
United States Patent

US00705885OB2

(12) (10) Patent No.: US 7,058,850 B2
Cochran (45) Date of Patent: Jun. 6, 2006

(54) METHOD AND SYSTEM FOR PREVENTING 6,587,970 B1* 7/2003 Wang et al. T14? 47
DATA LOSS WITHN DISK-ARRAY PARS 6,691.245 B1* 2/2004 DeKoning T14?6
SUPPORTING MIRRORED LOGICAL UNITS 6,728,898 B1 * 4/2004 Tremblay et al. T14?6

6,785,678 B1* 8/2004 Price 707/8
(75) Inventor: Robert A. Cochran, Rocklin, CA (US) 6,816,951 B1 * 1 1/2004 Kimura et al. 711/162
(73) Assignee: Hewlett-Packard Development 2002/00999 16 A1* 7/2002 Ohran et al. T11 162

Company, L.P., Houston, TX (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this

past l sts, A listed under 35 Primary Examiner Robert Beausoliel
M YW- (b) by ayS. Assistant Examiner Christopher McCarthy

(21) Appl. No.: 10/210,368

(22) Filed: Jul. 31, 2002 (57) ABSTRACT

(65) Prior Publication Data An additional communications link between two mass
US 2004/OO78.638 A1 Apr. 22, 2004 storage devices containing LUNs of a mirrored-LUN pair, as

s well as incorporation of a fail-safe mass-storage-device
(51) Int. Cl. implemented retry protocol to facilitate non-drastic recovery

G06F II/00 (2006.01) from communications link failures within the controllers of
(52) U.S. Cl. 7146,7144, 71443 the two mass-storage devices, prevents build-up of WRITE
(58) Field of Classification Search s s 714f6 requests in cache and Subsequent data loss due to multiple

- - - - - - - - - - - - 714/43 4 42 communications-link and host computer failures. The com

See application file for complete search histo s is bination of the additional link and the retry protocol together
pp p ry. ameliorates a deficiency in current LUN-mirroring imple

(56) References Cited mentations that often leads to data loss and inconsistent and

704

U.S. PATENT DOCUMENTS

6,543,001 B1 * 4/2003 LeCrone et al.

HOST
COMPUTER

MASS-STORAGE
DEVICE

LAN OR WAN

ESCON, ATM, T3 OR OTHER

unrecoverable databases.

12 Claims, 22 Drawing Sheets

714

HOST 710
COMPUTER

MASS-STORAGE 708
DEVICE

HPE, Exh. 1009, p. 1

U.S. Patent Jun. 6, 2006 Sheet 1 of 22 US 7,058,850 B2

HPE, Exh. 1009, p. 2

U.S. Patent Jun. 6, 2006 Sheet 2 of 22 US 7,058,850 B2

302

307
REQUEST/REPLY BUFFER CONTROLLER

FIRMWARE
305

DSK MEDIA
READ/WRITE
MANAGEMENT
FRMWARE

308

CONTROLLER HARDWARE LOGIC

306

303

DISK

Fig. 3

HPE, Exh. 1009, p. 3

U.S. Patent Jun. 6, 2006 Sheet 3 of 22 US 7,058,850 B2

498 499 410 411 412 415 414 415 f - - - - - - - - - - - - - - - ----

l

- -
ABSTRACT

UNS
- --

407 Gi DISK ARRAY CONTROLLER

402

HPE, Exh. 1009, p. 4

U.S. Patent Jun. 6, 2006 Sheet 4 of 22 US 7,058,850 B2

HPE, Exh. 1009, p. 5

US 7,058,850 B2 Sheet S of 22 Jun. 6, 2006 U.S. Patent

809909
019

D] Raes || No.vº109~~[]

Z19

HPE, Exh. 1009, p. 6

HPE, Exh. 1009, p. 7

US 7,058,850 B2

9380Z8
Jun. 6, 2006

#38

Sheet 7 of 22

909

þ08

U.S. Patent

HPE, Exh. 1009, p. 8

US 7,058,850 B2 Sheet 8 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 9

US 7,058,850 B2 Sheet 9 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 10

U.S. Patent Jun. 6, 2006 Sheet 10 of 22 US 7,058,850 B2

S
So

O
se

rt
c

n H||
a?

S
s e

so

S S.

HPE, Exh. 1009, p. 11

U.S. Patent Jun. 6, 2006 Sheet 11 of 22 US 7,058,850 B2

1005

X
1006 1008

f004

1001 f002 1005

Fig, 10A
f012 Of 6 1918

f014

1010 1022 f02O 1024 Fig. 10B

HPE, Exh. 1009, p. 12

US 7,058,850 B2

ISOHISOH
U.S. Patent

HPE, Exh. 1009, p. 13

VŽI '5||

US 7,058,850 B2 Sheet 13 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 14

US 7,058,850 B2 Sheet 14 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 15

US 7,058,850 B2 Sheet 15 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 16

US 7,058,850 B2 Sheet 16 of 22 Jun. 6, 2006 U.S. Patent

g)

HPE, Exh. 1009, p. 17

US 7,058,850 B2 Sheet 17 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 18

US 7,058,850 B2

BEHIO HO ?I 'WIW 'NOOSE

80/

Sheet 18 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 19

US 7,058,850 B2

ISOH

U.S. Patent

HPE, Exh. 1009, p. 20

US 7,058,850 B2 Sheet 20 of 22 Jun. 6, 2006 U.S. Patent

HPE, Exh. 1009, p. 21

US 7,058,850 B2 U.S. Patent

HPE, Exh. 1009, p. 22

US 7,058,850 B2

S
Y

S

Sheet 22 of 22 Jun. 6, 2006 U.S. Patent

919

HPE, Exh. 1009, p. 23

US 7,058,850 B2
1.

METHOD AND SYSTEM FOR PREVENTING
DATA LOSS WITHN DISK-ARRAY PARS

SUPPORTING MIRRORED LOGICAL UNITS

TECHNICAL FIELD

The present invention relates to the mirroring of logical
units provided by disk arrays and other multi-logical-unit
mass-storage devices and, in particular, to a method and
system for preventing data loss resulting from host-com
puter and communications-link failures that interrupt data
flow between a primary, or dominant, logical unit on a first
mass-storage device and a secondary, remote-mirror logical
unit on a second mass-storage device.

BACKGROUND OF THE INVENTION

The present invention is related to mirroring of data
contained in a dominant logical unit of a first mass-storage
device to a remote-mirror logical unit provided by a second
mass-storage device. An embodiment of the present inven
tion, discussed below, involves disk-array mass-storage
devices. To facilitate that discussion, a general description of
disk drives and disk arrays is first provided.
The most commonly used non-volatile mass-storage

device in the computer industry is the magnetic disk drive.
In the magnetic disk drive, data is stored in tiny magnetized
regions within an iron-oxide coating on the Surface of the
disk platter. A modern disk drive comprises a number of
platters horizontally stacked within an enclosure. The data
within a disk drive is hierarchically organized within various
logical units of data. The surface of a disk platter is logically
divided into tiny, annular tracks nested one within another.
FIG. 1A illustrated tracks on the surface of a disk platter.
Note that, although only a few tracks are shown in FIG. 1A,
Such as track 101, an actual disk platter may contain many
thousands of tracks. Each track is divided into radial sectors.
FIG. 1B illustrates sectors within a single track on the
Surface of the disk platter. Again, a given disk track on an
actual magnetic disk platter may contain many tens or
hundreds of sectors. Each sector generally contains a fixed
number of bytes. The number of bytes within a sector is
generally operating-system dependent, and normally ranges
from 512 bytes per sector to 4096 bytes per sector. The data
normally retrieved from, and stored to, a hard disk drive is
in units of sectors.
The modern disk drive generally contains a number of

magnetic disk platters aligned in parallel along a spindle
passed through the center of each platter. FIG. 2 illustrates
a number of Stacked disk platters aligned within a modern
magnetic disk drive. In general, both Surfaces of each platter
are employed for data storage. The magnetic disk drive
generally contains a comb-like array with mechanical
READ/WRITE heads 201 that can be moved along a radial
line from the outer edge of the disk platters toward the
spindle of the disk platters. Each discrete position along the
radial line defines a set of tracks on both surfaces of each
disk platter. The set of tracks within which ganged READ/
WRITE heads are positioned at some point along the radial
line is referred to as a cylinder. In FIG. 2, the tracks 202-210
beneath the READ/WRITE heads together comprise a cyl
inder, which is graphically represented in FIG. 2 by the
dashed-out lines of a cylinder 212.

FIG. 3 is a block diagram of a standard disk drive. The
disk drive 301 receives input/output (“I/O) requests from
remote computers via a communications medium 302 Such
as a computer bus, fibre channel, or other Such electronic

10

15

25

30

35

40

45

50

55

60

65

2
communications medium. For many types of Storage
devices, including the disk drive 301 illustrated in FIG. 3,
the vast majority of I/O requests are either READ or WRITE
requests. A READ request requests that the storage device
return to the requesting remote computer some requested
amount of electronic data stored within the storage device.
A WRITE request requests that the storage device store
electronic data furnished by the remote computer within the
storage device. Thus, as a result of a READ operation
carried out by the storage device, data is returned via
communications medium 302 to a remote computer, and as
a result of a WRITE operation, data is received from a
remote computer by the storage device via communications
medium 302 and stored within the storage device.
The disk drive storage device illustrated in FIG. 3

includes controller hardware and logic 303 including elec
tronic memory, one or more processors or processing cir
cuits, and controller firmware, and also includes a number of
disk platters 304 coated with a magnetic medium for storing
electronic data. The disk drive contains many other compo
nents not shown in FIG. 3, including READ/WRITE heads,
a high-speed electronic motor, a drive shaft, and other
electronic, mechanical, and electromechanical components.
The memory within the disk drive includes a request/reply
buffer 305, which stores I/O requests received from remote
computers, and an I/O queue 306 that stores internal I/O
commands corresponding to the I/O requests stored within
the request/reply buffer 305. Communication between
remote computers and the disk drive, translation of I/O
requests into internal I/O commands, and management of
the I/O queue, among other things, are carried out by the
disk drive I/O controller as specified by disk drive I/O
controller firmware 307. Translation of internal I/O com
mands into electromechanical disk operations in which data
is stored onto, or retrieved from, the disk platters 304 is
carried out by the disk drive I/O controller as specified by
disk media read/write management firmware 308. Thus, the
disk drive I/O control firmware 307 and the disk media
read/write management firmware 308, along with the pro
cessors and memory that enable execution of the firmware,
compose the disk drive controller.

Individual disk drives, such as the disk drive illustrated in
FIG. 3, are normally connected to, and used by, a single
remote computer, although it has been common to provide
dual-ported disk drives for concurrent use by two computers
and multi-host-accessible disk drives that can be accessed by
numerous remote computers via a communications medium
such as a fibre channel. However, the amount of electronic
data that can be stored in a single disk drive is limited. In
order to provide much larger-capacity electronic data-Stor
age devices that can be efficiently accessed by numerous
remote computers, disk manufacturers commonly combine
many different individual disk drives, such as the disk drive
illustrated in FIG.3, into a disk array device, increasing both
the storage capacity as well as increasing the capacity for
parallel I/O request servicing by concurrent operation of the
multiple disk drives contained within the disk array.

FIG. 4 is a simple block diagram of a disk array. The disk
array 402 includes a number of disk drive devices 403, 404,
and 405. In FIG. 4, for simplicity of illustration, only three
individual disk drives are shown within the disk array, but
disk arrays may contain many tens or hundreds of individual
disk drives. A disk array contains a disk array controller 406
and cache memory 407. Generally, data retrieved from disk
drives in response to READ requests may be stored within
the cache memory 407 so that subsequent requests for the
same data can be more quickly satisfied by reading the data

HPE, Exh. 1009, p. 24

US 7,058,850 B2
3

from the quickly accessible cache memory rather than from
the much slower electromechanical disk drives. Various
elaborate mechanisms are employed to maintain, within the
cache memory 407, data that has the greatest chance of
being Subsequently re-requested within a reasonable amount
of time. The disk WRITE requests, in cache memory 407, in
the event that the data may be subsequently requested via
READ requests or in order to defer slower writing of the
data to physical storage medium.

Electronic data is stored within a disk array at specific
addressable locations. Because a disk array may contain
many different individual disk drives, the address space
represented by a disk array is immense, generally many
thousands of gigabytes. The overall address space is nor
mally partitioned among a number of abstract data storage
resources called logical units (“LUNs). A LUN includes a
defined amount of electronic data storage space, mapped to
the data storage space of one or more disk drives within the
disk array, and may be associated with various logical
parameters including access privileges, backup frequencies,
and mirror coordination with one or more LUNs. LUNs may
also be based on random access memory (“RAM), mass
storage devices other than hard disks, or combinations of
memory, hard disks, and/or other types of mass-storage
devices. Remote computers generally access data within a
disk array through one of the many abstract LUNs 408-415
provided by the disk array via internal disk drives 403-405
and the disk array controller 406. Thus, a remote computer
may specify a particular unit quantity of data, such as a byte,
word, or block, using a bus communications media address
corresponding to a disk array, a LUN specifier, normally a
64-bit integer, and a 32-bit, 64-bit, or 128-bit data address
that specifies a LUN, and a data address within the logical
data address partition allocated to the LUN. The disk array
controller translates Such a data specification into an indi
cation of a particular disk drive within the disk array and a
logical data address within the disk drive. A disk drive
controller within the disk drive finally translates the logical
address to a physical medium address. Normally, electronic
data is read and written as one or more blocks of contiguous
32-bit or 64-bit computer words, the exact details of the
granularity of access depending on the hardware and firm
ware capabilities within the disk array and individual disk
drives as well as the operating system of the remote com
puters generating I/O requests and characteristics of the
communication medium interconnecting the disk array with
the remote computers.

In many computer applications and systems that need to
reliably store and retrieve data from a mass-storage device,
Such as a disk array, a primary data object, such as a file or
database, is normally backed up to backup copies of the
primary data object on physically discrete mass-storage
devices or media so that if, during operation of the appli
cation or system, the primary data object becomes corrupted,
inaccessible, or is overwritten or deleted, the primary data
object can be restored by copying a backup copy of the
primary data object from the mass-storage device. Many
different techniques and methodologies for maintaining
backup copies have been developed. In one well-known
technique, a primary data object is mirrored. FIG. 5 illus
trates object-level mirroring. In FIG. 5, a primary data object
“O'” 501 is stored on LUNA 502. The mirror object, or
backup copy, “O, 503 is stored on LUN B 504. The arrows
in FIG. 5, such as arrow 505, indicate I/O write operations
directed to various objects stored on a LUN. I/O write
operations directed to object “O'” are represented by arrow
506. When object-level mirroring is enabled, the disk array

5

10

15

25

30

35

40

45

50

55

60

65

4
controller providing LUNs A and Bautomatically generates
a second I/O write operation from each I/O write operation
506 directed to LUNA, and directs the second generated I/O
write operation via path 507, switch “S” 508, and path 509
to the mirror object “O'” 503 stored on LUN B 504. In FIG.
5, enablement of mirroring is logically represented by
switch “S” 508 being on. Thus, when object-level mirroring
is enabled, any I/O write operation, or any other type of I/O
operation that changes the representation of object"O' 501
on LUNA, is automatically mirrored by the disk array
controller to identically change the mirror object “O'” 503.
Mirroring can be disabled, represented in FIG. 5 by switch
“S 508 being in an off position. In that case, changes to the
primary data object "O' 501 are no longer automatically
reflected in the mirror object “O'” 503. Thus, at the point
that mirroring is disabled, the stored representation, or state,
of the primary data object “O'” 501 may diverge from the
stored representation, or state, of the mirror object “O'” 503.
Once the primary and mirror copies of an object have
diverged, the two copies can be brought back to identical
representations, or states, by a resync operation represented
in FIG. 5 by switch “S. 510 being in an on position. In the
normal mirroring operation, Switch “S” 510 is in the off
position. During the resync operation, any I/O operations
that occurred after mirroring was disabled are logically
issued by the disk array controller to the mirror copy of the
object via path 511, switch “S. and pass 509. During
resync, switch “S” is in the off position. Once the resync
operation is complete, logical Switch “S” is disabled and
logical switch “S”508 can be turned on in order to reenable
mirroring so that Subsequent I/O write operations or other
I/O operations that change the storage state of primary data
object “O” are automatically reflected to the mirror object
“O, 503.

FIG. 6 illustrates a dominant LUN coupled to a remote
mirror LUN. In FIG. 6, a number of computers and com
puter servers 601–608 are interconnected by various com
munications media 610–612 that are themselves
interconnected by additional communications media
613-614. In order to provide fault tolerance and high
availability for a large data set stored within a dominant
LUN on a disk array 616 coupled to server computer 604,
the dominant LUN 616 is mirrored to a remote-mirror LUN
provided by a remote disk array 618. The two disk arrays are
separately interconnected by a dedicated communications
medium 620. Note that the disk arrays may be linked to
server computers, as with disk arrays 616 and 618, or may
be directly linked to communications medium 610. The
dominant LUN 616 is the target for READ, WRITE, and
other disk requests. All WRITE requests directed to the
dominant LUN 616 are transmitted by the dominant LUN
616 to the remote-mirror LUN 618, so that the remote
mirror LUN faithfully mirrors the data stored within the
dominant LUN. If the dominant LUN fails, the requests that
would have been directed to the dominant LUN can be
redirected to the mirror LUN without a perceptible inter
ruption in request servicing. When operation of the domi
nant LUN 616 is restored, the dominant LUN 616 may
become the remote-mirror LUN for the previous remote
mirror LUN 618, which becomes the new dominant LUN,
and may be resynchronized to become a faithful copy of the
new dominant LUN 618. Alternatively, the restored domi
nant LUN 616 may be brought up to the same data state as
the remote-mirror LUN 618 via data copies from the remote
mirror LUN and then resume operating as the dominant
LUN. Various types of dominant-LUN/remote-mirror-LUN
pairs have been devised. Some operate entirely synchro

HPE, Exh. 1009, p. 25

US 7,058,850 B2
5

nously, while others allow for asynchronous operation and
reasonably slight discrepancies between the data states of
the dominant LUN and mirror LUN.

Unfortunately, interruptions in the direct communications
between disk arrays containing a dominant LUN and a
remote-mirror LUN of a mirrored LUN pair occur relatively
frequently. Currently, when communications are interrupted
or Suffer certain types of failures, data may end up languish
ing in cache-memory buffers, and, in the worst cases, purged
from cache-memory buffers or lost due to systems failures.
Designers and manufacturers of mass-storage devices. Such
as disk arrays, and users of mass-storage devices and high
availability and fault-tolerant systems that employ mass
storage devices, have recognized the need for a more reliable
LUN-mirroring technique and system that can weather com
munications failures and host-computer failures.

SUMMARY OF THE INVENTION

One embodiment of the present invention provides an
additional communications link between two mass-storage
devices containing LUNs of a mirror-LUN pair, as well as
incorporating a fail-safe, mass-storage-device-implemented
retry protocol to facilitate non-drastic recovery from com
munications-link failures. The additional communications
link between the two mass-storage devices greatly reduces
the likelihood of the loss of buffered data within the mass
storage device containing the dominant LUN of a mirrored
LUN pair, and the retry protocol prevents unnecessary
build-up of data within cache-memory buffers of the mass
storage device containing the remote-mirror LUN. The
combination of the additional communications link and retry
protocol together ameliorates a deficiency in current LUN
mirroring implementations that leads to data loss and incon
sistent and unrecoverable databases. The additional commu
nications link provided by the present invention is physically
distinct and differently implemented from the direct com
munications link between the two mass-storage devices, to
provide greater robustness in the event of major hardware
failure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrated tracks on the surface of a disk platter.
FIG. 1B illustrates sectors within a single track on the

surface of the disk platter.
FIG. 2 illustrates a number of disk platters aligned within

a modern magnetic disk drive.
FIG. 3 is a block diagram of a standard disk drive.
FIG. 4 is a simple block diagram of a disk array.
FIG. 5 illustrates object-level mirroring.
FIG. 6 illustrates a dominant logical unit coupled to a

remote-mirror logical unit.
FIG. 7 shows an abstract representation of the commu

nications-link topography currently employed for intercon
necting mass-storage devices containing the dominant and
remote-mirror logical units of a mirrored-logical-unit pair.

FIGS. 8A-C illustrates a communications-link failure that
results in purging of the cache memory within the mass
storage device containing a remote-mirror logical unit.

FIGS. 9A and 9B illustrate a normal WRITE-request
buffer, such as the input queue 826 of the second mass
storage device in FIG. 8C, and a bit-map buffer, such as the
bit map 846 in FIG. 8C.

FIGS. 10A-E illustrates an example of a detrimental,
out-of-order WRITE request applied to a mass-storage
device.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 11 shows the final stage in recovery from the missing

WRITE request problem illustrated in FIG. 8A-C.
FIGS. 12A–C illustrates an error-recovery technique

employed to handle communications-link failures.
FIGS. 13 and 14 illustrate the occurrence of multiple

failures, leading to data loss within the mass-storage devices
of FIGS. 8A-C, 11, and 12A-C.

FIG. 15 illustrates an enhanced communications topology
that represents a portion of one embodiment of the present
invention.

FIGS. 16A-D illustrates operation of the exemplary
mass-storage devices using the techniques provided by one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

One embodiment of the present invention provides a more
communications-fault-tolerant mirroring technique that pre
vents loss of data stored in electronic cache-memory for
relatively long periods of time due to host-computer failures
and communications failures. In the discussion below, the
data-loss problems are described, in detail, followed by a
description of an enhanced mass-storage-device pair and an
enhanced high-level communications protocol implemented
in the controllers of the mass-storage-devices.

FIG. 7 shows an abstract representation of the commu
nications-link topography currently employed for intercon
necting mass-storage devices containing the dominant and
remote-mirror LUNs of a mirrored-LUN pair. A first mass
storage device 702 is interconnected with a first host com
puter 704 via a small-computer-systems interface (“SCSI),
fiber-channel (“FC), or other type of communications link
706. A second mass-storage device 708 is interconnected
with a second host computer 710 via a second SCSI or FC
communications link 712. The two host computers are
interconnected via a local-area network (“LAN”) or wide
area network (“WAN) 714. The two mass-storage devices
702 and 708 are directly interconnected, for purposes of
mirroring, by one or more dedicated enterprise systems
connection (“ESCON”), asynchronous transfer mode
(“ATM), FC, T3, or other types of links 716. The first
mass-storage device 702 contains a dominant LUN of a
mirrored-LUN pair, while the second mass-storage device
708 contains the remote-mirror LUN of the mirrored-LUN
pa1r.

FIGS. 8A-C illustrates a communications-link failure that
leads to a purge of cache memory within the mass-storage
device containing a remote-mirror LUN. In FIG. 8A, data to
be written to physical-data-storage devices within a first
mass-storage device 802 is transmitted by a host computer
804 through a SCSI, FC, or other type of link 806 to the
mass-storage device 802. In FIGS. 8A-C, and in FIGS.
11A-D, 12, 13, and 15A-D, which employ similar illustra
tion conventions as employed in FIGS. 8A-C, incoming
WRITE commands are illustrated as small square objects,
such as incoming WRITE command 808, within a commu
nications path such as the SCSI, FC, or other type of link
806. Each WRITE request contains a volume or LUN
number followed a "slash, followed in turn, by a sequence
number. WRITE requests are generally sequenced by high
level protocols so that WRITE requests can be applied, in
order, to the database contained within volumes or LUNs
stored on one or more physical data-storage devices. For
example, both in FIGS. 8A-C and in the subsequent figures,
identified above, LUN “0” is mirrored to a remote mirror
stored within physical data-storage devices of a second

HPE, Exh. 1009, p. 26

US 7,058,850 B2
7

mass-storage device 810, interconnected with the first mass
storage device 802 by one or more ESCON, ATM, FC, T3,
or other type of communications links 812.
The controller 814 of the first mass-storage device 802

detects WRITE requests directed to dominant LUN “0” and
directs copies of the WRITE requests to the second mass
storage device 810 via an output buffer 816 stored within
cache memory 818 of the mass-storage device 802. The
WRITE requests directed to the dominant LUN, and to other
LUNS or volumes provided by the first mass-storage device,
are also directed to an input buffer 820 from which the
WRITE requests are subsequently extracted and executed to
store data on physical data-storage devices 822 within the
first mass-storage device. Similarly, the duplicate WRITE
requests transmitted by the first mass-storage device through
the ESCON, ATM, FC, T3, or other type of link or links 812
are directed by the controller 824 of the second mass-storage
device 810 to an input buffer 826 within a cache-memory
822 of the second mass-storage device for eventual execu
tion and storage of data on the physical data-storage devices
830 within the second mass-storage device 810.

In general, the output buffer 816 within the first mass
storage device is used both as a transmission queue as well
as a storage buffer for holding already transmitted WRITE
requests until an acknowledgment for the already transmit
ted WRITE requests is received from the second mass
storage device. Thus, for example, in FIG. 8A, the next
WRITE-request to be transmitted 832 appears in the middle
of the output buffer, above already transmitted WRITE
requests 834–839. When an acknowledgement for a trans
mitted WRITE request is received from the second mass
storage device, the output buffer 818 entry corresponding to
the acknowledged, transmitted WRITE request can be over
written by a new incoming WRITE request. In general,
output buffers are implemented as circular queues with
dynamic head and tail pointers. Also note that, in FIGS.
8A-C, and in the subsequent, related figures identified
above, the cache memory buffers are shown to be rather
Small, containing only a handful of messages. In actual
mass-storage devices, by contrast, electronic cache memo
ries may provide as much as 64 gigabytes of data storage.
Therefore, output and storage buffers within mass-storage
device cache memories are often extremely large. The
illustration conventions employed in FIGS. 8A-C, and in the
Subsequent, related figures identified above, present simple
examples, and are not intended to, in any way, define the
sizes, capacities, and other parameters of actual mass
storage-device and communications-link components.

Although the communications link 812 employs lower
level protocols with message retry, the communications link
may nonetheless fail, from time to time, to deliver a mes
sage. FIG. 8B illustrates a system state, subsequent to that
shown in FIG. 8A, in which the 94" WRITE request,
directed from the first mass-storage device 802 to the second
mass-storage device 810, has failed to be transmitted to the
second mass-storage device 810. The controller 824 of the
second mass-storage device 810 reserves a place 840 within
the input queue 826 for the 94" WRITE request, and
continues to accept higher-sequence-number WRITE
requests, buffering them in the input buffer 826. The con
troller 824 may not apply the higher-sequence-number
WRITE requests before applying the missing 94" WRITE
request, for reasons to be discussed, in detail, below. In
general, WRITE requests may only be applied in-order, to
ensure a consistent database. The second mass-storage
device 810 has only a finite amount of storage space for
buffering WRITE requests, and so must eventually detect

10

15

25

30

35

40

45

50

55

60

65

8
and deal with a missing WRITE request, Such as the missing
94' WRITE request in the example shown in FIG. 8B.

Handling of missing WRITE requests, currently, is facili
tated by timing mechanisms based on a system timer acces
sible to the controller of a mass-storage device. There are
many timing mechanisms. In the most common mechanism,
incoming WRITE requests are time stamped relative to the
system timer, represented in FIG. 8C as a small clock-like
object 843. The controller can determine, for any buffered
WRITE request, the amount of time elapsed since the
WRITE request was received from the communications link
812. FIG. 8C illustrates the commonly employed mecha
nism for handling missing WRITE requests. In FIG. 8C, the
controller 824 of the second mass-storage device 810 has
determined that the least-recently received WRITE request
842 was received more than some threshold amount of time
before the current time. In other words, one can think of the
least-recently-received WRITE request 842 as having set a
timer that has expired after a threshold amount of time. The
timer is expired because the missing 94" WRITE request
has not been received.
Upon expiration of the timer, the controller purges the

input buffer 826 to make room for additional incoming
messages, for example, from host computer 844 directed to
volumes or LUNs other than the remote-mirror LUN paired
with the dominant LUN of the first mass-storage device 802.
Rather than simply discarding the stored WRITE requests,
the second mass-storage-device controller may intelligently
purge only those WRITE-requests directed to the remote
mirror LUN, allocating a bit map 846 to store one-bit entries
for each purged WRITE request to keep track of the logical
blocks, sectors, or other data-storage units to which the
WRITE-requests were directed. In other words, the bit map
846 contains a record of all block or sectors that would have
been overwritten by the WRITE requests had the timer now
expired. Purging of the input buffer, indicated by arrow 848,
may also be accompanied by Subsequent storage of indica
tions 850 of received WRITE requests within the bit map
846. Finally, the controller of the second mass-storage
device directs a high-level failure message 852 back to the
first mass-storage device.

FIGS. 9A and 9B illustrate a normal WRITE-request
buffer 902, such as the input queue 826 of the second
mass-storage device in FIG. 8C, and a bit-map buffer 906,
such as the bit map 846 in FIG. 8C. Initially, a controller
may buffer WRITE requests in a time-ordered WRITE
request buffer, illustrated in FIG. 9A. In the time-ordered
WRITE-request buffer 902, WRITE requests are stored in
their sequence order. Unfortunately, the amount of data that
can be stored within the time-ordered WRITE-request buffer
902 is limited, and each WRITE request, such as WRITE
request 904, must be stored in its entirety. The advantage of
using a time-ordered WRITE-request buffer is that, upon
resumption of dequeing and execution of WRITE requests
from the WRITE-request buffer, WRITE requests can be
straightforwardly extracted from the sequence-ordered
WRITE-request buffer and applied to physical data-storage
devices.

If a missing WRITE request is not retransmitted and
Successfully received by the second mass-storage device, the
controller of the mass-storage device may detect a timer
expiration related to the missing WRITE request, and purge
WRITE requests in the input buffer 826 into the bit map 846.
In a WRITE-request bit-map buffer, each of the data storage
units within the remote-mirror LUN is represented within
the WRITE-request bit-map buffer as a single bit. When the
bit is set, the bit map indicates that that a WRITE request has

HPE, Exh. 1009, p. 27

US 7,058,850 B2

been received since the controller stopped dequeing and
executing WRITE requests from the input buffer 826. Gen
erally, either tracks or cylinders are employed as the logical
data storage unit to represent with a single bit within the bit
map, in order to keep the bit map reasonably sized.
The WRITE-request bit-map buffer 906 is far more com

pact than a sequence-ordered WRITE-request buffer. Rather
than storing the entire WRITE-request, including the data to
be written, the WRITE-request bit-map buffer needs to
maintain only a single bit for each track or cylinder to
indicate whether or not a WRITE request directed to the
track or cylinder has been received. Unfortunately, the
WRITE-request bit-map buffer does not maintain any
WRITE-request sequence information. Thus, once commu
nications is resynchronized between the mass-storage
devices, the bit map can only be used to request retransmis
sion of data initially transmitted in WRITE requests that
were purged from cache memory or received by the second
mass-storage device after the purge.

FIGS. 10A-E illustrate an example of a detrimental
out-of-order WRITE request applied to a mass-storage
device. The example of FIGS. 10A-E involves a simple
linked list. FIG. 10A is an abstract illustration of a general,
linked-list data structure. The data structure comprises three
nodes, or data blocks 1001–1003. A linked list may contain
Zero or more data blocks, up to some maximum number of
data blocks that can be stored in the memory of a particular
computer. Generally, a separate pointer 1004 contains the
address of the first node of the linked list. In FIGS. 10A-E,
a pointer, or address, is represented by an arrow, such as
arrow 1005, pointing to the node to which the address refers,
and emanating from a memory location, such as memory
location 1006, in which the pointer is stored. Each node of
the linked list includes a pointer and other data stored within
the node. For example, node 1001 includes pointer 1007 that
references node 1002 as well as additional space 1008 that
may contain various amounts of data represented in various
different formats. Linked lists are commonly employed to
maintain, in memory, ordered sets of data records that may
grow and contract dynamically during execution of a pro
gram. Linked lists are also employed to represent ordered
records within the data stored on a mass-storage device.
Note that the final node 1003 in the linked list of FIG. 10A
includes a null pointer 1009, indicating that this node is the
final node in the linked list.

FIGS. 10B E abstractly represent data blocks, stored on
a mass-storage device, that contain a linked list of data
blocks. Each data-block node, such as data-block node 1010,
includes a pointer, Such as pointer 1012, and some amount
of stored data, such as stored data 1014. The list of data
blocks in FIG. 10B starts with node 1010, next includes node
1016, then node 1018, and, finally, node 1020. Each data
block can be written or overwritten, in a single mass
storage-device access. Data blocks 1022 and 1024 in FIG.
10B are unused.

Consider the addition of a new node, or data block, to the
end of the linked list. The two WRITE operations required
to add a data block to the end of the list are illustrated in
FIGS. 10C D. First, the new node is written to data block
1024, as shown in FIG. 10C. Then, node 1020 is overwritten
in order to change the pointer within node 1020 to reference
the newly added node 1024. When these operations are
performed in the sequence shown in FIGS. 10C-D, the
linked list is consistent at each point in the two-WRITE
request operation. For example, in FIG. 10C, the new node
has been added, but is not yet a member of the linked list.
If the second operation, illustrated in FIG. 10D, fails, the

10

15

25

30

35

40

45

50

55

60

65

10
linked list remains intact, with the only deleterious effect
being an overwritten, and possibly wasted, data block 1024.
In the second operation, illustrated in FIG. 10D, the pointer
within data node 1020 is updated to point to already resident
node 1024, leaving the linked list intact and consistent, and
having a new node.

Consider, by contrast, the state of the linked list should the
second WRITE operation, illustrated in FIG. 10D, occur
prior to the first WRITE operation, illustrated in FIG. 10C.
In this case, illustrated in FIG. 10E, the pointer within node
1020 references data block 1024. However, data block 1024
has not been written, and is therefore not formatted to
contain a pointer having a null value. If, at this point, the
second WRITE operation fails, the linked list is corrupted.
A software routine traversing the nodes of the linked list
cannot determine where the list ends. Moreover, the soft
ware routine will generally interpret any data found in data
block 1024 as the contents of the fifth node of the linked list,
possibly leading to further data corruption. Thus, the order
of WRITE operations for adding a node to a linked list stored
on a mass-storage device is critical in the case that all
WRITE operations are not successfully carried out. When
WRITE requests are extracted from a time-ordered WRITE
request buffer, as shown in FIG. 9A, and executed on a
remote-mirror, the remote-mirror will remain in a data
consistent state throughout the period time during which the
buffered WRITE requests are carried out, providing that the
order in which the WRITE requests were transmitted to the
mass-storage device is consistent. However, when data in
tracks or cylinders flagged in a WRITE-request bit-map
buffer of FIG.9B are requested to be retransmitted from the
first mass-storage device, and are sent in an arbitrary order
to the second mass-storage device, the data state of the
remote-mirror LUN may be quite inconsistent, and poten
tially corrupted, until all tracks or cylinders flagged within
the WRITE-request bit-map buffer are successfully retrans
mitted and applied to the remote-mirror LUN. The corrup
tion illustrated in FIGS. 10A-E is rather straightforward and
simple. The potential corruption within hundreds of
gigabytes of data stored within a mass-storage-device LUN
and incompletely transferred, out-of-order, to a remote LUN
is staggering. Literally hundreds of thousands of complex
data interrelationships may be irreparably broken.

FIG. 11 shows the final stage in recovery from the
missing-WRITE-request problem illustrated in FIG. 8A-C.
After sending a message by the controller of the second
mass-storage device to the first mass-storage device 802 to
indicate expiration of the timer and loss of the 94" WRITE
request, the two mass-storage devices carry out a commu
nications-failure-recovery protocol, part of which comprises
sending the bit map (846 in FIG. 8C) from the second
mass-storage device to the first mass-storage device to
indicate to the first mass-storage device those blocks, or
sectors, within the remote-mirror LUN that were not
updated according to transmitted WRITE requests. The
second mass-storage device uses the bit map and any other
returned information to restart transmission of already trans
mitted data from the first mass-storage device to the second
mass-storage device. For example, in FIG. 11, the 94'
WRITE request that was not previously successfully trans
mitted 1102 is retransmitted by the first mass-storage device
to the second mass-storage device via communications link
812. The first mass-storage device may read the indicated
blocks, or sectors, from its own physical data-storage
devices, as indicated by arrow 1104 in FIG. 11, in order to
reconstruct the WRITE requests for retransmission to the
first mass-storage device. However, as discussed above,

HPE, Exh. 1009, p. 28

US 7,058,850 B2
11

until the remote-mirror LUN reaches the same data state as
that of the dominant LUN, the remote-mirror LUN may be
in an inconsistent state.
The first mass-storage device may employ a similar

error-recovery mechanism in the event of a failure in direct
the communications link (812 in FIG. 11) between the first
mass-storage device to the second mass-storage device.
FIGS. 12A–C illustrate the error-recovery technique
employed to handle communications-link failures. In FIG.
12A, the communications link 812 is disrupted, as indicated
by the large “X” 1202 overlying the communications link
812. In this case, as shown in FIG. 12A. WRITE-requests,
duplicated for transmission to the remote-mirror LUN, begin
to accumulate in the output buffer 816. At a subsequent point
in time, as shown in FIG. 12B, either an internal timer
expires for the least recently duplicated WRITE requests
1204 or the output buffer 816 becomes completely filled.
The controller 814 of the first mass-storage device detects
either or both these conditions, and purges the output buffer
816, storing in a bit map 1206 binary indications of those
remote-mirror LUN blocks or sectors that would have been
written had the purged WRITE requests been successfully
transmitted to the second mass-storage device 810. Later,
when the communications-link 812 is restored to function
ing order, the controller 814 of the first mass-storage device
802 can employ the bit map 1206 to retrieve the data of those
blocks or sectors that should have been transmitted to the
remote-mirror LUN, and regenerate corresponding unor
dered WRITE requests, representing the logical OR of the
combined local and remote array bitmaps, that are placed
into output buffer 816 for retransmission to the second
mass-storage device.
The two techniques illustrated in FIGS. 8A-C, 11, and

FIGS. 12A-C can be used to recover from problems asso
ciated with single communications-link failures by both the
mass-storage device containing the remote-mirror LUN as
well as the mass-storage device containing the dominant
LUN. However, multiple failures do, from time-to-time,
occur. FIGS. 13 and 14 illustrate the occurrence of multiple
failures, leading to data loss within the mass-storage devices
of FIGS. 8A-C, 11, and 12A-C. In FIG. 13, a WRITE
request transmitted by the first mass-storage device 802.
WRITE request “0/173,” is not received by the second
mass-storage device 810, leading to buffering of a large
number of subsequently received WRITE requests by the
controller of the second mass storage device in input buffer
826. Eventually, a timer expires, leading to allocation of a bit
map 1302 for storing information about out-of-date blocks,
or sectors, as a result of purging the WRITE requests from
the input buffer 826.

In the same time frame, the communications link 812
completely fails, as indicated by the “X” 1302 superimposed
on the communications link. This leads to accumulation of
duplicated WRITE requests in the output buffer 816 of the
first mass-storage device 802. Finally, the controller of the
first mass-storage device detects the communications failure
and allocates a bit map 1304 for storing information about
the remote-mirror LUN blocks, or sectors, that would have
been written by the WRITE requests that the controller then
purges from the output buffer 816. As shown in FIG. 14, the
controller of the second mass-storage device directs purging
1402 of the input buffer 826, storing out-of-date-block, or
out-of-date-sector, information in the allocated bit map
1302. Concurrently, the first mass-storage device controller
directs purging 1404 of the output buffer 816, storing
indications of remote-mirror-LUN out-of-date blocks, or
out-of-date sectors, also known as orphaned blocks or sec

10

15

25

30

35

40

45

50

55

60

65

12
tors, in bit map 1304. In addition, newly duplicated WRITE
requests 1406 are discarded, after making appropriate
entries in the bit map 1304.

Next, the host computer 804 fails. Failure of the host
computer 804 leads to fail over of the dominant-LUN/
remote-mirror-LUN pair to the remote-mirror LUN stored
within the second mass-storage device 810. In other words,
the first mass-storage device is no longer accessible to
system users via host computer 804, and system fail over
occurs, with re-direction of READ and WRITE requests to
the remote-mirror LUN via host computer 844. However,
the remote-mirror LUN is not up-to-date, having not been
updated by the WRITE requests purged from the input buffer
826 in the second mass-storage device, nor updated by the
WRITE requests purged from the output buffer 816 in the
first mass-storage device 802. More seriously, the remote
mirror LUN may be inconsistent, due to communications
link failure in the middle of a multi-WRITE-request trans
actions. But the out-of-date, and perhaps inconsistent,
remote-mirror LUN now becomes the dominant LUN, and
the second mass-storage device begins accepting WRITE
requests directed to the new dominant LUN via host com
puter 844. If the remote-mirror LUN was not inconsistent
prior to accepting new WRITE requests, it may now quickly
become so, since many intervening WRITE requests purged
from the input buffer 826 and output buffer 816 have been
lost. Thus, because of multiple failures, neither the dominant
LUN nor the remote-mirror LUN may be consistent follow
ing fail over, and it may be Subsequently impossible to
recover a consistent data base date.

Thus, as seen in the above-described examples, commu
nications-link failures may lead to purging of input and
output buffers in both mass-storage devices involved in a
dominant-LUN/remote-mirror-LUN pair. This purging of
WRITE requests may represent a significant loss of trans
mitted data. When a second failure occurs, such as the
failure of the host computer associated with the first mass
storage device, a large amount of data may be completely
lost, and both the dominant LUN and remote-mirror-LUN
may quickly end up in inconsistent states without any
possibility of recovery.
One embodiment of the present invention greatly lessens

the chance of purging of cached data by either or both
mass-storage devices of a dominant-LUN/remote-mirror
LUN pair, and therefore greatly lessens the chance that
cached data is lost as a result of multiple failures. FIG. 15
illustrates an enhanced communications topology that rep
resents a portion of one embodiment of the present inven
tion. FIG. 15 uses the same illustration conventions as used
in FIG. 7, and uses the same numerical labels. Note that, in
the communications topology shown in FIG. 15, direct
connections 718 and 720 have been added to directly
connect the first mass-storage device 702 and the second
mass-storage device 708 to the LAN/WAN 714. In certain
systems, such direct links may already be present, but are
used only system management functions, and not for trans
ferring data to and from physical storage. Should the
ESCON, ATM, T3 link or links 716 that directly intercon
nect the first mass-storage device 702 with the second
mass-storage device 708 fail, WRITE requests can nonethe
less be forwarded from the first mass-storage device to the
second mass-storage device via interconnects 718 and 720
and the LAN/WAN 714. In other words, the mass-storage
devices do not depend on their associated host computers for
interconnection with the LAN/WAN. Not only do connec
tions 718 and 720 provide an alternate communications link
between the two mass-storage devices, they provide an

HPE, Exh. 1009, p. 29

US 7,058,850 B2
13

entirely different type of communications link that may
survive failure of direct links.
The enhanced communications topology, illustrated in

FIG. 15, along with an enhanced mass-storage-device-con
troller communications protocol, prevents the cache purging
and data loss illustrated in the examples of FIGS. 8A-C, and
11–14. FIGS. 16A-D show, using the same illustration
conventions used in FIGS. 8A-C, 11, 12A-C, 13, and 14,
operation of the exemplary mass-storage devices using the
techniques provided by one embodiment of the present
invention. Note that, in FIG. 16A, a second timer 1602, or
subtimer, is shown within the controller 824 of the second
mass-storage device 810. The timer 1602 shown in FIG.
16A, like the original timer, is meant to represent a combi
nation of a system clock and time stamps within received
WRITE requests. Alternative timing mechanisms are also
possible. Operation of the subtimer is illustrated in the
example discussed below.

In FIG. 16A, WRITE requests continue to be forwarded
by the first mass-storage device 802 to the second mass
storage device 810, as in FIGS. 8A-C. In FIG. 16A, a
WRITE request directed to the second mass-storage device,
WRITE Request “0/301,” has failed to arrive at the second
mass-storage device due to an error within the communica
tions link, or in communications-link-related drivers or
protocol engines, within the first, second, or both mass
storage devices. As before, the second mass-storage device
continues to accumulate higher-sequence-number WRITE
requests in the input buffer 826, hoping that the missing
WRITE request “0/301 will eventually be received. How
ever, as shown in FIG. 16B, at a point in time when the
subtimer 1602 for the missing WRITE request, or the next
highest-sequence-numbered request 1604, expires, the con
troller of the second mass-storage device sends 1606 a
high-level, mass-storage-device-protocol message 1608
back to the first mass-storage device to request that the first
mass-storage device re-send the missing WRITE request. In
other words, in one embodiment of the present invention, a
higher-level, mass-storage-device-level protocol enhances
the lower-level communications-link protocols to ensure
that a missing WRITE request is detected, and re-transmis
sion requested, before the main timer expires, initiating the
bit map and cache purge operations discussed previously
with respect to FIG. 11. As shown in FIG. 16C, the request
for re-transmission (1608 in FIG. 16B) is received by the
first mass-storage device, eliciting re-transmission of the
missing WRITE request 1610. Thus, the cache-purge-and
bit-map failure recovery discussed, above, with reference to
FIGS. 8A-C and 11, is avoided. The high-level-protocol
enhancement to the mass-storage device controllers prevents
build-up of unexecuted WRITE requests in the input buffer
826 of the second mass-storage device.

FIG. 16D illustrates the multiple failure scenario first
illustrated in FIG. 14, in a two-mass-storage device system
employing the techniques of the present invention. In the
scenario, the communications link 812 has failed 1612 and
the host computer 804 has also failed. Thus, fail over to the
remote-mirror LUN provided by the second mass-storage
device is imminent. Note, however, that the input buffer 826
of the second mass-storage device 810 is not backed-up due
to missing WRITE requests, and that the remote-mirror
LUN is not therefore out-of-date because of cached, but not
executed, WRITE requests. Moreover, the direct connec
tions 1614 and 1616 of the first mass-storage device 802 and
the second mass-storage device 810 allow for transmission
of WRITE requests stored in the output buffer 816 of the first
mass-storage device 802 to be transmitted, or flushed,

10

15

25

30

35

40

45

50

55

60

65

14
through the LAN/WAN 1617 to the second mass-storage
device. Thus, the data state of the remote-mirror-LUN can
be synchronized with that of the dominant LUN contained in
the first mass-storage 802 prior to fail over. In this way, the
remote-mirror-LUN can be brought to a data-consistent state
without loss of WRITE requests due to cache purges or
orphaned WRITE requests within an isolated first mass
storage device.

Although the present invention has been described in
terms of a particular embodiment, it is not intended that the
invention be limited to this embodiment. Modifications
within the spirit of the invention will be apparent to those
skilled in the art. For example, a second, direct mass
storage-device-to-mass-storage device communications link
can be provided in any number of different ways, and is not
restricted to a LAN/WAN interconnection, as disclosed in
the above embodiment. The high-level mass-storage-device
protocol enhancement described above, can be carried out in
any of many different levels within the mass-storage-device
controller, and may be embodied in logic circuits, firmware,
or controller software. Many different types of mass-storage
devices can employ the present invention, including disk
arrays.
The foregoing description, for purposes of explanation

used specific nomenclature to provide a thorough under
standing of the invention. However, it will be apparent to
one skilled in the art that the specific details are not required
in order to practice the invention. In other instances, well
known portions of disk arrays are shown as diagrams in
order to avoid unnecessary distraction from the underlying
invention. Thus, the foregoing descriptions of specific
embodiments of the present invention are presented for
purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. Obviously many modifications and
variations are possible in view of the above teachings. The
embodiments are shown and described in order to best
enable others skilled in the art to best utilize the invention
and various embodiments with various modifications as are
Suited to the particular use contemplated. It is intended that
the scope of the invention be defined by the following claims
and their equivalents:
The invention claimed is:
1. A reliable computing and data-storage system compris

ing:
a first host computer linked to a second host computer by

a first communications medium;
a first mass-storage device, linked to the first host com

puter by a second communications medium;
a second mass-storage device, linked to the second host

computer by a third communications medium;
a fourth communications medium directly linking the first

mass-storage device to the second mass-storage device
for transmission of sequenced data written to a domi
nant logical unit within the first mass-storage device to
the second mass-storage device for writing to a remote
mirror logical unit;

a first link that directly links the first mass-storage device
to the first communications medium;

a second link that directly links the second mass-storage
device to the first communications medium;

controller logic within controllers of the first and second
mass-storage devices, the controller logic within at
least one controller detecting a failure of the fourth
communications medium, the controller logic within
both controllers cooperating to retransmit any lost data
from the first mass-storage device to the second mass

HPE, Exh. 1009, p. 30

US 7,058,850 B2
15

storage device by way of the first and second links and
the first communications medium.

2. The system of claim 1 wherein the first mass-storage
device receives WRITE requests directed to the dominant
logical unit, executes the WRITE requests with respect to
the dominant logical unit, and places the WRITE requests in
an output memory buffer for Subsequent transmission to the
second mass-storage device.

3. The system of claim 2 wherein the second mass-storage
device receives WRITE requests transmitted from the first
mass-storage device and stores the WRITE requests in an
input memory buffer for subsequent execution with respect
to the remote-mirror logical unit.

4. The system of claim 3 wherein, when the fourth
communication medium fails, and WRITE requests cannot
be transmitted by way of the first and second links and the
first communications medium, the controller of the first
mass-storage device purges WRITE requests from the out
put memory buffer, noting data units of the remote-mirror
logical unit that would have been written by the purged
WRITE requests in a bit map.

5. The system of claim 3 wherein, after the controller of
the second mass-storage device detects a failure to receive a
sequenced WRITE request from the first mass-storage
device and requests retransmission, from the first mass
storage device, of the WRITE request that was not received
by the second mass-storage device, and the WRITE request
is still not received after a threshold period of time, the
controller of the second mass-storage device purges WRITE
requests from the input memory buffer, noting data units of
the remote-mirror logical unit that would have been written
by the purged WRITE requests in a bit map.

6. A reliable computing and data-storage system compris
ing:

a first host computer linked to a second host computer by
a first communications medium;

a first mass-storage device, linked to the first host com
puter by a second communications medium;

a second mass-storage device, linked to the second host
computer by a third communications medium;

a fourth communications medium directly linking the first
mass-storage device to the second mass-storage device
for transmission of sequenced data written to a domi
nant logical unit within the first mass-storage device to
the second mass-storage device for writing to a remote
mirror logical unit;

a first link that directly links the first mass-storage device
to the first communications medium;

a second link that directly links the second mass-storage
device to the first communications medium; and

controller logic within controllers of the first and second
mass-storage devices that detect a failure of the fourth
communications medium and transmit any lost, and all
Subsequent, data for writing to the remote-mirror logi
cal unit from the first mass-storage device to the second
mass-storage device by way of the first and second
links and the first communications medium.

7. The system of claim 6 further including:
controller logic within a controller of the second mass

storage device that detects a failure to receive
sequenced data from the first mass-storage device and
requests retransmission, from the first mass-storage
device, of the data that was not received by the second
mass-storage device.

10

15

25

30

35

40

45

50

55

60

16
8. The system of claim 7 wherein the first mass-storage

device receives WRITE requests directed to the dominant
logical unit, executes the WRITE requests with respect to
the dominant logical unit, and places the WRITE requests in
an output memory buffer for Subsequent transmission to the
second mass-storage device.

9. The system of claim 8 wherein the second mass-storage
device receives WRITE requests transmitted from the first
mass-storage device and stores the WRITE requests in an
input memory buffer for subsequent execution with respect
to the remote-mirror logical unit.

10. The system of claim 9 wherein, when the fourth
communication medium fails, and WRITE requests cannot
be transmitted by way of the first and second links and the
first communications medium, the controller of the first
mass-storage device purges WRITE requests from the out
put memory buffer, noting data units of the remote-mirror
logical unit that would have been written by the purged
WRITE requests in a bit map.

11. The system of claim 9 wherein, after the controller of
the second mass-storage device detects a failure to receive a
sequenced WRITE request from the first mass-storage
device and requests retransmission, from the first mass
storage device, of the WRITE request that was not received
by the second mass-storage device, and the WRITE request
is still not received after a threshold period of time, the
controller of the second mass-storage device purges WRITE
requests from the input memory buffer, noting data units of
the remote-mirror logical unit that would have been written
by the purged WRITE requests in a bit map.

12. A method for increasing the reliability of a computing
and data-storage having a first host computer linked to a
second host computer by a first communications medium, a
first mass-storage device, linked to the first host computer by
a second communications medium, a second mass-storage
device, linked to the second host computer by a third
communications medium, and a fourth communications
medium directly linking the first mass-storage device to the
second mass-storage device for transmission of sequenced
data written to a dominant logical unit within the first
mass-storage device to the second mass-storage device for
writing to a remote-mirror logical unit, the method com
prising:

providing a first link that directly links the first mass
storage device to the first communications medium;

providing a second link that directly links the second
mass-storage device to the first communications
medium;

detecting, by a controller within the second mass-storage
device, a failure to receive sequenced data from the first
mass-storage device by the second mass-storage device
and requesting retransmission, by the controller within
the second mass-storage device from the first mass
storage device, of the data that was not received by the
second mass-storage device; and

detecting a failure of the fourth communications medium
by a controller within the first mass-storage device and
transmitting any lost, and all Subsequent, data for
writing to the remote-mirror logical unit from the first
mass-storage device to the second mass-storage device
by way of the first and second links and the first
communications medium.

HPE, Exh. 1009, p. 31

