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interact with biopolymers), and molecul ar dynamics 
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The Editors are also eager to publish Rapid Com­
munications, which should be brief and of suffi cient 
interest or urgency to warrant rapid publication. Such 
publication is not a bar to publication of a fuller 
account of the work at a later date. 

Peptide Science and Nucleic Acid Sciences are also 

published under the aegis of Biopolymers. They are 
designed to provide a forum for large complex re­
search projects, and to publish articles that correlate 
research results between the subdisciplines of the 
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Nucleic Acid Sciences will be devoted to unifi ed 
themes covering the most timely subjects in their 
research areas. 

Using the aims and scope described above, the 
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Abstract: Overexpression of cloned or synthetic genes in Escherichia coli often results in the 
formation of insoluble protein inclusion bodies. Within the last decade, specific methods and 
strategies have been developed for preparing active recombinant proteins from these inclusion 
bodies. Usually, the inclusion bodies can be separated easily from other cell components by 
centrifugation, solubilized by denaturants such as guanidine hydrochloride (Gdn-HCl) or urea, and 
then renatured through a refolding process such as dilution or dialysis. Recent improvements in 
renaturation procedures have included the inhibition of aggregation during refolding by application 
of low molecular weight additives and matrix-bound renaturation. These methods have made it 
possible to obtain high yields of biologically active proteins by taking into account process 
parameters such as protein concentration, redox conditions, temperature, pH, and ionic 
strength. © 1999 John Wiley & Sons, Inc. Biopoly 51: 297- 307, 1999 

Keywords: refolding; inclusion body; renaturation; recombinant protein; high-level expression; 
therapeutic protein 

INTRODUCTION 

Major advances in genetic engineering have resulted 
in the development of bacterial expression systems, 
particularly those in Escherichia coli, capable of pro­
ducing large amounts of proteins from cloned 
genes. 1

•
2 The supply of many valuable proteins that 

have potential clinical or industrial use, such as hor­
mones, cytokines, and enzymes, is often limited by 
their low natural availability. Initially, this approach 

Correspondence to: Satoru Misawa; email : s.misawa@j­
energy.co.jp 
Biopolymers (Peptide Science), Vol. 51 , 297-307 ( 1999) 

© 1999 John Wiley & Sons, Inc. 

employing E. coli seemed to guarantee an unlimited 
supply of recombinant proteins. For example, recom­
binant DNA technology has faci litated the efficient 
production of therapeutic-grade proteins such as in­
sulin ,3 growth hormone (GH),4 and interferon (IFN).5 

However, high-level expression of recombinant pro­
teins in E. coli often results in the formation of insol­
uble and inactive aggregates known as inclusion bod­
ies. 6·7 To obtain biologically active recombinant pro­
teins from inclusion bodies, it is necessary to develop 

CCC 0006-3525/99/040297- l I 

297 
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298 Misawa and Kumagai 

a simple and efficient procedure for renaturation of 
these proteins. 8

•
9 

The formation of inclusion bodies offers several 
advantages for the production of recombinant pro­
teins. These proteins may be unstable in the cyto­
plasm of E. coli due to proteolysis and may be toxic 
to the host cell in the native conformation. Under 
appropriate conditions, the recombinant protein de­
posited in inclusion bodies amounts to about 50% or 
more of the total cellular protein. Because inclusion 
bodies have a relatively high density, 10 they can be 
isolated from the cellular proteins by centrifugation, 
and the purity of the resulting preparation may reach 
90% under optimal conditions. Therefore, the produc­
tion of many human therapeutic proteins as inclusion 
bodies is a cost-effective downstream process.2· 11

•
12 

Recent advances in procedures for refolding inclusion 
body proteins have made it possible to obtain large 
amounts of authentic human proteins for therapeutic 
use. This review summarizes the improvements that 
have been made in the in vitro refolding of therapeu­
tically relevant proteins containing disulfide bonds 

after production at high yield as inclusion bodies in 
E. coli. 

HIGH-LEVEL EXPRESSION OF 
RECOMBINANT PROTEINS IN E. COLI 

The expression of cloned genes in E. coli for the 
production of recombinant proteins has provided a 
valuable system for developing therapeutic proteins 
such as human insulin and human GH. Many success­
ful E. coli expression systems have been described 
and are available from a variety of academic and 
commercial sources. Therefore, E. coli expression 
systems are suitable for the industrial-scale produc­
tion of recombinant proteins. A number of criteria 
must be considered when optimizing conditions for 
the high-level expression of a recombinant protein. 
These include the stability of the mRNA, 13 the effi­
ciency of transcription directed from a strong pro­
moter, 14 the efficiency of protein synthesis (transla­
tion), 15 the formation of inclusion bodies, and the 

Table I High-Level Expression of Recombinant Proteins for Therapeutic Use in E. colia 

Level of Level of Inclusion 
Mode of Expression Production Body 

Recombinant Protein Expression (% of Total Protein) (mg/L) Promoter Formation Reference 

hEGF Fusion NE 60 trp + 62 
Human insulin Fusion 20 NE lac + 3 
hIFN-/3 Direct NE 20 trp 63 
hIFN--y Direct 40 NE trp + 64 
Human prourokinase Direct 6 NE trp + 65 
hGH Direct NE 169 trp + 66 
hGH Secretion 14 25/Asso phoA 67 
hIGF-1 Fusion 20 1240 trp + 68 
hIGF-1 Secretion 30 8500 phoA + 69 
ht-PA Direct 10 460 APL + 45,47 
ht-PA Secretion NE 0.18 araB 70 
hTIMP-1 Direct 15 NE T7 + 51 
hTIMP-2 Fusion 5 NE T7 + 57 
Human calcitonin Fusion NE 478 lac + 71 
hG-CSF derivative Direct 15 2800 trp + 72 
hbFGF derivative Direct NE 1700 T7 73 
hIL-2 Direct 20 700 trp + 74 
hIL-6 Direct 20 NE trp + 75 
Human glucagon Fusion 34.5 42 trp + 76 
Hirudin Fusion 18 200 trp + 77 
Hirudin Secretion NE 1000 trp 78 
Arginine deiminase Direct 20 400 tac + 25 
Humanized F(ab'h Secretion NE 2000 phoA 79 
Chimeric Fab L-chain Secretion NE 2880 tac + 80 

a hEGF, human epidermal growth factor; hIFN, human interferon; hGH, human growth hormone; hIGF-1, human insulin-like growth 
factor-I ; ht-PA, human tissue-type plasminogen activator; hTIMP, human tissue inhibitor of metalloproteinases; hG-CSF, human granulocyte 
colony-stimulating factor; hbFGF, human basic fibroblast growth factor; hlL, human interleukin. NE, not estimated. 
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,,, 
FIGURE I Electron micrograph of inclusion bodies con­
taining recombinant porcine muscle adenylate kinase ex­
pressed in£. coli. The cells were harvested and washed with 
I% NaCl and stained with I % uranyl acetate. The dense 
material shown in the elongated £. coli is the inclusion 
bodies. 

susceptibility of the product to proteolysis. 16
• 
17 All of 

these criteria must be considered for each product 
individually. Representative examples of the high­
level expression of recombinant proteins for therapeu­
tic use are presented in Table I. In the majority of 
cases, the expressed proteins are in an insoluble form. 
A number of human proteins expressed in E. coli 
directly, e.g., GH, IFN--y, interleukin-2 (IL-2), 
prourokinase, and tissue-type plasminogen activator 
(t-PA), or as fusion proteins, e.g., proinsulin, calcito­
nin, and insulin-like growth factor-I (IGF-1), have 
been shown to exist as aggregates or inclusion bodies 
(see Table I for references). 

ISOLATION AND SOLUBILIZATION OF 
INCLUSION BODIES 

Inclusion bodies obtained by cytosolic overexpression 
of a recombinant protein are large, spherical particles. 

Refolding of Therapeutic Proteins 299 

Because of their refractile character, they can be ob­
served directly in the living host cell by phase-con­
trast microscopy. We have shown that porcine muscle 
adenylate kinase is expressed in E. coli as inclusion 
bodies at high levels up to 40% of total cellular 
protein (Figure 1). 18 Because inclusion bodies are 
characterized by a relatively high specific density, 
they can be harvested after cell lysis by centrifugation 
at moderate rotor speeds. 19 To purify the inclusion 
bodies from their associated impurities, they can be 
washed with detergents such as Triton X-100, deoxy­
cholate, or a low molar concentration of cha­
otroph. 2·20 However, it should be kept in mind that an 
excessively high concentration of urea or Gdn-HCl 
will lead to solubilization of the inclusion bodies 
themselves. Table II shows several examples of dif­
ferent washing solutions used for the purification of 
inclusion bodies. 11 On average, the purity of the in­
clusion body preparation may reach 90% under opti­
mal conditions. 

Next, the purified inclusion bodies must be solu­
bilized by strong denaturants such as 6M Gdn-HCI or 
8M urea. For this purpose, Gdn-HCI is usually pref­
erable to urea for two reasons.8 First, Gdn-HCl is a 
rather strong chaotroph, which may allow solubiliza­
tion of extremely aggregated inclusion bodies that are 
resistant to solubilization by urea. Second, urea solu­
tions may contain isocyanate, leading to carbamyla­
tion of free amino groups of the polypeptide, espe­
cially upon long-term incubation at alkaline pH val­
ues. 2 1 In the case of cysteine-containing proteins, the 
isolated inclusion bodies usually contain non-native 
intramolecular and intermolecular disulfide bonds,22 

which reduce the solubility of the inclusion bodies in 
the absence of reducing agents such as dithiothreitol 
(OTT), dithioerythritol, glutathione (GSH), cysteine, 
cystamine, or /3-mercaptoethanol. Addition of these 
thiol reagents in combination with chaotrophs allows 
reduction of the disulfide bonds by thiol-disulfide 

Table II Purification of Inclusion Bodies by Different Washing Solutionsa 

Recombinant Protein Mode of Expression Washing Solution Reference 

Human prourokinase Direct 0.1 % Triton X-100 65 
ht-PA Direct SM urea, 2% Triton X-100 45 
ht-PA Direct 1% Triton X-100, 1% /3-DPG 46 
hM-CSF Direct 2% Triton X-100 81 
Arginine deiminase Direct 4% Triton X-100 25 
hlGF-1 Fusion 0.5% Sarcosyl 68 
Bovine GH Direct 2% deoxycholate 82 
Prochymosin Direct 0.5% Triton X-100 83 
HRP Direct 2M urea 84 

a ht-PA, human tissue-type plasminogen activator; hM-CSF, human macrophage colony-stimulating factor; hlGF-1, human insulin-like 
growth factor-I; GH, growth hormone; HRP, horseradish peroxidase C. fl-DPG, octyl-fl-D-thioglucopyranoside. 
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FIGURE 2 Effects of temperature and pH on renaturation of recombinant arginine deiminase 
(r-AD). The lyophilized inclusion bodies derived from JO mL of cultured E. coli cells were 
solubilized in I mL 50 mM Tris HCl (pH 8.5) containing 6M Gdn-HCl and 10 mM DTT and 
incubated at 37°C for 1 h. The solubilized proteins were diluted rapidly with 100 mL of JO mM 
potassium phosphate buffer, and the solutions were stirred at various temperature for 45 hat pH 7.0 
(A) and at various pH values for 45 hat 15°C (B). The extent of r-AD renaturation was monitored 
by measuring the AD activity. 

exchange. 8·
23 Various experimental protocols used for 

the solubilization of inclusion bodies have been com­
pared by Fischer et al. 1 1 If the purity of the solubilized 
inclusion bodies is low, purification can be achieved 
by reverse-phase high-performance liquid chromatog­
raphy, gel filtration, or ion-exchange chromatography 
in the presence of a denaturant. 

RENATURATION OF RECOMBINANT 
PROTEINS 

To obtain the correctly folded proteins after solubili­
zation of the inclusion bodies, excess denaturants and 
reducing thiol reagents have to be removed, and the 
reduced proteins transferred to oxidizing conditions. 
Renaturation of solubilized inclusion bodies is initi­
ated by removal of the denaturant by either dilution or 
dialysis. The efficiency of renaturation depends on the 
competition between correct folding and aggrega­
tion. 24 To slow down the aggregation process, refold­
ing is usually performed at low protein concentra­
tions, within the range 10-100 µ.,g/mL. Furthermore, 
the renaturation conditions must be carefully opti­
mized with regard to external parameters such as 
temperature, pH, and ionic strength for each individ­
ual protein.9

•
23 

Both folding and associat10n of proteins depend 
strongly on temperature and pH. For example, we 
have shown that recombinant Mycoplasma arginine 

....... 
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FIGURE 3 Time course of r-AD renaturation. The 6M 
Gdn-HCl-solubilized inclusion bodies containing r-AD -
were diluted rapidly 100-fold with JO mM potassium phos­
phate buffer (pH 7.0) and the solutions were stirred at 4°C 
(•), 15°C (6 ), and 25°C (0 ) for 0-90 h. The extent of 
r-AD renaturation was monitored by measuring the AD 
activity at various time intervals. 
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Table ill Optimal Conditions for Renaturation of Proteins from Inclusion Bodies8 

Solubilizing Refolding Temperature Time 
Recombinant Protein Reagent Method pH (QC) (h) Reference 

hIFN--y 6M Gdn-HCl Dilution 7 4 Overnight 85 
Human prourokinase 6M Gdn-HCl Dilution 8.8 15 24 65 
Prochymosin SM urea Dialysis 10.5 Room temp. 6 86 
Human angiogenin 7M Gdn-HCl Dilution 8.5 4 24 87 
Bovine GH 6M Gdn-HCl Dialysis 8.5 Room temp. 24 82 
Arginine deiminase 6M Gdn-HCl Dilution 7.5 15 90 25 
Porcine ADK 6M Gdn-HCl Dialysis 7.4 4 Overnight 18 
hIGF-1 6M Gdn-HCl Dilution 8 25 72 68 
Salmon GH 7M urea Dilution 8 4 One day 88 

a hIFN, human interferon; GH, growth hormone; ADK, adenylate kinase; hIGF-1, human insulin-like growth factor-I. 

deiminase, developed as an antitumor agent, is effi­
ciently renatured at 15°C and at pH 7.5 by 100-fold 
rapid dilution of inclusion bodies solubilized with 6M 
Gdn-HCl (Figure 2).25 The time required for complete 
renaturation may extend over a range of seconds to 
days. Upon renaturation of antibody Fab fragments 
from inclusion bodies, it was shown that the amount 
of functional antibody increased over 100 h.26 Also, 
renaturation of recombinant Mycoplasma arginine de­
iminase exhibited exceedingly slow kinetics (over 
90 h) even at l 5°C by the rapid dilution method 
(Figure 3). Table III shows several of the optimal 
conditions for renaturation of proteins from inclusion 
bodies. 11 

Most secretory proteins contain disulfide bonds in 
their native state. If a target protein contains disulfide 
bonds, the renaturation buffer has to be supplemented 
with a redox system. Addition of a mixture of the 
reduced (RS - ) and oxidized (RSSR) forms of low 
molecular weight thiol reagents such as glutathione, 
cysteine, and cysteamine (molar ratios of reduced to 
oxidized compounds 5 : 1 to 10 : 1, respectively) 

usually provides the appropriate redox potential to 
allow formation and reshuffling of disulfides.9

•
27

•
28 

These systems increase both the rate and yield of 
renaturation/reoxidation by facilitating rapid reshuf­
fling of incorrect disulfide bonds according to.23

•
29 

Q RSSR RS"G \-. L -
7 "'\ SSR • 

RSSR RS" a 
In order to accelerate thiol-disulfide exchange, the 
pH of the renaturation buffer should be at the upper 
limit that still allows the protein to form its native 
structure. In order to prevent fortuitous oxidation of 
thiols by molecular oxygen, which is catalyzed by 
trace amounts of metal ions (e.g., Cu2+), EDTA 
should be added to the buffer solutions. Reoxidation 
of protein disulfide bonds is performed by dilution of 
the reduced solubilized inclusion bodies in the 
"oxido-shuffling" system.23

•
29 Table IV summarizes 

Table IV Optimal Conditions for Renaturation and Reoxidation of Proteins from Inclusion Bodies by the 
Glutathion System 

Number of Reduced Oxidized 
Disulfide Glutathione Glutathione Temperature Time 

Recombinant Protein Bonds (mM) (mM) pH (QC) (h) Reference 

Fab-fragment 5 5 0.5 8 10 150 26 
ht-PA 17 0.5 0.3 8.75 15 24 45 
Trancated ht-PA 9 2 0.2 8.6 20 24 32 
Trancated hM-CSF 9 0.5 0.1 8.5 4 48 81 
hIL-2 10 8 Room temp. 16 89 
hlL-4 3 2 0.2 8 Room temp. 4 90 
hIL-6 2 0.01 0.002 8.5 22 16 91 
hTIMP-1 6 2 0.2 8 4 16 61 
Trancated hTIMP-2 3 0.78 0.44 9.75 25 2 59 
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F..........._ 

FIGURE 4 Schematic drawi ng of ht-PA showing the fi nger (F), growth factor (G), kringle (KI. 
K2), and serine protease (P) domains. Solid bars indicate potenti al disul fide bridges based on 
homology with other prote ins. 

several of the conditions for renaturation of proteins 
from inc lusion bodies by the glutathione reoxidation 
system. 11 

ln add ition to the control of parameters such as 
temperature, pH , or redox conditions, the presence of 
low molecular weight compounds in the renaturation 
buffer may have a marked effect on the yield of 
renaturation.8·

9
·
30 A large series of low molecular 

weight additi ves are, in certain cases, very efficient 
refolding enhancers: for examples, nondenaturing 
concentrati ons of chaotrophs such as urea or Gdn-HCl 
are essenti al for the renaturation of reduced chymo­
trypsinogen A.3 1 

The most popular additi ve is L-arginine.8 ·
9 In the 

case of human t-PA 29 or its truncated form,32 the yield 
of renatu ration is markedly increased in the presence 
of 0.SM L-arginine, whereas in its absence almost no 
reactivity is observed. The positive effect of L-argi­
nine on renaturation effi ciency has also been con­
firmed fo r various other proteins such as antibody Fab 
fragments,26 single-chain immunotox ins,33 and sin­
gle-chain Fv fragments.34 The mechani sm by which 
L-arginine supports renatu rati on is still un known. Al­
though L-arginine contains a guanidino group, it does 
not destabilize the native fo lded structure as strongly 
as Gdn-HC I. The beneficial effect of L-arginine on 
protein refolding probably ori ginates fro m increased 
solubilization of folding intermediates.9 

ln the case of bovine carbonic anhydrase B, stoi­
chiometri c amounts of polyethylene glycol (PEG) sig­
ni fica ntl y enhanced the recovery of active protein by 
reducing aggregation. 35 Furthermore, three recombi­
nant human prote ins--deoxyribonuclease, t-PA, and 
IFN-y-were refolded efficiently in the presence of 
PEG (MW 3350).36 Therefore, PEG has signi ficant 
potentia l for enhancing the recovery of acti ve proteins 
fro m inclusion bodies. 

Likewise, increased so lubili zation of fo lding inter­
mediates can explain the pos itive effect of detergents 
on the refolding yield . Us ing lauryl-mal tos ide, 
CHAPS (3-[3-chloramidopropy l]dimethylammonia-
1-propane sulfonate) or some other detergents during 
renaturation, the yield of renatured protein can be 
improved.37

·
38 Refolding in the presence of a deter­

gent fo llowed by addition of cyclodextrin has been 
claimed to be analogous to a molecular chaperone 
system in terms of function.39 To prevent aggregation 
during refolding, other techniques such as renatur­
ation in reversed micelles40 or in aqueous two-phase 
systems41 have also been explored. 

Another possibility for suppressing unspecific in­
termolecular interactions is the coupling of the dena­
tured prote in to a matrix. When denatured a-glucos i­
dase fused to a polyarginine tag was bound to hepari n­
Sepharose, renaturation under conditions allowing the 
protein to remain bound to the matri x resulted in high 
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yields of active protein even at a high gel load of up 
to 5 mg/mL.42 Another matrix used for this kind of 
renaturation is Ni2+ -nitrilotriacetic acid (NTA) resin, 
which was originally developed for efficient protein 
purification. After binding the denatured protein to the 
matrix via a His tag, the column is equilibrated with 
renaturation buffer, and the refolded protein can be 
eluted by imidazole using a pH gradient.43 

CASE STUDIES OF THE PRODUCTION 
OF THERAPEUTIC PROTEINS 

Example 1: t-PA 

t-PA is a serine protease that has an important func­
tion in the fibrinolytic system. It catalyzes the con­
version of plasminogen to plasrnin in the presence of 
a fibrin clot. Human t-PA (ht-PA) is a glycosylated 
single-chain polypeptide of 527 amino acids, and con­
tains 17 disulfide bonds. 44 A schematic drawing of 
ht-PA is shown in Figure 4. The molecule comprises 
five distinct structural domains: a finger domain, an 
epidermal growth factor-like domain, two kringle do­
mains, and a C-terminal protease domain. The affinity 
oft-PA for fibrin, and the 100-200-fold increase in its 
activity in the presence of fibrin make it an attractive 
thrombolytic agent because it should generate plasmin 
locally at the fibrin surface and achieve thrombolysis 
without systemic activation of plasminogen.45 Several 
attempts to produce ht-PA or a truncated form in E. 
coli have been reported.29

•
32 .45

-
48 Recombinant t-PA 

(rt-PA) accumulated as inclusion bodies in the cyto­
plasm. t-PA best exemplifies the challenges associ­
ated with the production of multidisulfide complex 
proteins in E. coli by refolding from inclusion bodies. 

Sarrnientos et al. reported that ht-PA was produced 
as an insoluble, aggregated form in E. coli (5-10% of 
total cellular protein), with a yield of 460 mg/L fer­
mentation broth.45

.4
7 The inclusion bodies obtained 

after centrifugation of the sonicated extract were first 
washed with a solution containing SM urea and 2% 
Triton X-100, then dissolved in 7M Gdn-HCl and 50 
mM {3-mercaptoethanol. The reducing agent was then 
removed by dialysis, and the solubilized inclusion 
bodies were diluted at least 50-fold into a renaturation 
buffer containing 2.5M urea, IO mM lysine, and a 
redox coupler at appropriate concentrations (0.5 mM 
GSH and 0.3 mM GSSG), under carefully controlled 
incubation conditions (15°C, no air). After renatur­
ation, Tween 80 was added to a final concentration of 
0.01 %, and the t-PA activity was measured. As a 
result, t-PA activity corresponding to a concentration 
of 2-5 µ,g/mL of fully active t-PA was consistently 
detected in the renaturation solution. Further charac-
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Fermentation 

~ 
Centrifugation - Liquid 

~ 
Homogenization 

~ 
Centrifugation - Liquid 

~ --- Gdn-HCI 

Solubilization 

~ 
Ultrafiltration - Liquid 

~ --- Na2S03 + Na2S40 6 

Sulfonation 

~ --- ~-mercaptoethanol 

Refolding 

~ 
Ultrafiltration - Liquid 

~ 
Anion exchange chromatography - Impurities 

~ 
Ultrafiltration - Liquid 

~ 
Lysine affinity chromatography - Impurities 

~ 
Ultrafiltration - Liquid 

~ 
Gel filtration - Impurities, salts 

~ 
Sterile filtration 

~ 
Final product 

FIGURE 5 Schematic diagram for the production of rena­
tured rt-PA from inclusion bodies expressed in E. coli. I0,

47 

terization and purification of the renatured rht-PA 
strongly suggested that it was a fully active enzyme, 
very similar to natural t-PA, despite the lack of gly­
cosylation. The purification yield of 2.8% for the 
overall process reflects a 20% step yield for the re­
folding operation, and a 56% yield for the subsequent 
ultrafiltration step at a refolding concentration of 2.43 
mg rt-PAIL. Details of the scheme of rt-PA produc­
tion from E. coli are shown in Figure 5.47 

However, Grunfeld et al. reported that a 90% yield 
for the refolding process was achieved within an 
optimal concentration range of 2.6-3.7 mg rt-PAIL of 
reactivation rnixture.46 They also reported that ab­
sence of arginine in the reactivation mixture resulted 
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FIGURE 6 Amino acid sequence and two-dimensional representation of the structure of 
hTIMP-2. 

in yields that were only 10% of those achieved when 
arginine was present at a final concentration of 0.25M. 

Example 2: Tissue Inhibitors of 
Metalloproteinases (Tl MPs} 

Tissue inhibitors of metalloproteinases (TIMPs) play 
important roles in regulating the activities of matrix 
metalloproteinases (MMPs),49·50 a family of enzymes 
responsible for the breakdown of connective tissue 
components. Inappropriate matrix breakdown is asso­
ciated with a number of pathologies including peri­
odontal disease, rheumatoid arthritis (RA), and tumor 
metastasis. The control of MMP activity is therefore 
an important therapeutic target, and TIMPs or low 
molecular weight MMP inhibitors could lead to new 
therapeutic strategies for the treatment of RA and 
cancer.51 

Three members of the TIMP family have been 
identified to date: TIMP-1, TIMP-2, and TIMP-3.52-54 

The TIMP proteins show a high degree of amino acid . 
sequence similarity including the conservation of 12 
cysteinyl residues known to form 6 disulfide bonds.55 

TIMP-1 is a glycoprotein of 184 amino acids in 
length,52 whereas TIMP-2 and TIMP-3 are not glyco­
sylated.53·54 The amino acid sequence of human 

TIMP-2 is shown in Figure 6. The overproduced 
recombinant TIMPs or the N-terminal domain of 
TIMPs accumulate as inclusion bodies in E. coli, and 
can be refolded into active forms. 51 ·56- 61 Particularly, 
recombinant human TIMP-2 (rhTIMP-2) and 
rhTIMP-3 have been prepared by controlled refolding 
in the solid phase using an ion metal affinity col­
umn. s?,60 

Negro et al. reported that rhTIMP-2 was expressed 
in E. coli as a fusion protein with a 34-amino-acid 
NHz-linked tail containing 6 histidine residues, and 
that the TIMP-2 fusion proteip immobilized on Ni2+ -
NT A resin was refolded at a high concentration ( I 
mg/mL resin) in the column.57 The refolded 
rhTIMP-2 was eluted from the resin with 250 mM 
imidazole. It showed specific binding and inhibitory 
activity against 72-kDa gelatinase (MMP-2). 

Furthermore, Negro et al. reported that rhTIMP-3 
was expressed in E. coli as a fusion protein with a 
36-arnino-acid NHrlinked tail containing 6 histidine 
residues, and that the rhTIMP-3 was refolded in the 
Niz+ -NTA column by very slowly removing the de­
naturing and reducing agents (urea and ~-mercapto­
ethanol).60 The refolded rhTIMP-3 was treated with 
mild acid (70% formic acid) in order to remove the 
NH2 tail from TIMP-3. After this treatment, the 

Lupin 1023 
Page 14 of 17



rhTIMP-3 was loaded on the Ni2
+ -NTA column in 

order to separate the cut (eluted) from the uncut 
(~olumn retained) recombinant form . rhTIMP-3 from 
which the NH2 tail had been removed showed inhib­
itory activities against both MMP-2 and MMP-9, and 
CD, fluorescence and second-derivative UV spectro­
scopic analyses supported correct refolding of 
rhTIMP-3. Solid-phase refolding may prove to be 
useful for a variety of other proteins in which correct 
disulfide bridging plays a critical role. 

CONCLUSIONS 

Although recombinant DNA technology now permits 
burst synthesis of heterologous proteins in E. coli, 
these proteins often accumulate as insoluble inclusion 
bodies, and therefore solubilization and renaturation 
systems are necessary in order to obtain the fully 
active proteins with a native conformation. 

Similar to protein purification, protein refolding 
protocols still have to be developed on a case-by-case 
basis. Various procedures introduced in this review 
for in vitro refolding are available. Choosing the right 
procedure should allow renaturation of most recom­
binant proteins deposited in inclusion bodies, giving 
high yields. 

Structural and functional analyses of proteins, es­
pecially those for therapeutic or industrial applica­
tions, require large amounts of recombinant proteins. 
The E. coli system for production of recombinant 
protein as inclusion bodies, together with a suitable 
renaturation procedure, provides an efficient avenue 
for meeting these requirements. In the near future , in 
vitro refolding of inclusion body proteins will become 
a powerful tool for commercial production of ex­
tremely complex proteins in which multidisulfide 
bonds play a critical role. 
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