintain libraries of dynamically changing XSPs.

With XSPs, Applications Pages that have dynamic content
associated with them can be sent directly to device 130,
much like how a web browser downloads an HTML page
through a external reference. Without XSPs, content authors
would have to define each page in the Application. With
XSPs, no pages need to be defined. Thus, for example, in a
World Cup Application, one page could represent real-time
scores that change continuously on demand. With polling
(for example, a prompt to the users asking who they predict
will win a game), a back-end database would tabulate the
information and then send the results dynamically to the
handsets. With a bar chart, the Application would use
dynamic PDL with scaling on the fly. For example, the
server would recalibrate the bar chart for every ten numbers.

Other combinations of components of web services 230
include, but are not limited to, simultaneous video chat
sessions, inside an integrated page view, with a video or
television station; multiple simultaneous chat sessions, each

Booking, Exh. 1030, Page 25

US 9,471,287 B2
11

with a designated individual and/or group, with each of the
chat threads visible inside an integrated page view.

Another extension of an XSP is a widget object. Widgets
can be developed from numerous sources including, but not
limited to, authoring platform 110, a Consumer Publishing
Tool, and an XML to Widget Conversion Tool where the
SDK Widget Libraries are automatically populated and
managed, or Widget Selection Lists that are available and
can be populated with author defined Icons.
Applications, Players, and Processing in a Device

FIG. 2B is a schematic of one embodiment of a device 130
illustrating an embodiment of the programming generated
by authoring platform 110. Memory 133 may include sev
eral different logical portions, such as a heap 133a, a record
store 133b and a filesystem (not shown).
As shown in FIG. 2B, heap 133a and record store 133b

include programming and/or content. In general, heap 133a
is readily accessible by processor 135 and includes, but is
not limited to portions that include the following program
ming: a portion 133a1 for virtual machine compliant objects
representing a single Page View for screen 137; a portion
133a2 for a Player; a portion 133a3 for a virtual machine;
and a portion 133.a4 for an operating system.

Record store 133b (or alternatively the filesystem)
includes, but is not limited to, portions 133b1 for Applica
tions and non-streaming content, which may include por
tions 133a2 for images, portions 133.a4 for audio, and/or
portions 133a5 for video, and portions 133b2 for non
Application PDLs, such as a Master Page PDL for present
ing repeating objects, and Alerts, which are overlayed on the
current page view. Other content, Such as streaming content
may be provided from network interface 131 directly to the
Media Codec of device 130 with instructions from Player on
how to present the audio or video.

In one embodiment, the Player includes a Threading
Model and a Virtual Memory Manager. The Threading
Model first manages a queue of actions that can be populated
based on Input/Output events, Server-side events, time
based events, or events initiated by user interactions. The
Threading Model further manages the simultaneous execu
tion of actions occurring at the same time. The Virtual
Memory Manager includes a Logical Virtual Page controller
that provides instructions from the record store to the heap,
one page at time. Specifically, the Virtual Memory Manager
controls the transfer of one of the Application Pages and its
virtual machine compliant objects into portion 133a1 as
instructions readable by the Player or Virtual Machine.
When the Player determines that a new set of instructions is
required, the information (Such as one Application Page is
retrieve from the Record store, converted into virtual
machine compliant objects (by processor 135 and according
to operation by the Player, Virtual Machine, etc), and stored
in heap 133a. Alternatively, the Player may augment virtual
machine compliant objects with its own libraries for man
aging user interactions, events, memory, etc.

The connection of portions 133a1, 133a2, 133a3, 133.a4,
record store 133b and processor 135 are illustrative of the
logical connection between the different types of program
ming stored in Heap 133a and record store 133b, that is, how
data is processed by processor 135.
The Player determines which of the plurality of Applica

tion Pages in portion 133b1 is required next. This may be
determined by input actions from the Input Device 139, or
from instructions from the current Application Page. The
Player instructs processor 135 to extract the PDF from that
Applications Page and store it in portion 133a1. The Player
then interprets the Application Page extracted from PDL

10

15

25

30

35

40

45

50

55

60

65

12
which in turn defines all of the virtual machine compliant
Objects, some of which could have attributes that refer to
images, audio, and/or video stored in portions 133a3, 133a4,
133a5, respectively.
The Virtual Machine in portion 133a3 processes the

Player output, the Operating System in portion 133a3 pro
cesses the Virtual Machine output which results in machine
code that is processed by the Operating System in portion
133a4.

In another embodiment, the Player is a native program
that interacts directly with the operating system.
Embodiments of a Publishing Environment

In one embodiment, authoring platform 110 includes a
full-featured authoring tool 112 that provides a what-you
see-is-what-you-get (WYSIWYG) full featured editor. Thus,
for example, authoring tool 112 permits a user to design an
Application by placing objects on canvas 305 and optionally
assigning actions to the objects and save the Application.
System 100 then provides the Application and Player to a
device 130. The Application as it runs on device 130 has the
same look and operation as designed on authoring platform
110. In certain embodiments, authoring platform 110 is, for
example and without limitation, a PC-compatible or a
Macintosh computer.

Authoring platform 110 produces an Application having
one or more Applications Pages, which are similar to web
pages. That is, each Applications Page, when executed on
device 130 may, according to its contents, modify what is
displayed on Screen 137 or cause programming on the
device to change in a manner similar to how web pages are
displayed and navigated through on a website.

In one embodiment, authoring tool 112 allows a user to
place one or more objects on canvas 305 and associate the
objects with an Applications Pages. Authoring platform 110
maintains a database of object data in memory 111, includ
ing but not limited to type of object, location on which page,
and object attributes. The user may add settings, events,
animations or binding to the object, from authoring tool 112,
which are also maintained in memory 111. Authoring tool
112 also allows a user to define more than one Applications
Page.

In another embodiment, authoring tool 112, provides Java
programming functions of the Java API for specific devices
130 as pull-down menus, dialog boxes, or buttons. This
permits a user of authoring platform 110 to position objects
that, after being provided as an Application to device 130,
activate Such Java functions on the device.

In certain embodiments, authoring platform 110, as part of
system 100, permits designers to include features of
advanced web and web services Applications for access by
users of device 130. Some of the features of advanced web
and web services include, but are not limited to: slide shows,
images, video, audio, animated transitions, multiple chats,
and mouse interaction; full 2-D vector graphics; GIS (ad
vanced LBS), including multiple raster and vector layers,
feature sensitive interactions, location awareness, streaming
and embedded audio/video, Virtual tours, image processing
and enhancement, and widgets. In other embodiments the
features are provided for selection in authoring platform 110
through interactive object libraries.

In certain embodiments, authoring platform 110, as part of
system 100, allows the inclusion of child objects which may
eventually be activated on device 130 by the user of the
device or by time. The uses of the child objects on device
130 include, but are not limited to: mouse over (object
selection), hover and fire events and launching of object
specific, rich-media experiences.

Booking, Exh. 1030, Page 26

US 9,471,287 B2
13

In certain other embodiments, authoring platform 110, as
part of system 100, provides advanced interactive event
models on device 130, including but not limited to: user-,
time- and/or location-initiated events, which allow content
developers to base interactivity on specific user interactions
and/or instances in time and space; timelines, which are
critical for timing of multiple events and for animations
when entering, on, or exiting pages of the Application;
waypoints, which act similar to key frames, to allow Smooth
movement of objects within pages of the Application. Way
points define positions on a page objects animation trajec
tory. When an object reaches a specific waypoint other
object timelines can be initiated, creating location-sensitive
multiple object interaction, and/or audio can be defined to
play until the object reaches the next waypoint.

Authoring platform 110 may also define a Master Page,
which acts as a template for an Applications Page, and may
also define Alert Pages, which provide user alerts to a user
of device 130.

In certain embodiments, authoring platform 110, as part of
system 100, provides full style inheritance on device 130.
Thus, for example and without limitation, both master page
inheritance (for structural layout inheritance and repeating
objects) and object styles (for both look and feel attribute
inheritance) are supported. After a style has been defined for
an object, the object will inherit the style. Style attributes
include both the look and the feel of an object, including
mouse interaction, animations, and timelines. Each page
may include objects that may be a parent object or a child
object. A child object is one that was created by first
selecting a parent object, and then creating a child object.
Child objects are always part of the same drawing layer as
its parent object, but are drawn first, and are not directly
selectable when running the Application. A parent object is
any object that is not a child object, and can be selected
when running the Application.
As an example, the user of authoring tool 112 may create

various text objects on canvas 305 using a style that sets the
font to red, the fonts of these objects will be red. Suppose
user of authoring tool 112 changes the font color of a specific
button to green. If later, the user of authoring tool 112
changes the style to blue; all other text objects that were
created with that style will become blue except for the button
that had been specifically set to green.

In certain other embodiments, authoring platform 110
provides page view, style, object, widget and Application
template libraries. Authoring platform 110 may provide
templates in private libraries (available to certain users of
the authoring platform) and public libraries (available to all
users of the authoring platform). Templates may be used to
within authoring platform 110 to define the look and feel of
the entire Application, specific pages, or specific slide shows
and virtual tours a seen on device 130.

FIGS. 3A and 3B illustrate one embodiment of a publisher
interface 300 as it appears, for example and without limi
tation, on screen 115 while executing authoring tool 112. In
one embodiment, publisher interface 300 includes a Menu
bar 301, a Toolbar 303, a Canvas 305, a Layer Inspector 307
having Subcomponents of a page/object panel 307a, an
object style panel 307b, and a page alert panel 307c, and a
Resource Inspector 309.

In general, publisher interface 300 permits a user of
authoring platform 110 to place objects on canvas 305 and
then associate properties and/or actions to the object, which
are stored in the Application. As described Subsequently,
publisher interface 300 permits a user to program a graphical
interface for the Screen 137 of device 130 on Screen 115 of

10

15

25

30

35

40

45

50

55

60

65

14
authoring platform 110, save an Application having the
programming instructions, and save a Player for the device.
The intended programming is carried out on device 130
when the device, having the appropriate device platform
Player, receives and executes the device-independent Appli
cation.

Thus, for example, authoring tool 112 maintains, in
memory 111, a list of every type of object and any proper
ties, actions, events, or bindings that may be assigned to that
object. As objects are selected for an Application, authoring
tool 112 further maintains, in memory 111, a listing of the
objects. As the user selects objects, publisher interface 300
provides the user with a choice of further defining proper
ties, actions, events, or bindings that may be assigned to
each particular object, and continues to store the information
in memory 111.

In one embodiment, publisher interface 300 is a graphical
interface that permits the placement and association of
objects in a manner typical of for example, vector graphics
editing programs (such as Adobe Illustrator). Objects
located on canvas 305 placed and manipulated by the
various commands within publisher interface 300 or inputs
such as an input device 117 which may be a keyboard or
mouse. As described herein, the contents of canvas 305 may
be saved as an Application that, through system 100, provide
the same or a similar placement of objects on screen 137 and
have actions defined within publisher interface 300. Objects
placed on canvas 305 are intended for interaction with user
of device 130 and are referred to herein, without limitation,
as objects or UI (user interface) objects. In addition, the user
of interface 300 may assign or associate actions or web
bindings to UI objects placed on canvas 305 with result in
the programming device 130 that cause it to respond accord
ingly.

Objects include, but are not limited to input UI objects,
response UI objects. Input UI objects include but are not
limited to: text fields (including but not limited to alpha,
numeric, phone number, or SMS number); text areas; choice
objects (including but not limited to returning the selected
visible string or returning a numeric hidden attribute); single
item selection lists (including but not limited to returning the
selected visible string or returning a numeric hidden attri
bute); multi item selection lists (including but not limited to
returning all selected items (visible text string or hidden
attribute) or cluster item selection lists (returning the hidden
attributes for all items).

Other input UI objects include but are not limited to:
check boxes; slide show (including but not limited to
returning a numeric hidden attribute, returning a string
hidden attribute, or returning the hidden attributes for all
slides); and Submit function (which can be assigned to any
object including Submit buttons, vectors, etc.).

Response UI Objects may include, but are not limited to:
single line text objects, which include: a text Field (includ
ing but not limited to a URL, audio URL, or purchase URL),
a text button, a submit button, or a clear button. Another
response UI objects include: a multiple line text object,
which may include a text area or a paragraph; a check box;
an image; a video; a slide show (with either video or image
slides, or both); choice objects; list objects; or control lists,
which control all the subordinate output UI objects for that
web component. Control list objects include, but are not
limited to: list type or a choice type, each of which may
include a search response list or RSS display list.
As a further example of objects that may be used with

authoring tool 112, Table I lists Data Types, Preferred Input,
Input Candidates, Preferred Output and Output Candidates
for one embodiment of an authoring tool.

Booking, Exh. 1030, Page 27

15
US 9,471,287 B2

TABLE I

16

One embodiment of supported objects

Data Types

boolean
Int

String
multilineString

ImageORL

VideoURL

List

ComplexList

Slideshow
SearchResponseList

RSSList

SingleSelectionList

MultiSelectionList
Service Activation
ChannelImageURL

ChannelDescription

ChannelTitle

URL

Audio URL

Purchase URL

mage Data

mage List Data

Persistent Variable
Pipeline Multiple Select

Phone Number

Hidden Attribute

Collection List

Preferred Input

Check Box
Text Field (integer)

Text Field (Alpha)
TextArea

NA

NA

Single Item List

Complex List

Slide Show
NA

NA

Choice

Multi-Selection List
Submit Button
NA

NA

NA

NA
Multi-select List

Text Field
(numeric type)
Complex List

NA

Input Candidates

Check Box
Text Field (integer)
Text Field (Phone #)
Text Field (SMS #)
Choice
List (single select)

Any
TextArea

NA

NA

Single Item List
Multi-Select List
Complex List
Choice
Slide Show
Single Item List
Multi-Select List
Complex List
Slide Show
NA

NA

Choice
Complex List
Multi-Selection List
Any
NA

NA

NA

NA
Multi-select List
Complex List
Slide Show
Text Field
Text Button
Complex List
Slide Show
NA

Preferred Output

Check Box
Text Field (integer)

Text Field (Alpha)
TextArea

Image

Video

Single Item List

Single Item List

Slide Show
Search Response List

RSS Display List

Choice

Multi-Selection List
NA
Image

TextArea

Text Field

Text Field
(URL request)
Text Field
(Audio URL request)
Text Field
(Purchase URL request)
Image

Slide Show

NA
NA

Text Field
(numeric type)
Complex List

Slide Show

Output Candidates

Check Box
Text Field (integer)
Text Field (Phone #)
Text Field (SMS #)
Choice
List (single select)
Text Button
Any
TextArea
Paragraph
Image
Slide Show
Video
Slide Show
Any List Type
Any Choice Type
(see Complex
List Specification)

Any List Type
(see Complex List
Specification)
Slide Show
Search Response List
Control List
Complex List
Choice
RSS Display List
Control List
Complex List
Choice
Choice
Complex List
Multi-Selection List

Text Field
(URL request)
Text Field
(Audio URL request)
Text Field
(Purchase URL request)
Image
Slide Show
Slide Show
Image
NA
NA

Text Field
Text Button
Complex List
Slide Show
Complex List
Slide Show

Booking, Exh. 1030, Page 28

US 9,471,287 B2
17

In general, publisher interface 300 permits a user to define
an Application as one or more Applications Pages, select UI
objects from Menu bar 301 or Toolbar 303 and arrange them
on an Applications Page by placing the objects canvas 305.
An Application Page is a page that is available to be visited
through any navigation event. Application Pages inherit all
the attributes of the Master Page, unless that attribute is
specifically changed during an editing session.

Authoring platform 110 also stores information for each
UI object on each Application Page of an Application. Layer
Inspector 307 provides lists of Applications Pages, UI
objects on each Applications Page, and Styles, including
templates. Objects may be selected from canvas 305 or
Layer Inspector 307 causing Resource Inspector 309 to
provide lists of various UI objects attributes which may be
selected from within the Resource Inspector. Publisher inter
face 300 also permits a user to save their work as an
Application for layer transfer and operation of device 130.
Publisher interface 300 thus provides an integrated platform
for designing the look and operation of device 130.
The information stored for each UI object depends, in

part, on actions which occur as the result of a user of device
130 selecting the UI object from the device. UI objects
include, but are not limited to: navigational objects, such as
widget or channel launch strips or selection lists; message
objects for communicating, such as a multiple chat, video
chat, phone and/or SMS lists or fields or a pop-up alert; text
fields or areas; checkboxes; pull down menus; selection lists
and buttons; pictures; slide shows: video or LBS maps:
shapes or text defined by a variety of tools; a search
response; or an RSS display.

In certain embodiments, publisher interface 300 permits a
user to assign action to UI objects, including but not limited
to, programming of the device 130 or a request for infor
mation over network N. In one embodiment, for example
and without limitation, publisher interface 300 has a selec
tion to bind a UI object to a web service—that is, associate
the UI object or a manipulation or selection of UI object with
web services. Publisher interface 300 may also include
many drawing and text input functions for generating dis
plays that may be, in Some ways, similar to drawing and/or
word processing programs, as well as toolbars and for
Zooming and Scrolling of a workspace.

Each UI object has some form, color, and display location
associate with it. Further, for example and without limita
tion, UI objects may have navigational actions (such as
return to home page), communications actions (such as to
call the number in a phone number field), or web services
(such as to provide and/or retrieve certain information from
a web service). Each of the these actions requires authoring
platform 110 to store the appropriate information for each
action. In addition, UI objects may have associated patent or
child objects, default settings, attributes (such as being a
password or a phone number), whether a field is editable,
animation of the object, all of which may be stored by
authoring platform 110, as appropriate.
Menu bar 301 provides access features of publisher

interface 300 through a series of pull-down menus that may
include, but are not limited to, the following pull-down
menus: a File menu 301a, an Edit menu 3.01b, a View menu
301c, a Project menu 3.01d, an Objects menu 3.01e, an
Events menu 3.01f a Pages menu 3.01g, a Styles menu 3.01 h,
and a Help menu 301 i.

File menu 3.01 a provides access to files on authoring
platform 110 and may include, for example and without
limitation, selections to open a new Application or master
page, open a saved Application, Application template, or

10

15

25

30

35

40

45

50

55

60

65

18
style template, import a page, alert, or widget, open library
objects including but not limited to an image, video, slide
show, vector or list, and copying an Application to a user or
to Server 120.

Edit menu 3.01b may include, but is not limited to,
selections for select, cut, copy, paste, and edit functions.
View menu 301C may include, but is not limited to,

selections for Zooming in and out, previewing, canvas 305
grid display, and various palette display selections.

Project menu 3.01d may include, but is not limited to,
selections related to the Application and Player, Such as
selections that require a log in, generate a universal Player,
generate server pages, activate server APIs and extend
Player APIs. A Universal Player will include all the code
libraries for the Player, including those that are not refer
enced by the current Application. Server APIs and Player
APIs logically extend the Player with Server-side or device
side Application specific logic.

Objects menu 3.01e includes selections for placing various
objects on canvas 305 including, but not limited to: navi
gation UI objects, including but not limited to widget or
channel launch strips or selection lists; message-related UI
objects, including but not limited to multiple chat, video
chat, phone and/or SMS lists or fields, or a pop-up alert:
shapes, which provides for drawing tools; forms-related
objects, including but not limited to text fields; Scrolling text
box, check box, drop-down menu, list menu, Submit button
or clear button; media-related UI objects such as pictures,
slide shows, video or LBS maps; text-related UI objects such
as buttons or paragraphs; and variables, including but not
limited to time, date and audio mute control.

Events menu 301f includes selections for defining child
objects, mouse events, animations or timelines.

Pages menu 3.01g includes selection for handling multi
page Applications, and may include selections to set a
master page, delete, copy, add or go to Applications Pages.

Styles menu 3.01h includes selections to handle styles,
which are the underlying set of default appearance attributes
or behaviors that define any object that is attached to a style.
Styles are a convenient way for quickly creating complex
objects, and for changing a whole collection of objects by
just modifying their common style. Selections of Styles
menu 3.01h include, but not limited to, define, import, or
modify a style, or apply a template. Help menu 3.01i includes
access a variety of help topics.

Tool bar 303 provides more direct access to some of the
features of publisher interface 300 through a series of
pull-down menus. Selections under tool bar 303 may include
selections to:

control the look of publisher interface 300, such as a Panel
Selection to control the for hiding or viewing various
panels on publisher interface 300:

control the layout being designed, such as an Insert Page
Selection to permit a user to insert and name pages;

control the functionality of publisher interface 300, such
as a Palettes selection to choose from a variety of
specialized palettes, such as a View Palette for Zooming
and controlling the display of canvas 305, a Command
Palette of common commands, and Color and Shape
Palettes;

place objects on canvas 305, which may include selec
tions such as: a Navigation selection to place naviga
tional objects, such as widget or channel launch strips
or selection lists), a Messages selection to place objects
for communicating, such as a multiple chat, video chat,
phone and/or SMS lists or fields, or a pop-up alert, a
Forms selection to place objects such as text fields or

Booking, Exh. 1030, Page 29

US 9,471,287 B2
19

areas, check boxes, pull down menus, selection lists,
and buttons, a Media selection to place pictures, slide
shows, video or LBS maps, and a Shapes selection
having a variety of drawing tools, a Text selection for
placing text, a search response, or an RSS display, and
Palettes.

In one embodiment, Tool bar 303 includes a series of
pull-down menus that may include, but are not limited to,
items from Menu bar 301 organized in the following pull
down menus: a Panel menu 3.03a, an Insert Page menu 3.03b,
a Navigation menu 3.03c, a Messages menu 303d, a Forms
menu 3.03e, a Media menu 3.03f a Shapes menu 3.03.g., a Text
menu 3.03.h, and a Palettes menu 3.01.i.

Panel menu 3.03a permits a user of authoring platform 110
to change the appearance of interface 300 by, controlling
which tools are on the interface or the size of canvas 305.
Insert Page menu 303b permits a user of authoring platform
110 to open a new Application Page. Navigation menu 3.03c
displays a drop down menu of navigational-related objects
Such as a widget or channel launch strip or selection list.
Messages menu 303d displays a drop down menu of mes
saging-related objects such as multiple chat, video chat,
phone or SMS lists or fields, and pop-up alerts. Forms menu
303e displays a drop down menu of forms-related objects
including, but not limited to, a text field, a text area, a check
box, a drop down menu, a selection list, a Submit button, and
a clear button. Media menu 3.03f displays a drop down menu
of media-related objects including, but not limited to, a
picture, slide show, video or LBS map. Shapes menu 3.03g
displays a drop down menu of draw tools, basic shapes,
different types of lines and arrows and access to a shape
library. Text menu 3.03j displays a drop down menu of
text-related objects, including but not limited to a text
button, paragraph, search response, RSS display and vari
ables such as time and date.

Palettes menu 3.01i includes a selection of different pal
ettes that can be moved about publisher interface 300, where
each palette has specialized commands for making adjust
ments or associations to objects easier. Palettes include, but
are not limited to: a page view palette, to permit easy
movement between Applications Pages; a view palette, to
execute an Application or Zoom or otherwise control the
viewing of an Application; a commands palette having
editing commands; a color palette for selection of object
colors; and a shapes palette to facilitate drawing objects.

Layer inspector 307 permits a user of publisher interface
300 to navigate, select and manipulate UI objects on Appli
cations Pages. Thus, for example, a Page/objects panel 307a
of layer inspector 307 has a listing that may be selected to
choose an Applications Pages within and Application, and
UI objects and styles within an Applications Page. An Object
styles panel 307b of layer inspector 307 displays all styles on
the Applications Page and permits selection of UI objects for
operations to be performed on the objects.

Thus, for example, when objects from Menu bar 301 or
Tool bar 303 are placed on canvas 305, the name of the
object appears in Page/objects panel 307a. Page/objects
panel 307a includes a page display 307a 1 and an objects
display 307a2. Page display 307a 1 includes a pull down
menu listing all Applications Pages of the Application, and
objects display 307a2 includes a list of all objects in the
Applications Page (that is, objects on canvas 305).

In general, page/objects panel 307 a displays various
associations with a UI object and permits various manipu
lations including, but not limited to, operations for parent
and child objects that are assigned to a page, and operations
for object styles, and permits navigating between page types

5

10

15

25

30

35

40

45

50

55

60

65

20
and object styles, such as Switching between the master page
and Application pages and deselecting object styles and
alerts, opening an Edit Styles Dialog Box and deselecting
any master, Application or alert page, or selecting an alert
page and deselecting any Master Page or Application Page.
A parent or child object can also be selected directly from
the Canvas. In either case, the Resource Inspector can then
be used for modifying any attribute of the selected object.

Examples of operations provided by page/objects panel
307a on pages include, but are not limited to: importing
from either a user's private page library or a public page
library; deleting a page; inserting a new page, inheriting all
the attributes of the Master Page, and placing the new page
at any location in the Page List; editing the currently selected
page, by working with an Edit Page Dialog Box. While
editing all the functions of the Resource Inspector 309 are
available, as described Subsequently, but are not applied to
the actual page until completing the editing process.

Examples of operations provided by of page/objects panel
307a on objects, which may be user interface (UI) objects,
include but are not limited to: changing the drawing order
layer to: bring to the front, send to the back, bring to the front
one layer, or send to the back one layer, hiding (and then
reshowing) selected objects to show UI objects obstructed
by other UI Objects, delete a selected UI Page Object, and
editing the currently selected page, by working with a Edit
Page Dialog Box.

Object styles panel 307b of layer inspector 307 displays
all styles on the Applications Page and permits operations to
be performed on objects, and is similar to panel 307a.
Examples of operations provided by object style panel 307b
include, but are not limited to: importing from either a user's
private object library or a public object library; inserting a
new object style, which can be inherited from a currently
selected object, or from a previously defined style object;
and editing a currently selected object style by working with
an Edit Style Dialog Box.

Style attributes can be assigned many attributes, including
the look, and behavior of any object that inherits these
objects. In addition, List Layout Styles can be created or
changed as required. A layout style can define a unbounded
set of Complex List Layouts, including but not limited to:
the number of lines per item in a list, the number of text and
image elements and their location for each line for each item
in the last, the color and font for each text element, and the
vertical and horizontal offset for each image and text ele
ment.

Alerts Panel 307c provides a way of providing alert pages,
which can have many of the attributes of Application Pages,
but they are only activated through an Event such as a user
interaction, a network event, a timer event, or a system
variable setting, and will be Superimposed onto whatever is
currently being displayed. Alert Pages all have transparent
backgrounds, and they function as a template overlay, and
can also have dynamic binding to real time content.

Resource inspector 309 is the primary panel for interac
tively working with UI objects that have been placed on the
Canvas 305. When a UI object is selected on Canvas 305, a
user of authoring platform 110 may associate properties of
the selected object by entering or selecting from resource
inspector 309. In one embodiment, resource inspector 309
includes five tab selections: Setting Tab 309a, Events Tab
309b, Animation Tab 309c, Color Tab 309d which includes
a color palette for selecting object colors, and Bindings Tab
309e.

Settings Tab 309a provides a dialog box for the basic
configuration of the selected object including, but not lim

Booking, Exh. 1030, Page 30

US 9,471,287 B2
21

ited to, name, size, location, navigation and visual settings.
Depending upon the type of object, numerous other attri
butes could be settable. As an example, the Setting Tab for
a Text Field may include dialog boxes to define the text field
string, define the object style, set the font name, size and
effects, set an object name, frame style, frame width, text
attributes (text field, password field, numeric field, phone
number, SMS number, URL request).
As an example of Setting Tab 309a, FIG. 3B shows

various selections including, but not limited to, setting
309a 1 for the web page name, setting 309a2 for the page
size, including selections for specific devices 130, setting
309a3 indicating the width and height of the object, and
setting 309a4 to select whether background audio is present
and to select an audio file.

FIG. 3C illustrates an embodiment of the Events Tab
309b, which includes all end user interactions and time
based operations. The embodiment of Events Tab 309b in
FIG. 3C includes, for example and without limitation, an
Events and Services 309b1, Advanced Interactive Settings
309b2, Mouse State 309b3, Object Selected Audio Setting
309b4, and Work with Child Objects and Mouse Overs
button 309b5.

Events and Services 309b1 lists events and services that
may be applied to the selected objects. These include, but are
not limited to, going to external web pages or other Appli
cations pages, either as a new page or by launching a new
window, executing an Application or JavaScript method,
pausing or exiting, placing a phone call or SMS message,
with or without single or multiple Player download, show
launch strip, or go back to previous page. Examples of
events and services include, but are not limited to those
listed in Table II

TABLE II

Events and Services

Goto External Web Page replacing ChoiceObject: Remove Icon from
Current Frame Launch Strip
Goto External Web Page Launched Goto a specific Internal Web
in a New Window Page with Alert. “Backend

Synchronization
Goto Widget Object
Generate Alert. “With a Fire

Goto a specific Internal Web Page
Goto the next Internal Web Page

Event
Goto External Web Page replacing Send SMS Message from Linked
the Top Frame Text Field
Execute JavaScript Method Toggle Alert. “Display OnFocus,

Hide OffRocus'
Pause/Resume Page TimeOut Execute an Application with Alert.

“With a Fire Event
Goto Logical First Page
Generate Alert with Backend
Synchronization
Send SMS Message with Share
(Player Download)
Place PhoneCall from linked Text
Field with Share (Player Download)
Send IMAlert from linked Text

Execute an Application
Goto a specific Internal Web
Page with setting starting slide
Exit Application

Exit Player

Place PhoneCall from linked
Text Field Field or TextArea
Text Field Area: Send String Set and Goto Starting Page
on FIRE
ChoiceObject: Add Icon to Populate Image
Launch Strip
Text Field Area: Send String
on FIRE or Numeric Keys

Preferred Launch Strip

Advanced Interactive Settings 309b2 include Scroll Acti
vation Enabled, Timeline Entry Suppressed, Enable Server
Listener, Submit Form, Toggle Children on FIRE, and Hide
Non-related Children, Mouse State 309.b3 selections are
Selected or Fire. When Mouse State Selected is chosen,

5

10

15

25

30

35

40

45

50

55

60

65

22
Object Selected Audio Setting 309b4 of Inactive, Play Once,
Loop, and other responses are presented. When Mouse State
Fire is chosen, Object Selected Audio Setting 309b4 is
replaced with FIRE Audi Setting, with appropriate choices
presented.
When Work with Child Objects and Mouse Overs button

309b5 is selected, a Child Object Mode box pops up,
allowing a user to create a child object with shortcut to Menu
bar 301 actions that may be used define child objects.

FIG. 3D illustrates one embodiment of an Animation Tab
309c, which includes all animations and timelines. The
Color Tab includes all the possible color attributes, which
may vary significantly by object type.

Animation Tab 309c includes settings involved in anima
tion and timelines that may be associated with objects. One
embodiment of Animation Tab 309c is shown, without
limitation, in FIG. 3D, and is described, in Rempell (“Rem
pell”).
A Color Tab 309d includes a color palette for selecting

object colors.
Bindings Tab 309e is where web component operations

are defined and dynamic binding settings are assigned. Thus,
for example, a UI object is selected from canvas 305, and a
web component may be selected and configured from the
bindings tab. When the user's work is saved, binding infor
mation is associated with the UI object that will appear on
Screen 137.

FIG. 3E illustrates one embodiment of Bindings Tab and
includes, without limitation, the following portions: Web
Component and Web Services Operations 309e1, Attributes
Exposed list 309e2, panel 309e3 which includes dynamic
binding of server-side database values to attributes for the
selected object, Default Attribute Value 309e4, Database
Name 309.e5, Table Name 309.e6, Field Name 309e7, Chan
nel Name 309e8, Channel Feed 309e9, Operation 309e10,
Select Link 309e11, and Link Set checkbox 309e12.
Web Component and Web Services Operations 309e1

includes web components that may be added, edited or
removed from a selected object. Since multiple web com
ponents can be added to the same object, any combination
of mash-ups of 3rd party web services is possible. When the
“Add button of Web Component and Web Services Opera
tions 309e1 is selected, a pop-up menu 319, as shown in
FIG. 3F, appears on publisher interface 300. Pop-up menu
319 includes, but is not limited to, the options of: Select a
Web Component 319a: Select Results Page 319b: Activation
Options 319.c; Generate UI Objects 319d; and Share Web
Component 319e.
The Select a Web Component 319 a portion presents a list

of web components. As discussed herein, the web compo
nents are registered and are obtained from web component
registry 220.

Select Results Page 319b is used to have the input and
output on different pages—that is, when the Results page is
different from Input page. The default selected results page
is either the current page, or, if there are both inputs and
outputs, it will be set provisionally to the next page in the
current page order, if one exists.

Activation Options 319.c include, if there are no Input UI
Objects, a choice to either “Preload the web component,
similar to how dynamic binding, or have the web component
executed when the “Results' page is viewed by the con
SUC.

Generate UI Objects 319C, if selected, will automatically
generate the UI objects. If not selected, then the author will
bind the Web Component Inputs and Results to previously
created UI Objects.

Booking, Exh. 1030, Page 31

US 9,471,287 B2
23

Share Web Component 319e is available and will become
selected under the following conditions: 1) Web Component
is Selected which already has been used by the current
Application; or 2) the current Input page is also a “Result
page for that Web component. This permits the user of 5
device 130, after viewing the results, to extend the Web
Component allowing the user to make additional queries
against the same Web Component. Examples of this include,
but are not limited to, interactive panning and Zooming for
a Mapping Application, or additional and or refined searches
for a Search Application.

Dynamic Binding permits the binding of real time data,
that could either reside in a 3rd party server-side database,
or in the database maintained by Feed Collector 1010 for
aggregating live RSS feeds, as described Subsequently with
reference to FIG. 10.

Referring again to FIG.3E, Attributes Exposed list 309e2
are the attributes available for the selected object that can be
defined in real time through dynamic binding.

Panel 309e3 exposes all the fields and tables associated
with registered server-side data bases. In one embodiment,
the user would select an attribute from the "Attributes
Exposed List” and then select a database, table and field to
define the real time binding process. The final step is to
define the record. If the Feed Collector database is selected,
for example, then the RSS "Channel Name” and the “Chan
nel Feed” drop down menus will be available for symboli
cally selected the record. For other data bases the RSS
“Channel Name” and the “Channel Feed” drop down menus
are replaced by a “Record ID' text field.

Default Attribute Value 309e4 indicates the currently
defined value for the selected attribute. It will be overridden
in real time based on the dynamic linkage setting.

Database Name 309e5 indicates which server side data
base is currently selected.

Table Name 309e6 indicates which table of the server side
database is currently selected.

Field Name 309e7, indicates which field form the selected
table of the server side data base is currently selected.

Channel Name 309e8 indicates a list of all the RSS feeds
currently supported by the Feed Collector. This may be
replaced by “Record ID' if a database other than the Feed
Collector 1010 is selected.

Channel Feed 309e9 indicates the particular RSS feed for
the selected RSS Channel. Feed Collector 1010 may main
tain multiple feeds for each RSS channel.

Operation 309e10, as a default operation, replaces the
default attribute value with the real time value. In other
embodiments this operation could be append, add, Subtract,
multiply or divide.

Select Link 309e11 a button that, when pressed, creates
the dynamic binding. Touching the “Select Link' will cause
the current data base selections to begin the blink is some
manner, and the “Select Link' will change to “Create Link”.
The user could still change the data base and attribute
choices. Touching the “Create Link' will set the “Link Set
checkbox and the “Create Link' will be replaced by “Delete
Link' if the user wishes to subsequently remove the link.
When the application is saved, the current active links are
used to create the SPDL.

Link Set checkbox 309e12 indicates that a link is cur
rently active.
An example of the design of a display is shown in FIGS.

4A and 4B according the system 100, where FIG. 4A shows
publisher interface 300 having a layout 410 on canvas 305,
and FIG. 4B shows a device 130 having the resulting layout
420 on screen 137. Thus, for example, authoring platform

10

15

25

30

35

40

45

50

55

60

65

24
110 is used to design layout 410. Authoring platform 110
then generates an Application and a Player specific to device
130 of FIG. 4B. The Application and Player are thus used by
device 130 to produce layout 420 on screen 137.
As illustrated in FIG. 4A, a user has placed the following

on canvas 305 to generate layout 410; text and background
designs 411, a first text input box 413, a second text input
box. 415, and a button 417. As an example which is not
meant to limit the scope of the present invention, layout 410
is screen prompts a user to enter a user name in box 413 and
a password in box 415, and enter the information by clicking
on button 417.

In one embodiment, all UI objects are initially rendered as
Java objects on canvas 305. When the Application is saved,
the UI objects are transformed into the PDL, as described
Subsequently.

Thus, for example, layout 410 may be produced by the
user of authoring platform 110 selecting and placing a first
Text Field as box 413 then using the Resource Inspector 309
portion of interface 300 to define its attributes.
Device User Experience

Systems 100 and 200 provide the ability for a very large
number of different types of user experiences. Some of these
are a direct result of the ability of authoring platform 110 to
bind UI objects to components of web services. The follow
ing description is illustrative of Some of the many types of
experiences of using a device 130 as part of system 100 or
2OO.

Device 130 may have a one or more of a very powerful
and broad set of extensible navigation objects, as well as
object- and pointer-navigation options to make it easy to
provide a small mobile device screen 137 with content and
to navigate easily among page views, between Applications,
or within objects in a single page view of an Application.

Navigation objects include various types of launch strips,
various intelligent and user-friendly text fields and scrolling
text boxes, powerful graphical complex lists, as well as
Desktop-level business forms. In fact, every type of object
can be used for navigation by assigning a navigation event
to it. The authoring tool offers a list of navigation object
templates, which then can be modified in numerous ways.
Launch Strips and Graphical List Templates Launch Strips

Launch strips may be designed by the user of authoring
platform 110 with almost no restrictions. They can be
stationary or appear on command from any edge of the
device, their size, style, audio feedback, and animations can
be freely defined to create highly compelling experiences.

FIG. 5 shows a display 500 of launch strips which may be
on displayed canvas 305 or on screen 137 of device 130
having the proper Player and Application. Display 501
includes a portal-type Launch Strip 501 and a channel-type
Launch Strip 502, either one of which may be included for
navigating the Application.
Launch Strip 501 includes UI objects 501a, 501b, 501c,

501d, and 501e that that becomes visible from the left edge
of the display, when requested. UI objects 501a, 501b, 501c,
501d, and 501e are each associated, through resource
inspector 309 with navigational instructions, including but
not limited to navigating to a different Applications Page, or
requesting web content. When the Applications Page, having
been saved by authoring platform 110 and transferred to
display 130, is executed on device 130, a user of the device
may easily navigate the Application.

Launch Strip 502 includes UI objects 502b, 502c, 502d,
and 503e that that becomes visible from the bottom of the
display, when requested. UI objects 501a, 501b, 501c, 501d.
and 501e are each associated, through resource inspector

Booking, Exh. 1030, Page 32

US 9,471,287 B2
25

309 with navigational instructions, including but not limited
to navigating to a different Applications Page, or requesting
web content. Launch Strip 502 also includes UI objects 502a
and 503g, which include the graphic of arrows, and which
provide access to additional navigation objects (not shown)
when selected by a user of device 130. Launch strip 502 may
also include Sound effects for each channel when being
selected, as well as popup bubble help.

Additional navigational features are illustrated in FIG. 6A
as a display of a Channel Selection List 601a, in FIG. 6B as
a display of a Widget Selection List 601b, and in FIG. 6C as
display of a Phone List 601c. Lists 601a, 601b, and 601c
may be displayed on canvas 305 or on screen 137 of device
130 having the proper Player and Application. As illustrated,
graphical lists 601a, 601b, and 601c may contain items with
many possible text and image elements. Each element can be
defined at authoring time and/or populated dynamically
through one or more Web Service 250 or API. Assignable
Navigation Events. All objects, and/or all elements within an
object, can be assigned navigation events that can be
extended to registered web services or APIs. For example, a
Rolodex-type of navigation event can dynamically set the
starting slide of the targeted page view (or the starting view
of a targeted Application).

In the embodiment of FIGS. 6A, 6B, and 6C, each list
601a, 601b, and 601c has several individual entries that are
each linked to specific actions. Thus Channel Selection List
601 a shows three objects, each dynamically linked to a web
service (ESPN, SF 49ers, and Netflix) each providing a link
to purchase or obtain items from the Internet. Widget
Selection List 601b includes several objects presenting
different widgets for selecting. Phone List 601c includes a
list phone number objects of names that, when selected by
a user of device 130 cause the number to be dialed Entries
in Phone List 601c may be generated automatically from
either the user's contact list that is resident on the device, or
though a dynamic link to any of user's chosen server-side
facilities such as Microsoft Outlook, Google Mail, etc. In
one embodiment, Phone List 601c may be generated auto
matically using a web component assigned to the Applica
tion, which would automatically perform those functions.

In another embodiment, authoring platform 110 allows a
navigation selection of objects with a Joy Stick and/or
Cursor Keys in all 4 directions. When within a complex
object the navigation system automatically adopts to the
navigation needs for that object. For coordinate sensitive
objects such as geographical information services (GIS) and
location-based services (LBS) or virtual tours a soft cursor
appears. For Lists, scrolling text areas and chats, Launch
strips, and slide shows the navigation process permits intui
tive selection of elements within the object. Scroll bars and
elevators are optionally available for feedback. If the device
has a pointing mechanism then scroll bars are active and
simulate the desktop experience.
Personalization and Temporal Adoption

System 100 and 200 permit for the personalization of
device 130 by a variety of means. Specifically, what is
displayed on screen 137 may depend on either adoption or
customization. Adoption refers to the selection of choices,
navigation options, etc. are based on user usage patterns.
Temporal adoption permits the skins, choices, layouts, con
tent, widgets, etc. to be further influenced by location (for
example home, work or traveling) and time of day (includ
ing season and day of week). Customization refers to user
selectable skins, choices, layouts, dynamic content, widgets,
etc. that are available either through a customization on the

10

15

25

30

35

40

45

50

55

60

65

26
phone or one that is on the desktop but dynamically linked
to the user's other internet connected devices.
To support many personalization functions there must be

a convenient method for maintaining, both within a user's
session, and between sessions, memory about various user
choices and events. Both utilizing a persistent storage
mechanism on the device, or a database for user profiles on
a server, may be employed.

FIG. 7 shows a display 700 of a mash-up which may be
on displayed canvas 305 or on screen 137 of device 130
having the proper Player and Application. Display 700
includes several object 701 that have been dynamically
bound, including an indication of time 701a, an indication of
unread text messages 701b, an RSS news feed 701c (includ
ing 2 “ESPN Top Stories’ 701c1 and 701 c2), components
701d from two Web Services a weather report (“The
Weather Channel'), and a traffic report 701e (“TRAFFIC
.COM).

In assembling the information of display 700, device 130
is aware of the time and location of the device in this
example the display is for a workday when a user wakes.
Device 130 has been customized so that on a work day
morning the user wishes to receive the displayed informa
tion. Thus in the morning, any messages received overnight
would be flagged, the user's favorite RSS sports feeds would
be visible, today's weather forecast would be available, and
the current traffic conditions between the user's home and
office would be graphically depicted. User personalization
settings may be maintained as persistent storage on device
130 when appropriate, or in a user profile which is main
tained and updated in real-time in a server-side data base.
Push Capable Systems

In another embodiment system 100 or 200 is a push
capable system. As an example, of Such systems, short codes
may be applied to cereal boxes and beverage containers, and
SMS text fields can be applied to promotional websites. In
either case, a user of device 130 can text the short code or
text field to an SMS server, which then serves the appro
priate Application link back to device 130.

FIG. 8 is a schematic of an embodiment of a push enabled
system 800. System 800 is generally similar to system 100
or 200. Device 130 is shown as part of a schematic of a push
capable system 800 in FIG.8. System 800 includes a website
system 801 hosting a website 801, a server 803 and a content
server 805. System 801 is connected to servers 803 and/or
805 through the Internet. Server 803 is generally similar to
server 120, servers 805 is generally similar to server 140.

In one embodiment, a user sets up a weekly SMS update
from website system 801. System 801 provides user infor
mation to server 803, which is an SMS server, when an
update is ready for delivery. Server 803 provides device 130
with an SMS indication that the subscribed information is
available and queries the user to see if they wish to receive
the update. Website 801 also provides content server 805
with the content of the update. When a user of device 130
responds to the SMS query, the response is provided to
content server 805, which provides device 130 with updates
including the Subscribed content.

In an alternative embodiment of system 800, server 803
broadcasts alerts to one or more devices 130, such as a
logical group of devices. The user is notified in real-time of
the pending alert, and can view and interact with the
massage without interrupting the current Application.

FIG. 9 is a schematic of an alternative embodiment of a
push enabled system 900. System 900 is generally similar to
system 100, 200, or 800. In system 900 a user requests
information using an SMS code, which is delivered to device

Booking, Exh. 1030, Page 33

US 9,471,287 B2
27

130. System 900 includes a promotional code 901, a third
party server 903, and content server 805. Server 803 is
connected to servers 803 and/or 805 through the Internet,
and is generally similar to server 120.
A promotional code 901 is provided to a user of device

130, for example and without limitation, on print media,
such as on a cereal box. The use of device 130 sends the code
server 903. Server 903 then notifies server 805 to provide
certain information to device 130. Server 805 then provides
device 130 with the requested information.
Device Routines

Device routines 114 may include, but are not limited to:
an authoring tool SDK for custom code development includ
ing full set of Java APIs to make it easy to add extensions
and functionality to mobile Applications and tie Applica
tions to back-end databases through the content server 140;
an expanding set of web services 250 available through the
authoring tool SDK; a web services interface to SOAP/XML
enabled web services; and an RSS/Atom and RDF feed
collector 1010 and content gateway 1130.
Authoring Tool SDK for Custom Code Development Includ
ing Full Set of Java APIs

In one embodiment, authoring platform 110 SDK is
compatible for working with various integrated develop
ment environments (IDE) and popular plug ins such as
J2ME Polish. In one embodiment the SDK would be another
plug in to these IDEs. A large and powerful set of APIs and
interfaces are thus available through the SDK to permit the
seamless extension of any Application to back end business
logic, web services, etc. These interfaces and APIs may also
support listeners and player-side object operations.

There is a large set of listeners that expose both player
side events and dynamically linked server side data base
events. Some examples of player side events are: player-side
time based event, a page entry event, player-side user
interactions and player-side object status. Examples of
server-side data base events are when a particular set of
linked data base field values change, or some filed value
exceeds a certain limit, etc.
A superset of all authoring tool functionality is available

through APIs for layer-side object operations. These include,
but are not limited to: page view level APIs for inserting,
replacing, and or modifying any page object; Object Level
APIs for modifying any attribute of existing objects, adding
definitions to attributes, and adding, hiding or replacing any
object.
Authoring Tool SDK Available Web Services
The APIs permit, without limit, respond, with or without

relying on back-end business logic, that is, logic that what an
enterprise has developed for their business, to any player
side event or server-side dynamically linked data-base,
incorporating any open 3rd party web service(s) into the
response.
RSS/Atom and RDF Feed Conversion Web Service

FIG. 10 is a schematic of one embodiment a system 1000
having a feed collector 1010. System 1000 is generally
similar to system 100, 200, 800, or 900. Feed collector 1010
is a server side component of system 100 that collects RSS,
ATOM and RDF format feeds from various sources 1001
and aggregates them into a database 1022 for use by the
Applications built using authoring platform 110.

Feed collector 1010 is a standard XML DOM data extrac
tion process, and includes Atom Populator Rule 1012, RSS
Populator Rule 1013, RDF Populator Rule 1014, and Cus
tom Populator Rule 1016, DOM XML Parsers 1011, 1015,
and 1017, Feed Processed Data Writer 1018, Custom Rule

10

15

25

30

35

40

45

50

55

60

65

28
Based Field Extraction 1019, Rule-based Field Extraction
1020, Channel Data Controller 1021, and Database 1022.
The feed collector is primarily driven by two sets of

parameters: one is the database schema (written as SQL
DDL) which defines the tables in the database, as well as
parameters for each of the feeds to be examined. The other
is the feed collection rules, written in XML, which can be
used to customize the information that is extracted from the
feeds. Each of the feeds is collected at intervals specified by
the feed parameter set in the SQL DDL.

Feed collector 1010 accepts information from ATOM,
RDF or RSS feed sources 1001. Using a rules-based popu
lator, any of these feeds can be logically parsed, with any
type of data extraction methodology, either by using Sup
plied rules, or by the author defining their own custom
extraction rule. The rules are used by the parser to parse
from the feed sources, and the custom rule base field
extraction replaces the default rules and assembles the
parsed information into the database

In particular, Atom Populator Rule 1012, RSS Populator
Rule 1013, RDF Populator Rule 1014, Custom Populator
Rule 1016, and DOM XML Parsers 1011, 1015, and 1017
are parse information from the feeds 1001, and Feed Pro
cessed Data Writer 1018, Custom Rule Based Field Extrac
tion 1019, Rule-based Field Extraction 1020, and Channel
Data Controller 1021, supply the content of the feeds in
Database 1022, which is accessible through content server
140.

FIG. 11 is a schematic of an embodiment of a system 1100
having a Mobile Content Gateway 1130. System 1100 is
generally similar to system 100, 200, 800, 900, or 1000.
System 1100 includes an SDK 1131, feed collector 1010,
database listener 1133, transaction server 1134, custom code
1135 generated from the SDK, Java APIs, Web Services
1137, and PDL snippets compacted objects 1139. System
1100 accepts input from Back End Java Code Developer
1120 and SOAP XML from Web Services 1110, and pro
vides dynamic content to server 140 and Players to devices
130.

In one embodiment authoring platform 110 produces a
Server-side PDL (SPDL) at authoring time. The SPDL
resides in server 120 and provides a logical link between the
Application’s UI attributes and dynamic content in database
1022. When a user of device 130 requests dynamic infor
mation, server 120 uses the SPDL to determine the link
required to access the requested content.

In another embodiment Web Services 1137 interface
directly with 3rd party Web Services 1110, using SOAP.
REST JAVA, JavaScript, or any other interface for dynami
cally updating the attributes of the Application’s UI objects.
XSP Web Pages as a Web Service

In one embodiment, a PDL for a page is embedded within
an HTML shell, forming one XSP page. The process of
forming XSP includes compressing the description of the
page and then embedding the page within an HTML shell.

In another embodiment, a PDL, which contains many
individual page definitions, is split into separate library
objects on the server, so that each page can to presented as
a PDL as part of a Web Service.

Prior to compression the code has already been trans
formed so that there are no dependencies on the original
programming language (Java), and The code and data have
been reduced by 4 to 10 times.

Compression has two distinct phases. The first takes
advantage of how the primitive representations had been
assembled, while the second utilizes standard LZ encoding.

Booking, Exh. 1030, Page 34

US 9,471,287 B2
29

The final result is an overall reduction of 40 to 100 times
the original size as represented by Java serialized objects.
One embodiment for compacting data that may be used is

described in Rempell. In that patent the compressed data is
described as being a database. The terminology used here is
a PDL, that is the “internal database' of Rempell is equiva
lent to the PDL of the present Application.

In Rempell, a process for compacting a “database' (that
is, generating a compact PDL) is described, wherein data
objects, including but not limited to, multi media objects
Such as colors, fonts, images, Sound clips, URLs, threads,
and video, including multi level animation, transformation,
and time line are compacted. As an extension to Rempell in
all cases these objects are reduced and transformed to
Boolean, integer and string arrays.
The compression technique involves storing data in the

Smallest arrays necessary to compactly store web page
information. The technique also includes an advanced form
of delta compression that reduces integers so that they can
be stored in a single byte, a as high water marks.

Thus, for example, the high water mark for different types
of data comprising specific web site settings are stored in a
header record as Boolean and integer variables and URL and
color objects. Data that defines web page, paragraph, text
button, and image style and text button, image and para
graph high watermark settings can be stored in one-dimen
sional arrays as Boolean, integer and string variables and
URL, font, image or thread objects at. The URL, color, font,
image and thread objects can also be created as required

Data that defines text button, image, paragraph, or other
parent objects and paragraph line high watermark settings
can be stored in two-dimensional arrays (by web page and
by object number) as Boolean, integer, string, floating point
variables and URLs. Again, the URL, color, font, image,
audio clip, video clip, text area and thread objects can also
be created as required. Data that defines a paragraph line and
paragraph line segment high watermarks can be stored in
three-dimensional arrays (by web page, by paragraph num
ber, and by line number) as Boolean, integer or string
variables. Again, the URL, color or font objects can be
created as required. Data that defines a paragraph line
segment can be stored into four-dimensional arrays (by web
page, by paragraph number, by line number and by line
number segment) as Boolean, integer or string variables or
URL, color and font objects.
As a data field is added, changed or deleted, a determi

nation is made at on whether a value for a given high
watermark needs to be changed. If so, it is updated. As a
specific method in the build engine is called, a determination
is made on whether a feature flag needs to be set. For
example, if a particular JAVA method is called, which
requires an instance of a certain JAVA Class to be executed
by the run time engine, then that JAVA Class is flagged, as
well as any Supporting methods, variables and/or object
definitions.

In one implementation, the header record, the style record,
the web page record, and the object records, are carefully
defined in a specific order, written in that order, and explic
itly cast by object type when read by the run time engine.
Exception handling can be implemented to recover from any
errors. This helps assure that data integrity is maintained
throughout the build and run time processes.

Also described in Rempell is the “run generation pro
cess.” This is equivalent generating a Player in the present
application. This process starts when the build process
detects that the user is finished defining the web site (user
has saved the web site and invokes the run generation

10

15

25

30

35

40

45

50

55

60

65

30
process), and concludes with the actual uploading of all the
necessary web site run time files to the user's server.

In one embodiment, the PDL includes a first record, a
“Header record, which contains can include the following
information:

1: A file format version number, used for upgrading
database in future releases.

2: The default screen resolution, in virtual pixels, for both
the screen width and height. This is usually set to the
web designer's screen resolution, unless overwritten by
the user.

: Whether the Application is a web site.
4: Virtual web page size settings. A calculation is per

formed by the build engine method, in order to calcu
late what the maximum web page length is, after
reformatting all paragraphs on all internal web pages,
based on the default screen resolution.

5: Web page and styles high watermarks.
6: The Websitename.
As new web pages or new objects are created by the user,

or as text is added to or deleted from a paragraph, or as new
styles are created or deleted, appropriate high watermarks
are set, in order to show the current number of each of these
entities. Thus, the values for the number of active web pages
and the number of text button, image, paragraph or other
styles are written as high watermarks in the header. The high
watermarks for the number of text button, image, paragraph
or other objects that exist for each web page, the number of
lines for each paragraph object, and the number of line
segments for each paragraph line are written within the body
of the PDL, and used as settings for each of the loops in the
four-dimensional data structure. Because no structural limits
are set on the number of web pages, objects per web page,
styles, or paragraph size, these high watermarks greatly
reduce the external database file size, and the time it takes
for the run time engine to process the data stored in its
database.
The settings for all paragraph, text button and image

styles are then written as a style record based on their high
watermark. This data includes Boolean and integer vari
ables, and font and color objects, written as a one-dimen
sional array, based on the high watermark values for the
number of styles that exist.
The body of the PDL is then written. All Boolean values

are written inside a four-dimensional loop. The outside loop
contains the Boolean values used to define web pages (i.e. a
one-dimensional array definition) as well as the high water
marks for the number of text button, image, paragraph or
other objects per web page, with the loop set at the high
watermark which defines the number of existing web pages
for this web site structure. The second level consists of three
or more two dimensional loops with the loops set to the high
watermarks defining the actual number of text button,
image, and paragraph or other objects that appear on any
given web page and contains the values used to define web
page objects (i.e. a two-dimensional array definition; web
page number by object number). Included within the loop
for paragraph objects are the high watermarks for the
number of lines for each paragraph object. The third loop is
set by the high watermark defining the actual number of
paragraph lines that for all paragraphs on any web page and
contains the values used to define paragraph lines (i.e. a
three-dimensional array definition; web page number by
object number by paragraph line.) Included within the loop
for paragraph lines are the high watermarks for the number
of line segments for each paragraph line. The inner most
loop is set by the high watermarks defining the number of

3

Booking, Exh. 1030, Page 35

US 9,471,287 B2
31

line segments per paragraph line and contains the values
used to define paragraph line segments (i.e. a four-dimen
sional array definition; web page number by object number
by paragraph line by paragraph line segment).

All integer values are written inside a four-dimensional
loop. Their four loops are controlled by the same high
watermark settings as used for the Boolean records, and they
describe the same logical entities.

Multimedia objects are written inside a two-dimensional
loop. They include URL, color, and font objects, and can
include other types of objects. A URL object is the encoded
form of a URL Address, used by a web browser or a JAVA
method to access files and web addresses. All multimedia
objects must be serialized before they can be written. This
means that the objects are converted into a common external
definition format that can be understood by the appropriate
deserialization technique when they are read back in and
cast into their original object structure. The outside loop
contains web page related objects, and the inner loop con
tains image, text button, paragraph, etc. related URL, color,
and font objects. The outer loop is defined by the web page
high watermark and the inner loops by the high watermarks
for the actual number of text button, image, paragraph or
other objects on a web page.

String records are written inside a four-dimensional loop.
The outer loop may be empty. The second loop can include
the string values for text button objects, audio and video
filenames, and audio and video channel names. The third
loop contains values for paragraph line related data, and the
innermost loop contains the values for paragraph line seg
ment definitions. The string records are controlled by the
same high watermarks as those used for Boolean and integer
records. String records are stored utilizing an appropriate
field delimiter technology. In one implementation, a UTF
encoding technology that is Supported by JAVA is utilized.

Single and double floating-point, and long integer records
are written inside a two-dimensional loop. The outer loop
may be empty. The inner loop contains mathematical values
required for certain animations and image processing algo
rithms. The single and double floating-point, and long
integer records are controlled by the same high watermarks
as those used for Boolean and integer records.

In one embodiment, a versionizing program analyzes the
feature flags, and only those variable definitions, defined in
the “Main” object class, relating to the object classes and
methods that will be executed at run time, are extracted. All
references to object classes that will be called at run time are
extracted, creating the Source code for the run engine
“Main” object class that is ready for compilation.

All external image, video and audio files are resolved. The
external references can be copied to designated directories,
either on the user's local disk or file server. The file
Pathnames can be changed to reflect these new locations.
During the installation of the build tools, the necessary class
libraries are either installed on the local system or made
available on the server where the build tools can be option
ally located. The necessary environmental variables are set
to permit normal access to the required class libraries.

The customized run engine and a library of the referenced
run time classes are compiled and converted into byte code.
Finally, the run time engine for the web site is created. The
required set of class objects required at run time is flagged
for inclusion into the CAB/JAR file.

Next, an HTML Shell File (HSF) is constructed. The first
step of this process is to determine whether the dynamic web
page and object resizing is desired by testing the Application
setting. If the Application was a web page, and thus requir

10

15

25

30

35

40

45

50

55

60

65

32
ing dynamic web page and object resizing, virtual screen
resolution settings are placed in an appropriate HTML
compliant string. If the Application is a banner or other
customized Application, the absolute values for the run time
object (applet size) height and width are placed in an
appropriate HTML compliant string as absolute width and
height values.
An analysis is made for the background definition for the

first internal web page. If a background pattern is defined, an
appropriate HTML compliant string for setting the HTML
“background to the same background image is generated. If
the first web page definition is a color instead, then the RGB
values from those colors are converted to hexadecimal and
an appropriate HTML compliant String is generated setting
the “bgcolor” to the required hexadecimal value. This pro
cess synchronizes the web page background with the back
ground that will be drawn by the web browser when it first
interprets the HSF.

Thereafter, a JAVA method generates HTML and
JavaScript compliant strings, that when executed by a web
browser, generate additional sets of HTML and JavaScript
compliant strings that are again executed by the web
browser. More specifically, if the Application required
dynamic web page and object resizing then JavaScript and
HTML compliant Strings are generated so that, when inter
preted by the web browser at the time the HTML Shell File
is initialized, the screen resolution sensing JAVA applet
(SRS) will be executed. JavaScript code is generated in
order to enable JavaScript to SRS applet communication. In
one implementation, the code is generated by performing the
following functions:

1: Determine the current web browser type.
2: Load the SRS from either a JAR or CAB File, based on
web browser type.

3: Enter a timing loop, interrogating when the SRS is
loaded.

4: When the SRS returns an “available' status, interrogate
the SRS, which will return the current screen and
windows actual height and width.

5: Convert the virtual screen resolution settings into
appropriate absolute screen width and height values.

Strings defining additional JavaScript code are generated
that perform the following steps at the time the HSF is
initialized by the web browser:

1: Generate HTML compliant strings that set the run time
engine's applet size to the appropriate values.

2: Generate an HTML complaint string that contains a
"param' definition for linking the run time engine to
the PDL.

3: Generate an HTML complaint string, dependent upon
the type of web browser, which causes the current web
browser to load either the JAR or the CAB File(s).

4: Generate JavaScript Code compliant strings that create
and dynamically write the applet size defining HTML
strings utilizing the JavaScript “document.write func
tion. This dynamically created code causes the web
browser to execute the run time engine, in the correctly
sized window, from the correct JAR or CAB file, and
linked to the external database.

The writing out the above-generated HTML and
JavaScript compliant strings creates the HSF. The necessary
security policy permissions are asserted, and a “Website
name'.html file is created.

In one embodiment, the processes for creating the CAB
and JAR Files is as follows. The image objects, if any, which
were defined on the first internal web page are analyzed. If
they are set to draw immediately upon the loading of the first

Booking, Exh. 1030, Page 36

US 9,471,287 B2
33

web page, then they are flagged for compression and inclu
sion in the CAB and JAR Files. The feature flags are
analyzed to determine which JAVA classes have been com
piled. These class files are flagged for compression and
inclusion in the library CAB and JAR Files. Strings that are
BAT compliant definitions are created that will, when
executed in DOS, create compressed CAB and JAR Files.
These CAB and JAR Files contain the compressed versions
of all necessary JAVA class files, image files, the “Website
name.class, customized run time engine file, and the “Web
sitename'.dta database file. In one implementation of the
invention, two BAT files are created. The first, when
executed, will create a CAB/JAR file with the “Website
name'.dta database file and the customized “main run time
engine, excluding all the image and button object animation,
transformation, and image processing code. The second
BAT file, when executed, will create a CAB/JAR file with all
the library of all the referenced image and button object
animation, transformation, and image processing code.
The necessary security policy permissions for file creation

are then asserted, and “Websitename'.bat and “Website
namelib'.bat files are written. The “Websitename'.bat and
“Websitename.bat files are then executed under DOS,
creating compressed “Websitename'.cab and “Website
namelib'.cab files and compressed “Websitename'' jar and
“Websitenamelib' jar files. The HTML Shell File and the
JAR and CAB files are then, either as an automatic process,
or manually, uploaded to the users web site. This completes
the production of an XSP page that may be accessed through
a web browser.
Displaying Content on a Device
Decompression Management

Authoring platform 110 uses compaction to transform the
code and data in an intelligent way while preserving all of
the original classes, methods and attributes. This requires
both an intelligent server engine and client (handset) Player,
both of which fully understand what the data means and how
it will be used.
The compaction technology described above includes

transformation algorithms that deconstruct the logic and data
into their most primitive representations, and then reas
sembles them in a way that can be optimally digested by
further compression processing. This reassembled set of
primitive representations defines the PDL of authoring plat
form 110.

Prior to compression the code has already been trans
formed so that there are no dependencies on the original
programming language (Java). The data is then compressed
by first taking advantage of how the primitive representa
tions had been assembled, and then by utilizing standard LZ
encoding. The final result is an overall reduction of 40 to 100
times the original size as represented by Java serialized
objects.
The Player, when preparing a page view for execution,

decompresses and then regenerate the original objects, but
this time in compliance with the programming APIs of
device 130. Specifically, device 130 operates on compacted
image pages, one at a time. The cache manager retrieves,
decompresses, and reassembles the compacted page images
into device objects, which are then interpreted by device 130
for display on screen 137.
Response Director

In one embodiment, system 100 includes a Response
Director, which determines a user's handset, fetches the
correct Application from different databases, and delivers a
respective highly compressed Application in a PDL format
over the air (OTA).

10

15

25

30

35

40

45

50

55

60

65

34
In one embodiment, the Response Director operates on a

network connected computer to provide the correct Player to
a given device based on the information the device sent to
it. As an example, this may occur when a device user enters
their phone number into some call-to-action web page. The
response director is called and sends an SMS message to the
device, which responds, beginning the recognition process.

FIG. 12 illustrates one embodiment of a system 1200 that
includes a response director 210, a user agent database 1201,
an IP address database 1203, and a file database 1205.
System 1200 is generally similar to system 100, 200, 800,
900, 1000, or 1100.

Databases 1201, 1203, and 1205 may reside on server
120, 210, or any computer system in communication with
response director 210. System 1200, any mobile device can
be serviced, and the most appropriate Application for the
device will be delivered to the device, based on the char
acteristics of the device.

User agent database 1201 includes user agent information
regarding individual devices 130 that are used to identify the
operating system on the device. IP address database 1203
identifies the carrier/operator of each device 130. File data
base 1205 includes data files that may operate on each
device 130.
The following is an illustrative example of the operation

of response director 210. First, a device 1300 generates an
SMS message, which automatically sends an http://stream
that includes handset information and its phone number to
response director 210. Response director 210 then looks at
a field in the http header (which includes the user agent and
IP address) that identifies the web browser (i.e., the “User
Agent”). The User Agent prompts a database lookup in user
agent database 1201 which returns data including, but not
limited to, make, model, attributes, MIDP 1.0 MIDP 2.0,
WAP and distinguishes the same models from different
countries. A lookup of the IP address in IP address 1203
identifies the carrier/operator.

File database 1205 contains data types, which may
include as jadl, jad2, html, Wm.1/wap2, or other data types,
appropriate for each device 130. A list of available Appli
cations are returned to a decision tree, which then returns, to
device 130, the Application that is appropriate for the
respective device. For each file type, there is an attributes list
(e.g., streaming video, embedded video, streaming audio,
etc.) to provide enough information to determine what to
send to the handset.

Response director 210 generates or updates an html or jad
file populating this text file with the necessary device and
network dependent parameters, including the Application
dependent parameters, and then generate, for example, a
CAB or JAD file which contains the necessary Player for
that device. For example, the jad file could contain the
operator or device type or extended device-specific func
tions that the player would then become aware of

If there is an Application that has a data type that device
130 cannot support, for example, video, response director
210 sends an alternative Application to the handset, for
example one that has a slide show instead. If the device
cannot Support a slide show, an Application might have text
and images and display a message that indicates it does not
Support video.

Another powerful feature of response director 210 is its
exposed API from the decision tree that permits the over
riding of the default output of the decision tree by solution
providers. These solution providers are often licensees who
want to further refine the fulfillment of Applications and
Players to specific devices beyond what the default algo

Booking, Exh. 1030, Page 37

US 9,471,287 B2
35

rithms provide. Solution providers may be given a choice of
Applications and then can decide to use the defaults or force
other Applications.

Authoring platform 110 automatically scales Applications
at publishing time to various form factors to reduce the
amount of fragmentation among devices, and the Response
Director serves the appropriately scaled version to the
device. For example, a QVGA Application will automati
cally scale to the QCIF form factor. This is important
because one of the most visible forms of fragmentation
resides in the various form factors of wireless, and particu
larly mobile, devices, which range from 128x128, 176x208,
240x260, 220x220, and many other customized sizes in
between.

FIG. 13 is a schematic of an embodiment of a system
1300. System 1300 is generally similar to system 1200.
System 1300 is an overview of the entire Player fulfillment
process, starting with the generation of players during the
player build process.

System 1300 includes response director 210, a device
characteristics operator and local database 1301, a player
profile database 1303 and a player build process 1305, which
may be authoring platform 110.
As an example of system 1300, when response director

210 receives an SMS message from device 130, the response
director identifies the device characteristics operator and
locale from database 1301 and a Player URL from database
1303 and provides the appropriate Player to the device.

In another embodiment, Player P extend the power of
response director 210 by adapting the Application to the
resources and limitations of any particular device. Some of
these areas of adaptation include the speed of the devices
microprocessor, the presence of device resources such as
cameras and touch screens. Another area of adaptation is
directed to heap, record store and file system memory
constraints. In one embodiment, the Player will automati
cally throttle down an animation to the frame rate that the
device can handle so that the best possible user experience
is preserved. Other extensions include device specific facili
ties such as location awareness, advanced touch screen
interactions, push extensions, access to advanced phone
facilities, and many others
Memory Management

In one embodiment, Player P includes a logical page
virtual memory manager. This architecture requires no Sup
porting hardware and works efficiently with constrained
devices. All page view images, which could span multiple
Applications, are placed in a table as highly compacted and
compressed code. A typical page view will range from 500
bytes up to about 1,500 bytes. (See, for example, the
Rempell patent) When rolled into the heap and instantiated
this code increases to the more typical 50,000 up to 250,000
bytes. Additional alert pages may also be rolled into the heap
and Superimposed on the current page view. Any changes to
any page currently downloaded are placed in a highly
compact change vector for each page, and rolled out when
the page is discarded. Note that whenever an Application is
visited that had previously been placed in virtual memory
the Server is interrogated to see if a more current version is
available, and, if so, downloads it. This means that Appli
cation logic can be changed in real-time and the results
immediately available to mobile devices.

To operate efficiently with the bandwidth constraints of
mobile devices, authoring platform 110 may also utilize
anticipatory streaming and multi-level caching. Anticipatory
streaming includes multiple asynchronous threads and IO
request queues. In this process, the current Application is

10

15

25

30

35

40

45

50

55

60

65

36
scanned to determine if there is content that is likely to be
required in as-yet untouched page views. Anticipatory
streaming also looks for mapping Applications, where the
user may Zoom or pan next so that map content is retrieved
prior to the user requesting it. For mapping applications,
anticipatory streaming downloads a map whose size is
greater than the map portal size on the device and centered
within the portal. Any pan operation will anticipatory stream
a section of the map to extend the view in the direction of
the pan while, as a lower priority, bring down the next and
prior Zoom levels for this new geography. Zooming will
always anticipatory stream the next Zoom level up and
down.

Multi-level caching determines the handset's heap
through an API, and also looks at the record store to see how
much memory is resident. This content is placed in record
store and/or the file system, and may, if there is available
heap, also place the content there as well. Multi-level
caching permits the management of memory Such that
mobile systems best use limited memory resources. Multi
level caching is a memory management system with results
similar to embedding, without the overhead of instantiating
the content. In other words, with multi-level caching, hand
set users get an “embedded performance without the
embedded download. Note that when content is flagged as
cacheable and is placed in persistent storage, a digital rights
management (DRM) solution will be used.
One embodiment of each of the methods described herein

is in the form of a computer program that executes on a
processing system. Thus, as will be appreciated by those
skilled in the art, embodiments of the present invention may
be embodied as a method, an apparatus such as a special
purpose apparatus, an apparatus Such as a data processing
System, or a carrier medium, e.g., a computer program
product. The carrier medium carries one or more computer
readable code segments for controlling a processing system
to implement a method. Accordingly, aspects of the present
invention may take the form of a method, an entirely
hardware embodiment, an entirely software embodiment or
an embodiment combining Software and hardware aspects.
Furthermore, the present invention may take the form of
carrier medium (e.g., a computer program product on a
computer-readable storage medium) carrying computer
readable program code segments embodied in the medium.
Any suitable computer readable medium may be used
including a magnetic storage device Such as a diskette or a
hard disk, or an optical storage device such as a CD-ROM.

It will be understood that the steps of methods discussed
are performed in one embodiment by an appropriate pro
cessor (or processors) of a processing (i.e., computer) sys
tem executing instructions (code segments) stored in Stor
age. It will also be understood that the invention is not
limited to any particular implementation or programming
technique and that the invention may be implemented using
any appropriate techniques for implementing the function
ality described herein. The invention is not limited to any
particular programming language or operating System. It
should thus be appreciated that although the coding for
programming devices has not be discussed in detail, the
invention is not limited to a specific coding method. Fur
thermore, the invention is not limited to any one type of
network architecture and method of encapsulation, and thus
may be utilized in conjunction with one or a combination of
other network architectures/protocols.

Reference throughout this specification to “one embodi
ment,” “an embodiment,” or “certain embodiments' means
that a particular feature, structure or characteristic described

Booking, Exh. 1030, Page 38

US 9,471,287 B2
37

in connection with the embodiment is included in at least
one embodiment of the present invention. Thus, appearances
of the phrases “in one embodiment,” “in an embodiment,” or
“in certain embodiments' in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, structures
or characteristics may be combined in any suitable manner,
as would be apparent to one of ordinary skill in the art from
this disclosure, in one or more embodiments.

Throughout this specification, the term "comprising shall
be synonymous with “including.” “containing,” or "charac
terized by, is inclusive or open-ended and does not exclude
additional, unrecited elements or method steps. “Compris
ing is a term of art which means that the named elements
are essential, but other elements may be added and still form
a construct within the scope of the statement. "Comprising
leaves open for the inclusion of unspecified ingredients even
in major amounts.

Similarly, it should be appreciated that in the above
description of exemplary embodiments, various features of
the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding
of one or more of the various inventive aspects. This method
of disclosure, however, is not to be interpreted as reflecting
an intention that the claimed invention requires more fea
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment, and the
invention may include any of the different combinations
embodied herein. Thus, the following claims are hereby
expressly incorporated into this Mode(s) for Carrying Out
the Invention, with each claim standing on its own as a
separate embodiment of this invention.

Thus, while there has been described what is believed to
be the preferred embodiments of the invention, those skilled
in the art will recognize that other and further modifications
may be made thereto without departing from the spirit of the
invention, and it is intended to claim all such changes and
modifications as fall within the scope of the invention. For
example, any formulas given above are merely representa
tive of procedures that may be used. Functionality may be
added or deleted from the block diagrams and operations
may be interchanged among functional blocks. Steps may be
added or deleted to methods described within the scope of
the present invention.
We claim:
1. A system for generating code to provide content on a

display of a device, said system comprising:
computer memory storing a registry of

a) symbolic names required for evoking one or more
web components each related to a set of inputs and
outputs of a web service obtainable over a network,
where the symbolic names are character strings that
do not contain either a persistent address or pointer
to an output value accessible to the web service,
where each symbolic name has an associated data
format class type corresponding to a subclass of User
Interface (UI) objects that support the data format
type of the symbolic name, and has a preferred UI
object, and

b) an address of the web service;
an authoring tool configured to:

define a (UI) object for presentation on the display,
where said defined UI object corresponds to a web

component included in said registry selected from
a group consisting of an input of the web service

5

10

15

25

30

35

40

45

50

55

60

65

38
and an output of the web service, where each
defined UI object is either: 1) selected by a user of
the authoring tool; or 2) automatically selected by
the system as the preferred UI object correspond
ing to the symbolic name of the web component
selected by the user of the authoring tool,

access said computer memory to select the symbolic
name corresponding to the web component of the
defined UI object,

associate the selected symbolic name with the
defined UI object, where the selected symbolic
name is only available to UI objects that support
the defined data format associated with that sym
bolic name, and

produce an Application including the selected Sym
bolic name of the defined UI object, where said
Application is a device-independent code; and

a Player, where said Player is a device-dependent
code, wherein, when the Application and Player
are provided to the device and executed on the
device, and when the user of the device provides
one or more input values associated with an input
symbolic name to an input of the defined UI
object,

1) the device provides the user provided one or more
input values and corresponding input symbolic
name to the web service,

2) the web service utilizes the input symbolic name
and the user provided one or more input values for
generating one or more output values having an
associated output symbolic name,

3) said Player receives the output symbolic name and
corresponding one or more output values and
provides instructions for the display of the device
to present an output value in the defined UI object.

2. The system of claim 1, where said registry includes
definitions of input and output related to said web service.

3. The system of claim 1, where said web component is
a text chat, a video chat, an image, a slideshow, a video, or
an RSS feed.

4. The system of claim 1, where said UI object is an input
field for a chat.

5. The system of claim 1, where said UI object is an input
field for a web service.

6. The system of claim 1, where said UI object is an input
field usable to obtain said web component, where said input
field includes a text field, a scrolling text box, a check box,
a drop down-menu, a list menu, or a Submit button.

7. The system of claim 1, where said web component is
an output of a web service, is the text provided by one or
more simultaneous chat sessions, is the video of a video chat
session, is a video, an image, a slideshow, an RSS display,
or an advertisement.

8. The system of claim 1, where said authoring tool is
further configured to:

define a phone field or list; and
generate code that, when executed on the device, allows

a user to Supply a phone number to said phone field or
list.

9. The system of claim 1, where said authoring tool is
further configured to:

define a SMS field or list; and
generate code that, when executed on the device, allows

a user to supply an SMS address to said SMS field or
list.

Booking, Exh. 1030, Page 39

US 9,471,287 B2
39

10. The system of claim 1,
where said code includes three or more codes, where one
of said three or more codes is device specific, and
where two of said three or more codes is device
independent.

11. The system of claim 1, where said code is provided
over said network.

12. The system of claim 1, wherein said defined UI object
corresponds to a widget.

13. The system of claim 1, where said Player is activated
and runs in a web browser.

14. The system of claim 1, where said Player is a native
program.

15. A method of displaying content on a display of a
device having a Player, where said Player is a device
dependent code, said method comprising:

defining a user interface (UI) object for presentation on
the display, where said UI object corresponds to a web
component included in a registry of one or more web
components selected from a group consisting of an
input of a web service and an output of the web service,
where each web component includes a plurality of
Symbolic names of inputs and outputs associated with
each web service, and where the registry includes: a)
Symbolic names required for evoking one or more web
components each related to a set of inputs and outputs
of the web service obtainable over a network, where the
Symbolic names are character strings that do not con
tain either a persistent address or pointer to an output
value accessible to the web service, and b) an address
of the web service, and where each defined UI object is
either: 1) selected by a user of an authoring tool; or 2)
automatically selected by a system as a preferred UI
object corresponding to a symbolic name of the web
component selected by the user of the authoring tool;

Selecting the symbolic name from said web component
corresponding to the defined UI object, where the
Selected symbolic name has an associated data format
class type corresponding to a subclass of UI objects that
Support the data format type of the symbolic name, and
has the preferred UI object:

associating the selected symbolic name with the defined
UI object; and

producing an Application including the selected symbolic
name of the defined UI object, where said Application
is a device-independent code, wherein, when the Appli
cation and Player are provided to the device and
executed on the device, and when the user of the device
provides one or more input values associated with an
input symbolic name to an input of the defined UI
object,

10

15

25

30

35

40

45

50

40
1) the device provides the user provided one or more input

values and corresponding input symbolic name to the
web service,

2) the web service utilizes the input symbolic name and
the user provided one or more input values for gener
ating one or more output values having an associated
output symbolic name,

3) said Player receives the output symbolic name and
corresponding one or more output values and provides
instructions for the display of the device to present an
output value in the defined UI object.

16. The method of claim 15, where said registry includes
definitions of input and output related to said web service.

17. The method of claim 15, where said web component
is a text chat, a video chat, an image, a slideshow, a video,
or an RSS feed.

18. The method of claim 15, where said UI object is an
input field for a chat.

19. The method of claim 15, where said UI object is an
input field for a web service.

20. The method of claim 15, where said UI object is an
input field usable to obtain said web component, where said
input field includes a text field, a scrolling text box, a check
box, a drop down-menu, a list menu, or a submit button.

21. The method of claim 15, where said web component
is an output of a web service, is the text provided by one or
more simultaneous chat sessions, is the video of a video chat
session, is a video, an image, a slideshow, an RSS display,
or an advertisement.

22. The method of claim 15, further comprising:
defining a phone field or list; and
generating code that, when executed on the device, allows

a user to supply a phone number to said phone field or
list.

23. The method of claim 15, further comprising:
defining a SMS field or list; and
generating code that, when executed on the device, allows

a user to supply an SMS address to said SMS field or
list.

24. The method of claim 15, and such that said Player
interprets dynamically received, device independent values
of the web component defined in the Application.

25. The method of claim 15, further comprising:
providing said Application and Player over said network.
26. The method of claim 15, wherein said UI object

corresponds to a widget.
27. The method of claim 15, where said Player is activated

and runs in a web browser.
28. The method of claim 15, where said Player is a native

program.

Booking, Exh. 1030, Page 40

