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background, called bokeh, has a real cult following among
some photographers.

(b) small sensor (7.18 x 5.32 mm)(a) large sensor (22.2 x 14.8 mm)

Figure 2: Given the same field of view and the same f-

number (f/2.8), a large sensor (a) yields more defocus than

a small sensor (b) does.

Our technique takes a single input image where the depth
of field is too large and increases the amount of defocus
present in out-of-focus regions. That is, our goal is oppo-
site to that of work that seeks to create images that are sharp
everywhere.

Our approach first estimates the spatially-varying amount
of blur over the image, and then uses an off-the-shelf image-
based technique to increase defocus. We first estimate the
size of the blur kernel at edges, building on the method by
Elder and Zucker [EZ98], and then propagate this defocus
measure over the image with a non-homogeneous optimiza-
tion. Using our defocus map, we can magnify the existing
blurriness, which means that we further blur blurry regions
and keep sharp regions sharp.

Note that in contrast to more difficult problems such as
depth from defocus, we do not require precise depth estima-
tion and do not need to accurately disambiguate smooth re-
gions of the image, since such regions are not much affected
by extra blur due to defocus. The fundamental ambiguity be-
tween out-of-focus edges and originally smooth edges is out
of the scope of our work. We also do not need to disam-
biguate between objects in front and behind the plane of fo-
cus. We simply compute the amount of blur and increase it.
While our method does not produce outputs that perfectly
matches images captured with a larger-aperture lens, it qual-
itatively reproduces the amount of defocus. We refer inter-
ested readers to Appendix A where we review thin-lens op-
tics and defocus.

1.1. Related work

Defocus effects have been an interest of the Computer Vi-
sion community in the context of recovering 3D from 2D.
Camera focus and defocus have been used to reconstruct
depth or 3D scenes from multiple images: depth from fo-
cus [Hor68,DW88, EL93,NN94,HK06] and depth of defo-
cus [Pen87,EL93,WN98,FS02,JF02,FS05]. These methods
use multiple images with different focus settings and esti-
mate the corresponding depth for each pixel. They have to

know the focus distance and focal length to computer the
depth map. In contrast, we do not estimate the depth but the
blur kernel. We want to treat this problem without the help
of any special camera settings, but only with image post-
processing techniques.

Image processing methods have been introduced to mod-
ify defocus effects without reconstructing depth. Eltoukhy
and Kavusi [EK03] use multiple photos with different focus
settings and fuse them to produce an image with extended
depth of field. Özkan et al. [OTS94] and Trussell and Fo-
gel [TF92] have developed a system to restore space-varying
blurred images and Reeves and Mersereau [RM92] find a
blur model to restore blurred images. This is the opposite of
what we want to do. They want to restore blurred images,
while we want to increase existing blurriness.

Kubota and Aizawa [KA05] use linear filters to recon-
struct arbitrarily focused images from two differently fo-
cused images. On the contrary, we want to modify defocus
effects only with a single image. Lai et al. [LFC92] use a sin-
gle image to estimate the defocus kernel and corresponding
depth. But their method only works on an image composed
of straight lines at a spatially fixed depth.

Given an image with a corresponding depth map, depth
of field can be approximated using a spatially-varying blur,
e.g. [PC81,BHK∗03], but note that special attention must be
paid to occlusion boundaries [BTCH05]. Similar techniques
are now available in commercial software such as Adobe R©

Photoshop R© (lens blur) and Depth of Field Generator Pro
(dofpro.com). In our work we simply use these features and
instead of providing a depth map, we provide a blurriness
map estimated from the photo. While the amount of blurri-
ness is only related to depth and is not strictly the same as
depth, we have found that the results qualitatively achieve
the desired effect and correctly increase defocus where ap-
propriate. Note that a simple remapping of blurriness would
yield a map that resembles more closely a depth map.

2. Overview of Our Approach

For each pixel, we estimate the spatially-varying amount of
blur. We call our blur estimation the defocus map. We es-
timate the defocus map in two steps. First, we estimate the
amount of blur at edges. Then, we propagate this blur mea-
sure to the rest of the image.

We model an edge as a step function and the blur of this
edge as a Gaussian blurring kernel. We adapt the method
by Elder and Zucker [EZ98], which uses multiscale filter re-
sponses to determine the size of this kernel. We add a cross-
bilateral filtering step [ED04,PAH∗04] to remove outlier es-
timates.

We propagate the blur measure using non-homogeneous
optimization [LLW04]. Our assumption is that blurriness
varies smoothly over the image except where the color is dis-
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(a) input (c) the zero-crossing of 

the third derivative

(d) blur measure 

using our approach

(b) actual blur sigma

Figure 4: The zero-crossing of the third derivative (c) is greatly affected by neighboring edges and cannot localize the second

derivative extrema. In contrast, our approach (d) can estimate the blur sigma that is close to the actual blur sigma (b). The

input (a) is generated using the blur sigma (b).

with the distance in space and with the range difference of a
reference image.

In addition to the original cross bilateral filtering weights,
we use a sharpness bias, b(BM) = exp(−BM/2). The sharp-
ness bias corrects blur measures in soft shadows and glossy
highlights that are higher than they are supposed to be.

With gσ (x) = exp(−x2/2σ2), a Gaussian function, we de-
fine the biased cross bilateral filtering of a sparse set of blur
measures, BM at an edge pixel p as the following:

bCBF(BM)p =
1

k
∑
q∈BM

wpq b(BMq) BMq (3a)

with: wpq ∝ ∑
i∈{R,G,B}

gσs(||p−q||) gσr (|Ci(p)−Ci(q)|)

(3b)

and k = ∑
q∈BM

wpq b(BMq) (3c)

where σs controls the spatial neighborhood, and σr the
influence of the intensity difference, and k normalizes the
weights. We use the RGB color channels of the original input
image as the reference and set σr = 10% of the image range
and σs = 10% of the image size. This refinement process
does not generate much change but refines a few outliers as
shown in Figure 5. The cross bilateral filtering refines out-
liers such as yellow and green measures (b) in the focused
regions to be blue (c).

4. Blur Propagation

Our blur estimation provides blur kernels only at edges
and we need to propagate this blur measure. We use non-
homogeneous optimization [LLW04] and assume that the
amount of defocus is smooth when intensity and color are
smooth.

4.1. Propagate using optimization

Our propagation is inspired by the colorization paper by
Levin et al. [LLW04]. We impose the constraint that neigh-
boring pixels p,q have similar blurriness if they have similar

intensities and colors. We minimize the difference between
the blurriness B(p) and a weighted average of blurriness of
neighboring pixels:

E(B) = ∑(B(p)− ∑
q∈N(p)

wpqB(q))2 (4a)

+ ∑αp (B(p)−BM(p))2 (4b)

with: wpq ∝ ∑
i∈{R,G,B}

exp(
−(Ci(p)−Ci(q))

2

2σ2
ip

) (4c)

where σp is the standard deviation of the intensities and col-
ors of neiboring pixels in a window around p. The window
size used is 7× 7. We have experimented both with setting
the second term as hard constraints vs. as a quadratic data
term, and have found that the latter is more robust to poten-
tial remaining errors in the blur measure.

We solve this optimization problem by solving the cor-
responding sparse linear system. Figure 6 shows the defocus
map for various values of α . We use α = 0.5 for edge pixels.

5. Results

We have implemented our blur estimation using Matlab. Our
defocus map enables defocus magnification.We rely on Pho-
toshop’s lens blur to compute the defocused output. We crop
the upper and lower 5% of the defocus map and clamp its
minimum value to 0. In addition, we apply Gaussian blur to
the defocus map to use it as a depth map. The Gaussian blur
radius is set to 0.5% of the image size.

Using our defocus map, we can simulate the effect of dou-
bling the aperture size. Figure 7 compares two input defocus
maps of two images with the f-number 8 (a) and 4 (b). As
we double the defocus map (c) of the f/8 image, we obtain a
result similar to the defocus map (d) of the f/4 image. While
the simulated defocused map (e) is not exactly the same as
the real map (d), the output image with magnified defocus
(f) is visually close to the f/4 photograph (b).

In Figure 11, we show the results of using our defocus
map to magnify the existing defocus effects in the original
images. The results preserve the sharpness of the focused re-
gions but increase the blurriness of the out-of-focus regions.
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Our defocus mapInput Our result with magnified defocus

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: Results. The original images, their defocus maps, and results blurred using our approach. The inputs were taken

by (a) a Nikon D50 with a sensor size of 23.7×15.6 mm and a 180.0 mm lens at f/4.8, (b) a Canon 1D Mark II with a sensor

size of 28.7×19.1 mm and a Canon EF 85mm f/1.2L lens, and (c, d) a Canon PowerShot A80, a point-and-shoot camera with

a sensor size of 7.18×5.32 mm, and a 7.8 mm lens at f/2.8. The two at the bottom are from bigfoto.com.
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