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This book is designed for use as a textbook for a first course in circuit analysis or as a supplement to

standard texts and can be used by electrical engineering students as well as other engineereing and

technology students. Emphasis is placed on the basic laws, theorems, and problem-solving techniques

which are common to most courses.

The subject matter is divided into 17 chapters covering duly-recognized areas of theory and study.

The chapters begin with statements of pertinent definitions, principles, and theorems together with

illustrative examples. This is followed by sets of solved and supplementary problems. The problems

cover a range of levels of difficulty. Some problems focus on fine points, which helps the student to better

apply the basic principles correctly and confidently. The supplementary problems are generally more

numerous and give the reader an opportunity to practice problem-solving skills. Answers are provided

with each supplementary problem.

The book begins with fundamental definitions, circuit elements including dependent sources, circuit

laws and theorems, and analysis techniques such as node voltage and mesh current methods. These

theorems and methods are initially applied to DC-resistive circuits and then extended to RLC circuits by

the use of impedance and complex frequency. Chapter 5 on amplifiers and op amp circuits is new. The op

amp examples and problems are selected carefully to illustrate simple but practical cases which are of

interest and importance in the student’s future courses. The subject of waveforms and signals is also

treated in a new chapter to increase the student’s awareness of commonly used signal models.

Circuit behavior such as the steady state and transient response to steps, pulses, impulses, and

exponential inputs is discussed for first-order circuits in Chapter 7 and then extended to circuits of

higher order in Chapter 8, where the concept of complex frequency is introduced. Phasor analysis,

sinuosidal steady state, power, power factor, and polyphase circuits are thoroughly covered. Network

functions, frequency response, filters, series and parallel resonance, two-port networks, mutual induc-

tance, and transformers are covered in detail. Application of Spice and PSpice in circuit analysis is

introduced in Chapter 15. Circuit equations are solved using classical differential equations and the

Laplace transform, which permits a convenient comparison. Fourier series and Fourier transforms and

their use in circuit analysis are covered in Chapter 17. Finally, two appendixes provide a useful summary

of the complex number system, and matrices and determinants.

This book is dedicated to our students from whom we have learned to teach well. To a large degree it

is they who have made possible our satisfying and rewarding teaching careers. And finally, we wish to

thank our wives, Zahra Nahvi and Nina Edminister for their continuing support, and for whom all these

efforts were happily made.

MAHMOOD NAHVI

JOSEPH A. EDMINISTER
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7

Circuit Concepts

2.1 PASSIVE AND ACTIVE ELEMENTS

An electrical device is represented by a circuit diagram or network constructed from series and
parallel arrangements of two-terminal elements. The analysis of the circuit diagram predicts the perfor-
mance of the actual device. A two-terminal element in general form is shown in Fig. 2-1, with a single
device represented by the rectangular symbol and two perfectly conducting leads ending at connecting
points A and B. Active elements are voltage or current sources which are able to supply energy to the
network. Resistors, inductors, and capacitors are passive elements which take energy from the sources
and either convert it to another form or store it in an electric or magnetic field.

Figure 2-2 illustrates seven basic circuit elements. Elements (a) and (b) are voltage sources and (c)

and (d) are current sources. A voltage source that is not affected by changes in the connected circuit is an

independent source, illustrated by the circle in Fig. 2-2(a). A dependent voltage source which changes in

some described manner with the conditions on the connected circuit is shown by the diamond-shaped

symbol in Fig. 2-2(b). Current sources may also be either independent or dependent and the correspond-

ing symbols are shown in (c) and (d). The three passive circuit elements are shown in Fig. 2-2(e), ( f ), and

(g).

The circuit diagrams presented here are termed lumped-parameter circuits, since a single element in

one location is used to represent a distributed resistance, inductance, or capacitance. For example, a coil

consisting of a large number of turns of insulated wire has resistance throughout the entire length of the

wire. Nevertheless, a single resistance lumped at one place as in Fig. 2-3(b) or (c) represents the dis-

tributed resistance. The inductance is likewise lumped at one place, either in series with the resistance as

in (b) or in parallel as in (c).

Fig. 2-1
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In general, a coil can be represented by either a series or a parallel arrangement of circuit elements.
The frequency of the applied voltage may require that one or the other be used to represent the device.

2.2 SIGN CONVENTIONS

A voltage function and a polarity must be specified to completely describe a voltage source. The
polarity marks, þ and �, are placed near the conductors of the symbol that identifies the voltage source.
If, for example, v ¼ 10:0 sin!t in Fig. 2-4(a), terminal A is positive with respect to B for 0 > !t > �, and
B is positive with respect to A for � > !t > 2� for the first cycle of the sine function.

Similarly, a current source requires that a direction be indicated, as well as the function, as shown in
Fig. 2-4(b). For passive circuit elements R, L, and C, shown in Fig. 2-4(c), the terminal where the current
enters is generally treated as positive with respect to the terminal where the current leaves.

The sign on power is illustrated by the dc circuit of Fig. 2-5(a) with constant voltage sources
VA ¼ 20:0V and VB ¼ 5:0V and a single 5-� resistor. The resulting current of 3.0A is in the clockwise
direction. Considering now Fig. 2-5(b), power is absorbed by an element when the current enters the
element at the positive terminal. Power, computed by VI or I2R, is therefore absorbed by both the
resistor and the VB source, 45.0W and 15W respectively. Since the current enters VA at the negative
terminal, this element is the power source for the circuit. P ¼ VI ¼ 60:0W confirms that the power
absorbed by the resistor and the source VB is provided by the source VA.

8 CIRCUIT CONCEPTS [CHAP. 2

Fig. 2-2

Fig. 2-3

Fig. 2-4
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2.3 VOLTAGE-CURRENT RELATIONS

The passive circuit elements resistance R, inductance L, and capacitance C are defined by the

manner in which the voltage and current are related for the individual element. For example, if the

voltage v and current i for a single element are related by a constant, then the element is a resistance,

R is the constant of proportionality, and v ¼ Ri. Similarly, if the voltage is the time derivative of the

current, then the element is an inductance, L is the constant of proportionality, and v ¼ Ldi=dt.
Finally, if the current in the element is the time derivative of the voltage, then the element is a

capacitance, C is the constant of proportionality, and i ¼ C dv=dt. Table 2-1 summarizes these rela-

tionships for the three passive circuit elements. Note the current directions and the corresponding

polarity of the voltages.

CHAP. 2] CIRCUIT CONCEPTS 9

Fig. 2-5

Table 2-1

Circuit element Units Voltage Current Power

Resistance

ohms (�) v ¼ Ri

(Ohms’s law)
i ¼ v

R
p ¼ vi ¼ i2R

Inductance

henries (H) v ¼ L
di

dt
i ¼ 1

L

ð
v dtþ k1 p ¼ vi ¼ Li

di

dt

Capacitance

farads (F) v ¼ 1

C

ð
i dtþ k2 i ¼ C

dv

dt
p ¼ vi ¼ Cv

dv

dt
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2.4 RESISTANCE

All electrical devices that consume energy must have a resistor (also called a resistance) in their
circuit model. Inductors and capacitors may store energy but over time return that energy to the source
or to another circuit element. Power in the resistor, given by p ¼ vi ¼ i2R ¼ v2=R, is always positive as
illustrated in Example 2.1 below. Energy is then determined as the integral of the instantaneous power

w ¼
ðt2
t1

p dt ¼ R

ðt2
t1

i2 dt ¼ 1

R

ðt2
t1

v2 dt

EXAMPLE 2.1. A 4.0-� resistor has a current i ¼ 2:5 sin!t (A). Find the voltage, power, and energy over one

cycle. ! ¼ 500 rad/s.

v ¼ Ri ¼ 10:0 sin!t ðVÞ
p ¼ vi ¼ i2R ¼ 25:0 sin2 !t ðWÞ

w ¼
ðt
0

p dt ¼ 25:0
t

2
� sin 2!t

4!

� �
ðJÞ

The plots of i, p, and w shown in Fig. 2-6 illustrate that p is always positive and that the energy w, although a

function of time, is always increasing. This is the energy absorbed by the resistor.

10 CIRCUIT CONCEPTS [CHAP. 2

Fig. 2-6

Page 9 of 27



2.5 INDUCTANCE

The circuit element that stores energy in a magnetic field is an inductor (also called an inductance).

With time-variable current, the energy is generally stored during some parts of the cycle and then

returned to the source during others. When the inductance is removed from the source, the magnetic

field will collapse; in other words, no energy is stored without a connected source. Coils found in electric

motors, transformers, and similar devices can be expected to have inductances in their circuit models.

Even a set of parallel conductors exhibits inductance that must be considered at most frequencies. The

power and energy relationships are as follows.

p ¼ vi ¼ L
di

dt
i ¼ d

dt

1

2
Li2

� �

wL ¼
ðt2
t1

p dt ¼
ðt2
t1

Li dt ¼ 1

2
L½i22 � i21�

Energy stored in the magnetic field of an inductance is wL ¼ 1
2
Li2.

EXAMPLE 2.2. In the interval 0 > t > ð�=50Þ s a 30-mH inductance has a current i ¼ 10:0 sin 50t (A). Obtain the

voltage, power, and energy for the inductance.

v ¼ L
di

dt
¼ 15:0 cos 50t ðVÞ p ¼ vi ¼ 75:0 sin 100t ðWÞ wL ¼

ðt
0

p dt ¼ 0:75ð1� cos 100tÞ ðJÞ

As shown in Fig. 2-7, the energy is zero at t ¼ 0 and t ¼ ð�=50Þ s. Thus, while energy transfer did occur over the

interval, this energy was first stored and later returned to the source.

CHAP. 2] CIRCUIT CONCEPTS 11
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2.6 CAPACITANCE

The circuit element that stores energy in an electric field is a capacitor (also called capacitance).
When the voltage is variable over a cycle, energy will be stored during one part of the cycle and
returned in the next. While an inductance cannot retain energy after removal of the source because the
magnetic field collapses, the capacitor retains the charge and the electric field can remain after the
source is removed. This charged condition can remain until a discharge path is provided, at which
time the energy is released. The charge, q ¼ Cv, on a capacitor results in an electric field in the
dielectric which is the mechanism of the energy storage. In the simple parallel-plate capacitor there
is an excess of charge on one plate and a deficiency on the other. It is the equalization of these charges
that takes place when the capacitor is discharged. The power and energy relationships for the capa-
citance are as follows.

p ¼ vi ¼ Cv
dv

dt
¼ d

dt

1

2
Cv2

� �

wC ¼
ðt2
t1

p dt ¼
ðt2
t1

Cv dv ¼ 1

2
C½v22 � v21�

The energy stored in the electric field of capacitance is wC ¼ 1
2
Cv2.

EXAMPLE 2.3. In the interval 0 > t > 5�ms, a 20-mF capacitance has a voltage v ¼ 50:0 sin 200t (V). Obtain the

charge, power, and energy. Plot wC assuming w ¼ 0 at t ¼ 0.

q ¼ Cv ¼ 1000 sin 200t ðmCÞ

i ¼ C
dv

dt
¼ 0:20 cos 200t ðAÞ

p ¼ vi ¼ 5:0 sin 400t ðWÞ

wC ¼
ðt2
t1

p dt ¼ 12:5½1� cos 400t� ðmJÞ

In the interval 0 > t > 2:5�ms the voltage and charge increase from zero to 50.0V and 1000mC, respectively.
Figure 2-8 shows that the stored energy increases to a value of 25mJ, after which it returns to zero as the energy

is returned to the source.

2.7 CIRCUIT DIAGRAMS

Every circuit diagram can be constructed in a variety of ways which may look different but are in

fact identical. The diagram presented in a problem may not suggest the best of several methods of

solution. Consequently, a diagram should be examined before a solution is started and redrawn if

necessary to show more clearly how the elements are interconnected. An extreme example is illustrated

in Fig. 2-9, where the three circuits are actually identical. In Fig. 2-9(a) the three ‘‘junctions’’ labeled A

12 CIRCUIT CONCEPTS [CHAP. 2

Fig. 2-8
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273

Frequency Response,
Filters, and Resonance

12.1 FREQUENCY RESPONSE

The response of linear circuits to a sinusoidal input is also a sinusoid, with the same frequency but
possibly a different amplitude and phase angle. This response is a function of the frequency. We have
already seen that a sinusoid can be represented by a phasor which shows its magnitude and phase. The
frequency response is defined as the ratio of the output phasor to the input phasor. It is a real function of
j! and is given by

Hð j!Þ ¼ Re ½H� þ j Im ½H� ¼ jHje j� ð1aÞ

where Re [H] and Im [H] are the real and imaginary parts of Hð j!Þ and jHj and � are its magnitude and
phase angle. Re ½H�, Im ½H�, |H|, and � are, in general, functions of !. They are related by

jHj2 ¼ jHð j!Þj2 ¼ Re2 ½H� þ Im2 ½H� ð1bÞ

� ¼ Hð j!Þ ¼ tan�1 Im ½H�
Re ½H� ð1cÞ

The frequency response, therefore, depends on the choice of input and output variables. For
example, if a current source is connected across the network of Fig. 12-1(a), the terminal current is
the input and the terminal voltage may be taken as the output. In this case, the input impedance
Z ¼ V1=I1 constitutes the frequency response. Conversely, if a voltage source is applied to the input and

Fig. 12-1

Copyright 2003, 1997, 1986, 1965 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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the terminal current is measured, the input admittance Y ¼ I1=V1 ¼ 1=Z represents the frequency
response.

For the two-port network of Fig. 12-1(b), the following frequency responses are defined:

Input impedance Zinð j!Þ ¼ V1=I1
Input admittance Yinð j!Þ ¼ 1=Zinð j!Þ ¼ I1=V1

Voltage transfer ratio Hvð j!Þ ¼ V2=V1

Current transfer ratio Hið j!Þ ¼ I2=I1
Transfer impedances V2=I1 and V1=I2

EXAMPLE 12.1 Find the frequency response V2=V1 for the two-port circuit shown in Fig. 12-2.

Let YRC be the admittance of the parallel RC combination. Then, YRC ¼ 10�6j!þ 1=1250. V2=V1 is obtained

by dividing V1 between ZRC and the 5-k� resistor.

Hð j!Þ ¼ V2

V1

¼ ZRC

ZRC þ 5000
¼ 1

1þ 5000YRC

¼ 1

5ð1þ 10�3j!Þ ð2aÞ

jHj ¼ 1

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10�6!2

p � ¼ � tan�1ð10�3!Þ ð2bÞ

Alternative solution: First we find the Thévenin equivalent of the resistive part of the circuit, VTh ¼ V1=5 and

RTh ¼ 1 k�, and then divide VTh between RTh and the 1-mF capacitor to obtain (2a).

12.2 HIGH-PASS AND LOW-PASS NETWORKS

A resistive voltage divider under a no-load condition is shown in Fig. 12-3, with the standard two-
port voltages and currents. The voltage transfer function and input impedance are

Hv1ð!Þ ¼ R2

R1 þ R2

Hz1ð!Þ ¼ R1 þ R2

The 1 in subscripts indicates no-load conditions. Both Hv1 and Hz1 are real constants, independent
of frequency, since no reactive elements are present. If the network contains either an inductance or a
capacitance, then Hv1 and Hz1 will be complex and will vary with frequency. If jHv1j decreases as

274 FREQUENCY RESPONSE, FILTERS, AND RESONANCE [CHAP. 12
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frequency increases, the performance is called high-frequency roll-off and the circuit is a low-pass network.

On the contrary, a high-pass network will have low-frequency roll-off, with jHv1j decreasing as the

frequency decreases. Four two-element circuits are shown in Fig. 12-4, two high-pass and two low-

pass.

The RL high-pass circuit shown in Fig. 12-5 is open-circuited or under no-load. The input
impedance frequency response is determined by plotting the magnitude and phase angle of

Hz1ð!Þ ¼ R1 þ j!L2 � jHzj �H

or, normalizing and writing !x � R1=L2,

Hz1ð!Þ
R1

¼ 1þ jð!=!xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð!=!xÞ2

q
tan�1ð!=!xÞ

Five values of ! provide sufficient data to plot jHzj=R1 and �H, as shown in Fig. 12-6. The
magnitude approaches infinity with increasing frequency, and so, at very high frequencies, the network
current I1 will be zero.

In a similar manner, the frequency response of the output-to-input voltage ratio can be obtained.
Voltage division under no-load gives

Hv1ð!Þ ¼ j!L2

R1 þ j!L2

¼ 1

1� jð!x=!Þ

jHvj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!x=!Þ2
q and �H ¼ tan�1ð!x=!Þso that

CHAP. 12] FREQUENCY RESPONSE, FILTERS, AND RESONANCE 275
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Fig. 12-5
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The magnitude and angle are plotted in Fig. 12-7. This transfer function approaches unity at high

frequency, where the output voltage is the same as the input. Hence the description ‘‘low-frequency roll-

off’’ and the name ‘‘high-pass.’’

A transfer impedance of the RL high-pass circuit under no-load is

H1ð!Þ ¼ V2

I1
¼ j!L2 or

H1ð!Þ
R1

¼ j
!

!x

The angle is constant at 908; the graph of magnitude versus ! is a straight line, similar to a reactance plot
of !L versus !. See Fig. 12-8.

Interchanging the positions of R and L results in a low-pass network with high-frequency roll-off

(Fig. 12-9). For the open-circuit condition

276 FREQUENCY RESPONSE, FILTERS, AND RESONANCE [CHAP. 12

Fig. 12-6

Fig. 12-7

! jHzj=R1 �H

0 1 08
0:5!x 0.5

ffiffiffi
5

p
26.68

!x

ffiffiffi
2

p
458

2!x

ffiffiffi
5

p
63.48

1 1 908

Fig. 12-8
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Hv1ð!Þ ¼ R2

R2 þ j!L1

¼ 1

1þ jð!=!xÞ
with !x � R2=L1; that is,

jHvj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!=!xÞ2
q and �H ¼ tan�1ð�!=!xÞ

The magnitude and angle plots are shown in Fig. 12-10. The voltage transfer function Hv1 approaches
zero at high frequencies and unity at ! ¼ 0. Hence the name ‘‘low-pass.’’

The other network functions of this low-pass network are obtained in the Solved Problems.

EXAMPLE 12.2 Obtain the voltage transfer function Hv1 for the open circuit shown in Fig. 12-11. At what

frequency, in hertz, does jHvj ¼ 1=
ffiffiffi
2

p
if (a) C2 ¼ 10 nF, (b) C2 ¼ 1 nF?

CHAP. 12] FREQUENCY RESPONSE, FILTERS, AND RESONANCE 277
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Hv1ð!Þ ¼ 1=j!C2

R1 þ ð1=j!C2Þ
¼ 1

1þ jð!=!xÞ
where !x � 1

R1C2

¼ 2� 10�4

C2

ðrad=sÞ

jHvj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!=!xÞ2
qðaÞ

and so jHvj ¼ 1=
ffiffiffi
2

p
when

! ¼ !x ¼ 2� 10�4

10� 10�9
¼ 2� 104 rad=s

or when f ¼ ð2� 104Þ=2� ¼ 3:18 kHz.

f ¼ 10

1
ð3:18Þ ¼ 31:8 kHzðbÞ

Comparing ðaÞ and ðbÞ, it is seen that the greater the value of C2, the lower is the frequency at which
jHvj drops to 0.707 of its peak value, 1; in other words, the more is the graph of jHvj, shown in Fig. 12-
10, shifted to the left. Consequently, any stray shunting capacitance, in parallel with C2, serves to reduce
the response of the circuit.

12.3 HALF-POWER FREQUENCIES

The frequency !x calculated in Example 12.2, the frequency at which

jHvj ¼ 0:707jHvjmax

is called the half-power frequency. In this case, the name is justified by Problem 12.5, which shows that
the power input into the circuit of Fig. 12-11 will be half-maximum when

1

j!C2

����
���� ¼ R1

that is, when ! ¼ !x.

Quite generally, any nonconstant network function Hð!Þ will attain its greatest absolute value at
some unique frequency !x. We shall call a frequency at which

jHð!Þj ¼ 0:707jHð!xÞj
a half-power frequency (or half-power point), whether or not this frequency actually corresponds to
50 percent power. In most cases, 0 < !x < 1, so that there are two half-power frequencies, one
above and one below the peak frequency. These are called the upper and lower half-power
frequencies (points), and their separation, the bandwidth, serves as a measure of the sharpness of
the peak.

12.4 GENERALIZED TWO-PORT, TWO-ELEMENT NETWORKS

The basic RL or RC network of the type examined in Section 12.2 can be generalized with Z1 and
Z2, as shown in Fig. 12-12; the load impedance ZL is connected at the output port.

By voltage division,

V2 ¼
Z

0

Z1 þ Z 0 V1 or Hv ¼
V2

V1

¼ Z
0

Z1 þ Z 0

where Z
0 ¼ Z2ZL=ðZ2 þ ZLÞ, the equivalent impedance of Z2 and ZL in parallel. The other transfer

functions are calculated similarly, and are displayed in Table 12-1.

278 FREQUENCY RESPONSE, FILTERS, AND RESONANCE [CHAP. 12
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Ans: A ¼ 1� 10�9!2 þ j10�9!, B ¼ 10�3ð1þ j!Þ, C ¼ 10�6j!, and D ¼ 1. At ! ¼ 1 rad/s, A ¼ 1,

B ¼ 10�3ð1þ jÞ, C ¼ 10�6j, and D ¼ 1. At ! ¼ 103 rad/s, A � 1, B � j, C ¼ 10�3j, and D ¼ 1.

At ! ¼ 106 rad/s, A � �103, B � 103j, C ¼ j, and D ¼ 1

13.35 A two-port network contains resistors, capacitors, and inductors only. With port #2 open [Fig. 13-37(a)], a

unit step voltage v1 ¼ uðtÞ produces i1 ¼ e�tuðtÞ ðmAÞ and v2 ¼ ð1� e�tÞuðtÞ (V). With port #2 short-

circuited [Fig. 13-37(b)], a unit step voltage v1 ¼ uðtÞ delivers a current i1 ¼ 0:5ð1þ e�2tÞuðtÞ ðmAÞ. Find

i2 and the T-equivalent network. Ans: i2 ¼ 0:5ð�1þ e�2tÞuðtÞ [see Fig. 13-37(c)]

13.36 The two-port network N in Fig. 13-38 is specified by Z11 ¼ 2, Z12 ¼ Z21 ¼ 1, and Z22 ¼ 4. Find I1, I2, and

I3. Ans: I1 ¼ 24 A; I2 ¼ 1:5 A; and I3 ¼ 6:5 A

CHAP. 13] TWO-PORT NETWORKS 333
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334

Mutual Inductance and
Transformers

14.1 MUTUAL INDUCTANCE

The total magnetic flux linkage � in a linear inductor made of a coil is proportional to the current
passing through it; that is, � ¼ Li (see Fig. 14-1). By Faraday’s law, the voltage across the inductor is
equal to the time derivative of the total influx linkage; that is,

v ¼ d�

dt
¼ L

di

dt

The coefficient L, in H, is called the self-inductance of the coil.

Two conductors from different circuits in close proximity to each other are magnetically coupled to
a degree that depends upon the physical arrangement and the rates of change of the currents. This
coupling is increased when one coil is wound over another. If, in addition, a soft-iron core provides a
path for the magnetic flux, the coupling is maximized. (However, the presence of iron can introduce
nonlinearity.)

To find the voltage-current relation at the terminals of the two coupled coils shown in Fig. 14-2, we
observe that the total magnetic flux linkage in each coil is produced by currents i1 and i2 and the mutual
linkage effect between the two coils is symmetrical.

�1 ¼ L1i1 þMi2

�2 ¼ Mi1 þ L2i2
ð1Þ

Fig. 14-1
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where M is the mutual inductance (in H).
The terminal voltages are time derivatives of the flux linkages.

v1ðtÞ ¼
d�1
dt

¼ L1

di1
dt

þM
di2
dt

v2ðtÞ ¼
d�2
dt

¼ M
di1
dt

þ L2

di2
dt

ð2Þ

The coupled coils constitute a special case of a two-port network discussed in Chapter 13. The
terminal characteristics (2) may also be expressed in the frequency domain or in the s-domain as follows.

Frequency Domain s-Domain

V1 ¼ j!L1I1 þ j!MI2

V2 ¼ j!MI1 þ j!L2I2
ð3Þ V1 ¼ L1sI1 þMsI2

V2 ¼ MsI1 þ L2sI2
ð4Þ

The coupling coefficient M is discussed in Section 14.2. The frequency domain equations (3) deal with
the sinusoidal steady state. The s-domain equations (4) assume exponential sources with complex
frequency s.

EXAMPLE 14.1 Given L1 ¼ 0:1 H, L2 ¼ 0:5 H, and i1ðtÞ ¼ i2ðtÞ ¼ sin!t in the coupled coils of Fig. 14-2. Find

v1ðtÞ and v2ðtÞ for (a) M ¼ 0:01 H, ðbÞ M ¼ 0:2 H, and (c) M ¼ �0:2 H.

v1ðtÞ ¼ 0:1! cos!tþ 0:01! cos!t ¼ 0:11! cos!t ðVÞðaÞ
v2ðtÞ ¼ 0:01! cos!tþ 0:5! cos!t ¼ 0:51! cos!t ðVÞ
v1ðtÞ ¼ 0:1! cos!tþ 0:2! cos!t ¼ 0:3! cos!t ðVÞðbÞ
v2ðtÞ ¼ 0:2! cos!tþ 0:5! cos!t ¼ 0:7! cos!t ðVÞ
v1ðtÞ ¼ 0:1! cos!t� 0:2! cos!t ¼ �0:1! cos!t ðVÞðcÞ
v2ðtÞ ¼ �0:2! cos!tþ 0:5! cos!t ¼ 0:3! cos!t ðVÞ

14.2 COUPLING COEFFICIENT

A coil containing N turns with magnetic flux � linking each turn has total magnetic flux linkage
� ¼ N�. By Faraday’s law, the induced emf (voltage) in the coil is e ¼ d�=dt ¼ Nðd�=dtÞ. A negative
sign is frequently included in this equation to signal that the voltage polarity is established according to
Lenz’s law. By definition of self-inductance this voltage is also given by Lðdi=dtÞ; hence,

L
di

dt
¼ N

d�

dt
or L ¼ N

d�

di
ð5aÞ
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The unit of � being the weber, where 1 Wb ¼ 1 V � s, it follows from the above relation that
1 H ¼ 1 Wb=A. Throughout this book it has been assumed that � and i are proportional to each
other, making

L ¼ N
�

i
¼ constant ð5bÞ

In Fig. 14-3, the total flux �1 resulting from current i1 through the turns N1 consists of leakage flux,
�11, and coupling or linking flux, �12. The induced emf in the coupled coil is given by
N2ðd�12=dt). This same voltage can be written using the mutual inductance M:

e ¼ M
di1
dt

¼ N2

d�12

dt
or M ¼ N2

d�12

di1
ð6Þ

Also, as the coupling is bilateral,

M ¼ N1

d�21

di2
ð7Þ

The coupling coefficient, k, is defined as the ratio of linking flux to total flux:

k � �12

�1

¼ �21

�2

where 0 � k � 1. Taking the product of (6) and (7) and assuming that k depends only on the geometry
of the system,

M2 ¼ N2

d�12

di1

� �
N1

d�21

di2

� �
¼ N2

dðk�1Þ
di1

� �
N1

dðk�2Þ
di2

� �
¼ k2 N1

d�1

di1

� �
N2

d�2

di2

� �
¼ k2L1L2

from which M ¼ k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
or XM ¼ k

ffiffiffiffiffiffiffiffiffiffiffi
X1X2

p
(8)

Note that (8) implies that M �
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
, a bound that may be independently derived by an energy

argument.
If all of the flux links the coils without any leakage flux, then k ¼ 1. On the other extreme, the coil

axes may be oriented such that no flux from one can induce a voltage in the other, which results in
k ¼ 0. The term close coupling is used to describe the case where most of the flux links the coils, either
by way of a magnetic core to contain the flux or by interleaving the turns of the coils directly over one
another. Coils placed side-by-side without a core are loosely coupled and have correspondingly low
values of k.

14.3 ANALYSIS OF COUPLED COILS

Polarities in Close Coupling

In Fig. 14-4, two coils are shown on a common core which channels the magnetic flux �. This
arrangement results in close coupling, which was mentioned in Section 14.2. To determine the proper
signs on the voltages of mutual inductance, apply the right-hand rule to each coil: If the fingers wrap
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around in the direction of the assumed current, the thumb points in the direction of the flux. Resulting

positive directions for �1 and �2 are shown on the figure. If fluxes �1 and �2 aid one another, then the

signs on the voltages of mutual inductance are the same as the signs on the voltages of self-inductan-

ce. Thus, the plus sign would be written in all four equations (2) and (3). In Fig. 14-4, �1 and �2

oppose each other; consequently, the equations (2) and (3) would be written with the minus sign.

Natural Current

Further understanding of coupled coils is achieved from consideration of a passive second loop as

shown in Fig. 14-5. Source v1 drives a current i1, with a corresponding flux �1 as shown. Now Lenz’s

law implies that the polarity of the induced voltage in the second circuit is such that if the circuit is

completed, a current will pass through the second coil in such a direction as to create a flux opposing the

main flux established by i1. That is, when the switch is closed in Fig. 14-5, flux �2 will have the direction

shown. The right-hand rule, with the thumb pointing in the direction of �2, provides the direction of

the natural current i2. The induced voltage is the driving voltage for the second circuit, as suggested in

Fig. 14-6; this voltage is present whether or not the circuit is closed. When the switch is closed, current

i2 is established, with a positive direction as shown.

EXAMPLE 14.2 Suppose the switch in the passive loop to be closed at an instant ðt ¼ 0Þ when i1 ¼ 0. For t > 0,

the sequence of the passive loop is (see Fig. 14-6).

R2i2 þ L2

di2
dt

�M
di1
dt

¼ 0
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while that of the active loop is

R1i1 þ L1

di1
dt

�M
di2
dt

¼ v1

Writing the above equations in the s-domain with the initial conditions i1ð0þÞ ¼ i2ð0þÞ ¼ 0 and eliminating I1ðsÞ, we
find

HðsÞ � response

excitation
¼ I2ðsÞ

V1ðsÞ
¼ Ms

ðL1L2 �M2Þs2 þ ðR1L2 þ R2L1Þsþ R1R2

and from the poles of HðsÞ we have the natural frequencies of i2.

14.4 DOT RULE

The sign on a voltage of mutual inductance can be determined if the winding sense is shown on the
circuit diagram, as in Figs. 14-4 and 14-5. To simplify the problem of obtaining the correct sign, the
coils are marked with dots at the terminals which are instantaneously of the same polarity.

To assign the dots to a pair of coupled coils, select a current direction in one coil and place a dot at
the terminal where this current enters the winding. Determine the corresponding flux by application of
the right-hand rule [see Fig. 14-7(a)]. The flux of the other winding, according to Lenz’s law, opposes
the first flux. Use the right-hand rule to find the natural current direction corresponding to this second
flux [see Fig. 14-7(b)]. Now place a dot at the terminal of the second winding where the natural current
leaves the winding. This terminal is positive simultaneously with the terminal of the first coil where the
initial current entered. With the instantaneous polarity of the coupled coils given by the dots, the
pictorial representation of the core with its winding sense is no longer needed, and the coupled coils
may be illustrated as in Fig. 14-7(c). The following dot rule may now be used:

(1) when the assumed currents both enter or both leave a pair of coupled coils by the dotted
terminals, the signs on the M-terms will be the same as the signs on the L-terms; but

(2) if one current enters by a dotted terminal while the other leaves by a dotted terminal, the signs
on the M-terms will be opposite to the signs on the L-terms.

EXAMPLE 14.3 The current directions chosen in Fig. 14-8(a) are such that the signs on theM-terms are opposite

to the signs on the L-terms and the dots indicate the terminals with the same instantaneous polarity. Compare this

to the conductively coupled circuit of Fig. 14-8(b), in which the two mesh currents pass through the common element

in opposite directions, and in which the polarity markings are the same as the dots in the magnetically coupled

circuit. The similarity becomes more apparent when we allow the shading to suggest two black boxes.

14.5 ENERGY IN A PAIR OF COUPLED COILS

The energy stored in a single inductor L carrying current i is 0.5Li2 J. The energy stored in a pair
of coupled coils is given by
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W ¼ 1

2
L1i

2
1 þ

1

2
L2i

2
2 þMi1i2 ðJÞ ð9Þ

where L1 and L2 are the inductances of the two coils and M is their mutual inductance. The term Mi1i2
in (9) represents the energy due to the effect of the mutual inductance. The sign of this term is (a)
positive if both currents i1 and i2 enter either at the dotted or undotted terminals, or (b) negative if one of
the currents enters at the dotted terminal and the other enters the undotted end.

EXAMPLE 14.4 In a pair of coils, with L1 ¼ 0:1 H and L2 ¼ 0:2 H, at a certain moment, i1 ¼ 4 A and

i2 ¼ 10 A. Find the total energy in the coils if the coupling coefficient M is (a) 0.1H, (b)
ffiffiffi
2

p
=10 H, (c) �0:1 H,

and (d) � ffiffiffi
2

p
=10 H.

From (9),

ðaÞ W ¼ ð0:5Þð0:1Þ42 þ ð0:5Þð0:2Þ102 þ ð0:1Þð10Þð4Þ ¼ 14:8 J

ðbÞ W ¼ 16:46 J

ðcÞ W ¼ 6:8 J

ðdÞ W ¼ 5:14 J

The maximum and minimum energies occur in conjunction with perfect positive coupling ðM ¼ ffiffiffi
2

p
=10Þ and perfect

negative coupling ðM ¼ � ffiffiffi
2

p
=10Þ.

14.6 CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

From the mesh current equations written for magnetically coupled coils, a conductively coupled
equivalent circuit can be constructed. Consider the sinusoidal steady-state circuit of Fig. 14-9(a), with
the mesh currents as shown. The corresponding equations in matrix form are

R1 þ j!L1 �j!M
�j!M R2 þ j!L2

� �
I1
I2

� �
¼ V1

0

� �

In Fig. 14-9(b), an inductive reactance, XM ¼ !M, carries the two mesh currents in opposite directions,
whence
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Z12 ¼ Z21 ¼ �j!M

in the Z-matrix. If now an inductance L1 �M is placed in the first loop, the mesh current equation for
this loop will be

ðR1 þ j!L1ÞI1 � j!MI2 ¼ V1

Similarly, L2 �M in the second loop results in the same mesh current equation as for the coupled-coil
circuit. Thus, the two circuits are equivalent. The dot rule is not needed in the conductively coupled
circuit, and familiar circuit techniques can be applied.

14.7 LINEAR TRANSFORMER

A transformer is a device for introducing mutual coupling between two or more electric cir-
cuits. The term iron-core transformer identifies the coupled coils which are wound on a magnetic
core of laminated specialty steel to confine the flux and maximize the coupling. Air-core transformers
are found in electronic and communications applications. A third group consists of coils wound over
one another on a nonmetallic form, with a movable slug of magnetic material within the center for
varying the coupling.

Attention here is directed to iron-core transformers where the permeability � of the iron is assumed
to be constant over the operating range of voltage and current. The development is restricted to two-
winding transformers, although three and more windings on the same core are not uncommon.

In Fig. 14-10, the primary winding, of N1 turns, is connected to the source voltage V1, and the
secondary winding, of N2 turns, is connected to the load impedance ZL. The coil resistances are shown
by lumped parameters R1 and R2. Natural current I2 produces flux �2 ¼ �21 þ �22, while I1 produces
�1 ¼ �12 þ �11. In terms of the coupling coefficient k,

�11 ¼ ð1� kÞ�1 �22 ¼ ð1� kÞ�2

From these flux relationships, leakage inductances can be related to the self-inductances:

L11 � ð1� kÞL1 L22 � ð1� kÞL2

The corresponding leakage reactances are:

X11 � ð1� kÞX1 X22 � ð1� kÞX2

It can be shown that the inductance L of an N-turn coil is proportional to N2. Hence, for two coils
wound on the same core,

L1

L2

¼ N1

N2

� �2

ð10Þ

The flux common to both windings in Fig. 14-10 is the mutual flux, �m ¼ �12 � �21. This flux
induces the coil emfs by Faraday’s law,
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e1 ¼ N1

d�m

dt
e2 ¼ N2

d�m

dt

Defining the turns ratio, a � N1=N2, we obtain from these the basic equation of the linear transformer:

e1
e2

¼ a ð11Þ

In the frequency domain, E1=E2 ¼ a.

The relationship between the mutual flux and the mutual inductance can be developed by analysis of
the secondary induced emf, as follows:

e2 ¼ N2

d�m

dt
¼ N2

d�12

dt
�N2

d�21

dt
¼ N2

d�12

dt
�N2

dðk�2Þ
dt

By use of (6) and (5a), this may be rewritten as

e2 ¼ M
di1
dt

� kL2

di2
dt

¼ M
di1
dt

�M

a

di2
dt

where the last step involved (8) and (10):

M ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2L2ÞðL2Þ

q
¼ kaL2

Now, defining the magnetizing current i� by the equation

i1 ¼
i2
a
þ i� or I1 ¼

I2

a
þ I� ð12Þ

we have

e2 ¼ M
di�
dt

or E2 ¼ jXMI� ð13Þ

According to (13), the magnetizing current may be considered to set up the mutual flux �m in the core.
In terms of coil emfs and leakage reactances, an equivalent circuit for the linear transformer may be

drawn, in which the primary and secondary are effectively decoupled. This is shown in Fig. 14-11(a);
for comparison, the dotted equivalent circuit is shown in Fig. 14-11(b).

EXAMPLE 14.5 Draw the voltage-current phasor diagram corresponding to Fig. 14-11(a), and from it derive the

input impedance of the transformer.

The diagram is given in Fig. 14-12, in which �L denotes the phase angle of ZL. Note that, in accordance with

(13), the induced emfs E1 and E2 lead the magnetizing current I� by 908. The diagram yields the three phasor

equations

V1 ¼ ajXMI� þ ðR1 þ jX11ÞI1
jXMI� ¼ ðZL þ R2 þ jX22ÞI2

I1 ¼
1

a
I2 þ I�
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Elimination of I2 and I� among these equations results in

V1

I1
� Zin ¼ ðR1 þ jX11Þ þ a2

ð jXM=aÞðR2 þ jX22 þ ZLÞ
ð jXM=aÞ þ ðR2 þ jX22 þ ZLÞ

ð14aÞ

If, instead, the mesh current equations for Fig. 14-11(b) are used to derive Zin, the result is

Zin ¼ R1 þ jX1 þ
X2

M

R2 þ jX2 þ ZL

ð14bÞ

The reader may verify the equivalence of (14a) and (14b)—see Problem 14.36.

14.8 IDEAL TRANSFORMER

An ideal transformer is a hypothetical transformer in which there are no losses and the core has
infinite permeability, resulting in perfect coupling with no leakage flux. In large power transformers the
losses are so small relative to the power transferred that the relationships obtained from the ideal
transformer can be very useful in engineering applications.

Referring to Fig. 14-13, the lossless condition is expressed by

1
2
V1I

	
1 ¼ 1

2
V2I

	
2

(see Section 10.7). But

V1 ¼ E1 ¼ aE2 ¼ aV2

and so, a being real,

V1

V2

¼ I2

I1
¼ a ð15Þ

The input impedance is readily obtained from relations (15):

Zin ¼ V1

I1
¼ aV2

I2=a
¼ a2

V2

I2
¼ a2ZL ð16Þ
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