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1. 

METHOD AND SYSTEM FOR PREVENTING 
DATA LOSS WITHN DISK-ARRAY PARS 

SUPPORTING MIRRORED LOGICAL UNITS 

TECHNICAL FIELD 

The present invention relates to the mirroring of logical 
units provided by disk arrays and other multi-logical-unit 
mass-storage devices and, in particular, to a method and 
system for preventing data loss resulting from host-com 
puter and communications-link failures that interrupt data 
flow between a primary, or dominant, logical unit on a first 
mass-storage device and a secondary, remote-mirror logical 
unit on a second mass-storage device. 

BACKGROUND OF THE INVENTION 

The present invention is related to mirroring of data 
contained in a dominant logical unit of a first mass-storage 
device to a remote-mirror logical unit provided by a second 
mass-storage device. An embodiment of the present inven 
tion, discussed below, involves disk-array mass-storage 
devices. To facilitate that discussion, a general description of 
disk drives and disk arrays is first provided. 
The most commonly used non-volatile mass-storage 

device in the computer industry is the magnetic disk drive. 
In the magnetic disk drive, data is stored in tiny magnetized 
regions within an iron-oxide coating on the Surface of the 
disk platter. A modern disk drive comprises a number of 
platters horizontally stacked within an enclosure. The data 
within a disk drive is hierarchically organized within various 
logical units of data. The surface of a disk platter is logically 
divided into tiny, annular tracks nested one within another. 
FIG. 1A illustrated tracks on the surface of a disk platter. 
Note that, although only a few tracks are shown in FIG. 1A, 
Such as track 101, an actual disk platter may contain many 
thousands of tracks. Each track is divided into radial sectors. 
FIG. 1B illustrates sectors within a single track on the 
Surface of the disk platter. Again, a given disk track on an 
actual magnetic disk platter may contain many tens or 
hundreds of sectors. Each sector generally contains a fixed 
number of bytes. The number of bytes within a sector is 
generally operating-system dependent, and normally ranges 
from 512 bytes per sector to 4096 bytes per sector. The data 
normally retrieved from, and stored to, a hard disk drive is 
in units of sectors. 
The modern disk drive generally contains a number of 

magnetic disk platters aligned in parallel along a spindle 
passed through the center of each platter. FIG. 2 illustrates 
a number of Stacked disk platters aligned within a modern 
magnetic disk drive. In general, both Surfaces of each platter 
are employed for data storage. The magnetic disk drive 
generally contains a comb-like array with mechanical 
READ/WRITE heads 201 that can be moved along a radial 
line from the outer edge of the disk platters toward the 
spindle of the disk platters. Each discrete position along the 
radial line defines a set of tracks on both surfaces of each 
disk platter. The set of tracks within which ganged READ/ 
WRITE heads are positioned at some point along the radial 
line is referred to as a cylinder. In FIG. 2, the tracks 202-210 
beneath the READ/WRITE heads together comprise a cyl 
inder, which is graphically represented in FIG. 2 by the 
dashed-out lines of a cylinder 212. 

FIG. 3 is a block diagram of a standard disk drive. The 
disk drive 301 receives input/output (“I/O) requests from 
remote computers via a communications medium 302 Such 
as a computer bus, fibre channel, or other Such electronic 
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2 
communications medium. For many types of Storage 
devices, including the disk drive 301 illustrated in FIG. 3, 
the vast majority of I/O requests are either READ or WRITE 
requests. A READ request requests that the storage device 
return to the requesting remote computer some requested 
amount of electronic data stored within the storage device. 
A WRITE request requests that the storage device store 
electronic data furnished by the remote computer within the 
storage device. Thus, as a result of a READ operation 
carried out by the storage device, data is returned via 
communications medium 302 to a remote computer, and as 
a result of a WRITE operation, data is received from a 
remote computer by the storage device via communications 
medium 302 and stored within the storage device. 
The disk drive storage device illustrated in FIG. 3 

includes controller hardware and logic 303 including elec 
tronic memory, one or more processors or processing cir 
cuits, and controller firmware, and also includes a number of 
disk platters 304 coated with a magnetic medium for storing 
electronic data. The disk drive contains many other compo 
nents not shown in FIG. 3, including READ/WRITE heads, 
a high-speed electronic motor, a drive shaft, and other 
electronic, mechanical, and electromechanical components. 
The memory within the disk drive includes a request/reply 
buffer 305, which stores I/O requests received from remote 
computers, and an I/O queue 306 that stores internal I/O 
commands corresponding to the I/O requests stored within 
the request/reply buffer 305. Communication between 
remote computers and the disk drive, translation of I/O 
requests into internal I/O commands, and management of 
the I/O queue, among other things, are carried out by the 
disk drive I/O controller as specified by disk drive I/O 
controller firmware 307. Translation of internal I/O com 
mands into electromechanical disk operations in which data 
is stored onto, or retrieved from, the disk platters 304 is 
carried out by the disk drive I/O controller as specified by 
disk media read/write management firmware 308. Thus, the 
disk drive I/O control firmware 307 and the disk media 
read/write management firmware 308, along with the pro 
cessors and memory that enable execution of the firmware, 
compose the disk drive controller. 

Individual disk drives, such as the disk drive illustrated in 
FIG. 3, are normally connected to, and used by, a single 
remote computer, although it has been common to provide 
dual-ported disk drives for concurrent use by two computers 
and multi-host-accessible disk drives that can be accessed by 
numerous remote computers via a communications medium 
such as a fibre channel. However, the amount of electronic 
data that can be stored in a single disk drive is limited. In 
order to provide much larger-capacity electronic data-Stor 
age devices that can be efficiently accessed by numerous 
remote computers, disk manufacturers commonly combine 
many different individual disk drives, such as the disk drive 
illustrated in FIG.3, into a disk array device, increasing both 
the storage capacity as well as increasing the capacity for 
parallel I/O request servicing by concurrent operation of the 
multiple disk drives contained within the disk array. 

FIG. 4 is a simple block diagram of a disk array. The disk 
array 402 includes a number of disk drive devices 403, 404, 
and 405. In FIG. 4, for simplicity of illustration, only three 
individual disk drives are shown within the disk array, but 
disk arrays may contain many tens or hundreds of individual 
disk drives. A disk array contains a disk array controller 406 
and cache memory 407. Generally, data retrieved from disk 
drives in response to READ requests may be stored within 
the cache memory 407 so that subsequent requests for the 
same data can be more quickly satisfied by reading the data 

HPE, Exh. 1009, p. 24



US 7,058,850 B2 
3 

from the quickly accessible cache memory rather than from 
the much slower electromechanical disk drives. Various 
elaborate mechanisms are employed to maintain, within the 
cache memory 407, data that has the greatest chance of 
being Subsequently re-requested within a reasonable amount 
of time. The disk WRITE requests, in cache memory 407, in 
the event that the data may be subsequently requested via 
READ requests or in order to defer slower writing of the 
data to physical storage medium. 

Electronic data is stored within a disk array at specific 
addressable locations. Because a disk array may contain 
many different individual disk drives, the address space 
represented by a disk array is immense, generally many 
thousands of gigabytes. The overall address space is nor 
mally partitioned among a number of abstract data storage 
resources called logical units (“LUNs). A LUN includes a 
defined amount of electronic data storage space, mapped to 
the data storage space of one or more disk drives within the 
disk array, and may be associated with various logical 
parameters including access privileges, backup frequencies, 
and mirror coordination with one or more LUNs. LUNs may 
also be based on random access memory (“RAM), mass 
storage devices other than hard disks, or combinations of 
memory, hard disks, and/or other types of mass-storage 
devices. Remote computers generally access data within a 
disk array through one of the many abstract LUNs 408-415 
provided by the disk array via internal disk drives 403-405 
and the disk array controller 406. Thus, a remote computer 
may specify a particular unit quantity of data, such as a byte, 
word, or block, using a bus communications media address 
corresponding to a disk array, a LUN specifier, normally a 
64-bit integer, and a 32-bit, 64-bit, or 128-bit data address 
that specifies a LUN, and a data address within the logical 
data address partition allocated to the LUN. The disk array 
controller translates Such a data specification into an indi 
cation of a particular disk drive within the disk array and a 
logical data address within the disk drive. A disk drive 
controller within the disk drive finally translates the logical 
address to a physical medium address. Normally, electronic 
data is read and written as one or more blocks of contiguous 
32-bit or 64-bit computer words, the exact details of the 
granularity of access depending on the hardware and firm 
ware capabilities within the disk array and individual disk 
drives as well as the operating system of the remote com 
puters generating I/O requests and characteristics of the 
communication medium interconnecting the disk array with 
the remote computers. 

In many computer applications and systems that need to 
reliably store and retrieve data from a mass-storage device, 
Such as a disk array, a primary data object, such as a file or 
database, is normally backed up to backup copies of the 
primary data object on physically discrete mass-storage 
devices or media so that if, during operation of the appli 
cation or system, the primary data object becomes corrupted, 
inaccessible, or is overwritten or deleted, the primary data 
object can be restored by copying a backup copy of the 
primary data object from the mass-storage device. Many 
different techniques and methodologies for maintaining 
backup copies have been developed. In one well-known 
technique, a primary data object is mirrored. FIG. 5 illus 
trates object-level mirroring. In FIG. 5, a primary data object 
“O'” 501 is stored on LUNA 502. The mirror object, or 
backup copy, “O, 503 is stored on LUN B 504. The arrows 
in FIG. 5, such as arrow 505, indicate I/O write operations 
directed to various objects stored on a LUN. I/O write 
operations directed to object “O'” are represented by arrow 
506. When object-level mirroring is enabled, the disk array 
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4 
controller providing LUNs A and Bautomatically generates 
a second I/O write operation from each I/O write operation 
506 directed to LUNA, and directs the second generated I/O 
write operation via path 507, switch “S” 508, and path 509 
to the mirror object “O'” 503 stored on LUN B 504. In FIG. 
5, enablement of mirroring is logically represented by 
switch “S” 508 being on. Thus, when object-level mirroring 
is enabled, any I/O write operation, or any other type of I/O 
operation that changes the representation of object"O' 501 
on LUNA, is automatically mirrored by the disk array 
controller to identically change the mirror object “O'” 503. 
Mirroring can be disabled, represented in FIG. 5 by switch 
“S 508 being in an off position. In that case, changes to the 
primary data object "O' 501 are no longer automatically 
reflected in the mirror object “O'” 503. Thus, at the point 
that mirroring is disabled, the stored representation, or state, 
of the primary data object “O'” 501 may diverge from the 
stored representation, or state, of the mirror object “O'” 503. 
Once the primary and mirror copies of an object have 
diverged, the two copies can be brought back to identical 
representations, or states, by a resync operation represented 
in FIG. 5 by switch “S. 510 being in an on position. In the 
normal mirroring operation, Switch “S” 510 is in the off 
position. During the resync operation, any I/O operations 
that occurred after mirroring was disabled are logically 
issued by the disk array controller to the mirror copy of the 
object via path 511, switch “S. and pass 509. During 
resync, switch “S” is in the off position. Once the resync 
operation is complete, logical Switch “S” is disabled and 
logical switch “S”508 can be turned on in order to reenable 
mirroring so that Subsequent I/O write operations or other 
I/O operations that change the storage state of primary data 
object “O” are automatically reflected to the mirror object 
“O, 503. 

FIG. 6 illustrates a dominant LUN coupled to a remote 
mirror LUN. In FIG. 6, a number of computers and com 
puter servers 601–608 are interconnected by various com 
munications media 610–612 that are themselves 
interconnected by additional communications media 
613-614. In order to provide fault tolerance and high 
availability for a large data set stored within a dominant 
LUN on a disk array 616 coupled to server computer 604, 
the dominant LUN 616 is mirrored to a remote-mirror LUN 
provided by a remote disk array 618. The two disk arrays are 
separately interconnected by a dedicated communications 
medium 620. Note that the disk arrays may be linked to 
server computers, as with disk arrays 616 and 618, or may 
be directly linked to communications medium 610. The 
dominant LUN 616 is the target for READ, WRITE, and 
other disk requests. All WRITE requests directed to the 
dominant LUN 616 are transmitted by the dominant LUN 
616 to the remote-mirror LUN 618, so that the remote 
mirror LUN faithfully mirrors the data stored within the 
dominant LUN. If the dominant LUN fails, the requests that 
would have been directed to the dominant LUN can be 
redirected to the mirror LUN without a perceptible inter 
ruption in request servicing. When operation of the domi 
nant LUN 616 is restored, the dominant LUN 616 may 
become the remote-mirror LUN for the previous remote 
mirror LUN 618, which becomes the new dominant LUN, 
and may be resynchronized to become a faithful copy of the 
new dominant LUN 618. Alternatively, the restored domi 
nant LUN 616 may be brought up to the same data state as 
the remote-mirror LUN 618 via data copies from the remote 
mirror LUN and then resume operating as the dominant 
LUN. Various types of dominant-LUN/remote-mirror-LUN 
pairs have been devised. Some operate entirely synchro 
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nously, while others allow for asynchronous operation and 
reasonably slight discrepancies between the data states of 
the dominant LUN and mirror LUN. 

Unfortunately, interruptions in the direct communications 
between disk arrays containing a dominant LUN and a 
remote-mirror LUN of a mirrored LUN pair occur relatively 
frequently. Currently, when communications are interrupted 
or Suffer certain types of failures, data may end up languish 
ing in cache-memory buffers, and, in the worst cases, purged 
from cache-memory buffers or lost due to systems failures. 
Designers and manufacturers of mass-storage devices. Such 
as disk arrays, and users of mass-storage devices and high 
availability and fault-tolerant systems that employ mass 
storage devices, have recognized the need for a more reliable 
LUN-mirroring technique and system that can weather com 
munications failures and host-computer failures. 

SUMMARY OF THE INVENTION 

One embodiment of the present invention provides an 
additional communications link between two mass-storage 
devices containing LUNs of a mirror-LUN pair, as well as 
incorporating a fail-safe, mass-storage-device-implemented 
retry protocol to facilitate non-drastic recovery from com 
munications-link failures. The additional communications 
link between the two mass-storage devices greatly reduces 
the likelihood of the loss of buffered data within the mass 
storage device containing the dominant LUN of a mirrored 
LUN pair, and the retry protocol prevents unnecessary 
build-up of data within cache-memory buffers of the mass 
storage device containing the remote-mirror LUN. The 
combination of the additional communications link and retry 
protocol together ameliorates a deficiency in current LUN 
mirroring implementations that leads to data loss and incon 
sistent and unrecoverable databases. The additional commu 
nications link provided by the present invention is physically 
distinct and differently implemented from the direct com 
munications link between the two mass-storage devices, to 
provide greater robustness in the event of major hardware 
failure. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A illustrated tracks on the surface of a disk platter. 
FIG. 1B illustrates sectors within a single track on the 

surface of the disk platter. 
FIG. 2 illustrates a number of disk platters aligned within 

a modern magnetic disk drive. 
FIG. 3 is a block diagram of a standard disk drive. 
FIG. 4 is a simple block diagram of a disk array. 
FIG. 5 illustrates object-level mirroring. 
FIG. 6 illustrates a dominant logical unit coupled to a 

remote-mirror logical unit. 
FIG. 7 shows an abstract representation of the commu 

nications-link topography currently employed for intercon 
necting mass-storage devices containing the dominant and 
remote-mirror logical units of a mirrored-logical-unit pair. 

FIGS. 8A-C illustrates a communications-link failure that 
results in purging of the cache memory within the mass 
storage device containing a remote-mirror logical unit. 

FIGS. 9A and 9B illustrate a normal WRITE-request 
buffer, such as the input queue 826 of the second mass 
storage device in FIG. 8C, and a bit-map buffer, such as the 
bit map 846 in FIG. 8C. 

FIGS. 10A-E illustrates an example of a detrimental, 
out-of-order WRITE request applied to a mass-storage 
device. 
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6 
FIG. 11 shows the final stage in recovery from the missing 

WRITE request problem illustrated in FIG. 8A-C. 
FIGS. 12A–C illustrates an error-recovery technique 

employed to handle communications-link failures. 
FIGS. 13 and 14 illustrate the occurrence of multiple 

failures, leading to data loss within the mass-storage devices 
of FIGS. 8A-C, 11, and 12A-C. 

FIG. 15 illustrates an enhanced communications topology 
that represents a portion of one embodiment of the present 
invention. 

FIGS. 16A-D illustrates operation of the exemplary 
mass-storage devices using the techniques provided by one 
embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

One embodiment of the present invention provides a more 
communications-fault-tolerant mirroring technique that pre 
vents loss of data stored in electronic cache-memory for 
relatively long periods of time due to host-computer failures 
and communications failures. In the discussion below, the 
data-loss problems are described, in detail, followed by a 
description of an enhanced mass-storage-device pair and an 
enhanced high-level communications protocol implemented 
in the controllers of the mass-storage-devices. 

FIG. 7 shows an abstract representation of the commu 
nications-link topography currently employed for intercon 
necting mass-storage devices containing the dominant and 
remote-mirror LUNs of a mirrored-LUN pair. A first mass 
storage device 702 is interconnected with a first host com 
puter 704 via a small-computer-systems interface (“SCSI), 
fiber-channel (“FC), or other type of communications link 
706. A second mass-storage device 708 is interconnected 
with a second host computer 710 via a second SCSI or FC 
communications link 712. The two host computers are 
interconnected via a local-area network (“LAN”) or wide 
area network (“WAN) 714. The two mass-storage devices 
702 and 708 are directly interconnected, for purposes of 
mirroring, by one or more dedicated enterprise systems 
connection (“ESCON”), asynchronous transfer mode 
(“ATM), FC, T3, or other types of links 716. The first 
mass-storage device 702 contains a dominant LUN of a 
mirrored-LUN pair, while the second mass-storage device 
708 contains the remote-mirror LUN of the mirrored-LUN 
pa1r. 

FIGS. 8A-C illustrates a communications-link failure that 
leads to a purge of cache memory within the mass-storage 
device containing a remote-mirror LUN. In FIG. 8A, data to 
be written to physical-data-storage devices within a first 
mass-storage device 802 is transmitted by a host computer 
804 through a SCSI, FC, or other type of link 806 to the 
mass-storage device 802. In FIGS. 8A-C, and in FIGS. 
11A-D, 12, 13, and 15A-D, which employ similar illustra 
tion conventions as employed in FIGS. 8A-C, incoming 
WRITE commands are illustrated as small square objects, 
such as incoming WRITE command 808, within a commu 
nications path such as the SCSI, FC, or other type of link 
806. Each WRITE request contains a volume or LUN 
number followed a "slash, followed in turn, by a sequence 
number. WRITE requests are generally sequenced by high 
level protocols so that WRITE requests can be applied, in 
order, to the database contained within volumes or LUNs 
stored on one or more physical data-storage devices. For 
example, both in FIGS. 8A-C and in the subsequent figures, 
identified above, LUN “0” is mirrored to a remote mirror 
stored within physical data-storage devices of a second 
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mass-storage device 810, interconnected with the first mass 
storage device 802 by one or more ESCON, ATM, FC, T3, 
or other type of communications links 812. 
The controller 814 of the first mass-storage device 802 

detects WRITE requests directed to dominant LUN “0” and 
directs copies of the WRITE requests to the second mass 
storage device 810 via an output buffer 816 stored within 
cache memory 818 of the mass-storage device 802. The 
WRITE requests directed to the dominant LUN, and to other 
LUNS or volumes provided by the first mass-storage device, 
are also directed to an input buffer 820 from which the 
WRITE requests are subsequently extracted and executed to 
store data on physical data-storage devices 822 within the 
first mass-storage device. Similarly, the duplicate WRITE 
requests transmitted by the first mass-storage device through 
the ESCON, ATM, FC, T3, or other type of link or links 812 
are directed by the controller 824 of the second mass-storage 
device 810 to an input buffer 826 within a cache-memory 
822 of the second mass-storage device for eventual execu 
tion and storage of data on the physical data-storage devices 
830 within the second mass-storage device 810. 

In general, the output buffer 816 within the first mass 
storage device is used both as a transmission queue as well 
as a storage buffer for holding already transmitted WRITE 
requests until an acknowledgment for the already transmit 
ted WRITE requests is received from the second mass 
storage device. Thus, for example, in FIG. 8A, the next 
WRITE-request to be transmitted 832 appears in the middle 
of the output buffer, above already transmitted WRITE 
requests 834–839. When an acknowledgement for a trans 
mitted WRITE request is received from the second mass 
storage device, the output buffer 818 entry corresponding to 
the acknowledged, transmitted WRITE request can be over 
written by a new incoming WRITE request. In general, 
output buffers are implemented as circular queues with 
dynamic head and tail pointers. Also note that, in FIGS. 
8A-C, and in the subsequent, related figures identified 
above, the cache memory buffers are shown to be rather 
Small, containing only a handful of messages. In actual 
mass-storage devices, by contrast, electronic cache memo 
ries may provide as much as 64 gigabytes of data storage. 
Therefore, output and storage buffers within mass-storage 
device cache memories are often extremely large. The 
illustration conventions employed in FIGS. 8A-C, and in the 
Subsequent, related figures identified above, present simple 
examples, and are not intended to, in any way, define the 
sizes, capacities, and other parameters of actual mass 
storage-device and communications-link components. 

Although the communications link 812 employs lower 
level protocols with message retry, the communications link 
may nonetheless fail, from time to time, to deliver a mes 
sage. FIG. 8B illustrates a system state, subsequent to that 
shown in FIG. 8A, in which the 94" WRITE request, 
directed from the first mass-storage device 802 to the second 
mass-storage device 810, has failed to be transmitted to the 
second mass-storage device 810. The controller 824 of the 
second mass-storage device 810 reserves a place 840 within 
the input queue 826 for the 94" WRITE request, and 
continues to accept higher-sequence-number WRITE 
requests, buffering them in the input buffer 826. The con 
troller 824 may not apply the higher-sequence-number 
WRITE requests before applying the missing 94" WRITE 
request, for reasons to be discussed, in detail, below. In 
general, WRITE requests may only be applied in-order, to 
ensure a consistent database. The second mass-storage 
device 810 has only a finite amount of storage space for 
buffering WRITE requests, and so must eventually detect 
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8 
and deal with a missing WRITE request, Such as the missing 
94' WRITE request in the example shown in FIG. 8B. 

Handling of missing WRITE requests, currently, is facili 
tated by timing mechanisms based on a system timer acces 
sible to the controller of a mass-storage device. There are 
many timing mechanisms. In the most common mechanism, 
incoming WRITE requests are time stamped relative to the 
system timer, represented in FIG. 8C as a small clock-like 
object 843. The controller can determine, for any buffered 
WRITE request, the amount of time elapsed since the 
WRITE request was received from the communications link 
812. FIG. 8C illustrates the commonly employed mecha 
nism for handling missing WRITE requests. In FIG. 8C, the 
controller 824 of the second mass-storage device 810 has 
determined that the least-recently received WRITE request 
842 was received more than some threshold amount of time 
before the current time. In other words, one can think of the 
least-recently-received WRITE request 842 as having set a 
timer that has expired after a threshold amount of time. The 
timer is expired because the missing 94" WRITE request 
has not been received. 
Upon expiration of the timer, the controller purges the 

input buffer 826 to make room for additional incoming 
messages, for example, from host computer 844 directed to 
volumes or LUNs other than the remote-mirror LUN paired 
with the dominant LUN of the first mass-storage device 802. 
Rather than simply discarding the stored WRITE requests, 
the second mass-storage-device controller may intelligently 
purge only those WRITE-requests directed to the remote 
mirror LUN, allocating a bit map 846 to store one-bit entries 
for each purged WRITE request to keep track of the logical 
blocks, sectors, or other data-storage units to which the 
WRITE-requests were directed. In other words, the bit map 
846 contains a record of all block or sectors that would have 
been overwritten by the WRITE requests had the timer now 
expired. Purging of the input buffer, indicated by arrow 848, 
may also be accompanied by Subsequent storage of indica 
tions 850 of received WRITE requests within the bit map 
846. Finally, the controller of the second mass-storage 
device directs a high-level failure message 852 back to the 
first mass-storage device. 

FIGS. 9A and 9B illustrate a normal WRITE-request 
buffer 902, such as the input queue 826 of the second 
mass-storage device in FIG. 8C, and a bit-map buffer 906, 
such as the bit map 846 in FIG. 8C. Initially, a controller 
may buffer WRITE requests in a time-ordered WRITE 
request buffer, illustrated in FIG. 9A. In the time-ordered 
WRITE-request buffer 902, WRITE requests are stored in 
their sequence order. Unfortunately, the amount of data that 
can be stored within the time-ordered WRITE-request buffer 
902 is limited, and each WRITE request, such as WRITE 
request 904, must be stored in its entirety. The advantage of 
using a time-ordered WRITE-request buffer is that, upon 
resumption of dequeing and execution of WRITE requests 
from the WRITE-request buffer, WRITE requests can be 
straightforwardly extracted from the sequence-ordered 
WRITE-request buffer and applied to physical data-storage 
devices. 

If a missing WRITE request is not retransmitted and 
Successfully received by the second mass-storage device, the 
controller of the mass-storage device may detect a timer 
expiration related to the missing WRITE request, and purge 
WRITE requests in the input buffer 826 into the bit map 846. 
In a WRITE-request bit-map buffer, each of the data storage 
units within the remote-mirror LUN is represented within 
the WRITE-request bit-map buffer as a single bit. When the 
bit is set, the bit map indicates that that a WRITE request has 
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been received since the controller stopped dequeing and 
executing WRITE requests from the input buffer 826. Gen 
erally, either tracks or cylinders are employed as the logical 
data storage unit to represent with a single bit within the bit 
map, in order to keep the bit map reasonably sized. 
The WRITE-request bit-map buffer 906 is far more com 

pact than a sequence-ordered WRITE-request buffer. Rather 
than storing the entire WRITE-request, including the data to 
be written, the WRITE-request bit-map buffer needs to 
maintain only a single bit for each track or cylinder to 
indicate whether or not a WRITE request directed to the 
track or cylinder has been received. Unfortunately, the 
WRITE-request bit-map buffer does not maintain any 
WRITE-request sequence information. Thus, once commu 
nications is resynchronized between the mass-storage 
devices, the bit map can only be used to request retransmis 
sion of data initially transmitted in WRITE requests that 
were purged from cache memory or received by the second 
mass-storage device after the purge. 

FIGS. 10A-E illustrate an example of a detrimental 
out-of-order WRITE request applied to a mass-storage 
device. The example of FIGS. 10A-E involves a simple 
linked list. FIG. 10A is an abstract illustration of a general, 
linked-list data structure. The data structure comprises three 
nodes, or data blocks 1001–1003. A linked list may contain 
Zero or more data blocks, up to some maximum number of 
data blocks that can be stored in the memory of a particular 
computer. Generally, a separate pointer 1004 contains the 
address of the first node of the linked list. In FIGS. 10A-E, 
a pointer, or address, is represented by an arrow, such as 
arrow 1005, pointing to the node to which the address refers, 
and emanating from a memory location, such as memory 
location 1006, in which the pointer is stored. Each node of 
the linked list includes a pointer and other data stored within 
the node. For example, node 1001 includes pointer 1007 that 
references node 1002 as well as additional space 1008 that 
may contain various amounts of data represented in various 
different formats. Linked lists are commonly employed to 
maintain, in memory, ordered sets of data records that may 
grow and contract dynamically during execution of a pro 
gram. Linked lists are also employed to represent ordered 
records within the data stored on a mass-storage device. 
Note that the final node 1003 in the linked list of FIG. 10A 
includes a null pointer 1009, indicating that this node is the 
final node in the linked list. 

FIGS. 10B E abstractly represent data blocks, stored on 
a mass-storage device, that contain a linked list of data 
blocks. Each data-block node, such as data-block node 1010, 
includes a pointer, Such as pointer 1012, and some amount 
of stored data, such as stored data 1014. The list of data 
blocks in FIG. 10B starts with node 1010, next includes node 
1016, then node 1018, and, finally, node 1020. Each data 
block can be written or overwritten, in a single mass 
storage-device access. Data blocks 1022 and 1024 in FIG. 
10B are unused. 

Consider the addition of a new node, or data block, to the 
end of the linked list. The two WRITE operations required 
to add a data block to the end of the list are illustrated in 
FIGS. 10C D. First, the new node is written to data block 
1024, as shown in FIG. 10C. Then, node 1020 is overwritten 
in order to change the pointer within node 1020 to reference 
the newly added node 1024. When these operations are 
performed in the sequence shown in FIGS. 10C-D, the 
linked list is consistent at each point in the two-WRITE 
request operation. For example, in FIG. 10C, the new node 
has been added, but is not yet a member of the linked list. 
If the second operation, illustrated in FIG. 10D, fails, the 
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10 
linked list remains intact, with the only deleterious effect 
being an overwritten, and possibly wasted, data block 1024. 
In the second operation, illustrated in FIG. 10D, the pointer 
within data node 1020 is updated to point to already resident 
node 1024, leaving the linked list intact and consistent, and 
having a new node. 

Consider, by contrast, the state of the linked list should the 
second WRITE operation, illustrated in FIG. 10D, occur 
prior to the first WRITE operation, illustrated in FIG. 10C. 
In this case, illustrated in FIG. 10E, the pointer within node 
1020 references data block 1024. However, data block 1024 
has not been written, and is therefore not formatted to 
contain a pointer having a null value. If, at this point, the 
second WRITE operation fails, the linked list is corrupted. 
A software routine traversing the nodes of the linked list 
cannot determine where the list ends. Moreover, the soft 
ware routine will generally interpret any data found in data 
block 1024 as the contents of the fifth node of the linked list, 
possibly leading to further data corruption. Thus, the order 
of WRITE operations for adding a node to a linked list stored 
on a mass-storage device is critical in the case that all 
WRITE operations are not successfully carried out. When 
WRITE requests are extracted from a time-ordered WRITE 
request buffer, as shown in FIG. 9A, and executed on a 
remote-mirror, the remote-mirror will remain in a data 
consistent state throughout the period time during which the 
buffered WRITE requests are carried out, providing that the 
order in which the WRITE requests were transmitted to the 
mass-storage device is consistent. However, when data in 
tracks or cylinders flagged in a WRITE-request bit-map 
buffer of FIG.9B are requested to be retransmitted from the 
first mass-storage device, and are sent in an arbitrary order 
to the second mass-storage device, the data state of the 
remote-mirror LUN may be quite inconsistent, and poten 
tially corrupted, until all tracks or cylinders flagged within 
the WRITE-request bit-map buffer are successfully retrans 
mitted and applied to the remote-mirror LUN. The corrup 
tion illustrated in FIGS. 10A-E is rather straightforward and 
simple. The potential corruption within hundreds of 
gigabytes of data stored within a mass-storage-device LUN 
and incompletely transferred, out-of-order, to a remote LUN 
is staggering. Literally hundreds of thousands of complex 
data interrelationships may be irreparably broken. 

FIG. 11 shows the final stage in recovery from the 
missing-WRITE-request problem illustrated in FIG. 8A-C. 
After sending a message by the controller of the second 
mass-storage device to the first mass-storage device 802 to 
indicate expiration of the timer and loss of the 94" WRITE 
request, the two mass-storage devices carry out a commu 
nications-failure-recovery protocol, part of which comprises 
sending the bit map (846 in FIG. 8C) from the second 
mass-storage device to the first mass-storage device to 
indicate to the first mass-storage device those blocks, or 
sectors, within the remote-mirror LUN that were not 
updated according to transmitted WRITE requests. The 
second mass-storage device uses the bit map and any other 
returned information to restart transmission of already trans 
mitted data from the first mass-storage device to the second 
mass-storage device. For example, in FIG. 11, the 94' 
WRITE request that was not previously successfully trans 
mitted 1102 is retransmitted by the first mass-storage device 
to the second mass-storage device via communications link 
812. The first mass-storage device may read the indicated 
blocks, or sectors, from its own physical data-storage 
devices, as indicated by arrow 1104 in FIG. 11, in order to 
reconstruct the WRITE requests for retransmission to the 
first mass-storage device. However, as discussed above, 
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until the remote-mirror LUN reaches the same data state as 
that of the dominant LUN, the remote-mirror LUN may be 
in an inconsistent state. 
The first mass-storage device may employ a similar 

error-recovery mechanism in the event of a failure in direct 
the communications link (812 in FIG. 11) between the first 
mass-storage device to the second mass-storage device. 
FIGS. 12A–C illustrate the error-recovery technique 
employed to handle communications-link failures. In FIG. 
12A, the communications link 812 is disrupted, as indicated 
by the large “X” 1202 overlying the communications link 
812. In this case, as shown in FIG. 12A. WRITE-requests, 
duplicated for transmission to the remote-mirror LUN, begin 
to accumulate in the output buffer 816. At a subsequent point 
in time, as shown in FIG. 12B, either an internal timer 
expires for the least recently duplicated WRITE requests 
1204 or the output buffer 816 becomes completely filled. 
The controller 814 of the first mass-storage device detects 
either or both these conditions, and purges the output buffer 
816, storing in a bit map 1206 binary indications of those 
remote-mirror LUN blocks or sectors that would have been 
written had the purged WRITE requests been successfully 
transmitted to the second mass-storage device 810. Later, 
when the communications-link 812 is restored to function 
ing order, the controller 814 of the first mass-storage device 
802 can employ the bit map 1206 to retrieve the data of those 
blocks or sectors that should have been transmitted to the 
remote-mirror LUN, and regenerate corresponding unor 
dered WRITE requests, representing the logical OR of the 
combined local and remote array bitmaps, that are placed 
into output buffer 816 for retransmission to the second 
mass-storage device. 
The two techniques illustrated in FIGS. 8A-C, 11, and 

FIGS. 12A-C can be used to recover from problems asso 
ciated with single communications-link failures by both the 
mass-storage device containing the remote-mirror LUN as 
well as the mass-storage device containing the dominant 
LUN. However, multiple failures do, from time-to-time, 
occur. FIGS. 13 and 14 illustrate the occurrence of multiple 
failures, leading to data loss within the mass-storage devices 
of FIGS. 8A-C, 11, and 12A-C. In FIG. 13, a WRITE 
request transmitted by the first mass-storage device 802. 
WRITE request “0/173,” is not received by the second 
mass-storage device 810, leading to buffering of a large 
number of subsequently received WRITE requests by the 
controller of the second mass storage device in input buffer 
826. Eventually, a timer expires, leading to allocation of a bit 
map 1302 for storing information about out-of-date blocks, 
or sectors, as a result of purging the WRITE requests from 
the input buffer 826. 

In the same time frame, the communications link 812 
completely fails, as indicated by the “X” 1302 superimposed 
on the communications link. This leads to accumulation of 
duplicated WRITE requests in the output buffer 816 of the 
first mass-storage device 802. Finally, the controller of the 
first mass-storage device detects the communications failure 
and allocates a bit map 1304 for storing information about 
the remote-mirror LUN blocks, or sectors, that would have 
been written by the WRITE requests that the controller then 
purges from the output buffer 816. As shown in FIG. 14, the 
controller of the second mass-storage device directs purging 
1402 of the input buffer 826, storing out-of-date-block, or 
out-of-date-sector, information in the allocated bit map 
1302. Concurrently, the first mass-storage device controller 
directs purging 1404 of the output buffer 816, storing 
indications of remote-mirror-LUN out-of-date blocks, or 
out-of-date sectors, also known as orphaned blocks or sec 
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12 
tors, in bit map 1304. In addition, newly duplicated WRITE 
requests 1406 are discarded, after making appropriate 
entries in the bit map 1304. 

Next, the host computer 804 fails. Failure of the host 
computer 804 leads to fail over of the dominant-LUN/ 
remote-mirror-LUN pair to the remote-mirror LUN stored 
within the second mass-storage device 810. In other words, 
the first mass-storage device is no longer accessible to 
system users via host computer 804, and system fail over 
occurs, with re-direction of READ and WRITE requests to 
the remote-mirror LUN via host computer 844. However, 
the remote-mirror LUN is not up-to-date, having not been 
updated by the WRITE requests purged from the input buffer 
826 in the second mass-storage device, nor updated by the 
WRITE requests purged from the output buffer 816 in the 
first mass-storage device 802. More seriously, the remote 
mirror LUN may be inconsistent, due to communications 
link failure in the middle of a multi-WRITE-request trans 
actions. But the out-of-date, and perhaps inconsistent, 
remote-mirror LUN now becomes the dominant LUN, and 
the second mass-storage device begins accepting WRITE 
requests directed to the new dominant LUN via host com 
puter 844. If the remote-mirror LUN was not inconsistent 
prior to accepting new WRITE requests, it may now quickly 
become so, since many intervening WRITE requests purged 
from the input buffer 826 and output buffer 816 have been 
lost. Thus, because of multiple failures, neither the dominant 
LUN nor the remote-mirror LUN may be consistent follow 
ing fail over, and it may be Subsequently impossible to 
recover a consistent data base date. 

Thus, as seen in the above-described examples, commu 
nications-link failures may lead to purging of input and 
output buffers in both mass-storage devices involved in a 
dominant-LUN/remote-mirror-LUN pair. This purging of 
WRITE requests may represent a significant loss of trans 
mitted data. When a second failure occurs, such as the 
failure of the host computer associated with the first mass 
storage device, a large amount of data may be completely 
lost, and both the dominant LUN and remote-mirror-LUN 
may quickly end up in inconsistent states without any 
possibility of recovery. 
One embodiment of the present invention greatly lessens 

the chance of purging of cached data by either or both 
mass-storage devices of a dominant-LUN/remote-mirror 
LUN pair, and therefore greatly lessens the chance that 
cached data is lost as a result of multiple failures. FIG. 15 
illustrates an enhanced communications topology that rep 
resents a portion of one embodiment of the present inven 
tion. FIG. 15 uses the same illustration conventions as used 
in FIG. 7, and uses the same numerical labels. Note that, in 
the communications topology shown in FIG. 15, direct 
connections 718 and 720 have been added to directly 
connect the first mass-storage device 702 and the second 
mass-storage device 708 to the LAN/WAN 714. In certain 
systems, such direct links may already be present, but are 
used only system management functions, and not for trans 
ferring data to and from physical storage. Should the 
ESCON, ATM, T3 link or links 716 that directly intercon 
nect the first mass-storage device 702 with the second 
mass-storage device 708 fail, WRITE requests can nonethe 
less be forwarded from the first mass-storage device to the 
second mass-storage device via interconnects 718 and 720 
and the LAN/WAN 714. In other words, the mass-storage 
devices do not depend on their associated host computers for 
interconnection with the LAN/WAN. Not only do connec 
tions 718 and 720 provide an alternate communications link 
between the two mass-storage devices, they provide an 
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entirely different type of communications link that may 
survive failure of direct links. 
The enhanced communications topology, illustrated in 

FIG. 15, along with an enhanced mass-storage-device-con 
troller communications protocol, prevents the cache purging 
and data loss illustrated in the examples of FIGS. 8A-C, and 
11–14. FIGS. 16A-D show, using the same illustration 
conventions used in FIGS. 8A-C, 11, 12A-C, 13, and 14, 
operation of the exemplary mass-storage devices using the 
techniques provided by one embodiment of the present 
invention. Note that, in FIG. 16A, a second timer 1602, or 
subtimer, is shown within the controller 824 of the second 
mass-storage device 810. The timer 1602 shown in FIG. 
16A, like the original timer, is meant to represent a combi 
nation of a system clock and time stamps within received 
WRITE requests. Alternative timing mechanisms are also 
possible. Operation of the subtimer is illustrated in the 
example discussed below. 

In FIG. 16A, WRITE requests continue to be forwarded 
by the first mass-storage device 802 to the second mass 
storage device 810, as in FIGS. 8A-C. In FIG. 16A, a 
WRITE request directed to the second mass-storage device, 
WRITE Request “0/301,” has failed to arrive at the second 
mass-storage device due to an error within the communica 
tions link, or in communications-link-related drivers or 
protocol engines, within the first, second, or both mass 
storage devices. As before, the second mass-storage device 
continues to accumulate higher-sequence-number WRITE 
requests in the input buffer 826, hoping that the missing 
WRITE request “0/301 will eventually be received. How 
ever, as shown in FIG. 16B, at a point in time when the 
subtimer 1602 for the missing WRITE request, or the next 
highest-sequence-numbered request 1604, expires, the con 
troller of the second mass-storage device sends 1606 a 
high-level, mass-storage-device-protocol message 1608 
back to the first mass-storage device to request that the first 
mass-storage device re-send the missing WRITE request. In 
other words, in one embodiment of the present invention, a 
higher-level, mass-storage-device-level protocol enhances 
the lower-level communications-link protocols to ensure 
that a missing WRITE request is detected, and re-transmis 
sion requested, before the main timer expires, initiating the 
bit map and cache purge operations discussed previously 
with respect to FIG. 11. As shown in FIG. 16C, the request 
for re-transmission (1608 in FIG. 16B) is received by the 
first mass-storage device, eliciting re-transmission of the 
missing WRITE request 1610. Thus, the cache-purge-and 
bit-map failure recovery discussed, above, with reference to 
FIGS. 8A-C and 11, is avoided. The high-level-protocol 
enhancement to the mass-storage device controllers prevents 
build-up of unexecuted WRITE requests in the input buffer 
826 of the second mass-storage device. 

FIG. 16D illustrates the multiple failure scenario first 
illustrated in FIG. 14, in a two-mass-storage device system 
employing the techniques of the present invention. In the 
scenario, the communications link 812 has failed 1612 and 
the host computer 804 has also failed. Thus, fail over to the 
remote-mirror LUN provided by the second mass-storage 
device is imminent. Note, however, that the input buffer 826 
of the second mass-storage device 810 is not backed-up due 
to missing WRITE requests, and that the remote-mirror 
LUN is not therefore out-of-date because of cached, but not 
executed, WRITE requests. Moreover, the direct connec 
tions 1614 and 1616 of the first mass-storage device 802 and 
the second mass-storage device 810 allow for transmission 
of WRITE requests stored in the output buffer 816 of the first 
mass-storage device 802 to be transmitted, or flushed, 
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through the LAN/WAN 1617 to the second mass-storage 
device. Thus, the data state of the remote-mirror-LUN can 
be synchronized with that of the dominant LUN contained in 
the first mass-storage 802 prior to fail over. In this way, the 
remote-mirror-LUN can be brought to a data-consistent state 
without loss of WRITE requests due to cache purges or 
orphaned WRITE requests within an isolated first mass 
storage device. 

Although the present invention has been described in 
terms of a particular embodiment, it is not intended that the 
invention be limited to this embodiment. Modifications 
within the spirit of the invention will be apparent to those 
skilled in the art. For example, a second, direct mass 
storage-device-to-mass-storage device communications link 
can be provided in any number of different ways, and is not 
restricted to a LAN/WAN interconnection, as disclosed in 
the above embodiment. The high-level mass-storage-device 
protocol enhancement described above, can be carried out in 
any of many different levels within the mass-storage-device 
controller, and may be embodied in logic circuits, firmware, 
or controller software. Many different types of mass-storage 
devices can employ the present invention, including disk 
arrays. 
The foregoing description, for purposes of explanation 

used specific nomenclature to provide a thorough under 
standing of the invention. However, it will be apparent to 
one skilled in the art that the specific details are not required 
in order to practice the invention. In other instances, well 
known portions of disk arrays are shown as diagrams in 
order to avoid unnecessary distraction from the underlying 
invention. Thus, the foregoing descriptions of specific 
embodiments of the present invention are presented for 
purposes of illustration and description. They are not 
intended to be exhaustive or to limit the invention to the 
precise forms disclosed. Obviously many modifications and 
variations are possible in view of the above teachings. The 
embodiments are shown and described in order to best 
enable others skilled in the art to best utilize the invention 
and various embodiments with various modifications as are 
Suited to the particular use contemplated. It is intended that 
the scope of the invention be defined by the following claims 
and their equivalents: 
The invention claimed is: 
1. A reliable computing and data-storage system compris 

ing: 
a first host computer linked to a second host computer by 

a first communications medium; 
a first mass-storage device, linked to the first host com 

puter by a second communications medium; 
a second mass-storage device, linked to the second host 

computer by a third communications medium; 
a fourth communications medium directly linking the first 

mass-storage device to the second mass-storage device 
for transmission of sequenced data written to a domi 
nant logical unit within the first mass-storage device to 
the second mass-storage device for writing to a remote 
mirror logical unit; 

a first link that directly links the first mass-storage device 
to the first communications medium; 

a second link that directly links the second mass-storage 
device to the first communications medium; 

controller logic within controllers of the first and second 
mass-storage devices, the controller logic within at 
least one controller detecting a failure of the fourth 
communications medium, the controller logic within 
both controllers cooperating to retransmit any lost data 
from the first mass-storage device to the second mass 
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storage device by way of the first and second links and 
the first communications medium. 

2. The system of claim 1 wherein the first mass-storage 
device receives WRITE requests directed to the dominant 
logical unit, executes the WRITE requests with respect to 
the dominant logical unit, and places the WRITE requests in 
an output memory buffer for Subsequent transmission to the 
second mass-storage device. 

3. The system of claim 2 wherein the second mass-storage 
device receives WRITE requests transmitted from the first 
mass-storage device and stores the WRITE requests in an 
input memory buffer for subsequent execution with respect 
to the remote-mirror logical unit. 

4. The system of claim 3 wherein, when the fourth 
communication medium fails, and WRITE requests cannot 
be transmitted by way of the first and second links and the 
first communications medium, the controller of the first 
mass-storage device purges WRITE requests from the out 
put memory buffer, noting data units of the remote-mirror 
logical unit that would have been written by the purged 
WRITE requests in a bit map. 

5. The system of claim 3 wherein, after the controller of 
the second mass-storage device detects a failure to receive a 
sequenced WRITE request from the first mass-storage 
device and requests retransmission, from the first mass 
storage device, of the WRITE request that was not received 
by the second mass-storage device, and the WRITE request 
is still not received after a threshold period of time, the 
controller of the second mass-storage device purges WRITE 
requests from the input memory buffer, noting data units of 
the remote-mirror logical unit that would have been written 
by the purged WRITE requests in a bit map. 

6. A reliable computing and data-storage system compris 
ing: 

a first host computer linked to a second host computer by 
a first communications medium; 

a first mass-storage device, linked to the first host com 
puter by a second communications medium; 

a second mass-storage device, linked to the second host 
computer by a third communications medium; 

a fourth communications medium directly linking the first 
mass-storage device to the second mass-storage device 
for transmission of sequenced data written to a domi 
nant logical unit within the first mass-storage device to 
the second mass-storage device for writing to a remote 
mirror logical unit; 

a first link that directly links the first mass-storage device 
to the first communications medium; 

a second link that directly links the second mass-storage 
device to the first communications medium; and 

controller logic within controllers of the first and second 
mass-storage devices that detect a failure of the fourth 
communications medium and transmit any lost, and all 
Subsequent, data for writing to the remote-mirror logi 
cal unit from the first mass-storage device to the second 
mass-storage device by way of the first and second 
links and the first communications medium. 

7. The system of claim 6 further including: 
controller logic within a controller of the second mass 

storage device that detects a failure to receive 
sequenced data from the first mass-storage device and 
requests retransmission, from the first mass-storage 
device, of the data that was not received by the second 
mass-storage device. 
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8. The system of claim 7 wherein the first mass-storage 

device receives WRITE requests directed to the dominant 
logical unit, executes the WRITE requests with respect to 
the dominant logical unit, and places the WRITE requests in 
an output memory buffer for Subsequent transmission to the 
second mass-storage device. 

9. The system of claim 8 wherein the second mass-storage 
device receives WRITE requests transmitted from the first 
mass-storage device and stores the WRITE requests in an 
input memory buffer for subsequent execution with respect 
to the remote-mirror logical unit. 

10. The system of claim 9 wherein, when the fourth 
communication medium fails, and WRITE requests cannot 
be transmitted by way of the first and second links and the 
first communications medium, the controller of the first 
mass-storage device purges WRITE requests from the out 
put memory buffer, noting data units of the remote-mirror 
logical unit that would have been written by the purged 
WRITE requests in a bit map. 

11. The system of claim 9 wherein, after the controller of 
the second mass-storage device detects a failure to receive a 
sequenced WRITE request from the first mass-storage 
device and requests retransmission, from the first mass 
storage device, of the WRITE request that was not received 
by the second mass-storage device, and the WRITE request 
is still not received after a threshold period of time, the 
controller of the second mass-storage device purges WRITE 
requests from the input memory buffer, noting data units of 
the remote-mirror logical unit that would have been written 
by the purged WRITE requests in a bit map. 

12. A method for increasing the reliability of a computing 
and data-storage having a first host computer linked to a 
second host computer by a first communications medium, a 
first mass-storage device, linked to the first host computer by 
a second communications medium, a second mass-storage 
device, linked to the second host computer by a third 
communications medium, and a fourth communications 
medium directly linking the first mass-storage device to the 
second mass-storage device for transmission of sequenced 
data written to a dominant logical unit within the first 
mass-storage device to the second mass-storage device for 
writing to a remote-mirror logical unit, the method com 
prising: 

providing a first link that directly links the first mass 
storage device to the first communications medium; 

providing a second link that directly links the second 
mass-storage device to the first communications 
medium; 

detecting, by a controller within the second mass-storage 
device, a failure to receive sequenced data from the first 
mass-storage device by the second mass-storage device 
and requesting retransmission, by the controller within 
the second mass-storage device from the first mass 
storage device, of the data that was not received by the 
second mass-storage device; and 

detecting a failure of the fourth communications medium 
by a controller within the first mass-storage device and 
transmitting any lost, and all Subsequent, data for 
writing to the remote-mirror logical unit from the first 
mass-storage device to the second mass-storage device 
by way of the first and second links and the first 
communications medium. 
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