FACEBOOK EX 1016
PAGE 61 OF 139

FACEBOOK EX 1016
PAGE 62 OF 139

FACEBOOK EX 1016
PAGE 63 OF 139

FACEBOOK EX 1016
PAGE 64 OF 139

FACEBOOK EX 1016
PAGE 65 OF 139

FACEBOOK EX 1016
PAGE 66 OF 139

FACEBOOK EX 1016
PAGE 67 OF 139

FACEBOOK EX 1016
PAGE 68 OF 139

FACEBOOK EX 1016
PAGE 69 OF 139

FACEBOOK EX 1016
PAGE 70 OF 139

FACEBOOK EX 1016
PAGE 71 OF 139

FACEBOOK EX 1016
PAGE 72 OF 139

FACEBOOK EX 1016
PAGE 73 OF 139

FACEBOOK EX 1016
PAGE 74 OF 139

FACEBOOK EX 1016
PAGE 75 OF 139

FACEBOOK EX 1016
PAGE 76 OF 139

FACEBOOK EX 1016
PAGE 77 OF 139

FACEBOOK EX 1016
PAGE 78 OF 139

FACEBOOK EX 1016
PAGE 79 OF 139

FACEBOOK EX 1016
PAGE 80 OF 139

FACEBOOK EX 1016
PAGE 81 OF 139

FACEBOOK EX 1016
PAGE 82 OF 139

FACEBOOK EX 1016
PAGE 83 OF 139

FACEBOOK EX 1016
PAGE 84 OF 139

FACEBOOK EX 1016
PAGE 85 OF 139

FACEBOOK EX 1016
PAGE 86 OF 139

FACEBOOK EX 1016
PAGE 87 OF 139

FACEBOOK EX 1016
PAGE 88 OF 139

FACEBOOK EX 1016
PAGE 89 OF 139

FACEBOOK EX 1016
PAGE 90 OF 139

FACEBOOK EX 1016
PAGE 91 OF 139

FACEBOOK EX 1016
PAGE 92 OF 139

FACEBOOK EX 1016
PAGE 93 OF 139

FACEBOOK EX 1016
PAGE 94 OF 139

FACEBOOK EX 1016
PAGE 95 OF 139

FACEBOOK EX 1016
PAGE 96 OF 139

FACEBOOK EX 1016
PAGE 97 OF 139

FACEBOOK EX 1016
PAGE 98 OF 139

FACEBOOK EX 1016
PAGE 99 OF 139

FACEBOOK EX 1016
PAGE 100 OF 139

FACEBOOK EX 1016
PAGE 101 OF 139

FACEBOOK EX 1016
PAGE 102 OF 139

FACEBOOK EX 1016
PAGE 103 OF 139

FACEBOOK EX 1016
PAGE 104 OF 139

FACEBOOK EX 1016
PAGE 105 OF 139

FACEBOOK EX 1016
PAGE 106 OF 139

FACEBOOK EX 1016
PAGE 107 OF 139

FACEBOOK EX 1016
PAGE 108 OF 139

FACEBOOK EX 1016
PAGE 109 OF 139

https://web.archive.org/web/20080120160339/https://www.rfc-editor.org/rfc/rfc5228.txt

FACEBOOK EX 1016
PAGE 110 OF 139

FACEBOOK EX 1016
PAGE 111 OF 139

2.10.3. Meésage Uniqﬁeness in a Mailbox AP £

2.10.4. Limits on Numbers of Actions P £
2.10.5. Extensions and Optional Features 19
2.10.6. BrYOrSccccceeccccccccccccccccscsccaascaascaanns 20

-1
3 §

2.10.7. Limits on Execution

3. Control Commands
3.1. Control if
3.2. CONtrol YEQUIYE ...ieevrieeennnnnsaaccnssacnssansssansannns
3.3. Control StOp ..eeviinnnnnnnnnnnn

4. Action Commands

4.1. Action fileinto
4.2. Action redirect
4.3. ACtion KEEP +uvvvrrrnnnnennnennnnsnonnsaancnasnnnnnnnnsnasa24
4.4. Action discardiceeiienriiaariatarttatseraesasaaansaaas25

Guenther & Showalter Standards Track [Page 2]
RFC 5228 Sieve: An Email Filtering Language January 2008
5. Test COMMANAS ..ceeuieeeeaannsanasssasssosccsscscsssssnssnnnnnnns

-

Test address .
Test allof ...
. T@Bt BNYOEf ...cccceccccccacccccccscccsscsssscncnnncascnnnns
. Test envelope
. Test exists ..
Test false ...
. Test header ..
. T@St MOt ..ccvcvccrccccrcctccccccccaccccacsnscccsnsscccsscass
TeSt 8i2@ cccccccccccccccctsccceccccecrsccacsccccsccacscaane
Test true ...
enBibility cccceccccccctccrcetcrtecncciccrcccnscccssecccrccnne
. Capability String

o .

L RN R R NN RN R
NH®HWO®-UE W

6.2.2. Handling of Existing Capability Registrations 32
6.2.3. Initial Capability Registrationseeeeeee.
6.3. Capability Transportc.eeeeeeeececcccnananns
7. Transmissionco..
8. Parsing
8.1. Lexical Tokens
8.2. Grammareeeseeessanananns
8.3. Statement Elements
9. Extended Example
10. Security Considerations .
11. Acknowledgments
12. Normative References
13. Informative References
14. Changes from RFC 3028

eeeeesscaescaaaaa3b

cessecrsaesscaess3b

Guenther & Showalter Standards Track [Page 3]
RFC 5228 Sieve: An Email Filtering Language January 2008
1. Introduction

This memo documents a language that can be used to create filters for
electronic mail. It is not tied to any particular operating system
or mail architecture. It requires the use of [IMAIL]-compliant
messages, but should otherwise generalize to many systems.

The language is powerful enough to be useful but limited in order to
allow for a safe server-side filtering system. The intention is to
make it impossible for users to do anything more complex (and
dangerous) than write simple mail filters, along with facilitating
the use of graphical user interfaces (GUIs) for filter creation and
manipulation. The base language was not designed to be Turing-
complete: it does not have a loop control structure or functions.

Scripts written in Sieve are executed during final delivery, when the
message is moved to the user-accessible mailbox. In systems where
the Mail Transfer Agent (MTA) does final delivery, such as
traditional Unix mail, it is reasonable to filter when the MTA
deposits mail into the user's mailbox.

There are a number of reasons to use a filtering system. Mail
traffic for most users has been increasing due to increased usage of

amail kha amar~xanca Af nnonlisibad amail 20 2 Farm Af aduvarkioina

FACEBOOK EX 1016
PAGE 112 OF 139

CAMMA L LM ML YEHLE Ui MLSUL AU A LTM TGl SO W AULi WA WM SA aSaiigg

and increased usage of mailing lists.

Experience at Carnegie Mellon has shown that if a filtering system is
made available to users, many will make use of it in order to file
messages from specific users or mailing lists. However, many others
did not make use of the Andrew system's FLAMES filtering language
[FLAMES] due to difficulty in setting it up.

Because of the expectation that users will make use of filtering if
it is offered and easy to use, this language has been made simple
enough to allow many users to make use of it, but rich enough that it
can be used productively. However, it is expected that GUI-based
editors will be the preferred way of editing filters for a large
number of users.

1.1. Conventions Used in This Document

In the sections of this document that discuss the requirements of
various keywords and operators, the following conventions have been
adopted.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [KEYWORDS].

Guenther & Showalter Standards Track [Page 4]

RFC 5228 Sieve: An Email Filtering Language January 2008

Each section on a command (test, action, or control) has a line
labeled "Usage:". This line describes the usage of the command,
including its name and its arguments. Required arguments are listed
inside angle brackets ("<" and ">"). Optional arguments are listed
inside square brackets ("[" and "]"). Each argument is followed by
its type, so "<key: string>" represents an argument called "key" that
is a string. Literal strings are represented with double-quoted
strings. Alternatives are separated with slashes, and parentheses
are used for grouping, similar to [ABNF].

In the "Usage:" line, there are three special pieces of syntax that
are frequently repeated, MATCH-TYPE, COMPARATOR, and ADDRESS-PART.
These are discussed in sections 2.7.1, 2.7.3, and 2.7.4,
respectively.

The formal grammar for these commands is defined in section 8 and is
the authoritative reference on how to construct commands, but the
formal grammar does not specify the order, semantics, number or types
of arguments to commands, or the legal command names. The intent is
to allow for extension without changing the grammar.

1.2. Example Mail Messages

The following mail messages will be used throughout this document in
examples.

Message A

Date: Tue, 1 Apr 1997 09:06:31 -0800 (PST)
From: coyotef@desert.example.org

To: roadrunner@acme.example.com

Subject: I have a present for you

Look, I'm sorry about the whole anvil thing, and I really
didn't mean to try and drop it on you from the top of the
cliff. I want to try to make it up to you. I've got some
great birdseed over here at my place--top of the line
stuff--and if you come by, I'll have it all wrapped up

for you. I'm really sorry for all the problems I've caused
for you over the years, but I know we can work this out.

Wile E. Coyote "Super Genius" coyotefdesert.example.org
Guenther & Showalter Standards Track [Page 5]
RFC 5228 Sieve: An Email Filtering Language January 2008
Message B

From: youcouldberich!@reply-by-postal-mail.invalid
Sender: blff@de.res.example.com

To: rube@landru.example.com

Date: Mon, 31 Mar 1997 18:26:10 -0800

Subject: $$$ YOU, TOO, CAN BE A MILLIONAIRE! $$$

YOU MAY HAVE ALREADY WON TEN MILLION DOLLARS, BUT I DOUBT
IT! SO JUST POST THIS TO SIX HUNDRED NEWSGROUPS! IT WILL
GUARANTEE THAT YOU GET AT LEAST FIVE RESPONSES WITH MONEY!
MONEY! MONEY! COLD HARD CASH! YOU WILL RECEIVE OVER
$20,000 IN LESS THAN TWO MONTHS! AND IT'S LEGAL!!!!!lll!

FACEBOOK EX 1016
PAGE 113 OF 139

TRrL 1111133138 1111111111118111 JUST
SEND $5 IN SMALL, UNMARKED BILLS TO THE ADDRESSES BELOW!

2. Design
2.1. Form of the Language

The language consists of a set of commands. Each command consists of
a set of tokens delimited by whitespace. The command identifier is
the first token and it is followed by zero or more argument tokens.
Arguments may be literal data, tags, blocks of commands, or test
commands .

With the exceptions of strings and comments, the language is limited
to US-ASCII characters. Strings and comments may contain octets
outside the US-ASCII range. Specifically, they will normally be in
UTF-8, as specified in [UTF-8). NUL (US-ASCII 0) is never permitted
in scripts, while CR and LF can only appear as the CRLF line ending.

Note: While this specification permits arbitrary octets to appear
in Sieve scripts inside strings and comments, this has made it
difficult to robustly handle Sieve scripts in programs that are
sensitive to the encodings used. The "encoded-character"
capability (section 2.4.2.4) provides an alternative means of
representing such octets in strings using just US-ASCII
characters. As such, the use of non-UTF-8 text in scripts should
be considered a deprecated feature that may be abandoned.

Tokens other than strings are considered case-insensitive.

Guenther & Showalter Standards Track [Page 6]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.2. Whitespace

Whitespace is used to separate tokens. Whitespace is made up of
tabs, newlines (CRLF, never just CR or LF), and the space character.
The amount of whitespace used is not significant.

2.3. Comments

Two types of comments are offered. Comments are semantically
equivalent to whitespace and can be used anyplace that whitespace is
(with one exception in multi-line strings, as described in the
grammar) .

Hash comments begin with a "#" character that is not contained within
a string and continue until the next CRLF.

Example: if size :over 100k { # this is a comment
discard;

}

Bracketed comments begin with the token "/*" and end with "*/"
outside of a string. Bracketed comments may span multiple lines.
Bracketed comments do not nest.

Example: if size :over 100K { /* this is a comment
this is still a comment */ discard /* this is a comment
*/
}

2.4. Literal Data

Literal data means data that is not executed, merely evaluated "as
is", to be used as arguments to commands. Literal data is limited to
numbers, strings, and string lists.

2.4.1. Numbers

Numbers are given as ordinary decimal numbers. As a shorthand for
expressing larger values, such as message sizes, a suffix of "K",
"M", or "G" MAY be appended to indicate a multiple of a power of two.
To be comparable with the power-of-two-based versions of SI units
that computers frequently use, "K" specifies kibi-, or 1,024 (2°10)
times the value of the number; "M" specifies mebi-, or 1,048,576
(2720) times the value of the number; and "G" specifies gibi-, or
1,073,741,824 (2"°30) times the value of the number [BINARY-SI].

Guenther & Showalter Standards Track [Page 7]

RFC 5228 Sieve: An Email Filtering Language January 2008

Implementations MUST support integer values in the inclusive range
zero to 2,147,483,647 (2°31 - 1), but MAY support larger values.

FACEBOOK EX 1016
PAGE 114 OF 139

Only non-negative integers are permitted by this specification.
2.4.2. Strings

Scripts involve large numbers of string values as they are used for
pattern matching, addresses, textual bodies, etc. Typically, short
quoted strings suffice for most uses, but a more convenient form is
provided for longer strings such as bodies of messages.

A guoted string starts and ends with a single double quote (the <">
character, US-ASCII 34). A backslash ("\", US-ASCII 92) inside of a
quoted string is followed by either another backslash or a double
quote. These two-character sequences represent a single backslash or
double quote within the value, respectively.

Scripts SHOULD NOT escape other characters with a backslash.

An undefined escape sequence (such as "\a" in a context where "a" has
no special meaning) is interpreted as if there were no backslash (in
this case, "\a" is just "a"), though that may be changed by
extensions.

Non-printing characters such as tabs, CRLF, and control characters
are permitted in gquoted strings. Quoted strings MAY span multiple
lines. An unencoded NUL (US-ASCII 0) is not allowed in strings; see
section 2.4.2.4 for how it can be encoded.

As message header data is converted to [UTF-8) for comparison (see
section 2.7.2), most string values will use the UTF-8 encoding.
However, implementations MUST accept all strings that match the
grammar in section 8. The ability to use non-UTF-8 encoded strings
matches existing practice and has proven to be useful both in tests
for invalid data and in arguments containing raw MIME parts for
extension actions that generate outgoing messages.

For entering larger amounts of text, such as an email message, a
multi-line form is allowed. It starts with the keyword "text:",
followed by a CRLF, and ends with the sequence of a CRLF, a single
period, and another CRLF. The CRLF before the final period is
considered part of the value. In order to allow the message to
contain lines with a single dot, lines are dot-stuffed. That is,
when composing a message body, an extra ' is added before each line
that begins with a '.' When the server interprets the script, these
extra dots are removed. Note that a line that begins with a dot
followed by a non-dot character is not interpreted as dot-stuffed;

Guenther & Showalter Standards Track [Page 8]
RFC 5228 Sieve: An Email Filtering Language January 2008
that is, ".foo" is interpreted as ".foo". However, because this is

potentially ambiguous, scripts SHOULD be properly dot-stuffed so such
lines do not appear.

Note that a hashed t or whitesp may occur in between the

"text:" and the CRLF, but not within the string itself. Bracketed
comments are not allowed here.

2.4.2.1. String Lists

When matching patterns, it is frequently convenient to match against
groups of strings instead of single strings. For this reason, a list
of strings is allowed in many tests, implying that if the test is
true using any one of the strings, then the test is true.

For instance, the test 'header :contains ["To", "Cc"]
["me€example.com”, "me0OO@landru.example.com"]' is true if either a To
header or Cc header of the input message contains either of the email
addresses "mef@example.com" or "me0O&landru.example.com".

Conversely, in any case where a list of strings is appropriate, a
single string is allowed without being a member of a list: it is
equivalent to a list with a single member. This means that the test
'exists "To"' is equivalent to the test 'exists ["To"]'.

2.4.2.2. Headers

Headers are a subset of strings. In the Internet Message
Specification [IMAIL), each header line is allowed to have whitespace
nearly anywhere in the line, including after the field name and
before the subsequent colon. Extra spaces between the header name
and the ":" in a header field are ignored.

A header name never contains a colon. The "From" header refers to a
line beginning "From:" (or "From :", etc.). No header will match
the string "From:" due to the trailing colon.

Similarly, no header will match a syntactically invalid header name.
An implementation MUST NOT cause an error for syntactically invalid
header names in tests.

Header lines are unfolded as described in [IMAIL] section 2.2.3.

Interpretation of header data SHOULD be done according to [MIME3]
section 6.2 (see section 2.7.2 below for details).

FACEBOOK EX 1016
PAGE 115 OF 139

Guenther & Showalter Standards Track [Page 9]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.4.2.3. Addresses

A number of commands call for email addresses, which are also a
subset of strings. When these addresses are used in outbound
contexts, addresses must be compliant with [IMAIL], but are further
constrained within this document. Using the symbols defined in
[IMAIL), section 3, the syntax of an address is:

simple address
name & addr-spec

sieve-address = addr-spec :

/ phrase "<" addr-spec ">" ;
That is, routes and group syntax are not permitted. If multiple
addresses are required, use a string list. Named groups are not
permitted.

It is an error for a script to execute an action with a value for use
as an outbound address that doesn't match the "sieve-address" syntax.

2.4.2.4. Encoding Characters Using "encoded-character”

When the "encoded-character" extension is in effect, certain
character sequences in strings are replaced by their decoded value.
This happ after P q are interpreted and dot-
unstuffing has been done. Implementations SHOULD support "encoded-
character".

Arbitrary octets can be embedded in strings by using the syntax
encoded-arb-octets. The sequence is replaced by the octets with the
hexadecimal values given by each hex-pair.

blank = WSP / CRLF

encoded-arb-octets = "${hex:" hex-pair-seq "}"

hex-pair-seq = *blank hex-pair *(l*blank hex-pair) *blank
hex-pair = 1*2HEXDIG

Where WSP and HEXDIG non-terminals are defined in Appendix B.1l of
[ABNF].

It may be inconvenient or undesirable to enter Unicode characters
verbatim, and for these cases the syntax encoded-unicode-char can be
used. The sequence is replaced by the UTF-8 encoding of the
specified Unicode characters, which are identified by the hexadecimal
value of unicode-hex.

encoded-unicode-char = "${unicode:" unicode-hex-seq "}"

unicode-hex-seq = *blank unicode-hex
*(1l*blank unicode-hex) *blank
unicode-hex = 1*HEXDIG
Guenther & Showalter Standards Track [Page 10])
RFC 5228 Sieve: An Email Filtering Language January 2008

It is an error for a script to use a hexadecimal value that isn't in
either the range 0 to D7FF or the range E000 to 10FFFF. (The range
D800 to DFFF is excluded as those character numbers are only used as
part of the UTF-16 encoding form and are not applicable to the UTF-8
encoding that the syntax here represents.)

Note: Implementations MUST NOT raise an error for an out-of-range
Unicode value unless the sequence containing it is well-formed
according to the grammar.

The capability string for use with the require command is "encoded-
character".

In the following script, message B is discarded, since the specified
test string is equivalent to "$$§".

Example: require "encoded-character"”;
if header :contains "Subject" "$${hex:24 24}" {
discard;
}
The following examples demonstrate valid and invalid encodings and
how they are handled:

"$${hex:40}" -> "se@"

"${hex: 40 }" > g

"${HEX: 40}" > e

"${hex:40" -> "S{hex:40"
"${hex:400}" -> "${hex:400}"
"${hex:4${hex:30}}" -> "${hex:40}"
"${unicode:40}" -> "a"

"${ unicode:40}" -> "${ unicode:40}"
"${UNICODE:40}" > "
"${UnICODE:0000040}" -> "@"
"${Unicode:40}" -> "
"${Unicode:Cool}" -> "§{Unicode:Cool}"
"${unicode:200000}" -> error
"${Unicode:DF01} -> error

FACEBOOK EX 1016
PAGE 116 OF 139

2.5. Tests

Tests are given as arguments to commands in order to control their
actions. In this document, tests are given to if/elsif to decide
which block of code is run.

Guenther & Showalter Standards Track [Page 11)

RFC 5228 Sieve: An Email Filtering Language January 2008

2.5.1. Test Lists

Some tests ("allof" and "anyof", which implement logical "and" and
logical "or", respectively) may require more than a single test as an
argument. The test-list syntax element provides a way of grouping
tests as a comma-separated list in parentheses.

Example: if anyof (not exists ["From", "Date"],
header :contains "from" "foolfexample.com") {
discard;

}
2.6. Arguments

In order to specify what to do, most commands take arguments. There
are three types of arguments: positional, tagged, and optional.

It is an error for a script, on a single command, to use conflicting
arguments or to use a tagged or optional argument more than once.

2.6.1. Positional Arguments

Positional arguments are given to a command that discerns their
meaning based on their order. When a command takes positional
arguments, all positional arguments must be supplied and must be in
the order prescribed.

2.6.2. Tagged Arguments

This document provides for tagged arguments in the style of
CommonLISP. These are also similar to flags given to commands in
most command-line systems.

A tagged argument is an argument for a command that begins with ":"
followed by a tag naming the argument, such as ":contains". This
argument means that zero or more of the next tokens have some
particular meaning depending on the argument. These next tokens may
be literal data, but they are never blocks.

Tagged arguments are similar to positional arguments, except that
instead of the meaning being derived from the command, it is derived
from the tag.

Tagged arguments must appear before positional arguments, but they
may appear in any order with other tagged arguments. For simplicity
of the specification, this is not expressed in the syntax definitions

Guenther & Showalter Standards Track [Page 12)

RFC 5228 Sieve: An Email Filtering Language January 2008

with commands, but they still may be reordered arbitrarily provided
they appear before positional arguments. Tagged arguments may be
mixed with optional arguments.

Tagged arguments SHOULD NOT take tagged arguments as arguments.
2.6.3. Optional Arguments

Optional arguments are exactly like tagged arguments except that they
may be left out, in which case a default value is implied. Because
optional arguments tend to result in shorter scripts, they have been
used far more than tagged arguments.

One particularly noteworthy case is the ":comparator"” argument, which
allows the user to specify which comparator [COLLATION] will be used
to compare two strings, since different languages may impose
different orderings on UTF-8 [UTF-8) strings.

2.6.4. Types of Arguments
Abstractly, arguments may be literal data, tests, or blocks of
commands. In this way, an "if" control structure is merely a command
that happens to take a test and a block as arguments and may execute
the block of code.

However, this abstraction is ambiguous from a parsing standpoint.

The grammar in section 8.2 presents a parsable version of this:

FACEBOOK EX 1016
PAGE 117 OF 139

Arguments are string lists (string-lists), numbers, and tags, which
may be followed by a test or a test list (test-list), which may be
followed by a block of commands. No more than one test or test list,
or more than one block of commands, may be used, and commands that
end with a block of commands do not end with semicolons.

2.7. String Comparison

When matching one string against another, there are a number of ways
of performing the match operation. These are accomplished with three
types of matches: an exact match, a substring match, and a wildcard
glob-style match. These are described below.

In order to provide for matches between character sets and case
insensitivity, Sieve uses the comparators defined in the Internet
Application Protocol Collation Registry [COLLATION].

Guenther & Showalter Standards Track [Page 13)

RFC 5228 Sieve: An Email Filtering Language January 2008

However, when a string represents the name of a header, the
comparator is never user-specified. Header comparisons are always
done with the "i;ascii-casemap" operator, i.e., case-insensitive
comparisons, because this is the way things are defined in the
message specification [IMAIL].

2.7.1. Match Type

Commands that perform string comparisons may have an optional match
type argument. The three match types in this specification are
":contains", ":is", and ":matches".

The ":contains" match type describes a substring match. If the value
argument contains the key argument as a substring, the match is true.
For instance, the string "frobnitzm" contains "frob" and "nit", but
not "fbm". The empty key ("") is contained in all values.

The ":is" match type describes an absolute match; if the contents of
the first string are absolutely the same as the contents of the
second string, they match. Only the string "frobnitzm" is the string
"frobnitzm". The empty key ("") only ":is" matches with the empty
value.

The ":matches" match type specifies a wildcard match using the
characters "*" and "?"; the entire value must be matched. "*"
matches zero or more characters in the value and "?" matches a single
character in the value, where the comparator that is used (see
section 2.7.3) defines what a character is. For example, the
comparators "ij;octet" and "i;ascii-casemap" define a character to be
a single octet, so "?" will always match exactly one octet when one
of those comparators is in use. In contrast, a Unicode-based
comparator would define a character to be any UTF-8 octet sequence
encoding one Unicode character and thus "?" may match more than one
octet. "?" and "*" may be escaped as "\\?" and "*" in strings to
match against themselves. The first backslash escapes the second
backslash; together, they escape the "*". This is awkward, but it is
commonplace in several programming languages that use globs and
regular expressions.

In order to specify what type of match is supposed to happen,
commands that support matching take optional arguments ":matches",
":is", and ":contains". Commands default to using ":is" matching if
no match type argument is supplied. Note that these modifiers
interact with comparators; in particular, only comparators that
support the "substring match" operation are suitable for matching
with ":contains" or ":matches". It is an error to use a comparator
with ":contains" or ":matches" that is not compatible with it.

Guenther & Showalter Standards Track [Page 14)
RFC 5228 Sieve: An Email Filtering Language January 2008
It is an error to give more than one of these arguments to a given

command.

For convenience, the "MATCH-TYPE" syntax element is defined here as
follows:

Syntax: ":is" / ":contains" / ":matches"
2.7.2. Comparisons across Character Sets
Messages may involve a number of character sets. In order for
comparisons to work across character sets, implementations SHOULD
implement the following behavior:
Comparisons are performed on octets. Implementations convert text
from header fields in all charsets [MIME3] to Unicode, encoded as

UTF-8, as input to the comparator (see section 2.7.3).
Tmnlamantakiane MIIEM ha ~Aanahla Af Aanvaréina IC_ACATT Ten_Qaca_

FACEBOOK EX 1016
PAGE 118 OF 139

A ACHIS L LML LTS SIUD S M CUPMI AT WA SUAY L Chiiy VD TRADL ALy dov—uus s

1, the US-ASCII subset of ISO-8859-* character sets, and UTF-8.
Text that the implementation cannot convert to Unicode for any
reason MAY be treated as plain US-ASCII (including any [MIME3)
syntax) or processed according to local conventions. An encoded
NUL octet (character zero) SHOULD NOT cause early termination of
the header content being compared against.

If implementations fail to support the above behavior, they MUST
conform to the following:

No two strings can be considered equal if one contains octets
greater than 127.

2.7.3. Comparators

In order to allow for language-independent, case-independent matches,
the match type may be coupled with a comparator name. The Internet
Application Protocol Collation Registry [COLLATION] provides the
framework for describing and naming comparators.

All implementations MUST support the "ij;octet" comparator (simply
compares octets) and the "ij;ascii-casemap" comparator (which treats
uppercase and lowercase characters in the US-ASCII subset of UTF-8 as
the same). If left unspecified, the default is "i;ascii-casemap".

Some comparators may not be usable with substring matches; that is,

they may only work with ":is". It is an error to try to use a
comparator with ":matches" or ":contains" that is not compatible with
it.
Guenther & Showalter Standards Track [Page 15]
RFC 5228 Sieve: An Email Filtering Language January 2008

Sieve treats a comparator result of "undefined" the same as a result
of "no-match". That is, this base specification does not provide any
means to directly detect invalid comparator input.

A comparator is specified by the ":comparator" option with commands
that support matching. This option is followed by a string providing
the name of the comparator to be used. For convenience, the syntax
of a comparator is abbreviated to "COMPARATOR", and (repeated in
several tests) is as follows:

Syntax: ":comparator"” <comparator-name: string>
So in this example,

Example: if header :contains :comparator "ij;octet" "Subject"
"MAKE MONEY FAST" {
discard;

}

would discard any message with subjects like "You can MAKE MONEY
FAST", but not "You can Make Money Fast", since the comparator used
is case-sensitive.

Comparators other than "ijoctet" and "ij;ascii-casemap" must be
declared with require, as they are extensions. If a comparator
declared with require is not known, it is an error, and execution
fails. If the comparator is not declared with require, it is also an
error, even if the comparator is supported. (See section 2.10.5.)

Both ":matches" and ":contains" match types are compatible with the
"ij;octet" and "i;ascii-casemap" comparators and may be used with
them.

It is an error to give more than one of these arguments to a given
command.

2.7.4. Comparisons against Addresses
Addresses are one of the most frequent things represented as strings.
These are structured, and being able to compare against the local-
part or the domain of an address is useful, so some tests that act

exclusively on addresses take an additional optional argument that
specifies what the test acts on.

These optional arguments are ":localpart", ":domain”, and ":all",
which act on the local-part (left side), the domain-part (right
side), and the whole address.

Guenther & Showalter Standards Track [Page 16])

RFC 5228 Sieve: An Email Filtering Language January 2008
If an address is not syntactically valid, then it will not be matched
by tests specifying ":localpart" or ":domain".

The kind of comparison done, such as whether or not the test done is
case-insensitive, is specified as a comparator argument to the test.

If an optional address-part is omitted, the default is ":all"

FACEBOOK EX 1016
PAGE 119 OF 139

It is an error to give more than one of these arguments to a given
command.

For convenience, the "ADDRESS-PART" syntax element is defined here as
follows:

Syntax: ":localpart” / ":domain" / ":all"

2.8. Blocks

Blocks are sets of commands enclosed within curly braces and supplied
as the final argument to a command. Such a command is a control
structure: when executed it has control over the number of times the
commands in the block are executed.

With the commands supplied in this memo, there are no loops. The
control structures supplied--if, elsif, and else--run a block either

once or not at all.

2.9. Commands

Sieve scripts are q of ds. C ds can take any of
the tokens above as arguments, and arguments may be either tagged or
positional arguments. Not all commands take all arguments.

There are three kinds of commands: test commands, action commands,
and control commands.

The simplest is an action command. An action command is an
identifier followed by zero or more arguments, terminated by a
semicolon. Action commands do not take tests or blocks as arguments.
The actions referenced in this document are:

- keep, to save the message in the default location
- fileinto, to save the message in a specific mailbox

- redirect, to forward the message to another address
- discard, to silently throw away the message

Guenther & Showalter Standards Track [Page 17])
RFC 5228 Sieve: An Email Filtering Language January 2008
A control command is a command that affects the parsing or the flow

of execution of the Sieve script in some way. A control structure is
a control command that ends with a block instead of a semicolon.
A test command is used as part of a control command. It is used to
specify whether or not the block of code given to the control command
is executed.

2.10. Evaluation

2.10.1. Action Interaction

Some actions cannot be used with other actions because the result
would be absurd. These restrictions are noted throughout this memo.

Extension actions MUST state how they interact with actions defined
in this specification.

2.10.2. Implicit Keep
Previous experience with filtering systems suggests that cases tend
to be missed in scripts. To prevent errors, Sieve has an "implicit

keep".

An implicit keep is a keep action (see section 4.3) performed in
absence of any action that cancels the implicit keep.

An implicit keep is performed if a message is not written to a
mailbox, redirected to a new address, or explicitly thrown out. That
is, if a fileinto, a keep, a redirect, or a discard is performed, an
implicit keep is not.

Some actions may be defined to not cancel the implicit keep. These
actions may not directly affect the delivery of a message, and are
used for their side effects. None of the actions specified in this
document meet that criteria, but extension actions may.

For instance, with any of the short messages offered above, the
following script produces no actions.

Example: if size :over 500K { discard; }

As a result, the implicit keep is taken.

Guenther & Showalter Standards Track [Page 18]

FACEBOOK EX 1016
PAGE 120 OF 139

RFC 5228 Sieve: An Email Filtering Language January 2008

2.10.3. Message Unigueness in a Mailbox

Implementations SHOULD NOT deliver a message to the same mailbox more
than once, even if a script explicitly asks for a message to be
written to a mailbox twice.

The test for equality of two messages is implementation-defined.

If a script asks for a message to be written to a mailbox twice, it
MUST NOT be treated as an error.

2.10.4. Limits on Numbers of Actions

Site policy MAY limit the number of actions taken and MAY impose
restrictions on which actions can be used together. In the event
that a script hits a policy limit on the number of actions taken for
a particular message, an error occurs.

Implementations MUST allow at least one keep or one fileinto. If
fileinto is not implemented, implementations MUST allow at least one
keep.

2.10.5. Extensions and Optional Features

Because of the differing capabilities of many mail systems, several
features of this specification are optional. Before any of these
extensions can be executed, they must be declared with the "require"
action.

If an extension is not enabled with "require", implementations MUST
treat it as if they did not support it at all. This protects scripts
from having their behavior altered by extensions that the script
author might not have even been aware of.

Implementations MUST NOT execute any Sieve script test or command
subsequent to "require" if one of the required extensions is
unavailable.
Note: The reason for this restriction is that prior experiences
with languages such as LISP and Tcl suggest that this is a
workable way of noting that a given script uses an extension.

Extensions that define actions MUST state how they interact with
actions discussed in the base specification.

Guenther & Showalter Standards Track [Page 19)

RFC 5228 Sieve: An Email Filtering Language January 2008

2.10.6. Errors

In any programming language, there are compile-time and run-time
errors.

Compile-time errors are ones in syntax that are detectable if a
syntax check is done.

Run-time errors are not detectable until the script is run. This
includes transient failures like disk full conditions, but also
includes issues like invalid combinations of actions.

When an error occurs in a Sieve script, all processing stops.
Implementations MAY choose to do a full parse, then evaluate the
script, then do all actions. Implementations might even go so far as
to ensure that execution is atomic (either all actions are executed
or none are executed).
Other implementations may choose to parse and run at the same time.
Such implementations are simpler, but have issues with partial
failure (some actions happen, others don't).
Implementations MUST perform syntactic, semantic, and run-time checks
on code that is actually executed. Implementations MAY perform those
checks or any part of them on code that is not reached during
execution.
When an error happens, implementations MUST notify the user that an
error occurred and which actions (if any) were taken, and do an
implicit keep.

2.10.7. Limits on Execution

Implementations may limit certain constructs. However, this
specification places a lower bound on some of these limits.

Implementations MUST support fifteen levels of nested blocks.

Implementations MUST support fifteen levels of nested test lists.

FACEBOOK EX 1016
PAGE 121 OF 139

Guenther & Showalter Standards Track [Page 20)

RFC 5228 Sieve: An Email Filtering Language January 2008

3. Control Commands

Control structures are needed to allow for multiple and conditional
actions.

3.1. Control if

There are three pieces to if: "if", "elsif", and "else". Each is

actually a separate command in terms of the grammar. However, an

elsif or else MUST only follow an if or elsif. An error occurs if
these conditions are not met.

Usage: if <testl: test> <blockl: block>
Usage: elsif <test2: test> <block2: block>
Usage: else <block3: block>

The semantics are similar to those of any of the many other
programming languages these control structures appear in. When the
interpreter sees an "if", it evaluates the test associated with it.
If the test is true, it executes the block associated with it.

If the test of the "if" is false, it evaluates the test of the first
"elsif" (if any). If the test of "elsif" is true, it runs the
elsif's block. BAn elsif may be followed by an elsif, in which case,
the interpreter repeats this process until it runs out of elsifs.

When the interpreter runs out of elsifs, there may be an "else" case.
If there is, and none of the if or elsif tests were true, the

interpreter runs the else's block.

This provides a way of performing exactly one of the blocks in the
chain.

In the following example, both messages A and B are dropped.

Example: require "fileinto";
if header :contains "from" "coyote" {

discard;
} elsif header :contains ["subject"] ["$$$"] {
discard;
} else {
fileinto "INBOX";
}
Guenther & Showalter Standards Track [Page 21)
RFC 5228 Sieve: An Email Filtering Language January 2008

When the script below is run over message A, it redirects the message
to acméexample.com; message B, to postmaster@example.com; any other
message is redirected to field@example.com.

Example: if header :contains ["From"] ["coyote"] {
redirect "acm@example.com";
} elsif header :contains "Subject" "$$$" {
redirect "postmaster@example.com";
} else {
redirect "field@example.com";

}

Note that this definition prohibits the "... else if ..." sequence
used by C. This is intentional, because this construct produces a
shift-reduce conflict.

3.2. Control require
Usage: require <capabilities: string-list>
The require action notes that a script makes use of a certain
extension. Such a declaration is required to use the extension, as
discussed in section 2.10.5. Multiple capabilities can be declared
with a single require.
The require command, if present, MUST be used before anything other
than a require can be used. An error occurs if a require appears
after a command other than require.

Example: require ["fileinto", "reject"];

Example: require "fileinto";

FACEBOOK EX 1016
PAGE 122 OF 139

require "vacation”;

3.3. Control stop

Usage: stop

The "stop" action ends all processing. If the implicit keep has not
been cancelled, then it is taken.

Guenther & Showalter Standards Track [Page 22)
RFC 5228 Sieve: An Email Filtering Language January 2008
4. Action Commands

This document supplies four actions that may be taken on a message:
keep, fileinto, redirect, and discard.

Implementations MUST support the "keep", "discard", and "redirect"
actions.

Implementations SHOULD support "fileinto".

Implementations MAY limit the number of certain actions taken (see
section 2.10.4).

4.1. Action fileinto

Usage: fileinto <mailbox: string>

The "fileinto" action delivers the message into the specified
mailbox. Implementations SHOULD support fileinto, but in some
environments this may be impossible. Implementations MAY place
restrictions on mailbox names; use of an invalid mailbox name MAY be
treated as an error or result in delivery to an implementation-
defined mailbox. If the specified mailbox doesn't exist, the
implementation MAY treat it as an error, create the mailbox, or
deliver the message to an implementation-defined mailbox. If the
implementation uses a different encoding scheme than UTF-8 for
mailbox names, it SHOULD reencode the mailbox name from UTF-8 to its
encoding scheme. For example, the Internet Message Access Protocol
[IMAP) uses modified UTF-7, such that a mailbox argument of "odds &
ends" would appear in IMAP as "odds &- ends".

The capability string for use with the require command is "fileinto".

In the following script, message A is filed into mailbox
"INBOX.harassment".

Example: require "fileinto";
if header :contains ["from")] "coyote" {
fileinto "INBOX.harassment";

}

4.2. Action redirect

Usage: redirect <address: string>

The "redirect" action is used to send the message to another user at
a supplied address, as a mail forwarding feature does. The
"redirect" action makes no changes to the message body or existing

Guenther & Showalter Standards Track [Page 23]

RFC 5228 Sieve: An Email Filtering Language January 2008

headers, but it may add new headers. In particular, existing
Received headers MUST be preserved and the count of Received headers
in the outgoing message MUST be larger than the same count on the
message as received by the implementation. (An implementation that
adds a Received header before processing the message does not need to
add another when redirecting.)

The message is sent back out with the address from the redirect
command as an envelope recipient. Implementations MAY combine
separate redirects for a given message into a single submission with
multiple envelope recipients. (This is not a Mail User Agent (MUA)-
style forward, which creates a new message with a different sender
and message ID, wrapping the old message in a new one.)

The envelope sender address on the outgoing message is chosen by the
sieve implementation. It MAY be copied from the message being
processed. However, if the message being processed has an empty
envelope sender address the outgoing message MUST also have an empty
envelope sender address. This last requirement is imposed to prevent
loops in the case where a message is redirected to an invalid address
when then returns a delivery status notification that also ends up
being redirected to the same invalid address.

FACEBOOK EX 1016
PAGE 123 OF 139

A simple script can be used for redirecting all mail:
Example: redirect "bart@example.com”;

Implementations MUST take measures to implement loop control,
possibly including adding headers to the message or counting Received
headers as specified in section 6.2 of [SMTP]. If an implementation
detects a loop, it causes an error.

Implementations MUST provide means of limiting the number of
redirects a Sieve script can perform. See section 10 for more
details.

Implementations MAY ignore a redirect action silently due to policy
reasons. For example, an implementation MAY choose not to redirect
to an address that is known to be undeliverable. Any ignored
redirect MUST NOT cancel the implicit keep.

4.3. Action keep

Usage: keep

The "keep" action is whatever action is taken in lieu of all other
actions, if no filtering happens at all; generally, this simply means
to file the message into the user's main mailbox. This command

Guenther & Showalter Standards Track [Page 24)

RFC 5228 Sieve: An Email Filtering Language January 2008

provides a way to execute this action without needing to know the
name of the user's main mailbox, providing a way to call it without
needing to understand the user's setup or the underlying mail system.
For instance, in an implementation where the IMAP server is running
scripts on behalf of the user at time of delivery, a keep command is
equivalent to a fileinto "INBOX".

Example: if size :under 1M { keep; } else { discard; }

Note that the above script is identical to the one below.

Example: if not size :under 1M { discard; }

4.4. Action discard

Usage: discard

Discard is used to silently throw away the message. It does so by
simply canceling the implicit keep. If discard is used with other
actions, the other actions still happen. Discard is compatible with
all other actions. (For instance, fileinto+discard is equivalent to
fileinto.)

Discard MUST be silent; that is, it MUST NOT return a non-delivery
notification of any kind ([DSN), [MDN], or otherwise).

In the following script, any mail from "idiot@example.com” is thrown
out.

Example: if header :contains ["from"] ["idiotfexample.com"] {
discard;

}

While an important part of this language, "discard" has the potential
to create serious problems for users: Students who leave themselves
logged in to an unattended machine in a public computer lab may find
their script changed to just "discard". 1In order to protect users in
this situation (along with similar situations), implementations MAY
keep messages destroyed by a script for an indefinite period, and MAY
disallow scripts that throw out all mail.

Guenther & Showalter Standards Track [Page 25])
RFC 5228 Sieve: An Email Filtering Language January 2008
5. Test Commands

Tests are used in conditionals to decide which part(s) of the
conditional to execute.

Implementations MUST support these tests: "address", "allof",
"anyof", "exists", "false", "header", "not", "size", and "true".

Implementations SHOULD support the "envelope" test.

5.1. Test address

FACEBOOK EX 1016
PAGE 124 OF 139

Usage: address [COMPARATOR] [ADDRESS-PART] [MATCH-TYPE]
<header-list: string-list> <key-list: string-list>

The "address" test matches Internet addresses in structured headers
that contain addresses. It returns true if any header contains any
key in the specified part of the address, as modified by the
comparator and the match keyword. Whether there are other addresses
present in the header doesn't affect this test; this test does not
provide any way to determine whether an address is the only address
in a header.

Like envelope and header, this test returns true if any combination
of the header-list and key-list arguments match and returns false
otherwise.

Internet email addresses [IMAIL] have the somewhat awkward
characteristic that the local-part to the left of the at-sign is
considered case sensitive, and the domain-part to the right of the
at-sign is case insensitive. The "address" command does not deal
with this itself, but provides the ADDRESS-PART argument for allowing
users to deal with it.

The address primitive never acts on the phrase part of an email
address or on comments within that address. It also never acts on
group names, although it does act on the addresses within the group
construct.

Implementations MUST restrict the address test to headers that
contain addresses, but MUST include at least From, To, Cc, Bcc,
Sender, Resent-From, and Resent-To, and it SHOULD include any other
header that utilizes an "address-list" structured header body.

Example: if address :is :all "from" "timf@example.com" {

discard;
}
Guenther & Showalter Standards Track [Page 26)
RFC 5228 Sieve: An Email Filtering Language January 2008

5.2. Test allof
Usage: allof <tests: test-list>
The "allof" test performs a logical AND on the tests supplied to it.
Example: allof (false, false) => false
allof (false, true) = false
allof (true, true) => true
The allof test takes as its argument a test-list.
5.3. Test anyof
Usage: anyof <tests: test-list>
The "anyof" test performs a logical OR on the tests supplied to it.
Example: anyof (false, false) => false
anyof (false, true) = true
anyof (true, true) => true

5.4. Test envelope

Usage: envelope [COMPARATOR)] [ADDRESS-PART] [MATCH-TYPE]
<envelope-part: string-list> <key-list: string-list>

The "envelope" test is true if the specified part of the [SMTP] (or
equivalent) envelope matches the specified key. This specification
defines the interpretation of the (case insensitive) "from" and "to"
envelope-parts. Additional envelope-parts may be defined by other
extensions; implementations SHOULD consider unknown envelope parts an
error.

If one of the envelope-part strings is (case insensitive) "from",
then matching occurs against the FROM address used in the SMTP MAIL
command. The null reverse-path is matched against as the empty
string, regardless of the ADDRESS-PART argument specified.

If one of the envelope-part strings is (case insensitive) "to", then
matching occurs against the TO address used in the SMTP RCPT command
that resulted in this message getting delivered to this user. Note
that only the most recent TO is available, and only the one relevant
to this user.

The envelope-part is a string list and may contain more than one

parameter, in which case all of the strings specified in the key-list
are matched against all parts given in the envelope-part list.

Guenther & Showalter Standards Track [Page 27)

RFC 5228 Sieve: An Email Filtering Language January 2008

Like address and header, this test returns true if any combination of

FACEBOOK EX 1016
PAGE 125 OF 139

the envelope-part list and key-list arguments match and returns false
otherwise.

All tests against envelopes MUST drop source routes.
If the SMTP transaction involved several RCPT commands, only the data
from the RCPT command that caused delivery to this user is available

in the "to" part of the envelope.

If a protocol other than SMTP is used for message transport,
implementations are expected to adapt this command appropriately.

The envelope command is optional. Implementations SHOULD support it,
but the necessary information may not be available in all cases. The
capability string for use with the require command is "envelope".
Example: require "envelope";

if envelope :all :is "from" "tim@example.com" {

discard;
}
5.5. Test exists

Usage: exists <header-names: string-list>
The "exists" test is true if the headers listed in the header-names
argument exist within the message. All of the headers must exist or

the test is false.

The following example throws out mail that doesn't have a From header
and a Date header.

Example: if not exists ["From","Date"] {
discard;
}
5.6. Test false

Usage: false

The "false" test always evaluates to false.

Guenther & Showalter Standards Track [Page 28]

RFC 5228 Sieve: An Email Filtering Language January 2008

5.7. Test header

Usage: header [COMPARATOR] [MATCH-TYPE]
<header-names: string-list> <key-list: string-list>

The "header" test evaluates to true if the value of any of the named
headers, ignoring leading and trailing whitespace, matches any key.
The type of match is specified by the optional match argument, which
defaults to ":is" if not specified, as specified in section 2.6.
Like address and envelope, this test returns true if any combination
of the header-names list and key-list arguments match and returns
false otherwise.
If a header listed in the header-names argument exists, it contains
the empty key (""). However, if the named header is not present, it
does not match any key, including the empty key. So if a message
contained the header

X-Caffeine: CBH10N402
these tests on that header evaluate as follows:

header :is ["X-Caffeine"] [""] => false
header :contains ["X-Caffeine"] [""] => true

Testing whether a given header is either absent or doesn't contain
any non-whitespace characters can be done using a negated "header"
test:
not header :matches "Cc" "2*"

5.8. Test not
Usage: not <testl: test>
The "not" test takes some other test as an argument, and yields the
opposite result. "not false" evaluates to "true" and "not true"
evaluates to "false".

5.9. Test size
Usage: size <":over" / ":under"> <limit: number>
The "size" test deals with the size of a message. It takes either a

tagged argument of ":over" or ":under", followed by a number
representing the size of the message.

FACEBOOK EX 1016
PAGE 126 OF 139

Guenther & Showalter Standards Track [Page 29)

RFC 5228 Sieve: An Email Filtering Language January 2008

If the argument is ":over", and the size of the message is greater
than the number provided, the test is true; otherwise, it is false.

If the argument is ":under", and the size of the message is less than
the number provided, the test is true; otherwise, it is false.

Exactly one of ":over" or ":under" must be specified, and anything
else is an error.

The size of a message is defined to be the number of octets in the
[IMAIL) representation of the message.

Note that for a message that is exactly 4,000 octets, the message is
neither ":over" nor ":under" 4000 octets.

5.10. Test true

Usage: true
The "true" test always evaluates to true.
Extensibility

New control commands, actions, and tests can be added to the
language. Sites must make these features known to their users; this
document does not define a way to discover the list of extensions
supported by the server.

Any extensions to this language MUST define a capability string that
uniquely identifies that extension. Capability string are case-
sensitive; for example, "foo" and "F0O" are different capabilities.
If a new version of an extension changes the functionality of a
previously defined extension, it MUST use a different name.
Extensions may register a set of related capabilities by registering
just a unique prefix for them. The "comparator-" prefix is an
example of this. The prefix MUST end with a "-" and MUST NOT overlap
any existing registrations.

In a situation where there is a script submission protocol and an
extension advertisement mechanism aware of the details of this
language, scripts submitted can be checked against the mail server to
prevent use of an extension that the server does not support.

Extensions MUST state how they interact with constraints defined in
section 2.10, e.g., whether they cancel the implicit keep, and which
actions they are compatible and incompatible with. Extensions MUST
NOT change the behavior of the "require" control command or alter the
interpretation of the argument to the "require" control.

Guenther & Showalter Standards Track [Page 30)

RFC 5228 Sieve: An Email Filtering Language January 2008

Extensions that can submit new email messages or otherwise generate
new protocol requests MUST consider loop suppression, at least to
document any security considerations.

6.1. Capability String

Capability strings are typically short strings describing what
capabilities are supported by the server.

Capability strings beginning with "vnd." represent vendor-defined
extensions. Such extensions are not defined by Internet standards or
RFCs, but are still registered with IANA in order to prevent
conflicts. Extensions starting with "vnd." SHOULD be followed by the
name of the vendor and product, such as "vnd.acme.rocket-sled".

The following capability strings are defined by this document:

encoded-character The string "encoded-character" indicates that the
implementation supports the interpretation of
"${hex:...}" and "${unicode:...}" in strings.

envelope The string "envelope" indicates that the implementation
supports the "envelope" command.

fileinto The string "fileinto" indicates that the implementation
supports the "fileinto" command.

comparator- The string "comparator-elbonia" is provided if the
implementation supports the "elbonia" comparator.
Therefore, all implementations have at least the
"comparator-ij;octet” and "comparator-i;ascii-casemap"
capabilities. However, these comparators may be used
without being declared with require.

6.2. IANA Considerations

Trn Avdar +n mravida 2 okandard cak Af avéanciane 2 vamiokwo o

FACEBOOK EX 1016
PAGE 127 OF 139

L5 VLIMBL LU MIUVAME @ GLULMULM UL Vi GALGHOLIULS, W LOYLiouLy 4o
maintained by IANA. This registry contains both vendor-controlled
capability names (beginning with "vnd.") and IETF-controlled
capability names. Vendor-controlled capability names may be
registered on a first-come, first-served basis, by applying to IANA
with the form in the following section. Registration of capability
prefixes that do not begin with "vnd." REQUIRES a standards track or
IESG-approved experimental RFC.

Extensions designed for interoperable use SHOULD use IETF-controlled
capability names.

Guenther & Showalter Standards Track [Page 31)

RFC 5228 Sieve: An Email Filtering Language January 2008

6.2.1. Template for Capability Registrations

The following template is to be used for registering new Sieve
extensions with IANA.

To: iana@iana.org
Subject: Registration of new Sieve extension

Capability name: [the string for use in the 'require' statement]

Description: [a brief description of what the extension adds
or changes])
RFC number: [for extensions published as RFCs])

Contact address: [email and/or physical address to contact for
additional information]

6.2.2. Handling of Existing Capability Registrations

In order to bring the existing capability registrations in line with
the new template, IANA has modified each as follows:

1. The "capability name" and "capability arguments" fields have been

eliminated

The "capability keyword" field have been renamed to "Capability

name"

3. An empty "Description" field has been added

The "Standards Track/IESG-approved experimental RFC number" field

has been renamed to "RFC number"

5. The "Person and email address to contact for further information"
field should be renamed to "Contact address”

2

IS

6.2.3. 1Initial Capability Registrations

This RFC updates the following entries in the IANA registry for Sieve
extensions.

Capability name: encoded-character

Description: changes the interpretation of strings to allow
arbitrary octets and Unicode characters to be
represented using US-ASCII

RFC number: RFC 5228 (Sieve base spec)

Contact address: The Sieve discussion list <ietf-mta-filters@imc.org>

Capability name: fileinto

Description: adds the 'fileinto' action for delivering to a
mailbox other than the default
RFC number: RFC 5228 (Sieve base spec)

Contact address: The Sieve discussion list <ietf-mta-filters@imc.org>

Guenther & Showalter Standards Track [Page 32)

RFC 5228 Sieve: An Email Filtering Language January 2008

Capability name: envelope

Description: adds the 'envelope' test for testing the message
transport sender and recipient address
RFC number: RFC 5228 (Sieve base spec)

Contact address: The Sieve discussion list <ietf-mta-filters@imc.org>

Capability name: comparator-* (anything starting with "comparator-")

Description: adds the indicated comparator for use with the
:comparator argument
RFC number: RFC 5228 (Sieve base spec) and [COLLATION]

Contact address: The Sieve discussion list <ietf-mta-filters@imc.org>

6.3. Capability Transport

A method of advertising which capabilities an implementation supports
is difficult due to the wide range of possible implementations. Such
a mechanism, however, should have the property that the
implementation can advertise the complete set of extensions that it
supports.

Transmission
The [MIME] type for a Sieve script is "application/sieve".

The registration of this type for RFC 2048 requirements is updated as
follows:

FACEBOOK EX 1016

PAGE 128 OF 139

Subject: Registration of MIME media type application/sieve

MIME media type name: application

MIME subtype name: sieve

Required parameters: none

Optional parameters: none

Encoding considerations: Most Sieve scripts will be textual,
written in UTF-8. When non-7bit characters are used,
quoted-printable is appropriate for transport systems
that require 7bit encoding.

Security considerations: Discussed in section 10 of this RFC.

Interoperability considerations: Discussed in section 2.10.5
of this RFC.

Published specification: this RFC.

Applications that use this media type: sieve-enabled mail
servers and clients

Additional information:
Magic number(s):
File extension(s): .siv .sieve
Macintosh File Type Code(s):

Guenther & Showalter Standards Track [Page 33)

RFC 5228 Sieve: An Email Filtering Language January 2008

Person & email address to contact for further information:
See the discussion list at ietf-mta-filters@imc.org.
Intended usage:
COMMON
Author/Change controller:
The SIEVE WG, delegated by the IESG.

8. Parsing

The Sieve grammar is separated into tokens and a separate grammar as
most programming languages are. Additional rules are supplied here
for common arguments to various language facilities.

8.1. Lexical Tokens

Sieve scripts are encoded in UTF-8. The following assumes a valid
UTF-8 encoding; special characters in Sieve scripts are all US-ASCII.

The following are tokens in Sieve:

identifiers

- tags

- numbers

quoted strings
multi-line strings
other separators

Identifiers, tags, and numbers are case-insensitive, while quoted
strings and multi-line strings are case-sensitive.

Blanks, horizontal tabs, CRLFs, and comments ("whitespace") are
ignored except as they separate tokens. Some whitespace is required
to separate otherwise adjacent tokens and in specific places in the
multi-line strings. CR and LF can only appear in CRLF pairs.

The other separators are single individual characters and are
mentioned explicitly in the grammar.

The lexical structure of sieve is defined in the following grammar
(as described in [ABNF]):

bracket-comment = "/*" *not-star 1*STAR

*(not-star-slash *not-star 1*STAR) "/"
No */ allowed inside a comment.
(No * is allowed unless it is the last
character, or unless it is followed by a
character that isn't a slash.)

Guenther & Showalter Standards Track [Page 34)
RFC 5228 Sieve: An Email Filtering Language January 2008
comment = bracket-comment / hash-comment
hash-comment = "#" *octet-not-crlf CRLF
identifier = (ALPHA / "_") *(ALPHA / DIGIT / "_")
multi-line = "text:" *(SP / HTAB) (hash-comment / CRLF)
*(multiline-literal / multiline-dotstart)
"." CRLF

multiline-literal = octet-not-period *octet-not-crlf] CRLF

multiline-dotstart = "." l*octet-not-crlf CRLF

; A line containing only "." ends the
; multi-line. Remove a leading '.' if
i

followed by another '.'.

FACEBOOK EX 1016
PAGE 129 OF 139

not-star = CRLF / %x01-09 / %x0B-0C / %x0E-29 / ¥x2B-FF
; either a CRLF pair, OR a single octet
; other than NUL, CR, LF, or star
not-star-slash = CRLF / %x01-09 / %x0B-0C / %x0E-29 / ¥x2B-2E /
t+x30-FF
; either a CRLF pair, OR a single octet
; other than NUL, CR, LF, star, or slash

number 1*DIGIT [QUANTIFIER)
octet-not-crlf = $x01-09 / ¥x0B-0C / %¥x0OE-FF
; a single octet other than NUL, CR, or LF

octet-not-period = $x01-09 / %x0B-0C / %¥x0E-2D / %x2F-FF
; a single octet other than NUL,
; CR, LF, or period

octet-not-gspecial = ¥x01-09 / %x0B-0C / %x0E-21 / %x23-5B / %¥x5D-FF
; a single octet other than NUL,
; CR, LF, double-quote, or backslash

QUANTIFIER = K"/ tMv /g

quoted-other = "\" octet-not-gspecial
; represents just the octet-no-gspecial
; character. SHOULD NOT be used
quoted-safe = CRLF / octet-not-gspecial
either a CRLF pair, OR a single octet other
than NUL, CR, LF, double-quote, or backslash

i
i

Guenther & Showalter Standards Track [Page 35])
RFC 5228 Sieve: An Email Filtering Language January 2008
quoted-special = "\" (DQUOTE / "\")
; represents just a double-quote or backslash
quoted-string = DQUOTE quoted-text DQUOTE
quoted-text = *(quoted-safe / quoted-special / quoted-other)
STAR = "x"
tag = ":" identifier
white-space = 1*(SP / CRLF / HTAB) / comment

8.2. Grammar

The following is the grammar of Sieve after it has been lexically
interpreted. No whitespace or comments appear below. The start
symbol is "start".

argument = string-list / number / tag
arguments = *argument [test / test-list |
block = "{" commands "}"

command = identifier arguments (";" / block)
commands = *command

start = commands

string = quoted-string / multi-line

string-list =

" string *("," string) "]" / string
; 1f there is only a single string, the brackets
; are optional
test = identifier arguments
test-list = "(" test *("," test) ")"
8.3. Statement Elements
These elements are collected from the "Syntax" sections elsewhere in
this document, and are provided here in [ABNF] syntax so that they

can be modified by extensions.

ADDRESS-PART = ":localpart" / ":domain" / ":all"

Guenther & Showalter Standards Track [Page 36])

RFC 5228 Sieve: An Email Filtering Language January 2008

COMPARATOR = ":comparator" string
MATCH-TYPE = ":is" / ":contains" / ":matches"

9. Extended Example

FACEBOOK EX 1016
PAGE 130 OF 139

The following is an extended example of a Sieve script. Note that it
does not make use of the implicit keep.

#

Example Sieve Filter

Declare any optional features or extension used by the script
#

require ["fileinto"];

#

Handle messages from known mailing lists

Move messages from IETF filter discussion list to filter mailbox

#

if header :is "Sender" "owner-ietf-mta-filters@imc.org"
fileinto "filter"; # move to "filter" mailbox
}

#

Keep all messages to or from people in my company

#

elsif address :DOMAIN :is ["From", "To"] "example.com"
{
keep; # keep in "In" mailbox
}

#

Try and catch unsolicited email. If a message is not to me,
or it contains a subject known to be spam, file it away.
#
elsif anyof (NOT address :all :contains
["To", "Cc", "Bec"] "mefexample.com”,
header :matches "subject"
["*make*money*fast*", "*university*dipl*mas*"])
{
fileinto "spam"; # move to "spam" mailbox
}

else

Move all other (non-company) mail to "personal”
mailbox.
fileinto "personal”;

}

Guenther & Showalter Standards Track [Page 37)

RFC 5228 Sieve: An Email Filtering Language January 2008

10.

Security Considerations

Users must get their mail. It is imperative that whatever
implementations use to store the user-defined filtering scripts
protect them from unauthorized modification, to preserve the
integrity of the mail system. An attacker who can modify a script
can cause mail to be discarded, rejected, or forwarded to an
unauthorized recipient. 1In addition, it's possible that Sieve
scripts might expose private information, such as mailbox names, or
email addresses of favored (or disfavored) correspondents. Because
of that, scripts SHOULD also be protected from unauthorized
retrieval.

Several commands, such as "discard", "redirect”, and "fileinto",
allow for actions to be taken that are potentially very dangerous.

Use of the "redirect" command to generate notifications may easily
overwhelm the target address, especially if it was not designed to
handle large messages.

Allowing a single script to redirect to multiple destinations can be
used as a means of amplifying the number of messages in an attack.
Moreover, if loop detection is not properly implemented, it may be
possible to set up exponentially growing message loops. Accordingly,
Sieve implementations:

(1) MUST implement facilities to detect and break message loops. See
section 6.2 of [SMTP] for additional information on basic loop
detection strategies.

(2) MUST provide the means for administrators to limit the ability of
users to abuse redirect. In particular, it MUST be possible to
limit the number of redirects a script can perform.

Additionally, if no use cases exist for using redirect to
multiple destinations, this limit SHOULD be set to 1. Additional
limits, such as the ability to restrict redirect to local users,
MAY also be implemented.

(3) MUST provide facilities to log use of redirect in order to
facilitate tracking down abuse.

(4) MAY use script analysis to determine whether or not a given
script can be executed safely. While the Sieve language is
sufficiently complex that full analysis of all possible scripts
is computationally infeasible, the majority of real-world scripts
are amenable to analysis. For example, an implementation might

FACEBOOK EX 1016
PAGE 131 OF 139

Guenther & Showalter Standards Track [Page 38]

RFC 5228

Sieve: An Email Filtering Language January 2008

allow scripts that it has determined are safe to run unhindered,
block scripts that are potentially problematic, and subject
unclassifiable scripts to additional auditing and logging.

Allowing redirects at all may not be appropriate in situations where
email accounts are freely available and/or not trackable to a human
who can be held accountable for creating message bombs or other

abuse.

As with any filter on a message stream, if the Sieve implementation
and the mail agents 'behind' Sieve in the message stream differ in
their interpretation of the messages, it may be possible for an
attacker to subvert the filter. Of particular note are differences
in the interpretation of malformed messages (e.g., missing or extra
syntax characters) or those that exhibit corner cases (e.g., NUL
octets encoded via [MIME3]).

11. Acknowledgments

This document has been revised in part based on comments and
discussions that took place on and off the SIEVE mailing list.

Thanks to Sharon Chisholm, Cyrus Daboo, Ned Freed, Arnt Gulbrandsen,
Michael Haardt, Kjetil Torgrim Homme, Barry Leiba, Mark E. Mallett,
Alexey Melnikov, Eric Rescorla, Rob Siemborski, and Nigel Swinson for
reviews and suggestions.

12. Normative References

[ABNF] Crocker, D., Ed., and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", RFC 4234, October 2005.

[COLLATION] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
Application Protocol Collation Registry", RFC 4790, March
2007.

[IMAIL) Resnick, P., Ed., "Internet Message Format", RFC 2822,
April 2001.

[KEYWORDS) Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[MIME) Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996.

[MIME3) Moore, K., "MIME (Multipurpose Internet Mail Extensions)
Part Three: Message Header Extensions for Non-ASCII
Text", RFC 2047, November 1996.

Guenther & Showalter Standards Track [Page 39)
RFC 5228 Sieve: An Email Filtering Language January 2008
[SMTP) Klensin, J., Ed., "Simple Mail Transfer Protocol", RFC

2821, April 2001.
[UTF-8) Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, November 2003.

13. Informative References

[BINARY-SI]

[DSN]

[FLAMES |

[IMAP]

[MDN]

[RFC3028)

"Standard IEC 60027-2: Letter symbols to be used in
electrical technology - Part 2: Telecommunications and
electronics", January 1999.

Moore, K. and G. Vaudreuil, "An Extensible Message Format
for Delivery Status Notifications", RFC 3464, January
2003.

Borenstein, N, and C. Thyberg, "Power, Ease of Use, and
Cooperative Work in a Practical Multimedia Message
System", Int. J. of Man-Machine Studies, April, 1991.
Reprinted in Computer-Supported Cooperative Work and
Groupware, Saul Greenberg, editor, Harcourt Brace
Jovanovich, 1991. Reprinted in Readings in Groupware and
Computer-Supported Cooperative Work, Ronald Baecker,
editor, Morgan Kaufmann, 1993.

Crispin, M., "Internet Message Access Protocol - version
4revl", RFC 3501, March 2003.

Hansen, T., Ed., and G. Vaudreuil, Ed., "Message
Disposition Notification", RFC 3798, May 2004.

Showalter, T., "Sieve: A Mail Filtering Language", RFC
3028, January 2001.

FACEBOOK EX 1016
PAGE 132 OF 139

Guenther & Showalter Standards Track [Page 40)

RFC 5228 Sieve: An Email Filtering Language January 2008

14. Changes from RFC 3028

This following list is a summary of the changes that have been made
in the Sieve language base specification from [RFC3028].

1. Removed ban on tests having side-effects
2. Removed reject extension (will be specified in a separate RFC)
3. Clarified description of comparators to match [COLLATION], the
new base specification for them
4. Require stripping of leading and trailing whitespace in "header"
test
5. Clarified or tightened handling of many minor items, including:
- invalid [MIME3) encoding
- invalid addresses in headers
- invalid header field names in tests
- 'undefined' comparator result
- unknown envelope parts
- null return-path in "envelope" test
6. Capability strings are case-sensitive
7. Clarified that fileinto should reencode non-ASCII mailbox
names to match the mailstore's conventions
8. Errors in the ABNF were corrected
9. The references were updated and split into normative and
informative
10. Added encoded-character capability and deprecated (but did not
remove) use of arbitrary binary octets in Sieve scripts.
11. Updated IANA registration template, and added IANA
considerations to permit capability prefix registrations.
12. Added .sieve as a valid extension for Sieve scripts.

Editors' Addresses

Philip Guenther

Sendmail, Inc.

6425 Christie St. Ste 400
Emeryville, CA 94608

EMail: guenther@sendmail.com

Tim Showalter
EMail: tjs@psaux.com

Guenther & Showalter Standards Track [Page 41)

RFC 5228 Sieve: An Email Filtering Language January 2008

Full Copyright Statement
Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any

assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of

enmh myAnriakars wiahbo ko imelamantare Av neave ~f khio

FACEBOOK EX 1016
PAGE 133 OF 139

CULAL pAUMA AT LML) SAYHLS M) SMPASMELLSAS Vi USTAS Vi Liiio

specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Guenther & Showalter Standards Track [Page 42)

FACEBOOK EX 1016
PAGE 134 OF 139

https://web.archive.org/web/20080619065643/https://www.rfc-editor.org/rfc/rfc5233.txt

FACEBOOK EX 1016
PAGE 135 OF 139

FACEBOOK EX 1016
PAGE 136 OF 139

4. Subaddress Comparisons

Test commands that act exclusively on addresses may take the optional
tagged arguments ":user" and ":detail"” to specify what sub-part of
the local-part of the address will be acted upon.

NOTE: In most cases, the envelope "to" address is the preferred
address to examine for subaddress information when the desire is
to sort messages based on how they were addressed so as to get to
a specific recipient. The envelope address is, after all, the
reason a given message is being processed by a given sieve script
for a given user. This is particularly true when mailing lists,

Murchison Standards Track [Page 2]

RFC 5233 Sieve: Subaddress Extension January 2008

aliases, and 'virtual domains' are involved since the envelope may
be the only source of detail information for the specific
recipient.

NOTE: Because the encoding of detailed addresses are site and/or
implementation specific, using the subaddress extension on foreign
addresses (such as the envelope "from" address or originator
header fields) may lead to inconsistent or incorrect results.

The ":user" argument specifies the user sub-part of the local-part of
an address. If the address is not encoded to contain a detail sub-
part, then ":user" specifies the entire left side of the address
(equivalent to ":localpart”).

The ":detail" argument specifies the detail sub-part of the local-
part of an address. If the address is not encoded to contain a
detail sub-part, then the address fails to match any of the specified
keys. If a zero-length string is encoded as the detail sub-part,
then ":detail" resolves to the empty value ("").

NOTE: If the encoding method used for detailed addresses utilizes
a separator character sequence, and the separator character
sequence occurs more than once in the local-part, then the logic
used to split the address is implementation-defined and is usually
dependent on the format used by the encompassing mail system.

Implementations MUST make sure that the encoding method used for
detailed addresses matches that which is used and/or allowed by the
encompassing mail system, otherwise unexpected results might occur.
Note that the mechanisms used to define and/or query the encoding
method used by the mail system are outside the scope of this
document.

The ":user" and ":detail" address parts are subject to the same rules
and restrictions as the standard address parts defined in [RFC5228],
Section 2.7.4.

For convenience, the "ADDRESS-PART" syntax element defined in
[RFC5228], Section 2.7.4, is augmented here as follows:

ADDRESS-PART =/ ‘":user" / ":detail"
A diagram showing the ADDRESS-PARTs of an email address where the

detail information follows a separator character sequence of "+" is
shown below:

Murchison Standards Track [Page 3]

RFC 5233 Sieve: Subaddress Extension January 2008

suser "+" :detail "@" :domain
:local-part
A diagram showing the ADDRESS-PARTs of a email address where the
detail information precedes a separator character sequence of "--" is
shown below:
:detail "--" :user "@" :domain
:local-part
Example (where the detail information follows "+"):

require ["envelope", "subaddress", "fileinto"];

In this example the same user account receives mail for both
"kenfexample.com” and "postmaster@example.com"
#
#

File all messages to postmaster into a single mailbox,
ignoring the :detail part.
if envelope :user "to" "postmaster" {
fileinto "inbox.postmaster";

abAn.

FACEBOOK EX 1016
PAGE 137 OF 139

suvpy

}

File mailing list messages (subscribed as "ken+mta-filters").
if envelope :detail "to" "mta-filters" {
fileinto "inbox.ietf-mta-filters";

}

Redirect all mail sent to "ken+foo".
if envelope :detail "to" "foo" {
redirect "kenfexample.net";

}
Murchison Standards Track [Page 4]
RFC 5233 Sieve: Subaddress Extension January 2008

5. IANA Considerations
The following template specifies the IANA registration of the
subaddress Sieve extension specified in this document. This

registration replaces that from RFC 3598:

To: ianafiana.org
Subject: Registration of new Sieve extension
Capability name: subaddress
Description: Adds the ':user' and ':detail' address parts
for use with the address and envelope tests
RFC number: RFC 5233
Contact address: The Sieve discussion list <ietf-mta-filtersfimc.org>

This information has been added to the list of Sieve extensions given
on http://www.iana.org/assignments/sieve-extensions.

6. Security Considerations
Security considerations are discussed in [RFC5228]. It is believed
that this extension does not introduce any additional security
concerns.

7. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2822] Resnick, P., "Internet Message Format", RFC 2822, April
2001.

[RFC5228) Guenther, P., Ed., and T. Showalter, Ed., "Sieve: An Email
Filtering Language", RFC 5228, January 2008.

Murchison Standards Track [Page 5]

RFC 5233 Sieve: Subaddress Extension January 2008

Appendix A. Acknowledgments
Thanks to Tim Showalter, Alexey Melnikov, Michael Salmon, Randall
Gellens, Philip Guenther, Jutta Degener, Michael Haardt, Ned Freed,
Mark Mallett, and Barry Leiba for their help with this document.
Appendix B. Changes since RFC 3598

o Discussion of how the user and detail information is encoded now
uses generic language.

o Added note detailing that this extension is most useful when used
on the envelope "to" address.

FACEBOOK EX 1016
PAGE 138 OF 139

o Added note detailing that this extension isn't very useful on
foreign addresses (envelope "from" or originator header fields).

o Fixed envelope test example to only use "to" address.

o Replaced ":user" example with one that doesn't produce unexpected
behavior.

o Refer to the zero-length string ("") as "empty" instead of "null"
(per RFC 5228).

o Use only RFC 2606 domains in examples.
o Miscellaneous editorial changes.
Author's Address

Kenneth Murchison

Carnegie Mellon University
5000 Forbes Avenue

Cyert Hall 285

Pittsburgh, PA 15213

USA

Phone: +1 412 268 2638
EMail: murch@andrew.cmu.edu

Murchison Standards Track [Page 6]

RFC 5233 Sieve: Subaddress Extension January 2008

Full Copyright Statement
Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement

this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Murchison Standards Track [Page 7]

FACEBOOK EX 1016
PAGE 139 OF 139

