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Abstract

Machine learning problems of supervised classification, unsupervised clustering and 

parsimonious approximation are formulated as mathematical programs. The feature 

selection problem arising in the supervised classification task is effectively addressed 

by calculating a separating plane by minimizing separation error and the number of 

problem features utilized. The support vector machine approach is formulated using 

various norms to measure the margin of separation. The clustering problem of assign­

ing m  points in n-dimensional real space to k  clusters is formulated as minimizing a 

piecewise-linear concave function over a polyhedral set. This problem is also formulated 

in a novel fashion by minimizing the sum of squared distances of data points to nearest 

cluster planes characterizing the k clusters. The problem of obtaining a parsimonious 

solution to a linear system where the right hand side vector may be corrupted by noise 

is formulated as minimizing the system residual plus either the number of nonzero el­

ements in the solution vector or the norm of the solution vector. The feature selection 

problem, the clustering problem and the parsimonious approximation problem can all 

be stated as the minimization of a concave function over a polyhedral region and are 

solved by a theoretically justifiable, fast and finite successive linearization algorithm. 

Numerical tests indicate the utility and efficiency of these formulations on real-world 

databases. In particular, the feature selection approach via concave minimization com­

putes a separating-plane based classifier that improves upon the generalization ability 

of a separating plane computed without feature suppression. This approach produces
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classifiers utilizing fewer original problem features than the support vector machine ap­

proaches, with comparable generalization ability. The clustering techniques are shown 

to be effective and efficient data mining tools in medical survival analysis applications. 

The parsimonious approximation methods yield improved results in a signal processing 

application, with high signal to noise ratio, over least squares and a lengthy combi­

natorial search. These results support the claim that mathematical programming is 

effective as the basis of data mining tools to extract patterns from a database which 

contain “knowledge” and thus achieve “knowledge discovery in databases” .
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Chapter 1

1

Introduction

In this work, we explore mathematical programming approaches to supervised and 

unsupervised machine learning problems. We further integrate these approaches into 

the broader goal of extracting knowledge from databases.

1.1 Machine Learning: Supervised Learning

In a supervised learning task, one attempts to estimate a function g which maps points 

or feature vectors from an input space X  to an output space y ,  given only a finite 

sample of the mapping {x*,^(x‘)} ^ 1, which may be corrupted with noise. The goal 

of a supervised learning algorithm is to construct an estimate g of g from this finite 

sample, or training set

Our principal supervised learning task is the classification problem. The classifica­

tion problem is usually defined as that of assigning a vector x  € X  to one of k disjoint 

subsets A \,A 2 , . - • ,Ak of X . We address the classification task in its simplest form: 

determine whether an input vector x  G X  is an element of one of the disjoint point sets 

A  or B, where A,B  CX. We assume the true classification function g has the following 

form:
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Many different algorithms exist for constructing the approximation g of g and 

the approximation may have many different functional forms. Examples include a 

separating-plane based function [96, 97], the backpropagation algorithm for artificial 

neural networks (ANNs) [77, 111], decision tree construction algorithms utilizing vari­

ous node-decision criteria [29, 134, 5], spline methods for classification [165, 162] and 

probabilistic graphical dependency models [76, 32].

Evaluating an estimate g of g in terms of how well it performs on data not included 

in the training set, or how well g generalizes, is paramount. Often it is possible to 

allow a learning algorithm to construct g from a sufficiently complex function class so 

that g approximates g arbitrarily well on the training set. However this complex g 

usually approximates g poorly on points not in the training set [148]. This situation 

is identified as overfitting the training data. While biasing a learning algorithm to 

construct g from a less complex function class often improves generalization ability, 

it may not be desirable in all problem domains [142]. Overtraining can also lead to 

poor generalization even when the complexity of the function class from which g is 

constructed is optimal [15]. The key to good generalization is correctly estimating 

the complexity of the true mapping g while avoiding overtraining. This problem is 

compounded by the fact that we have only a finite sampling of g, which, in addition, 

may be corrupted by noise.

To avoid overfitting, many learning algorithms utilize the Occam’s Razor bias [13]
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(or equivalently, minimum description length [136] or minimum message length [166]). 

This bias favors the simplest model possible that still achieves some level of performance 

on the training data. Common techniques to avoid overtraining are early stopping and 

weight decay [16]. The latter can also be viewed as an overfitting avoidance technique.

Generalization ability can be effectively estimated by leave-one-out testing [90], 

where g is constructed by a learning algorithm using all but one of the available training 

examples and is tested on the point “left out” . This procedure is repeated for each data 

point in the training set. The average correctness measure over all of the data points 

tested is an accurate, nearly unbiased estimate of the generalization ability of g. A 

method which is computationally more tractable for estimating generalization ability 

is cross-validation [152]. In this procedure, the available training data is randomly 

divided into £ disjoint sets of approximately equal size, T\, T2 , . . .  ,7*. Then I  trials are 

conducted, where in each trial, the test set is 7}, and the training set is the union of all 

7}, j  i, i =  1, • • • ,£• A further discussion of statistical tests for comparing different 

learning algorithms which construct estimators g can be found in [53].

1.2 Machine Learning: Unsupervised Learning

The fundamental difference between an unsupervised learning task and a supervised 

learning task is that the elements from the input space X  are not tagged with their 

corresponding element in the output space y  in unsupervised learning. The motivation 

for an unsupervised learning algorithm is to “look for regularities” in the training 

examples {x*}t̂ 1 C X  [148]. Unsupervised learning algorithms can be divided into 

general “discovery” systems (e.g. AM [93], BACON [91]) and those which perform
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4

“clustering” [148].

In the clustering problem [81, 63], the goal is to group or cluster the data into sets of 

“like” points. One hopes to obtain clusters revealing some sort of high-level characteri­

zation of the points belonging to individual clusters. “Exemplar” or “prototype”-based 

clustering approaches include Forgy’s method [61], the MacQueen algorithm [95] (com­

monly referred to as “batch” and “online” A:-Mean clustering), Kohonen maps [87], and 

competitive learning [141]. Probabilistic clustering methods include the COBWEB al­

gorithm [60], AutoClass [39], the Expectation-Maximization (EM) algorithm [50, 124] 

and, more recently, probabilistic graphical approaches [76, 32].

“Hard” clustering algorithms, such as k-Mean, assign data items to a single cluster 

whereas “soft” clustering algorithms, such as EM, assign a given data point to all 

clusters with a certain probability of membership. Hard clustering algorithms can 

often be placed in the probabilistic framework of soft clustering [18, 17].

Formal methodology for evaluating clustering algorithms is lacking, in contrast to 

the fairly standard methodologies of leave-one-out testing and ten-fold cross-validation 

used in the supervised classification problem. Evaluation procedures include distortion 

(if applicable), information gain [18], classification accuracy (if classes are known) and 

holdout likelihood [112].

Generalization ability is usually not an explicit issue in unsupervised learning. Al­

though generalization ability is not paramount, clustering methods still implement a 

bias when defining clusters. This bias may involve a restricted cluster description or 

place an ordering over various possible cluster descriptions [148].

In the next section we introduce a process for extracting useful information from
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5

collected data utilizing supervised and unsupervised machine learning methods.

1.3 Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) has been defined as . the nontrivial pro­

cess of identifying valid, novel, potentially useful and ultimately understandable pat­

terns in data” [57]. This multi-disciplinary field is driven by the need to extract useful 

information from enormous amounts of data collected in areas ranging from astronomy 

[56] to business and industrial domains [130].

o 00
o s
-2 • 3o.

§3 CO03
Q

Structures:
Patterns/
Models

.1 «  s i
% ‘ C  
«  o

C13

Data Warehouse

«
"Knowledge" Visualization

Figure 1: An overview of the steps comprising the KDD process.

The KDD process consists of numerous interactive and iterative steps enabling 

“knowledge” to evolve from a given store of “raw” data. These steps include data 

selection, preprocessing and transformation to put the raw data in a form suitable 

for the application of one (or more) data mining algorithms. Any algorithm that 

enumerates patterns from, or fits models, to data is a data mining algorithm [58]. 

Many algorithms from pattern recognition, statistics, databases, machine learning and
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6

optimization qualify as data mining algorithms and give the field of KDD its multi­

disciplinary character. Related fields further include high performance and parallel 

computing, knowledge modeling, management of uncertainty, and data visualization 

[581.

After the data mining algorithm has identified patterns (or computed models) of 

possible interest, this output must be interpreted or evaluated. Evaluation criteria 

include certainty (estimated predictive accuracy on unseen data or generalization abil­

ity) or utility (gain, perhaps in dollars saved due to better predictions or speed-up in 

response time of a system). Other criteria such as novelty and understandability are 

much more subjective and difficult to define [21]. Application of a visualization tool 

may aid in evaluating the output of the data mining algorithm. See Figure 1.

Although not explicitly detailed in Figure 1, the KDD process is typically iterative 

and previous steps may need to be altered and algorithms re-applied to obtain patterns 

or models deemed useful. For example, one may select, clean and reduce data only to 

discover after mining that one or several of the previous steps need to be redone [21].

Depending on the goals of the user, different data mining methods may be em­

ployed in the KDD process. Two primary data mining methods are classification and 

clustering [57].

1.3.1 M assive D ataset Issues

Many popular classification and clustering algorithms [148, 63, 11, 81] require accessing 

individual data items an arbitrary number of times, or require data to be resident in 

memory for effective processing. These approaches play powerful roles as data mining
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algorithms over data sets of modest size.

The issue of scalability of these algorithms arises when datasets become massive (too 

large for resident memory) and/or are stored remotely (access becomes expensive). In 

fact, massive dataset size is a fundamental characteristic of many working definitions 

of KDD [151]. Data can grow in the number of data elements (records) and in the 

dimensionality of each element (fields per record).

There are straightforward ways to “scale” current algorithms to deal with large 

scale or massive datasets. A standard approach to dealing with high-dimensional data 

is to project it into a low-dimensional space and attempt to construct models in this 

space [21]. Three drawbacks to this scheme are: (1) as the number of dimensions 

grow, the combinatorial choice of projection into a space of lower dimension becomes 

overwhelming; (2) projection to a space of lower dimension could transform a relatively 

easy modeling problem into one that is extremely difficult [21]; (3) the projection may 

result in loss of accuracy or “quality” , resulting in a poor model or a  difficult problem 

(as in (2)). For datasets with a massive number of examples, the straightforward way to 

“scale” existing algorithms is by random sampling. One selects a random sample that 

fits into resident memory and constructs models over this sample. Models constructed 

over random samples may be inadequate [19, 18]. These drawbacks may be overcome 

by employing more complex sampling or “averaging” schemes.

To deal efficiently with massive datasets, we propose that data mining algorithms 

be developed which satisfy (to the extent possible) the following [19]:

•  Require one scan of the dataset i f  possible: since even a single data scan over 

a massive database can be costly. Early termination, if appropriate, is highly
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desirable.

•  On-line “anytime ” behavior [14]: a “best” solution is always available, with status 

information on progress provided to allow the user to terminate the process if 

the current solution is adequate.

•  Suspendable, stoppable, resumable: incremental progress is saved to resume a 

stopped job.

•  Ability to incrementally incorporate additional data with existing models effi­

ciently. In many data mining applications, data is provided in a temporal manner 

(e.g. the database is updated daily).

•  Work within the confines of a limited resident memory (RAM) buffer.

In the next section we introduce the notation that will be used throughout this 

work.

1.4 Notation

•  All vectors will be column vectors unless transposed to a row vector by the use 

of a prime superscript'.

•  The symbol denotes definition.

•  For a vector x  in the n-dimensional real space i ? \  x + will denote the vector in 

RJ1 with components (x+)t := max {a:,-, 0}, * =  1 , . . .  , n.
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•  The vector x« will denote the vector in R 1 with components (x,)i := (x*),, 

i =  1 , . . .  , n, where (•), is the step function defined as one for positive Xi and 

zero otherwise.

•  The notation |x| will denote a vector of absolute values of components of x.

•  The base of the natural logarithm will be denoted by e and for y € R n, e~v will 

denote a vector in R n with components e~yi, i =  1 , . . .  , m.

•  The norm || * ||p will denote the p norm, 1 < p <  oo. For a general norm || • || on 

R 1, the dual norm || • ||' on R 1 is defined as

llxlK =  max x'y.
IMI=i

The 1-norm and oo-norm are dual norms, and so are a p-norm and g-norm for

which 1 < p, q < oo and -  +  -  =  1.p q

•  The notation A €  i2mxn will signify a real m  x n matrix. For such a matrix, A' 

will denote the transpose, A* will denote row i and A .j will denote column j .

•  For two vectors x  and y  in R 1, x  ± y  will denote x 'y  = 0.

•  A vector of ones in a real space of arbitrary dimension will be denoted by e.

•  The notation argmin f i x )  will denote the set of minimizers of f i x )  on the set S.
ar€ S

Similarly arg vertex min f ( x )  will denote the set of vertex minimizers of f ( x )  on 

the polyhedral set 5, that is the set of vertices of S  that solve min f{x).
x £ S

•  By a separating plane, with respect to two given point sets A  and B  in R 1, we 

shall mean a plane that attempts to separate R 1 into two half spaces such that
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each open halfspace contains points mostly of A  or B. Alternatively, such a plane 

can also be interpreted as a classical perceptron [140, 77, 100].

•  For a function /  : R? —► R  that is concave on iT*, the supergradient df(x)  of /  

at x  is a vector in RJ1 satisfying

f (y)  ~  f (x)  < d f (x) (y  -  x) (2)

for any y  6 if*. The set D{f(x))  of supergradients of /  at the point x  is nonempty, 

convex, compact and reduces to the ordinary gradient V /(x),  when /  is differ­

entiable at x  [132, 137].
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Chapter 2

11

Classification via M athem atical 

Program m ing

We focus on optimization approaches addressing the supervised classification task (Sec­

tion 1.1). The task is that of assigning a point x  = [X1 X2  £„]' in n-dimensional

feature space into one of two disjoint point sets A  or B by estimating a classification 

function g from a finite training set ( x \  gix1) } ^ .  Here, g(x) is either 1 or 0, depending 

on whether x  € A  or x  6 B, respectively. Difficulty in estimating g may stem from 

the fact that the training set may have errors or is not entirely representative of data 

points to be encountered in the future.

We begin with the feature selection problem which consists of eliminating as many 

features from the original n-dimensional features space as possible, while still accurately 

estimating g over the training set. We then focus on the support vector machine 

[22, 33, 161] approach to classification. Computational comparison is made between a 

feature selection approach via concave minimization and the support vector machine 

formulations. A technique for solving general linear programs with a massive number 

of constraints is considered. This technique, when applied to the linear formulations 

of the feature selection and support vector machine problems, addresses the issues 

of massive datasets often encountered in many large scale KDD applications (Section
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1.3.1).

2.1 Feature Selection Problem

The accuracy of the classification function estimated from the training data, g, is 

determined by the inherent class information available in the features, or components, 

of the input vectors x l in the training set. It seems logical to conclude that having a 

large number of features would provide more discrimination ability. But, with a large 

number of features and a fixed number of training examples, one encounters the “curse 

of dimensionality” ; a high-dimensional space with a modest number of data points 

is almost empty [77]. Thus, with a large number of original problem features and a 

finite amount of training data, many different estimators may accurately separate the 

training data, but only a small fraction may generalize well.

In the classification task described above, one realization of the Occam’s Razor bias 

[13] is to “choose” a small number of predictive features and utilize these to construct 

the estimator g, discarding irrelevant or redundant features. Removal of irrelevant or 

redundant features usually speeds the learning process, the constructed estimator usu­

ally generalizes better and often lends itself to easier interpretation [117]. In addition, 

a classification function utilizing a small number of original problem features is often 

requires fewer resources to evaluate.

The feature selection problem consists of eliminating as many features from the 

original n-dimensional feature space as possible, while still accurately estimating g to 

some extent over the training set.
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2.1.1 Machine Learning Approaches

Machine learning approaches to feature subset selection can basically be divided along 

the lines of filter models and wrapper models [83]. In the filter model, feature selection 

is done as a preprocessing step which ignores the effects of the selected subset on 

the performance of the estimator constructed by a given algorithm. In contrast, the 

wrapper model encompasses algorithms which utilize the estimator g to evaluate a 

given feature subset.

Instances of the filter model include the FOCUS algorithm [4], the Relief algorithm 

[85] and a method of feature selection based upon Information Theory [88].

The FOCUS algorithm [4] performs an exhaustive search through the possible fea­

ture subsets and returns the minimal subset sufficient for classification. FOCUS may 

not be able to identify irrelevant features when noise is present in the training set, or 

if the training set is not representative of future data [83].

The Relief algorithm [85] assigns a weight to each feature which corresponds to 

the “relevance” of that feature as represented in the training set. Examples from the 

training set are randomly selected and the relevance value is calculated based upon 

the component-wise distance from the selected point to the two nearest neighbors of 

the same and opposite class. The relevance of a feature is then an average of these 

values over the sampled points from the training set. Since each feature relevance 

is determined independently of other features, Relief is unable to identify redundant 

features [85]. In a domain in which a relevant group of features are highly correlated, 

Relief will assign to each of the correlated features a large relevance value and not 

notice the redundancy.
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The feature selection method proposed in [88] attempts to compute a reduced fea­

ture set such that the probability distribution of the class given the reduced feature 

set is “near” to the distribution of the class given the full feature set. Consider a par­

ticular data instance characterized by given values of the original full set of problem 

features. This data instance induces a probability distribution of the class label given 

the values of all of the problem features. The idea is to remove a feature such that the 

probability distribution of the class given the reduced feature subset is as “near” to the 

distribution of the class given the full feature subset. Distance here is the KL-distance 

[89] or equivalently, cross-entropy.

A few examples of the wrapper model are forward selection (backward elimination), 

forward stepwise selection (backward stepwise elimination), Optimal Brain Damage 

and SET-GEN.

One of the simplest hillclimbing feature selection methods is forward selection [36]. 

Initially, the candidate set of features is empty. At each iteration, one feature is 

greedily added to the candidate set as the one that provides the maximum increase in 

a generalization estimate . Backward elimination [36] begins with the candidate set of 

features consisting of all original problem features. At each iteration, one feature is 

greedily removed from the candidate set so that the resulting smaller subset corresponds 

to a maximum increase in estimated generalization. Iterations cease when a given 

generalization increase is not observed. Notice that in forward selection, once a feature 

has been added to the candidate set, it will not be removed. Similarly, in backward 

elimination, once a feature has been removed, it cannot again re-enter the candidate 

set. Note that the method of [88] is a backward-elimination scheme which scores a  given 

feature subset via cross-entropy or KL-distance [89] instead of utilizing the performance
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of the classifier computed by the induction algorithm.

Forward stepwise selection [36] is a form of bidirectional hillclimbing in that at 

each step, one feature is allowed to be added and one feature is removed from the 

candidate subset. Forward stepwise selection differs from backward stepwise elimination 

[36] only in that the former begins with an empty candidate set and the latter with 

a candidate set consisting of all original features. These searches must be monitored 

to prevent cycling. There are further generalizations of these basic procedures such 

as backward stepwise elimination-SLASH (BSE-SLASH) [36] and Greedy Sequential 

Backward Elimination (GBSE) [30].

Optimal Brain Damage (OBD) [92] is a procedure to set the weights of an artificial 

neural network (ANN) to zero, but when applied to weights associated with input 

features, this is synonymous with feature selection. The idea of OBD is to delete 

parameters with small “saliency” , or parameters whose deletion will have minimal effect 

on training error. The error function is assumed to be twice differentiable. The diagonal 

terms of the Hessian of this error function (times a multiplier) which are less than a 

given tolerance correspond to parameters with small saliency. The OBD procedure can 

be summarized as follows: (1) A classifier is trained until a “reasonable” solution is 

obtained, (2 ) second derivatives of the error function with respect to each parameter 

(diagonal elements of the Hessian) are computed, (3) saliencies are determined for each 

of these parameters, and (4) the parameters with saliencies below a given threshold 

are set to zero. With the given parameters set to zero, steps (l)-(4) are repeated.

SET-GEN [42] employs a  genetic algorithm [71] to search candidate feature subsets. 

For each candidate subset, a C4.5 decision tree [134] is constructed using the given 

candidate input features and generalization ability of the decision tree is estimated by
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ten-fold cross-validation [152]. The fitness of each candidate is then determined by a 

linear combination of the generalization estimate, number of candidate features, and 

average size of trees over each fold of cross-validation. A population is maintained of 

the best candidate subsets. Genetic operators are used to create new subsets. If a new 

candidate subset has better fitness than the worst one in the current population, it is 

replaced. After a desired number of subset evaluations are completed, SET-GEN uses 

the entire training set to produce a C4.5 tree using the best candidate subset.

Some inductive algorithms, such as those producing decision trees with univariate 

splits (e.g. ED3 [133], C4.5 [134]), inherently select features while constructing g. For 

instance, if the criterion for adding a new node is satisfied with ID3, the feature on 

which to base this decision is chosen as one that maximizes a measure of information 

gain. While known for being a very fast procedure, ID3 suffers when the true relation 

between input/output pairs utilizes interactions between features [51, 129] since it does 

not make use of more than one feature in any given decision.

2.1.2 M athem atical Programming Approaches

As mentioned in Section 2 .1, our task is to discriminate between two given sets in an 

n-dimensional feature space using as few of the given features as possible.

Formulating the feature selection problem as a mathematical program has been 

extensively studied. In [118], stepwise techniques are utilized to avoid exhaustive enu­

meration of all possible feature subsets. In [38], dynamic programming is used for the 

same purpose. In [123], a branch and bound method is presented that effectively re­

jects suboptimal subsets without direct evaluation and yields a global solution. In [28],
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the feature selection problem is formulated as a linear program with equilibrium (com­

plementarity) constraints (LPEC), but both the LPEC formulation and its method of 

solution differ from those presented here.

In this section, we consider mathematical programming approaches for estimating 

the classification function given a training set consisting of two nonempty, disjoint, fi­

nite point sets A  and B  in n-dimensional feature space with m and k  points respectively. 

The point sets A  and B  are represented by the matrices A  6  i? ”xn and B  6  Rk*n, 

where each point of A  is represented by a row in A, similarly for B. We attempt to 

discriminate between the points of A  and B by constructing a separating plane:

P  := {x | x  € Rn, x'w  =  7 }, (3)

with normal w 6  R? and (2-norm) distance j | |^  to the origin, while suppressing as 

many elements of the vector w as possible. We want to determine w and 7  so that the 

separating plane P  determines two open halfspaces: {x  \ x  € f ? \  x'w > 7 } containing 

mostly points of A , and {x \ x  6  R n,x'w  < 7 } containing mostly points of B. Hence 

we wish to satisfy

Aw > e j, Bw  < e7  (4)

to the extent possible. Upon normalization, these inequalities can be equivalently 

written as

Aw  >  e7  + e, Bw < e j  — e. (5)
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Conditions (4), or equivalently (5), can be satisfied if and only if, the convex hulls 

of A  and B  are disjoint. This is not the case in many real-world applications. Hence, 

we attem pt to satisfy (5) in some “best” sense, for example, by minimizing some norm 

of the average violations of (5) such as

min f { w , j )  :=  min —1|(—Aw +  e j  +  e)+ ||i +  \  ||(Bti/ -  erf -I- e)+||i (6 )
«w,7 W,7 m  K

Another way of satisfying (5) consists of minimizing the number of points misclas- 

sified by the separating plane P  [101, 121]. In [40], the decision problem associated 

with minimizing the number of misclassifications is shown to be NP-complete and a 

hybrid algorithm is proposed to compute an approximate solution.

Two principal reasons for choosing the 1-norm in (6 ) are:

(i) Problem (6 ) is then reducible to a linear program (7) with many important 

theoretical properties making it an effective computational tool [8].

(ii) The 1-norm is less sensitive to outliers such as those occurring when the under­

lying data distributions have pronounced tails, hence (6) has a similar effect to 

that of robust regression [78],[75, pp 82-87].

The formulation (6 ) is equivalent to the following robust linear programming for­

mulation (RLP) proposed in [7] and effectively used to solve problems from real-world 

domains [109]:

f d y  d  z  1min ^  h —  — Aw  +  e j  + e < y, B w  — e j  +  e <  z, y > 0, z > 0 > . (7)
{ m  k J
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Non-symmetric misclassification costs can easily be handled by the RLP formula­

tion (7) by introducing parameters and &  into the objective. For instance, if the 

cost of misclassifying a point of A  is greater than misclassifying a point of B, this

is easily reflected by replacing the objective of (7) with ^ (3X > fe.m  k
This situation may arise in a classification problem were a “false-negative” response is 

deemed more costly than a “false-positive” response.

The linear program (7), or equivalently, the formulation (6 ) define a separating 

plane P  that approximately satisfies the conditions (5).

To address the feature selection problem, we wish to find a minimum support 

solution [106] with respect to w of the RLP (7). Minimum support solutions are 

those with as many components equal to zero as possible. In order to suppress as 

many elements of w as possible, we introduce a feature selection term with parameter 

A € [0,1) into the objective of (7) and weight the original objective function by (1 — A) 

as follows:

min ( l - A ) ( ^  +  ^ )  +  A e ' M .  m k ►,A€[0,1). (8 )

—Aw + ey 4- e < y,

Bw  — e j  +  e <  z, 

y > 0 , z > 0

The value of the parameter A balances the two objectives of minimizing the error 

in separating the training data versus the number of original problem features used.

The feature suppression term e'ltol, counts the number of nonzero elements of the 

weight vector w defining the separating plane P.

The absolute value function is removed from the objective of (8 ) by introducing the 

variable v € R? and adding the constraints —v < w < v  to the constraints of (8 ):
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w,~t,yyz,v

—Aw + e j  + e < y,

. „ ,e'v e/z v . , Bw  — e'Y +  e <  z,
(1 -  A)(—  H——) +- Ae v*

m k y > Q , z >  0 ,

— V  < W  < V
d

► , A 6  [0,1). (9)

This is our fundamental feature selection (FS) problem. At a solution of (9), the 

vector v« is equal to |tu|*. Also note that the constraints —v < w < v  imply v > 0. 

The value of the parameter A € [0,1) is chosen to maximize the generalization ability 

of the estimated classification function, g(x) :=  (x'w  — 7 ),, where 10 ,7  are solutions of

(9). Typically, this will be achieved in a feature space of reduced dimensionality, that 

is when the number of nonzero elements of the weight vector w =  e'u. < n.

Since the function e'vm is discontinuous on the non-negative orthant, we make a 

continuous approximation of it using either the standard sigmoid function of neural 

networks [139, 77] or by a concave exponential on the nonnegative real line [103]. The 

two approximations of the step vector u* of (9) by the sigmoid function and the concave 

exponential are respectively:

v,  =  s(v, a) := (e -I- e aw) 1 , a > 0 (10)

See Figure 2 .

vm =  t(v ,a ) := e —e °" , a  > 0 (11)

See Figure 3.
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Figure 2: Sigmoid approximation (10) of the step function, (•)«. Plot is

s(x, 5) = --------— versus x.
v ’ 1 + e ~ 5x

Here e is a vector of ones, e is the base of the natural logarithm, a  is a positive 

parameter, and the application of either function to a vector is interpreted component­

wise as in the standard MATLAB notation [110]. Note that for e-aw < <  e, e — e_at' 

is an approximation to (e -+- e-at,)_1. To see this, 1 — 5 is a two-term Taylor series 

expansion of (1 -1- £ )_1 for a scalar 8  «  1 .

Advantages of the concave exponential (11) over the standard sigmoid (10) are the 

following:

(i) The concave exponential more accurately approximates the step function u, at 

0 , since t(0 , a) =  0 , whereas s(0 , a) =  ~e.

(ii) The concavity of t(v, a) in v on R 1 leads to a finitely terminating algorithm 

(Algorithm 2.1.3).
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Figure 3: Concave exponential approximation (11) of the step function, (•),. Plot is 
t(x, 5) =  1 — e~5x versus x. Recall that we are interested in approximating the step 
function on the non-negative real line.

With these approximations, the FS problem (9) can be approximated by the fol­

lowing FSS (FS sigmoid) and FSV (FS concave) problems:

r
—Aw + e j  + e < y,

(1 -  A ) ( ^  +  ^ )  +  Ae'(e +  er' " ) - 1
Bw — e'y + e < z,

(FSS) min < m  k y > 0 , z  > 0,

—V < w < v
4

A 6  [0,1), (12)
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r

( 1  -  X)(p- +  ^ - )  +  A(n -

*

—Aw  +  e 7  +  e  <  y, 

Bw — e'y +  e  <  z,
(FSV) min <

t» ,7 m  k y >  0 , z  >  0 ,

<
—V < w < v

4

A €[0 ,1 ). (13)

We make use of the following lemma [103, Lemma 2.3] in order to model the step 

function of (9) exactly, as a linear program with equilibrium constraints (LPEC) [101, 

94]. (The “equilibrium” terminology refers to the term involving the _L condition which 

characterizes complementarity problems [47].)

L em m a 2.1.1 Let a 6  R 71. Then

r = am, u = a+ O  (r, u) = argmin {e'r I 0 < r  _L u — a > 0, 0 < u _L — r  +  e >  0}
r,u

(14)

Utilizing this lemma, the FS problem can be equivalently rewritten as the following 

LPEC:
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(FSL) min <
to,-y,y^,v ( i - A) ( ^  +  T ) +  AeVm fc

—An; +  e'y +  e <  y, 

Bw — erf + e < z, 

y >  0 , z >  0 , 

—v < w < v ,

0 <  r  J_ u — v > 0 

0 < t z _ L —r  +  e > 0

A 6  [0,1). (15)

One consequence of this LPEC formulation of the FS problem (9) is the existence 

of a solution to the FS problem [103, Proposition 2.5]. However, the FSL problem (15) 

is computationally difficult, in fact LPECs in general are NP-hard since they subsume 

the general linear complementarity problem which is NP-complete [43]. To avoid this 

difficulty, (15) is reformulated as a parametric bilinear program which can be easily 

handled by solving a finite sequence of linear programs that terminate at a stationary 

point [9, Algorithm 2.1]. In particular, the nonnegative nonlinear terms r'(u — v) plus 

u’{—r+ e )  are moved as positive penalty terms into the objective function as —r'v+e'u, 

weighted by the penalty parameter \i G (0 , 1) as follows:
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t *
—Aw +  e*y +  e <  y,

Bw — e j  + e < z,
( l - # . ) ( ( l - A ) ( £  +  £ )  +  AeV) y > 0 , z  > 0 ,

+(i(—r'v + e'u) —v < w < v ,

0  < r,u — v > 0

<
0 < u, — r +  e >  0

4

A € [0,1), A i6 (0 ,l). (16)

To summarize, we have formulated the feature selection problem as a mathematical 

program (9 ), which consists of finding a minimum support solution to the robust linear 

program (7). This is accomplished by suppressing the components of w by use of the 

step function (•),. The step function is modeled exactly when the term —r'v + e'u =  0 

at a solution to the FSB problem (16). It is approximated by the sigmoid function

(10) in the FSS problem (12). The FSS problem consists of minimizing a nonlinear 

objective function over a polyhedral region. The step function is also approximated by 

the negative exponential (11) in the FSV problem (13). The FSV problem consists of 

minimizing a concave objective over a polyhedral region.

Algorithms to solve these feature selection formulations are discussed next.

2.1.3 Algorithm s for the Feature Selection Problem

By using the standard transformation w = w 1 — eQl , j  =  7 1 — C \ we replace the 

variables (w, 7 ) by the nonnegative variables (to1, 7 1, C1). The feature selection prob­

lems FSS (12), FSV (13) and FSB (16) can then be transformed into the following
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minimization problem:

min{ f (x )  (Ax  < b, x  > 0} (17)
X

where /  : Rl —> R, is a differentiable, nonconvex function bounded below on the 

nonempty polyhedral feasible region of (17), with A  G BP*e and b € BP, Although 

this transformation is needed in order to establish theoretically the finiteness of our 

algorithms (the SLA 2.1.3 and the Bilinear Algorithm 2.1.5), we shall not carry it out 

in the interest of keeping the algorithms simple. In practice, finite termination occurs 

without this transformation.

We note that for each of the FSS (12), FSV (13) and FSB (16) problems, once the 

algorithms for computing solutions have terminated, the RLP (7) is re-solved with all 

non-selected features removed.

We consider the algorithms which compute solutions to the FSS, FSV and FSB 

problems to be related to wrapper models of feature selection [83]. As the FSS, FSV 

and FSB problems are being solved, the benefit of removing a problem feature (i.e. 

setting a given Wj to zero) is balanced by an increase (if any) in the term measuring 

separation error of the separating plane w'x =  7 . In this sense the separation ability 

of the resulting classifier is a factor in selecting a given feature subset.

Because the FSS problem (12) objective is neither convex nor concave, it was solved 

using the nonlinear optimization codes available in the MINOS optimization package 

[120].
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Polyhedral Concave M inimization

We consider a finitely terminating fast successive linearization algorithm for comput­

ing minimum support solutions to polyhedral concave programs. This approach finds 

minimum support solutions [106] to the following problem:

nun f {x)  (18)

where /  : R* —»• R  is a concave function on R? that is bounded below on the polyhedral

set S  not containing straight lines going to infinity in both directions. A minimum

support solution to (18) is obtained by adding a suppression term to the objective 

weighted by the positive parameter \i:

min f ( x )  + ph'\x\m. (19)
i € S

Here h is a nonnegative vector in R?.

One approach for solving (19) utilizes the concave exponential approximation (11) 

of the step function. The resulting problem is the minimization of a concave function 

bounded below over a polyhedral region not having straight lines going to infinity 

in both directions. This concave minimization problem has a vertex solution [137, 

Corollaries 32.3.3 and 32.3.4]. The successive linearization approach computes a locally 

optimal solution to the concave problem by identifying vertices of the feasible region 

via a sequence of linear programs.

The successive linearization approach for obtaining minimum support solutions of 

(18) was introduced in [103] for a differentiable /  utilizing the negative exponential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

(11) to approximate the step function. The approach was generalized in [107] for a 

nondifferentiable /  using its supergradient (2). Existence of a vertex solution for a 

finite smoothing parameter to the problem with differentiable /  and negative expo­

nential which also solves (19) was established in [25]. The result is generalized for 

nondifferentiable /  in [106].

We restate [25, Theorem 2.1].

T heorem  2.1.2 E x istence o f E x ac t V ertex  Solution for F in ite  Value o f Sm ooth­

ing P a ram e te r  Let f  : B f —► R  be bounded below on the polyhedral set S  that contains 

no straight lines going to infinity in both directions, let f  be concave on Bf, let n be a 

fixed positive number and h be a nonnegative vector in Bf. Then for a sufficiently large 

positive but finite value ao of a , the smooth problem

min f { s ) +  nh'(e — £-a*), (s , z) €  T  := {(s, z) | s € S, — z  < s < z], (2 0 )

has a vertex solution that also solves the original nonsmooth problem

m in/(s) +  fih'\s\m. (2 1 )

P ro o f  Since the objective function of (20) is concave on (s, z) in B u  and is bounded 

below on T, it follows by [137, Corollaries 32.3.3 and 32.3.4] that it has a vertex 

(s(a)}z(a)) of T  as a solution for each a  > 0. Since T  has a finite number of ver­

tices, one vertex, say (s, z), will repeatedly solve problem (20) for some sequence
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(22)

{ao, a i , . . .}  t  oo. Hence for a,- > ao,

/(s )  +- nh'(e — e~aiS) =  /(s(a,-)) +  fj.h'(e —

=  min /(s )  -+■ nh'(e — e~aiZ)

=  m in/(s) +  nh'(e — s -ail5l)s^S
< in f/(s) +  (ih'\s\m,5c

where the last inequality follows from

A'N* >  h \e  -  <Ta|a|), Vs 6  (23)

Letting i — > oo it follows that

/(s )  +  /z/i'|s|, =  lim /(s )  +  nh’{e — e~aiS) <  inf /( s )  +  fih'\s\.. (24)
i— >oo s€S

Since s € S, it follows that s solves (21). Since (s, z) is a vertex of T , it follows that s 

is a vertex of S. □

By making the following identifications,
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£ = n + l  + m  + kj

s = [w' 7  y7 z7]7,

. 1S  = <{w, 7 , y, z)

—Aw +  e7  +  e <  y, 

J5iy — e7  +  e <  z, 

y >  0 , z  > 0

,

(25)

fc =  [e'00'0']',

/(» ) =  S +  X ,

/* =  A ’

the fundamental feature selection (FS) problem (9), or equivalently (8 ), becomes a 

special case of problem (21) which we solve by its smooth version (20). W ith the 

identifications (25) this smooth version is equivalent to FSV (13).

Hence, by solving the FSV problem for sufficiently large but finite a,  it follows from 

Theorem 2.1.2, that we also have computed a solution to the original discontinuous 

FS problem (9). The method which we propose for solving the FSV problem is the 

successive linearization approximation (SLA) method of minimizing a concave function 

on a polyhedral set which is a finitely terminating stepless Frank-Wolfe algorithm [62]. 

In [103] finite termination of the SLA was established for a differentiable concave 

function, and in [107] for a nondifferentiable concave function using its supergradient
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(2). We now state the algorithm.

Algorithm  2.1.3 Successive Linearization A lgorithm  (SLA) for FSV  (13).

Choose A 6  [0,1). Start with a random (w°, 7 0). Set y° = (—Aw° +  e'y0  +  e)+, 

z° =  (Bw° — e'y0  +  e)+, v° =  \w°\. Having (wl, 7 ', yl, z l , vl) determine (w%+l, 7 t+l, 

y*+1, zt+l t/*+l) by solving the linear program:

r >

—Aw + e'y +  e < y,

(1 -  * ) ( £  +  t ) Bw — e'y + e < z,

+ A o '( s - a t , , ) / ( t ;  — v*) y >  0 , 2  > 0 ,

— V  <  W  <  V
4

> (26)

Stop i f  (wl, 7 *, y‘, zx, vl) is feasible and

(1 -  A ) ( ^ ^ -----^  +  g/(z- — *1) +  Aa(e-tt,,i),(t;i+1 -  uf) =  0
m k

(27)

We restate [103, Theorem 4.2] which establishes finite termination for Algorithm 

2.1.3 at a stationary point, which may be a global solution as well. We note that in 

[107] a minimum principle necessary optimality condition is defined for minimizing a 

nondifferentiable concave function over a polyhedral set and finite termination by a 

similar successive linearization algorithm to such a point is established.

Theorem  2.1.4 SLA Finite Termination for FSV  (13). The iterates determined 

by (26) generate a strictly decreasing sequence of objective function values for the FSV
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problem (13) and terminate at an iteration i with a stationary point (which may also 

be a global minimum solution) that satisfies the following minimum principle necessary 

optimality criterion [98].

(1 -  A)(—(y -  y*) +  \ { z  -  z')) +  Aa(e"aw‘),(t; -  v*) > 0 , V feasible (w , 7 , y, z, v). 
m  k

(28)

We solve the FSV problem (13) by Algorithm 2.1.3.

We now turn our attention to solving the FSB problem (16).

B ilinear A lgorithm

Due to the bilinear nature of the objective function of the FSB problem (16), we con­

sider the fast, simple bilinear algorithm of [9, Algorithm 2.1]. We apply the algorithm 

to solve the FSB problem (16) as follows.

A lgorithm  2.1.5 B ilinear A lgorithm  for FSB (16) Choose A € [0,1), p. € (0,1). 

Start with any feasible (w°, 7 0, y°, z°, v°, r°, it0) to the FSB problem. Having (w*, 7 *, 

y*, z*, i)*, r*, it*) determine the next iterate by solving two linear programs (the first can 

be solved in closed form):

r*+l e  argm in{(l — pt)Xe'r — n iv ^ 'r  \ 0 < r  < e} D {(—(1 — p)Xe +  ^u*)*}, (29)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

(wi+l, 7 *+1, yi+l, zi+l, w<+1, u*+l) e

to,7,yrr,w,«

t
—Aw A e j  + e < y,

a  -  d a  -  a h £ + £ > Bw — e j  + e < z,

y > 0 , z > 0 ,
+fx(—(rt+l)'v + e'u) —V < w < v

it >  0 , u — v > 0 — /

(30)

Stop ty/ien:

(1 -  „) [(1  -  A) -  y‘) + ^ z ‘+' -  *‘) )  +  Ae'(ri+I -  r*)] +

p [—(r,+1)V +1 +  (rf)V  +  e'(iti+1 -  u4)] =  0 . (31)

Note: For a fixed A 6  [0,1), the parameter fx is chosen as the smallest in (0,1) so 

that the following complementarity condition holds at termination:

_ ( r ‘+1)V + 1 +  e V +l =  (ri+l)'(ui+l -  vi+l) +  (u*+1) '(r i+1 +  e) =  0 . (32)

O B D  A d ap ta tio n

We consider the Optimal Brain Damage method [92] for reducing neural network com­

plexity and adapt it to problem (6 ). Because the objective function of (6 ) is piecewise- 

linear, the second derivatives on which the OBD method is based do not exist. However, 

at a  solution point (tv, 7 ) of (6 ), or equivalently (7), the directional derivatives of f (w ,  7 ) 

of (6 ) in the directions of the components ±w, are generally nonzero. Hence the we
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propose examining these directional derivatives in the 2n directions (± tu i,. . .  , ±wn) 

at the solution point (to, 7 ), and suppress those features a:* corresponding to iot- for 

which the directional derivatives in the directions ±iOj are less than some tolerance, 

then re-solve the linear program (7) with these to* set to zero. We summarize our 

adaptation of the OBD algorithm for problem (6 ) as follows.

Algorithm  2.1.6 O ptim al Brain Damage (O BD ) A lgorithm  for (6). Choose 

small positive parameters S\ and 8 2 .

(i) Solve (6 )  for (w, 7 ) or equivalently the RLP (7) fo r (w, 7 , y, z).

(ii) Set Wi =  0 for i € I  and re-solve (6 ) or (7) where:

1  ■= | I /(™i> • • • *® « - i , v>i+1 , ■■■ ,w n, 7 ) - / ( t o , 7 ) I < fo, i =  l , . . . , n } ,

where /(to , 7 ) is the objective function of (6 ).

In the implementation of this OBD adaptation, we introduce a parameter A € [0 ,1) 

which has approximately the same effect as A appearing in FSS (12), FSV (13) and 

FSB (16). Let ( w , j , y , z )  be the solution of the RLP (7) in Step (i), above, and let 

k  be the absolute value of the maximal directional derivative for fixed £1 at the point 

(w, 7 ). Then 6 2  in Step (ii) is chosen as A • k. Thus A has the effect of suppressing all 

components of w when A =  1 and suppressing no components when A =  0.

This OBD adaptation is considered a wrapper model [83].

2.1.4 Num erical R esults

We evaluated the proposed algorithms for solving the FSS problem (12), the FSV 

problem (13), the FSB problem (16), and the OBD adaptation (Algorithm 2.1.6), in
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comparison with solutions produced by the RLP (7).

The two datasets used are publicly available from the UCI Machine Learning Repos­

itory [119]. We describe the datasets next.

D atasets

The WPBC dataset as it exists in the UCI ML Repository consists of 198 instances 

corresponding to malignant breast cancer patients. Of these 198, 151 have not had a 

cancer recurrence whereas 47 have. Each instance is represented by 35 features.

The first feature is an identification number. The second feature is a flag in indi­

cating an outcome of recur or non-recur. The third feature is an integer. In cases in 

which cancer has recurred [outcome =  recur], the third feature is the number of months 

from time of malignant cancer diagnosis to the time cancer has recurred (TTR =  time 

to recur). In cases in which cancer has not recurred [outcome =  non-recur], the third 

feature is disease-free time in months (DFS). Features 4-33 are the mean, standard 

error and “worst” values of ten real-valued features computed for each cell nucleus by 

the X cyt [154] program at time of diagnosis. Feature 34 is the diameter of the excised 

tumor and feature 35 is the number of positive axillary lymph nodes observed at time 

of surgery.

Four of the 198 instances are missing the value for feature 35. These instances were 

discarded. We created the sets A  and B  to address the following question: “Can we 

recognize instances in which cancer recurred within 24 months from instances where 

cancer did not recur within 24 months?” Hence, the remaining 194 instances were 

processed in the following way. Instances having [outcome =  recur] and [time to recur 

<  24 months] were placed in set A.  Instances having either [outcome =  recur] or
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[outcome =  non-recur] and [TTR/DFS > 24 months] were placed in set B. Instances 

with [outcome =  non-recur] and [DFS < 24 months] were removed from the dataset (i.e. 

examples representing patients not followed for more than 24 months). This processing 

procedure results in 147 instances, 28 in set A  and 119 in set B. The information used 

to assign instances to one of the two sets (features 2 and 3) are removed. The resulting 

sets A  and B are disjoint point sets in Z?32.

The sets A  and B  were augmented with 6 random features sampled from a normal 

distribution with mean 86.2851 and standard deviation 33.1157. The value of 86.2851 

is the grand mean over the 32 original WPBC features and 33.1157 is the average 

standard deviation over these features. Hence when referring to the WPBC dataset, 

we refer to the disjoint point sets A  and B  in R38.

The Johns Hopkins University Ionosphere dataset consists of radar data collected 

by a system in Goose Bay, Labrador. The dataset is split into two sets. The first 

set represents “good” radar returns, those showing evidence of some type of structure. 

The second set consists of “bad” radar returns, those that do not show evidence of 

structure; the signals pass through the ionosphere.

There are 351 instances with 35 features per instance. Feature 1 takes continuous 

values in [0,1]. Feature 2 is zero for all instances. Features 3 through 34 take continuous 

values on [—1,1]. The set A  consists of features 1 through 34 corresponding to “good” 

radar returns. The set B  consists of the same features corresponding to “bad” radar 

returns. Notice that feature 2 is irrelevant.

Similarly, we augmented this dataset by adding 6  random features sampled from 

a uniform distribution on [—1,1]. When referring to the Ionosphere dataset, we are 

referring to the disjoint point sets A  and B  in Z240.
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Num erical Experim ents

We investigated the generalization ability of a classification function estimated by one 

of the feature selection methods (FSS (12), FSV (13), FSB (16) or OBD (Algorithm 

2 .1 .6 )) in comparison with the generalization ability of a classification function esti­

mated by the RLP (7).

We compare generalization ability by the re-sampled paired t  test [53]. This sta­

tistical test, which is most popular in the machine learning literature, consists of con­

ducting 30 trials. In each trial, the available data is randomly divided into a training
2

set (Aivain. Bivain), consisting of -  of the available data, and a testing set (Apest, -Brest)-
O

One of the feature selection methods is applied to the training subset to produce a 

classifier. The value of the parameter A was chosen as the maximal element in a set 

A having best generalization ability, measured by 5-fold cross-validation [152] on the 

training set. Similarly, a classifier is constructed by solving the robust linear program 

on data (Arram, Brrain)- Both are tested on the testing set (Arest> Brest) and the pro­

portion of test set examples misclassified is recorded for each classifier, for each trial. 

The averages of these proportions, over the 30 trials, are then compared. Results are 

summarized below in Tables 1 and 2.

For each of FSS (12), FSV (13), FSB (16) and OBD (Algorithm 2.1.6), the candi­

date set of A-values was A := {0.15,0.20,... ,0.95}. When solving the FSB problem 

(16) by Algorithm 2.1.5 for a fixed value of A, the parameter \i was chosen as the small­

est in {0.05,0.15,0.25,... , 0.95} so that the complementarity condition (32) holds at 

termination. When solving the FSS problem (12) with the MINOS package [120], the 

maximum iteration limit was set to 10 ,0 0 0 .
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The statistical software package MINITAB [116] was used to calculate p~values. 

N um erical R esu lts

Table 1 summarizes test set results and Table 2 summarizes the number of features 

utilized on the WPBC dataset. Table 3 summarizes test set results and Table 4 sum­

marizes the number of features utilized on the Ionosphere dataset. AVE[err] (Tables 

1 and 3) is the average proportion of test set points misclassified by the estimator 

constructed by the given algorithm over the 30 trials. The j>-value indicates statistical 

significance in the average test error between the given feature selection approach and 

the RLP (7) l . AV\E[|u;|,] (Tables 2 and 4) is the average number of nonzero elements 

in the vector w computed by the given algorithm over the 30 trials.

Table 1: Average test set results on the WPBC dataset.

AVE[err\ p-value (vs. RLP (7))
Sigmoid FSS (12) 0.293 ±  0.062 0.025
Concave FSV (13) 0.274 ±  0.062 0.003
Bilinear FSB (16) 0.362 ±  0.067 0.046
Brain OBD (Alg. 2.1.6) 0.297 ±  0.068 0.085

Robust LP RLP (7) 0.330 ±  0.067
AVE[err] =  average test set error.
Bold indicates best.
Value following “± ” is one standard deviation.

1 Specifically, this is the p-value of a two-tailed paired f-test testing the null hypothesis that the 
difference in “Test” errors for the feature selection and R IP  classifiers is zero [52].
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Table 2: Average number of features used on the WPBC dataset.

AVE[ M«]
Sigmoid FSS (12) 6.53 ±  3.03
Concave FSV (13) 3.77 ±  2.64
Bilinear FSB (16) 12.13 ±  4.131

Brain OBD (Alg. 2.1.6) 4.80 ±  5.13
Robust LP RLP (7) 32.73 ±  4.03
AVE[|tw|«] =  average #  of features used.
Value following “± ” is one standard deviation.

W PB C  Results

We immediately note that even though there are 38 original problem features in 

the WPBC dataset, the classifiers obtained by solving the RLP (7) over the 30 trials 

utilized on average only 32.73 of these features without a feature selection term (see 

Table 2).

Results in Table 1 indicate that the classifiers produced by solving the FSV problem 

(13) improve average test set error by 16.9% over classifiers computed by solving the 

RLP (7). The p-value of 0.003 indicates that the difference in test set error is significant. 

FSV reduced the average number of problem features utilized by 88.5% (see Table 2).

The classifiers produced by solving the FSS problem (12 ) improved generalization 

ability on the WPBC dataset by 11.1% (see Table 1). The small p-value indicates that 

this is significant. The FSS classifiers reduced the number of features by 80.0% over 

the classifiers constructed by the RLP (7) (see Table 2 ).

The classifiers constructed by the OBD Algorithm 2.1.6 reduced test set error by 

10 .1% and the p-value indicates that this difference is significant at any confidence 

level below 1-0.085 =  0.915 (see Table 1). Number of features were reduced by 85.3%
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(Table 2).

When interpreting the results of the classifiers produced by solving the FSB problem 

(16), it should be noted that the complementarity condition (32) was satisfied in only 

18 of the 30 trials. Recall that the complementarity condition must be satisfied to 

correctly model the step function. In the 12 trials in which complementarity was not 

achieved, the solutions were computed with /x =  0.95 and the weighting defined by 

/x in the objective of the FSB problem (16) was not on the term forcing separation 

of the set A  and B, but on the complementarity penalty term, — (r*+1)'v 4- e'u. It 

is possible that poor classifiers were obtained in these 12 trials. Furthermore, in the 

18 trials in which complementarity was achieved (i.e. the step function was modeled 

exactly), the average value of /x in computing the solution of the FSB problem (16) 

was 0.90. In these 18 trials, the objective of the FSB problem (16) was weighted to 

achieve complementarity and again, it is possible that poor classifiers were obtained. 

The poor performance of the classifiers obtained by solving the FSB problem (16) may 

be due to the difficulty in modeling the step function on the WPBC dataset. 

Ionosphere R esu lts

Table 3: Average test set results on the Ionosphere dataset.

AVE[errJ p-value (vs. RLP (7)
Sigmoid FSS (12) 0.165 ±  0.038 0.34
Concave FSV (13) 0.143 ±  0.029 0.11
Bilinear FSB (16) 0.162 ±  0.053 0.60

Brain OBD (Alg. 2.1.6) 0.178 ±  0.056 0.072
Robust LP RLP (7) 0.157 ±  0.035
AVE[err] =  average test set error.
Bold indicates best.
Value following “± ” is one standard deviation.
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Table 4: Average number of features used on the Ionosphere dataset.

AVE[ H *]
Sigmoid FSS (12) 3.80 ±  1.52
Concave FSV (13) 4.23 ±  1.96
Bilinear FSB (16) 23.40 ±  12.96
Brain OBD (Alg. 2.1.6) 10.00 ±  9.82

Robust LP RLP (7) 39.00 ±  0.00
AVE\\w\m\ =  average #  of features used.
Value following “± ” is one standard deviation.

Results in Table 3 indicate that classifiers constructed by solving the FSV problem 

(13) reduced average test set error by 8.9%. The p-value indicates that the difference 

in average test set error may be significant. FSV also reduced the feature space by 

89.1% over the classifiers constructed by solving the RLP (7) (Table 4).

Given the small difference between the performance of the classifiers produced by 

solving the FSS problem (12) and classifiers produced by solving the RLP (7) coupled 

with the large p~value, the performance of these classifiers is not significantly different 

(Table 3). But notice that the FSS (12) classifiers reduced dimensionality by 90% 

(Table 4).

The average performance of classifiers produced by the solving the FSB problem 

(16) were slightly worse (a difference of 0.005) than the RLP (7), but the high p- 

value indicates that these results are not significantly different (Table 3). The average 

value of p  in the objective of the FSB problem (16) over the 30 trials was 0.1033 

and the complementarity penalty term, — (r*+1);u +  e'u, was zero at the solution in all 

trials. Hence, the step function was exactly modeled for a rather small value of p  and 

comparable separating surfaces were computed while reducing dimensionality by 40%
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(Table 4).

The classifiers produced by the OBD Algorithm 2.1.6 performed worse than those 

constructed by the robust linear program. The p-value indicates that this difference 

may be significant (Table 3). It seems as though the OBD Algorithm fails to find 

“useful” features with which to separate the Ionosphere dataset.

We note that the maximum iteration limit of 10,000 in MINOS [120] was reached 

in numerous trials while solving the FSS problem (12) on the Ionosphere dataset.

The results on the WPBC and Ionosphere datasets indicated that classifiers com­

puted via solving the FSV problem (13) improve most upon the generalization ability 

of those computed via the RLP (7) by reducing the number of original problem features 

utilized. FSV solutions were easily computed by Algorithm 2.1.3 by solving a finite 

sequence of linear programs (typically 5-12). We claim that the FSV approach is a 

viable data mining tool addressing the combinatorial feature selection problem arising 

in the classification task.

Note that Algorithm 2.1.3 computes a solution which is locally optimal. We cannot 

guarantee a solution which is globally optimal.

We propose initializing Algorithm 2.1.3 by choosing an initial random separating 

plane. This strategy produced “useful” separating planes defining our classification 

functions. The issue of initializing Algorithm 2.1.3 is open.

We now focus on the support vector machine (SVM) approach to classification.
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2.2 Support Vector Machines for Classification

The support vector machine approach to classification was motivated by developments

in statistical learning theory [157, 158, 160, 156, 161]. The principal motivation is a

probabilistic bound on the generalization error [160] of a classifier consisting of the

average error of the classifier over a finite training set plus a term dependent upon the

VC-Dimension [161, 33] of the particular set of classification functions considered.

We are interested in the set of classification functions defined by separating planes,

w'x =  7  on FC1. For functions g(x) =  {w'x — 7 ) .  which correctly classify the training

data (training error =  0) an upper bound on the VC-Dimension is available in terms

of the training data and the norm of the weight vector w 6  RF [143, 161, Proposition

2.1.1]. Hence by minimizing the norm of w, one decreases the bound on the VC-

Dimension in the hope of decreasing the bound on generalization error.

Minimizing the norm of w is also intuitively plausible in the following sense. In the

case of linearly separable training data, we can always compute bounding planes for

the sets A  and B. The plane w'x  =  7  +  1 is a bounding plane for A  since it can be

determined so that A  C {x E R n \ w'x > 7  +  1}. Similarly, the plane w'x =  7  — 1 is

a bounding plane for B  since it can be computed so that B  C {x  € BF | x'w  < 7 —1}.

The margin, defined as the distance between these two bounding planes, measured by
2

some norm || • || on RF is precisely t.—r-, where || • ||' is the dual norm of || • || [104,
IMI

Theorem 2.2]. See Figure 4.

Hence minimizing |M |' is equivalent to computing a separating plane with max- 
2

imum margin 71——. Maximizing the margin of separation between the sets A  and
IM I'

B  intuitively should improve the generalization ability of the estimated classification
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Figure 4: Elements of A  =  O - Elements of B  =  □.

function g(x) =  (w'x — 7 )*.

In the case where the training data are linearly inseparable (training error > 0), 

one attempts to minimize the separation error and the norm of w simultaneously.

Applications of support vector machine classifiers include isolated handwritten digit 

recognition [46, 144, 145, 34], object recognition [12], face detection [127] and text cat­

egorization [82], The support vector machine has been extended beyond classification 

tasks to regression problems [149, 159, 54] and principle component analysis (PCA) 

[143, 146].

2.2.1 SVM  M athem atical Programs

The support vector machine classifier is obtained by solving an optimization problem 

with an objective function which balances a term forcing separation between A  and B
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and a  term  m axim izing the m argin of separation or equivalently, m inim izing the norm  

of w.

T his results in the following m athem atical program m ing form ulation of the SVM 

problem :

mm (1 -  \){e'y + e'z) +  - |M | ' , A 6 ( 0 , 1). (33)

—Aw  +  e7  +  e < y,

Bw  — e7  +  e <  z, 

y  >  0 , z  >  0,

Points Ai € A  and B* € B  corresponding to active constraints of (33) at optimality 

with positive dual variables constitute the support vectors of the problem. Support 

vectors from A  are in the halfspace {x  6 R 1 \ w'x < 7  +  1} (i.e. those points of A  

“on” or “below” the bounding plane w'x =  7  +  1). Support vectors from B  are in 

the halfspace {x  G B" | w'x > 7 —1} (i.e. those points of B  “on” or “above” the plane 

w'x =  7  — 1). These points are the only data points that are relevant in determining 

the optimal separating plane in the following sense: re-solving (33) over the support 

vectors only produces the same separating plane. The number of support vectors is 

usually small and is also proportional to a bound on the generalization error of the 

classifier [127]. See Figure 5.

We next formulate the support vector machine classification problem utilizing differ­

ent norms to measure the margin or distance between the bounding planes w'x =  7  +  1 

and w'x =  7  — 1 . We refer to the various formulations as SVM-z, where the z'-norm 

of w is minimized and hence the dual norm to the i-norm is used measure the margin 

between the bounding planes.

If the 1-norm is used to measure the distance between the planes, then the dual
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Figure 5: Elements of A. =  O . Elements of & =  □. Shaded elements are the support 
vectors.

to this norm is the oo-norm and accordingly [|iu||' =  [|w[|oo in (33) which leads to the 

following formulation:

r >

—Aw  -+* e j  4- e <  y,

min < ( l-A )(e 'y  +  e'z) +  ^ | M l o o Bw  — e j  + e < z,w ,i,y ,z 2

y > 0 , z  >  0 .

The above problem is equivalent to the following linear programming formulation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

w,y,y,z,u

f >
—Aw + e j  + e < y ,

X Bw — e y  -he < z,
( 1 - A  ){e'y + e'z) + - v

z y > 0 , z > 0 ,

<

—ev < w < e u . *
A €(0 ,1 ). (34)

Similarly if we use the oo-norm to measure the distance between the planes, then 

the dual to this norm is the 1-norm and accordingly IjioH' =  ||iu||i in (33) which leads 

to the following formulation:

mm (1 ~  +  e'z) +  - |M l i i A 6  (0 , 1).

—Aw + e j  + e < y,

Bw — e'y + e < z, 

y > 0 , z >  0 .

The above problem is equivalent to the following linear programming formulation:

f
—Aw + e'y + e < y,

X Bw  — e'y -1- e <  z,
(1 -  A)(e'y +  e'z) +  -e 's ►

z y > o , z > o ,

—s < w < s.
4

A € (0,1). (35)

We note that an optimization formulation was proposed and implemented in [97] 

for computing a separating plane by forcing the bounding planes to be as far apart as 

possible.
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Usually the support vector machine problem is formulated using the 2-norm in the 

objective [161, 6]. Since the 2-norm is dual to itself, it follows that the margin is also 

measured in the 2-norm when this formulation is used. In this case HiwH' =  ||u;||2> and 

one usually appends the term to the objective of (33) resulting in the following

quadratic program:

r V

—Aw + e'y + e < y,

(SVM-2) min < (1 — A) (e'y +  e'z) +  ^ w'w Bw — e'y + e < z,

y > 0 , z > 0 .
4

A € (0 ,1 ). (36)

We note the following regarding the use of ||u/||2 instead of ||tu||2 in (36) which 

renders the problem much easier to solve. It turns out that the formulations are 

equivalent for values of A € (0, A] for some A € (0 ,1), as we show now.

Let X  denote the solution set of the following linear program:
f

—Aw  +  e'y +  e < y,

X  := arg min < e'y -1- e'z Bw  — e'y + e < z,

y > 0 , z > 0 .

Then, for some A € (0,1), it follows from [108] that a solution of (36) is a solution 

to the following problem:

min ÎMIl,
w ,'r ,y^€ X  &

as well as of
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w ,y,y^seX  &

Nonlinear separating surfaces, which are linear in their parameters, can also easily

be handled by the formulations (7), (12), (13), (16), (34) and (35) [96]. If the data

are mapped nonlinearly via <&:#” —>• R?, a  nonlinear separating surface in if* is easily

computed as a linear separator in Re. In practice, one usually solves (36) by way of its

dual [98]. In this formulation, the data enter only as inner products which are computed

in the transformed space via a kernel function K (x , y) =  $(x) • <£(y) [33, 161, 164].

We note that separation errors in (34) - (36) are weighted equally conforming to

the SVM formulations in [33, 161]. In contrast, the formulations (7), (12), (13), (16)

measure average separation error. Minimizing average separation error in (7) ensures
e' A  e' B

that the solution w =  0 occurs iff  =  ——, in which case it is not unique [8 , Theorem
m k

2.5].

2.2.2 Numerical Comparison with FSV and RLP

Numerical tests were conducted to investigate feature suppression and generalization 

ability of the support vector machine approaches (34) -  (36), the concave minimization 

FSV problem (13) and the robust linear program (7) [22].

The six publicly available datasets used in this comparison are discussed next.
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D atasets

We used two variants of the Wisconsin Prognostic Breast Cancer Database (see Section 

2.1.4). The first set was created where the elements of the set A  were 30 nuclear fea­

tures plus diameter of excised tumor and number of positive lymph nodes of instances 

corresponding to patients in which cancer had recurred in less than 24 months (28 

points). The set B  consisted of the same features for patients in which cancer had not 

recurred in less than 24 months (119 points). Data corresponding to patients that have 

not been followed for 24 months was discarded.

The second variant of the data set consisted of the same 32 features, but but splits 

the data into A  and B  differently. Elements of A  corresponds to patients with a cancer 

recurrence in less than 60 months (41 points) and B  corresponds to patients which 

cancer had not recurred in less than 60 months (69 points). Data representing patients 

not followed for 60 months was removed.

The Johns Hopkins University Ionosphere data set was also used (see Section 2.1.4). 

The set A  consists of 225 elements in jR34. The set B  consists of 126 elements in f?34.

The Cleveland Heart Disease data set is available from [119] and the version used 

here was obtained by removing the six examples with missing feature values from the file 

processesed.cleveland.data. The resulting 297 examples were then divided into the sets 

A  and B  using values of the 14th feature. This feature is an integer between 0 and 4. A 

value of zero indicates no heart disease present and nonzero values indicate a presence 

of heart disease. Set A  consists of features 1 - 1 3  for instances with corresponding 

feature 14 values of 0 or 1 . Set A  has 214 elements. The set B  consists of features 

1 - 1 3  for instances with corresponding feature 14 values of 2 , 3 or 4. Set B  has 83
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Figure 6 : Tuning and testing sets correctnesses versus A. D ashed  =  “tuning” correct­
ness, Solid =  test correctness. Classifier computed via SVM-1  (35).

elements.

The Pima Indians Diabetes data set consists of 768 instances with 8  features plus 

a class label [119]. The 500 instances with class label “0” were place in A , the 268 

instances with class label “1” were placed in B.

The BUPA Liver Disorders data set consists of 345 instances with 6  features plus 

a selector field used to split the data into 2 sets (see documentation [119]). Set A  

consists of 145 instances, the set B  consists of 200 instances.

N um erical Experim ents

Our goal was to evaluate the generalization ability of the classifiers obtained by solving: 

the concave m inim ization  problem FSV (13), SVM 1-norm problem (35), the SVM oo- 

norm problem (34), the SVM 2-norm problem (36) and the robust linear program 

(RLP) (7). We estimate the generalization ability of a classifier via 10-fold cross- 

validation [152].
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We note that the objective function parameter A, which can induce sparsity, must 

be chosen carefully to maximize the generalization ability of the resulting classifier. 

We employ the following “tuning set” procedure for choosing A at each fold of 10-fold 

cross-validation: For each A in a candidate set A, we perform the following:

1. Set aside 10% of the training data as a “tuning” set.

2. Obtain a classifier for the given value of A.

3. Determine correctness on the “tuning” set.

4. Repeat steps 1 - 3  ten times, each time setting aside a different 10% portion of 

the training data.

The value of A is fixed as that with maximum average tuning correctness (ties are 

broken by choosing the smallest A-value). This is the value used for the given fold of 10- 

fold cross-validation. The set A is a set of candidate values and for these experiments 

was set at: A =  {0.05,0.10,0.20,... , 0.90,0.95}. The curves in Figure 6  indicate that 

the value of A that maximizes the “tuning” score (dashed curve in Figure 6 ) is a good 

estimate of the value of A that maximizes the test set correctness (solid curve).

N um erical R esults

Table 5 summarizes the average number of original problem features selected by the 

classifiers trained by each of the methods.

Table 6  summarizes the results of the 10-fold cross-validation experiments on the 6 

real-world data sets. All “Train” and “Test” numbers presented are average error over 

10-folds. The p-value is an indicator of significance difference in “Test” error between
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the classifiers obtained by solving FSV (13) and the classifiers obtained by solving the 

SVM 1-norm problem (35) 2.

Table 5: Average number of features selected over ten-fold cross-validation.

Dataset FSV (13) SVM-1 (35) SVM-oo (34) SVM-2 (36) RLP (7)
WPBC-24 3.9 ±  2.0 5.4 ±  1.5 32 ±  0 32 ± 0 32 ± 0
WPBC-60 2.6 ±  2.4 4.3 ± 2.5 32 ±  0 32 ± 0 32 ± 0
Ionosphere 10.4 ±  1.8 11.1 ±  3.6 34 ±  0 33 ± 0 33 ±  0
Cleveland 6.4 ±  2.2 9.3 ±  1.8 13 ±  0 13 ± 0 13 ± 0

Pima 5.3 ±  3.2 6.0 ± 1.5 8 ± 0 8 ± 0 8 ± 0
BUPA 4.5 ±  1.3 5.8 ±  0.4 6 ± 0 6 ±  0 6 ±  0

Bold indicates fewest number of features utilized.
Values following “± ” are 1 standard deviation.

Table 6 : FSV, SVM-z, RLP: Ten-fold cross-validation test results (errors).

D ata Set FSV (13) SVM-1 (35) p-Value SVM-oo (34) SVM-2 (36) RLP (7)
WPBC-24 0.336 

±  0.111
0.289 

±  0.117
0.125 0.290 

±  0.102
0.245

±0.100
0.339 

±  0.111
WPBC-60 0.330 

± 0.130
0.338 

±  0.109
0.641 0.336 

±  0.120
0.338 

±  0.083
0.365

±0.099
Ionosphere 0.159 

±  0.060
0.139 

±  0.063
0.125 0.159

±0.035
0.140 

± 0.048
0.140 

±  0.049
Cleveland 0.191 

±  0.096
0.155 

±  0.057
0.182 0.175 

±  0.070
0.165 

±  0.083
0.161 

±  0.067
Pima 0.254 

± 0.072
0.255

±0.065
0.889 0.250 

±  0.058
0.234

±0.048
0.262 

±  0.066
BUPA 0.348 

± 0.082
0.360

±0.086
0.170 0.354 

±  0.070
0.336 

±  0.075
0.357 

±  0.069
Values following “± ” are 1 standard deviation on average test set error.

The FSV (13) and the SVM 1-norm (35) problems were the only approaches ex­

hibiting feature selection (Table 5). On the six data sets tested, the FSV classifiers

Specifically, this is the p-value of a two-tailed paired f-test testing the null hypothesis that the 
difference in “Test” errors for the FSV and SVM 1-norm classifiers is zero [52].
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had a smaller test set error than the SVM-1  classifiers on three of the datasets and 

vice-versa on the remaining three (Table 6 ). The minimum p-value is 0.1246 indicating 

that classifiers obtained by the FSV (13) and the SVM 1-norm (35) approaches have 

similar generalization properties. The p-values for all pairwise comparisons between 

the various classification methods were computed for each of the six datasets. Two 

comparisons reject the hypothesis that average testing set errors are equal at the 95% 

confidence level. Both occur on the WPBC 24 month dataset. The first is between the 

SVM-2 (36) classifiers and the FSV (13) classifiers with p-value =  0.0316. The second 

is between the SVM-2 classifiers and the RLP (7) classifiers with p-value =  0.0071.

Note that applying the paired t-test to 10-fold cross validation results may indicate 

a difference in the average test set correctness when one is not present [53]. Thus the 

results of these experiments may be more similar than indicated by the p-values.

We note that the classifiers obtained by solving the SVM oo-norm (34) suppressed 

none of the original problem features for all but the largest values of A (near 1.0), which 

in general is of little use because it is often accompanied by poor separation. Similar 

behavior was observed when solving the SVM 2-norm (36) problem. Note that the 

oo-norm is sensitive to outliers, as is the 2-norm squared.

The classifiers obtained by solving the FSV problem (13) selected fewer problem 

features than the any of the SVM formulations (34), (35), (36) and the RLP (7) 

(in which no feature suppression is present in the problem formulation). The FSV 

classifiers reduced the number of features used over SVM 1-norm by as much as 39.5% 

(WPBC 60 month), while maintaining comparable generalization performance. The 

FSV classifiers reduced the number of features utilized by as much as 91% over the 

SVM-oo, SVM-2 and RLP classifiers.
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On the WPBC 24 month dataset, both the FSV classifiers (13) and the SVM 1- 

norm classifiers (35) most often selected a nuclear area feature and number of lymph 

nodes removed from the patient. These features are deemed relevant to the prognosis 

problem.

All linear programs formulations were solved using the CPLEX package [48] called 

from within MATLAB [110]. The quadratic programming problem (36) was solved 

using the MINOS optimization package [120] called from the GAMS modeling environ­

ment [31].

Table 7 summarizes average solve times for the Ionosphere dataset, the largest in 

this numerical comparison.

Table 7: Average running times: Ionosphere data set.

Method Time (Seconds)
FSV (13) 30.94

SVM-1 (35) 3.09
SVM-oo (34) 1.42
SVM-2 (36) 19.36

RLP (7) 1.28

Recall the FSV problem (13) is solved via the Successive Linearization Algorithm 

2.1.3 and typically terminated after 5 - 1 2  linear programs. The SVM-1 (35), SVM-oo 

(34) and the RLP (7) classifiers are obtained by simply solving a single linear program. 

The SVM-2 (36) classifiers require the solution of a quadratic program.

The numerical comparisons between the FSV feature selection approach, the sup­

port vector machine approaches and the robust linear program RLP indicate that 

classifiers computed by FSV have comparable generalization ability (as indicated by
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the p-values) yet utilize the fewest number of problem features. These results again 

indicate the utility of the FSV approach to the important data mining problem of 

classification.

Next, we consider an approach for solving general linear programs with a massive 

number of constraints [24]. This approach effectively scales the linear-programming- 

based classification formulations and makes them useful in large-scale KDD applica­

tions (see Section 1.3.1).

2.3 Massive Datasets

The approach discussed is a method for solving linear programs with a massive number 

of constraints. The basis of the approach lies in solving a succession of sufficiently small 

linear programs, resulting in a monotonic, finite algorithm converging to the solution 

of the full, massive linear program.

2.3.1 Linear Program Chunking (LPC) Algorithm

We consider a general linear program

min {d x  \Hx > 6 }, (37)
X

where c € RJ1, H  € i2mxn and b 6  RT1. We state now our chunking algorithm [24, 

Algorithm 3.1] and establish its finite termination [24, Theorem 3.2] for the linear 

program (37), where m may be orders of magnitude larger than n. In its dual form our 

algorithm can be interpreted as a block-column generation method related to column
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generation methods of Gilmore-Gomory [68], Dantzig-Wolfe [49], [44, pp 198-200,428- 

429] and others [122, pp 243-248].

A lgo rithm  2.3.1 L PC : L inear P ro g ram m in g  C hunking  A lg o rith m  for (37) 

Let [H 6] be partitioned into £ blocks, possibly of different sizes, as follows:

H  b

H l b1

H l

Assume that (37) and all subproblems (38) below, have vertex solutions.

A t iteration j  = 1 , . . .  compute xj  by solving the following linear program:

H (j mode) x  >  bu mode) 

g ( j m o d e ) - i x  > y j  mode)-i
z? 6  arg vertex min < d x (38)

where [77° 6°] is empty and [H* &} is the set of active constraints (that is all inequal­

ities of (38) satisfied as equalities by x*) with positive optimal Lagrange multipliers at 

iteration j .

Stop when d x* =  dx^+u for some input integer u. Typically v  =  4.

T h eo rem  2.3.2 F in ite  T erm ina tion  o f L P C  A lgorithm  The sequence {xJ} gen­

erated by the LPC Algorithm 2.3.1 has the following properties:

(i) The sequence {dx^} of objective function values is nondecreasing and is bounded 

above by the globed minimum of min {c'x \Hx >b} .
X

(ii) The sequence of objective function values {d xJ’} becomes constant, that is: dx*+l =  

dxj  for all j  > j  for some j  > 1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

(Hi) For j  > j , active constraints of (38) at x-7 with positive multipliers remain active 

for iteration j  + 1.

(iv) For all j  > j  for some j  > j ,  X 7 is a solution of the linear program (37) provided 

all active constraints at x7 have positive multipliers for j  > j .

This significant result is the basis of a fundamental computational approach for 

handling linear programs with massive constraints for which the subproblems (38) of 

the LPC Algorithm 2.3.1 have vertex solutions. To establish its validity we first prove 

a lemma [24, Lemma 3.3].

Lem m a 2.3.3 I f  x  solves the linear program (37) and (x,u)  € is a Karush-

Kuhn-Tucker (KKT) [98] point (i.e. a primal-dual optimal pair) such that u i > 0 

where I  C  {1,. ..  , m} and u j  =  0, J  C  {1,. . .  , m ), I U  J  =  {1, . . .  , m}, then

x  € arg min{c'x |ff/x  > 6/  } (39)

where H i consists o f rows Hi, i € I  of H , and hi consists of elements i € I .

P roof The KKT conditions [98] for (37) satisfied by (x, u) are:

c =  H'u, u > 0, u' (Hx — b) =  0, H x  — b > 0,

which under the condition ui > 0 imply that

Hix  = bi, u j  =  0, H j x  > bj.

We claim now that x is also a solution of (39), because (x, ui) satisfy the KKT sufficient 

optimality conditions for (39):

c =  H /u i ,  ui  >  0, Hix  =  &/.□

P roof o f Theorem  2.3.2
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(i) By Lemma 2.3.3, dx* is a lower bound for dx*+l . Hence the sequence {dx*} is 

nondecreasing. Since the the constraints of (38) form a subset of of the constraints 

of (37), it follows that dx* < min {dx  \Hx > 6 }.
X

(ii) Since there are a finite number of (feasible and infeasible) vertices to the original 

linear program (37) as well as of the subproblems (38), it follows that from a cer­

tain j  onward, a finite subset of these vertices will repeat infinitely often. Since a 

repeated vertex gives the same value for d x , it follows, by the nondecreasing prop­

erty of {dx*} just established, that all vertices between repeated vertices also have 

the same objective value dx  and hence: dx* =  dx*+l < min {dx  \H x > b } , ' i j  >
X

3-

(iii) Let j  be as defined in the theorem and let the index t 6  {1,. . .  , m} be that of
_ 1 

some active constraint at iteration j  with positive multiplier, that is: Htx* =

bt, t i  > 0, that has become inactive at the next step, that is: Htx*+l > bt.

We then obtain the following contradiction by part (ii) above and the KKT

saddlepoint condition:

0 =  dx*+1 - d x *  > u * \ h * x *+1 -  b*) > v*(Htx*+l -  bt) > 0.

(iv) By (ii) a finite number of vertices repeat infinitely for j  > j  all with constant dx*. 

Since active constraints with positive multipliers at iteration j  remain active at 

iteration j  + 1  by (iii) and hence have a positive multiplier by assumption of part 

(iv), the set of active constraints with positive multipliers will remain constant 

for j  > j  for some j  > j  (because there are a finite number of constraints) and 

hence x* will remain a fixed vertex x  for j  > j .  The point x  will satisfy all the
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constraints of problem (37) because all constraints are eventually imposed on the 

infinitely repeated vertex x. Hence d x  which lower-bounds the minimum of (37) 

is also a minimum of (37) because x  is feasible. Hence the algorithm can be 

terminated at j  = j .  □

R em ark  2.3.4 The possibility is not excluded (never observed computationally) that 

the objective function remains constant over a finite number of iterations then increases. 

Theorem 2.3.2 asserts that eventually the objective function will be constant and equal 

to the global minimum for all iterates j  > j .

R em ark  2.3.5 In order to handle degenerate linear programs, i.e. those with active 

constraints with zero multipliers at a solution, we have modified the computational 

implementation of the LPC Algorithm 2.3.1 slightly by admitting into [H* V] all 

active constraints at iteration j  even if  they have zero multipliers.

R em ark  2.3.6 A practical implementation of the LPC algorithm was somewhat dif­

ferent from that given in Algorithm 2.3.1. The set of constraints forming any given 

subproblem consisted of the set of constraints with positive multipliers at the previous 

iteration plus violated constraints taken among those not considered in the previous 

iteration up to a prescribed maximum permissible number of constraints for each iter­

ation. I f  the number of constraints with positive multipliers becomes larger than the 

maximum permissible number of constraints, then this maximum is made larger.

R e m ark  2.3.7 [An anti-cycling procedure, R. R. Meyer, [114]] A method for avoid­

ing cycling without assuming nondegeneracy, suggested by R. R. Meyer [114], m fhe 

following. I f  the objective function does not increase at a given iteration of the LPC
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Algorithm 2.3.1, bring in at least one violated constraint, which is termed “permanent”. 

A “permanent” constraint remains in all subsequent LPC subproblems (38) until the 

objective function strictly increases in which case all “permanent” constraints are re­

moved. Specifically, i f  dx*~l =  dx*, then the set of constraints forming subproblem 

j  +  1 consist of [W  bi] (set of constraints at iteration j  with positive multipliers) and 

the “permanent” constraints. I f  d x *_1 <  d x 1, i > j ,  then the set of constraints forming 

subproblem i + 1  consist of [Hl 6*] and the next corresponding “chunk” of constraints.

Rem ark 2.3.8 [A cycling example, R. R. Meyer, [114]]- The following example in 

which the inclusion of all active constraints, including those with zero multipliers, re­

sults in cycling of the LPC algorithm was suggested by R. R. Meyer [114]- This example 

is excluded by Assumption (iv) of Theorem 2.3.2 which requires all active constraints to 

be nondegenerate once the objective function becomes permanently a constant. Consider 

the following full linear program:

min 0 • x. (40)

Here the full constraint set X  defines the feasible region depicted in Figure 7.

Suppose the first LPC Algorithm 2.3.1 subproblem has feasible region depicted in 

Figure 8(a). Further assume that the solution to this subproblem occurs at the marked 

vertex. This subproblem solution has objective value equal to zero.

Suppose the second LPC Algorithm 2.3.1 subproblem has the feasible region depicted 

in Figure 8(b). We note that those constraints defining the “diamond” portion of the 

feasible region X  appear in both subproblems 1 and 2. Suppose the solution o f this 

subproblem occurs at the marked vertex with objective value equal to zero.
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Figure 7: Feasible region X  for the linear program (40).

The LPC Algorithm 2.3.1 could cycle between these two subproblem solutions, nei­

ther of which are feasible for the full linear program (40) (see Figure 7).

The slight alteration of the LPC Algorithm 2.3.1 indicated in Remark 2.3.5 was 

motivated by the following counterexample 3. Consider application of the RLP (7) to 

separate the following two sets A , B  G R2, where:

.A := {(1,0), (0,1)}, (41)
B :=  {(0,0), (1,1)}.

The RLP (7) then is:

3Thanks to Dave Musicant.
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(a) Feasible region for the first subproblem of the LPC  
Algorithm 2.3.1 applied to linear program (40).

(b) Feasible region for the second subproblem of the LPC  
Algorithm 2.3.1 applied to linear program (40).

Figure 8: Feasible regions for the LPC Algorithm 2.3.1 subproblems applied to linear 
program (4 0 ).
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r 1
— 1 • Itf! — 0  • U/2 +  7  + 1  <  y i ,

0 • w x -  1 • w 2 -1- 7  +  1 <  V2 ,
1 2 1 2 

2 ^ Si + 2 ^ Zi 0  • itfi +  0  • w 2 — 7  +  1 <  Zi ,
i=l t=l

1 • W i  +  1 • w 2 — 7  +  1 <  z2,

y u V 2 , Z u Z 2 > 0 .

(42)

Consider the 1st set of constraints:

f
—1 • wx — 0 • +  7  -1-1 <  2/1,

{wi,w2 , 'r,yx,zi) 0 • W X + 0  • W 2 — 7 +  1 <  2i, ^ (43)

and the second set of constraints:

f *
0 -wx — l - w 2 + /y + l < y 2,

(wx, w2 , 7 , y2, z2) 1 • wx -1-1 • w2  — 7  +  1 <  z2,

< y2-, z2  > 0 .

The primal solution to the first subproblem with constraints (43) is wx =  2, w2 =  0, 

y  =  l } y1 =  0 , zx = 0, with objective value is 0. The dual solution to the first subprob­

lem is ux =  u2 = i*3 =  u4 =  0 , even though the constraints — 1 • wx — 0  • w2 +  7  +  1 <  yx 

and 0 • W\ +  0 • w2 — 7  +  1 <  z\ are active. Since these constraints are degenerate, they 

do not get carried over into the second subproblem as originally prescribed by the LPC 

Algorithm 2.3.1. Hence the second subproblem is solved only over the constraints (44) 

yielding a primal solution: wx =  —2, tnz =  1, 7  =  0, jfe =  0, z2 =  0. The primal
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objective of the second subproblem is 0 and the corresponding dual solution is t*i =  

u2 =  U3 =  u4 =  0. Hence the LPC Algorithm 2.3.1 will iterate between subproblems 

with constraints (43) and those with constraints (44). Subproblem objectives will al­

ways be zero hence the LPC Algorithm will terminate at a solution to one of these 

subproblems.

An optimal solution to (42) is w\ =  —2, w2 =  2, 7  =  1, y\ =  4, y2 =  z\ =  z2 =  0. 

The optimal objective to this full problem is 2. Note that if the set of constraints 

carried over from the first subproblem to the second included those that are active 

but degenerate, the optimal solution would have been easily computed via the LPC 

Algorithm.

We first discuss the application of the LPC Algorithm 2.3.1 to a general linear 

program m ing problem and then to massive discrimination problems.

2.3.2 Solving a General Linear Program: The WOODW Prob­

lem

The purpose of applying the LPC Algorithm 2.3.1 to a general linear program is prin­

cipally to show that it can indeed handle such problems and that its usefulness is not 

merely confined to discrimination problems.

Upon the suggestion of Philip E. Gill [66], the LPC Algorithm 2.3.1 was applied to 

the WOODW linear program m ing problem. The WOODW problem data is publically 

available from the Netlib repository [1]. The primal linear program consists of 1085 

equality constraints and 13 inequality constraints. There are 8405 variables. The 

optimal objective value is 1.3044763331. The constraints are 0.04%~dense with 37474
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Figure 9: Nonzero elements of the WOODW primal constraint matrix.

nonzeros and the constraint matrix is structured (see Figure 9). The primal problem 

has the following form:

min {d x  \ A x = b, B x  < d, x  > 0 }. (45)
X

Since the LPC Algorithm 2.3.1 deals with linear programs with massive constraints, 

we applied it to the dual formulation [98] of (45) having 8405 constraints and 1098 

variables:

min {—b'u +  <tv \ A'u — B'v  <  c, v >  0 } . (46)
U,U

LPC N um erical R esu lts for Expanded W OODW  Problem

It was discovered empirically that selecting an initial dual subproblem with less than 

6958 constraints resulted in an unbounded linear program. This problem was overcome 

computationally by slightly altering the LPC Algorithm 2.3.1 as follows. Instead of 

setting [Hi V] to be the set of active constraints at iteration j ,  the index set of

constraints that are carried over to iteration j  + 1 consists of the union of the index set

of all active constraints along which the objective is unbounded and the index set of 

positive dual variables. Specifically, consider a WOODW dual unbounded subproblem 

at iteration j .  The subproblem constraint set is
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/

(A')Ju — (B'Yv < c?,

(u,i/) (A')3u -  (B')Jv <

v > 0
4

The constraints then forming [A/J+I — B/J+l c7+1] correspond to those all active 

constraints of (47) along which the objective —l/u  +  d'v is unbounded below and the 

constraints of (47) with positive multipliers.

Unlike the implementation for data discrimination problems given in Section 2.3.3 

which was done in C, this general linear programming implementation was done in 

MATLAB [110]. As such the capabilities of both the full linear program and the LPC 

methods of solution are restricted in terms of timing and memory management as 

a consequence of the MATLAB implementation. Hence the primary purpose of this 

section is to show the viability of the LPC Algorithm 2.3.1 for solving general linear 

programs.

Preliminary computational tests were carried out on the Computer Sciences Depart­

ment Ironsides cluster of 4 Sun Enterprise E6000 machines, each with 16 UltraSPARC 

II processors for a total of 64 processors and 8  gigabytes of RAM using the MATLAB 

numerical package [110]. Linear programs were solved via the MINOS package [120] 

linked to MATLAB.

We first attem pted computational tests in MATLAB [110] on a 98 megabyte Sun 

Sparcstation, but MATLAB memory problems were encountered. Hence we began 

testing on the 8  gigabyte Ironsides cluster using MATLAB. Given the large amount 

of memory available on the Ironsides cluster, the average time needed to solve the full 

WOODW primal problem (45) was merely 29.33 seconds. The short time needed to
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solve the full linear program motivated us to augmented the problem by tripling the 

number of primal variables or, equivalently, tripling the number of dual constraints. 

After the number of dual constraints was tripled, the expanded set of constraints were 

randomly reordered. We term this larger problem the “expanded WOODW” problem 

and the dual consists of 25215 constraints and 1098 variables.

The full expanded WOODW problem data was stored in MATLAB matrix-vector 

format as a binary .mat file [110]. To load the expanded WOODW problem data into 

the MATLAB environment, the process required 222 megabytes of resident machine 

memory. Different load times were observed, possibly due to different computational 

loads on the Ironsides cluster. Load times varied from tens of seconds to minutes. 

These observations should be kept in mind when interpreting the results summarized 

in Figure 10.

In solving the massive linear program via MINOS [120] called from within MAT­

LAB, the MATLAB process required 1.069 gigabytes of resident memory from the 

Ironsides cluster. These figures suggest that the expensive costs incurred to compute 

solutions to large linear programs in the MATLAB environment. It is likely that com­

putational resources required, in terms of time and memory, would be diminished if 

the MATLAB environment was avoided.

Average time to solve this augmented WOODW dual problem was 263 seconds, 

including the time needed to read the augmented WOODW problem data from disk. 

D ata load time was included since, in the implementation of the LPC algorithm, the 

“new” subproblem data (that not carried over from a previous iteration) is read from 

disk.

Figure 10 sum m arizes time needed to obtain an optimal solution to the expanded
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Figure 10: Total running time (seconds) versus chunk size for the LPC Algorithm 2.3.1 
for the expanded WOODW dual problem on the CS Department Ironsides cluster (64 
processors, 8  GB RAM).

WOODW dual problem for various initial subproblem sizes as a fraction of the total 

number of constraints of the expanded WOODW dual problem. Note that at each 

iteration, the actual subproblem solved consists of the given set of “new” data (equaling 

the given fraction of the total number of constraints) plus constraints carried over from 

the previous LPC iteration, as discussed above.

Note that all subproblem times are less than the time needed to load and solve the 

full expanded WOODW problem via MINOS [120] called from MATLAB [110]. The 

fact that there is not a noticeable trend in LPC times for various subproblem sizes 

could be due to the number of iterations required to construct a bounded subproblem.
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This number varied over the different subproblem sizes tested. It was observed that 

for subproblem sizes requiring many iterations to reach a bounded subproblem, time 

to reach an optimal solution was also greater.

These results indicate the utility of the LPC algorithm for solving general linear 

programs with massive numbers of constraints.

2.3.3 LPC for Solving SVM-1

We consider applying the LPC Algorithm 2.3.1 to the SVM-1 problem (35) of calcu­

lating a separating plane P  := ( i  € i f  | w'x  =  7 } to classify massive datasets 

For clarity, we restate the SVM-1  problem:

t >
—Aw + e j  +  e < y,

X Bw  — e7  +  e <  z,
( 1 - A  ) (e'y  +  e'z) +  £ e 'sz y  > 0, z >  0,

—s < w < s.
4

A e  (0 , 1).

For datasets A  and B in RJ1 having m  and k points respectively, the number of 

constraints in the SVM-1  problem (not including simple non-negativity constraints) is 

m +  k + 2n. The number of variables is 2n +  1 +  m +  k.

Consider the dual of the SVM-1  linear program (35):
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max
«€«"* tp€iJn,7€iin

t
A 'u  — B 'v  +  p — q =  0,

—efu +  d v  =  0 ,

/  /

IHVI3

< e u + e v

<u1VI3

p +  g <  |e ,

u , v , p , q >  0
/

A € [0,1). (48)

The number of constraints in this dual formulation (not including simple upper and 

lower bounds on the dual variables) is 2n + 1 . The number of variables is m  + k +  2n. 

Solutions of the dual of SVM-1 (48) were faster to compute via MINOS [120] than 

solutions of the primal SVM-1  problem (35). Hence, when applying the LPC Algorithm 

2.3.1 to the SVM-1 problem, all subproblems were solved in their dual form (48).

We note that the Sequential Minimal Optimization (SMO) technique [131] effec­

tively scales the quadratic SVM-2 problem (36) to classify massive datasets. Each 

iteration consists of analytically computing the solution of 2 Lagrange multipliers cor­

responding to 2 training examples. Note that in both the LPC Algorithm 2.3.1 and 

the SMO algorithm, multiple data scans may be needed to find an optimal separating 

plane.

To test the LPC Algorithm on the classification task, synthetic data sets were 

generated using the publicly available Synthetic Classification Data Set Generator 

(SCDS)[113]. Fully dense data sets A  and B of various sizes were created with 32 at­

tributes. Points of A  were generated according to the following rule: (xy =  6 ) A (xn  =
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3) A (xig =  10) A (x2 9  =  6 ). Points of B  were generated according to the following 

rule: (x& =  4) A (X2 5  =  6 ) A (x ĵ =  10) A (X3 1  =  10). Then 10% of the data generated 

for A  was labeled B  and, similarly, 10% of the data generated for B was labeled A  to 

simulate noise in labeling.

We used a small version of this dataset with 20,000 points for prototyping and 

obtaining accurate running times on a Sun SparcStation 20 with 98 megabytes of RAM. 

For larger problems with 200,000 points and more we used the Computer Sciences 

Department Ironsides cluster (see Section 2.3.2). All linear programs were solved with 

MINOS [120] called from a C implementation of the LPC algorithm. The parameter 

A of the SVM-1  problem (35) was set to 0.05 in all runs.

Since the datasets generated by the SCDS generator [113] were constructed by deci­

sion rules which are rather complex to recover by a linear separator, we also evaluated 

the LPC Algorithm 2.3.1 applied to the SVM-1  problem (35) on the following sets A  

and B  [115]. Data was sample from two multivariate Gaussian distributions in R 32. 

The first Gaussian had center /j1 =  (2.5)e and the second Gaussian had center n2 =  0. 

Both Gaussians had covariance matrices equal to the 32 x 32 identity matrix. The set 

A  consists of 9900 data points sampled from Gaussian 1 and 100 points sampled from 

Gaussian 2. The set B  consists of 100 data points sampled from Gaussian 1 and 9900 

sampled from Gaussian 2.

The SVM-1 problem (35) with A =  0.05 computes a separating plane w'x =  7  such 

that 100 data points from A  are “misclassified” or in the halfspace {x  € R?2 | w'x < 7 } 

and 440 data points of A  are in the region {x  E -ft32 | 7  <  w'x < 7  +  1}. Hence there 

are 540 support vectors resulting from A . Similarly, there are 100 data points of B  

which are “misclassified” in the halfspace {x E R 32 \ w 'x > 7 } and 437 points of B  in
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{ x e R 32 | 7 - i  < w'x < 7 }. Hence there axe 537 support vectors from B.

LPC N um erical R esu lts for M assive D ata D iscrim ination

Figures 11 and 12 show results for 200,000 points in R32 generated via SCDS [113] 

(m + k = 200,000). Figure 11 depicts monotonic values of the minima of subproblems 

(38) at each iteration of the LPC algorithm converging to the global optimum of (37). 

Figure 12 depicts total running time of the LPC algorithm until a  constant objective 

value is obtained. Note that the LPC algorithm reduced running time to 1.75 hours, 

a 74.8% reduction from the 6.94 hours for a full dataset linear program, when it used 

12.5% of the data at a time. In fact for all chunk sizes less than 100% the LPC reduced 

running time.

Table 8 lists the maximum subproblem sizes in terms of number of data points 

considered and the size of the resulting dual subproblem constraint matrix. All LPC 

solutions were optimal for the full SVM-1  problem (35) over 200,000 data points.

Table 8 : Maximum subproblem sizes for LPC applied to the SVM-1 (35) for discrimi­
nating between 200,000 points in R32.

Original Chunk Size 
(% of full dataset)

Maximum #  of Subproblem 
Constraints

Maximum Subproblem Dual 
Constraint Matrix Size

5% 19,240 64 x  19,304
10% 2 2 ,0 0 0 64 x 22,064

12.5% 27,500 64 x 27,564
25% 55,000 64 x 55,064
50% 1 1 0 ,0 0 0 64 x 110,064

For the problem with 500,000 points in R32 generated via SCDS [113], the LPC 

algorithm with 12.5% chunking of the M l dataset obtained a separating plane in 25.91
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hours in 8 iterations. The objective function remained constant for the next u  =  4 

iterations. Note m  + k  =  500,000 and the maximum subproblem solved consisted of 

62,500 data points and the resulting dual constraint matrix was 65 x 62,564. The 

solution computed via the LPC algorithm was optimal for the SVM-1  problem (35) 

over the 500,000 data points. We were not able to obtain a solution for the full dataset 

linear program.

For the problem with 1 million points in R?2 generated via SCDS [113], the LPC 

algorithm with 2% chunking of the full dataset obtained a separating plane in 231.32 

hours in 63 iterations. The objective function remained constant for the next v  =  4 

iterations. It was not possible to obtain a solution for the full dataset linear program of 

this size. Note tha t m + k  =  1 ,000,000 and the maximum subproblem solved consisted 

of 72,000 data points and the resulting dual constraint matrix was 65 x 72,064.

For the datasets generated by sampling from the two Gaussian distributions dis­

cussed earlier, recall that the number of support vectors determined by the SVM-1 

problem (35) over the full dataset is 540 +  537 =  1077. We solved this problem with 

the initial number of subproblem constraints set to 1100 and A =  0.05. The LPC 

Algorithm 2.3.1 (C implementation) computed an optimal solution in 788 seconds. In 

contrast the full linear program was solved via MINOS (called from C) in 2627 seconds. 

These tests were run on a 98 megabyte Sun Sparcstation.

These results indicate that if the number of support vectors can be estimated prior 

to the application of the LPC Algorithm 2.3.1, it may be easier to estimate the “correct” 

maximum number of constraints or chunk-size for any given subproblem [115], resulting 

in much quicker computation of an optimal solution.
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Figure 11: Objective function values for SVM-1 (35) versus LPC iteration number for 
chunk size of 5% of original 200,000 points in R32. Objective function increases until 
iteration 22 and is flat thereafter.
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Figure 12: Total running time (seconds) versus chunk size for iterative LPC Algorithm 
2.3.1 applied to SVM-1  (35) for dataset of 200,000 points in R32. LPC time reduction 
of 74.8% at 12.5% chunk size.
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The LPC Algorithm 2.3.1 presented in this section enables one to solve linear pro­

grams with massive constraints when limited by resident machine memory (RAM). 

This approach can be applied to any of the linear-programming-based classification 

approaches, enabling these to be solved over massive datasets often arising in real- 

world data mining tasks. In particular, the LPC algorithm addresses the data mining 

algorithm constraints presented in Section 1.3.1 in the following sense:

•  On-line “anytime” behavior: a solution of the most recent iteration is always 

available from the LPC algorithm. Application of the LPC algorithm to the 

SVM-1 problem (35), yields a “best” separating plane at each iteration in the 

sense that it has been computed over the support vectors at each iteration. It 

may not be optimal over all of the data processed so far.

•  Ability to incrementally incorporate additional data is addressed by viewing the 

additional data as a set (or sets) of constraints that need to be processed.

•  Work within the confines of a limited resident memory (RAM) buffer. By par­

titioning the original constraint matrix correctly, the resulting subproblems (38) 

can be quickly and efficiently dealt with in main memory.

• Require one scan of the dataset i f  possible. Unfortunately, we cannot guarantee 

an optimal solution to the full massive linear program after a single scan of the 

dataset. In our computations we have observed an optimal solution after one 

to two full data scans when the LPC Algorithm 2.3.1 is applied to the SVM-1  

problem (35).

In this chapter, the feature selection problem is cast as that of computing plane to
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separate the two disjoint point sets A  and B  utilizing as few of the original problem 

features as possible. The FSS (12), FSV (13) and FSB (16) problems were formulated. 

The Successive Linearization Algorithm 2.1.3 was used to solve the FSV problem, 

the minimization of a concave objective function over a polyhedral region. The sup­

port vector machine approach to classification was investigated and three formulations; 

SVM-oo (34), SVM-1 (35) and SVM-2  (36) were compared with the FSV approach in 

addition to classifiers computed by the RLP (7). Computational results indicated that 

the FSV feature selection approach computes a separating plane with improved gen­

eralization ability over RLP planes. In comparison with the support vector machine 

approaches, the FSV planes defined simpler (in terms of fewer features utilized) classifi­

cation functions with comparable generalization ability. The LPC Algorithm 2.3.1 was 

presented. This algorithm effectively solves linear programs with massive constraints. 

The LPC Algorithm scales the linear-programming-based methods to address massive 

classification tasks.

We next turn our attention to the problem of unsupervised clustering.
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Chapter 3 

Clustering via M athem atical 

Programming

We consider optimization approaches addressing the unsupervised clustering task (Sec­

tion 1.2 ). The problem is that of assigning m  points in RJ1, represented by the data set 

A  :=  {x*}™ into k  clusters. The clustering problem is first formulated as minimizing 

a piecewise linear concave function over a polyhedral set resulting in the Ar-Median al­

gorithm. The fc-Mean algorithm [147, 81, 63] computes a local solution to the problem 

of minimizing a nonconvex objective over a polyhedral set. We examine a novel ap­

proach, fc-Plane clustering, where clusters are characterized by planes in RJ1, obtainable 

by solving an eigenvalue problem for each cluster.

The algorithms presented above are shown to be effective data mining tools over 

moderately sized datasets, but have serious computational drawbacks when applied to 

massive datasets. In [18, 59], an algorithm is proposed for refining a given clustering 

initialization targeted at clustering massive datasets. In [19, 20], a scalable clustering 

framework is presented and instantiated on the Ar-Mean and EM algorithms. A scalable 

clustering approach is also presented in [168].

We next consider methods in which the clusters themselves are described by a 

centroid in R .
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3.1 Clustering to Centroids

We consider the unsupervised assignment of elements of a given set to groups or clusters 

of like points. Many approaches to this problem include statistical [81, 63], machine 

learning [60], integer and mathematical programming [147, 3, 135].

We address the following explicit description of the clustering problem: given m 

points in n-dimensional real space fP1, and a fixed integer k  of clusters, determine k 

centers in fP* such tha t the sum of the “distances” of each point to the nearest cluster 

center is minimized. If the 1-norm metric is used, the problem can be formulated as 

minimizing a piecewise-linear concave function over a polyhedral set. This is a difficult 

problem since a local minimum is not necessarily a global minimum. By converting 

this problem to an equivalent bilinear program, a fast successive-linearization fc-Median 

algorithm terminates after a few iterations at a point satisfying a minimum principle 

necessary optimality condition [98]. Although there is no guarantee that such a point 

is a global solution, numerical tests reveal that the A;-Median Algorithm 3.1.3 com­

putes useful clustering solutions in diverse domains. The fc-Median algorithm may be 

preferable in domains in which sensitivity to outliers is not desired, since the 1-norm 

is more robust in this case. In contrast the &-Mean algorithm uses squares of 2-norm 

distances to generate cluster centers, which may be sensitive to outliers. We note that 

clustering algorithms based on statistical assumptions that minimize some function of 

scatter matrices do not appear to have convergence proofs [63, pp. 508-515]. However 

convergence of a class of fc-means-type algorithms to local solutions is given in [147].

We now consider formulating the clustering problem a bilinear program.
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3.1.1 Clustering as Bilinear Programming

Given a set A  of m points in BJ1 represented by the matrix A  €  Rmxn and an integer k of 

desired clusters, we formulate the clustering problem as follows. Find k  cluster centers 

Ct, i  =  1, • • • , k, in /2" such that the sum of the minima over I  € {1 , . . .  , A;} of the 

1-norm distance between each point A*, i =  1, . . .  , m, and the cluster centers Ce, i  — 

1, . . .  , k, is minimized. Specifically, consider the following mathematical program:

mm
C,D

(e'Ar)
»= i

(49)
—Da < A^ — Ct < Die >

* =  1, . . .  , m, £ = 1, . . .  , k.
I

Here Du € 12" is a dummy variable bounding the components of the vector |AJ — Ce|, 

the absolute component-wise difference between the data point A,- and the center Ce. 
Hence e!Du bounds the 1-norm distance between A* and center Ce. Note that since 

the objective function of (49) is the sum of the minima of k linear (and hence concave) 

functions, it is a piecewise-linear concave function [98, Corollary 4.1.14]. If the 2-norm 

or p-norm, p ^  1 , oo, is used, the objective function will be neither concave nor convex. 

Nevertheless, minimizing a piecewise-linear concave function on a polyhedral set is 

NP-hard, because the general linear complementarity problem, which is NP-complete 

[43], can be reduced to such a problem [99, Lemma 1]. Given this fact, we focus our 

attention on effective methods for processing (49).

We propose reformulating problem (49) as a bilinear program. Similar reformu­

lations have been very effective in computationally solving NP-complete linear com­

plementarity problems [102] as well as other difficult machine learning [101] and op­

timization problems with equilibrium constraints [101]. In order to carry out this 

reformulation we need the following simple lemma.
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L em m a 3.1.1 Let a €  Rk. Then

P ro o f  This essentially obvious result follows immediately upon writing the dual of the

Obviously, the maximum of this dual problem is h — mining* {a/}. By linear program­

ming duality theory, this maximum equals the minimum of the primal linear program 

in the right hand side of (50). This establishes the equality of (50). □

By defining a\ :=  e'Du, i =  1, . . .  , m, t  =  1 , . . .  , k, Lemma 3.1.1 can be used to 

reformulate the clustering problem (49) as a bilinear program as follows.

P ro p o sitio n  3.1.2 C lu ste rin g  as a  B ilinear P ro g ra m  The clustering problem (49) 

is equivalent to the following bilinear program:

Notice that the constraints of (52) are uncoupled in the variables (C , D) and the 

variable T. Hence the Uncoupled Bilinear Program Algorithm UBPA [9, Algorithm

linear program appearing on the right-hand side of (50) which is

(51)

—Du <  — Ci < Du,

mm
Cl e K ',D ii€Rri ,T u € R

2 .1] is applicable. Simply stated, this algorithm alternates between solving a linear 

program in the variable T  and a linear program in the variables (C , D). The algorithm 

terminates finitely at a stationary point satisfying the minimum principle necessary
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optimality condition for problem (52) [9, Theorem 2.1]. Further, because of the simple 

structure of the bilinear program (52), the two linear programs can be solved explicitly 

in closed form. This leads us to the following algorithmic implementation.

Algorithm  3.1.3 k-Median Algorithm  Given C{, . . .  , C{ at iteration j , compute 

C[+l, . . .  , C3k+l by the following two steps:

(a) Cluster Assignment: For each A!{, i =  l , . . . m ,  determine i(i) such that 

is closest to A'i in the 1-norm.

(b) Cluster Center Update: For I  =  1,. . .  , k choose C3t +l as a median of all A' 

assigned to C{.

Stop when C{+1 =  C\, I  =  1 , . . .  , k.

Since the problem (49) is the minimization of a piecewise-linear concave function 

over a polyhedral region, a successive linearization algorithm [107, Algorithm 1] is also 

applicable. This algorithm requires supergradients of the objective which are available 

in (49) and the resulting procedure reduces to Algorithm 3.1.3.

We next discuss the A;-Mean approach to clustering [147, 81, 63] .

3.1.2 fc-Mean Algorithm

The fc-Mean algorithm is a standard technique for clustering. This procedure computes 

a local solution [147] to the following optimization problem.

t
m

>

—Du <  A+ — Ct <  Du,
m in *
C,D 1=1 % — 1 , . . .  , ?7i, ^  1 , . . .  , k

4
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The Ar-Mean algorithm differs from the ^-Median Algorithm 3.1.3 in the the cluster 

assignment step: a point is assigned to the cluster with center nearest in the 2-norm. 

The cluster update step consists of computing the mean of the data assigned to the 

given cluster, instead of the median.

Algorithm  3.1.4 k-Mean Algorithm  Given C { ,...  ,C{ at iteration j ,  compute 

C{+1, . . .  , C l+l by the following two steps:

(a) Cluster Assignment: For each A*, i =  1,.. .m , determine £(i) such that C \^  

is closest to A( in the 2-norm.

(b) C luster Center Update: For £ =  1 , . . .  , k choose C{+1 as the mean of all A' 

assigned to C{.

Stop when C{+1 =  C{, £ =  1, . . .  , k.

The At-Median and fc-Mean algorithms differ not only computationally but also 

theoretically. In fact, the underlying problem (49) of the A;-Median algorithm is a 

concave minimization over a polyhedral set, while the corresponding problem for the 

p-norm, p  ^  1 , oo is:

f
m —Du < A'i — Ce < Du,

min <CyD «=1 ’ i = l , . . .  , m, £ = 1 , . . .  , k. j

This is not a  concave minimization over a polyhedral set, because the minimum of a 

set of convex functions is not in general concave. The concave minimization problem of 

[147] is not in the original space of the problem variables, but merely in the space of the 

the variables T  that assign points to clusters. We also note that the fc-Mean Algorithm
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3.1.4 finds a stationary point not of problem (54), but of the same problem with ||A r ||2 

replaced with ||A*|li (53). Without the squared distance term, the subproblem of the 

A;-Mean algorithm becomes the considerably harder Weber problem [128, 45] which 

locates a center in R?1 closest in sum of Euclidean distances (not their squares) to a 

given finite set of points. The Weber problem has no closed form solution. However, 

using the mean as a center of points assigned to the cluster minimizes the sum of the 

squares of the distances from the cluster center to the points. It is precisely the mean 

that is used in the fc-Mean algorithm subproblem.

We focus on evaluating the fc-Median Algorithm 3.1.3 and the fc-Mean Algorithm

3.1.4 in three clustering tasks.

3.1.3 Data Mining Survival Curves

In many medical domains, survival curves [84] are important prognostic tools. Our goal 

was use the fc-Median Algorithm 3.1.3 and the fc-Mean Algorithm 3.1.4 as data mining 

tools in a KDD process over two medical datasets to identify groups with distinct 

survival characteristics.

We used an altered version of the WPBC dataset [119]. For a description of the 

dataset as it exists a t the UCI ML Repository, please see Section 2.1.4. The four 

instances which are m issing the value for feature 35 were removed. We utilized only 

feature 34 and feature 35 corresponding to tumor size (diameter of the excised tumor in 

centimeters) and lymph node status (number of positive axillary lymph nodes observed 

at time of surgery). These two features were then normalized to have mean =  0 and 

standard deviation =  1. In this data-mining context, when referring to the WPBC
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dataset, we are referring to this set of 194 points in R2.

We also used a subset of the SEER database [35] consisting of the two features 

tumor size and nodes positive for 21,960 instances. Each of these features is encoded 

in a non-intuitive fashion as an integer value in {0, . . .  , 8 }. Tumor size =  0 corresponds 

to “no tumor found or microscopic tumor only” . Tumor size =  1 corresponds to tumor 

size less than 0.5 cm. Tumor size =  2 corresponds to tumor size between 0.5 cm and 

0.9 cm. Tumor size =  3 corresponds to tumor size between 1.0 cm and 1.9 cm. Tumor 

size =  4 corresponds to size between 2.0 cm and 2.9 cm. Tumor size =  5 corresponds 

to size between 3.0 cm and 3.9 cm. Tumor size =  6 corresponds to 4.0 cm to 4.9 

cm. Tumor size =  7 corresponds to size between 5.0 cm and 9.9 cm. Tumor size =  8  

corresponds to a tumor of size 10 cm or larger. A value of nodes positive between 0 and 

7 corresponds to actual number of positive axillary lymph nodes observed at time of 

surgery. Nodes positive =  8 corresponds to 8 or more positive nodes. When referring 

to the SEER dataset, we are referring to this set of 21,960 points in R 2.

We applied the fc-Median and fc-Mean algorithms with k  =  3, as data mining tools, 

to the WPBC and SEER datasets. Survival curves [84] were then constructed for each 

cluster, representing expected percent of surviving patients as a function of time, for 

patients in that cluster. The value of k =  3 was chosen in the hope of determining 

clusters that represented patients with “good” , “average” and “poor” prognosis, as 

depicted by the survival curves.

Clustering each of these datasets on the Computer Sciences Department Ironsides 

Cluster (see Section 2.3.2) requires time on the order of seconds. Hence a “repetition 

with random restarts” strategy was employed [55] to address the problem of local 

optimality (recall both the fc-Median and A;-Mean solutions are dependent upon the
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initial cluster centers). Sets of initial centers were generated by sampling 20 sets of k =  

3 cluster centers from a uniform distribution on the range of the data. Figure 13 depicts 

the “best” survival curve obtained over 20  random initializations for three groups 

computed by the fc-Median Algorithm 3.1.3. Figure 14 depicts the “best” survival 

curves over the same 20 random initializations computed by the fc-Mean Algorithm 

3.1.4. “Best” curves were chosen by visually analyzing the separability of the survival 

curves computed for each cluster. Evaluating whether the survival characteristics are 

distinct for each cluster could also be performed by comparing p-values for pairwise 

log rank statistics computed from each survival curve [86].

The survival curves of clusters determined by the Median Algorithm 3.1.3 (Figure

13) are more separated than those determined by the fc-Mean Algorithm 3.1.4 (Figure

14). These results indicate the utility of these clustering approaches as data mining 

tools.

To further evaluate these algorithms in a medical survival domain, the fc-Median 

Algorithm 3.1.3 and the fc-Mean Algorithm 3.1.4 were applied to the SEER dataset. 

Clusters were obtained from 20 sets of k =  3 initializations sampled uniformly on 

the range of the SEER dataset. Figure 15 depicts survival curves for three clusters 

obtained by the fc-Median Algorithm 3.1.3 on the SEER dataset. Figure 16 depicts 

curves computed by the fc-Mean Algorithm 3.1.4. The curves are not identical, but one 

can conclude that both methods identify clusters with distinct survival characteristics 

as determined by the survival curves.
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Survival Curves WPBC [k-Medan, k—3]
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Figure 13: Estimated fraction of disease free patients versus time (months) for 3 clusters 
obtained with the k-Median Algorithm 3.1.3 on the WPBC dataset.
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Survival Curves WPBC [k-Mean, k-3]
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Figure 14: Estimated fraction of disease free patients versus time (months) for 3 clusters 
obtained with the A;-Mean Algorithm on the WPBC dataset.
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Survival Curves SEER [k-Mecfian, k»3]
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Figure 15: Estimated fraction of disease free patients versus time (months) for 3 clusters 
obtained with the A;-Median Algorithm 3.1.3 on the SEER dataset.
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Survival Curves SEER [k-Mean, k-3]
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Figure 16: Estimated fraction of disease free patients versus time (months) for 3 clusters 
obtained with the fc-Mean Algorithm 3.1.4 on the SEER dataset.
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3.1.4 Training Set Correctness

We further evaluated the fc-Median Algorithm 3.1.3 and the A;-Mean Algorithm 3.1.4 

by the following procedure. The algorithms are applied with A: =  2 to a dataset with 

two known classes to obtain 2 centers. Training set correctness is measured by the 

ratio of of the sum of the number of examples in the majority class in each cluster to 

the total number of points in the dataset. Training correctness of the fc-Median and 

fc-Mean algorithms is compared to that of a 2-class classification estimator obtained 

by solving the RLP (7). Initial centers for the fc-Median and A;-Mean algorithms were 

deterministically chosen by dividing the coordinate axes into six intervals over the 

range of the data and choosing two centers as the midpoints of the densest and second 

densest intervals on the axes [27].

We utilized three publicly available databases from the UCI ML Repository [119] 

and one dataset that appears in [126].

The Wisconsin Diagnostic Breast Cancer Dataset (WDBC) consists of 569 instances 

each having 32 features. Feature 1 is an identification and was discarded. Feature 2 

is diagnosis (M =  malignant, B =  benign) and was used to assign instances to the 

two datasets A  and B. Features 3-32 are the mean, standard error, and “worst” 

measurements of ten real-valued features computed by the X cyt [154] program at 

time of diagnosis. When referring to the WDBC dataset, we refer to the point set 

A C  R?° consisting of features 3-32 for 357 instances which have a benign diagnosis 

and the set B e  if30 consisting of the same features for 212  instances with a malignant 

diagnosis. Each feature has been normalized to have mean =  0 and standard deviation 

=  1.
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The Cleveland Heart Disease dataset consists of 303 instances with each instance 

having 14 features. Six instances have a missing feature value, these were discarded 

from the dataset. Feature 14 indicates the presence of heart disease and is used to 

assign data points to the two sets A  and B. For the semantics of features 1-13, please 

see [119]. When referring to the Cleveland dataset, we refer to the point set A e  R 13 

consisting of features 1-13 for 214 instances in which feature 14 has value 0 or 1 and 

the point set B e R 13 consisting of the same features for 83 instances in which feature 

14 has value 2, 3, or 4. Each feature has been normalized to have mean =  0, standard 

deviation =  1.

The 1984 United States Congressional Voting Records database includes votes from 

each of the U.S. House of Representatives Congressmen on 16 key votes identified by 

the CQA [119]. There are 435 instances, each instance represents the voting record 

of a Representative ( “yea”, “nay” , or “unknown disposition”). Set A c  R 16 consists 

of 267 instances representing the voting records for Democratic Representatives. Set 

B e  R 16 consists of 168 instances representing the voting records for Republican Rep­

resentatives. Each feature has been normalized to have mean =  0, standard deviation 

=  1.

The Star/Galaxy-Bright dataset [126] consists of the set A c  R u  having 1505 ex­

amples and the set B e  R 14 having 957 examples. Each of the 14 features has been 

normalized to have mean =  0 , standard deviation =  1 .

Results are summarized in Table 9. We note tha t for two of the databases the k- 

Median Algorithm 3.1.3 outperformed the fc-Mean Algorithm 3.1.4, and for the other 

two fc-Mean was better.
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Table 9: Training Set Correctness

Algorithm 4- Database —>■ WDBC Cleveland Votes Star/Galaxy-Bright
Unsupervised Ar-Median 0.932 0.806 0.846 0.876
Unsupervised fc-Mean 0.911 0.831 0.855 0.856
Supervised Robust LP 1.000 0.865 0.95.6 0.997

3.1.5 Testing Set Correctness

We farther evaluated the ^-Median Algorithm 3.1.3 and k-Mean Algorithm 3.1.4 in a 

situation motivated by data mining large databases. We assume that we have a large 

database of examples which we wish to classify. This can be thought of as a data 

mining step in the KDD process mentioned in Section 1.3. The difficulty is that only 

a small fraction of the available examples have been classified as being in one of two 

disjoint sets, by a domain expert for instance. We examine two possible solutions to 

classifying the large fraction currently unclassified and estimating correctness of this 

classification.

(i) Determine two clusters (with the A;-Median or fc-Mean algorithms) over the un­

classified examples. Classify the individual examples by cluster membership. 

Estimate classification correctness using the class label of the classified exam­

ples.

(ii) Determine a separating plane (3) using the the classified examples, by solving 

the RLP (7 ). Classify individual examples by the classification function defined 

by the separating plane. Estimate classification correctness by a leave-one-out 

strategy [90] using the classified examples.
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We simulate the situation in which only a fraction of a database has been classified 

by splitting the WDBC dataset into two subsets Si and S2. We view the points of Si 

as being classified and the points of S2  as without classification. The A:-Median and k- 

Mean algorithms (A; =  2) are applied to the set S2 to obtain two cluster centers. Initial 

centers are chosen by dividing the coordinate axes into six intervals over the range of 

the data in S2  and choosing two centers as midpoints of the densest and second densest 

intervals. We then assign the points in Si to clusters with nearest center (1-norm for 

A:-Median, 2-norm for A;-Mean). Clusters are given a class tag by majority membership 

(e.g. if cluster one contains mostly points of B, then it is tagged “B”). Testing set 

correctness is determined by the fraction of points in Si correctly classified by this 

assignment. The WDBC dataset used here is the same as described in Section 3.1.4.

Test set correctness for the estimated classification function determined by solving 

the RLP (7) is estimated by a leave-one-out strategy [90] on set Si.

Figure 17 depicts results averaged over 50 runs for each of 7 sizes for set Si (the 

testing subset), as a percentage of the size of the entire WDBC dataset. As expected, 

the performance of the classification function determined by solving the robust linear 

program (7) improves as the size of Si increases. The ^-Median Algorithm 3.1.3 test set 

correctness remained fairly constant in the range of 92.3% to 93.5%, while the A;-Mean 

Algorithm 3.1.4 test set correctness was lower and more varied in the range 88.0% to 

91.3%.

The A;-Median Algorithm 3.1.3 is a useful data mining tool particularly suited to 

determining clusters which are “robust” to outliers since it is a 1-norm based algorithm. 

In contrast the A;-Mean Algorithm 3.1.4 is a 2-norm squared based algorithm making
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Testing Set Correctness vs. Testing Set Size
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Figure 17: Correctness on variable-size test set of the unsupervised A;-Median and k- 
Mean Algorithms versus correctness of the supervised robust linear program on the 
WDBC dataset.
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it sensitive to outliers. The computational evaluations of this section indicated that 

both are viable data mining tools addressing clustering tasks in medical domains.

Note that the Ar-Median Algorithm 3.1.3 computes a solution which is locally opti­

mal. We cannot guaranteed a solution which is globally optimal.

The issue of initializing iterative clustering approaches is discussed in [18, 59].

We now focus on a novel clustering approach in which the clusters are represented 

by planes in contrast to points in F 1 [23].

3.2 fc-Plane Clustering

We change the characterization of a cluster from a centroid or point in F  to a plane 

in F .  The justification for this approach is that data sometimes naturally falls into 

clusters grouped around flat surfaces such as planes. This approach yields interesting 

theoretical results that lead to an efficiently implementable algorithm.

3.2.1 fc-Plane Clustering Algorithm

We consider a set A  of m points in n-dimensional real space F  represented by the 

matrix A  € F * n. We wish to cluster A  into k clusters according to the following to 

the following rule. Determine k cluster planes in F :

Pi :=  {x  | x  e  F ,  x'wi =  7 /}, £ =  1 , . . .  ,k , (55)

that minimize the sum of the squares of distances of each point of A  to its nearest 

plane Pi- The algorithm is similar to the fc-Median Algorithm 3.1.3 in that it alternates
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between assigning points to a nearest cluster plane and, for a given cluster, computing 

a cluster plane that minimizes the sum of the squares of distances to all points in the 

cluster. It is the latter computation, which is a one step replacement of an algorithm 

for the Euclidean Regression Problem [150, 37] which does not use squared distances 

and cannot be solved in one step, that makes the following fc-Plane clustering algorithm 

possible.

A lg o rith m  3.2.1 fc-Plane C lustering  A lg o rith m  Start with initial planes (iw®, 7 °),

. . .  , (tug, 7 ®), each in K 1*1 with K ||2 =  1, i =  1,. •. , k. Having (w{, y { ) ,. . .  , {vPk, t£) 

at iteration j  with \\w{ | |2 =  1, * =  1, . . .  , k, compute (tu{+1, 7 i+1), • * • »(wk+l> 7 it+1) by 

the following two steps:

(a) C lu s te r  A ssignm ent: (Assign each point to closest plane Pi) For each A,*, i — 

1 , . . .  m, determine £{i) such that

I ^ W ( o  “  7 / (0 1 =  \AM — Tel*

(b) C lu s te r  U p d a te : (Find a plane Pi that minimizes the sum of the squares of 

distances to each point in cluster £) For £ =  1 , . . .  , k let A(£) be the m(£) x n 

matrix with rows corresponding to all A* assigned to cluster £. Define

ee'
B (0  := IAW Y(I -

1Set rv3l+l to be an eigenvector of B(£) corresponding to the smallest eigenvalue of

Stop whenever (t£^+1, 7 j+1) =  (w\ , 7J), £ =  1 , . . .  , k, for some i =  j , j  — 1 , . . .  ,0.

We give in the next section the theoretical justification for the A:-Plane Algorithm

3.2.1 and establish its finite termination.
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3.2.2 Theoretical Justification of the fc-Plane Algorithm

We first note that the cluster assignment rule defined in Step (a) of the fc-Plane Al­

gorithm 3.2.1 follows from the well known fact [104] that the 2-norm distance be­

tween between a point Ai £ FT1 and the plane Pi :=  { x \ x  6  B 71, x'wi =  7*} is 

\AiWi — 7*|/||u>*||2 =  \AiWi — 7 /|. The last equality follows from ||u;*||2 =  1.

The cluster update rule defined in Step (b) of the fc-Plane Algorithm 3.2.1 follows 

from Theorem 3.2.6 below. But first we prove a few simple lemmas.

L em m a 3.2.2 Let A  6  i2mxn. Then,

Aw — e j  = 0, w ^  0 \  /  rank(A) = n, and \
) ^  ( > • (56)

has no solution (w, 7 ) /  \  Aw  =  e has no solution w /

P ro o f  (=>) If rank(A) < n , then Aw  — e • 0 =  0, w ^  0 has a solution which is a 

contradiction. If Aw  =  e has a solution, then Aw  — e ( l ) = 0 ,  w ^  0 has a solution 

which is again a contradiction.

(<£=) If Aw  — e7  =  0, w #  0 has a solution, then either 7  =  0 or 7  ^  0. In the first 

case, rank (A) <  n. In the second case, by dividing by 7 , we have that Aw — e has a 

solution. In either case, a contradiction ensues. □

L em m a 3.2.3 Let A  € R7"xn, then

e e \ . ee'A1 (I  -  — )A = A '(I  -  — )2A. (57)
m  m

P ro o f

ee' ee'ee! ,  ee'
( I - e± f - ( I - e± ) = I - 2 ^ -  + ^ - - I  + ^ - = 0 .  □ (58)m m m w r m
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66
L e m m a  3 .2 .4  B  :=  A '( I  )A  is positive semidefinite.

m

P ro o f By Lemma 3.2.3,

ee'
w'Bw = | | ( / -------)A w \\l> 0 . n  (59)m

Lem m a 3.2.5 Aw — e*y =  0, w #  0 has no solution ^  B  is positive definite.

P ro o f (=*►) By Lemma 3.2.4, B  is positive semidefinite. If B  is not positive definite
ee'then, by Lemma 3.2.4, ( /  )Aw  =  0, w ^  0 has a solution. But, by Lemma 3.2.2,
m ee7 e'z

rank(A) =  n, hence z  =  Aw  0. Thus, ( I  )z =  0, or z = e—  =  cce, wherem m
Z t /J

a  =  —. Since z  ^  0 , it follows that a ^ 0  and e =  — =  A—, contradicting the fact 
m a  a

(from Lemma 3.2.2) that Aw = e has no solution.
ee'

(<=) If B  is positive definite, then by Lemma 3.2.4, ( I  )Aw = 0 has no solution
ee'

w 0. Hence rank(A) =  n. Also Aw  =  e has no solution, else ( /  )Aw — c — e =  0.m
Thus by Lemma 3.2.2, Aw — ey =  0, to 7  ̂0, has no solution. □

We are ready now to state the theorem that explicitly gives the plane that minimizes 

the sum of the squares of the 2-norm distances to m given points in BJ1.

T heorem  3.2.6 Let A  6  Hmxn. Then a global solution of:

minimize ||Au/ — e'ydl
(w,7)eR"+l (go)

subject to w'w =  1, 

ee'
is attained at any eigenvector w of B  :=  A '( I -------)A corresponding to a minimumm
eigenvalue of B  and 7  =  The minimum of (60) is positive if  and only i f  B  is

positive definite or equivalently i f  and only i frank(A)  =  n and Aw  =  e has no solution.
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P ro o f  The second part follows from Lemmas 3.2.2 and 3.2.5. We now prove the 

first part. The set of all stationary points of (60) including all its global minima render 

the partial derivatives of the Lagrangian of (60) equal to zero. That is for:

L(w,  7 , A) := ||Aw — e7 | | | — A(w'w — 1), (61)

it follows that:

]-VwL(w, 7 , A) =  A'(Aw — e j)  — Xw =  0, (62)

- | v 7L(io, 7 , A) =  e!(Aw -  e j)  =  0, (63)

—V a L ( w , 7 , A) =  w'w — 1 =  0. (64)

Hence:

ee'A =  w 'A '(I  )Aw, (65)m

7 =  (66)
m

Substitution for A and 7  in (62) gives:

A '(I  — — )Aw — w 'A '(I — — )Aw • w = 0. (67)
Tn 777

By using the definition of B  this is equivalent to:

Bw — w'Bw  • w =  0.

That is:

Bw  =  uw, v  =  w'Bw. (6 8 )
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Thus for each stationary point (w, 7 ) of (60), it follows that w is an eigenvector of

B  and 7  =  e- ^ w Hence, 
m

Aw — e j  = Aw — e( 6 ^ w ) =  ( /  — —  )Aw. (69)
m m

We then have by Lemma 3.2.3 that:

11 Ait; — e-yllo =  w 'A '( I -------)2Aw  =  w'Bw  =  v, (70)m

where the last equality follows from (68 ). Hence the smallest value that u can take on 

is the smallest eigenvalue of B  and w is its corresponding eigenvector. □

R em ark  3.2.7 R e la tio n  to  S ingular V alue D ecom position  It can be shown, after 

some straightforward algebra, that the w obtained in the above Theorem 3.2.6 can also 

be obtained by taking a singular value decomposition U SV 1 [125, 153] of the m  x n  

matrix:

H := (I  — £ ) A ,
m

where U and V  are orthogonal matrices of dimensions m  x m  and n x  n respectively, 

and S  is an m  x  n diagonal matrix with nonnegative diagonal elements in decreasing 

order. I t can then be shown that the desired w given by Theorem 3.2.6 corresponds to 

the last column of the matrix V  corresponding to a smallest singular value of H , and 7  

is again given by (66) above. This result can be derived by noting that [125, Theorem 

8.19] the squares of the singular values of H  (possibly with some zeros added) are also 

the eigenvalues of both H H ' and H 'H  with associated eigenvectors being columns o f U
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and V  respectively. A different clustering approach, latent semantic indexing, is given 

in [10] that also uses singular value decomposition.

We end this section by establishing the finiteness of the A:-Plane Algorithm 3.2.1.

T heo rem  3.2.8 (F in ite  T erm ina tion  o f th e  A:-Plane A lg o rith m  3.2.1) The k- 

Plane Algorithm 3.2.1 terminates in a finite number of steps at a cluster assignment 

that is locally optimal. That is, the overall objective, the sum of the squares of distances 

of each point to a closest cluster plane, cannot be decreased by either reassignment of 

a point to a different cluster plane, or by defining a new cluster plane for any of the 

clusters.

P ro o f  In the cluster assignment part (a) of the algorithm each point is assigned to 

a closest plane and hence the overall objective cannot increase. Similarly in part (b) 

of the algorithm, the cluster plane, for each cluster, is recomputed as that plane which 

minimizes the sum of the squares of distances of points in that cluster to the plane. 

Hence, again, the overall objective cannot increase. Since there is finite number of 

ways that the m  points of A  can be assigned to k clusters, since the algorithm does not 

permit repeated assignments, and since the overall objective function is non-increasing 

and bounded below by zero, it follows that the algorithm must terminate at some 

clustering assignment that is locally optimal. □

3.2.3 Computational Results

Two sets of computational tests were carried out to evaluate the fc-Plane Clustering 

Algorithm 3 .2.1  The first test is designed to investigate the ability to generate well
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separated survival curves by clustering medical data (see Section 3.1.3). In the second 

set of tests the ability to recover class labels by clustering unlabeled data was tested.

The first set of tests consisted of applying the A:-Plane algorithm to a subset of 

the WPBC dataset [119] with goal of obtaining separated survival curves [84]. The 

two features of tumor size and lymph node status were used (see Section 3.1.3). Both 

features were normalized to have zero mean and standard deviation =  1. This dataset 

consists of 198 points in R2. The fc-Plane algorithm was run from 20 sets of k =  3 

initial planes obtained by sampling the values of (to®, 7®), (to®, 7 °), (tu®,7 ®) from a 

normal distribution with mean =  0, standard deviation =  1 . The fc-Plane Algorithm

3.2.1 was applied to with k =  3 and survival curves corresponding to each cluster were 

plotted. The “best” set of survival curves (determined visually) are depicted in Figure 

19 indicating three groups with distinct survival characteristics.

The actual clusters obtained in R 2 are depicted in Figure 18.

Application of the fc-Plane Clustering Algorithm to the SEER Database (see Section 

3.1.3) also yielded 3 clusters with distince prognostic characteristics. See Figure 20.

In the second set of tests the A:-Plane algorithm, Ar-Median and the A;-Mean algo­

rithm were compared in their ability to recover class labels on a holdout data subset. 

The datasets used here had two classes, hence k =  2 in these tests. A ten-fold cross- 

validation [152] scheme was employed. In this procedure the dataset is randomly 

divided into 10 disjoint sets of approximately equal size, Tx, T<i,. . .  ,Tx0. Then 10 

trials are conducted. At trial j , the clustering algorithms are applied to the union 

of Tx,. . .  ,T j-i ,T j+ i, . . .  ,Tio (training data) without making use of the class label. 

Then the data points in Tj (test data) were assigned to the closest cluster plane 

or cluster center. Training correctness at trial j  is the percentage of training data
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Figure 18: Three cluster lines obtained by the fc-Plane Algorithm 3.2.1 for the Wiscon­
sin Prognostic Breast Cancer Database (WPBC). Data assigned to Plane 1 is indicated 
by O- Data assigned to Plane 2 is indicated by +. Data assigned to Plane 3 is indicated 
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Survival Curves for 3 Clusters Using (Tumor. Lymph) (kPC)

0.9

0.8

a.

0.4

0.3 120 14010020
Months

Figure 19: Estimated fraction of disease free patients versus time (months) for 3 clusters 
obtained with the fc-Plane Clustering Algorithm 3.2.1 on the WPBC dataset.
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Survival Curves SEER [k-Plane, k*3]
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Figure 20: Estimated fraction of disease free patients versus time (months) for 3 clusters 
obtained with the Ar-Plane Clustering Algorithm 3.2.1 on the WPBC dataset.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

Ti, T2, . . .  , T j-i, Tj+i, . . .  ,Tio correctly classified by the majority label of the cluster 

that each point was assigned to. Similarly, testing correctness at trial j  is the percent­

age of Tj correctly classified by the majority label of the cluster that the point was 

assigned to.

Table 10 summarizes average training and testing results on 2 publicly available 

datasets [119] for the A:-Plane, fc-Mean and A:-Median algorithms.

The Johns Hopkins Ionosphere dataset consists of 351 data points with 34 real­

valued features characterizing radar returns from the ionosphere. One class corresponds 

to radar returns showing evidence of structure. The other class corresponds to those 

returns showing no structure.

The BUPA Liver Disorders dataset consists of 345 data points with 6 real-valued 

features. A 7th feature indicates the class of the corresponding feature.

Both the Ionosphere and BUPA datasets have been normalized so that the mean 

of each feature is zero and standard deviation is one. Initial planes for the Ar-Plane 

Algorithm 3.2.1 and initial centers for the £-Median Algorithm 3.1.3 and the A;-Mean 

Algorithm 3.1.4 where sampled from a normal distribution with zero mean and standard 

deviation 1.

We note that the fc-Plane clusters were better able to recover original class labels 

on the BUPA liver disorders dataset over both the training and testing subsets. The 

fc-Mean clusters were better on the Ionosphere dataset. On both the BUPA and Iono­

sphere datasets, the A;-Plane algorithm converged faster than Ar-Mean, as much as 6.21 

times faster on the BUPA dataset [23].

The novel A-Plane Algorithm 3.2.1 provides the analyst with a clustering tool which
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Table 10: 10-fold Cross-Validation Results

Ionosphere BUPA
Ave. Test 
Correct.

fc-Plane 0.641 ±  0.011 0.603 ±  0.047
k-Mean 0.706 ±  0.100 0.556 ±  0.032

A:-Median 0.661 ±  0.109 0.565 ±  0.033
Ave. Train 

Correct.
fc-PIane 0.641 ±  0.001 0.555 ±  0.028
A;-Mean 0.704 ±  0.015 0.549 ±  0.009

Median 0.659 ±  0.012 0.519 ±  0.009
Value following “± ” is one standard deviation.

may be very useful when inherent groupings in the data are based upon a subspace 

effectively approximated by a  plane. This efficient, theoretically justifiable technique 

computes a cluster assignment which is locally optimal. Computational results in­

dicated its utility in a medical survival data mining application and in a class-label 

recovery task.

We now turn our attention to a more general problem of obtaining a minimum 

support solution [106] to a linear system A x = b.
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Parsim onious Approxim ation

A wide range of important applications, including those in machine learning [163, 41], 

can be reduced to the problem of estimating a vector x  € i? 1 by minimizing some norm 

of the residual vector A x — b arising from a system of linear equations:

A x  =  6, (71)

where A  6 FCnxn and 6 € i? ”, both A  and b are subject to error.

We discuss other approaches to this problem before discussing a novel method, 

based on minimizing a concave function over a polyhedral set.

4.1 Other Approaches

There are various approaches to the problem of estimating the vector x  € FC1 such 

that A x  «  b. These include least squares, total least squares and structured total least 

norm.

The least squares (LS) solution, xls to (71) is obtained by solving the following 

problem [80]:
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min ||Ax — &||2- (72)

Suppose that the RHS 6 is corrupted by uncorrelated random variables with zero 

mean and equal variance, then the estimate xls has the smallest variance in the class 

of estimation methods which fulfill the following two conditions: (1) the estimate is 

unbiased, and (2) the estimate is a linear function of b [80].

The total least squares (TLS) problem [72, 80] (or orthogonal regression, or errors- 

in-variables regression) addresses the following optimization problem:

. min { | p ;  6] -  [A; 6]||F 6 € R (A )}  , (73)
[A;6]€«mx<n+l> J

where || • ||F is the Frobenius norm of a matrix and R(A) is the column space of the 

matrix A. Once a minimizing [A; 6] is found, then x tls  € RP satisfying

A x t l s  =  b (74)

is called the total least squares solution. Notice that the noisy data [A; b] are minimally 

modified (in the Frobenius norm) to a “nearby” system [A; 6] which is solvable.

If [A; 6] =  [Ao 4- A  A, bo +  A6], where [AA, A6] are uncorrelated random variables 

with zero mean and equal variance, it can be shown [64, 70] that x t ls  estimates x0 := 

Agio consistently in the sense that x tls  converges to xq as m tends to infinity. Here 

Aq is the pseudo-inverse of Ao obtained from the singular value decomposition of Ao 

[80].
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We formulate the total least squares problem as in [138] which leads us to a descrip­

tion of the structured total least norm problem. The TLS problem can be formulated as 

determining a perturbation matrix E  with minimal norm while minimizing the residual 

r  =  b — (A +  E )x :

m i n | | i ? ; r | | j ?  (7 5 )

In many applications the matrix A  has special structure, such as Toeplitz or a 

sparsity structure. In addition, in some applications, errors may only occur in certain 

elements of A , in which case E  is sparse. But the computational method most often 

employed to solve the TLS problem is based on the singular value decomposition (SVD) 

[73], which is not in general sparsity preserving or structure preserving. In contrast 

structured total least norm (STLN) methods [138, 79] permit a known structure in A  

and \A\ 6] to be preserved in A + E  and [A+ E;b+ r\. Furthermore, the problem can be 

formulated so as to minimize the 1-norm, oo-norm or the Frobenius norm used in the 

TLS problem. In [138], iterative methods are presented for solving the STLN problem 

for a given norm, convergence results and optimality conditions are investigated, and 

a comparison of STLN with LS and TLS is presented.

4.2 Parsim onious Least Norm  Approximation

In this section we consider the closely related problem of minimizing the 1-norm of the 

residual vector A x  — b, where b is subject to error and with the additional condition 

that a specified number k < n of the columns of A  are used. This is clearly a combi­

natorial problem that we shall solve by minimizing a concave function on polyhedral
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set. This approach has been successfully used in such machine learning problems as 

misclassification minimization [101], feature selection [27] and data mining [26, 105].

The idea behind using as few columns of A as possible to span b is motivated by the 

Occam’s Razor bias [13]. This bias is effective in improving the generalization ability 

of an estimator [148, 167] where, for example, one wishes to use the solution x  of (71) 

on new data not represented by the rows of [A 6], as would be the case if either A  or b 

is corrupted by noise.

Utilizing as few colum ns of A as possible is equivalent to computing a minimal 

support solution [106] of (71). To obtain a minimum support solution to (71), the 

objective function consist of weighting the 1-norm of the residual vector by (1 — A) and 

weighting by A a term which suppresses the components of x, which is our Parsimonious 

Least Norm Approximation (PLNA) problem:

min (1 — A)||Ar — &||i +  Ae'|x|*, A € [0,1). (76)
x ZlRP-

For comparative purposes we shall also employ Vapnik’s support vector machine

approach [161, 6] of minimizing the size of the solution vector x  as well as the error

|| Ax  — 6||i, thereby decreasing the VC-Dimension [161, p 76] (a capacity measure) and 

improving generalization. We shall do tha t by parametrically minimizing the 1-norm 

of x  as well as the 1-norm of the error A x  — b:

min (1 — A)||Ax — 6||i-I-A||ar||i, A €  [0,1). (77)

We shall call this problem, with a possibly noise-corrupted 6, the least least norm ap­

proximation (LLNA) problem and solve it by solving the equivalent linear programming
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formulation:

(1 — A )e'y A e'z
—y < A x — b < y ,

>, A 6 [0,1)
—z < x  < z 4

min
(x ,y js )€ R l+m+n

R em ark  4.2.1 The following example where the 1-norm linear system residual may 

decrease but the number of nonzeros in the solution x  increases in moving from vertex 

to vertex of (78) was suggested by R. R. Meyer [114]- Suppose the linear system (with 

perturbation vector p = 0) is:

1 0 1

A = 2 1 ,6 = 3

- 1  1 4

One vertex of (78) is x  =  [0 3]' and ||A r — 6||i =  2. Another vertex of (78) is 

x ' = [1 1] with |\Ax — 6||i =  4. Note that the number of nonzeros of x  is less than the 

number of nonzeros of x.

R em ark  4.2.2 The issue of whether vertex solutions of problem (78) with few nonzero 

elements (but greater than zero) have smaller norms is due to R. R. Meyer [114], who 

has also provided the following result. There exists a vertex solution of (78) with one 

nonzero component of x with norm no bigger than the norm of the “full solution” x* 

obtained when A =  0 in (78), provided x* ^  0.

We note that when A =  0, problem (76) and (77) reduce to the classic 1-norm 

approximation problem. When A =  1, both problems (76) and (77) are trivially solved 

by x  =  0.
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We are interested in solutions with A 6 [0,1) that make e'\x\* ^  k for some desired 

k < n and such that ||A r — 6||i is acceptably small. By letting A range over the 

interval [0,1], the number of nonzero elements in the solution x  varies from n  to 0, 

while the error ||A r — 6||i monotonically increases. Depending on the problem at hand, 

a solution for a A 6 [0,1) will be most desirable. For instance, in many machine 

learning applications, A is normally chosen as the one that produces a solution with 

best generalization estimation, determined by the use of a tuning set, for instance.

In the following section, we convert (76) to a minimization of a concave function 

over a polyhedral set. We state some theoretical and computational aspects of this 

conversion.

4.3 The PLN A  Concave M inimization Problem

We first rewrite (76) as the following equivalent problem

min {(1 — A)e'y +  Ae'|x|, | — y < Ax -  b < -y} , A € [0,1). (79)
(x ,y)eR n+m

Then by making the following identifications,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

S  =  {(*,y) | —y < A x  — b < y } ,

i  = n + m,

s = [xr ]/]',

f ( s )  =  e'y,

A* — i t \  i

(80)

problem (79) and hence problem (76) become special cases of the following problem,

min f ( x )  +  /zA'|s|*
x  65

(81)

which we shall solve in its smooth version,

min/(a;) +  — e a *̂)s^S
(82)

where a  is a positive parameter. More specifically, the smooth version of (76) is the 

following concave minimization problem:

mm < (1 — A)e'y +  Ae'{e: — £ az)
(x4/^)€R^+m+n

-y < A x — b < y ,  

—z < x < z
►, A 6 [0,1). (83)
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By solving this problem for a sufficiently large but finite value of a  > 0 it follows 

by Theorem 2.1.2 that we have solved our original discontinuous problem (76). We 

now turn our attention to solving (83) by a finitely terminating successive linearization 

algorithm.

4.4 The Concave M inim ization Algorithm

The finite method that we propose is the successive linear approximation (SLA) method 

of m inim izing a concave function on a polyhedral set which is a finitely terminating 

stepless Frank-Wolfe algorithm [62], similar to Algorithm 2.1.3. We state now the SLA 

for problem (83) which has a differentiable concave objective.

A lgo rithm  4.4.1 Successive L inearization  A lgorithm  (SLA) for (83). Choose 

A G [0,1). Start with a random x° € RJ1. Set y° ~  \Ax° — 6|, z° =  |x°|. Having 

(x‘, y‘, zl) determine (xt+l,y t+l,z t+l) by solving the following linear program:

(z*+1,y*+1,z*+I) G argmin  ̂ (1 — X)e'y -I- Xa(e
(x,

—y < A x — b <y ,  

—z < x < z

(84)

Stop when (x \ y \ z‘) is feasible and

(1 _  a)eV  +  Xa{e-azi)'zi =  (1 -  A)eV+1 +  Aa(e-°**')V+l. (85)

By [103, Theorem 4.2] we have the following finite termination result for the SLA 

(Algorithm 4.4.1).
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T heo rem  4.4.2 F in ite  T erm ina tion  for SLA ap p lied  to  (83). The iterates de­

termined by (84) generate a strictly decreasing sequence of objective function values 

for (83) and terminates at an iteration i with a stationary point (which may also be 

a global minimum solution) that satisfies the following minimum principle necessary 

optimality criterion [98],

(1 -  A)e'{y -  yl) +  Aa{e~â ) ,{z -  z*) >  0, V feasible (x , y , z). (86)

We now turn our attention to numerical testing of Algorithm 4.4.1 and the linear 

programming formulation (78).

4.5 Application and Num erical Testing

We wish to determine whether x-component suppression or x-norm reduction of an 

observed linear system A x = b+p  which is a corruption of a true system A x  =  b, leads 

to an improved approximation of the true system. One can relate this to a machine 

learning framework by treating the observed system as a training set, and the true 

system as a testing set [75]. The linear systems used are based upon ideas related to 

signal processing [69, 155] and more specifically to an example in [2, Equation (8)].

We consider the following true signal g(t) : [0,1] — > R:

3

g(t) = ^ 2 x j£ - â ,  t  6 [0,1], a =  [0 4 7]', x  =  [0.5 2.0 -  1.5]'. (87)
i= i

We assume that the true signal g(t) cannot be sampled precisely, but that the 

following observed signal can be sampled:
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g(t) = (g(t) +  error), sampled at times : U =  i A  t, A t  = 0.04, i =  0 ,1 ,. . .  , 25.

(88)

We further assume tha t we do not know the true signal g(t) (87), and we attempt 

to model it as:

10

g(t) = ^ 2 Xje~ait, t  6 [0,1], a = [0 4 7 0.1 2 3 3.9 4.1 6.9 7.1]'. (89)
j=i

The parameter values a in (89) were chosen as in [2, Equation (8)].

The problem now is to compute the coefficients xj, j  = 1 , . . .  ,10, of g(t) (89) so 

that we can adequately recover g(t), given only the noisy data g(U) (88). Notice that 

by substituting the following coefficient vector x* into (89), g(t) = g(t):

x* :=  [0.5 2.0 -  1.5 0 0 0 0 0 0 0]'. (90)

Thus the true linear system (testing set) Ax =  b is then given by:

Ai j  =  e~a bi =  g(U), i = 0 ,. . .  , 25, j  =  1 , . . .  10, (91)

and is solved exactly by x * of (90).

The observed linear system (training set) Ax =  6 +  p  is then given by:

Aij =  £ -* * ,  b i = g { t i ) ,

Pi  =  random number w ith mean =  0 & standard deviation = 1 , J (92) 

i =  0 , . . .  , 25, j  = 1 , . . .  ,10.
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We will refer to a solution of problem (76), with b of (76) replaced by 6+p, computed 

by the Algorithm 4.4.1 as a PLNA solution. Similarly, we shall refer to a solution of 

problem (77), with b replaced by b + p as an LLNA solution. We note here that for 

all experiments, the value of a  in the negative exponential of (76) is 5.0. Scalars are 

considered zero if they are in the interval [—le — 8, le  — 8]. The components of the 

initial starting point x° for Algorithm 4.4.1 were sampled from a normal distribution 

with mean =  0 and standard deviation =  1, then the initial point was fixed for all runs 

as:

x° = [-0.5077 0.8853 -  0.2481 -  0.7262 -  0.4450

-0.6129 -0.2091 0.5621 -1.0639 0.3516]'. (93)

We now focus our attention on four approaches and compare solutions obtained 

by the PLNA and LLNA methods with solutions obtained by least squares and by a 

combinatorial search.

4.5.1 Comparison of PLNA, LLNA and Least Squares

We compute solutions of the observed system A x = b+p, where A , b, and p are defined 

in (92), by PLNA, LLNA and by least squares. These solutions are then evaluated by 

the observed system (training set) residual ||A x  — b — p||i and the true system (testing 

set) residual \\Ax — b\\i and graphically comparing the recovered signal g(t) (89) to the 

true signal g(t) (87).

The PLNA solution x(A) of Ax  =  b + p, for a given A is computed by Algorithm

4.4.1 solving the concave minimization problem (83) with b replaced by b+p  as follows:
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min
(r,yve)e«"+m+n

(1 — A)e'y +  Ae'(e — e “*)
—y < Ax — b — p < y, 

—z < x  < z
►, A6 [ 0 , 1).

(94)

The LLNA solution x(A) of Ax =  b +  p, for a given A is computed by solving the 

linear program (78) with b replaced by b -+- p as follows:

mm < (1 — \)e 'y  + Ae’z
(r ,V v S )6 ff,+ m + n

-y < A x — b — p < y, 

—z < X  < z
>, A 6 [0,1). (95)

The least squares solution is a minimizer of ||Ax — b — p ||2 and is a solution to the 

normal equations:

A 1 A x  =  A'(b+p) . (96)

Although the 26 x 10 matrix A  defined by (92) has rank 10, the matrix A'A  is 

numerically singular with smallest eigenvalue less than 10-14. Thus we resort to a 

singular value decomposition approach for solving (96).

We determine an approximate solution x(ls) to (96) by the following method which 

utilizes the singular value decomposition [153]. Ordinary MATLAB [110] commands 

such as x =  A\(b + p) for our perturbed system A x = b + p give an x with an error 

||a: — x*||2 =  2.1379e +  08 compared to ||x -  x*||2 =  2.6675e +  03 given by the method 

described below, where x* is defined by (90) and the perturbation vector p components 

are sampled from a normal distribution with mean =  0, standard deviation =  1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

A lgorithm  4.5.1 L east Squares v ia  S ingu lar V alue D ecom position. Let A  6

i f 7154” with m > n .  Let t  be a small positive tolerance.

1. Determine the economy singular value decomposition of A [110, svd(A,0)J, U G 

R T xn, S  G # nxn,V  € fT xn :

A = U SV ', (97)

where U'U =  V ’V  =  In (the n x n  identity matrix), and S  = diag{a\,. . .  , crn), Oi > 

0i+i >  0, i =  1 , . . .  , n — 1.

2. Determine the index r such that <Ji>r for i  =  1 , . . .  , r.

3. Set U € i f nxr to be the first r columns o f U , V €  RJlxr to be the first r columns 

o fV  and S  € iT xr to be diag(cr\,. . .  ,oy).

4. Compute x(ls) =  V S ~ lU'(b +  p), which is a solution to:

min jrx'x, T  :=  {x \ V 'x  = S~ lU'(b + p) } «  {x \ A  Ax  =  A'(b +  p)}. (98)
x€T 2

For all runs r  was fixed at 0.0001, which for our specific matrix A  defined by (92), 

led to r  =  6 in the above algorithm. That is we discarded the last 4 columns of U and 

V.

The PLNA problem (94) and the LLNA problem (95) were both solved for values 

of A e  {0,0.01,0.05,0.10,0.20,... , 0.90,0.95,0.99,1.0}. Figures 21 - 23 display results 

averaged over 5 noise vectors p G R rn with elements sampled from a normal distribution 

with mean =  0, standard deviation =  1. The average ||p||i =  21.1008 and ||6||i =  

20.1777.
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In Figure 21 we plot averages of ||Ax(A) — b — p\\i for the various values of A, 

measuring how “well” the PLNA and LLNA solutions solve the corrupted observed 

linear system. Also plotted is the average of ||Ax(Zs) — b — p||i, measuring how “well” 

the least squares solution (Algorithm 4.5.1) solves the observed system A x = b+p.  As 

can be proved, the PLNA and LLNA errors are a non-decreasing functions of A and 

are worse than the corresponding least squares error. However on the true system the 

results are reversed. See next paragraph.

In Figure 22 we plot averages of ||An(A) — 6||i for both PLNA and LLNA for various 

values of A, measuring how “well” the PLNA and LLNA solutions solve the true linear 

system. Also plotted is the average of ||Ar(Zs) — h||i, measuring how “well” the least 

squares solution (Algorithm 4.5.1) solves A x  =  6.

In Figure 23 we compare averages of 1-norm distances from the true solution x* 

(90) to the PLNA and LLNA solutions x(A) and the averages of 1-norm distances from 

x* to the least squares solution x{ls). Recall that the true solution x* is such that 

Ax* =  b. Note that for A > 0.01, the PLNA and LLNA distances sure smaller than the 

least squares distance. For A w l ,  x(A) «  0 and even though ||x(A) — x*||i is small, 

this solution is poor from a signal recovery point of view since the zero vector gives 

the worst discrepancy between the true signal and the recovered signal at 26 discrete 

points (see Figure 22).

In Figure 24 we plot the true signal, the observed signal and the signal recovered by 

solving, for one noise vector p, PLNA (94) with A =  0.30 and LLNA (95) for A =  0.80. 

Figure 25 displays the true signal, the observed signal and signal recovered for the 

same problem by least squares (96) solved by Algorithm 4.5.1. This is probably the 

most significant result. The signal recovered by both PLNA and LLNA is considerably
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LLNA

PLNA

Least Squares

0.90.7 0.80.1 0.2 0.3 0.4
Suppression Parameter X

0.5

Figure 21: Average ||Ar(A) — 6 — p||i versus A, where x(A) is a PLNA solution (94) in 
the curve marked PLNA and is an LLNA solution of (95) for the curve marked LLNA, 
compared with average ||Ax(£s)—6—p||i, where x(ls) is the least squares solution (96) by 
Algorithm 4.5.1. The results are averaged over 5 noise vectors p. The PLNA and LLNA 
solutions were computed for values of A =  0,0.01,0.05,0.10,0.20,... , 0.90,0.95,0.99,1.
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Figure 22: Average ||Ax(A) — 6||i versus A, where x(A) is a PLNA solution (94) 
in the curve marked PLNA and is an LLNA solution of (95) for the curve marked 
LLNA, compared with the average ||Ar(ls) — 6||i, where x(ls) is the least squares 
solution (96) solved by Algorithm 4.5.1. These results are averaged over 5 noise 
vectors p. The PLNA and LLNA solutions were computed for values of A =  
0,0.01,0.05,0.10,0.20,..., 0.90,0.95,0.99,1. Numbers above/below the curves labelled 
“PLNA” and “LLNA” at various values of A indicate the average number of nonzero 
elements in x(A) and when followed by a second number, that number denotes ||x(A)||i.
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Least Squares.«10

X
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©  10

I10 PLNA

LLNA

.010’
0.8 10.6 0.7 0.90.3 0.50 0.1 0.2 0.4
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Figure 23: Average ||x(A) — x*||i versus A, where x(A) is a PLNA solution (94) in 
the curve marked PLNA and is an LLNA solution of (95) for the curve marked 
LLNA, compared with the average ||x(Zs) — x*||i, where x(ls) is the least squares 
solution (96) solved by Algorithm 4.5.1. The true solution x* (90) is such that 
Ax* =  b. The PLNA and LLNA solutions were computed for values of A =  
0,0.01,0.05,0.10,0.20,... , 0.90,0.95,0.99,1.
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closer to the the true signal than that obtained by the least squares solution.

4.5.2 Comparison of PLNA, LLNA and Combinatorial Search

In this section, we reformulate our PLNA problem so that the solution x(A) has a fixed 

number of nonzero elements, for fee (1 ,2 ,.. .  , n}:

(x(A),y(A),z(A)) €
r

—y < Ax  — b — p < y,

arg min < (1 — A )e'y +  Ae'(e — e-Q2) —z < x  < z,
(i,yrs)6/2n+m+n

w #  of nonzero elements of x  =  fe

A € [0,1). (99)

We also formulate the LLNA similarly as follows:

(x(A),y(A),z(A)) €
t

—y < A x — b — p < y,

arg min < (1 — A )e'y + A e'z —z < x < z ,
(x,y,z)€ftn+TO+n

< #  of nonzero elements of x  = fe

A 6 [0,1). (100)

Similarly, for fe € { 1, 2 ,. . .  , n},  the combinatorial search solution xc is obtained by 

solving:

x c E arg min {|| A x  — 6 — p||i | #  of nonzero elements of x  =  fe }. (101)
x  €R”
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0.5

-0.5

0.7 0.8 0.90.60.50.2 0.3 0.40.1

Figure 24: Dashed curves are the recovered signal g(t) with coefficient vector a;(A) 
determined by (94) with A =  0.3 and ||Ar(A) — 6||i =  4.7410 for PLNA, and by (95) 
with A =  0.8 and || Ar(A) -  6||i =  4.7076 for LLNA. Solid curve is the true signal g{t). 
Circles are the observed signal g{U) sampled at discrete times and the dashed curves 
are the recovered signals.
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2.5

O
Observed

1.5

Least Squares

v©
Actual

0.5

-0.5

0.8 0.90.6 0.70.50.2 0.3 0.40.1

Figure 25: Dashed curve is the recovered signal g(t) with coefficient vector x(ls) deter­
mined by least squares solution (96) solved by Algorithm 4.5.1. Note: ||Ar(/s) — 6||i =  
8.9733. Solid curve is the true signal g(t). Circles are the observed signal gfe)  sampled 
at discrete times and the dashed curves are the recovered signals.
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Notice that xc is determined by enumerating all subsets of size A: of a set of n elements, 

or (“) subsets. This is a rather expensive procedure computationally requiring two 

orders of magnitude more time than PLNA and LLNA.

Remark 4.5.2 The following observation regarding problems (99) and (100) is due to 

R. R. Meyer [114]- We assume that problems (99) and (100) are well-posed (i.e. have 

optimal solutions). Alternatively, we could modify problems (99) and (100) requiring 

the number of nonzeros in the solution x  to be less than or equal to k, instead of 

requiring the number of nonzeros to be equal to k. For instance, consider the following 

example:

A  =  1, 6 =  p =  0, k =  1.

The linear system is simply x  =  0 and a solution with k =  1 nonzeros with smallest 

residual does not exist.

Figure 26 displays results averaged over 5 noise vectors p € i f 71 with elements 

sampled from a normal distribution with mean =  0, standard deviation =  1 (average 

Iblli =  21.1008, ||6||i =  20.1777). Plotted are averages of ||Ar(A) — b — p||i and 

\\Axc — b — p\\i for each k measuring how “well” the PLNA, LLNA and combinatorial 

solutions solve the observed system. Also plotted are averages of ||Ar(A) — 6||i and 

||A rc — 6||i for each k , measuring how “well” the solutions solve the true system.

Figure 27 displays the average 1-norm distance between x* of (90) and the solutions 

obtained by PLNA, LLNA and combinatorial search. The averages are over 5 noise 

vectors p.
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Figure 26: Comparison of PLNA (99) and LLNA (100) with combinatorial search (101). 
Average ||Ax(A) — b — p ||i is ’x ’ for PLNA and ’o’ for LLNA. Average ||Axc — b — p||i 
is ’o ’. Average ||Ar(A) — 6||i is ’□ ’ for PLNA and A for LLNA. Average ||A xc — 6||i is 
’-j-’ for combinatorial solution x c.
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Figure 27: Comparison of PLNA (99) and LLNA (100) with combinatorial search (101). 
Average ||xc — x*||i is ’x \  Average ||x(A) — x*||i is for PLNA and A  for LLNA. 
The true solution x* is such that Ax* =  b.
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Figure 28, which for convenience duplicates Figure 24, displays the true signal, the 

observed signal and the signal recovered by solving PLNA (94) for the value of A =  0.30 

and the signal recovered by LLNA (95) for A =  0.8. Figure 29 displays the true signal, 

the observed signal and signal recovered by combinatorial search solution x c of (101) 

for k  =  2.

4.5.3 Observations

We make the following observations with respect to the comparison between the PLNA, 

LLNA solutions and least squares solutions.

1. For all values of A > 0.05 tested, the average observed system (training set) 

residual ||Ar(Zs) — b — p||i was strictly less than the average (|Ar(A) — b — p||i 

for both PLNA and LLNA. The least squares Algorithm 4.5.1 for solving (96) 

produced “better” solutions to the observed system A x = b + p. See Figure 21. 

However.........

2. For values of A € [0.01,0.90] tested, the PLNA average true system (testing set) 

residual ||Ar(A) -  6||i was strictly less than the average ||Ax(Zs) — b\]i indicating 

that PLNA produced “better” solutions to the true system Ax  =  b in compar­

ison with least squares. For values of A 6 [0.01,0.80] tested, the average true 

system residual with solutions determined by LLNA was also strictly less than 

the corresponding least squares true system residuals. See Figure 22. PLNA 

with A =  0.3 and an average of 2.2 nonzero terms achieved an error reduction 

of 38.85% over the corresponding error obtained by the least squares solution.
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2.5

1.5

•' : Actual

PLNA

LLNA

0.5

-0.5

0.6 0.8 0.90.5 0.70.40.2 0.30.1

Figure 28: Dashed curves are the recovered signal g(t) with coefficient vector x(A) 
determined by (94) with A =  0.3 and ||Ax(A) — 6||i =  4.7410 for PLNA, and by (95) 
with A =  0.8 and ||Ax(A) -  6||i =  4.7076 for LLNA. Solid curve is the true signal g(t). 
Circles are the observed signal g(U) sampled at discrete times and the dashed curves 
are the recovered signals.
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Combinatorial

Actual

0.5

- 0.5

0.90.6 0.80.5 0.70.3 0.40.1 0.2

Figure 29: Dashed curve is the recovered signal g(t) with coefficient vector xc deter­
mined by combinatorial search with k =  2 (101). Note: \\Axc — 6||i =  6.7826. Solid 
curve is the true signal g(t). Circles are the observed signal g(U) sampled at discrete 
times and the dashed curves are the recovered signals.
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LLNA with A =  0.8 produced an average 1-norm true system residual that was 

52.98% less than the least squares residual.

3. For values of A > 0.1 tested, the average ||x(A) —x*||i, determined by both PLNA 

and LLNA, was 2 orders of magnitude less than the average ||x(Zs) — x*||. Hence 

the PLNA and LLNA solutions were “closer” to recovering the true signal g(t)

(87). See Figure 23.

4. Figures 24 and 25, show the most significant comparison between PLNA, LLNA 

and least squares: A much more accurate recovery of the true signal by both 

PLNA and LLNA than by least squares.

We note the following with respect to the comparison between the PLNA, LLNA 

solutions and the solutions obtained by combinatorial search.

1. For k  =  3 ,4 ,5 ,6 ,7 , the average PLNA ||Ax(A) -  6||i was strictly less than the 

average \\Axc — 6||i. For k =  1,2, the average PLNA ||Ax(A) — 6||i was less than 

or equal to 1.634 times the average ||Axc — 6||i- For k =  3,5,6,7, the average 

LLNA ||Ax(A) — 6||i was strictly less than the corresponding average true system 

residual with the combinatorial solutions. For k =  1,2,4, the average LLNA 

||Ax(A) — 6||i was less than or equal to 1.114 times the corresponding average 

||Axc — 6||. See Figure 26.

2. For k > 3, the average ||x(A) — x*||i, for both PLNA and LLNA, was strictly 

less than the average ||xc — x*||i by orders of magnitude. For k =  0,1,2, average 

||x(A) — x*||i was less than or equal to average ||xc — x*||i- See Figure 27.
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3. The minimum over k =  1 , . . .  , 7 of the true system 1-norm residual of 5.3867

occurs for k — 2 with the solution obtained by combinatorial search. The true 

system residual for PLNA with k  =  2 is 5.7330 and the true system residual for 

LLNA is 6.0022. We note that when computing the PLNA and LLNA solutions 

for k =  2, the first value of A found (by a bisection search) such that the solu­

tion has 2 nonzero elements was chosen. This fact accounts for the discrepancy 

between the true system residuals in Figure 26 and Figure 22.

4. Figures 28 and 29 show recovery of the true signal by both PLNA and LLNA

which is as good or even better than the recovered signal by a lengthy combina­

torial search.

The time needed by each approach to compute a solution was determined by per­

forming a single run on a Sun SparcStation 20 with 96 megabytes of memory running 

MATLAB 5.1, using the commands “tic” and “toe” [110]. All linear programs were 

solved with CPLEX [48] interfaced with MATLAB. Solving the PLNA problem with 

A =  0.5 with initial point (93) and a  =  5 took 0.4603 seconds. Solving the LLNA 

problem with A =  0.5 took 0.1978 seconds. Determining the least squares solution by 

Algorithm 4.5.1 with r  =  0.0001 took 0.0224 seconds. Determining the solution by 

combinatorial search with k — 3 took 13.2008 seconds.

Solutions computed by PLNA and LLNA were at most superior or at least com­

parable to those obtained by combinatorial search (101), yet needing two orders of 

magnitude less time to compute.

In this chapter, we have proposed a  theoretically justifiable fast finite algorithm has 

been proposed for solving linear systems corrupted by noise or errors in measurement.
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The parsimonious approach (PLNA) attempts to set to zero as many components of the 

solution vector as possible while minimizing the residual error of the corrupted system, 

whereas the least norm approach (LLNA) minimizes the norm of the solution as well 

as the residual. Numerical evidence indicates that both these two approaches lead to 

solutions with many zero components, and that such solutions may be closer by orders 

of magnitude to the solution of the underlying uncorrupted system than other solutions 

of the corrupted system obtained by either least squares or even by a time-consuming 

combinatorial search for a solution with a minimal number of nonzero components. It is 

interesting to note that parametricly minimizing the norm of the solution leads also to 

suppression of its components, and conversely parametrically suppressing components 

of the solution also leads to a solution with a reduced norm. Most importantly, PLNA 

and LLNA recover a much more accurate signal than that obtained by least squares 

and much faster than that obtained by a lengthy combinatorial search.
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Conclusions

This thesis has investigated the application of mathematical programming methods 

to problems arising in machine learning. Methods for solving these machine learning 

problems are effective data mining tools for use in the KDD process.

5.1 M achine Learning: Supervised Learning

We have described a novel approach to the problem of feature selection by introducing 

a parametric objective function in a mathematical program that attempts to separate 

data by utilizing as few features as possible. This can also be achieved by finding a 

minimum support solution [106] to the robust linear program (7).

We have also presented a new and simple realization of the complexity-reducing 

Optimal Brain Damage procedure that consists of solving two linear programs (Al­

gorithm 2.1.6). Mathematical programming approaches addressing the classification 

task are the Feature Selection Sigmoid (FSS) (12), Feature Selection Concave (FSV)

(13) and Feature Selection Bilinear (FSB) (16) problems. These techniques in addition 

to the Optimal Brain Damage (OBD) Algorithm 2.1.6, produce classifiers with im­

proved generalization ability when applied to the Wisconsin Prognostic Breast Cancer 

classification task, while reducing the number of problem features used. All but the
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OBD Algorithm 2.1.6 either improve generalization or produce classifiers with “equiv­

alent” performance on the Ionosphere classification task, while utilizing a fraction of 

the original problem features. The FSS problem (12) is solved by iterative quadratic 

programming [65, 74, 67]. The FSV problem (13) is solved by solving a sequence of 

linear programs via the Successive Linearization Algorithm 2.1.3, which is a general 

tool for solving problems with a concave objective over a polyhedral region [103]. The 

FSV problem (16) is solved by [9, Algorithm 2.1].

Classifiers produced by the support vector machine [161, 33] (SVM) approach were 

presented. Minimizing an upper bound on generalization performance [161, 33] mo­

tivates the SVM formulation which attempts to separate the training data A  and B  

with a maximum margin. When the margin of separation is measured in the oo-norm, 

the 1-norm appears as a penalty on the weight vector w € if* in the SVM objective 

yielding a linear program (35). If the margin is measured in the 1-norm, the oo-norm 

appears as a penalty on the weight vector again yielding a linear program (34). When 

the margin is measured in the 2-norm, one usually appends the 2-norm squared of w in 

the SVM objective giving rise to the minimization of a convex quadratic function over a 

polyhedral region (36). The SVM classifiers were experimentally evaluated along with 

classifiers obtained by solving the FSV problem (13) and the RLP problem (7), which 

does not explicitly force feature suppression. Classifiers obtained by solving FSV (13) 

and SVM 1-norm (35) exhibit feature suppression and have comparable generalization 

performance on six pubicly available real world data sets tested. The classifiers ob­

tained by solving the FSV problem (13) suppressed more problem features than the 

corresponding SVM 1-norm classifiers (35).

Another class of problems investigated were minimum support solutions of linear
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equalities. This was motivated by machine learning regression problems that can be 

formulated as computing a solution to a linear system of equation A x = b, where 

the vector b is corrupted by noise and a minimum support solution x  is likely to 

lead to improved generalization. The PLNA approach (76) attempts to set to zero 

as many components of the solution vector as possible while minimizing the residual 

error of the linear system. The least norm approach, LLNA (77), minimizes the norm 

of the solution as well as the residual. Numerical evidence indicates that both of these 

approaches lead to solutions with many zero components, and that such solutions may 

be closer by orders of magnitude to the solution of the underlying uncorrupted system 

than other solutions of the corrupted system obtained by either least squares or even by 

a time-consuming combinatorial search. It is interesting to note that parametrically 

minimizing the 1-norm of the solution leads also to suppression of its components, 

and conversely parametrically suppressing components of the solution also leads to 

a solution with reduced norm. Most importantly, PLNA and LLNA recover a much 

more accurate signal than that obtained by least squares and much faster than that 

obtained by a lengthy combinatorial search on the example in Section 4.5.2. The 

continuous version of the PLNA problem consists of minimizing a concave function 

over a polyhedral set and is efficiently solved via the Successive Linearization Algorithm 

4.4.1, simila r to the one used to solve the FSV problem (13).

5.2 Machine Learning: Unsupervised Learning

We have described an approach for assigning m  data points in if* into k  clusters 

based on a simple concave minimization model. Although a global solution to the
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problem cannot be guaranteed, the finite and simple Ar-Median Algorithm 3.1.3 is able 

to compute useful clustering solutions when initialized using a random reset strategy

[55]. The utility of the fc-Median Algorithm 3.1.3 and fc-Mean Algorithm 3.1.4 as data 

mining tools were evaluated over moderately sized medical and other datasets. Both 

algorithms were able to identify three populations in both the Wisconsin Prognostic 

Breast Cancer Database (WPBC) and the SEER database with distinct survival char­

acteristics. The Ar-Median Algorithm 3.1.3 is preferable to the A;-Mean Algorithm 3.1.4 

when attempting to cluster a dataset containing numerous outliers as the computa­

tion of the median is more robust than that of the mean. We have also shown finite 

termination of the Ar-Median Algorithm 3.1.3 to a locally optimal solution.

A new clustering algorithm based on minimizing the sum of squared distances 

of points to a closest cluster plane instead of the conventional closest cluster center 

was introduced. The Ar-Plane Algorithm 3.2.1 computes cluster planes by solving an 

eigenvalue problem for each of the Ar clusters at each iteration. The utility of this 

scheme as a data mining  tool was exhibited on the WPBC and SEER datasets as 

clusters with distinct survival characteristics were identified. Other advantages to 

having the Ar-Plane algorithm in the data miner’s toolbox include the ability to cluster 

points that fall naturally into a subspace of the original data space and hence may be 

better approximated by a plane.

5.3 M assive D ataset Issues

The LPC Algorithm 2.3.1 is significant in its own right as a linear programming de­

composition algorithm, enabling the computation of solutions to linear programs with
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massive constraints. The LPC Algorithm was tested on an expanded version of the 

WOODW dual problem from the NETLIB repository [1]. It was motivated and further 

tested on the classification task over massive datasets that may not fit into resident 

machine memory. The algorithm uses support vector ideas by keeping only essential 

data points needed for determining a separating plane. The algorithm deals with small 

chunks of data at a time and is guaranteed to terminate in a finite number of steps at 

an optimal solution when all subproblems are solvable. The algorithm can be easily 

parallelized by splitting the data among many processors and sharing only support vec­

tors among them. Extremely large datasets could effectively be processed on a network 

of PCs or workstations.

The LPC Algorithm 2.3.1 can be used to solve the linear programs of the Successive 

Linearization Algorithm 2.1.3 and Algorithm 4.4.1. Thus the FSV (13) and PLNA (76) 

can be effectively addressed over massive datasets.

Issues still remaining include initialization and local versus global optimality of 

the concave minimization problems and the bilinear problems, applied utility of using 

different norms to measure the margin of separation in the support vector machine 

formulation and a theoretical link between minimizing the number of nonzero elements 

of a solution versus minimizing the norm of the solution.

Useful solutions were computed via the Successive Linearization Algorithms 2.1.3 

and 4.4.1 and the A>Median Algorithm 3.1.3 with random initializations. Knowledge 

about the particular problem domain in which these algorithms are applied may lead to 

a better initialization procedure. We note that issues regarding clustering initialization 

are provided in [18, 59].
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Analysis of the classifiers computed by the support vector machine approach uti­

lizing different norms to measure the margin of separation is needed. If knowledge of 

the problem domain is available, the results of this analysis could aid a user in a priori 

choosing an “appropriate” norm for their particular classification problem. On very 

massive classification tasks, the user may not have the luxury of “evaluating” classifiers 

computed using different norms.

In addition a theoretical link between the minimization of the number of nonzero 

elements of a vector and the norm of the vector is needed (see Sections 2.1.2,2.2.1 and 

4.2). Initial work has been done [114].

In this work we have formulated machine learning tasks as mathematical programs 

and investigated algorithms which compute solutions to these problems. We have ex­

hibited the utility of these approaches over real-wold datasets and propose the addition 

of these methods as data mining tools to aid in extracting useful “knowledge” from 

possibly datasets. We have further enabled the linear-programming-based methods to 

efficiently be applied to massive datasets often occurring in many KDD applications.
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