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Abstract—As microprocessors enter the highly multi-core/multi-
threaded era, higher density, lower latency embedded memory
will be required to meet cache design needs. This paper describes
a 500MHz random cycle Silicon on Insulator (SOI) embedded
DRAM macro which features a three-transistor micro sense ampli-
fier, realizing significant performance gains over traditional array
design methods. To address the realities of process integration,
we describe the features and issues associated with integrating
this DRAM into SOI technology, including deep trench processing
and floating body effects. After a brief description of the macro
architecture, details are provided on the three-transistor micro
sense amplifier scheme, which is key to achieving a high transfer
ratio with minimal area overhead. The paper concludes with
hardware results and a summary.

Index Terms—DRAM chips, FET amplifiers, memory architec-
ture, microprocessor chips, Silicon on Insulator.

I. MOTIVATION

SYSTEM-LEVEL processor simulations show that dou-
bling cache capacity results in respectable double-digit

percentage gains for cache-constrained commercial appli-
cations [1]. Improving cache latency also has an impact on
system performance, and integrating the cache on-chip elim-
inates delay, power and area penalties associated with high
frequency off-chip I/O channels. Moving forward, trends in
virtual machine technology, multi-threading and multi-core
processors will continue to stress cache sub-systems [2], [3].
The availability of a high-performance embedded DRAM
macro, offering a 3x density advantage over SRAM, would
allow cache-dominated chips to double their cache capacity,
while actually fitting in a smaller footprint. Smaller cache size
not only reduces chip cost, but offers latency reduction from
shorter wire run lengths to retrieve data. For power-constrained
applications, eDRAM consumes one-fifth the keep-alive power
of SRAM, while its high capacitance and small collector area
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offer a soft error rate three orders of magnitude lower than
SRAM.

II. CURRENT LEVEL OF INTEGRATION

Logic-based embedded DRAM has matured into a wide
range of applications (Fig. 1), most notably the on-chip cache
for IBM’s BlueGene/L supercomputer [4], currently ranked #1
on the top 500 supercomputer list [13]. Integration of embedded
DRAM for caching enabled BlueGene/L to achieve world class
performance, while utilizing only a modestly performing bulk
processor technology. IBM’s dual-core Power5 microprocessor
[5], in contrast, leverages SOI technology to achieve multi-giga-
hertz CPU frequencies, and exploits bulk technology embedded
DRAM to provide a massive single-chip 36 MByte external
L3 cache. Imagine the performance attainable if embedded
DRAM were available on-chip with the high-performance SOI
microprocessor. In order to achieve this next level of integra-
tion, two requirements must be met: first, embedded DRAM
technology must be integrated on the same high-performance
SOI technology platform currently utilized by microprocessors;
second, DRAM performance must be enhanced to service the
aggressive latency requirements of multi-gigahertz processors.

III. TECHNOLOGY FEATURES

To satisfy the first requirement, DRAM has been embedded
on a 65 nm, partially depleted SOI, high-performance tech-
nology platform [Fig. 2(a)] [6]. The technology offers both
1.12 nm thin oxide and 2.35 nm thick oxide devices. The
DRAM cell is fabricated on SOI and utilizes the technology’s
standard 2.35 nm thick oxide floating body NFET. A silicide
strap forms a low resistance connection to a 20 fF deep trench
capacitor. High trench capacitance is achieved by digging
through the SOI and buried oxide (BOX), 4.5 m into the
substrate. Conveniently, the buried oxide provides isolation
between the SOI and substrate, eliminating the oxide collar re-
quired by bulk technologies to protect against vertical parasitic
leakage. The details of this mechanism are described in the
following section.

IV. COLLAR PROCESS ELIMINATION

Fig. 2(b) shows the bulk and SOI embedded DRAM process
cross sections. Bulk trench technologies must deal with para-
sitic leakage created by the vertical device formed between the
node and N-Band, gated by the trench sidewall. To mitigate this
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Fig. 1. BlueGene/L and Power5 MCM.

(a)

(b)

Fig. 2. SOI eDRAM process cross sections.

leakage, bulk technologies must form a thick oxide collar at
the top of the trench. In SOI, the bulk P-Well is replaced by
the buried oxide, isolating the node from the N-Band, and pre-
cluding the need for a collar. Eliminating the collar not only

(a)

(b)

Fig. 3. SOI floating body effects.

reduces process complexity, but also increases the cross-sec-
tional area of the trench, further reducing parasitic resistance to
the storage capacitor. These factors combine to drop the overall
eDRAM process cost adder from 15% for bulk to 7% for SOI. In
addition, the absence of wells in SOI realizes lower source-drain
capacitances and enables layout area reduction by eliminating
well tie-downs and allowing smaller NFET-to-PFET spacing.
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Fig. 4. Macro architecture.

V. FLOATING BODY EFFECTS

Integrating a DRAM cell into SOI technology does, how-
ever, introduce a concern: without a well, the body of the
eDRAM cell’s SOI device is floating. The potential of the body
is determined by a number of mechanisms. Primarily, these
mechanisms are: coupling, junction leakage, impact ionization,
thermal generation, and recombination. Some of these can be
exploited; others must be carefully managed. During DRAM
cell write-back, the array’s wordline and bitline are both driven
high, coupling the body of the transfer device high, acting to
lower its threshold, and enabling a higher voltage to be written
into the cell. When write-back is complete, the wordline is
lowered, trapping charge on the storage capacitor. At this time,
leakage mechanisms take over, specifically junction leakage at
the forward and reverse bias diodes formed between the body
and source drain regions [Fig. 3(a)]. If the device’s body floats
high, its will be reduced, degrading the cell’s retention char-
acteristics due to subthreshold leakage. A high body potential
also increases vulnerability to bipolar current when the source
is quickly discharged.

For these reasons, it is desirable to prevent a high body
situation on the cell access device. Recognizing that a for-
ward-biased junction has higher leakage than a reverse-biased
junction, holding the bitline low will cause the body to float
closer to ground, thus reducing subthreshold leakage. To realize
this scenario, bitline ground pre-charge is implemented to
maintain a low body potential. Additionally, periods of bitline
high are limited by the short page depth associated with this
embedded DRAM’s wide-I/O design.

VI. ARRAY FLOATING BODY

Fig. 3(b) shows two graphs of net body charge, with coupling
effects removed. The top graph shows the weak reverse bias
leakage slowly charging the floating body high on the eDRAM
cell’s NFET. This would occur for a design like that of com-
modity DRAM, where the bitline is kept high for a long period
of time, to keep a “page” of data open. When the bitline is low-
ered, high subthreshold leakage and bipolar current then rapidly

Fig. 5. Pyramid wiring scheme.

drain charge stored in the DRAM cell. The stronger forward
bias leakage can also be seen discharging the body. The bottom
graph in Fig. 3(b) shows frequent bitline grounding, as used in
this paper’s design; this maintains the cell device’s body charge
desirably near ground.

VII. MACRO ARCHITECTURE

Architecturally the macro is divided into upper and lower
halves, each half consisting of four 292 Kb sub-arrays (Fig. 4).
In the central region, addresses are decoded into array selects,
master wordlines and global wordlines, which are delivered over
the sub-arrays on Metal-4. Locally, master wordlines are en-
abled by a single array select and combined with the global
wordlines to select one of 256 local wordlines. One-hot late-se-
lect column select signals support 16-way cache associativity.
Eight are driven to the upper array, eight to the lower array,
selecting one of 16 columns. The central region also includes
control logic and the 146 bit data I/O. It should be noted that
this region reused an existing SRAM I/O design and is not area
optimized.
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Fig. 6. High transfer ratio benefits.

VIII. PYRAMID ROW

Fig. 5 shows the unconventional orthogonal location of the
wordline driver as introduced by Wiess et al., at ISSCC 2002 [7].
Metal-4 is used in a pyramid-like pattern to jumper the orthog-
onal wordline driver to the east/west Metal-3 wordline strap.
The pyramid pattern, easily distinguishable in the micrograph
on the right side of the figure, minimizes wordline skew by using
the shortest Metal-4 jumper on the longest Metal-3 runs. The
orthogonal wordline configuration saves area by decoupling the
wordline driver layout from the array wordline pitch and avoids
replicating wordline pre-decode in each sub-array.

IX. SHORT BITLINE

To satisfy the second requirement for on-chip embedded
DRAM caches, macro performance must be improved to meet
the latency requirements of a multi-gigahertz microprocessor.
Where area overhead is not a concern, reducing bitline length
is an accepted method for improving DRAM performance.
Fig. 6 compares two different eDRAM array designs: one with
128 cells per bitline, and a second with 32 cells per bitline.
This figure highlights three performance gains: first, the lower
bitline capacitance of the 32 cell bitline results in a reduced
read time-constant and faster signal development; second, the
high transfer ratio of the short bitline design creates a large bit-
line voltage swings, providing more signal; and third, reduced
cell charge transfer during a read minimizes charging time to
replenish the cell during write-back.

X. OVERHEAD

Short bitline performance is attractive, but must be weighed
against increased area overhead. Each time a bitline is cut in
half, sense circuits and data buffers must be doubled. The high-
performance direct write embedded DRAM presented at ISSCC
2005 [8] requires 11 transistors for each sense amplifier, plus
reference cells and bitline twisting, totaling a 14% area over-
head. A 128-bits-per-bitline version would suffer 27% over-
head; extrapolating to 32 cells per bitline would result in an

Fig. 7. Hierarchical micro sense amp.

Fig. 8. Tertiary sense amp.

unacceptable 80% overhead. To make matters worse, imple-
menting the sense amplifier design of [8] in SOI would require
further overhead for body-tied SOI devices, required to prevent
history-induced sense amplifier mismatch. To extract overall
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(a)

(b)

Fig. 9. Micro sense simulations.

benefit from a high cell-to-bitline transfer ratio, a low overhead
sensing scheme is required.

XI. MICRO SENSE AMPLIFIER ( SA)

Fig. 7 proposes a three-transistor scheme to minimize sense
amplifier overhead. The hierarchical scheme relies on the high
transfer ratio during a read to create a large voltage swing
on a local bitline; large enough, in fact, to be sampled with a
single-ended amplifier. The amplifier has been minimized by
decomposing its three basic operations—read, write ‘0’, and
write ‘1’—each being implemented with a single transistor.
Each micro sense amplifier ( SA) services a short 32 cell local
bitline, labeled LBL in Fig. 7. The single-ended nature of this
sensing scheme allows a relaxed Metal-1 pitch, reducing the

line-to-line capacitance by a factor of three. The short bitline,
relaxed pitch, and low SOI junction capacitance combine for
a local bitline capacitance of only 4 fF. When coupled with a
20 fF cell, an 83% transfer ratio is realized, ideally producing
over 800 mV of signal—more than enough to turn on a 250 mV

transistor.
Each three-transistor SA is configured with an NFET for

reading, a PFET for writing a full one, and an NFET for writing
a full zero. The SA transfers data to/from a secondary sense
amplifier (SSA) via two global read/write bitlines, labeled RBL
and WBL. The Metal-2 global bitlines, routed in parallel to the
Metal-1 local bitlines, control the read/write operations to all

SAs in parallel. Each SSA services eight SAs in a hierar-
chical fashion.
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TABLE I

XII. TERTIARY SENSE AMPLIFIER

The SA adds an extra level of hierarchy and necessitates
a third-level (tertiary) sense amplifier. The bi-directional ter-
tiary sense amplifier shown in Fig. 8 is responsible for transfer-
ring data between the Metal-4 global datalines and the selected
SSA. One of eight secondary sense amplifiers is selected by the
column address, which controls the one-hot column select lines
(CSL). In a set-associative cache, the column address could be
used as a late way select.

During a write, either the true or complement global dataline
is remotely driven high. In turn, the tertiary sense amplifier pulls
either the true or complement local dataline low, which is then
passed to the selected SSA. During a read, the global data lines
are left in the low pre-charge state until the selected SSA pulls
either of the local datalines low. The data passes through the ter-
tiary sense amplifier and pulls the corresponding global dataline
high. It should be noted that a read or write to the sub-array is
determined by the timing of the global datalines and does not
require dedicated Read/Write control signals.

XIII. OPERATION TRUTH TABLE

Table I shows the logical operation of the SA. All cycles
start in the pre-charge condition with read and write global
bitlines held high, pre-charging the local bitline to ground.
Sub-array selection triggers the sense amplifier equalize signal
SEQN to go high (Fig. 7), forcing the write bitline low. This
enables the SA read transistor, and tri-states the local bitline,
indicated by a ‘Z’ in the truth table. A write ‘1’ is achieved by
driving the read bitline low—as indicated in Table I—while
a write ‘0’ is achieved by driving the write bitline high. Logi-
cally, the local bitline remains low in the read ‘0’ state and only
transitions high in a read ‘1’ state.

XIV. WRITE WAVEFORMS

Fig. 9(a) shows a simulation of write operation using the
SA. To write a ‘1’, the selected SSA pulls the read bitline

low, forcing the local bitline high, writing a ‘1’ into the selected
cell. To write a ‘0’, the selected SSA drives both the read bitline
and write bitline high, in turn driving the local bitline low and
writing a ‘0’ into the selected cell. It should be noted that due
to the SA’s unique configuration, writing opposite data onto

Fig. 10. Cell performance innovations.

the local bitline is accomplished without contention, eliminating
any technology P-to-N ratio dependence.

XV. READ WAVEFORMS

The process of reading using the SA is also relatively
straightforward, but contains one unexpected component. As
shown in Fig. 9(b), the SA is first taken out of pre-charge by
lowering the write bitline. The read bitline, however, is held in
the pre-charge state until an interlock circuit detects the write
bitline is low. This extended pre-charge absorbs any line-to-line
coupling from the write bitline to the read bitline, preventing
any premature amplification. When a wordline is activated,
read data is transferred from the cell to the local bitline. For
a stored ‘1’, the local bitline rises at least 1 threshold above
the read transistor, weakly pulling the read bitline low. Here is
the novel component of this operation: when the read bitline
falls below the threshold of the SA PMOS, feedback drives
the local bitline to a full high level. This amplifies the local
bitline, refreshes the cell, and strongly drives the read bitline
low, which can be seen as a slope change on both the local
bitline and the read bitline. It should be noted that the refresh
of a ‘1’ is self-timed, and requires no external timing control.

For a stored ‘0’, the local bitline and cell are very close in po-
tential, therefore the local bitline remains low, leaving the read
transistor off and the read bitline high. The read bitline remains
high until the external timing signal SETP triggers the SSA to
evaluate the read bitline. With the read bitline still in the high
state, the SSA drives the write bitline high, forcing the local bit-
line low, refreshing the ‘0’.

XVI. CYCLE LIMITS

Historically, the cycle time of NFET DRAM arrays are de-
termined by writing a high level into the cell. Fig. 10 shows the
evolution of embedded DRAM architectural advances aimed at
reducing cycle time. These advances include the sense-synchro-
nized write [10], [11] and direct write [8] described at ISSCC
2003 and 2004, respectively. Similar to prior work, this paper’s
tertiary, secondary, and micro sense amplifiers are configured to
be bi-directional and support direct write of data prior to word-
line activation, without disrupting reads of adjacent sense ampli-
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Fig. 11. Micro sense overhead.

Fig. 12. Access time results.

fiers and data bits. By significantly improving the refresh cycle
time, the micro sense architecture reduces cycle time down to
the cell’s fundamental ability to write opposite data.

XVII. MICRO SENSE AMPLIFIER OVERHEAD

As mentioned previously, the performance of short bitline de-
signs must be weighed against their increased area overhead.
To quantify this tradeoff, Fig. 11 compares the area overheads
of three different eDRAM array designs: 1) a direct write array
with 256 cells/bitline [8]; 2) the same design style, but with 128
cells/bitline; and 3) the SA-based array described in this paper,
with 32 cells/bitline. As seen in the total area overhead row, the
three-transistor SA design achieves its breakthrough perfor-
mance with the same 27% area overhead associated with a bit-
line four times its length.

XVIII. LATENCY AND CYCLE TIME

The 2 Mb macro shmoo plot in Fig. 12 demonstrates 1.5 ns
access time with 99.99% bit yield across the full address space

Fig. 13. Cycle time results.

at 1 V and 85 C. The design achieves a respectable 4 ns ac-
cess at 600 mV. As mentioned in description of the sense am-
plifier’s operation in write mode, in contrast to SRAM cells and
cross-coupled DRAM sense amplifiers, there is no reliance on
nMOS/pMOS strength ratios for writing to the opposite state.
This enables very low 600 mV operation, limited only by the
highest threshold read transistor. All-good repairable 13.5 Mb
chips have been successfully manufactured to a relaxed product-
like specification.

The shmoo in Fig. 13 demonstrates 500 MHz operation at
1 V. Macro performance exceeds the cycle limit of the full ad-
dress space tester used for this plot; for this reason, 500 MHz
verification was limited to the 32 k address space of the high-
speed tester.

XIX. FEATURES

Fig. 14 shows a photomicrograph of the 13.5 Mb test
chip, containing two 2 Mb macros and two 4 Mb embedded
DRAM macros. Fig. 14 also shows a features table, including
the array’s 40 s retention specification. Using concurrent
refresh (described by Kirihata, et al. at ISSCC 2004 [9]), array
availability is 98%. As listed in the features table, typical
keep-alive power (static power plus the power cost of periodic
refresh) is 45 mW—one-fifth the power of SRAM in the same
technology.

XX. SUMMARY

This paper has described a prototype embedded DRAM
macro developed in a 65 nm SOI process. SOI enables
DRAM process simplification, resulting in a low 7% cost
adder. The paper proposed a hierarchical three-transistor
micro sense amplifier, offering significant performance
improvements compared to cross-coupled amplifiers with
similar area overhead. By maintaining a 3x density advantage
over SRAM, we feel this would be an ideal on-chip cache

Authorized licensed use limited to: IEEE Staff. Downloaded on February 19,2021 at 16:27:51 UTC from IEEE Xplore.  Restrictions apply. 



BARTH et al.: A 500 MHz RANDOM CYCLE, 1.5 ns LATENCY, SOI EMBEDDED DRAM MACRO FEATURING A THREE-TRANSISTOR SA 93

Fig. 14. Technology summary and die photo.

memory for high-performance microprocessor and gaming
applications. We are confident this technology is scalable as
we progress with our 45 nm SOI embedded DRAM product
development.
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