
136 42

--9

134

50

111

Application Traffic Management
Device

Application Traffic Management
Module

Flow Control
Module

44

Flow
Database

Host
Database

86

140

Measurement H Administrator
Engine Interface

150

75

72

82
Packet

Processor

89

76

Traffic
Classification

Engine

Management
Information Base

Network
Performance
Monitoring

Module

CoS Selector

111111111111111111111111111p
s
1JIMp)41111111111111111111111111111111

(12) United States Patent (10) Patent No.: US 7,843,843 B1
Papp, III et al. (45) Date of Patent: Nov. 30, 2010

ADAPTIVE, APPLICATION-AWARE
SELECTION OF DIFFERNTIATED
NETWORK SERVICES

(56) References Cited

U.S. PATENT DOCUMENTS

5,793,976 A 8/1998 Chen et al. 709/224
Inventors: Albert L. Papp, III, Mountain View, CA 6,560,230 B1 * 5/2003 Li et al. 370/395.42

(US); Guy Riddle, Los Gatos, CA (US);
Li Fang, San Jose, CA (US); Michael
Robert Morford, Saratoga, CA (US)

6,636,509 Bl *
6,678,248 B1 *

10/2003
1/2004

Hughes
Haddock et al.

370/389
370/235

7,010,611 B1 * 3/2006 Wiryaman et al 709/232

Assignee: Packeteer, Inc., Cupertino, CA (US) 7,133,360 B2 11/2006 Le Gouriellec et al. 370/229
2002/0120745 Al * 8/2002 Oishi et al. 709/226

Notice: Subject to any disclaimer, the term of this 2003/0005145 Al * 1/2003 Bullard 709/238
patent is extended or adjusted under 35 2003/0174649 Al * 9/2003 Shankar et al. 370/235
U.S.C. 154(b) by 986 days. 2003/0227876 Al * 12/2003 Ruutu et al. 370/252

2004/0064577 Al * 4/2004 Dahlin et al. 709/235
Appl. No.: 11/096,310

Filed: Mar. 31, 2005
* cited by examiner

Related U.S. Application Data
Primary Examiner Aung S Moe

Continuation-in-part of application No. 10/812,198, Assistant Examiner Redentor M Pasia
filed on Mar. 29, 2004, now Pat. No. 7,496,661. (74) Attorney, Agent, or Firm Baker Botts L.L.P.

Int. Cl.
GO1R 31/08 (2006.01)
H04L 12/28 (2006.01)
G06F 15/173 (2006.01)
U.S. Cl. 370/252; 370/395.42; 709/224
Field of Classification Search 370/230-235.1,

370/395.3, 420, 252, 389, 392, 395.2, 395.21,
370/395.42, 395.43, 395; 709/223-226,

709/229, 232, 233
See application file for complete search history.

(54)

(75)

(73)

*)

(21)

(22)

(63)

(51)

(52)
(58)

(57) ABSTRACT

Methods, apparatuses and systems that dynamically adjust
the selection of differentiated network services for selected
classes of traffic or network applications in response to
changing network conditions or application performance lev-
els.

15 Claims, 13 Drawing Sheets

Juniper - Exhibit 1035, page 1

50 R2
R3 lu

al
u

d
 •

Si
l

R5
22a R1 22

Differentiated
Services Network

ot
oz

 `o
f •

A
O

N

itrr.Tge7

130a
130

E t
 J
o
 1
 P

al
iS

40

R4

Fig._1A

la
 c

ts
`c

ts
`L

 s
a

Juniper - Exhibit 1035, page 2

..7
-Th

131a

Fig._1B

50

131b A

40b Differentiated
Services Network

22a

22

131
40 C

I J
o
 Z
W

IN

22b

lu
al

ud
 °

Si
l

la
 c

ts
`c

ts
`L

 s
a

Juniper - Exhibit 1035, page 3

131

22

40

la
 c

ts
`c

ts
`L

 s
a

lu
al

ud
 °

Si
l

E t
 J
o

 c
P

al
iS

22b

Differentiated
Services Network 1

13 lb

22a

Differentiated
Services Network 2

131a

50a

Fig._1 C

50b

40a

Juniper - Exhibit 1035, page 4

11111111 71

22

U.S. Patent Nov. 30, 2010 Sheet 4 of 13 US 7,843,843 B1

Traffic Management
Device

50

40

Fig._2A
130

41

72
Traffic Management Module

76

Fig._2B 75

42

c., 44
El

........) ii 130

50

Juniper - Exhibit 1035, page 5

21a

21b

40

130

Fig._2C

52

U.S. Patent Nov. 30, 2010 Sheet 5 of 13 US 7,843,843 B1

Juniper - Exhibit 1035, page 6

U.S. Patent Nov. 30, 2010 Sheet 6 of 13 US 7,843,843 B1

Administrator
Interface

150

86 140

138

Traffic
Classification

Database

Measurement
Engine

135
Management

Information Base
Flow

Database

134 88

Host Network Performance)
Database Monitoring Module

Data Packet Packet Traffic Policy Data Packet
In Processor Module Out

82
84

Fig._3

Juniper - Exhibit 1035, page 7

204 Yes

202

206

208

New Data
Flow?

Associate Packet
with Flow Object

212

Changes
To Flow?

Identify
Traffic Class

Write Traffic
Class & Policies
into Flow Object 214

Yes

No

Pass Packet to
Traffic Policy

Module

222

J

224

Record Flow
Measurement

Variables

Fig._4

210

Flow
Object?

Construct
Flow Object

Receive Data
Packet

U.S. Patent Nov. 30, 2010 Sheet 7 of 13 US 7,843,843 B1

Juniper - Exhibit 1035, page 8

Request cta:a (there's no pr4sh flag, Sc moro coming)
T9

T8

T6

T7

115

A,

T 1

U.S. Patent Nov. 30, 2010 Sheet 8 of 13 US 7,843,843 B1

Client

Traffic
Management

Device Server

T1 SYN
T°)

T5 Aft(

T3

T4

T11

Rt-Teatort dat	

le

a pAckots r °odor' eli ircoroalon'a:c. n gth;

ACKs am slim
tc.r diaqran) clarity

liequest data with push flag
T12

T13

ResIVAs.° d*?' 114

T10

116 T17

T19

T20

122

Fig._5

Juniper - Exhibit 1035, page 9

Identify
Traffic Class

Inbound Flow
from Known

Network?

Is Service Class
different from Service

Class in Traffic
Classification Database

for Outbound Flows?

Has Service Class
been recently

changed?

Change Service Class
for Outbound Flows
Associated with that

Traffic Class

Adjust
Upgrade/Downgrade
Objects as required

U.S. Patent Nov. 30, 2010 Sheet 9 of 13 US 7,843,843 B1

Fig._6

Juniper - Exhibit 1035, page 10

50

72

82

86

135

140

88a

40

84a

138 4 2

44

U.S. Patent Nov. 30, 2010 Sheet 10 of 13 US 7,843,843 B1

Application Traffic Management
Module

Administrator
Interface

Management
Information Base

Flow Control
Module

CoS Selector

Host
Database

Packet
Processor

Traffic
Classification

Engine

How
Database

Network
Performance
Monitoring

Module

134

150

89

131

Application Traffic Management
Device

Measurement
Engine

76

75

Fig._7

Juniper - Exhibit 1035, page 11

Save Metrics in
CoS Table; Set

Metric Time Stamp

Compute Current
Metrics for CoS

and Partner Device

402

40 4

..--

405

Fig._8
406

412

Difference
b/wOld &

Current
Metric(s)

> Th2?

Receive Response(s)
to Synthetic

Transaction(s)

Recompute
Application/CoS

Fitness Table for Partner

1

U.S. Patent Nov. 30, 2010 Sheet 11 of 13 US 7,843,843 B1

Juniper - Exhibit 1035, page 12

U.S. Patent Nov. 30, 2010 Sheet 12 of 13 US 7,843,843 B1

502
Receive

Packet Pointer

504

Mark Set
for Flow?

506 507

Still
Classifying? No Mark —>

514 510 512

Application
Unknown?

Yes Mark = Best
A Fffort

Can
Application be

Mapped?

V 518

Mark = Best
Fit

520

Fig._9
Set Flow Object

Mark Attribute; Set
Mark Time Stamp

522
Update CoS
Bucket Usage

Juniper - Exhibit 1035, page 13

628 Flow = 1st Flow
in CoS Bucket

622

624

/For °Full" CoS Buckets Do/

626

4,

/ While CoS Bucket
Load > Th5 Do

630

/For Flows wir Fitness
Value < 0 Do

609

Any CoS Fitness
Value > Current

CoS Fitness Value?

Flow Mark
Changed win

Th3?

Mark = Qualified and Least
Loaded CoS Bucket; Set

Mark Time Stamp
612

632

End For
Flows Do

Flow = Next
Flow

End While

F g._10 End For

634

U.S. Patent Nov. 30, 2010 Sheet 13 of 13 US 7,843,843 B1

Juniper - Exhibit 1035, page 14

US 7,843,843 B1
1

ADAPTIVE, APPLICATION-AWARE
SELECTION OF DIFFERNTIATED

NETWORK SERVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS AND PATENTS

The present application is a continuation-in-part of U.S.
application Ser. No. 10/812,198 filed Mar. 29, 2004 now U.S.
Pat. No. 7,496,661 and entitled "Adaptive, Application-
Aware Selection of Differentiated Network Services." This
application also makes reference to the following commonly
owned U.S. patent applications and patents, which are incor-
porated herein by reference in their entirety for all purposes:

U.S. patent application Ser. No. 08/762,828 now U.S. Pat.
No. 5,802,106 in the name of Robert L. Packer, entitled
"Method for Rapid Data Rate Detection in a Packet Commu-
nication Environment Without Data Rate Supervision,"

U.S. patent application Ser. No. 08/970,693 now U.S. Pat.
No. 6,018,516, in the name of Robert L. Packer, entitled
"Method for Minimizing Unneeded Retransmission of Pack-
ets in a Packet Communication Environment Supporting a
Plurality of Data Link Rates;"

U.S. patent application Ser. No. 08/742,994 now U.S. Pat.
No. 6,038,216, in the name of Robert L. Packer, entitled
"Method for Explicit Data Rate Control in a Packet Commu-
nication Environment without Data Rate Supervision;"

U.S. patent application Ser. No. 09/977,642 now U.S. Pat.
No. 6,046,980, in the name of Robert L. Packer, entitled
"System for Managing Flow Bandwidth Utilization at Net-
work, Transport and Application Layers in Store and Forward
Network;"

U.S. patent application Ser. No. 09/106,924 now U.S. Pat.
No. 6,115,357, in the name of Robert L. Packer and Brett D.
Galloway, entitled "Method for Pacing Data Flow in a Packet-
based Network;"

U.S. patent application Ser. No. 09/046,776 now U.S. Pat.
No. 6,205,120, in the name of Robert L. Packer and Guy
Riddle, entitled "Method for Transparently Determining and
Setting an Optimal Minimum Required TCP Window Size;"

U.S. patent application Ser. No. 09/479,356 now U.S. Pat.
No. 6,285,658, in the name of Robert L. Packer, entitled
"System for Managing Flow Bandwidth Utilization at Net-
work, Transport and Application Layers in Store and Forward
Network;"

U.S. patent application Ser. No. 09/198,090 now U.S. Pat.
No. 6,412,000, in the name of Guy Riddle and Robert L.
Packer, entitled "Method for Automatically Classifying Traf-
fic in a Packet Communications Network;"

U.S. patent application Ser. No. 09/198,051, in the name of
Guy Riddle, entitled "Method forAutomatically Determining
a Traffic Policy in a Packet Communications Network;"

U.S. patent application Ser. No. 09/206,772, in the name of
Robert L. Packer, Brett D. Galloway and Ted Thi, entitled
"Method for Data Rate Control for Heterogeneous or Peer
Internetworking;"

U.S. patent application Ser. No. 09/710,442, in the name of
Todd Krautkremer and Guy Riddle, entitled "Application
Service Level Mediation and Method of Using the Same;"

U.S. patent application Ser. No. 10/015,826, in the name of
Guy Riddle, entitled "Dynamic Tunnel Probing in a Commu-
nications Network;"

U.S. patent application Ser. No. 10/039,992, in the name of
Michael J. Quinn and Mary L. Laier, entitled "Method and
Apparatus for Fast Lookup of Related Classification Entities
in a Tree-Ordered Classification Hierarchy;"

2
U.S. patent application Ser. No. 10/099,629 in the name of

Brett Galloway, Mark Hill, and Anne Cesa Klein, entitled
"Method And System For Controlling Network Traffic
Within The Same Connection With Different Packet Tags By

5 Varying The Policies Applied To A Connection;"
U.S. patent application Ser. No. 10/108,085, in the name of

Wei-Lung Lai, Jon Eric Okholm, and Michael J. Quinn,
entitled "Output Scheduling Data Structure Facilitating Hier-
archical Network Resource Allocation Scheme;"

o U.S. patent application Ser. No. 10/155,936 now U.S. Pat.
No. 6,591,299, in the name of Guy Riddle, Robert L. Packer,
and Mark Hill, entitled "Method For Automatically Classify-
ing Traffic With Enhanced Hierarchy In A Packet Communi-
cations Network;"

15 U.S. patent application Ser. No. 10/236,149, in the name of
Brett Galloway and George Powers, entitled "Classification
Data Structure enabling Multi-Dimensional Network Traffic
Classification and Control Schemes;"

U.S. patent application Ser. No. 10/453,345, in the name of
20 Scott Hankins, Michael R. Morford, and Michael J. Quinn,

entitled "Flow-Based Packet Capture;" and
U.S. patent application Ser. No. 10/611,573, in the name of

Roopesh Varier, David Jacobson, and Guy Riddle, entitled
"Network Traffic Synchronization Mechanism."

25
COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The

30 copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

35

FIELD OF THE INVENTION

The present invention relates to computer networks and,
more particularly, to application-aware, adaptive network

40 traffic management schemes that selectively designate data
flows for differentiated network services in response to moni-
tored network or application performance attributes.

BACKGROUND OF THE INVENTION
45

Enterprises have become increasingly dependent on com-
puter network infrastructures to provide services and accom-
plish mission-critical tasks. Indeed, the performance and effi-
ciency of these network infrastructures have become critical

so as enterprises increase their reliance on distributed comput-
ing environments and wide area computer networks. The
widely-used TCP/IP protocol suite, which implements the
world-wide data communications network environment
called the Internet and is employed in many local area net-

55 works, omits any explicit supervisory function over the rate of
data transport over the various devices that comprise the
network. While there are certain perceived advantages, this
characteristic has the consequence of juxtaposing very high-
speed packets and very low-speed packets in potential con-

60 flict and produces certain inefficiencies. Certain loading con-
ditions degrade performance of networked applications and
can even cause instabilities which could lead to overloads that
could stop data transfer temporarily. The above-identified
U.S. Patents and patent applications provide explanations of

65 certain technical aspects of a packet based telecommunica-
tions network environment, such as Internet/Intranet technol-
ogy based largely on the TCP/IP protocol suite, and describe

Juniper - Exhibit 1035, page 15

US 7,843,843 B1
3

the deployment of bandwidth management solutions to moni-
tor and manage network environments using such protocols
and technologies.

Enterprise network topologies can span a vast array of
designs and connection schemes depending on the enterprises
resource requirements, desired service levels, costs and the
like. Enterprise network design topologies often include
redundant LAN and WAN segments in the enterprise's intra-
net, and multiple paths to extranets and the Internet. Enter-
prises that cannot afford the expense of private leased-lines to
develop their own WANs, often employ frame relay, or other
packet switched networks, together with Virtual Private Net-
working (VPN) technologies to connect private enterprise
sites via a service providers public network or the Internet.
Some enterprises also use VPN technology to create extranets
with customers, suppliers, and vendors.

To create more efficient and cost effective network ser-
vices, various differentiated service technologies and proto-
cols have been developed. A differentiated service defines
some significant characteristics of packet transmission in one
direction across a set of one or more paths within a network.
These characteristics may be specified in quantitative or sta-
tistical terms of throughput, delay, jitter, and/or loss, or may
otherwise be specified in terms of some relative priority of
access to network resources. Service differentiation is desired
to accommodate heterogeneous application requirements and
user expectations, and to permit differentiated pricing of net-
work service. Differentiated services can include diffsery
(RFC 2475), relative priority marking, service marking, label
switching, Integrated Services/RSVP, and static per-hop clas-
sification.

For example, Internet Protocol (IP) networks, without
modification, essentially provide best-effort datagram ser-
vice without distinguishing between types of flows. To sup-
port and manage the performance of networked applications,
a variety of core network technologies have been developed
to deliver tailored network services. For example, many net-
worked applications, such as VoIP, or other real-time trans-
port protocol (RTP) flows, require higher quality of service,
relative to other applications, such as e-mail and FTP file
transfers. This type of network traffic generally includes char-
acteristics of low latency, low jitter, and delay sensitivity; for
example, voice over IP (VoIP), or video over IP traffic.
Accordingly, a variety of technologies and protocols have
been developed to provide differentiated services over IP
networks, such as Multi-Protocol Label Switching (MPLS),
and diffserv.

FIG. 1 illustrates, for didactic purposes, a simple differen-
tiated services network, such as a MPLS network, consisting
of five routing nodes: R1, R2, R3, R4, and RS. Router RS is
connected to a network segment 40 that contains a subnet
with specific destination hosts associated with, for example,
an enterprise headquarters. Router R1 is operably connected
to a network 40a associated with, for example, a branch
office. Routers R1 and RS are referred to as label-edge routers
(LERs), while routers R2, R3, and R4 are label-switching
routers (LSRs). LERs receive incoming network traffic (e.g.,
IP, Ethernet, ATM, frame relay, etc.), and route this network
traffic into special-purpose label-switched paths (LSPs) cre-
ated to span the network or some part of the network. FIG. 1
illustrates two such LSPs: LSP1 and LSP2. For didactic pur-
poses, assume that LSP1 has been created to carry real-time
traffic through the network. LSP2 has been created to carry
non-real-time traffic, such as email. Often, the network ser-
vice provider charges its enterprise customers a higher rate
for the use of LSP1.

4
The label switched paths in the MPLS network can be

configured or provisioned using signaling protocols such as
Resource Reservation Protocol with traffic engineering
extensions (RSVP-TE) and Label Distribution Protocol

5 (LDP). For example, LSP1 can be configured as an MPLS
tunnel. An MPLS tunnel is basically a label switched path
with some type of associated set of constraints, such as a
specified path, resource reservation across the path, and other
QoS-related capabilities (e.g., DiffServ/IntSery service

io classes). As FIG. 1 illustrates, the specified path of LSP1 from
the branch office to headquarters is routers R1-R2-R3-R5.
Resource reservation along the path generally connotes qual-
ity of service (QoS). Resource reservation often includes
minimum guaranteed or required bandwidth, as well as other

15 traffic characteristics, such as maximum burst size, mean
burst size, and so on. These characteristics are specified or
used when signaling the nodes in a label switched path as part
of the underlying router resource reservations. For example,
resource reservation generally includes reserving port buffer

20 space, hardware queues, fabric capacity, etc.
Additional QoS requirements on a given label switched

path can also be specified or configured using DiffSery and
IntSery classes. These classes provide a greater degree of
control over how the incoming traffic is managed as it passes

25 across the MPLS network. In the didactic example of FIG. 1,
LSP2 (R1, R4, RS) can created using the LDP protocol. This
label switched path has no reserved bandwidth and its path is
created by R1, in one direction, in conjunction with its inter-
nal routing protocols.

30 The resulting MPLS core network is then packet-based
using MPLS and some specified QoS mechanism such as
DiffServ, IntServ, and so on. According to the MPLS proto-
col, a short fixed-length label is generated that acts as a
shorthand representation of an IP packet's header. Subse-

35 quent routing decisions (made by Label Switched routers) are
made based on the MPLS label and not the original IP address
in the IP header. This technology allows core network routers
to operate at higher speeds without needing to examine each
packet in detail, and allows more complex services to be

40 developed, allowing discrimination on a QoS basis. Other
parameters can also be used for forwarding: source IP
address, source/destination port, IP type of service field (now
called the Differentiated Services field, as defined in RFC
3260).

45 As discussed above, MPLS networks support a variety of
QoS mechanisms including IP Precedence, Committed
Access Rate (CAR), Random Early Detection (RED),
Weighted RED, Weighted Fair Queuing (WFQ), Class-based
WFQ, and Priority Queuing. Proprietary and non-standard

so QoS mechanisms can also be supported. MPLS may also be
integrated with Differentiated Services protocols, such as
diffserv, to provide for a plurality of service classes. For
example, a service provider may deploy an MPLS network
that has the following QoS classes: 1) High-priority, low-

55 latency "Premium" class (Gold Service); 2) Guaranteed-
delivery "Mission-Critical" class (Silver Service); and 3)
Low-priority "Best-Effort" class (Bronze Service).

Many MPLS networks are managed by managed network
service providers that bill or charge enterprises based on a

60 flat-rate, a usage-based model, or a combination of the two. A
variety of tiered rate models can be used as well. Usage can be
computed based on the number of IP packets forwarded (via
MPLS) across an LSP, average bit rate, and the like. For
example, a typical enterprise may pay for the use of LSP2

65 based on a flat-rate model, while paying for data transfer
across LSP1 based on usage. Not surprisingly, different com-
binations of label switched paths and/or QoS classes may

Juniper - Exhibit 1035, page 16

US 7,843,843 B1
5 6

each have different rates, obviously, with higher classes of ated network services for selected classes of traffic or network
service being more expensive. For example, Network Service applications in response to changing network conditions or
Providers can use a number of pricing models, including: application performance levels. In one implementation, the

1) Fixed Charge per Byte: In one billing model, network present invention allows for a differentiated network services
service providers charge a fixed amount per byte of data that 5 scheme that adapts to existing network conditions and, in one
traverses the Service Provider's network. The amount per implementation, selects higher, generally more expensive
byte depends upon criteria including, but not limited to, the classes of differentiated network service for certain data flows
Class of Service of the packet that the byte of data contains when the performance of selected applications degrades
and the time at which the byte of data is sent. below a threshold level. The present invention, in one imple-

2) Fixed CoS Allocations: In another billing model, a net- 10 mentation, allows for bandwidth cost savings without sacri-
work service provider collects a monthly from a customer for ficing application performance.
network services. According to an SLA agreement, the total In another implementation, the present invention allows
bandwidth associated with the service is allocated among network administrators to configure minimum acceptable
different classes or levels of service. For example, a Service performance parameters (MAPPs) for one or more selected
Provider might make an agreement with a customer that 15 network applications. A network performance monitoring
allocates 30 percent of available bandwidth to a "Gold" class module actively tests Class of Service metrics (e.g., latency,
of service, 30 percent to a "Silver" class of service, and the jitter, packet loss, etc.), and computes the fitness of each class
remaining 40 percent to a "Bronze" class of service. In addi- of service based on the MAPPs and the observed performance
tion, the definition of each class of service is precisely of each class of service. As CoS metrics change, these fitness
described in terms of network performance. 20 values change as well. A CoS selector, in one implementation,

In addition to MPLS and other differentiated service net- is operative to selectively mark packets with the appropriate
works, many enterprises often have redundant connections CoS markings based on the fitness values, if any, that apply to
between any two given sites, or even redundant physical the packets. As discussed in more detail below, the CoS selec-
connections between a given site and the Internet. Often these tor, in some implementations, also includes functionality
connections or links differ in capabilities and cost. Routers, 25 directed to handling situations where a given Class of Service
typically using Border Gateway Protocols (BGP) to select a is oversubscribed. Still further, one implementation of the
path to a given destination host do not account for cost, present invention can employ functionality directed to moni-
performance or the application associated with the data flow. toring the performance of a network relative to an applicable
A variety of network vendors have tried to optimize perfor- service level agreement.
mance and/or reduce costs by controlling and modifying the 30

routing policies on edge routers that would otherwise result DESCRIPTION OF THE DRAWINGS
with BGP. These route optimization approaches, however,
generally involve complex and intensive technical require- FIG. 1 is a schematic diagram of a computer network
ments difficult for most network managers to use and config- environment including a differentiated services network,
ure. In addition, such network routing policy appliances, 35 such as a MPLS core network, interconnecting a first network
however, do not perform route optimization based on the and a second network.
network application associated with the data flow, rendering FIG. 2A is a schematic diagram illustrating a computer
it difficult, if not impossible, to control data flows on a per- network operably connected to a downstream differentiated
application basis. service (DS) capable domain.

In attempting to control the cost of network bandwidth, 40 FIG. 2B is a functional block diagram illustrating a traffic
enterprises typically balance cost against performance. The management device according to an implementation of the
network configuration and provisioning, however, that result present invention.
from this cost-versus-performance analysis is generally per- FIG. 2C is a schematic diagram illustrating a first computer
formed at one instance in time, and does not adapt to changing network connected to a second computer network by a plu-
network conditions. For example, it may be advantageous to 45 rality of access links.
an enterprise to use a least cost path to a given destination host FIG. 3 is a functional block diagram setting forth the func-
until the performance of one or more network applications of tionality in a traffic management device according to an
interest, or other classes of traffic, suffers. At that point, a embodiment of the present invention.
different, higher-cost path can be selected for the selected FIG. 4 is a flow chart diagram providing a method, accord-
application traffic. Still further, enterprises may desire to 50 ing to an embodiment of the present invention, directed to the
tolerate low performance for low priority applications, while processing of packets.
selectively increasing service levels for high priority applica- FIG. 5 is a TCP diagram illustrating the measurement of
tions. Known prior art mechanisms, however, are not appli- response times associated with TCP transactions.
cation aware. Furthermore, known mechanisms do not FIG. 6 is a flow chart diagram showing a method, according
dynamically adjust to changing network conditions or net- 55 to one implementation of the present invention, directed to
work application performance in this manner. coordinating the operation of two traffic management

In light of the foregoing, a need in the art exists for meth- devices.
ods, apparatuses and systems that dynamically adjust the FIG. 7 is a functional block diagram illustrating a traffic
selection of differentiated network services for selected management device according to another implementation of
classes of traffic in response to changing network conditions 60 the present invention.
or application performance levels. Embodiments of the FIG. 8 is a flow chart diagram setting forth a method,
present invention substantially fulfill this need. according to one implementation of the invention, directed to

maintaining performance metrics for different classes of ser-
SUMMARY OF THE INVENTION vice.

65 FIG. 9 is a flow chart diagram providing a method, accord-
The present invention provides methods, apparatuses and ing to an implementation of the invention, directed to assign-

systems that dynamically adjust the selection of differenti- ing a class of service to a data flow.

Juniper - Exhibit 1035, page 17

US 7,843,843 B1
7 8

FIG. 10 is a flow chart diagram illustrating a method, implementation of the present invention can be used to reduce
according to one implementation of the invention, directed to bandwidth cost, while maintaining acceptable application
re-assigning data flows to classes of network service. performance. For example, each service class typically has a

corresponding price level. Accordingly, traffic management
DESCRIPTION OF PREFERRED 5 device 130, in one implementation, can be configured to mark

EMBODIMENT(S) or tag all data flows for the least cost service class. When the
performance of a given network application (or any defined

FIGS. 1 and 2A illustrate a general network environment in class of traffic) drops below a threshold level, traffic manage-
which an embodiment of the present invention operates. As ment device 130 can begin to mark or tag the data flows
discussed above, FIG. 1 illustrates, for didactic purposes, a 10 associated with that application or traffic class for a higher,
differentiated services network 50, such as an MPLS net- more expensive class of service. In one implementation, the
work, interconnecting a first enterprise network 40, such as a network application is then downgraded to the default service
central operating or headquarters facility, and a second enter- class after a period of time, or when the performance of the
prise network 40a, such as a branch office facility. As FIG. 2A service class is once again within acceptable levels.
shows, network 40 interconnects several TCP/IP end sys- 15 In another implementation, traffic management device 130
tems, including client devices 42 and server device 44, and can be configured to optimize the performance of one or more
provides access to resources operably connected to computer networked applications. For example, traffic management
network 50 via router 22 and access link 21. Access link 21 is device 130, or another network device in the communications
a physical and/or logical connection between two networks, path, can be configured to mark or tag data flows according to
such as computer network 50 and network 40. The computer 20 a default differentiated service scheme, where high priority
network environment, including network 40 computer net- data flows receive higher classes of service. Simply designat-
work 50 is a packet-based communications environment, ing higher priority traffic for higher service classes, however,
employing TCP/IP protocols, and/or other suitable protocols, may not result in higher performance. The diffsery architec-
and has a plurality of interconnected digital packet transmis- ture offers limited service guarantees in the form of service
sion stations or routing nodes. Network 40 can be a local area 25 classes. Data flows assigned to higher service classes usually
network, a wide area network, or any other suitable network. experience lighter network load than data flows assigned to a

Differentiated services network 50, in one implementation, lower class. However, there are no guarantees for the service
is a packet-based network comprising a plurality of routing quality. Thus, at certain times load for a given service class
nodes that support a plurality of differentiated service classes. may be so high that the performance of an application using
A service class, in one implementation, defines one or more 30 that service class can be less than satisfactory. Accordingly,
characteristics of packet transmission in one direction across traffic management device 130 can be configured to select an
a set of one or more paths within differentiated services alternate service class for a given network application, if
network. These characteristics may be specified in quantita- performance under the existing service class falls below a
tive or statistical terms of throughput, delay, jitter, and/or loss, given threshold.
or may otherwise be specified in terms of some relative pri- 35 As the Figures illustrate, a variety of deployment configu-
ority of access to network resources. These characteristics rations are possible. FIG. 2B shows a first network device 41
may also be defined in relation to routes or paths within a (such as a hub, switch, router, and/or a variety of combina-
network. In one implementation, differentiated services net- tions of such devices implementing a LAN or WAN) inter-
work 50 operates by applying different per-hop behaviors to connecting two end-systems (here, client computer 42 and
aggregates of network traffic that have been marked or tagged 40 server 44). As FIGS. 2A and 2B illustrate, traffic management
in some fashion. A per-hop behavior (PHB) is a description of device 130 is provided between router 22 and network 40. In
the externally observable forwarding behavior of a routing implementations, where differentiated services network 50
node applied to a particular service class or group of service employs tags, such as MPLS tags, to aggregate network traffic
classes. PHBs may be specified in terms of their resource into service classes, router 22 must be configured to recognize
(e.g., buffer, bandwidth) priority relative to other PHBs, or in 45 these tags. Alternatively, in other implementations, traffic
terms of their relative observable traffic characteristics (e.g., management device 130 may be disposed in the communica-
delay, loss). Per-hop behaviors, in one implementation, are tion path between access link 21 and router 22. In such a
defined to provide a means of allocating buffer and bandwidth deployment, traffic management device 130 may add appro-
resources among competing traffic streams at each routing priate tags to outbound packets after they are emitted from the
node in the differentiated services network 50. Differentiated so egress interface of router 22.
services network 50 can employ one to a plurality of differ- Other configurations are possible. For example, FIG. 2C
entiated network services technologies, such as diffsery (see, illustrates another computer network environment in which
e.g., RFC 2475, Blake et al. "An Architecture for Differenti- implementations of the present invention can operate. As
ated Services"), relative priority marking, service marking, FIG. 2C shows, first and second access links 21a, 21b inter-
label switching, Integrated Services/RSVP, and static per-hop 55 connect network 40 and network 52. Router 23, in one imple-
classification. Examples of suitable label switching (or vir- mentation, is operative to select either access link 21a or 21b
tual circuit) technologies include Frame Relay, ATM, and depending on the state of the markings or tags associated with
MPLS [FRELAY, ATM]. Accordingly, traffic management each packet. Network 52 may be any suitable network, such
device 130 can determine which differentiated service class as an Internet Service Provider network, which may or may
applies to outbound data flows by marking outbound packets 60 not be a differentiated services capable domain. In addition,
with appropriate codes, labels, and/or tags. since the marking or tagging of data flows only affects out-

As discussed more fully below, traffic management device bound data flows, in certain implementations, the deployment
130 is operative to monitor the performance of one or more of traffic management devices 130, 130a (as FIG. 1 illus-
network applications and mark outbound data flows associ- trates) at strategic locations in the communications path
ated with the network applications for differentiated services 65 between networks 40, 40a can operate on data flows in both
across differentiated services network 50 depending on the directions between respective hosts associated with those
performance attributes of the network applications. One networks. As discussed more fully below, one implementa-

Juniper - Exhibit 1035, page 18

US 7,843,843 B1
9

tion of the present invention features functionality to coordi-
nate the operation of traffic management devices 130, 130a.

The functionality of traffic management device 130 can be
integrated into a variety of network devices that are typically
located at strategic points in computer networks, such as
firewalls, routers, gateways, proxies, packet capture devices
and bandwidth management devices. As FIGS. 1 and 2A
show, the traffic management device 130, in one embodiment,
is disposed on the communication path between network 40
and router 22. In other embodiments, multiple traffic man-
agement devices can be disposed at strategic points in a given
network infrastructure to achieve various objectives. For
example, the traffic monitoring functionality described herein
may be deployed in multiple network devices and used in
redundant network topologies by integrating the network
traffic synchronization functionality described in U.S. appli-
cation Ser. No. 10/611,573, incorporated by reference above.

A. Application-Aware, Adaptive Selection of Differentiated
Services

As discussed above, traffic management device 130 is
operative to monitor the performance of one or more network
applications in relation to one or more attributes of the data
flows traversing access link 21, and selectively mark or tag the
data flows for a given service class depending on the moni-
tored performance. As FIG. 2B illustrates, traffic manage-
ment device 130, in one implementation, comprises traffic
management module 75, and first and second network inter-
faces 71, 72, which operably connect traffic management
device 130 to the communications path between first network
device 41 and second network device 22. Traffic management
module 75 generally refers to the functionality implemented
by traffic management device 130. In one embodiment, traffic
monitoring module 75 is a combination of hardware and
software, such as a central processing unit, memory, a system
bus, an operating system and one or more software modules
implementing the functionality described herein.

In one embodiment, first and second network interfaces 71,
72 are the hardware communications interfaces that receive
and transmit packets over the computer network environ-
ment. In one implementation, first and second network inter-
faces 71, 72 reside on separate network interface cards oper-
ably connected to the system bus of application traffic
management device 130. In another implementation, first and
second network interfaces reside on the same network inter-
face card. In addition, the first and second network interfaces
71, 72 can be wired network interfaces, such as Ethernet
(IEEE 802.3) interfaces, and/or wireless network interfaces,
such as IEEE 802.11, BlueTooth, satellite-based interfaces,
and the like. As FIG. 2 illustrates, application traffic manage-
ment device 130, in one embodiment, includes persistent
memory 76, such as a hard disk drive or other suitable
memory device, such writable CD, DVD, or tape drives. In
other implementations, application traffic management
device 130 can include additional network interfaces, beyond
network interfaces 71 and 72, to support additional access
links or other functionality. Furthermore, U.S. application
Ser. No. 10/843,185 provides a description of the operation of
various modules, such as network interface drivers, and data
structures for receiving into memory and processing packets
encountered at network interfaces 71, 72.

As FIG. 3 illustrates, traffic management module 75, in one
implementation, includes a packet processor 82, a traffic clas-
sification database 86, a traffic policy module 84, and a traffic
monitoring module 88. In one embodiment, the packet pro-
cessor 82 is operative to process data packets, such as storing
packets in a buffer structure, detecting new data flows, and

10
parsing the data packets for various attributes (such as source
and destination addresses, and the like) and maintaining one
or more measurement variables or statistics in connection
with the flows. The traffic classification database 86, as dis-

5 cussed more fully below, is operative to classify data flows
based on one or more attributes associated with the data flows.
Traffic classification database 86, in one implementation,
stores traffic classes associated with data flows encountered
during operation of traffic management device 130, as well as

10 manually created traffic classes configured by a network
administrator, in a hierarchical traffic class structure. In one
embodiment, traffic classification database 86 stores traffic
classes, in association with pointers to traffic management
policies or pointers to data structures defining such traffic

15 management policies. Traffic policy module 84 is operative to
apply one or more traffic management policies to data flows
traversing traffic management device 130. In one implemen-
tation, traffic policy module 84 is operative to mark or tag the
packets (or alter existing markings or tags) associated with a

20 given data flow for a given service class supported by differ-
entiated service network 50. Traffic monitoring module 88, as
described more fully below, is operative to monitor the per-
formance of network 50 relative to one or more traffic classes.
For example, traffic monitoring module 88 can be configured

25 to monitor the performance of a given network application,
such as Citrix®, Oracle®, and the like in relation to one or
more performance attributes. As discussed in more detail
below, the performance of a given network application or the
overall network, as computed by traffic monitoring module

30 88, can be used to determine how data flows associated with
the network application are marked or tagged.

In one implementation, traffic management module 75 fur-
ther comprises measurement engine 140, management infor-
mation base (MIB) 138, and administrator interface 150.

35 Management information base 138 is a database of standard
and extended network objects related to the operation of
traffic management device 130. Measurement engine 140
maintains measurement data relating to operation of traffic
management device 130 to allow for monitoring of band-

40 width utilization and network performance across access link
21 with respect to a plurality of bandwidth utilization and
other network statistics on an aggregate and/or per-traffic-
class level.

Administrator interface 150 facilitates the configuration of
45 traffic management device 130 to adjust or change opera-

tional and configuration parameters associated with the
device. For example, administrator interface 150 allows
administrators to select identified traffic classes and associate
them with traffic management policies. For example, admin-

50 istrator interface 150 allows a network administrator to define
one or more service classes supported by differentiated ser-
vices network 50 and supply the labels, codes, tags or other
information required to designate packets to receive a given
class of network service. Administrator interface 150 also

55 allows a network administrator to select a given traffic class
corresponding to a network application and specify a traffic
management policy that causes traffic management device
130 to mark data flows associated with that traffic class for a
higher service class when the performance of that application

60 degrades below a configured threshold. As discussed in more
detail below, administrator interface 150, in other implemen-
tations, allows users to configure network service perfor-
mance requirements for one or more network applications to
allow the network applications to be mapped to classes of

65 service based on observed performance of the differentiated
services network. Administrator interface 150 also displays
various views associated with a hierarchical traffic classifica-

Juniper - Exhibit 1035, page 19

US 7,843,843 B1
11 12

tion scheme and allows administrators to configure or revise facilitate association of an existing control block object to
the hierarchical traffic classification scheme. Administrator subsequent packets associated with a data flow or connection,
interface 150 can be a command line interface or a graphical flow database 135 further maintains a control block hash table
user interface accessible, for example, through a conventional including a key comprising a hashed value computed from a
browser on client device 42. 5 string comprising the inside IP address, outside IP address,

A.1. Packet Processing inside port number, outside port number, and protocol type
In one embodiment, when packet processor 82 encounters (e.g., TCP, UDP, etc.) associated with a pointer to the corre-

a new data flow it stores the source and destination IP sponding control block object. According to this embodi-
addresses contained in the packet headers in host database ment, to identify whether a control block object exists for a
134. Packet processor 82 further constructs a control block 10 given data flow, packet processor 82 hashes the values iden-
(flow) object including attributes characterizing a specific tified above and scans the hash table for a matching entry. If
flow between two end systems. In one embodiment, packet one exists, packet processor 82 associates the pointer to the
processor 82 writes data flow attributes having variably-sized corresponding control block object with the data flow.
strings (e.g., URLs, host names, etc.) to a dynamic memory To allow for identification of service types (e.g., FTP,
pool. The flow specification object attributes contain attribute 15 HTTP, etc.), packet processor 82, in one embodiment, is
identifiers having fixed sizes (e.g., IP addresses, port num- supported by one to a plurality of service identification tables
bers, service IDs, protocol IDs, etc.), as well as the pointers to in a relational database that allow for identification of a par-
the corresponding attributes stored in the dynamic memory ticular service type (e.g., application, protocol, etc.) based on
pool. Other flow attributes may include application specific the attributes of a particular data flow. Of course, other suit-
attributes gleaned from layers above the TCP layer, such as 2o able data structures can be used to support the identification of
codec identifiers for Voice over IP calls, Citrix Application service types, such as a set of hard-coded instructions, an
Session identifiers, and the like. Packet processor 82, in one XML file, and the like. In one embodiment, a services table
embodiment, reserves memory space in the dynamic memory including the following fields: 1) service ID, 2) service aggre-
pool for storing such variably-sized attribute information as gate (if any), 3) name of service, 4) service attributes (e.g.,
flows traverse traffic management device 130. Packet proces- 25 port number, outside IP address, etc.), and 5) default band-
sor 82 also stores received packets in a buffer structure for width management policy. A service aggregate encompasses
processing. In one embodiment, the packets are stored in the a combination of individual services (each including different
buffer structure with a wrapper including various information matching criteria, such as different port numbers, etc.) corre-
fields, such as the time the packet was received, the packet sponding to the service aggregate. When traffic management
flow direction (inbound or outbound), and a pointer to the 30 device 130 encounters a new flow, packet processor 82 ana-
control block object corresponding to the flow of which the lyzes the data flow against the service attributes in the services
packet is a part. table to identify a service ID corresponding to the flow. In one

In one embodiment, a control block object contains a flow embodiment, packet processor 82 may identify more than one
specification object including such attributes as pointers to service ID associated with the flow. In this instance, packet
the "inside" and "outside" IP addresses in host database 134, 35 processor 82 associates the more/most specific service ID to
as well as other flow specification parameters, such as inside the flow. For example, network traffic associated with a peer-
and outside port numbers, service type (see below), protocol to -peer file sharing service may be identified as TCP or HTTP
type and other parameters characterizing the data flow. In one traffic, as well as higher level traffic types such as the actual
embodiment, such parameters can include information file sharing application itself (e.g., Napster, Morpheus, etc.).
gleaned from examination of data within layers 2 through 7 of 40 In this instance, packet processor 82 associates the flow with
the OSI reference model. U.S. Pat. No. 6,046,980 and U.S. the most specific service ID. A traffic class maintained by
Pat. No. 6,591,299, as well as others incorporated by refer- traffic classification database 86 may be configured to include
ence herein, disclose classification of data flows for use in a matching rules based on the service IDs in the services table.
packet-based communications environment. FIG. 2A illus- For example, a matching rule directed to HTTP traffic may
trates the concept associated with inside and outside 45 simply refer to the corresponding service ID, as opposed to
addresses. As discussed above, in one embodiment, a flow the individual attributes that packet processor 82 uses to ini-
specification object includes an "inside" and "outside" tially identify the service.
address relative to traffic management device 130. See FIG. In one embodiment, when packet processor 82 inspects a
2A. For a TCP/IP packet, packet processor 82 can compute flow it may detect information relating to a second, subse-
the inside and outside addresses based on the source and 50 quent flow (e.g., an initial FTP command connection being
destination network addresses of the packet and the direction the harbinger of a subsequent data connection, etc.). Packet
of the packet flow. processor 82, in response to such flows populates a remem-

In one embodiment, packet processor 82 creates and stores brance table with attributes gleaned from the first flow, such
control block objects corresponding to data flows in flow as IP addresses of the connection end points, port numbers,
database 135. In one embodiment, control block object 55 and the like. Packet processor 82 scans attributes of subse-
attributes include a pointer to a corresponding flow specifi- quent flows against the remembrance table to potentially
cation object, as well as other flow state parameters, such as associate the subsequent flow with the first flow and to assist
TCP connection status, timing of last packets in the inbound in identification of the second flow.
and outbound directions, speed information, apparent round A.2. Traffic Classification
trip time, packet count, etc. Control block object attributes 60 Traffic classification engine 86 is operative to inspect pack-
further include at least one traffic class identifier (or pointer(s) ets in data flows, and apply matching rules corresponding to
thereto) associated with the data flow, as well as policy a plurality of traffic classes. Traffic classification engine 86, in
parameters (or pointers thereto) corresponding to the identi- one implementation, comprises a plurality of service type
fied traffic class. In one embodiment, control block objects identification modules, each of which correspond to a set of
further include a list of traffic classes for which measurement 65 service types. Each service type identification module ana-
data (maintained by measurement engine 140) associated lyzes one or more packets in a given data flow to attempt to
with the data flow should be logged. In one embodiment, to identify a service type corresponding to the flow. A service

Juniper - Exhibit 1035, page 20

US 7,843,843 B1
13

type, in one implementation, can be a network protocol, a
service, or a network-application. For example, one service
type identification module can correspond to a network appli-
cation, such as Citrix®, while another service type identifi-
cation module can be dedicated to detecting Oracle® or Post- 5

greSQL database traffic. Stilt other service type identification
modules can classify HTTP flows, FTP flows, ICMP flows,
RTP flows, NNTP, SMTP, SSL, DICOM and the like. In one
implementation, traffic classification engine 86 passes point-
ers to received packets to each service type identification 10
module, which then inspect the packets stored in the buffer
memory. In one implementation, each service type identifi-
cation module has an associated packet count threshold (in
the aggregate, packets from server to client, or client to
server) after which it no longer attempts to classify a data 1
flow. In one implementation, the packet count threshold will
vary across the service type identification modules. For
example, a service type identification module dedicated to
classifying Citrix® traffic may be able to classify a data flow
with certainty after three packets. In many instances, appli- 2
cation traffic management device 130 may have to encounter
more than one packet corresponding to a data flow in order to
finally classify the data flow. For example, the initial TCP
handshake packets may only reveal IP address, port numbers
and protocol identifiers. While this information may be suf- 2
ficient to identify HTTP traffic, for example, additional pack-
ets (such as data packets) may reveal a more specific network
application, such as an accounting application or peer-to-peer
file sharing application, that utilizes HTTP. Accordingly, in
one implementation, each service type identification module 3

responds to receiving a pointer to a packet by 1) reporting a
matching service type identifier and the desire to inspect more
packets in the flow (to possibly identify a more specific ser-
vice type identifier); 2) reporting a matching service type and
no interest in inspecting subsequent packets in the flow; 3) 3

reporting no matching service type identifier and the desire to
inspect more packets in the flow; and 4) reporting no match-
ing service type and no interest in inspecting subsequent
packets in the flow.

To allow for identification of service types (e.g., FTP, 4

HTTP, etc.), traffic classification engine 86, in one embodi-
ment, is supported by one to a plurality of service identifica-
tion tables in a relational database that allow for identification
of a particular service type (e.g., application, protocol, etc.)
based on the attributes of a particular data flow. Of course, 4

other suitable data structures can be used to support the iden-
tification of service types, such as a set of hard-coded instruc-
tions, an XML file, and the like. In one embodiment, a ser-
vices table including the following fields: 1) service ID, 2)
service aggregate (if any), 3) name of service, 4) service 5
attributes (e.g., port number, outside IP address, etc.), and a 5)
default bandwidth management policy. A service aggregate
encompasses a combination of individual services (each
including different matching criteria, such as different port
numbers, etc.) corresponding to the service aggregate. When 5
application traffic management device 130 encounters a new
flow, the service type identification modules of traffic classi-
fication engine 86 analyze the data flow against the service
attributes in their respective services tables to identify a ser-
vice ID corresponding to the flow. In one embodiment, traffic 6

classification engine 86 may identify more than one service
ID associated with the flow. In this instance, traffic classifi-
cation engine 86 associates the more/most specific service ID
to the flow. For example, network traffic associated with a
peer-to-peer file sharing service may be identified according 6

to a network protocol, such as TCP or HTTP traffic, as well as
higher level, application-specific traffic types such as the

14
actual file sharing application itself (e.g., Napster, Morpheus,
etc.). In this instance, traffic classification engine 86 associ-
ates the flow with the most specific service ID. As a further
example, an RTSP application data flow can be further clas-
sified to RTSP-Broadcast or RTSP-REALNET-TCP in the
middle of the flow after a particular signature in the packets is
encountered. In one implementation, traffic classification
engine 86 writes the identified service type ID into the control
block (flow) object corresponding to the data flow.

As discussed more fully below, service type identification,
in one implementation, is a preliminary operation to the clas-
sification of a data flow according to the hierarchical traffic
classification scheme configured by a network administrator.

5 For example, a traffic class maintained by traffic classification
engine 86 may be configured to include matching rules based
on the service IDs in the services table. For example, a match-
ing rule directed to HTTP traffic may simply refer to the
corresponding service ID, as opposed to the individual

0 attributes that the service type identification modules uses to
initially identify the service. This implementation allows for
a variety of hierarchical traffic classification configurations,
such as the configuration of child traffic classes that further
classify HTTP traffic on the basis of a network application, a

5 range of IP addresses, and the like. Still further, the service
type identifiers can correspond to a specific network applica-
tion (e.g., Napster, Citrix, NetIQ, Oracle, Skype, etc.) and
more generally to network protocols or services, such as IP,
TCP, HTTP, SOAP, XML, UDP, FTP, SMTP, FTP, UDP, etc.

o A traffic class comprises a set of matching rules or
attributes allowing for logical grouping of data flows that
share the same characteristic or set of characteristics. In one
implementation, the matching rules can correspond to the
service type identifiers discussed above, as well as other data

5 flow attributes, such as the network interface on which the
packets are received by application traffic management
device, whether the server is the inside or outside host (see
above), non-standard and standard port numbers, host IP
address or subnet, MAC address, application-specific strings,

o diffsery codes, MPLS tags, VLAN tags, and the like. In one
embodiment, each traffic class has at least one attribute defin-
ing the criterion(ia) used for identifying a specific traffic
class. In one implementation, the attributes defining a given
traffic class can be based on explicitly presented attributes of

5 one or more packets corresponding to a data flow (as dis-
cussed above), or be based on behavioral attributes of the end
systems associated with the flow. The U.S. patent applica-
tions identified above disclose various network traffic classi-
fication mechanisms that can be incorporated into embodi-

o ments of the present invention. For example, a traffic class can
be defined by configuring an attribute defining a particular IP
address or subnet. Of course, a particular traffic class can be
defined in relation to a plurality of related and/or orthogonal
data flow attributes. U.S. Pat. Nos. 6,412,000 and 6,591,299,

5 and U.S. patent application Ser. No. 10/039,992 describe
some of the data flow attributes that may be used to define a
traffic class, as well as the use of hierarchical classification
structures to associate traffic classes to data flows. In one
embodiment, application traffic management device 130

o includes functionality allowing for classification of network
traffic based on information from layers 2 to 7 of the OSI
reference model. Application traffic management device 130
can be configured to include matching rules that define a
plurality of network applications commonly found in enter-

s prise networks, such as database applications, Citrix® flows,
ERP applications, and the like. As discussed below, the
matching rules or attributes for a traffic class may be based on

Juniper - Exhibit 1035, page 21

US 7,843,843 B1
15 16

various types of node behavior, such as the number of con- allows an administrator to manually create a traffic class by
current connections of the inside or outside host. specifying a set of matching rules and, as discussed below,

In one embodiment, application traffic management device also automatically creates traffic classes by monitoring net-
130 is configured to include a predefined set of traffic classes work traffic across access link 21 and classifying data flows
based upon a knowledge base gleaned from observation of 5 according to a set of criteria to create matching rules for each
common or known traffic types on current networks. Appli- traffic type. In one embodiment, each traffic class node
cation traffic management device 130, in one embodiment, includes a traffic class identifier; at least one traffic class
also allows an administrator to manually create a traffic class (matching) attribute; at least one policy parameter (e.g., a
by specifying a set of matching attributes. As discussed bandwidth utilization control parameter, a security policy
above, administrator interface 150, in one embodiment, io parameter, etc.), a pointer field reserved for pointers to one to
allows for selection of a traffic class and the configuration of a plurality of child traffic classes. In one embodiment, traffic
traffic management policies for the selected traffic class. classification engine 86 implements a reference tree classifi-
Administrator interface 150, in one embodiment, also allows cation model wherein separate traffic classification trees can
for the selection and arrangement of traffic classes into hier- be embedded in traffic class nodes of a given traffic classifi-
archical reference trees. In one embodiment, traffic classifi- 15 cation tree. U.S. application Ser. No. 10/236,149, incorpo-
cation engine 86 also stores traffic classes added by the traffic rated by reference herein, discloses the use and implementa-
discovery module. Furthermore, as discussed below, applica- tion of embeddable reference trees.
tion traffic management device 130 may also include traffic A.2.a. Automatic Traffic Classification
class discovery functionality that automatically adds traffic As discussed above, a traffic discovery module (not
classes to traffic classification engine 86 in response to data 20 shown), in one implementation, analyzes data flows for which
flows traversing the device. Automatic network traffic discov- no matching traffic class was found in traffic classification
ery and classification (see below) is disclosed in U.S. Pat. database 86. The traffic discovery module, in one embodi-
Nos. 6,412,000, 6,457,051, and 6,591,299, which are incor- ment, is operative to apply predefined sets of matching rules
porated herein by reference. to identify a traffic class corresponding to non-matching data

Traffic classification engine 86, in one implementation, 25 flows. In one implementation, traffic discovery module oper-
stores traffic classes associated with data flows that traverse ates on data flows classified as either /Inbound/Default or
access link 21. Traffic classification engine 86, in one Outbound/Default. In one embodiment, the traffic discovery
embodiment, stores the traffic classes and corresponding data module is configured to include a predefined set of traffic
(e.g., matching rules, policies, partition pointers, etc.) related classes based upon a knowledge base gleaned from observa-
to each traffic class in a hierarchical tree. This tree is orga- 30 tion of common or known traffic types on current networks. In
nized to show parent-child relationships that is, a particular one embodiment, the traffic discovery module creates traffic
traffic class may have one or more subordinate child traffic classes automatically in response to data flows traversing
classes with more specific characteristics (matching rules) traffic management device 130 and stores such traffic classes
than the parent class. For example, at one level a traffic class in traffic classification database 86. Automatic traffic classi-
may be configured to define a particular user group or subnet, 35 fication is disclosed in U.S. Pat. Nos. 6,412,000, 6,457,051,
while additional child traffic classes can be configured to and 6,591,299, which are incorporated herein by reference.
identify specific application traffic associated with the user As discussed above, the traffic discovery module applies
group or subnet. U.S. application Ser. No. 10/334,467, as well one or more traffic discovery thresholds when deciding
as other patents and patent applications identified above, dis- whether to present or add newly discovered traffic classes. In
close how traffic classification engine 86 traverses the hier- 40 one embodiment, the traffic discovery module must detect a
archical tree to match a data flow to a leaf traffic class node. minimum number of data flows within a predefined period for

In one embodiment, the root traffic classifications are "/In- a given traffic type before it creates a traffic class in traffic
bound" and "/Outbound" data flows. Any data flow not classification database 86. In one embodiment, auto-discov-
explicitly classified is classified as "/Inbound/Default" or ered traffic classes are automatically assigned predefined traf-
"/Outbound/Default". The "LocalHost" traffic class corre- 45 fic management policies. U.S. patent application Ser. No.
sponds to packets and data flows destined for application 09/198,051, incorporated by reference herein, discloses auto-
traffic management device 130, such as requests for stored matic assignment of traffic policies for discovered traffic
measurement data, traffic class mapping packets, or device classes.
configuration changes. In one embodiment, traffic classifica- A.3. Application of Traffic Management Policies to Data
tion engine 86 attempts to match to a leaf traffic class node 50 Flows
before proceeding to remaining traffic class nodes in the As discussed above, traffic policy module 84 applies the
hierarchical configuration. If a traffic class is found, the traffic traffic policies identified in the control block object corre-
classification engine 86 stops the instant search process and sponding to various flows. As discussed above, certain traffic
returns the identified traffic classification. Of course, one policies can be differentiated network service policies, such
skilled in the art will recognize that alternative ways for 55 as selection of certain MPLS tags, diffsery codes, and the like.
traversing the hierarchical traffic class configuration can be Accordingly, in one implementation, traffic policy module 84
implemented. For example, traffic classification engine 86 is operative to add the required markings or tags to the packets
may be configured to traverse all traffic class nodes at a given in the data flow as required by the differentiated services
level before proceeding to lower levels of the traffic classifi- technologies or protocols employed by differentiated ser-
cation tree. 60 vices network 50. In one implementation, to support the

In one embodiment, administrator interface 150 displays implementation of the differentiated services policies
the traffic class tree and allows for selection of a traffic class described herein, a table or other data structure stores network
and the configuration of bandwidth utilization controls for service class identifiers in association with the tags, labels,
that traffic class, such as a partition, a policy, or a combination codes or other information required to designate packets for
thereof. Administrator interface 150 also allows for the 65 the given class of service. Traffic policy module 84, in one
arrangement of traffic classes into a hierarchical classification implementation, consults this data structure after obtaining
tree. Application traffic management device 130 further the service class identifier from the control block object to

Juniper - Exhibit 1035, page 22

US 7,843,843 B1
17 18

retrieve the information required to appropriately mark the above, configurable partition parameters include 1) minimum
packets. In some implementations, traffic policy module 84 partition size (in bits per second); 2) whether it is burstable
may also apply other traffic policies or controls, such as (that is, when this option is selected, it allows the partition to
bandwidth utilization controls, security policies and the like. use available excess bandwidth; when the option is not

For example, traffic policy module 84, in one implemen- 5 selected the partition has a fixed size); and 3) maximum
tation, is operative to enforce bandwidth utilization controls, bandwidth to be used when the partition bursts.
in addition to or in lieu of differentiated services policies, on A.3.b. Per-Flow Bandwidth Utilization Controls
data flows traversing access link 21. A bandwidth utilization Traffic policy module 84 is also operative to enforce per-
control for a particular data flow can comprise an aggregate flow bandwidth utilization controls on traffic across access
control bandwidth utilization control, a per-flow bandwidth 10 link 21. Whereas aggregate bandwidth utilization controls
utilization control, or a combination of the two. Traffic policy (e.g., partitions, above) allow for control of aggregate data
module 84 can use any suitable functionality to enforce band- flows associated with a traffic class, per-flow bandwidth uti-
width utilization controls known in the art, including, but not lization controls allow for control of individual data flows. In
limited to weighted fair queuing, class-based weighted fair one embodiment, traffic policy module 84 supports different
queuing, Committed Access Rate (CAR) and "leaky bucket" 15 bandwidth utilization control types, including, but not limited
techniques. Traffic policy module 84 may incorporate any or to, priority policies, rate policies, and discard policies. A
a subset of the TCP rate control functionality described in the priority policy determines how individual data flows associ-
cross-referenced U.S. patents and/or patent applications set ated with a traffic class are treated relative to data flows
forth above for controlling the rate of data flows. Bandwidth associated with other traffic classes. A rate policy controls the
management device 130, however, can also be configured to 20 rate of data flows, for example, to smooth bursty traffic, such
implement a variety of different policy types, such as security as HTTP traffic, in order to prevent a TCP end system from
policies, admission control policies, redirection policies, sending data packets at rates higher than access link 21
caching policies, transcoding policies, and network address allows, thereby reducing queuing in router buffers and
translation (NAT) policies. Of course, one of ordinary skill in improving overall efficiency. U.S. patent application Ser. No.
the art will recognize that other policy types can be incorpo- 25 08/742,994 now U.S. Pat. No. 6,038,216, incorporated by
rated into embodiments of the present invention. reference above, discloses methods and systems allowing for

A.3.a. Aggregate Bandwidth Utilization Control explicit data rate control in a packet-based network environ-
An aggregate bandwidth utilization control operates to ment to improve the efficiency of data transfers. Similarly,

manage bandwidth for aggregate data flows associated with a U.S. Pat. No. 6,018,516, incorporated by reference above,
traffic class. An aggregate bandwidth utilization control can 30 methods and systems directed to minimizing unneeded
be configured to essentially partition the available bandwidth retransmission of packets in a packet-based network environ-
corresponding to a given access link. For example, a partition ment. A rate policy can be configured to establish a minimum
can be configured to protect a network traffic class by guar- rate for each flow, allow for prioritized access to excess avail-
anteeing a defined amount of bandwidth and/or limit a net- able bandwidth, and/or set limits on total bandwidth that the
work traffic class by placing a cap on the amount of band- 35 flow can consume. A discard policy causes traffic policy
width a traffic class can consume. Such partitions can be fixed module 84 to discard or drop data packets or flows associated
or "burstable." A fixed partition allows a traffic class to use in with a particular traffic class. Other policy types include
the aggregate a defined amount of bandwidth. A fixed parti- redirection policies where an inbound request designating a
tion not only ensures that a specific amount of bandwidth will particular resource, for example, is redirected to another
be available, but it also limits data flows associated with that 40 server.
traffic class to that same level. A burstable partition allows an A.4. Measurement Engine and Management Information
aggregate traffic class to use a defined amount of bandwidth, Base
and also allows that traffic class to access additional unused As discussed above, measurement engine 140 maintains
bandwidth, if needed. A cap may be placed on a burstable data associated with the operation of traffic management
partition, allowing the traffic class to access up to a maximum 45 device 130 and the computer network environment, including
amount of bandwidth, or the burstable partition may be data allowing for measurement of bandwidth utilization
allowed to potentially consume all available bandwidth across access link 21 with respect to a plurality of bandwidth
across the access link. Partitions can be arranged in a hierar- utilization and other network statistics. The information
chy that is, partitions can contain partitions. For example, obtained by these modules may be used in the analysis of
the bandwidth, or a portion of the bandwidth, available under so network application performance, discussed below. In one
a parent partition can be allocated among multiple child par- implementation, measurement engine 140 is operative to
titions. In one embodiment, at the highest level, a partition record or maintain numeric totals of a particular measurement
exists for all available outbound bandwidth, while another variable at periodic intervals on a traffic classification basis.
partition exists for all available inbound bandwidth across the For example, measurement engine 140 monitors the number
particular access link. These partitions are then sub-dividable 55 of inbound and outbound packets, the number of flows, peak
to form a hierarchical tree. For example, an enterprise and average rates, as well as the number of bytes, traversing
employing static partitions may define a static partition for a traffic management device 130 on an aggregate (access link),
PeopleSoft software application traffic class, and sub-divide partition, and/or traffic class level. Other network statistics
this parent partition into a large burstable child partition for its can include the number of TCP packets, the number of
human resources department and a smaller burstable child 60 retransmitted TCP packets, the peak number of concurrently
partition for the accounting department. U.S. patent applica- active TCP flows or other connections, etc. Measurement
tion Ser. No. 10/108,085 includes a discussion of methods for engine 140 also maintains data relating to operation of traffic
implementing partitions, as well as novel solution for imple- management device 130, such as aggregate byte count, aggre-
menting partitions arranged in a hierarchical allocation gate packet count, the TCP data packet count, the TCP
scheme. 65 retransmit packet count, the TCP tossed retransmit packet

In one embodiment, a partition is created by selecting a count, the peak number of active TCP flows. Measurement
traffic class and configuring a partition for it. As discussed engine 140 can also maintain network statistics associated

Juniper - Exhibit 1035, page 23

US 7,843,843 B1
19 20

with the service classes supported by differentiated services applications that an enterprise deems important or critical. In
network, such as aggregate byte count, aggregate packet one implementation, application or network performance is
count, the TCP data packet count, the TCP retransmit packet determined relative to response times which is a primary
count, the TCP tossed retransmit packet count, the peak num- indicator of a user's experience with a network application. In
ber of active TCP flows. Measurement engine 140 further 5 one implementation, application traffic monitoring module
maintains data relating to traffic classes, such as, for a given 88 is operative to provide performance related statistics like
traffic class: the packet count in the traffic class, the TCP data network delay, server delay, and congestion metrics for
packet count in the class, the TCP retransmit packet count in selected applications or other user-defined traffic classes,
the class, and the peak number of active TCP flows in the such as individual hosts, subnets, and for any transaction-
class, as well as a "class hits" count characterizing the number 10 oriented TCP traffic class. Application traffic monitoring
of flows that were matched to a given traffic class. Of course, module 88 can break down the total observed delay, for each
measurement engine 140 can be configured to record and response-time measurement into network delay (time spent in
maintain a variety of network utilization and performance transit) and server delay (time the server used to process the
related data. request). The location of traffic management device 130 at

In one embodiment, measurement engine 140 monitors 15 strategic points in a given network environment monitoring
operation of traffic management device 130 and maintains all the traffic that passes facilitates the accurate determina-
values (e.g., packet counts, peak bandwidth utilization val- tion of response times. That is, because traffic management
ues, and other quantities) for various network operation, uti- device 130 encounters all data flows transmitted to and from
lization and performance statistics. In one embodiment, mea- network 40, it can readily calculate the time network traffic
surement engine 140 maintains such values in volatile 20 spends traveling between a client and a server, the time used
memory and, at periodic intervals, stores the data in persistent by the server, and the time spent on either side of traffic
memory, such as a hard drive, with a time stamp and clears the management device 130 itself.
network statistic values in the volatile memory space. As Application traffic monitoring module 88, in one imple-
discussed above, network statistic data can be stored in asso- mentation, can make the following measurements or response
ciation with identifiers for access link 21, as well as for 25 time determinations:
various traffic classes associated with the current configura- 1) total delay: The total time (in milliseconds) a transaction
tion of traffic management device 130. In one embodiment, requires, beginning with a client's request and ending upon
measurement engine 140 stores network statistic data in per- receipt of the response, corresponding to the end user's view
sistent memory at one-minute intervals; however, other suit- of the time it takes for a transaction to complete.
able time intervals can be chosen as a matter of engineering 30 2) network delay: The time (in milliseconds) spent in tran-
design or administrative need. In addition, the persistent sit when a client and server exchange data. If a transaction
memory, in one embodiment, includes sufficient capacity to requires a large quantity of data to be transferred, it is divided
store a large amount of network management data, such as and sent in multiple packets. Network delay includes the
data for a period of 24, 48, or 72 hours. transit time for all packets involved in a request-response

In one embodiment, the time interval at which measure- 35 transaction. The amount of time the server uses for processing
ment engine 140 stores network management data in persis- a request is not included.
tent memory is a configurable parameter. Additionally, mea- 3) server delay: The time (in milliseconds) the server uses
surement engine 140 includes APIs allowing other modules to process a client's request after it receives all required data.
to access the raw measurement data. In one embodiment, The server delay is the time after the server receives the last
measurement engine 140 includes APIs and associated func- 40 request packet and before it sends the first packet of response
tionality that aggregates raw measurement data over specified (not receipt acknowledgment, but actual response content).
time intervals (e.g., the last hour, 15 minutes, day, etc.). This is the time the server takes to process the client's request.

Management information base 138 maintains a database of 4) normalized network delay: The time (in milliseconds)
standard and extended network objects maintaining counts per kilobyte spent in transit when a client and server exchange
and other statistics relating to the operation of bandwidth 45 data. If a transaction requires a large quantity of data to be
management device 30. In one embodiment, the data main- transferred, it is divided and sent in multiple packets. Because
tained by management information base 138 can be extracted network delay increases as transaction size increases, it can
using Simple Network Management Protocol (SNMP) que- be misleading when comparing times. Normalized network
ries. In one embodiment, management information base 138 delay eliminates size as a factor to facilitate comparisons
is maintained in dynamic memory, such as Random Access so across flows and applications.
Memory. For example, the management information base 5) round trip time (RTT): The time (in milliseconds) spent
138 maintains counts related to the operation of the inside and in transit when a client and server exchange one small packet.
outside network interfaces associated with the bandwidth Even if a transaction's data is split into multiple packets, RTT,
management device 30, such as the number of bytes trans- includes only one round trip of a single packet between client
mitted from an interface, the number of bytes received on an 55 and server.
interface, the number of queued packets, transmission error 6) Packet exchange time (PET): The time (in milliseconds)
counts, etc. Management information base 138 also main- between a packet's departure from traffic management device
tains counts related to the operation of different modules and receipt of the corresponding acknowledgment. This met-
(e.g., packet processor 82, traffic policy module 84, etc.) ric reflects only the delay for the network on one side of traffic
included in traffic management device 130. 60 management device 130. U.S. application Ser. No. 09/710,

A.S. Monitoring Network or Application Performance 442 discloses methods and systems for monitoring network
As discussed above, application traffic monitoring module delay on an application-level basis attributable to different

88 is operative to monitor the packet path in the inbound and networks by monitoring data flows at a demarcation point
outbound directions to gather various measurement data and between the two networks.
compute the performance of one or more selected traffic 65 In one implementation, traffic management device 130 can
classes. In a typical configuration, the traffic classes for which be configured to initiate synthetic web or other TCP transac-
performance is monitored generally correspond to network tions at periodic intervals to verify the availability of critical

Juniper - Exhibit 1035, page 24

US 7,843,843 B1
21

hosts. This activity is similar to scheduled pings or SNMP
polls, but has the added advantage of the functionality of
application traffic monitoring module 88 being applied to
analyze synthetic transaction behavior and response times,
rendering the ability to profile network and host behavior over 5
time.

A.5.a. Calculating Transit Delays
To compute the delay measurements discussed above,

application traffic monitoring module 88 tracks the course of
a client-server transaction, making various packet arrival time 10

and size observations, and uses information about a TCP
connection to differentiate one portion of the exchange from
another in order to compute accurate performance statistics.
FIG. 5 illustrates the typical components associated with a
TCP connection. FIG. 5 is a standard TCP diagram showing 15

the course of a network transaction over time. Arrows indicate
packets traveling the network between client and server. Time
increases as one descends the diagram, with successive event
times noted as TN, T1 representing the first event and T22, the
last. 20

As FIG. 5 illustrates, a client initiates a server connection
with a SYN at time T1. Application traffic monitoring module
88 notes the SYN at time T2 and forwards it along to the
server. The server responds with a SYN-ACK at time T3.
Application traffic monitoring module 88 notes the SYN- 25

ACK at time T4, passing it along as shown. TCP stacks
usually respond with a SYN-ACK very rapidly, within the
kernel and with no context switches. The SYN-ACK follows
the SYN almost immediately. Therefore, time T4 minus time
T2 results in an accurate measure of the round-trip network 30

delay between traffic management device 130 and the server.
This interchange produces the first quantity, the server transit
delay (STD):

STD= T4—T2
35

The client receives the SYN-ACK and issues the final ACK
of the three-way handshake at time T5. Application traffic
monitoring module 88 notes the ACK at time T6, passing it
along to the server. In one implementation, it is reasonably
assumed that no processing transpires between the client's 40
receipt of the SYN-ACK and its own corresponding ACK at
time T5. Time T6 minus time T4 yields an accurate measure
of the round-trip network delay between the client and traffic
management device 130. The client transit delay (CTD):

45
C TD= T6— T4

Putting together the server transit delay (STD) and the
client transit delay (CTD) yields the total delay between the
client and the server for a single round trip.

RTT(Round-Trip Time)=STD+CTD
50

A.5.b. Determining the Server Delay
The client initiates its request at time T8, arriving at the

traffic management device 130 at time T9. For large requests,
the request is divided into multiple packets. The TCP diagram 55
of FIG. 5 eliminates the server's corresponding ACKs to
simplify the picture, because these ACKs are not material to
the calculations described herein. The last request packet,
sent at time T11, has its Push Flag set to one indicating it is the
final packet. Traffic management device 130 notes the time of
this last request packet at T12. After the last request packet
arrives at the server at time T13, the server assembles the
request, conducts whatever processing is required for the
request, and assembles its response. The server sends the first
packet (of potentially several response packets) at time T14.

Time T14 minus time T13 is the actual server-processing
time required for the request, but these times are not visible to

22
application traffic monitoring module 88. However, applica-
tion traffic monitoring module 88 knows that the server's
processing time occurred after it saw the last request packet
and before it saw the first response packet (time T15 minus
time T12). Additionally, it knows that another component of
this interval was the transit time from traffic management
device 130 to the server and back again. Conveniently, it
already has that figure i.e., the server transit delay (STD). In
addition, there is a small amount of time spent serializing the
bits in the response packet and preparing them for their bit
stream. This time was not included in the original server
transit delay because the SYN and ACK packets are
extremely small. Application traffic monitoring module 88, in
one implementation, knows the size of the packet, calculates
this preparation time accordingly (. 1), and adds it to the STD
before subtracting the sum from the time difference. There-
fore,

Server Delay=(T15—T12)—(STD+Al)

A.5.c. Determining the Total Delay
The termination of a transaction is key to calculating the

total delay; however, it is not always obvious when a trans-
action ends. The combination of a Push flag from the server
and its corresponding ACK from the client frequently signal
the end of a transaction. But long transactions often insert
Push flags throughout the transaction. In addition to monitor-
ing Push flags, application traffic monitoring module 88 uses
a timer to track transactions and uses the following rules:

1) If a Push flag seems to indicate a transaction's end, but
the server continues sending more data, the timer continues to
advance.

2) If the client sends a new request, application traffic
monitoring module 88 ends the last transaction and records
the last time noted.

3) If there is no activity from either the server or the client,
application traffic monitoring module 88 considers the trans-
action complete and records the last time noted.

4) When the connection ends, traffic management device
130 sees the FIN and records the last time noted.

Using these techniques, application traffic monitoring
module 88 notes the last response packet at time T18, makes
sure that it saw all required ACKs for the request packets, and
verifies that the last response packet indeed represented the
end of the transaction. After the client receives the final
response packet at time T19, it sends an ACK. The ACK
reaches traffic management device 130 at time T21. The
client's perspective of response time starts with sending the
first request packet (T8) and ends with receipt of the final
response packet (T20). Application traffic monitoring module
88 sees that interval as time T9 to time T21. Although this is
a close estimate of the client's view, it misses some extra
preparation time for serializing the first request packet,
assuming it is larger than the final ACK. Because application
traffic monitoring module 88 knows the packet-size differ-
ence, however, it can calculate this small discrepancy (42).
Therefore,

Total delay=(T21—T9)+A2

A.5.d. Determining Network Delay
60 Once application traffic monitoring module 88 computes

the server delay and the total delay, it can calculate the amount
of time the transaction spent in transit.

Network delay=(Total delay)—(Server delay)

65 Whereas the RTT represents the transit time for just one
round trip, the network delay reflects all transit time for the
transaction. If the transaction's data is large, multiple packets

Juniper - Exhibit 1035, page 25

US 7,843,843 B1
23 24

need to make their way to and from the server. Only the to execute compiled application performance analysis scripts.
network delay reflects this overhead. The network delay is not In one such embodiment, the embedded runtime environment
necessarily an even multiple of the RU because multiple may include just-in-time compiler functionality to compile
packets are not sent consecutively but tend to overlap to source code scripts into object or byte code form before
varying degrees. In addition, because network and total delay 5 execution. As discussed more fully below, traffic manage-
are products of transaction size, ping times and RTM mea- ment device 130 stores one or more application performance
surements are not comparable. analysis scripts operative to determine whether the perfor-

A.5.e. Aggregation and Analysis of Response Time Mea- mance of a given network application or other traffic class
surements complies with one or more threshold criterion. In one

Application traffic monitoring module 88, in one imple- 10 embodiment, application performance analysis scripts are
mentation, collects packet arrival time observations and sizes implemented as application performance analysis objects,
and computes response time measurements for the data flows which are instantiations of application performance analysis
and stores the computed measurement values in one process. classes. In one embodiment, application performance analy-
A separate process accesses the stored values to analyze the sis objects can be instantiated for each traffic management
performance of one or more network applications in relation 15 device 130 and maintained such that the state of the applica-
to one or more performance thresholds. Depending on the tion performance analysis object can be pickled after execu-
results of the analysis, this process can result in changes to the tion to allow for certain data related to application perfor-
differentiated service policies applied to a given network mance analysis to persist. U.S. application Ser. No. 10/178,
application or other traffic class. Application traffic monitor- 617, incorporated by reference herein, discloses the
ing module 88, in one implementation, collects response time 20 incorporation of embedded runtime environments into band-
measurements associated with given traffic class identifiers, width management devices and the pickling of objects to
maintains the data in volatile memory for a given time interval persist data and variables.
(e.g., 1 minute), and then stores the data in non-volatile In the following sections, a didactic example of a script is
memory (similar to measurement engine 140). In another provided that analyzes the performance of a given traffic class
implementation, measurement engine 140 can be configured 25 and upgrades the service class corresponding to that traffic
to store the relevant measurement variables. In another imple- class if the measured performance falls below a threshold
mentation, application traffic monitoring module 88 can aver- value. In one embodiment, administrator interface 150 allows
age the response time measurements over the time interval network administrators to configure a differentiated network
and stores the average response time measurements for each services policy that specifies a default service class, as well as
traffic class. Application traffic monitoring module 88 further 30 a performance threshold. When a network administrator
includes APIs and associated functionality that aggregates selects this configuration option for a given traffic class, the
raw response time measurement data over specified time corresponding traffic class identifier, the default service class
intervals (e.g., the last hour, 15 minutes, day, etc.) on a traffic and the performance threshold are added to a dynamic con-
class or network-wide basis. A separate process, using these figuration file. The performance analysis script of other func-
APIs, can compute average response times over desired inter- 35 tionality accesses this configuration file to determine for
vals and compare these response times to pre-configured which traffic classes performance measurements should be
performance thresholds. analyzed. As the script provided below indicates, if the ana-

Traffic management device 130, in one embodiment, fea- lyzed performance falls below the specified threshold for any
tures a plug-in architecture that facilitates, among other given traffic class, the network service class for that traffic
things, updates to application traffic monitoring module 88 40 class is upgraded. In one embodiment, this is accomplished
(as well as other) functionality. A plug-in can contain data that by overwriting the current network services class policy in
extends and/or modifies one or more tables or data structures traffic classification database 86 to an upgraded service class.
used by application traffic monitoring module 88 and/or Accordingly, as discussed above, when traffic management
updated code. Application traffic monitoring module 88, in device 130 encounters subsequent data flows associated with
one embodiment, uses a shared (dynamic link) library loader 45 that traffic class, the upgraded service class policy will be
to add analysis plug-ins to an existing software release during written into the control block object corresponding to the flow
a boot sequence. The shared library loader, in one embodi- and, therefore, will be ultimately applied to the data flow. In
ment, is operative to determine whether any plug-ins exist addition, once network service for a given traffic class is
(e.g., by checking a directory or other reserved file space), and upgraded, a separate process or analysis script, in one imple-
to extend/modify tables or other data structures and/or regis- 50 mentation, operates to determine when to downgrade the
ter specific code as required. This plug-in architecture can be traffic class to its default differentiated service class.
used to extend or modify how traffic monitoring module 88 A variety of implementations are possible. In one imple-
analyzes application performance and adjusts the differenti- mentation, a traffic class is downgraded after some configured
ated services policies applied to various traffic classes. period of time after it was initially upgraded. For example, a

In another embodiment, traffic management device 130 55 traffic class may be upgraded and automatically downgraded
can be configured to include an embedded runtime environ- after an hour (or other configurable period). If performance of
ment (not shown) that is operative to execute application that traffic class falls below the threshold, it will again be
performance analysis scripts installed on traffic management upgraded upon a subsequent operation of the performance
device 130. Such an embodiment allows network administra- analysis functionality discussed above. In one implementa-
tors and others to create custom application performance 60 tion, traffic management device 130 uses synthetic transac-
analysis scripts tailored to a vast array of requirements, con- tions to determine when a given traffic class should be down-
ditions and goals. In one embodiment, the embedded runtime graded. For example, by identifying one or more outside hosts
environment is an object-oriented runtime environment, such associated with a given traffic class, traffic management
as Python or Java®. The embedded runtime environment may device 130 can test performance of the network to these hosts
be configured to include a runtime interpreter that interprets 65 using the default service class associated with the traffic class.
and executes scripts in source code form. In another embodi- If the PET performance associated with the synthetic trans-
ment, the embedded runtime environment may be configured actions on the default (or lower service value) is less than a

Juniper - Exhibit 1035, page 26

US 7,843,843 B1
25 26

threshold value, the traffic class is downgraded to its default which to consider downgrading the class; and 3) `upgradeRe-
service level. In another implementation, application traffic EvalTime if a class was downgraded, this parameter speci-
monitoring module 88 analyzes the performance of non-up- fies the time interval at which to reexamine performance,
graded flows that are still running over the lower, default which could be sooner than "evalTime."
service class. This can be accomplished by looking at the 5 import ClassEval
aggregate performance of all traffic and noting a statistically import time
significant change from a baseline that was established at the class ClassEvalSimple(ClassEval.ClassEval):
time of upgrade. In another implementation, all data flows """ This eval class tests pkt_exch_time over the DS net-
falling under a parent traffic class in the configuration hierar- work for the last 15 minutes, against a fixed threshold.
chy can be examined to determine when to downgrade a given io 111111

traffic class. For instance, if a parent traffic class represented def init_(self, name, threshold, evalTime, upgradeRe-
all traffic from the edge of network 40 to a given remote site, EvalTime, downgradeWaitTime):
such as a data center (which excludes general Internet traffic), ClassEval.ClassEvaljniUself, name)
then application traffic monitoring module 88 can analyze the self.threshold=threshold
performance of other, non-upgraded child traffic classes of 15 self. evalTime=evalTime
the parent traffic class to which the upgraded traffic class self.upgradeReEvalTime=upgradeReEvalTime
belongs. self.downgradeWaitTime=downgradeWaitTime

A.51 Exemplary Implementation of Performance Analy- self.timeDowngraded=0
sis Scripts self.timeLastEval=0

As discussed above, in one implementation, the perfor- 20 def evalThreshold(self, cl):
mance analysis scripts are executed by an object-oriented now=time.time()
runtime environment. The embedded runtime environment, self.timeLastEval=now
in one implementation supports "pickling," so that the various if cl.ME.pkt_exch_time.last
modules (set forth below) can maintain state information. 15_minutes>self.threshold:

A.5.f. 1. Strategy Module 25 self.timeUpgraded=now
Since there are different strategies and even different time return 1

intervals that one could adopt for upgrading and downgrading return None
the path for a traffic class, one implementation of the present def considerUpgrade(self, cl):
invention encapsulates those strategies in a class, which can Rules:
then be subclassed in various ways without changing the main 30 1) if already downgraded this one again, then recheck its
program. The main program, in one implementation, simply performance sooner than we otherwise would.
calls the "considerUpgrade" or "considerDowngrade" 2) if not, then check it at the regular interval
method, without having to know what strategy is in place for now=time.time()
that traffic class. This is a standard object-oriented program- if self downgradeTime>0:
ming technique, and it allows for different traffic classes to 35 if now
have different strategies, and for the network administrator or self.timeDowngraded>self.upgradeReEvalTime:
other user to create custom strategies as well. return self evalThreshold(cl)

The following provides an example for the "abstract class" if now self.timeLastEval>selfevalTime:
(or "superclass") for ClassEval: return self. evalThreshold(c1)

class ClassEval: 40 return None
The superclass. These are null implementations; def considerDowngrade(self, cl):

 Subclasses fill in the details. In this version, try downgrading every
def init_(self, className): configured interval.
self.className=className
pass 45 now=time.time()
def considerUpgrade (self, cl): if now self.timeUpgraded>self.downgradeWaitTime:

 Since 'cl' is a PacketWiseObject, which is only mean- return 1
ingful at runtime, it cannot be pickled. Therefore, it is return None
passed in as an argument, and the ClassEval must NOT Other implementations are possible. In one implementa-
save it as an instance variable (otherwise the pickling so tion, the considerDowngrade method could be configured to
machinery tries to process it) check whether application performance actually improved. If

application performance did not improve, the considerDown-
return None grade method could simply reverse the upgrade for that traffic
def considerDowngrade(self, cl): class. Note that the methods called by the main module, in the

 See comments for considerUpgrade. 55 implementation shown, all have a 'cl' argument; this is an
example of the concern that C or other native code objects not

return None be exposed to the pickling mechanism implemented by the
The following is a version of ClassEval, which measures runtime environment. The class never saves that 'cl' as an

the `pkt-exch-time' (PET), see above, for a traffic class instance variable `self.c1'.
against a threshold ("if cl.ME.pkt_exch_time.last 60 In addition, more complex schemes can be accommodated
15_minutes>self.threshold"). Note that any performance-re- within the framework set forth above. For example, the strat-
lated variable or combination of variables, and any supported egy module can be configured to learn from historical events.
time interval, could be used here, besides pkt-exch-time' and For example, the strategy module can, in one implementation,
last-15-minutes.' As the following script provides, be configured to measure the performance of synthetic trans-

ClassEval, in one implementation, is configured with 1) 65 actions on a separate traffic class, which is assumed to be
`evalTime', which is the normal time interval at which to permanently on the default or lowest service class. This can
consider upgrading; 2) `downgradeTime', the time interval at be used to judge, relative to "good" and "bad" threshold

Juniper - Exhibit 1035, page 27

28
if cl.ME.pkt_exch_time.last 15_minutes>self.threshold:

self.timeUpgraded=now
self.timeDowngraded=0
return 1

5 return None
def considerUpgrade(self, cl):

""" Rules:
1) if we already downgraded this one again, then we want

to recheck its performance sooner than we otherwise
10 would.

2) if not, then check it at the regular interval

now=time.time()
if self.timeDowngraded>0: # we downgraded him

15 if now
self.downgradeWaitTime>self.upgradeReEvalTime:
doUpgrade=self.evalThreshold(cl)
if doUpgrade:

downgrade Worked=0
20 else:

downgradeWorked=1
selfrecomputeSynthLevels(cl, downgradeWorked)
return doUpgrade

if now self.timeLastEval>self.evalTime:
25 doUpgrade=selfievalThreshold(c1)

return doUpgrade
return None

def recomputeSynthLevels(self, cl, downgradeWorked):
""" given that we downgraded the app, and it either worked

30 or didn't, reevaluate the levels at which we'll consider
doing this in the future.

if downgrade Worked:
if self.synthTestLevel>self.synthGoodLevel:

35 if self.synthTestLevel>self.synthGoodLevel:
if self synthPreviousGoodLevel-0:

only do this once
self.synthPreviousGoodLevel=

self. synthGoodLevel
40 # move 1/4 of the distance to the level we just

succeeded at, but
only if that's not a previously-bad level
temp=self.synthGoodLevel+(self.synthTestLevel—

self.synthGoodLevel)/4
45 if temp<self.synthPreviousBadLevel:

self.synthGoodLevel=temp
else: # downgrading didn't work

if self.synthTestLevel<self.synthPreviousBadLevel:
self. synthPreviousBadLevel=self.synthTestLevel

50 if self.synthTestLevel<self.synthGoodLevel:
self synthGoodLevel=self.synthPreviousGoodLevel
self synthPreviousGoodLevel=0

def considerDowngrade(self, cl):
""" In this version, we measure the performance of the

synthetic transactions
on the 'normal' link. If, in the past, we have successfully

downgraded the app
when conditions were 'similar' to this, we'll do it again.

5 5

US 7,843,843 B1
27

values, whether downgrading an application would be likely
to result in acceptable performance. (For the pkt-exch-time
variable, "good" is a small number, and "bad" is a large
number.) Whenever an application is successfully down-
graded (meaning, it no longer requires upgrading), the
"good" level of synthetic transaction performance is
recorded.

The strategy module, in one implementation, can also
implement a certain amount of hysteresis, since frequent
changes to the service class applied to a given application
may be undesirable. Therefore, in one implementation, the
strategy module is configured to raise the "good" threshold
slowly, similar to TCP slow-start. When an application is
unsuccessfully downgraded, the "bad" level is also recorded
and used as the "bad" threshold value. The strategy module
does not attempt to downgrade a given traffic class if the
observed performance of the synthetic transactions is not
better than the recorded "bad" level.

For didactic purposes, assume the following example. In
the past, a synthetic transaction PET level of 150 has gener-
ally indicated acceptable performance levels for a given ser-
vice class. In the more recent past, however, a "good" thresh-
old level of 250 has resulted in acceptable application
performance after being downgraded. However, at that point
a downgrade ultimately fails. Again, like a TCP slow start,
strategy module drops the "good" threshold level back down
to a more conservative one, synthPreviousGoodLevel. This
level will never rise beyond that of the first successful
upgrade. Thus, over time, a reasonably narrow interval of
synthetic transaction performance is learned. The following
script provides an exemplary implementation of the forego-
ing scheme.

import PacketWiseObject
import ClassEval
import time
import sys
class ClassEvalSynth(ClassEval.ClassEval):

""" This eval class tests pkt_exch_time for the last 15 minutes,
against a fixed threshold. It also uses a special traffic class
whose policy is ALWAYS the 'normal' link, presumed to
be firing synthetic transactions at the relevant app. This is
used to assess when a downgrade would be likely to suc-
ceed.

The strategy for downgrading based on synthetic transaction
performance is analogous to TCP slow-start: LOWER the
threshold readily, but RAISE it only gradually.

def init_(self, name, threshold, evalTime, upgradeReEval-
Time, downgradeWaitTime, synthClassName):
Clas sEval.ClassEval._init_(self, name)
self.threshold=threshold
self.evalTime=evalTime
self. upgradeReEvalTime=upgradeReEvalTime
self. downgrade WaitTime=downgradeWaitTime
self.timeDowngraded=0
self.timeUpgraded=0
self.timeLastEval=0
self.synthClassName=synthClassName
the variables used for "slow-raise"
self.synthGoodLevel=0
self.synthTestLevel=0
self.synthPreviousGoodLevel=0
self.synthPreviousBadLevel=sys.maxint

def evalThreshold(self, cl):
now=time.time())
self.timeLastEval=now

60
now=time.time()
if now self.timeUpgraded<self.downgradeWaitTime:

return None
clSynth—PacketWiseObject.TClas sObject(self.synth-

65 ClassName)
current=c1Synth.ME.pkt_exch_time.last 15_minutes
if current<self.synthGoodLevel: # do it

Juniper - Exhibit 1035, page 28

US 7,843,843 B1
29 30

self.synthTestLevel=current def addFastClass(self, className):
self.timeDowngraded=now self.fastClasses[className]=0
self.timeUpgraded=0 def removeFastClass(self, className):
return 1 del self.fastClasses[className]

elif current<self.synthPreviousBadLevel: 5 def zeroNumbers(self):
self.synthTestLevel=current for className in self.fastClasses.keys():
self.timeDowngraded=now self.fastClasses[className]=0
self.timeUpgraded=0 self.bytesThisMonth=0
return 1 def update(self, criticalClasses):

return None 10 `criticalClasses' is a way of passing the Packet-
One of ordinary skill in the art will immediately see that WiseObj ects, which are runtime state and thus should

that many other algorithms are possible. For example, other not get pickled with this object.
performance-related variables, such as "tcp-efficiency %"
(the ratio of non-retransmitted bytes to total bytes) in the # if the month's rolled over, zero everything:
synthetic transaction class could also be measured. 15 if localtime(time()[1] !=self.month:

A.5.f.2. Budget Module zeroNumbers(self)
In another implementation, a budget module can be created for className in self.fastClasses.keys():

to keep track of and implement a utilization budget for higher cl=criticalClasses[className]
classes of differentiated network services. Since this would newBytesThisMonth=c1.ME.bytes.this_month
depend on the differentiated network services provider's bill- 20 self.bytesThisMonth+=newBytesThisMonth—self-
ing plan, it is impossible to anticipate all variations. Accord- .fastClasses [className]
ingly, the script-oriented runtime environment according to self.fastClasses[className]=newBytesThisMonth
one implementation allows network administrators or other def allowMoreFastClasses(self):
end users to create their own budget class. In one implemen- # return a 1 if more upgrades are permitted; 0 if not
tation, the superclass for Budget is: 25 if self.bytesThisMonth<self.bytesLimit:

class Budget: return 1
The base class for an object which monitors the budget return 0

for a higher service class. Particular subclasses may A.5.f.3. Main Program
work off the number of bytes transferred, the time that In one implementation, the scripts further include a main
the DS class was used, or any other budgetary strategy 30 program module that periodically activates to call the con-
that makes sense. siderUpgrade and considerDowngrade methods discussed

def init_(self): above. The initialization call in such a main program, in one
pass implementation, can look like the following:

def addFastClass(self, className): definitialize(fileName, budgetObj, criticalClasses, dscp-
pass 35 Fast, dscpNormal)

def removeFastClass(self, className): The variables in the initialization call mean:
pass fileName the file where the state of the system is to be

def , update(self, criticalClasses): pickled
pass budgetObj a subclass of the Budget superclass

def allowMoreFastClasses(self): 40 criticalClasses a Python "dictionary", where the "keys"
return a 1 if more upgrades are permitted; 0 if not are traffic class names, and the "values" are the strategy

return 1 objects for that traffic class.
The following script provides an implementation of the dscpFast and dscpNormal the Differentiated Services

budget class, where the "budget" is based on the number of Code Point numbers for the 'fast' and 'normal' paths.
bytes transferred per month. The BytesBudget object, in one 45 Since the strategy and budget methods are encapsulated in
implementation, maintains its own list of the upgraded traffic separate objects, the main program can be fairly straightfor-
classes, so it can accurately count them only when they are ward. For example, a method called by the main program to
actually upgraded, and not when they're downgraded. The determine whether to upgrade the differentiated network ser-
variable 'cl.ME.bytes.this_month' is the aggregate number of vice to critical or other selected traffic classes can be:
bytes transmitted over the current month. In one implemen- so def considerUpgrades():
tation, this variable is maintained by measurement engine 140
for all traffic classes. Test whether each given traffic class should be upgraded to

import Budget the fast link. The tests are:
from time import* 1) are we over our budget limit for the month already? If so,
class BytesBudget(Budget.Budget): 55 go no further.

 This class keeps a dictionary of every higher priority 2) otherwise, call the ClassEval object, which makes the
traffic class, and for each, its `bytes.last_month' total the actual decision
last time it was checked. It uses that to keep a global
`bytesThisMonth' of all the bytes used by all higher global criticalClasses
priority traffic classes. 60 global fastLinkClasses

global stateFileName
def bytesLimit): global budget

Budget.Budget._init_(self) budget.update(criticalClasses)
self.bytesLimit=bytesLimit if not budget.allowMoreFastClasses()
self.bytesThisMonth=0 65 return
self.fastClasses={ for className in criticalClasses.keys()
self.month=localtime(time() [1] # if already upgraded, go on to the next

Juniper - Exhibit 1035, page 29

US 7,843,843 B1
31

if fastLinkClasses.has_key(className):
continue

cl=criticalClasses[className]
if cl.eval.considerUpgrade(cl):

upgrade(c1)
remember we did this
fastLinkClasses [cl.objName]=c1
budget. addFastClass (className)
writeState(stateFileName)

As the script above provides, the main program calls the
`budget' object to determine whether upgrades should be
considered at all. If so, the main program considers all classes
not already upgraded, and call their strategy objects (`cl.ev-
al.considerUpdate). The rest is just remembering what we
did. The script above does not show operation on a periodic
basis; rather it is assumed that the consider Upgrades object is
called on some regular (user configurable) interval. In addi-
tion, each strategy module is responsible for determining
when it wishes to consider upgrades or downgrades.

Furthermore, the following scripts actually implement the
upgrades and downgrades according to an implementation of
the present invention. In the implementation shown, the
upgrade and downgrade scripts use the command line inter-
face supported by administrator interface 150 to write the
traffic management policies into the appropriate data struc-
tures. Of course other implementations are possible as well.

def upgrade(cl):
actually do the upgrade
cmd="policy dscp+cl.objName+" "+str(stater dscpFastl)
ps_cmd.issueCmd(cmd)
return None

def downgrade(cl):
actually do the downgrade
cmd="policy dscp"+cl.objName+" "+str(stater dscpNor-

mall)
return ps_cmd.issueCmd(cmd)
Note that "state" refers to a Python dictionary with one

entry for each object to be pickled.
A.6. Operation
FIG. 4 illustrates a method, according to an embodiment of

the present invention, directed to a flow-aware process that
receives incoming flows, classifies them, and applies one or
more traffic policies (such as a differentiated network service
policy) based on the identified traffic class. As FIG. 4 illus-
trates, a packet processor 82 receives a data packet (202) and
determines whether a flow object has already been created for
the flow to which the data packet is a part (204). A flow object,
in one implementation, is a data structure including fields
whose values characterize various attributes of the flow,
including source and destination IP addresses, port numbers,
traffic class identifiers and the like. A flow object can also
include other attributes, such as packet count, byte count, first
packet time, last packet time, etc. If a flow object is not found,
packet processor 82 constructs a new flow object (206).
Packet processor 82 then determines whether the received
packet is part of an existing flow or a new data flow (208). In
typical network deployments, flows are generally TCP or
UDP flows. However, any suitable transport layer flow can be
recognized and detected. In one embodiment, flows are iden-
tified based on the following flow attributes: 1) source IP
address, 2) destination IP address, 3) source port number, 4)
destination port number, and 5) protocol (derived from the
"protocol" field in IPv4 headers, and the "NextHeader" field
in IPv6 headers). One skilled in the art will recognize that
flows can be identified in relation to a variety of attributes and
combinations of attributes. In addition, methods for deter-

32
mining new data flows and assigning packets to existing data
flows are well known in the art and also depend on the par-
ticular transport layer protocol employed. For a TCP flow, for
example, packet processor 82 can determine a new data flow

5 by detecting SYN and/or SYN/ACK packets. However, a new
data flow can simply be a data flow for which there is no
corresponding flow object. For example, with UDP and GRE
flows (where there is no explicit connection mechanism, such
as SYN packets), a new flow is recognized by associating the

10 source and destination addresses and port numbers to the
flow, and the flow type (e.g., UDP, GRE, etc.). Accordingly,
when a UDP packet identifies a new address/port pair, the
attributes discussed above are stored in a data structure along
with the time of last packet. A new UDP flow between the

15 same address/port pairs can be determined by comparing the
last packet time to a threshold value (e.g., 2 minutes). If the
difference between the time of the latest packet and the time
of the last packet is greater than the threshold, the new packet
is deemed part of a new flow. In another implementation, a

20 background and/or separate process can periodically com-
pare the last packet times associated with a flow to a threshold
period of time and deem the flow terminated if the last packet
time is beyond the threshold period of time.

If the packet is part of an existing flow, the packet processor
25 82 associates the packet with the corresponding flow object

and updates flow object attributes as required (210). For
example, the packet processor 82, in one embodiment, incre-
ments the packet count associated with the flow, as well as the
last packet time. If the packet represents a new data flow,

30 traffic classification database 86 operates on the flow object
and, potentially, attributes of the packet and other packets
associated with the flow to determine a traffic type and/or
traffic class associated with the flow (214). In one embodi-
ment, the packet (or a pointer to the packet stored in a buffer

35 structure) and the flow object (or a pointer thereto) is passed
to the traffic classification database 86 to determine a traffic
class. As discussed herein, identification of a traffic class or
type can employ information gleaned from Layers 2 thru 7 of
the OSI reference model. The determination of traffic classes

40 is discussed in more detail at Sections A.1. and A.2., above.
Similarly, if the packet represents a change to the data flow
(212), packet processor 82 passes the packet and flow object
to the traffic classification database 86 to determine the traffic
class. Methods for determining changes to data flows are also

45 well known in the art. For example, an email may include an
attached digital image file. Accordingly, white the initial
packets in the data flow may include simple text data, subse-
quent packets may contain image data. Packet processor 82,
in one embodiment, is operative to detect such changes in the

so characteristics of the data flow by examining data encapsu-
lated in upper layers of each packet, such as the detection of
MIME types, etc.

As discussed above, to identify a traffic class associated
with the data flow, packet processor 82 passes the flow object

55 (or a pointer to the control block object) to traffic classifica-
tion database 86. In one embodiment, the control block object
or a copy of it is stored in association with the packet and in
the same buffer structure to facilitate access to the control
block object by traffic classification database 86. As dis-

60 cussed in more detail below, traffic classification database 86
operates on attributes of the flow object, (and potentially on
the packet stored in the buffer structure) to identify traffic
class(es) associated with the data flow (214). In one embodi-
ment, the flow object includes a pointer to the identified traffic

65 class(es) in traffic classification database 86. In one embodi-
ment, the traffic classification database 86 stores in the flow
object the differentiated service policy parameters, if any,

Juniper - Exhibit 1035, page 30

US 7,843,843 B1
33 34

associated with the identified traffic classes (216). As dis- after packets including the newly designated service class. If
cussed above, the application performance analysis function- the service class associated with the outbound traffic class has
ality discussed above monitors, in a separate process, the not been recently changed, application traffic monitoring
performance of network applications configured with a dif- module 88 changes the service class for the outbound traffic
ferentiated network service policy that allows for upgrades to 5 class to the service class identified in the inbound packet
network service if performance degrades below a specified (308). In one implementation, traffic monitoring module 88
threshold. Application traffic monitoring module 88 main- also adjusts the state of the upgrade and/or downgrade
tains the appropriate differentiated network services policy in objects, discussed above, as may be required (310). For
traffic classification database 86, depending on the analyzed example, if the service class has been upgraded, application
performance of the network application or other traffic class. 10 traffic monitoring module 88 adds the traffic class identifier to

Packet processor 82 then passes the packet to traffic policy the downgrade object such that it is now monitored for a
module 84 (222) which accesses the flow object correspond- possible downgrade when network conditions improve. In
ing to the data flow to retrieve differentiated service policies, that instance, application traffic monitoring module 88, in one
if any, associated with the traffic class and enforces the iden- implementation, also removes the same traffic class identifier
tified traffic policy(ies) on the data packet flow. As FIG. 4 15 from the upgrade object. Oppositely, if the change represents
illustrates, measurement engine 140 also records or updates a service downgrade, application traffic monitoring module
various measurement values associated with the packet to 88 removes the traffic class identifier from the downgrade
allow for analysis of bandwidth utilization and other network object and adds it to the upgrade object.
statistics on a traffic class or aggregate basis by traffic moni- In one implementation, both traffic management devices
toring module 88. 20 130, 130a analyze the performance of network applications,

As discussed above, traffic management device 130 can and include the coordination functionality illustrated in FIG.
only effectively select differentiated services for outbound 6. A variety of configurations to coordinate operation of traf-
flows. However, as FIG. 1 illustrates, the use of first and fic management devices 130, 130a are possible. In one imple-
second traffic management devices 130, 130a disposed at mentation, the application traffic monitoring functionality of
strategic points in the communication path between networks 25 traffic management device 130a, except for the coordination
40, 40a allow for the selection of differentiated network ser- mechanism illustrated in FIG. 6, can be toggled off as to data
vices in both the inbound and outbound directions for given flows transmitted between networks 40, 40a. This configura-
network applications or other traffic classes. In one imple- tion allows the application performance measurements at
mentation, first and second traffic management devices 130, traffic management device 130 to control the selection of
130a may be configured to exchange application perfor- 30 differentiated network services for outbound and inbound
mance measurement data to coordinate the selection of dif- data flows between networks 40, 40a for selected network
ferentiated network services for given network applications applications.
running between networks 40, 40a. In one implementation,
traffic management devices 130, 130a are responsive to the B. Alternative Embodiments
differentiated service classes detected in inbound flows asso- 35

ciated with a given traffic class from a given network, and FIG. 7 is a functional block diagram illustrating an appli-
adjust the service class applied to outbound flows of that cation traffic management device 131 according to an alter-
traffic class to the same network. For example, as discussed native implementation of the present invention. As FIG. 7
above, traffic management devices 130, 130a can be config- illustrates, application traffic management device 131 shares
ured with a hierarchical traffic classification configuration 4o some functionality with application traffic management
that includes a parent traffic class corresponding to networks device 130, discussed above. For example, application traffic
40a and 40, respectively, and child traffic classes of the parent management device 131 generally comprises network inter-
class corresponding to different network applications or other faces 71, 72 and application traffic management module 75.
traffic classes. FIG. 6 illustrates a method for coordinating the Application traffic management module 75, in one imple-
operation of traffic management devices 130, 130a given the 45 mentation, includes a packet processor 82, a traffic classifi-
traffic classification configuration set forth above. As FIG. 6 cation engine 86, a flow control module 84a, and network
illustrates, after a traffic class is identified, application traffic performance monitoring module 88a, and Class of Service
monitoring module 88, in one implementation, can be con- (CoS) selector 89.
figured to determine whether the packet represents an In the embodiment described below, application traffic
inbound flow from a known network (302). For example, so management device 131 allows network administrators to
traffic management device 130a can be configured to recog- configure minimum acceptable performance parameters
nize inbound traffic from network 40 given appropriate IP (MAPPs) for one or more selected network applications. In
address or subnet information. If the flow is an inbound flow one implementation, application traffic management device
from a known network, application traffic monitoring module 131 stores the MAPPs for selected network applications in a
88 then determines whether the service class information in 55 MAPP table. Network performance monitoring module 88a
the inbound packet matches the current service class applied actively tests CoS metrics (e.g., latency, jitter, packet loss,
by traffic management device 130a to outbound flows for that etc.) using so-called synthetic transactions with partner net-
traffic class (304). If the service classes do not match, appli- work devices having complementary functionality (such as
cation traffic monitoring module 88 then determines whether network device 131a or 131b in FIG. 1B). As discussed more
the service class applied to outbound flows associated with 60 fully below, the packets transmitted during these synthetic
the given traffic class has been recently changed (306). For transactions are marked with the different Classes of Service
example, application traffic monitoring module 88 may com- supported by the differentiated services network in order to
pare the difference between the time the service class for the evaluate the performance of each Class of Service over net-
traffic class was last changed and the packet arrival time to a work 50. Network performance monitoring module 88a, in
threshold period of time. This threshold comparison accom- 65 one implementation, also maintains a CoS Fitness Table
modates for the possibility that some packets, indicating the which is an array or other data structure including values that
last service class, transmitted from network 40 may arrive characterize the degree to which the selected network appli-

Juniper - Exhibit 1035, page 31

US 7,843,843 B1
35 36

cations meet the MAPPs. As CoS metrics change, network on passive monitoring schemes (analyzing actual network
performance monitoring module 88a, changes the fitness val- traffic), in addition to, or in lieu of, active monitoring. In one
ues accordingly. As FIGS. 1B and 1C illustrate, application implementation, network performance monitoring module
traffic management device 131 may operate in connection 88a uses synthetic transactions to actively test path metrics.
with a plurality of partner application traffic management 5 That is, network performance monitoring module 88a trans-
devices 131a, 131b. As FIG. 1B illustrates, each of applica- mits test packets addressed to partner network devices and
tion traffic management devices 131, 131a, 131b may be computes metrics, such as latency, jitter and packet loss,
connected to the same differentiated services network 50. As based on the test packets and/or responses to the test packets.
FIG. 1C illustrates, however, application traffic management As discussed more fully below, in one implementation,
devices 131 may be connected to application traffic manage- 10 application traffic management device 131 can be configured
ment devices 131a, 131b through first and second differenti- to initiate synthetic transactions at periodic intervals to gather
ated services networks 50a, 50b, respectively. As FIG. 1C additional network CoS/path metric information in connec-
further illustrates, application traffic management device 131 tion with partner network devices. The round-trip time mea-
may reach partner network device 131a using either first or surements between application traffic management devices
second differentiated services networks 50a, 50b. As one 15 131 and 131a can be used to assess SLA compliance for
skilled in the art will recognize, myriad network configura- example, and/or obtain information that facilitates isolation
tions are possible. In one implementation, network perfor- of any potential network application performance issues to
mance monitoring module 88a maintains separate CoS fit- discrete network segments. In addition, one-way path metrics
ness tables for each partner network device 131a, 131b. may also be obtained by using time stamps in the exchanged

The CoS selector 89, in one implementation, is operative to 20 messages and synchronizing the time clocks on each partner
selectively mark packets with the appropriate CoS markings network device.
based on the fitness values, if any, that apply to the packets. As In one implementation, synthetic transactions are similar
discussed in more detail below, CoS selector 89, in some to scheduled pings or SNMP polls. However, synthetic trans-
implementations, also includes functionality directed to han- actions can be configured to allow for detailed analyses of
dling situations where a given Class of Service is oversub- 25 CoS metrics over time. Application traffic management
scribed. device 131 can be configured to implement synthetic trans-

B.1. Monitoring of Differentiated Services Network Per- actions involving a wide variety of network protocols, such as
formance TCP, UDP, HTTP, HTTPS, POP3, SMTP, FTP, ECHO, and

As FIGS. 1A, 1B and 1C illustrate, the present invention the like. In one implementation, using a web-based or com-
may operate in a variety of network architectures. For 30 mand line interface, a synthetic transaction template can be
example, as FIGS. 1B and 1C illustrate, application traffic configured with the following parameters:
management device 131 may operate to test path metrics to a 1) <interval>: The repetition interval, if any, for the syn-
plurality of partner network devices. As discussed in more thetic transaction;
detail below, the partner network devices can be manually 2) <repeat>: The number of packets to transmit on the
configured or dynamically discovered. 35 established TCP or other transport layer connection (default

B.1.a. Partner Device Configuration is 1);
In one implementation, application traffic management 3) <id>: A string that uniquely identifies the synthetic

device 131 can be manually configured with the network transaction; and
address of one or more partner network devices (e.g., 131a) 4) <url>: The type of transaction to issue, in the following
and corresponding network reachability information for the 40 format<type>://<host>{:<port>][/<path>], where <type> is
partner network device(s). For example, a network adminis- http, https, pop3, smtp, ftp, echo, or custom; <host> is the
trator, in one implementation, can configure application traf- DNS name or IP address of the desired host; <port> is the
fic management device 131 with the network address of appli- TCP port number to connect to; and <path> is additional
cation traffic management device 131a and the network information necessary for the request (such as a directory
addresses or subnet range(s) corresponding to the end sys- 45 name or a file name, or cgi argument).
tems connected to network 40a. In one implementation, the http type will issue a GET

In another implementation, application traffic manage- request for the file specified by the <path> parameter. The
ment device 131 can include functionality that dynamically https type does an SSL handshake and issues a GET request
probes for partner testing devices. For example, U.S. appli- for the file specified by the <path> parameter. In one imple-
cation Ser. No. 10/015,826 discloses technologies directed to 50 mentation, the smtp and pop3 types also do not send or
dynamically probing for intermediate network devices along receive mail; they issue a single command over the channel to
a communications path to an end host. One of ordinary skill in elicit a response. The ftp type will issue a single retrieve
the art will recognize how to apply the probing functionality command (RETR) for the file specified in the <path> param-
disclosed therein to discover partner testing devices, such as eter. The echo type sends a string to the designated host and
application traffic management devices 131a, 131b. In one 55 the host echoes it back; in one implementation, it uses the
implementation, network performance monitoring module echo protocol on port 7. The optional <path> argument has
88a creates a CoS fitness table for each partner testing device the format <length>[/<fill>] where <length> is the number of
that it is discovered. In addition, after discovery of a partner bytes to send on each request (the default is 512) and <fill> is
network device, network performance monitoring module a string to fill the request buffer. For example, the command
88a configures a synthetic transaction mechanism to test path 60 "echo://test.domain.com/10/xyz" sends requests containing
metrics to the discovered device relative to available classes xyzxyzxyzx (10 bytes). The custom type allows users to
of service. specify a series ofrequests to be sent alternatively for as many

B.1.b. Class of Service Performance Monitoring messages as requested by the <repeat> parameter. The
As discussed above, network performance monitoring request strings are separated by the "I" character. For

module 88a, in one implementation, actively tests, for each 65 example, the command "custom: //10.7.15.8:25/
class of service, path metrics to each partner network device. HELO I MAIL FROM: <bob>I RCPT TO:
Network performance metrics, however, may be also based <brett>I DATA I hey I" sends a simple message to a mail server

Juniper - Exhibit 1035, page 32

US 7,843,843 B1
37

on port 25 (the default port for SMTP). In one implementa-
tion, the synthetic transactions used to test path metrics can
use different protocols (e.g., SMTP, RTP, HTTP) to determine
whether the performance of differentiated service network
varies with protocol type.

Given the foregoing, a network administrator may for
example configure a synthetic transaction template to send
one or more packets to a partner network device for each class
of service. For example, a synthetic transaction may be cre-
ated that sends a message to the echo port (port 7, see RFC
862) of the partner network device. In another implementa-
tion, application traffic management device 131 can support a
command, such as

synthetic add <interval>[,<burst>] [id] "rtp://<host>[/
<size>/<spacing>]", which sends bursts of <burst> UDP
packets at intervals of <interval> minutes to the partner net-
work device <host>. In one implementation, the <host> field
is left blank to form a template for synthetic transactions to
newly discovered partner network devices. In one implemen-
tation, the UDP packets look similar to RTP packets and have
<size> payload bytes. The packets in the burst are separated
by <spacing> milliseconds. To support testing of different
classes of service, the synthetic transactions feature and com-
mand set can be expanded to allow for configuring various
possible diffsery or other differentiated service markings or
tags. In one implementation, a network administrator can
define the markings using the following commands:

synthetic markings add <mark> <dscp-value>.
synthetic markings add <mark> <markl>,<mark2>[, . . .]
synthetic markings delete <mark>
synthetic markings show [<mark>[, . . .]]

A network administrator may use the command set as in the
following example to add the gold, silver and bronze classes
of service.

synthetic markings add gold 12
synthetic markings add silver 15
synthetic markings add bronze 19
synthetic markings add low bronze, silver
synthetic markings add high silver,gold

A network administrator can then specify that a given syn-
thetic transaction is to be transmitted with a selection of
markings to allow an assessment of the performance of each
class of service. In one implementation, the following com-
mands are provided:

synthetic mark <id> <mark>
synthetic mark <id> none
Using these command, the following configuration can be

implemented.
synthetic add 10,15 p s 99 rtp : //<p s 99. example .com>/64/30
synthetic mark ps99 low
The above commands schedule a transaction every 10 min-

utes that would send 15 "real-time" packets of size 64 bytes
spaced 30 milliseconds apart. Each transaction would be sent
twice with the two DSCP marks silver and bronze. To sup-
port the computation of various performance metrics, each of
the test packets can contain a variety of information. For
example, in one implementation, the payload of each test
packet can include the following: 1) a magic number (for
confirmation or validation); 2) type (outbound=1 vs.
inbound=3); 3) transaction ID; 4) Network Time Protocol
(NTP) time stamp; 5) burst size (number of packets); 6)
packet number (within burst); 7) differentiated service mark-
ing value; 8) payload size; and 9) spacing.

The receiving partner network device can record various
metrics, as well as packet arrival times, gleaned from receipt
of the packets and transmit them to application traffic man-

38
agement device 131 in a response. In one implementation, a
receiver process in the partner network device analyzes the
packets in a burst, and after gathering the last packet of the
burst (or a timeout in case that one is lost) returns a results

5 packet back to the originating application traffic management
device 131. In one implementation, the results packet or mes-
sage contains: 1) the magic number (for confirmation); 2)
type (results=2); 3) transaction ID; 4) average one-way delay;
5) average jitter; and 6) average packet loss (over burst). In

10 one implementation, application traffic management device
131 stores the resulting metrics in a data structure.

In one implementation, when the partner network device
on the far end receives the first packet (which may not nec-
essarily be number 1) of a burst, it initiates the same transac-

15 tion (same delay and size parameters, same DSCP marking)
with the same transaction ID back to the originating applica-
tion traffic management device 131, but with transaction type
set to "inbound". The originating application traffic manage-
ment device computes the same jitter, delay, and loss num-

2o bers, storing them in data structure. To compute one-way
delays, both application traffic management device 131 and
the partner network device, in one implementation, are syn-
chronized to the same UTC clock. In one implementation,
this is accomplished by configuring the devices with an NTP

25 client. Global Positioning System (GPS) technology can pro-
vide another mechanism for synchronizing system clocks
across partner network devices. In other configurations,
application traffic management device 131 can be configured
to open a TCP connection with each partner network device

30 and transmit a set number of packets. As one skilled in the art
will recognize, a wide variety of testing configurations can be
implemented.

In one implementation, network performance monitoring
module 88a is configured to execute the synthetic transac-

35 tions for each Class of Service supported by network 50. In
one implementation, after a network administrator has con-
figured a synthetic transaction, network performance moni-
toring module 88a executes the specified synthetic transac-
tion for each Class of Service by marking the outgoing

40 packets accordingly. In implementations where partner
devices are dynamically discovered, network performance
monitoring module 88a can automatically configure syn-
thetic transactions for the newly discovered partner device
based on the synthetic transactions template configured by

45 the network administrator.
In one embodiment, to analyze synthetic transactions sepa-

rately from other network traffic, the synthetic transactions
may have their own traffic classes configured in traffic clas-
sification engine 86. In one implementation, a user, using

so administrator interface 150, may enter commands to create
one or more synthetic transactions traffic classes distinct from
network traffic. In one implementation, a separate synthetic
transaction traffic class is created for each partner network
device to which test packets are transmitted. For example, if

55 a network administrator creates more than one synthetic
transaction for a given host, all transactions are classified in a
single class. For instance, suppose a user creates an echo
transaction to 65.17.12.125 and an http transaction to
65.17.12.125, application traffic management device 130

60 may create a single class, SyntheticTransactions/
65.17.12.125, and classify the echo and http transactions in
this class. Of course, other traffic classification schemes can
be implemented. For example, child traffic classes can be
configured based on the Class of Service corresponding to the

65 test packets.
In one implementation, network performance monitoring

module 88a maintains for each class of service the following

Juniper - Exhibit 1035, page 33

30 In addition, the user, in one implementation, also defines
the amount of bandwidth allocated to each Class of Service
over the corresponding access link 21. This allocation can be
expressed as a percentage of the total available bandwidth, or
as an absolute bandwidth value. In a manual model, the user

35 would have to configure the desired CoS for one or more
selected network applications. However, with the dynamic
mapping functionality of the present invention, application
traffic management device 131 decides how data flows cor-
responding to different network applications are marked,
depending upon the current state of the CoS, the current
network application usage, and the classes of service that can
be used to reach the destination hosts.

Furthermore, in some implementations, an enterpise net-

45 work may have connectivity to additional network service
providers. The following is a separate Classes of Service table
illustrating the supported Classes of Service for a second,
hypothetical network service provider (see also FIG. 1C).

4 0

US 7,843,843 B1
39

performance metrics: 1) latency, 2) jitter, and 3) packet loss.
In one implementation, network performance monitoring
module 88a maintains these metrics as a moving average,
weighted moving average, or exponential moving average to
smooth out rapid changes in the metrics. In one implementa-

 5

tion, network performance monitoring module 88a also
maintains the "old" performance metrics that were used to
compute the latest fitness values for the CoS/partner device
pair, and a metric time stamp corresponding to the time the
old performance metrics were computed.

FIG. 8 illustrates a process flow, according to one imple-
mentation of the present invention, directed to monitoring the
performance of the classes of services over a differentiated
services network and conditionally re-computing the appli-
cation/CoS fitness table. In one implementation, after net-
work performance monitoring module 88a receives
responses to the synthetic transactions for a given class of
service it initiates (402), it stores the current metrics (latency,
jitter, packet loss) for the class of service (404). In one imple-
mentation, if the metric time stamp for the class of service is
a null value (meaning it has not been tested previously) (405),
network performance monitoring module 88a saves the com-
puted metrics in a CoS table and sets the metric time stamp
(410), and computes the application/CoS fitness table corre-
sponding to the partner network device (412). In one imple-
mentation, if the difference between the current time and the
metric time stamp is greater than the threshold (Th1) (406),
and the difference between the old metric and the current
metric is greater than a threshold (Th2) (408), network per-
formance monitoring module 88a saves the metrics as the
"old" metrics and resets the metric time stamp (410). Net-
work performance monitoring module 88a re-computes the
application/CoS Fitness Table for the partner network device
(412), as discussed more fully below. In one implementation,
each of the current metrics (latency, jitter and packet loss) are
compared to the corresponding old metrics. The threshold
(Th2) can therefore vary depending on the metric type being
evaluated.

B.1.c. Application Performance Specification (MAPPs)

In one implementation, a user enters certain information
about expected or desired network application performance
as to one or more network applications. In one implementa-
tion, the user also describes the classes of service, if any,
supported by one or more network service providers. In one
implementation, the user first identifies the network applica-
tions (and optionally defines application groups) that are rel- so
evant to a given enterprise. For each identified network appli-
cation, the user then configures Minimum Acceptable
Performance Parameters (MAPP), which may comprise one
to a combination of the following: 1) maximum acceptable
latency; 2) maximum acceptable jitter or latency variation; 3) 55

maximum percentage of packets dropped per second; and 4)
maximum number of packets dropped over a time interval.

In one implementation, a Minimum Acceptable Perfor-
mance Parameter (MAPP) table is constructed that specifies
the minimum performance requirements of each application.
In one implementation, separate MAPP tables can be config-
ured for particular network device pairs (e.g., application
traffic management devices 130, 130a) connected to the dif-
ferentiated service provider network 50. The following pro-
vides, for didactic purposes, a MAPP table according to one
implementation of the present invention.

40

MAPP Table

Application Max Latency Max Pkt Drp % Max Jitte

Web Browsing
Instant Msngr
FTP
E-Mail

Classes of Service - ISP1

Max Latency Max Pkt
Service Class Bandwidth % (msecs) Drp % Max Jitter (ms)

Gold 30 10 0.6% 10
Silver 30 100 1% 40
Bronze 40 400 2% 200

Classes of Service - ISP2

Max Latency Max Pkt
Service Class Bandwidth % (msecs) Drp % Max Jitter (ms)

Green 20 20 0.2% NA
Yellow 40 40 0.5% NA
Red 40 80 1.2% NA

10 Bugsy 100 millisecs
VoIP 30 millisecs 0.5% 10 millisecs
Video Stream 200 millisecs 2% 100 millisecs
Citrix 50 millisecs

15 In one implementation, the user also defines the Classes of
Service supported by a given network. The following table
illustrates one possible configuration defining three Classes
of Service.

20

25

60 In this circumstance, there may be multiple paths between
two hosts (as illustrated in FIG. 1C). In one implementation,
the application traffic management device 131 uses an indi-
rection table that maps diffsery markings to ISP/CoS pairs to
allow routing devices (e.g., router 22) to select the desired

65 path for the data flows. The following is an example of an
indirection table given the Classes of Service tables for ISP1
and ISP2, above.

Juniper - Exhibit 1035, page 34

US 7,843,843 B1
41

In one implementation, application traffic management
device 131 uses the DSCP marking to specify to the router
which ISP and CoS to use for the packets. From the same
information in the indirection table, a network administrator
also configures the router(s) to map the DSCP markings to 1)
the correct egress interface for the selected ISP, and 2) the
correct tag or marking used by that ISP for the desired class of
service. Furthermore, the dynamic partner discovery func-
tionality discussed above can be used to discover partner
network devices for different network destinations. The syn-
thetic transaction functionality discussed above can be used
to discover which indirect (DSCP) markings (and thus, the
network paths) can be used to reach a given network destina-
tion and how well each path/Co S pair performs. In one imple-
mentation, this network reachability information can be
stored in host database 134 in association with a correspond-
ing network address.

In addition, the router 22 can be configured to allow appli-
cation traffic management device 131 to deduce which ISP
link is the preferred route to a given network destination. That
is, router 22 can be configured to mark incoming packets to
indicate from which ISP link the packet came. This marking
can take the form of an MPLS label, an MPLS "experimental
bit" setting, or a DSCP value. The following illustrates how a
Cisco® router can be configured to mark traffic from two
interfaces with different multihome tags using the DSCP
method.

interface Ethernet3/0
ip address 172.21.18.222 255.255.0.0
no ip directed-broadcast
no ip mroute-cache,
ip policy route-map isp-1
no cdp enable

interface Ethernet3/2
ip address 172.25.18.222 255.255.0.0
no ip directed-broadcast
no ip mroute-cache
ip policy route-map isp-2
no cdp enable

route-map isp-2 permit 20
set ip precedence 2
set ip tos 8

route-map isp-1 permit 10
set ip precedence 1
set ip tos 4 !
The foregoing commands correspond to a network envi-

ronment where the interfaces of the router are Ethernet inter-
faces. One skilled in the art, however, will recognize that a
variety of wide area network interface types can be used, and
how to configure the router for such interfaces. In addition,

42
since Cisco's current IOS does not allow a user to specify a
DSCP value directly in the "set" command, it is separately
computed from the following formula: DSCP—(prece-
dence*16+tos)/2. Accordingly, the above example marks
"ISP-2" traffic with DSCP 20 and "ISP-1" traffic with DSCP
10. In addition, application traffic management device 131
must also be configured to recognize packets marked by the
router 22 as to their origin ISP network. In one implementa-
tion, application traffic management device supports the fol-
lowing commands:

setup multihome dscp <min>-<max>
setup multihome mpls-label <min>-<max>
setup multihome mpls-exp <min>-<max>
setup multihome none

15 The foregoing command set allows a network administra-
tor to specify the type of marking and the range of values used
to indicate the origin ISP (e.g., setup multihome dscp 5-7 for
links to 3 ISPs). Note that the <min> value is greater than
zero. It is also not required to mark packets from all ISP links;

20 for example, in one deployment, a router could just mark
"ISP2" packets and leave unmarked packets to be associated
with ISP1 by default. However, this scheme may not be pre-
ferred if incoming packets are marked with DSCP tags, as
existing tags (if not overwritten) may be taken for multihome

25 markings.
When the application traffic management device 131

receives a marked packet, it remembers the mark in the flow
object and in host database 134 for the sending IP address and
removes the mark from the packet before further classifica-

30 tion. For example, application traffic management device
131, in one implementation, can pop an MPLS label in the
"multihome" range and classification would then happen on
the next label in the stack. "Removing" a legacy DSCP-type
mark is done by setting it to zero. This remembered informa-

35 tion can then be used to identify a differentiated services
network that can be used to reach a destination host for a given
data flow.

Application traffic management device 131 can then use
the matching rule fragment

40 . . . {all linsideloutside} multihome:<mark> . . .

with <mark> being one of the numeric values in the "setup
multihome" range. For inbound packets, classification looks
at the mark in the flow object; for outbound it assumes the

45
border router 22 will send back the packet using the same link
as the reverse flow is using and looks up the mark from the
host database entry for the destination address. Given the
foregoing router configuration, the corresponding configura-
tion commands, to allow for recognition of the multihome

50
markings, for application traffic management device 131
would be:

setup multihome dscp 10-23
class new /Inbound ISP-1 inside multihome:10
class new /Inbound ISP-2 inside multihome:20

55 class new /Outbound ISP-1 outside multihome:10
class new /Outbound ISP-2 outside multihome:20.
Other methods for obtaining network reachability informa-

tion can be used. For example, application traffic manage-
ment device 131 may obtain BGP or other routing informa-

60 tion to determine which networks have reachability to
different destination hosts. This routing information can be
processed against the entries in the host database 134 to
identify available differentiated services networks for differ-
ent destination hosts.

65 B.1.d. Application/CoS Fitness
As discussed above, network performance monitoring

module 88a maintains, for each partner network device, an

Indirection Table

DSCP ISP CoS (Marking) 5

11 ISP1 Gold (27)
12 ISP1 Silver (33)
13 ISP1 Bronze (25)
10 ISP1 Best Effort (0)
21 ISP2 Green (18) io
22 ISP2 Yellow (19)
23 ISP2 Red (1)
20 ISP2 Best Effort (0)

Juniper - Exhibit 1035, page 35

US 7,843,843 B1
43

application/CoS fitness table or array whose elements char-
acterize the degree to which the monitored performance of a
given class of service will satisfy the requirements of a net-
work application. In one implementation, network perfor-
mance monitoring module 88a computes a fitness value that
ranges between —1 and 1, where —1 indicates the a class of
service is not sufficient to satisfy the requirements of a net-
work application, 1 indicates that a class of service is more
than sufficient to satisfy the requirements of a network appli-
cation, and 0 indicates that a class of service exactly matches
the requirements of a network application. In one implemen-
tation, network performance monitoring module 88a com-
putes a fitness value for each metric type (e.g., latency, jitter
and packet loss), if included in the MAPP table, and then
selects the minimum fitness value for each metric type as the
overall fitness score. The following table illustrates a formula,
according to one implementation of the invention, for com-
puting a fitness value. For didactic purposes, assume that Lr is
the maximum latency requirement specified in the MAPP
table for a given network application, and Lo is the observed
latency for a given class of service on a particular path
between partner devices.

Fitness Value Scoring

Formula Fitness Value

Lo < Lr (Lr Lo)/Lr
Lo = Lr 0
Lo > Lr (Lo Lr)/Lo

The fitness values for jitter and packet loss can be com-
puted in a similar manner. In addition, in other implementa-
tions, the fitness value can be computed based on an aggregate
or weighted aggregate of the fitness values for each metric
type. In addition, the fitness value scoring algorithm set forth
above represents one of many possible scoring algorithms. As
discussed more fully below, CoS selector 89 looks up the
overall fitness values in determining how to mark outgoing
packets.

B.3. Dynamic CoS Assignment to Data Flows
B.3.a. Initial Configuration
After the MAPP and CoS tables are configured, application

traffic management device 130 may initially compute fitness
values for each CoS based on the performance guarantees
specified in the CoS tables. These initial fitness values will
then change when testing data from the synthetic transactions
discussed above are received.

B.3. b. Dynamic CoS Selection
CoS selector 89 can operate in a variety of manners to

dynamically assign network application traffic to suitable
classes of service. In one implementation, CoS selector 89
can operate on an aggregate basis to change the CoS marking
corresponding to the network application applied by flow
control module 84, as discussed above. However, as dis-
cussed below, CoS selector 89 can operate on a flow-by-flow
basis to select and mark the packets of a data flow with a class
of service.

FIG. 9 illustrates a process flow, according to one imple-
mentation of the present invention, directed to a process for
initially selecting a Class of Service for data flows traversing
application traffic management device 131. As discussed
above, CoS selector 89, in one implementation, operates at a
point in the packet processing path after traffic classification
engine 86 identifies a service type, and prior to a process that
places packets onto a transmit queue of a network interface.

44
The process illustrated in FIG. 9 operates on a packet-by-
packet basis and accounts for the situation that a network
application may not be identified until multiple packets in the
data flow have been encountered. As FIG. 9 illustrates, when

5 CoS selector 89 receives a pointer to a packet buffered in
memory (502), it determines whether the flow object corre-
sponding to the packet already includes a CoS identifier
(504). As discussed above, a flow object is created for each
data flow, to support the CoS marking functionality described

10 herein, each flow object includes the following attributes: 1)
current CoS marking; 2) a mark time stamp, 3) MAPP table
entry corresponding to the network; and 4) pointers to the
current fitness values, if any, for each CoS that can be used to
reach the destination host. As discussed above, the flow object

15 may also include other attributes, such as service type iden-
tifiers corresponding to a network application, or traffic class
identifiers and the like. In one implementation, these flow
object attributes are null values until they are set.

As FIG. 9 illustrates, CoS selector 89 does not set a class of
20 service for the flow object until the traffic classification

engine 86 has finished classifying the data flow (506). As
discussed above, the classification of data flows may involve
the inspection of a number of packets before a network appli-
cation can be determined. In some instances, it therefore may

25 take a number of packets before it can be determined whether
a network application can be identified and, if so, the identity
of that network application. Accordingly, until a network
application is identified or all classification is exhausted, CoS
selector 89 does not set a class of service for the data flow. In

30 this situation, the packets are transmitted without class of
service markings or transmitted using a best efforts service
(without setting a mark attribute in the flow object) (507).
However, if a network application is known or all traffic
classification has been exhausted (510), Co S selector 89 oper-

35 ates to select a class of service for the data flow. In the
implementation illustrated in FIG. 9, CoS selector selects the
class of service to a "best effort" class for unknown network
applications (512), and sets the CoS marking attribute in the
flow object to the selected Co S and the mark time stamp in the

40 data flow to the current time (520). CoS selector 89 then
updates one or more statistics relating to the usage of the
selected class of service (522). For example, CoS selector 89
adds a pointer to the flow object in a CoS bucket data struc-
ture. The CoS bucket data structure, in one implementation,

45 maintains the flow object pointers in a sorted list ordered by
fitness value.

As FIG. 9 illustrates, if a network application is identified
(510), CoS selector 89 looks up the network application in the
MAPP table to determine whether the network application

so can be currently mapped to a class of service (514). For
example, if the MAPP table does not contain the network
application, or does not include any minimum performance
requirements, the network application cannot be mapped to a
class of service. Similarly, if no service level agreement offers

55 a class of service that supports the minimum requirements of
a network application, it cannot be mapped to a CoS. For
example, assume for didactic purposes that a network appli-
cation in the MAPP table requires a minimum jitter (e.g., 7
milliseconds) and that no class of service provides perfor-

60 mance guarantees relative to jitter (such as the green, yellow
and red classes of service set forth above). In these cases, CoS
selector 89, in one implementation, sets the class of service to
best effort (512). If the identified network application has a
MAPP table entry, however, CoS selector 89 determines the

65 best fit for the network application (518). The selection of the
best fitting class of service for a given network application
depends on the implementation. As discussed above, network

Juniper - Exhibit 1035, page 36

US 7,843,843 B1
45 46

performance monitoring module 88a, in one implementation, fitness value appears first. Accordingly, CoS selector 89 starts
is operative to periodically test the performance of each class with the data flow having the lowest fitness value and pro-
of service to each partner network device and re-compute the ceeds to selectively re-map flows that have a negative fitness
fitness values for each network application in the MAPP value. As FIG. 10 illustrates, CoS selector 89, in one imple-
table. In such an implementation, finding the best fitting class 5 mentation, first determines whether any class of service that
of service involves searching the array of fitness values, cor- could be applied to the data flow has a fitness value better than
responding to the partner network device having reachability the fitness value of the current class of service (609). If so,
to the destination host identified in the packet, for the fitness Co S selector 89 then determines whether the CoS marking for
value closest to zero and positive (if any positive values exist; a given data flow has been changed within a threshold period
otherwise, the closest to zero), given the fitness scoring algo- 10 of time (Th3) (610). If so, CoS selector 89 does not change the
rithm discussed above. In some situations, however, a partner CoS marking for the data flow; otherwise, CoS selector 89
network device for the destination end point may not have selects the new best fitting class of service for the data flow
been identified. For example, a network administrator may and sets the mark time stamp (612). This threshold time check
not have configured application traffic management device is intended to avoid rapid changes to the CoS marking applied
131 with the requisite partner device information. Alterna- 15 to any given data flow. Indeed, repeated changes to the CoS
tively, application traffic management device 131 may not marking may cause, for example, out of order packet trans-
have completed the process of dynamically discovering the missions, which for RTP flows may be problematic to opera-
partner network device and the subsequent testing of the path tion of the network application executed between the end
to it. In this instance, CoS selector 89, in one implementation, systems.
may select the a class of service based either on the attributes 20 To prevent oversubscription of a given class of service,
of the contracted SLA performance across network 50 or use CoS selector 89 also checks the observed load for each class
a best effort class of service. of service. In many deployment scenarios, the available band-

As one skilled in the art will recognize, the initial selection width across access link 21 is allocated to each class of
of a class of service for a data flow as described above oper- service in some pre-determined amount. For example, each
ates, in one implementation, without regard to the load or 25 class of service may be allocated a fixed share of the available
bandwidth utilization of each class of service. In one imple- bandwidth as set forth in the tables above. Accordingly, the
mentation, CoS selector 89 includes a separate process that selection of classes of service in the aggregate may result in
operates periodically to alter the class of service applied to oversubscription of one or more of the classes of service. As
existing data flows based on observed loading conditions FIG. 10 illustrates, CoS selector 89 operates to adjust the CoS
and/or detected MAPP failures. In one implementation, a 30 markings for one or more data flows to prevent oversubscrip-
MAPP failure occurs when the observed performance of a tion. In one implementation, this functional aspect of CoS
class of service falls below a MAPP parameter corresponding selector 89 only operates on classes of service that provide a
to a network application to which the CoS was mapped. In one minimum guarantee relative to at least one performance met-
implementation, the current fitness value for the flow would ric (e.g., latency, jitter, packet loss), and does not operate on
fall below zero. FIG. 10 illustrates a process flow, which CoS 35 classes of network service that do not provide minimum
selector 89 executes on a periodic basis to adjust the classes of guarantees, such as a best effort class of service. In one
service initially selected for one or more data flows. As FIG. implementation, if the load for any given class of service
10 illustrates, CoS selector 89 operates on a periodic basis exceeds a threshold percentage (Th4) (620), CoS selector 89
(602) to determine whether any flows are currently assigned operates to adjust the class of service applied to one or more
to a class of service that does not meet the MAPPs associated 40 data flows in that CoS bucket. In one implementation, CoS
with the network application corresponding to the data flow selector 89 orders the classes of service that exceed the
(604). In one implementation, a MAPP failure is determined threshold by load with the most loaded Cog bucket first (622).
relative to the current fitness value associated with the class of CoS selector 89, for each "full" CoS bucket (i.e., where the
service to which the data flow is assigned. In addition, CoS observed load exceeds Th4) (624), re-marks the data flows in
selector 89 also checks to see whether the observed load on 45 the CoS bucket with the least loaded class of service that
any given class of service exceeds a threshold toad value meets the MAPPs corresponding to the network application
(620). (632). If no available CoS currently meets the MAPPs asso-

As discussed above, network application performance ciated with the flow, then the CoS assigned to the flow is the
monitoring module 88a monitors network application perfor- most qualified (i.e., CoS with highest fitness value) and least
mance and updates the fitness values for each class of service. 50 loaded CoS bucket. In one implementation, the CoS selection
Accordingly, the latest observed performance for a given can be based on a weighted algorithm that combines fitness
class of service may fall below the MAPPs specified for a values and load parameters. CoS selector 89 proceeds
given network application after one or more flows have been through the flows in the CoS Bucket until the projected load
marked with that class of service. Accordingly to detect a on the CoS Bucket falls below a second threshold percentage
MAPP failure (604), CoS selector 89, in one implementation, 55 (Th5) (626, 628, 634). In one implementation, CoS selector
looks up the current fitness value associated with the current 89, similar to above, does not change the class of service
class of service corresponding to each data flow. Given the applied to a given flow if it had been changed within a thresh-
fitness scoring algorithm set forth above, a fitness value that is old period of time (Th3) (630).
less than zero indicates a MAPP failure. If there are no MAPP Lastly, although the present invention has been described
failures, CoS selector 89 then analyzes the observed load 60 as operating in connection with end systems and networks
associated with each class of service that provides a minimum primarily employing the HTTP, TCP and IP protocols, the
guarantee relative to at least one performance metric (see present invention has application in computer network envi-
below). Otherwise, CoS selector 89 selectively changes the ronments employing any suitable session layer, transport
CoS marking for one or more of the data flows where the layer and network layer protocols. Moreover, one skilled in
fitness value is less than zero (608). In one implementation, a 65 the art will recognize that the present invention can be applied
data structure maintains data flow identifiers sorted by their to dynamically adjust a variety of differentiated services poli-
current fitness value where the data flow with the lowest cies, such as MPLS, diffserv, and the like. In addition,

Juniper - Exhibit 1035, page 37

US 7,843,843 B1
47

although embodiments of the present invention discussed
above operate to upgrade a given traffic class, embodiments
of the present invention can be configured to downgrade or
otherwise change a differentiated service class that would
ordinarily apply to a given traffic class if the detected perfor-
mance falls below a given threshold. For example, the present
invention can be configured to downgrade data flows that, by
default, receive a higher class of service, if during an analysis
interval it is determined that the particular class of service is
not having the desired effect on application performance, as
indicated by response time measurements discussed above.
Accordingly, the present invention has been described with
reference to specific embodiments. Still further, one skilled in
the art will recognize that a variety of service level agree-
ments exist. The forgoing description is intended to illustrate
how various embodiments of the present invention operate in
connection with different service level agreement types. For
example, the details of other flow assignment and adjustment
schemes will depend on the attributes of the service level
agreements applicable to a given network service provider.
For example, assuming that a service level agreement speci-
fies the cost of different classes of service but does not provide
for a fixed allocation of the link bandwidth, CoS selector 89
can be configured to select the least-cost class of service for a
data flow where the fitness value of the class of service is
greater than zero. If no class of service has a fitness value
greater than 0 for a given data flow, CoS selector 89 selects the
class of service that has a fitness value closest to 0. Other
embodiments of the present invention will be apparent to one
of ordinary skill in the art. It is, therefore, intended that the
claims set forth below not be limited to the embodiments
described above.

What is claimed is:
1. An apparatus facilitating the management of network

traffic transmitted over a differentiated services network sup-
porting one or more classes of service, comprising

a packet processor operative to
detect data flows in network traffic traversing a commu-

nications path, the data flows each comprising at least
one packet;

a traffic classification engine operative to identify one or
more network applications in data flows traversing the
apparatus,

a network performance monitoring module operative to
monitor the performance of the differentiated services
network relative to the one or more classes of service
supported by the differentiated services network; and,

a class of service (CoS) selector operative to
compute, for at least one of the network applications,

fitness values for the one or more classes of service
based on the respective minimum acceptable perfor-
mance parameters associated with corresponding net-
work applications and the monitored performance of
the one or more classes of service supported by the
differentiated services network,

select a class of service from the one or more classes of
service for a given data flow based on the identified
network application, and a comparison between the
fitness values for each of the classes of service corre-
sponding to the identified network application, and

wherein the apparatus is operative to mark the packets of
the data flows based on the identified network applica-
tions and the selected classes of service, and transmit the
packets over the differentiated services network.

2. The apparatus of claim 1 wherein the CoS selector is
further operative to adjust the selection of the class of service

48
for one or more data flows based on changes in performance
of the one or more classes of service.

3. The apparatus of claim 1 wherein the CoS selector is
further operative to adjust the selection of the class of service

5 for one or more data flows based on the observed load corre-
sponding to the one or more classes of service.

4. The apparatus of claim 1 wherein the network perfor-
mance monitoring module is operative to test the perfor-
mance of the one or more classes of service relative to at least

10 one of the following: latency, jitter and packet loss.
5. The apparatus of claim 1 wherein the network perfor-

mance monitoring module is further operative to discover
partner network devices disposed at the edge of the differen-
tiated services network and in the communications path to

15 one or more destination hosts.
6. The apparatus of claim 5 wherein the network perfor-

mance monitoring module is operative to test the perfor-
mance of the one or more classes of service supported by the
differentiated services network in cooperation with at least

20 one discovered partner network device.
7. The apparatus of claim 6 wherein the network perfor-

mance monitoring module is operative to
transmit, at periodic intervals, a burst of packets to the

partner network device, wherein the packets in the burst
25 of packets are spaced at a uniform time interval;

wherein the partner network device is operative to
receive the burst of packets from a first network device and

measure at least one network performance attribute
based on receipt of the burst of packets; and

30 transmit a response packet to the apparatus with the at least
one network performance attribute.

8. The apparatus of claim 7 wherein the at least one net-
work performance attribute is selected from the group con-
sisting of latency, jitter, and packet loss.

35 9. The apparatus of claim 7 wherein the apparatus and the
partner network device each comprises a time synchroniza-
tion mechanism.

10. A system facilitating the management of network traffic
transmitted over a plurality of differentiated services net-

40 works, each differentiated services network supporting one or
more classes of service, comprising

an application traffic management device comprising
a packet processor operative to
detect data flows in network traffic traversing a commu-

45 nications path, the data flows each comprising at least
one packet;

a traffic classification engine operative to identify one or
more network applications in data flows traversing the
apparatus,

50 a network performance monitoring module operative to
monitor the performance of the one or more classes of
service supported by the differentiated services net-
works; and,

a class of service (CoS) selector operative to
55 compute, for at least one of the network applications,

fitness values for the one or more classes of service
based on the respective minimum acceptable per-
formance parameters associated with correspond-
ing network applications and the monitored perfor-

60 mance of the one or more classes of service
supported by the differentiated services network,

select a differentiated services network from the plu-
rality of differentiated services networks and a
class of service from the one or more classes of

65 service supported by the selected differentiated ser-
vices network for a given data flow based on the
identified network application, and a comparison

Juniper - Exhibit 1035, page 38

US 7,843,843 B1
49

between the fitness values for each of the classes of
service corresponding to the identified network
application, and

wherein the application traffic management device is
operative to mark the packets of data flows correspond-
ing to the given network application with a mark corre-
sponding to the selected differentiated services network
and the selected class of service; and

a router operatively connected to the plurality of differen-
tiated services networks, the router operative to
receive packets with the mark from by the application

traffic management device;
map the mark to a first differentiated services network

from the plurality of differentiated services networks
and the class or service from the one or more classes
of service supported by the first differentiated ser-
vices network.

11. The system of claim 10 wherein the router, as to
inbound packets, is further operative to mark the inbound
packets with an identifier corresponding to the differentiated
services network from which the inbound packets are
received.

12. The system of claim 10 wherein the application traffic
management device is operative to store identifiers in asso-
ciation with the source hosts of the inbound packets, and use
the stored identifiers when selecting the differentiated ser-
vices network for the given data flow.

13. The apparatus of claim 10 wherein the CoS selector is
further operative to adjust the selection of the class of service
for one or more data flows based on changes in performance
of the one or more classes of service.

14. The apparatus of claim 10 wherein the CoS selector is
further operative to adjust the selection of the class of service

50
for one or more data flows based on the observed load corre-
sponding to the one or more classes of service.

15. A method, comprising
detecting, at a network device connected to a communica-

5 tions path, data flows in network traffic traversing the
communications path, the data flows each comprising at
least one packet, and wherein the communications path
comprises a differentiated services network supporting
one or more classes of service;

10 identifying one or more network applications in the data
flows traversing the communications path,

monitoring the performance of the differentiated services
network relative to one or more classes of service sup-
ported by the differentiated services network; and,

computing, for at least one of the network applications,
fitness values for the one or more classes of service
based on the respective minimum acceptable perfor-
mance parameters associated with corresponding net-
work applications and the monitored performance of the
one or more classes of service supported by the differ-
entiated services network,

selecting a class of service from the one or more classes of
service for a given data flow based on the identified

25 network application, and a comparison between the fit-
ness values for each of the classes of service correspond-
ing to the identified network application and

marking the packets of the data flows corresponding to the
given network application with the selected class of

30 service for transmission over the differentiated services
network.

5

2 0

Juniper - Exhibit 1035, page 39

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,843,843 B1 Page 1 of 1
APPLICATION NO. : 11/096310
DATED : November 30, 2010

INVENTOR(S) : Albert L. Papp, III et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In title, after "Selection of please delete "Differntiated" and insert --Differentiated--.

Signed and Sealed this
Twenty-third Day of August, 2011

David J. Kappos
Director of the United States Patent and Trademark 00ce

Juniper - Exhibit 1035, page 40

