

UL 62

STANDARD FOR SAFETY Flexible Cords and Cables

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 1

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL Willis Electric Exhibit 2050 UL Standard for Safety for Flexible Cords and Cables, UL 62

Twentieth Edition, Dated July 6, 2018

Summary of Topics

This new edition of ANSI/UL 62 has been published to update the ANSI approval of the standard and includes:

Revised reference publications.

Removal of specific material requirements for tape or yarn used as a separator.

Clarified construction requirements for range and dryer cords and added mm² size designations.

Clarified substitutability of materials of higher temperature ratings.

Changed "%" to "percent" and better defined how diameter (D) under braid is to be used and measured.

Added a requirement for testing of bare copper wire shields with thermoset insulations.

Clarified the required flame test requirements for SPT cords used in Mexico.

Added HSJW and HPNW to permit use of heater cords exposed to sunlight and waterl.

Revised wording to clarify the requirements for insulations used in duplex units of elevator cables.

Added NISP-1, NISP-2, NISPE-1, NISPE-2, NISPT-1, NISPT-2 to clarify that these types are not required to be subjected to the Tightness of Insulation test.

Clarifed the AC Leakage Current Test for Low Leakage Cord.

Clarified oil resistant types that can have an "O" in the type designation and those types that are required to be oil resistant, but are not permitted to have an "O" in the type designation.

Added a requirement for caution marking on single conductor CXWT^c.

Added new types CXTW-S and CXTW-IS that can be shown to have the equivalent strength to the breaking strength of a 2-conductor, twisted 22 AWG CXTW (UL 588, 13.2.4), or to the breaking strength of a single conductor CXTW twisted with a supporting rope (UL 588, 81A.2).

Added the "-X" suffix for Type CXTW in sizes smaller than 22 AWG that are equivalent in breaking strength to a 22 AWG,

Added Types LXT and LXTW used in decorative lighting products, and added "-X" suffix for constructions that are equivalent in breaking strength to 22 AWG.

Added testing and marking requirements for cords incorporating the overall braid.

Added the missing Spark Test voltage in Table 46.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 3

Added 20 AWG DPT and DPTW types.

Added grounding conductor size for cables containing 9 AWG circuit conductors.

Added 1000 V electric vehicle cable.

Clarified the definition of Neutral Conductor.

Added thermoplastic oil resistant compound like an SVTO as an optional jacket for elevator cables.

Added Annex D to provide a list of cord types by country.

Added a note to Table 22 for single conductor CXWT used in two conductor CXWT twisted lighting strings.

Revised Table 20 to allow SPT-1W and SPT-2W for use in Canada and Mexico.

Added applicable tests for conductors containing fibrous strength members.

Added harmonized type designations for Flexible Cords and Cables and Electric Vehicle Cables using TPE insulation and jacket.

Added the abbreviation "w/thrd" to shorten the required marking for those products containing a thread in the conductor.

Revised the Cold Impact Test temperature required on all electric vehicle cables.

Added Type YXTW for use in year-round lighting strings.

Revised requirements for data and signal conductors used in Electric Vehicle Cables.

Editorial changes.

The new and revised requirements are substantially in accordance with Proposal(s) on this subject dated August 4, 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of UL.

UL provides this Standard "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for any purpose.

In no event will UL be liable for any special, incidental, consequential, indirect or similar damages, including loss of profits, lost savings, loss of data, or any other damages arising out of the use of or the inability to use this Standard, even if UL or an authorized UL representative has been advised of the possibility of such damage. In no event shall UL's liability for any damage ever exceed the price paid for this Standard, regardless of the form of the claim.

Users of the electronic versions of UL's Standards for Safety agree to defend, indemnify, and hold UL harmless from and against any loss, expense, liability, damage, claim, or judgment (including reasonable attorney's fees) resulting from any error or deviation introduced while purchaser is storing an electronic

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 4 Standard on the purchaser's computer system.

No Text on This Page

Association of Standardization and Certification NMX-J-436-ANCE-2018 Sixth Edition

CSA Group CAN/CSA C22.2 No. 49-18 Fifteenth Edition

Underwriters Laboratories Inc. UL 62 Twentieth Edition

Flexible Cords and Cables

July 6, 2018

Willis Electric Exhibit 2050 Page 7

R

Commitment for Amendments

This standard is issued jointly by the Association of Standardization and Certification (ANCE), the Canadian Standards Association (operating as "CSA Group"), and Underwriters Laboratories Inc. (UL). Comments or proposals for revisions on any part of the standard may be submitted to ANCE, CSA Group, or UL at anytime. Revisions to this standard will be made only after processing according to the standards development procedures of ANCE, CSA Group, and UL. CSA Group and UL will issue revisions to this standard by means of a new edition or revised or additional pages bearing their date of issue. ANCE will incorporate the same revisions into a new edition of the standard bearing the same date of issue as the CSA Group and UL pages.

Copyright © 2018 ANCE

Rights reserved in favor of ANCE.

ISBN 978-1-4883-0823-9 © 2018 Canadian Standards Association

All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.

This Standard is subject to review within five years from the date of publication, and suggestions for its improvement will be referred to the appropriate committee. To submit a proposal for change to CSA Standards, please send the following information to inquires@csa.ca and include "Proposal for change" in the subject line: Standard designation (number); relevant clause, table and/or figure number; wording of the proposed change; and rationale for the change.

To purchase CSA Group Standards and related publications, visit CSA Group's Online Store at **shop.csa.ca** or call toll-free 1-800-463-6727 or 416-747-4044.

Copyright © 2018 Underwriters Laboratories Inc.

UL's Standards for Safety are copyrighted by UL. Neither a printed nor electronic copy of a Standard should be altered in any way. All of UL's Standards and all copyrights, ownerships, and rights regarding those Standards shall remain the sole and exclusive property of UL.

This ANSI/UL Standard for Safety consists of the Twentieth Edition. The most recent designation of ANSI/UL 62 as an American National Standard (ANSI) occurred on July 6, 2018. ANSI approval for a standard does not include the Cover Page, Transmittal Pages, Title Page (front and back), or the Preface.

The Department of Defense (DoD) has adopted UL 62 on November 6, 1987. The publication of revised pages or a new edition of this Standard will not invalidate the DoD adoption.

Comments or proposals for revisions on any part of the Standard may be submitted to UL at any time. Proposals should be submitted via a Proposal Request in UL's On-Line Collaborative Standards Development System (CSDS) at https://csds.ul.com.

To purchase UL Standards, visit UL's Standards Sales Site at http://www.shopulstandards.com/ HowToOrder.aspx or call toll-free 1-888-853-3503.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 8

CONTENTS

1	Scope
	1.1 General
	1.2 Products included
_	1.3 National differences
2	Reference publications
3	Definitions and units of measurement
	3.1 Definitions
	3.2 Units of measurement
4	Construction requirements
	4.1 General construction requirements
	4.2 Thermoset-insulated cords (including range and dryer cords and special-use cords C ^u a
	PD ^u)
	4.3 Thermoplastic-insulated cords (including decorative and range and dryer cords)
	4.4 Heater cords – HSJOO, HSJOOW, HSJO, HSJW ^{c,u} , HSJOW, HSJ, HPN, HPNW ^{c,u} , a HPD ^{m,u}
	4.5 Tinsel cords (TST, TPT, shaver cord ^u)
	4.6 Elevator travelling cables – Types E, EO, ETT, and ETP
	4.7 Hoistway cables
	4.8 Electric vehicle cables
5	Performance and test requirements
	5.1 Physical properties
	5.2 Electrical properties
	5.3 Tests for hoistway cables
6	Marking
	6.1 General
	6.2 Product marking
	6.3 Optional markings
	6.4 Package marking
	6.5 Hoistway cables
	6.6 Recreational vehicle cord
	6.7 Mobile home and recreational vehicle cord

Annex A (normative) Calculation method for fibrous braids

Annex B (informative) Insulated conductor identification

Annex C (informative) French and Spanish translations of caution markings

Annex D (informative) Products recognized by their respective countries

PREFACE

This is the harmonized ANCE, CSA Group, and UL standard for flexible cords and cables. It is the sixth edition of NMX-J-436-ANCE, the fifteenth edition of CAN/CSA-C22.2 No. 49, and the twentieth edition of UL 62. This edition of CAN/CSA C22.2 No. 49 supersedes the previous edition(s) published in 2014, 2010, 2006, 1998, 1992, 1989, 1988, 1981, 1973, 1962, 1960, 1956, 1941, and 1937. This edition of UL 62 supersedes the previous edition published in 2014.

This harmonized standard was prepared by the Association of Standardization and Certification (ANCE), CSA Group, and Underwriters Laboratories Inc. (UL). The efforts and support of the Technical Harmonization Subcommittee, Flex Cords, THSC 20, of the Council on the Harmonization of Electrotechnical Standards of the Nations of the Americas (CANENA) are gratefully acknowledged.

This standard is considered suitable for use for conformity assessment within the stated scope of the standard.

The present Mexican standard was developed by the CT 20 – Conductores from the Comite de Normalizacion de la Asociacion de Normalizacion y Certificacion, A.C., CONANCE, with the collaboration of the wire and cables manufacturers and users.

This standard was reviewed by the CSA Integrated Committee on Flexible Cords/Equipment and Appliance Wires and Cables, under the jurisdiction of the CSA Technical Committee on Wiring Products and the CSA Strategic Steering Committee on Requirements for Electrical Safety, and has been formally approved by the CSA Technical Committee.

This standard has been developed in compliance with Standards Council of Canada requirements for National Standards of Canada. It has been published as a National Standard of Canada by CSA Group.

This standard has been approved by the American National Standards Institute (ANSI) as an American National Standard.

Application of Standard

Where reference is made to a specific number of samples to be tested, the specified number is to be considered a minimum quantity.

Note: Although the intended primary application of this standard is stated in its scope, it is important to note that it remains the responsibility of the users of the standard to judge its suitability for their particular purpose.

Level of Harmonization

This standard uses the IEC format but is not based on, nor is it to be considered equivalent to, an IEC standard. This standard is published as an equivalent standard for ANCE, CSA Group, and UL.

An equivalent standard is a standard that is substantially the same in technical content, except as follows: Technical national differences are allowed for codes and governmental regulations as well as those recognized as being in accordance with NAFTA Article 905, for example, because of fundamental climatic, geographical, technological, or infrastructural factors, scientific justification, or the level of protection that the country considers appropriate. Presentation is word for word except for editorial changes.

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

Reasons for Differences From IEC

This standard provides requirements for insulated cords and cables in accordance with the codes of Canada, Mexico, and the United States. At present there is no IEC standard for cords and cables for use in accordance with these codes. Therefore, this standard does not employ any IEC standard for base requirements.

Interpretations

The interpretation by the standards development organization of an identical or equivalent standard is based on the literal text to determine compliance with the standard in accordance with the procedural rules of the standards development organization. If more than one interpretation of the literal text has been identified, a revision is to be proposed as soon as possible to each of the standards development organizations to more accurately reflect the intent.

1 Scope

1.1 General

This standard specifies the requirements for flexible cords, elevator cables, and hoistway cables rated 600 V maximum and electric vehicle cables rated 1000 V maximum and intended for use in accordance with CAN/CSA C22.1, *Canadian Electrical Code*, *Part I*, in Canada, NOM-001-SEDE, *La Norma de Instalaciones Electricas*, in Mexico, and NFPA 70, *National Electrical Code* (NEC), in the United States.

1.2 Products included

This standard covers the following products:

- a) Service cords;
- b) Elevator cables;
- c) Hoistway cables;
- d) Heater cords;
- e) Range and dryer cords;
- f) Cords for decorative lighting;
- g) Tinsel and lamp cords;
- h) Special use cords; and
- i) Electric vehicle cables.

1.3 National differences

In cases where product types are not approved in all three countries, a national difference is indicated by superscripts, as shown below:

_	
7	

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

For Use By WILLIS

ELECTRIC CO

LTD

willis electric co., ltd., willis electric co., ltd. : 5/2/2019 -

Superscript letter	National difference [*]
С	For use in Canada only
m	For use in Mexico only
u	For use in United States only
c,m	For use in Canada and Mexico only
c,u	For use in Canada and United States only
m,u	For use in Mexico and United States only

*See Annex D for products recognized by their respective countries.

2 Reference publications

For undated references to standards, such reference shall be considered to refer to the latest edition and all revisions to that edition up to the time when this standard was approved.

ANCE (Association of Standardization and Certification)

NMX-J-008-ANCE Wires and Cables – Tinned Soft or Annealed Copper Wire for Electrical Purposes – Specifications

NMX-J-036-ANCE

Wires and Cables - Soft or Annealed Copper Wire for Electrical Purposes - Specifications

NMX-J-040-ANCE

Wires and Cables – Determination of the Moisture Absorption in Insulations of Electrical Conductors – Test Method

NMX-J-066-ANCE Wires and Cables – Determination of the Diameter of Electrical Conductors – Test Method

NMX-J-177-ANCE Wires and Cables – Determination of the Thicknesses in Semiconducting Shields, Insulations and Jackets of Electrical Conductors – Test Method

NMX-J-178-ANCE Wires and Cables – Ultimate Strength and Elongation of Insulation, Semiconducting Shields and Jackets of Electrical Conductors – Test Method

NMX-J-190-ANCE Wires and Cables – Thermal Shock Resistance of PVC Insulations and Protective Coverings of Electrical Conductors – Test Method

NMX-J-191-ANCE Wire and Cables – Heat Distortion of Insulations And Protective Coverings of Electrical Conductors – Test Method

NMX-J-192-ANCE Wires and Cables – Flame Test on Electrical Cables – Test Methods

Document Was Downloaded By willis electric co., td. willis electric co., td.

For Use By WILLIS ELECTRIC CO LTD

NMX-J-193-ANCE Wires and Cables – Cold Bend of Insulation and Non Metallic Protective Jackets Used on Insulated Wire and Cable - Test Method NMX-J-205-ANCE Wires and Cables – Determination of Dissipation Factor, Ionization Factor, on Insulated Electrical Conductors - Test Methods NMX-J-212-ANCE Wires and Cables – Electrical Resistance, Resistivity and Conductivity – Test Method NMX-J-293-ANCE Wires and Cables – Dielectric Voltage Withstand – Test Method NMX-J-294-ANCE Wires and Cables – Insulation Resistance – Test Method NMX-J-473-ANCE Wires and Cables – Spark Test – Test Method NMX-J-498-ANCE Wires and Cables – Vertical Tray Flame Test – Test Method NMX-J-516-ANCE Wires and Cables – Determination of Direction and Length of Lay for Bare and Insulated Conductors – Test Method NMX-J-553-ANCE Wires and Cables – Weather Resistance of Insulation or Jacket of Electrical Conductors – Test Method NMX-J-556-ANCE Wires and Cables Test Methods **CSA** Group CAN/CSA C22.1 Canadian Electrical Code, Part I CAN/CSA C22.2 No. 0 General Requirements – Canadian Electrical Code, Part II CAN/CSA C22.2 No. 65 Wire connectors CAN/CSA Z240 RV Series Recreational vehicles CAN/CSA C22.2 No. 2556 Wire and cable test methods

> **UL COPYRIGHTED MATERIAL –** NOT AUTHORIZED FOR FURTHER REPRODUCTION OR **DISTRIBUTION WITHOUT PERMISSION FROM UL**

8

Willis Electric Exhibit 2050 Page 14

willis electric co., ltd., willis electric co., ltd. : 5/2/2019 -

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

For Use By WILLIS ELECTRIC CO LTD

willis electric co., ltd., willis electric co., ltd. : 5/2/2019 -

UL (Underwriters Laboratories Inc.)

UL 1659

Attachment Plug Blades for Use in Cord Sets and Power-Supply Cords

UL 2556 Wire and Cable Test Methods

(American Society for Testing and Materials)

B3 Standard Specification for Soft or Annealed Copper Wire

B33 Standard Specification for Tinned Soft or Annealed Copper Wire for Electrical Purposes

Government of Mexico

NOM-001-SEDE La Norma de Instalaciones Electricas

NFPA (National Fire Protection Association)

NFPA 70 National Electrical Code

3 Definitions and units of measurement

3.1 Definitions

The following definitions apply in this standard:

Breather tube – an element placed in cords intended to equalize pressure.

Bunch stranding – a group of wires twisted together without a predetermined pattern.

Diameter tape – a measuring tape that is graduated so that the circumference of a cylindrical object is measured and the reading results in the diameter of the object.

Direction of lay – the longitudinal direction, designated as left-hand (counterclockwise) or right-hand (clockwise), in which the wires of a member or units of a conductor run over the top of the member or conductor as they recede from an observer looking along the axis of the member or conductor.

Electric vehicle cable – a cable intended to connect the electric vehicle supply equipment to the electric vehicle.

Elevator travelling cable – a cable intended for use as a flexible connection between an elevator or dumbwaiter car and its hoistway.

Extra-hard-usage cord – a cord intended for use with heavy equipment and for hand-held appliances and tools, classified as the highest grade in mechanical serviceability.

Grounded conductor – a system or circuit conductor that is intentionally grounded.

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL **Grounding conductor** – a conductor that is defined in Mexico, in NOM-001-SEDE, and in the United States, in the *NEC*, as "Grounding Conductor, Equipment", and in Canada, in the *Canadian Electrical*

Hard-usage cord – a cord intended for use with moderately heavy equipment and for hand-held appliances and tools, classified as the medium grade in mechanical serviceability.

Heater cord – a cord intended for connection to equipment that has a heating element.

Hoistway cable – a cable for control and signal applications in an elevator hoistway.

Neutral conductor – a circuit conductor that normally carries current, and is connected to ground (earth) at the main electrical panel. The conductor of a 2-wire circuit connected to the supply neutral point and earth ground is referred to as the "neutral".

Normal vision – vision without any aid other than the examiner's normal corrective lenses, if any.

Not-for-hard-usage cord – a cord intended for use with light equipment, classified as the lowest grade in mechanical serviceability.

Room temperature $-25 \pm 10^{\circ}$ C (77 $\pm 18^{\circ}$ F).

Code, as "Bonding conductor".

Rope-lay-stranded conductor – a conductor composed of groups of twisted strands having one or more layers.

Thermoplastic – a polymeric-based material that can be repeatedly softened by heating and hardened by cooling, and that in the softened state can be shaped through the application of force.

Thermoplastic elastomer (TPE) – a thermoplastic that complies with the deformation test in Clause 5.1.3 for compound classes 14, 15, 16, 1.9, 1.10, 1.11 and the heat-shock resistance test in Clause 5.1.8 for TPE materials.

Thermoset – a cross-linked polymeric-based material that will not soften to the point of flowing with subsequent application of heat.

Tinsel cord – cords intended for use only in lengths that do not exceed 2.4 m (8 ft) and that are attached either directly or by means of a special type of attachment plug to a portable electric appliance rated at 0.5 A or less.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

Ungrounded Conductor – circuit conductor that is not connected to ground.

DISTRIBUTION WITHOUT PERMISSION FROM UL Everstar v. Willis Electric Willis Electric Willis Electric

3.2 Units of measurement

The values given in SI (metric) units shall be normative. Any other values are for information only and put in parentheses.

4 Construction requirements

4.1 General construction requirements

4.1.1 Conductors

4.1.1.1 General

The conductors of all types of cables and cords shall use flexible stranding, except as detailed under specific constructions. All of the circuit conductors in a cable or cord shall be the same size except where the cable contains five or more circuit conductors, or in electric vehicle cables.

4.1.1.2 Material

Conductors shall be of annealed copper in compliance with ASTM B 3 or NMX-J-036-ANCE, or annealed coated copper in compliance with ASTM B 33 or NMX-J-008-ANCE.

4.1.1.3 Size

4.1.1.3.1 The conductor size shall be determined by both items (a) and (b):

a) The cross-sectional area (stranded conductor) or the diameter (solid conductor) shall not exceed the maximum values given in Table 1. The cross-sectional area shall be determined in accordance with the method specified in the test, Cross-sectional area, by diameter method described in CAN/CSA-C22.2 No. 2556, UL 2556, or Annex C of NMX-J-066-ANCE. The diameter shall be determined in accordance with the method specified in the test, Conductor Diameter, described in CAN/CSA-C22.2 No. 2556, UL 2556, UL 2556, or NMX-J-066-ANCE.

b) The DC resistance of each uncoated copper or tin-coated copper conductor in a finished cable shall be as specified in Tables 4, 5, 6, and 7. A plus tolerance of 2 percent shall be permitted in the case of a conductor in a twisted multiconductor product having a single layer of conductors. For a twisted multiconductor product having more than one layer, a plus tolerance of 3 percent shall be permitted. Compliance shall be determined in accordance with the test, DC resistance, in CAN/CSA C22.2 No. 2556, UL 2556, or NMX-J-212-ANCE. If the results of any measurement in a twisted multiconductor product are not acceptable, the results of referee measurements made by using a straight specimen of the conductor from the cable without the plus tolerance shall be taken as conclusive.

4.1.1.3.2 The individual wires used in a stranded conductor are usually drawn to a specified diameter, which in some cases does not correspond with the diameter of any gauge number. Not all of the individual strands of the completed conductor are required to have the same diameter.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 17 4.1.1.3.3 For DRT^c cables with circuit conductor sizes 5.26 mm² (10 AWG) and larger, reducing the size of the neutral conductor by not more than two AWG gauge sizes from that of the circuit conductor shall be permitted [e.g., for a 5.26 mm² (10 AWG) circuit conductor, the neutral may be 3.31 mm² (12 AWG)].

4.1.1.4 Joints

4.1.1.4.1 A joint or splice in one of the individual wires of a stranded conductor shall neither increase the diameter nor decrease the strength of the conductor or the individual wire. A joint or splice shall not be made in a stranded conductor as a whole. For rope-lay-stranded conductor construction, the splicing of a stranded member (primary group) as a unit shall be permitted provided that no joints are made closer than two lay lengths apart.

4.1.1.4.2 A joint or splice in a solid conductor shall neither increase the diameter nor decrease the strength of the conductor.

4.1.1.5 Coating

If the conductor and insulation have been shown to be mutually compatible in accordance with Clause 5.2.8, omission of the coating shall be permitted. Otherwise, if a separator is not provided over the conductor, all the individual wires of the conductor shall be separately tinned.

4.1.1.6 Separator

4.1.1.6.1 When the conductor is neither coated nor shown to be mutually compatible with the insulation in accordance with Clause 5.2.8, a separator as described in Clause 4.1.1.6.3 shall be provided over the conductor.

4.1.1.6.2 A separator shall be permitted on other constructions, but is not required.

4.1.1.6.3 A separator, when provided, is not required to cover the conductor completely unless it is required in order to comply with the copper corrosion test specified in Clause 5.2.8. It shall be of a colour contrasting to that of the conductor, except clear or green or green/yellow shall not be permitted. The separator shall consist of:

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

- a) Close spiraling of fine fibrous yarn or tape;
- b) Braid of fine fibrous yarn; or
- c) Longitudinally applied tape.

DISTRIBUTION WITHOUT PERMISSION FROM UL Willis Electric Exhibit 2050 Page 18

4.1.1.7 Stranding

JULY 6, 2018

4.1.1.7.1 General

Flexible conductors shall be bunch-stranded or rope-lay-stranded and shall be composed of wires as shown in Table 2, except that conductors 13.3 mm² (6 AWG) and larger shall be rope-lay-stranded.

4.1.1.7.2 Lay of strands

4.1.1.7.2.1 The length of lay of rope-stranded and bunch-stranded conductors shall be not greater than the values shown in Table 3, when tested in accordance with the test, Length of Lay (uncovered components), in CAN/CSA C22.2 No. 2556, UL 2556, or NMX-J-516-ANCE. The direction of lay is not specified.

4.1.1.7.2.2 The maximum acceptable length of lay of strands of a 0.325 mm² (22 AWG) conductor used in Type CXTW or XTW shall meet the requirements in Table 3 or shall be based on the performance of the finished type in the abrasion and flexing test described in Clauses 5.1.20 and 5.1.21 respectively.

4.1.1.7.2.3 The length of lay of the individual strands comprising each bunch-stranded member in a rope-lay conductor shall be not more than 30 times the overall diameter of the member. The direction of lay of the individual strands comprising each bunch-stranded member is not specified.

4.1.1.7.2.4 For 8.37 mm² (8 AWG) and larger conductors with rope-lay-stranded conductors, the conductor shall be laid up as follows:

a) The length of lay of the outer layer of a rope-lay-stranded conductor shall be as specified in Table 3. The length of lay of other layers is not specified.

b) The length of lay of the individual strands comprising each concentric-lay -stranded member in a rope-lay conductor shall be neither less than 8 nor more than 16 times the outside diameter of the member. The direction of lay of the individual strands comprising each concentric-lay-stranded member is not specified. Bunch-stranded members shall be in accordance with Clause 4.1.1.7.2.3.

4.1.1.7.2.5 The length of lay of the wires of a seven-strand conductor shall be not less than 8 nor more than 16 times the overall diameter of the conductor.

4.1.1.7.2.6 Fibrous (nonmetallic) thread(s) may be used within the conductor stranding in a non-integrally jacketed flexible cord. When threads are used, the conductor shall meet the requirements of (a) and (b) below and shall be marked in accordance with Clause 6.2.4(h):

a) Determination of DC resistance in accordance with the test, DC resistance in:

- 1) CAN/CSA C22.2 No 2556, or
- 2) UL 2556.

b) Tests shall be conducted in accordance with the secureness, static heating, and heat cycling tests:

1) In the U.S. in accordance with UL 1659.

2) In Canada, in accordance with CAN/CSA C22.2 No. 65.

The construction and arrangement of the threads is not specified.

Note: In Mexico, the requirements in Clause 4.1.1.7.2.6 do not apply.

4.1.1.7.2.7 Fibrous (nonmetallic) thread(s) may be used within the conductor stranding in single conductor decorative cords. When threads are used, the conductor shall meet the requirements of Clause 4.1.1.7.2.6(a) and the finished wire shall be marked in accordance with Clause 6.2.4(h).

Note: In Mexico and Canada, Clause 4.1.1.7.2.7 does not apply.

4.1.1.8 Grounding (bonding) and grounded (neutral) conductors

4.1.1.8.1 When a grounding conductor is incorporated into a flexible cord or cable, it shall be insulated. For Type DRT^c, an uninsulated grounding conductor shall be permitted for sizes 3.31 and 5. 26 mm² (12 and 10 AWG) utilizing a seven-strand construction. Grounding conductors for Type DRT^c utilizing more than 7 strands shall be insulated.

4.1.1.8.2 For flexible cord or cable with conductor sizes 5.26 mm² (10 AWG) and smaller, the grounding conductor shall be the same size or larger than the largest circuit conductors, except for Type DRT^c, where a 3.31 mm² (12 AWG) grounding conductor may be used with 5.26 mm² (10 AWG) circuit conductors.

4.1.1.8.3 For flexible cord or cable with conductor sizes 6.63 mm² (9 AWG), the grounding conductor shall be 5.26 mm² (10 AWG) or larger.

4.1.1.8.4 For flexible cord or cable with conductor sizes $8.37 - 33.6 \text{ mm}^2$ (8 – 2 AWG), the reduction of the grounding conductor by not more than two AWG or equivalent mm² sizes from the largest ungrounded circuit conductor shall be permitted (e.g., a cord having an 8.37 mm² (8 AWG) ungrounded circuit conductor may have a minimum 5.26 mm² (10 AWG) grounding conductor).

4.1.1.8.5 For electric vehicle cables with conductor sizes larger than 33.6 mm² (2 AWG), the grounding conductor shall not be smaller than indicated in Table 62 and may be sectioned.

4.1.1.8.6 A grounded circuit conductor larger (oversized neutral) than the largest ungrounded circuit conductor shall be permitted.

4.1.1.8.7 Type SRD^{m,u}, SRDE^{m,u}, and SRDT^{m,u} cable sizes $8.37 - 21.2 \text{ mm}^2$ (8 - 4 AWG) may contain either

a) Two or three 8.37 mm² (8 AWG) and one 5.26 mm² (10 AWG), two or three 13.3 mm² (6 AWG) and one 8.37 mm² (8 AWG), or two or three 21.2 mm² (4 AWG) and one 13.3 mm² (6 AWG). In each case, the smaller conductor shall be the one with the grounded-conductor identification specified in Clause 4.1.9.1(a); or

b) Two 8.37 mm² (8 AWG) and two 5.26 mm² (10 AWG), two 13.3 mm² (6 AWG) and two 8.37 mm² (8 AWG), or two 21.2 mm² (4 AWG) and two 13.3 mm² (6 AWG). In each case, one of the two smaller conductors shall bear the grounded conductor identification specified in Clause 4.1.9.1(a) and the other small conductor shall bear the identification as a grounding conductor specified in Clause 4.1.9.1(b).

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 20

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

4.1.2 Insulation

4.1.2.1 General

The classes of insulation materials covered in this standard are shown in Table 8. The insulation shall be applied directly over the conductor or the separator if one is used; if applied in more than one layer of the same insulation grade or combination thereof, adjacent layers shall not be readily separable. The insulation shall be applied concentrically about the conductor, except for parallel cords. Insulation from one of the following three groups – PVC, TPE, or thermoset – may be interchanged within their groups from classes shown in Table 8 provided that the insulation materials to be substituted are included in the construction tables for use on the same product type.

NOTES

1) Higher temperature rated insulation materials may be substituted when a lower temperature rated insulation material is specified.

2) Due to possible incompatibility, TPE material of the styrenic type is in some cases not suitable for use in cords where direct contact with PVC can occur. A separator is one acceptable means of avoiding direct contact. Other combinations of materials that could be incompatible, if any, have yet to be detected.

4.1.2.2 New materials

Insulation materials that are generically different from those named in the index tables shown in Table 8 shall be evaluated for the requested temperature rating as described in Clause 5.1.13. Investigation of the electrical, mechanical, and physical characteristics of the construction using the new material shall show the new material to be comparable in performance to the materials currently specified for the application.

4.1.3 Covering

4.1.3.1 General

When a covering is used, the requirements of Clauses 4.1.3.2 to 4.1.3.4 apply.

4.1.3.2 Fibrous braids

4.1.3.2.1 A fibrous braid shall be so constructed that the angle of weave between the yarn and the axis of the underlying insulation or assembly is within the range of 35° to 60°, with a minimum coverage of 76 percent when calculated in accordance with the method in Annex A.

4.1.3.2.2 Where two braids are specified, the diameter, D, for calculating the lay angle of the outer braid shall be the diameter over the inner braid.

4.1.3.2.3 Except where indicated otherwise, braids shall be of cotton or synthetic yarn and shall be fabricated on a machine having the same number of ends per carrier throughout. Each end shall consist of the same size, ply, and kind (i.e., soft or glazed).

4.1.3.2.4 Where two or more braids are required for the outer covering, the final or outermost braid shall conform to the requirements of Clauses 4.1.3.2.1 to 4.1.3.2.3; however, these requirements need not apply to inner braids if they are used instead of a tape. The size of yarn of each carrier of an inner braid shall be not less than that used in the outer braid, and the number of carriers of each adjacent braid shall not differ by more than four.

4.1.3.2.5 A braid used as the final outer covering of a wire or cord intended for use in damp places shall be saturated with a moisture-resistant compound, which may be of any desired colour. A coating of lacquer shall be permitted in place of a saturating compound.

4.1.3.3 Tapes

4.1.3.3.1 Tape shall not be used as the final outer covering on flexible cord and shall not be used instead of a braid directly over the conductor assembly of Types E, EO, and ETT elevator cable, but shall be permitted as an inner fibrous covering.

4.1.3.3.2 Tapes for Types E and EO shall be of the rubber-filled woven cloth type and shall be not less than 0.25 mm (0.01 in) in thickness. They shall be applied helically, so as to overlap by at least 3 mm (0.12 in).

4.1.3.4 Nylon covering

An extruded nylon covering applied over the individual insulated conductors of jacketed flexible cords shall have a minimum thickness of 0.05 mm (0.002 in) at any point. It shall comply with the bend test specified in Clause 5.1.9.

4.1.4 Conductor assembly

4.1.4.1 Lay of conductors

4.1.4.1.1 Flexible cords with cabled conductors shall have the individual conductors twisted together with a length of lay not greater than that shown in Table 10. When cords covered in Table 10 have mixed conductor sizes, the lay shall be based on the number of conductors and the largest conductor size found in the cord. Constructions not covered in Table 10 shall have the individual conductors laid up so that the lay shall be not more than 15 times the overall diameter of the conductor assembly. For CXTW^u, CXWT^c, YXTW^u, and TX^c, the lay shall not be more than 30 times the overall diameter of the insulated conductor. For multiple-layer cords, the conductors in each layer shall be twisted, but the lay is not specified, except that in the outer layer the lay shall be not more than 15 times the overall diameter of that layer.

4.1.4.1.2 Length of lay shall be determined in accordance with the test, Length of Lay (covered components), in CAN/CSA C22.2 No. 2556, UL 2556, or NMX-J-516-ANCE.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

4.1.4.2 Fillers

If fillers are used, they shall be of suitable material and shall be twisted with the individual conductors to form a compact assembly having an essentially circular cross-section.

4.1.4.3 Binder

The application of a binder, consisting of a braid, tape, or wrap of suitable material over the conductor assembly, shall be permitted.

4.1.5 Shielding

4.1.5.1 A shield shall be permitted over one or more of the circuit conductors or over the entire assembly under the jacket.

4.1.5.2 The shield shall be a braid of copper wires, copper wire wrapped shields, a metallized polyester tape with a drain wire, or a metal tape with or without a drain wire.

4.1.5.3 A braided or wrapped shield shall be composed of 0.013 mm² or 0.020 mm² (36 AWG or 34 AWG) copper wires for flexible cords with conductors of 5.26 mm² (10 AWG) and smaller, and of 0.032 mm² or 0.051 mm² (32 AWG or 30 AWG) copper wires for flexible cords with conductors larger than 5.26 mm² (10 AWG). If the shield wires and contacting compounds have been shown to be mutually compatible in accordance with Clause 5.2.8, bare copper wires shall be permitted. Otherwise, if a separator is not provided, all the individual wires of the shield shall be separately tinned. The braided or wrapped shield shall provide a minimum coverage of 85 percent when calculated in accordance with the test, Calculation of Coverage of Shielding – Annex G, in CAN/CSA C22.2 No. 2556, UL 2556, NMX-J-556-ANCE.

4.1.5.4 A laminated tape of polyester film and aluminum foil shall be applied longitudinally or helically so that it has at least a 1.52 mm (0.060 in) overlap. The total thickness of the tape shall be 0.038 mm (0.0015 in) minimum for flexible cords with conductors 6.63 mm² (9 AWG) and smaller and 0.0635 mm (0.0025 in) for flexible cords with conductors 8.37 mm² (8 AWG) and larger. The minimum size of drain wire shall be 0.325 mm² (22 AWG) seven-strand minimum tinned copper for flexible cords with conductors 2.63 mm² (13 AWG) and smaller, 0.519 mm² (20 AWG) seven-strand minimum tinned copper for flexible cords with conductors with conductors of 3.31 mm² to 6.63 mm² (12 – 9 AWG), and 0.824 mm² (18 AWG) seven-strand minimum tinned copper for flexible cords with conductors of 8.37 mm² (8 AWG) and larger. The drain wire shall be in contact with the aluminum.

4.1.5.5 The overall diameters of shielded cords shall comply with the overall diameters in Table 13, plus the additional increase due to the shield.

4.1.5.6 Flexible cords and cables employing shields of different materials or constructions than those described in Clauses 4.1.5.3 and 4.1.5.4 shall be examined and tested in accordance with Clause 5.2.9.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Everstar v. Willis Electric PGR2019-00056

Willis Electric Exhibit 2050 Page 23

JULY 6, 2018

4.1.6 Jackets

4.1.6.1 General

If a jacket is required, the conductor assembly of the cord or cable shall be covered by and properly centred within the jacket. The jacket shall be applied directly to the conductor assembly or binder, if one is used, and shall fill all the spaces, if any, around the conductor assembly.

Jackets with a total thickness of 1.52 mm (0.060 in) and greater may have a reinforcement consisting of an open weave or the like, placed between adjacent layers of the same class, that shall not be readily separable. Jackets with a total thickness of 2.41 mm (0.095 in) and greater may consist of separable or non-separable adjacent layers of the same class. If separable, the outside layer shall be at least 50 percent of the total thickness measured. If applied in more than one layer, both layers shall be of the same class. Adjacent layers shall not be readily separable when the total jacket thickness is less than 2.41 mm (0.095 in).

All jackets shall provide an essentially circular cross-section for the finished cord or cable, except for Type DRT^c, which shall be used with a moulded-on male plug only and for non-integral parallel cords. The classes of jacket provided in this Standard are shown in Table 11.

4.1.6.2 Interchangeable jackets

Jackets in the PVC, TPE, and thermoset groups may be interchanged within their group from classes shown in Table 11 provided that the material to be substituted is included in the construction tables for use on the same product type.

NOTES

1) Higher temperature rated insulation materials may be substituted when a lower temperature rated insulation material is specified.

2) Due to possible incompatibility, TPE material of the styrenic type is in some cases not suitable for use in cords where direct contact with PVC can occur. A separator is one acceptable means of avoiding direct contact. Other combinations of materials that could be incompatible, if any, have yet to be detected.

4.1.6.3 New materials

JULY 6, 2018

Jacket materials that are generically different from those named in the index tables shown in Table 11, if selected for use, shall be evaluated for the requested temperature rating as described in Clause 5.1.13. Investigation of the electrical, mechanical, and physical characteristics of the construction using the new material shall show the new material to be comparable in performance to the materials indicated for the application.

4.1.7 Overall dimensions

4.1.7.1 When the diameter of a round cord or cable is greater than 6.35 mm (0.25 in), diameter measurements may be made using a diameter tape accurate to 0.25 mm (0.01 in). The tape shall be wrapped tightly around the specimen, but not so tight that the specimen is compressed. To determine whether or not a flexible cord complies with the requirement within Table 13, measurements of overall diameter shall be made under the overall braid (if present) at five points, at intervals of approximately 150 mm (6 in) on a 1 m (3 ft) length of finished cord. An arithmetic average of the readings shall be used as the specimen diameter.

4.1.7.2 When there are questions regarding compliance with this standard or when the cord or cable diameter is 6.35 mm (0.25 in) or less, measurements shall be made with dial micrometer or calipers having a resolution of 0.013 mm (0.0005 in) and accurate to 0.025 mm (0.001 in). At any given cross-section, the maximum diameter, minimum diameter, and two additional diameters that bisect the two angles formed by the maximum and minimum diameters shall be measured. The diameter for the cable at that point shall be the average of the four values.

4.1.8 Coiled cords

4.1.8.1 Coiled cords shall comply with the requirements specified for the standard construction and, except as noted in Clause 4.1.8.2, all tests and measurements shall be conducted on specimens obtained from the straight ends at each end of the coiled portion of the cord.

4.1.8.2 The dielectric strength test of Clause 5.2.2 shall be conducted on the entire length of the coiled cord. The mechanical strength test of Clause 5.1.4 shall be conducted on the coiled portion of the cord. The minimum thickness of the jacket on the coiled portion of round cords and the minimum thickness of the insulation and/or jacket on the coiled portion of parallel cords shall be not less than the applicable value given in this standard. See Note (1) of Table 13 for diameters.

- 4.1.9 Method of distinguishing conductors
- 4.1.9.1 Conductors shall be distinguished as follows:

a) Grounded (neutral) conductors shall be distinguished by one of the following methods, and these colours shall be restricted to such use:

1) White or grey coloured braid;

2) White or grey coloured insulation; for jacketed cords furnished with appliances, one conductor may be light blue with the other conductors readily distinguishable from white or grey;

- 3) White or grey coloured separator in integral constructions only;
- 4) Tinned conductor on integral constructions only; or
- 5) One or more grooves, ridges, or white stripes on the exterior of integral constructions only.

b) Grounding conductors shall be distinguished by the colour green or a combination of the colours green and yellow. On a grounding conductor coloured green, one or more yellow stripes that cover no less than 5 percent and not more than 70 percent of the calculated circumference of the finished conductor insulation shall be permitted.

Note: Other acceptable methods of colour coding the individual conductors are shown in Annex B.

4.1.9.2 The use of a thin, non-separable coloured coating of a suitable material that is compatible with the insulation over the surface of the insulation on the individual conductors, in lieu of coloured insulation, shall be permitted.

4.1.9.3 For integral constructions, one conductor shall be distinguishable by physical or visual means (e.g., ridges, grooves, ink printing, insulation colour).

4.1.10 Breather tubes

4.1.10.1 Types STW, STOW, STOOW, SJTW, SJTOW, SJTOOW, SJEW, SJEOW, SJEOOW, SEW, SEOW, and SEOOW flexible cords having conductor sizes 5.26 mm², 3.31 mm², 2.08 mm², 1.65 mm², 1.31 mm², 1.04 mm², or 0.824 mm² (10 AWG, 12 AWG, 14 AWG, 15 AWG, 16 AWG, 17 AWG, or 18 AWG) may have a breather tube incorporated in their construction.

4.1.10.2 The flexible cords specified in Clause 4.1.10.1 and having a breather tube shall comply with all of the requirements for the standard construction of these cords, except that the length of lay shall comply with the lay specified for such cords with an additional conductor; the average overall diameter of these cords shall comply with the overall diameters specified for such cords with an additional circuit conductor.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 26 4.1.10.3 The breather tube shall not crack when specimens of the finished cords are subjected to the cold bend and mechanical strength tests specified for these cords.

4.1.11 Support members

4.1.11.1 The incorporation of a supporting member in the centre of the flexible cord assembly shall be permitted. Supporting members of steel, nonmetallic material, fibrous material, or other suitable material shall be permitted.

4.1.11.2 When metal is used, the support member shall consist of a flexible, stranded metal that is insulated with the same grade and thickness of insulation as used on a circuit conductor of the same size as the strength member.

4.1.11.3 The overall jacket shall be marked to show that a metal support member is present (see Clause 6.2.4(c)).

4.1.12 Optical fibre members

4.1.12.1 Types EV, EVE, EVT, EVJ, EVJE, and EVJT may have optical fibre members incorporated in their construction.

4.1.12.2 The flexible cords specified in Clause 4.1.12.1 and having fibre optic members shall comply with all of the requirements for the standard construction of these cords. The optical fibre members shall be cabled with the insulated conductors. See Clause 4.1.4.1.

4.1.12.3 Optical fibre members shall not contain any current-carrying or electrically conductive elements, and may contain nonmetallic strength members.

4.2 Thermoset-insulated cords (including range and dryer cords and special-use cords C^{u} and PD^{u})

4.2.1 General

Clauses 4.2.2 - 4.2.12 set out specific requirements for thermoset-insulated flexible cords except heater cords (see Tables 14 - 17). See Clause 4.4 for heater cords.

4.2.2 Conductors

Conductors shall comply with Clause 4.1.1.

4.2.3 Insulation

4.2.3.1 The classes, thickness, and required testing of insulation to be used on a particular type shall be as shown in Tables 14 - 17.

4.2.3.2 The minimum average and minimum thickness at any point shall be determined in accordance with the test, Thickness, in CAN/CSA C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.2.4 Covering

The application of a covering, in accordance with Clause 4.1.3, over the insulation of individual conductors of jacketed cords, shall be permitted.

4.2.5 Conductor assembly

Conductor assembly, fillers, and binders shall be in accordance with Clause 4.1.4.

4.2.6 Shielding

A shield over the assembled conductors, if provided, shall comply with Clause 4.1.5.

4.2.7 Jackets

4.2.7.1 The classes, thicknesses, and required testing of jackets to be used on a particular type shall be as shown in Tables 14 - 16.

4.2.7.2 The average and minimum thickness of the jacket shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.2.8 Overall fibrous braid on cords with "-B" suffix

An overall braid may be applied over Types SV, SP-1, SP-2, SP-3, SJ, S, NISP-1, and NISP-2. When a braid is applied, the product shall be printed or have a marker tape under the braid in accordance with Clause 6.2.4(d). The braid need not comply with the requirements in Clause 4.1.3.2.

Note: In Mexico, these requirements do not apply.

The overall diameter of the finished cord or cable (under the overall braid if present, see Clause 4.2.8) shall conform to Clause 4.1.7, except in the case of shielded constructions, where the provisions of Clause 4.1.5.5 shall apply.

4.2.10 Types SP-1, SP-2, SP-3, NISP-1, and NISP-2 two- or three-conductor (coiled and uncoiled)

These types shall comply with the construction, test, and marking requirements for corresponding integral and non-integral as indicated in Tables 14 and 15. The construction of Types SP-1, SP-2, and SP-3 shall be such that the insulated (circuit) conductors can be separated readily for any desired distance after removal of the overall braid (if present) when slit at the end and intentionally torn apart. In addition, the grounding conductor of Types SP-1, SP-2, and SP-3 shall be readily separable from the two insulated (circuit) conductors so as to expose the grounding conductor insulation throughout the entire length of the torn section of the cord.

The construction of NISP-1 and NISP-2 shall consist of a separate jacket and conductor insulation (see Figure 1).

4.2.11 Coiled cords

Coiled cords shall comply with Clause 4.1.8.

4.2.12 Method of distinguishing conductors

The method of distinguishing conductors shall comply with Clause 4.1.9.

4.2.13 Cords with an "-R" suffix for use as a power-supply cord on cord-connected portable appliances

Note: In Canada and Mexico, these requirements do not apply.

4.2.13.1 General

Cords marked with the "-R" suffix as indicated in Clause 6.2.4(g) shall comply with the requirements specified for the standard cord construction in addition to those specified in Clauses 4.2.13.2 – 4.2.13.5. Cords marked with "-R" shall be limited to $0.824 - 2.08 \text{ mm}^2$ (18 – 14 AWG), and 300 V.

4.2.13.2 Abrasion test

The finished cord shall be tested in accordance with the test, Abrasion test for "-R" cords, in Clause 5.1.14.

4.2.13.3 Mandrel pinching test

The finished cord shall be tested in accordance with the test, Mandrel pinching test for "-R" cords, in Clause 5.1.16.

4.2.13.4 Mandrel crushing test

The finished cord shall be tested in accordance with the test, Mandrel crushing test for "-R" cords, in Clause 5.1.17.

4.2.13.5 Flexing test

The finished cord shall be tested in accordance with the test, Flexing test for "-R" cords, in Clause 5.1.18.

4.2.13.6 Cord marking

Cords marked in accordance with Clause 6.2.4(g) shall comply with the tests described in Clauses 4.2.13.2 - 4.2.13.5.

4.3 Thermoplastic-insulated cords (including decorative and range and dryer cords)

Note: Clause 4.3 includes specific requirements for thermoplastic-insulated cords (see Tables 16 and 18 – 23).

4.3.1 General

Clauses 4.3.2 - 4.3.14 set out specific requirements for thermoplastic-insulated flexible cords and cables (see Tables 16 and 18 - 23.)

4.3.2 Conductors

Conductors shall comply with Clause 4.1.1.

4.3.3 Insulation

4.3.3.1 The classes, thicknesses, and required testing of insulation to be used on a particular type are shown in Tables 16 and 18 - 23.

4.3.3.2 The minimum average and minimum thickness at any point shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.3.4 Covering

The application of a covering, in accordance with Clause 4.1.3, over the insulation of individual conductors of jacketed cords shall be permitted.

4.3.5 Conductor assembly

Conductor assembly, fillers, and binders shall be in accordance with Clause 4.1.4.

4.3.6 Shielding

A shield over the assembled conductors, if provided, shall comply with Clause 4.1.5.

4.3.7 Jacket

4.3.7.1 The classes, thicknesses, and required testing of jackets used on a particular cord shall be as shown in Tables 16 and 18 - 21.

4.3.7.2 The average and minimum thickness of the jacket shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.3.8 Overall fibrous braid on cords with "-B" suffix

An overall braid may be applied over types SVT, SPT-1, SPT-2, SPT-3, SJT, ST, NISPT-1, NISPT-2, SVE, SPE-1, SPE-2, SPE-3, SJE, SE, NISPE-1, and NISPE-2. When a braid is applied the product shall be printed or have a marker tape under the braid in accordance with Clause 6.2.4(d). The braid need not comply with the requirements in Clause 4.1.3.2.

Note: In Mexico, these requirements do not apply.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL s Electric Willis Electric Exhibit 2050

JULY 6, 2018

4.3.9 Overall dimensions

26

The overall diameter of the finished cord or cable (under the overall braid if present, see Clause 4.3.8) shall comply with Clause 4.1.7, except in the case of shielded constructions, where the provisions of Clause 4.1.5.5 shall apply.

4.3.10 Integral constructions

4.3.10.1 Types PXT^c, PXWT^c, XTW^u, and two-conductor SPT-0^m, SPT-1W^c, SPT-2W^c, SPT-1, SPE-1^u, SPT-2, SPE-2^u, SPT-3, SPE-3^u, DPTW^{c,u}, DPT^{c,u}, and clock cord^u shall be of an integral construction and shall be such that the two insulated conductors can be separated readily for any distance after removal of the overall braid (if present) only when slit at the end and intentionally torn apart (see Figure 2).

4.3.10.2 Three-conductor Type SPT-3 and SPE-3 shall consist of the integral construction, except that they shall have centrally located, non-integral grounding conductors of the same size as the other conductors. Three-conductor Types SPT-1, SPE-1, SPT-2, and SPE-2 shall consist of the integral construction, except that a centrally located non-integral grounding conductor of the same size as the other conductors shall be permitted (see Figures 3 and 4). The grounding conductor shall be provided with an insulation of green with or without yellow stripe(s) (see Clause 4.1.9.1). The construction of the cord shall be such that the insulated (circuit) conductors can be separated readily for any desired distance after removal of the overall braid (if present) when slit at the end and intentionally torn apart. In addition, the grounding conductor insulation throughout the entire length of the torn section of the cord-distance after removal from the braid (if present).

4.3.10.3 The thickness of the insulation on integral cords, before and after separation of the conductors, and the other dimensions of these cords shall be in accordance with Tables 16 and 18 – 23. The thickness shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.3.10.4 For Type SPT-1 cord, a nylon jacket over the finished cord shall be permitted. The average thickness of the nylon, other than on the slopes and the bottoms of the valleys, shall not be less than 0.08 mm (0.003 in). The minimum thickness of the nylon at any point on the slopes and at the bottoms of the valleys shall not be less than 0.03 mm (0.001 in). The finished cord shall comply with the requirements of Clause 5.1.9.

4.3.10.5 The construction and dimensions of three-conductor parallel (integral) Types SRDE^u and SRDT^u range and dryer cables shall be as indicated in Figures 5 and 6. When a grounding conductor is used, it shall be the centre conductor (see marking requirements in Clause 6.2.4(e)). For circuit conductors size 8.37 mm² (8 AWG) or larger, the grounding conductor may be smaller than the circuit conductors (see Clause 4.1.1.8.4).

4.3.10.6 In Mexico, for Types SPT-0^m, SPT-1, SPT-2 and SPT-3, compliance with the requirements for the FV-2/VW-1 flame test in Clause 5.1.5.4 is mandatory. Compliance with the requirements for the FV-1, FT4 and FH flame tests in Clauses 5.1.5.1, 5.1.5.2, and 5.1.5.3 respectively, is optional.

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

4.3.11 Types NISPT-1, NISPT-2, NISPE-1, NISPE-2, two- or three-conductor

These types shall comply with the construction, test, and marking requirements for corresponding integral types rated at 60°C, 75°C, 90°C, and 105°C, except that the construction shall involve the use of a separate jacket and conductor insulation (see Figure 1), and the dimension of the insulation, jacket, and web shall be as indicated in Tables 18 and 19. The insulation and jacket classes shall be as listed in Tables 20 and 21.

4.3.12 Coiled cords

Coiled cords shall comply with Clause 4.1.8.

4.3.13 Method of distinguishing conductors

The method of distinguishing conductors shall comply with Clause 4.1.9.

4.3.14 Low-leakage flexible cords

4.3.14.1 General

A Type SJT, SJTO, ST, and STO cord that is intended for use as a low-leakage cord in a power-supply cord or cord set for earth-grounded direct-patient-contact medical and dental equipment shall contain two circuit conductors and one grounding conductor, with all conductors having Class 8 or 9 PE insulation or Class 20 FEP insulation.

4.3.14.2 Overall diameter of low-leakage cords

The overall diameter of low-leakage cords shall comply with Table 13, plus the additional increase due to any filler-spacers.

4.3.14.3 AC leakage current test

The finished cord shall be tested in accordance with the AC leakage current test described in Clause 5.2.11 and shall comply with the requirements in Table 24.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL Electric Willis Electric E

4.3.14.4 Marking for low-leakage cords

Low-leakage cords shall be marked in accordance with Clause 6.2.4(f).

4.3.15 Cords with the "-R" suffix for use as a power-supply cord on cord-connected portable appliances

Note: In Canada and Mexico, these requirements do not apply.

4.3.15.1 General

Cords marked with the "-R" suffix as indicated in Clause 6.2.4(g) shall comply with the requirements specified for the standard cord construction in addition to those specified in Clauses 4.2.13.2 – 4.2.13.5. Cords marked with "-R" shall be limited to $0.824 - 2.08 \text{ mm}^2$ (18 – 14 AWG), and 300 Volts.

4.3.16 Decorative cord type CXTW^u with Suffix "-IS"

Note: In Canada and Mexico, these requirements do not apply.

4.3.16.1 Decorative cord type CXTW^u marked with the suffix "-IS" as indicated in Clause 6.2.4(k) shall comply with the requirements specified for type CXTW^u and to those specified in Clauses 4.3.16.2 – 4.3.16.6. The suffix "-IS" is limited for use on single conductor CXTW^u cord in 0.325 mm² (22 AWG) size.

4.3.16.2 Fibrous (nonmetallic) thread(s) may be embedded within the insulation of a single conductor CXTW^u cord. When the threads are embedded in the insulation, the finished wire shall be designated CXTW-IS^u and shall be marked in accordance with Clause 6.2.4(k). The overall insulation thickness including the threads shall comply with the requirements for CXTW^u. The minimum thickness at any point of insulation over the fibrous threads shall not be less than 0.381 mm (15 mils).

4.3.16.3 Type CXTW-IS^u shall be subjected to the Breaking strength test in Clause 5.1.24.

4.3.16.4 Type CXTW-IS^u shall be subjected to the Abrasion test in Clause 5.1.20.

4.3.16.5 Type CXTW-IS^u shall be subjected to the Flexing test in Clause 5.1.21.

4.3.16.6 Before the sample subjected to the conductor corrosion test (see Clause 5.2.8) is examined for corrosion of the conductor, the insulation of type CXTW-IS^u shall be examined for any damage due to the presence of the threads. Damage of the insulation includes, but is not limited to exposure of the conductor, splitting of the insulation or bulging of the insulation.

4.4 Heater cords – HSJOO, HSJOOW, HSJO, HSJW^{c,u}, HSJOW, HSJ, HPN, HPNW^{c,u}, and HPD^{m,u}

Note: Clause 4.4 includes specific requirements for heater cords (see Tables 25 and 26).

4.4.1 Conductors

4.4.1.1 General

Conductors employed in heater cords shall comply with Clause 4.1.1.

4.4.1.2 Stranding

The individual conductors shall be bunch or rope-lay stranded, consisting of wires having a diameter in accordance with Table 2 and a lay length in accordance with Table 3.

4.4.2 Separator

If the conductor is neither coated nor shown to be compatible with the insulation as determined by the test in Clause 5.2.8, a separator as described in Clause 4.1.1.6 shall be provided over the conductor.

4.4.3 Insulation

4.4.3.1 General

The class of insulation and testing required for a particular type of heater cord is shown in Tables 25 and 26. The insulation shall be applied directly over the conductor or the separator, if one is used.

4.4.3.2 Types HPN and HPNW^{c,u}

The thickness of insulation, as applicable for use on Types HPN and HPNW^{c,u} cord, before and after separation of the conductor, and the other dimensions of the cord, shall be in accordance with Table 27 for two-conductor cord and with Table 28 for three-conductor cord. The thickness shall be determined in accordance with the test, Thickness, in CAN/CSA C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.4.3.3 Types HSJOO, HSJOOW, HSJO, HSJOW, HSJ, HSJW^{c,u} and HPD^{m,u}

The average and minimum thickness of the insulation shall be not less than the values given in Table 29. The thickness shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.4.4 Conductor assembly

4.4.4.1 Types HPN and HPNW^{c,u}

Two- and three-conductor Types HPN and HPNW^{c,u} cords shall be of integral construction and shall comply with the requirements of Clause 4.4.3.2, except that the insulation on the grounding conductor shall be of a green colour, with or without yellow stripe(s) (see Clause 4.1.9.1). The construction of the cord shall be such that the insulated (circuit) conductors can be separated readily for any desired distance when slit at the end and intentionally torn apart. In addition, the grounding conductor shall be readily separable from the two insulated (circuit) conductors so as to expose the grounding conductor insulation throughout the entire length of the torn section of the cord.

4.4.4.2 Types HSJOO, HSJOOW, HSJO, HSJOW, HSJ, HSJW^{c,u}, and HPD^{m,u}

The individual insulated conductors shall be twisted together with a length of lay not greater than that shown in Table 10. Fillers, if used in the assembly of these cords, shall be twisted with the conductors to form a compact assembly having an essentially circular cross-section.

4.4.4.3 Coiled cords

Coiled cords shall comply with Clause 4.1.8.

4.4.5 Jackets

4.4.5.1 Types HSJOO, HSJOOW, HSJO, HSJOW, HSJ, and HSJW^{c,u} cords shall be covered by, and properly centred in, a thermoset jacket of the class specified in Tables 25 and 26. The jacket shall provide an essentially circular cross-section for the finished cord.

4.4.5.2 The average and minimum thickness of the jacket shall be as indicated in Tables 25 and 26. The thickness shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.4.6 Cords with an "-R" suffix for use as a power-supply cord on cord-connected portable appliances

Note: In Canada and Mexico, these requirements do not apply.
4.4.6.1 General

Cords marked with the "-R" suffix as indicated in Clause 6.2.4(g) shall comply with the requirements specified for the standard cord construction in addition to those specified in Clauses 4.2.13.2 – 4.2.13.5. Cords marked with "-R" shall be limited to $0.824 - 2.08 \text{ mm}^2$ (18 – 14 AWG), and 300V.

4.5 Tinsel cords (TST, TPT, shaver cord^u)

Note: Clause 4.5 includes specific requirements for tinsel cords (see Table 30).

4.5.1 General

Tinsel cords are a very flexible cord in which each conductor comprises a number of strands or group of strands, twisted together, each strand being composed of one or more flattened wires of copper or copper alloy, helically wound on a thread of cotton, polyamide, or similar material.

4.5.2 Conductors

4.5.2.1 Construction

4.5.2.1.1 The conductors of tinsel cords shall consist of one of the following styles of construction:

a) An assembly of 18 strands, which shall consist of three groups having a rope lay, each group consisting of six strands. Each strand shall consist of a flattened 0.006 mm² (39 AWG) annealed copper wire wrapped around a core of No. 30 two ply cotton thread, or equivalent fibrous material;

b) An assembly of six strands, which shall have a rope lay around a centre core of No. 10 three-ply cotton thread, or equivalent. Each strand shall consist of two flattened 0.010 mm² (37 AWG) annealed copper wires wrapped around a core of No. 20 three-ply cotton thread, or equivalent;

c) An assembly of seven strands, in the form of six strands having a rope lay about the seventh. Each strand shall consist of two flattened 0.008 mm² (38 AWG) annealed copper wires wrapped concentrically around a No. 270 denier polyester thread;

d) An assembly of 18 strands consisting of six groups having a rope lay and each group consisting of three strands. Each strand shall consist of a flattened 0.006 mm² (39 AWG) annealed copper wire wrapped around a core of No. 50 two-ply cotton thread, or equivalent;

e) An assembly of seven strands, in the form of six strands having a rope lay about the seventh. Each strand shall consist of two flattened 0.010 mm² (37 AWG) cadmium copper wires wrapped concentrically around a core of No. 250 denier polyester fibre thread, or equivalent;

f) An assembly consisting of flattened copper or copper alloy wires having a total crosssectional area of no less than 0.100 mm² (198 cmil). The construction and arrangement of the strands is not specified, but the finished cord shall be acceptable for the purpose, as determined by an investigation that includes a flexibility test.

4.5.2.1.2 A 0.59 mm² (20 AWG) or smaller flexible cord having tinsel conductors not complying with Clause 4.5.2.1.1 (a) to (f) or having a stranded copper construction may be used as shaver cord^u without any type-letter designation if it is acceptable for the purpose as determined by an evaluation that includes:

a) Determination of DC resistance in accordance with the test, DC Resistance, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-212-ANCE; and

b) The Tinsel flexing test, as described in Clause 5.1.19.

4.5.2.2 DC resistance

The DC resistance of each individual (not twisted) finished conductor shall not exceed 0.27 Ω /m (0.08 Ω /ft) at 25°C. Compliance shall be determined in accordance with the test, DC Resistance, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-212-ANCE.

4.5.3 Insulation

4.5.3.1 The classes of insulation and testing required for a particular type are shown in Table 30.

4.5.3.2 For Type TST cords, the average and minimum thickness of the insulation shall be in accordance with Table 30.

4.5.3.3 For Type TPT cords and shaver cords^u, the thickness of insulation before and after separation of the conductors and the thickness of the web shall be in accordance with Table 30.

4.5.3.4 The minimum average and minimum thickness at any point of insulation shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.5.3.5 The application of a covering in accordance with Clause 4.1.3 over the insulation of individual conductors of jacketed cords shall be permitted.

4.5.4 Conductor assembly

4.5.4.1 Type TPT and shaver cords^u

Type TPT cord and shaver cords^u shall be of a parallel, integral construction and shall be such that the two insulated conductors can be separated readily for any distance only when slit at the end and intentionally torn apart.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

4.5.4.2 Type TST

4.5.4.2.1 The individual conductors shall be twisted together with a length of lay not greater than value indicated in Table 10.

4.5.4.2.2 If fillers are used, they shall be of suitable material and shall be twisted with the individual conductors to form a compact assembly having an essentially circular cross-section.

4.5.4.2.3 A binder consisting of a braid, tape, or wrap of suitable material may be applied over the conductor assembly.

4.5.5 Jacket

4.5.5.1 A jacket in accordance with Table 30 shall be applied directly over the conductor assembly of Type TST cord or the binder, if one is used.

4.5.5.2 The average and minimum thickness of the jacket shall be in accordance with Table 30. The thickness shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.5.6 Coiled cords

Coiled cords shall comply with Clause 4.1.8.

4.5.7 Method of distinguishing conductors

The method of distinguishing conductors shall comply with Clause 4.1.9.

4.6 Elevator travelling cables – Types E, EO, ETT, and ETP

Note: Clause 4.6 includes specific requirements for elevator travelling cables (see Table 31).

4.6.1 Conductors

Conductors shall comply with Clause 4.1.1.

4.6.2 Insulation

4.6.2.1 The classes of insulation and required testing to be used on a particular type are shown in Table 31.

4.6.2.2 Insulation thickness shall be not less than the values shown in Table 32.

4.6.2.3 Insulation shall comply with Clause 4.1.2.

4.6.2.4 The minimum average and minimum thickness at any point shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.6.3 Braids

4.6.3.1 General

Braids shall comply with Clause 4.1.3.2.

4.6.3.2 Conductor braids

A braid shall be applied over the insulation on the individual conductors for Types E and EO. The provision of a conductor braid for Types ETT and ETP is optional.

4.6.3.3 Outer braids

4.6.3.3.1 A braid shall be applied over the twisted conductor assembly for Types E, EO, and ETT, and is optional over the conductor groups found in Type ETP.

4.6.3.3.2 The outer braid on Type E cable shall be saturated with a flame- and moisture-resistant compound. In accordance with Clause 4.1.3.3, a rubber-filled fibrous tape or tapes may be used between the inner and outer braids on Type E cable. The minimum size and ply of yarn and the thickness of the outer braid shall be not less than the values indicated in Table 33.

4.6.4 Conductor assembly

4.6.4.1 Lay of conductors

The individual conductors of Types E, EO, and ETT and the conductor groups of Type ETP shall be twisted together with a length of lay not greater than the values specified in Table 34.

4.6.4.2 Types E, EO, and ETT

The conductors shall be cabled around a core composed of fibrous material, PVC insulated steel wires, fibrous-covered PVC insulated steel wires, or a combination of these materials. PVC insulation on steel core shall have a minimum average thickness of 0.25 mm (0.010 in). If desired, cabling suitable fillers with the individual insulated conductors shall be permitted.

4.6.4.3 Type ETP

The assembly shall consist of two or more insulated conductors or groups of insulated conductors, laid in parallel to form a flat cable. One or more webs composed of the same material as the jacket shall be permitted. Support members, placed in the centre of the group(s) or in other suitable position(s) and composed of materials as outlined in Clause 4.6.4.2, shall be permitted. When support members are used outside of the group construction, the insulation on steel members is optional, and webs shall be provided between the support members and adjacent conductors or groups.

4.6.4.4 Duplex cables

4.6.4.4.1 General

When required, the incorporation of duplex cables for use as telephone circuits in Types E, EO, ETT, and ETP cables shall be permitted. Each duplex cable shall consist of two insulated conductors not smaller than 0.519 mm² (20 AWG), a shield, and a jacket. A cable that consists entirely of twisted pairs shall be permitted.

4.6.4.4.2 Insulation

Each conductor shall be insulated with a material that complies with the physical properties required and meets the insulation thickness for Type SV or SVT cord.

4.6.4.4.3 Assembly of conductors

The insulated conductors shall be twisted together in accordance with Table 34.

4.6.4.4.4 Covering

The application of a covering, in accordance with Clause 4.1.3, shall be permitted.

4.6.4.4.5 Shield

4.6.4.4.5.1 General

A shield consisting of a copper braid or a polyester and aluminum foil laminated tape shall be applied over the twisted conductors.

4.6.4.4.5.2 Braid

Braided shields shall comply with Clause 4.1.5.3. For thermoplastic insulation, the copper braid shall be bare or coated. For thermoset insulation, bare soft copper wires shall be permitted if the shield wires and contacting compounds are compatible in accordance with Clause 5.2.8. Otherwise, if a separator is not provided, all the individual wires of the shield shall be separately tinned.

4.6.4.4.5.3 Tape

Laminated polyester and aluminum foil tape shields shall comply with Clause 4.1.5.4, except that the minimum size of the drain wire shall be 0.519 mm^2 (20 AWG), the minimum thickness of the tape shall be 0.025 mm (0.001 in), and for thermoplastic insulations a coated or uncoated drain wire shall be used.

4.6.4.4.6 Jacket

One of the following shall be applied over the shield:

a) A jacket having a minimum average thickness of 0.38 mm (0.015 in) and a minimum thickness at any point of 0.33 mm (0.013 in) of a compound that meets the physical requirements for the jacket of Type SV, SVO, SVT, or SVTO cord;

b) A nylon covering having a minimum thickness at any point not less than 0.05 mm (0.002 in). In the case of a duplex cable using a bare or tinned copper braided shield, the application of a separator under or over the shield, if desired, shall be permitted; or

c) For Type ETP, when pairs are used and the shields are not in contact with each other or the circuit conductors, the jacket over the shielded pairs is optional, and webs shall be provided between the support members, between pairs, and between adjacent conductors or groups.

4.6.4.5 Coaxial cable

When required, coaxial cable in Types E, EO, ETT, and ETP shall be permitted as follows:

a) A coaxial cable shall consist of a centre conductor, insulation, shield, and an overall covering in accordance with Item (b).

b) The overall covering on the coaxial cable shall be one of the following:

1) PVC with a minimum average thickness of 0.38 mm (0.015 in) and a minimum thickness at any point of 0.33 mm (0.013 in);

- 2) Two laps of polyester tape, each with a minimum thickness of 0.025 mm (0.001 in);
- 3) Rayon braid; or
- 4) A nylon covering having a minimum thickness at any point of 0.05 mm (0.002 in).
- 4.6.4.6 Optical-fibre component or cable (optional)

Optical fibre members may contain a metallic element.

4.6.5 Shield

An overall shield in accordance with Clause 4.1.5 shall be permitted.

4.6.6 Jacket

4.6.6.1 The class of jacket to be used on a particular type is shown in Table 31. Jackets shall comply with Clause 4.1.6.

4.6.6.2 The average and minimum thickness of jackets shall be in accordance with Tables 35 and 36.

4.6.6.3 The average and minimum thickness of the jacket shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.6.7 Method of distinguishing conductors

Conductors in Types E and EO cables shall be of readily distinguishable colours.

Conductors in Types ETT and ETP elevator cables shall be coded by one of the following methods:

- a) Readily distinguishable colours;
- b) Numbers printed in ink on the surface of the insulation; or
- c) A combination of colours and number coding.

4.6.8 Flame test

All finished constructions shall be tested in accordance with Clause 5.1.5.1 (FT1).

4.7 Hoistway cables

Note: Clause 4.7 includes specific requirements for hoistway cables (see Table 37).

4.7.1 General

4.7.1.1 These requirements apply to hoistway cables for control and signal applications in elevator hoistways, in accordance with the Rules of the *Canadian Electrical Code, Part I*, the *National Electrical Code*, and *La Norma de Instalaciones Electricas*. These cables have a temperature rating of 60 or 90°C and a voltage rating of 300 or 600 V.

4.7.1.2 Constructions rated at 300 V shall consist of twisted assemblies of 2 to 75 conductors.

4.7.1.3 Constructions rated at 600 V shall consist of twisted assemblies of 2 to 75 conductors or parallel constructions of 2 to 4 conductors.

4.7.1.4 Except for short runs not exceeding 1.5 m (5 ft) in length, the parallel constructions are intended for use in raceways into which the cables are laid.

4.7.2 Construction

4.7.2.1 Parallel construction

The parallel construction shall consist of 2 to 4 solid or stranded 0.824 mm² (18 AWG) conductors.

4.7.2.2 Twisted construction

The twisted conductor constructions shall consist of 2 to 75 conductors of the following sizes or combination of sizes:

a) 0.824 mm², 1.31 mm², 2.08 mm², or 3.31 mm² (18 AWG, 16 AWG, 14 AWG, or 12 AWG) for 600 V constructions; or

b) 0.519 mm², 0.824 mm², 1.31 mm², 2.08 mm², or 3.31 mm² (20 AWG, 18 AWG, 16 AWG, 14 AWG, or 12 AWG) for 300 V constructions.

Twisted constructions of telephone conductor pairs, coaxial cables, optical fibre, or any combination thereof shall be permitted. An overall PVC jacket shall be permitted.

4.7.3 Conductors

4.7.3.1 General

Conductors shall comply with Clause 4.1.1.

4.7.3.2 Stranding

4.7.3.2.1 Solid or stranded conductors shall be permitted.

4.7.3.2.2 Stranded conductors shall have not less than seven wires.

4.7.3.2.3 No special combination of the individual wires of a stranded conductor is required, but simple bunching (untwisted wires) shall not be permitted. The lay of a layer of wires in a concentric assembly shall be not less than 8 nor more than 16 times the layer diameter (the overall diameter of that layer). The lay of the wires in bunch-stranded conductors shall be not more than 64 mm (2.50 in).

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

4.7.4 Insulation

4.7.4.1 The parallel construction shall be such that the insulated conductors can be readily separated for any distance only after being slit at the end and intentionally torn apart. The parallel construction shall be of individual insulated conductors heat-fused or of conductors laid parallel and insulated in one extrusion.

4.7.4.2 The classes of insulation to be used and the required testing shall be as shown in Table 37.

4.7.4.3 Insulation thickness shall not be less than the values shown in Table 38.

4.7.4.4 The average and minimum thickness at any point of insulation shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE. In the case of parallel constructions, the minimum wall thickness at the tear after separation shall be not less than the minimum shown in Table 38.

4.7.4.5 Insulation shall comply with Clause 4.1.2 and the test requirements of Clause 5.

4.7.5 Conductor assembly

4.7.5.1 General

The twisted construction shall have the conductors twisted together with a length of lay not exceeding 915 mm (36 in).

4.7.5.2 Duplex cables - telephone pairs (optional)

Duplex cables shall comply with Clause 4.6.4.4.

4.7.5.3 Coaxial cables (optional)

Coaxial cables shall comply with Clause 4.6.4.5.

4.7.5.4 Optical fibre component or optical fibre cable (optional)

Optical fibre members may be permitted to contain a metallic element.

41

4.7.5.5 Binder

A suitable binder shall be permitted over the twisted conductor assembly.

4.7.5.6 PVC jacket (optional)

If provided, the classes of jacket to be used and the required testing shall be as shown in Table 37 and shall comply with Clause 4.1.6. The jacket thickness shall not be less than is shown in Table 39. The minimum average and minimum thickness of the jacket shall be determined in accordance with the test, Thickness, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.7.6 Method of distinguishing conductors

The conductors in the twisted and parallel constructions shall be made distinguishable from each other in accordance with Clause 4.1.9.

4.7.7 Marking

Product and package markings shall be in accordance with Clause 6.5.

4.8 Electric vehicle cables

Note: Clause 4.8 includes specific requirements for electric vehicle cables (see Table 40).

4.8.1 General

These cables have a temperature rating of $60 - 105^{\circ}C$ dry, $60^{\circ}C$ wet, 300, 600 V, or 1000 V, employing oil-resistant and sunlight-resistant jacket and suitable for use in wet locations.

4.8.2 Conductors

Conductors shall comply with Clause 4.1.1.

4.8.3 Insulation

4.8.3.1 Insulation shall be in accordance with Clause 4.1.2. The classes, thickness, and required testing of insulation to be used on a particular type shall be as shown in Table 40. Insulation thickness of signal and communication conductors 0.824 mm² (18 AWG) and smaller shall comply with the requirements for 0.824 mm² (18 AWG) circuit conductors.

4.8.3.2 The minimum average and minimum thickness at any point shall be determined in accordance with the test Thickness in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

JULY 6, 2018

4.8.4 Covering

The application of a covering, in accordance with Clause 4.1.3, over the insulation of individual conductors, shall be permitted.

4.8.5 Conductor assembly

Conductor assembly, fillers, and binders shall be in accordance with Clause 4.1.4.

When data/signal conductors are assembled with circuit conductors, they shall be cabled in the same direction and with the same length of lay as the circuit conductors. The data/signal conductors may be individual(s) or pairs or groups and either shielded or unshielded and jacketed or unjacketed. The jacket, if present, shall meet the requirements of SV, SVE or SVT.

4.8.6 Shielding

A shield over the assembled conductors, if provided, shall comply with Clause 4.1.5.

4.8.7 Jackets

4.8.7.1 Jackets shall be in accordance with Clause 4.1.6. The classes, thickness, and required testing of jackets to be used on a particular type shall be as shown in Table 40.

4.8.7.2 The jacket on a cable containing at least one conductor larger than 33.6 mm² (2 AWG) shall be reinforced by a tape, two servings, or braid of natural or synthetic material. If two servings are used, they shall be applied in opposite directions of lay. The reinforcing layer shall be under the single layer jacket, or between the layers of the two-layered construction. The total jacket thickness shall be in accordance with Tables 57 and 58.

4.8.7.3 The average and minimum thickness of the jacket shall be determined in accordance with the test Thickness in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-177-ANCE.

4.8.8 Overall dimensions

The overall diameter of the finished cord or cable shall conform to Clause 4.1.7, except Table 13 does not apply.

4.8.9 Coiled cords

Coiled cords shall comply with Clause 4.1.8.

4.8.10 Methods of distinguishing conductors

The method of distinguishing conductors shall comply with Clause 4.1.9.

5 Performance and test requirements

5.1 Physical properties

5.1.1 Insulation

The physical properties of the various classes of insulation, when tested before and after accelerated aging, shall comply with the applicable requirements given in Table 9. Compliance shall be determined in accordance with the test, Physical Properties (ultimate elongation and tensile strength), in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-178-ANCE.

5.1.2 Jackets

The physical properties of the various classes of jackets, when tested before and after accelerated aging, shall comply with the applicable requirements given in Table 12. Compliance shall be determined in accordance with the test, Physical Properties (ultimate elongation and tensile strength), in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-178-ANCE on die-cut samples.

5.1.3 Deformation

5.1.3.1 Insulation

The insulation on single-conductor wires (with nylon and any other covering removed), and on the individual conductors (separated, in the case of parallel cords), shall not decrease by more than 50 percent in thickness when subjected to a force caused by a mass as shown in Table 41, and while maintained at the temperature shown in Table 41 for 1 h.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050

5.1.3.2 Jacket

Smoothed specimens of jackets from finished cords and cables shall not decrease by more than 50 percent in thickness when subjected to a force caused by a mass of 2000 g (4.4 lbs), and while maintained at the temperature shown in Table 40 for 1 h.

5.1.3.3 Method

Compliance with Clauses 5.1.3.1 and 5.1.3.2 shall be determined in accordance with the test, Deformation, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-191-ANCE. The overall braid, if present, shall be removed.

5.1.4 Mechanical strength

5.1.4.1 General

The mechanical strength of finished jacketed two- or three-conductor 0.824 mm² (18 AWG) cords (except NISPT-1, NISPT-2, NISPE-1, NISPE-2, NISP-1, NISP-2, HSJ, HSJW^{c,u}, HSJO, HSJOO, HSJOOW, and HSJOW^{c,u}) after removal from the overall braid (if present) shall be such that no conductor will break when subjected to a force caused by a mass of 68 kg (150 lbs) for 1 min. For two- or three-conductor 1.04 mm² (17 AWG) finished cords (except HSJ, HSJW^{c,u}, HSJO, HSJOOW, and HSJOW^{c,u}), after removal from the overall braid (if present), no conductor shall break when subjected to a force caused by a mass of 77 kg (170 lbs) for 1 min. The weight method shall be considered the referee method.

5.1.4.2 Method

Compliance shall be determined in accordance with the test, Mechanical Strength, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-178-ANCE.

5.1.5 Flame tests

5.1.5.1 Vertical flame tests - FT1 or FV-1

Finished cords and cables shall not convey flame, continue to burn for more than 60 s after five 15 s applications of a standard test flame, and in the case of the FV-1 test, drop flaming particles that ignite cotton. Compliance shall be determined in accordance with the test FT1 or the test FV-1, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-192-ANCE. A specimen shall be considered to have conveyed flame if more than 25 percent of the extended portion of the indicator is burned. In parallel construction, the major diameter shall face the burner.

5.1.5.2 Vertical flame test - FT4

Finished cords or cables shall not have a char length in excess of 1.5 m (59 in). Compliance shall be determined when tested in accordance with the test, Vertical tray flame test (Method 2 - FT4), in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-498-ANCE.

5.1.5.3 Horizontal flame test – FT2 or FH

The length of the charred portion of the specimen of cord shall not exceed 100 mm (3.9 in), nor shall flaming particles ignite cotton. Compliance shall be determined when tested in accordance with the test, FT2/FH/Horizontal Flame, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-192-ANCE. In parallel constructions, the major diameter shall be in the vertical plane for testing. For non-jacketed constructions, the finished product shall be tested, and the greatest char length on any conductor shall be the char length measured.

5.1.5.4 Vertical flame test – VW-1 or FV-2

When the finished cable and the finished individual insulated conductors (including any nylon or other covering) within the cable are tested separately, they shall not convey flame, drop flaming particles that ignite cotton, or continue to burn for more than 60 s after any of five 15 s applications of a standard test flame. Compliance shall be determined in accordance with the test, FV-2/VW-1, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-192-ANCE. A specimen shall be considered to have conveyed flame if more than 25 percent of the extended portion of the indicator is burned. In parallel construction, the major diameter shall face the burner.

5.1.5.5 Coiled cords

Where sufficient straight (non-coiled) length is not available, coiled cords shall be positioned for testing by pulling the specimen taut, without any unwinding, and then clamping the specimen in place.

5.1.6 Cold bend – all types

The insulation (including any nylon or other covering), jacket (if applicable), and overall braid (if present) shall show no cracks when a specimen of the finished cord or cable is conditioned at the temperature specified in Table 42 for 4 h and, while still at the specified temperature, wound the required number of turns around the mandrel having a diameter as specified in Table 43. Compliance shall be determined in accordance with the test, Cold Bend, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-193-ANCE.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL Electric Willis Electric Ex 5.1.7 Weather resistance - all "W" cords and electric vehicle cables

After conditioning for 720 h in a xenon arc weatherometer as described in the test, Weather (sunlight) resistance, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-553-ANCE, the insulation on a specimen of the individual conductor of Types CXWT^c, CXTW^u, YXTW^u and on finished Types PXWT^c, SPT-1W^{c,u}, SPT-2W^{c,u}, HPNW^{c,u}, XTW^u, DPTW^{c,u}, and the jacket of other Type "W" cords shall:

a) Show no cracks when wound one complete turn around a mandrel having a diameter as shown in Table 43 while at a temperature of minus $30^{\circ}C \pm 1^{\circ}C$ for a period of 1 h. During the bending, the conditioned surface shall be opposite the surface contacting the mandrel. The specimen shall be allowed to rest 16 h to 96 h at room temperature before conducting the cold bend test.

b) Retain an average tensile strength and elongation of not less than 80 percent. Conditioned and unaged sets (five specimens each) shall be allowed to rest 16 h to 96 h at room temperature, followed by physical properties testing. Conditioned surfaces required to be die-cut shall not be buffed or skived away.

5.1.8 Heat-shock resistance

5.1.8.1 PVC and TPE insulations

The insulation shall show no cracks when specimens of finished unjacketed cords and specimens of the individual conductors from jacketed cords and Types CXWT^c, CXTW^u, YXTW^u, and TX^c are exposed to a temperature of 121°C \pm 2°C for all temperature ratings of PVC and TPE rated at 60°C, or 150°C \pm 2°C for TPE rated in excess of 60°C, for 1 h while wound six close turns around a mandrel having a diameter as shown in Table 44. The specimen shall show no cracks when unwound from the mandrel after cooling to room temperature.

5.1.8.2 PVC- and TPE-jacketed cords and cables

The overall braid for cord with "-B" suffix (if present), jacket, and insulation on specimens of the finished cords and cables shall show no cracks after being subjected to a temperature of 121 °C \pm 2 °C for all temperature ratings of PVC and TPE rated at 60°C, or 150°C \pm 2°C for TPE rated higher than 60°C, for 1 h while wound around a mandrel having a diameter as shown in Table 45. The overall braid, jacket, and insulation shall show no cracks when unwound from the mandrel after cooling to room temperature.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL Electric Ext

46

5.1.8.3 Test method

JULY 6, 2018

Compliance with Clauses 5.1.8.1 and 5.1.8.2 shall be determined in accordance with the test, Heat shock resistance, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-190-ANCE.

5.1.9 Bend test on nylon-covered conductors

A nylon covering over an individual insulated conductor (see Clause 4.1.3.4) or on a SPT-1 cord (see Clause 4.3.10.4) shall not show any cracks when wound six complete close turns around a mandrel having the same diameter as the finished conductor (the minor diameter in the case of a SPT-1 cord) after specimens have been subjected to the air-oven aging test applicable to the insulation class. Following the air-oven test, the specimen shall be allowed to cool for 16 h to 96 h prior to flexing. Wrinkles or folds in the nylon do not constitute failures.

Compliance with this test shall be in accordance with the test, Bend test on nylon covered conductors, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

5.1.10 Tightness of insulation test

5.1.10.1 The insulation of Types CXWT^c, CXTW^u, and YXTW^u shall be applied tightly to reduce slipping of the conductor in the insulation when each conductor is subjected to the procedure outlined in Clause 5.1.10.2. The insulation on parallel cords other than Type TPT, shaver cords^u, NISP-1, NISP-2, NISPE-1, NISPE-2, NISPT-1, or NISPT-2 cords shall be applied tightly to reduce slipping of the insulation when subjected to the procedure outlined in Clause 5.1.10.3.

5.1.10.2 Following the method described in Clause 5.1.10.4 and with the 1.81 kg (4 lbs) weight and specimen thus suspended for a period of 30 s, slipping of the conductor, separator, or combination thereof shall not exceed 3 mm (0.11 in). Measurement shall be made at the top of the specimen at the point at which the bare conductor enters the insulation.

5.1.10.3 Following the method described in Clause 5.1.10.4 and with the 3.63 kg (8 lbs) weight and specimen thus suspended for a period of 30 s, slipping of either single conductor, separator, or combination thereof shall not exceed 3 mm (0.11 in). Measurement shall be determined from the point where the conductor is cut off even with the insulation.

5.1.10.4 Compliance with Clauses 5.1.10.2 and 5.1.10.3 shall be determined in accordance with the test, Tightness of insulation, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

5.1.11 Swelling and blistering — types HSJW^{c,u}, HSJOW, HSJOOW, SJOW, SJOOW, SOW, SOW, EVJ, and EV

The jacket of a 10 m (33 ft) length of finished cord shall neither blister nor increase the cord diameter by more than 20 percent after the specimen of finished cord has been immersed continuously in water for two weeks at $50^{\circ}C\pm1^{\circ}C$. Compliance shall be determined with the apparatus and in accordance with the test, Swelling and blistering when immersed in liquid, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

5.1.12 Durability of printing

Surface-printed markings shall be complete and legible after two samples have been tested in accordance with the test, Durability of ink printing, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE. One sample shall be conditioned at the rated temperature of the sample for 24 h.

5.1.13 Dry temperature rating of new materials (long-term aging test)

5.1.13.1 Scope

This test verifies the dry temperature rating of new materials and establishes short-term air-oven aging parameters and requirements.

Notes:

(1) The long-term aging test evaluates a material for its dry temperature rating only. Other properties are evaluated based on requirements in the applicable wire and cable standard.

(2) For the product standard, after sufficient experience with a new material has been compiled, the material will be submitted for inclusion in the standard in a timely manner.

5.1.13.2 Test method

Compliance shall be determined in accordance with the test, Dry temperature rating of new material (Long-term aging test), in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

5.1.14 Abrasion test for "-R" cords

5.1.14.1 Five cord specimens (with the overall braid removed, if present) shall be subjected to an abrasion motion as described in the test, Abrasion resistance, in CAN/CSA-C22.2 No. 2556, UL 2556, and NMX-J-556-ANCE. The braid shall remain in place for Type HPD^{m,u}. After 5000 cycles of abrasion, there shall be no exposure of copper conductors or shield (in the case of shielded constructions) on any of the five specimens.

5.1.14.2 The weight applied to the specimen shall exert a force of 3.3 \pm 0.1 N (0.74 \pm 0.02 lbf) or 340 \pm 13 gf (12.0 \pm 0.5 ozf).

5.1.14.3 The table shall be stopped every 800 cycles (rather than 50 cycles) and the emery cloth shall be shifted slightly to one side, so that in subsequent cycles each specimen is abraded by a fresh surface of the cloth.

5.1.15 Flexibility of braid

5.1.15.1 General

When used on HPD^{m,u}, PD^u, C^u, or cords with the "-B" suffix, the threads in the braid shall not rupture when the finished cord is tightly wrapped around itself, with adjacent turns touching, for six complete turns at room temperature.

5.1.15.2 Apparatus

The apparatus shall consist of a cylindrical mandrel in the same diameter as the finished cord.

5.1.15.3 Preparation of specimen

The test specimen shall be taken from a sample of finished wire or cable, or from the wire or cable during manufacture, without any conditioning. The length of the specimen shall be sufficient to allow winding around the mandrel for six turns.

5.1.15.4 Procedure

The specimen shall be wound around a mandrel at a uniform rate of approximately 4 s per turn at room temperature.

5.1.15.5 Examination

All surfaces of the specimen shall be examined for rupture of the threads on the braid while still wrapped around the mandrel.

5.1.16 Mandrel pinching test for "-R" cords

5.1.16.1 General

Five cord specimens (with the overall braid removed, if present) shall be subjected to a crushing/pinching force as described in Clauses 5.1.16.2 - 5.1.16.4. The braid shall remain in place for Type HPD^{m,u}. After an application of 2254 N (500 lbf), there shall be no contact on any of the five specimens between:

- a) One or more circuit conductors and the flat horizontal surface;
- b) One or more circuit conductor and the mandrel;
- c) One or more circuit conductor and the grounding conductor; or
- d) The two circuit conductors.

JULY 6, 2018

5.1.16.2 Apparatus

The cord shall be crushed between a flat horizontal steel surface and the corner of a rigid steel mandrel. The mandrel shall have a right-angle corner with a corner radius of 1.19 mm (0.046 in). See Figures 7 and 8.

5.1.16.3 Preparation of specimen

Cord specimens shall be tested without any conditioning. The overall braid, if present, shall be removed. The braid shall remain in place for Type HPD^{m,u}. The apparatus and the specimens shall be in thermal equilibrium with the surrounding air at a temperature of 25 ±5°C (77 ±9°F) throughout the test.

5.1.16.4 Procedure

5.1.16.4.1 A sample length of the cord shall be laid flat with the length of the cord at a right angle to the longitudinal axis of the mandrel.

5.1.16.4.2 The circuit conductors, steel surface, and mandrel shall be connected to low-voltage indicators (buzzers or the like) and to power supplies. The steel surface, mandrel, and any grounding conductor shall be connected together and to earth ground. The indicators shall provide a signal whenever contact is established between one or more of the circuit conductors and the steel surface, mandrel, or grounding conductor. An additional low-voltage indicator shall be connected in order to sense contact between the circuit conductors.

5.1.16.4.3 The head of a compression testing machine shall be started moving toward the bed at a rate of 5.08 \pm 1.27 mm/min (0.20 \pm 0.05 in/min). The travel shall be continued until the mandrel pushes through the insulating materials of the cable and the indicator signals or until a force of 2254 N (500 lbf) has been reached.

5.1.17 Mandrel crushing test for "-R" cords

5.1.17.1 General

Five cord specimens (with the overall braid removed, if present) shall be subjected to the crush test described in Clauses 5.1.17.2 – 5.1.17.4. The braid shall remain in place for Type HPD^{m,u}. After an application of 890 N (200 lbf) for 7 h, there shall be no contact on any of the five specimens between:

> UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

- a) One or more circuit conductors and the flat horizontal surface;
- b) One or more circuit conductors and the mandrel;
- c) One or more circuit conductors and the grounding conductor; or
- d) The two circuit conductors.

DISTRIBUTION WITHOUT PERMISSION FROM UL Willis Electric Exhibit 2050 Page 56

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

5.1.17.2 Apparatus

The circuit conductors, steel surface, and mandrel shall be connected to low-voltage indicators (buzzers or the like) and to power supplies. The steel surface, mandrel, and any grounding conductor shall be connected together and to earth ground. The indicators shall provide a signal whenever contact is established between one or more of the circuit conductors and the steel surface, mandrel, or grounding conductor. An additional low-voltage indicator shall be connected in order to sense contact between the circuit conductors.

5.1.17.3 Preparation of specimen

Cord specimens shall be tested without any conditioning. The overall braid, if present, shall be removed. The braid shall remain in place for Type HPD^{m,u}. The apparatus and the specimens shall be in thermal equilibrium with the surrounding air at a temperature of $25.0 \pm 5.0^{\circ}$ C (77.0 $\pm 9.0^{\circ}$ F) throughout the test.

5.1.17.4 Procedure

5.1.17.4.1 A sample length of the cord shall be laid flat with the length of the cord at right angles to the longitudinal axis of the mandrel.

5.1.17.4.2 The cord shall be squeezed between a flat horizontal steel surface and the corner of a rigid steel mandrel for a period of 7 h. The mandrel shall have a right-angle corner with a corner radius of 1.19 mm (0.046 in). See Figures 7 and 8.

5.1.18 Flexing test for "-R" cords

5.1.18.1 General

Six samples of a power-supply cord shall be subjected to the test described in Clauses 5.1.18.2 – 5.1.18.4. Upon completion of the test, the following conditions shall not occur on any of the specimens:

- a) Development of a short circuit;
- b) Breakage of more than 10 percent of the strands of any circuit or grounding conductor;
- c) Broken strands piercing the insulation and becoming accessible;
- d) Cracking or degradation of the cord insulation; or
- e) Exposure of the shield on shielded constructions.

5.1.18.2 Apparatus

Each supply cord sample shall be mounted through a slot in the L-bracket of the test fixture shown in Figure 9. The L-bracket shall measure 38.1 mm (1.5 in) deep and 38.1 mm (1.5 in) high and shall be provided with a slot having dimensions as shown in Figure 9. The cord shall exit vertically through the top surface of the bracket base and shall be routed across a curved surface for attachment (see Figure 9).

5.1.18.3 Preparation of sample

The cord shall be passed through a horizontal bushing having a smoothly rounded 25.4 mm (1 in) diameter opening, located 305 mm (1 ft) below the centre of rotation. The free end of the cord shall be attached to a 110 g (0.25 lbs) unsupported weight.

5.1.18.4 Procedure

5.1.18.4.1 During the test, the conductors shall be loaded to the maximum rated current based on conductor size and cord type. A voltage of 300 V shall be applied between the conductors. Current shall not be passed through the grounding conductor, which shall be connected to ground. The circuit shall be protected by a time-delay fuse as indicated in Table 60. One or more series current relays shall be provided to shut down the machine if a conductor opens.

5.1.18.4.2 The six assemblies shall be flexed at a rate of approximately 20 cycles per minute for 3100 cycles. One cycle consists of a 90-degree rotation of the test assembly in one direction, a 180-degree rotation in the opposite direction and then a return to the starting point. A short circuit between conductors of the cord is determined when, at any time during the test, the time-delay fuse opens.

5.1.19 Tinsel flexing test

5.1.19.1 Six specimens shall be cut from a sample length of the finished wire or cord and shall be tested without any conditioning. The apparatus and the specimens shall be in thermal equilibrium with the surrounding air at a temperature of 23.0 \pm 8.0°C (73.4 \pm 14.4°F) throughout the test.

5.1.19.2 Each specimen shall be bent into the form of a flat-bottomed square-cornered U with the legs of the U straight and of equal length. The bottom of the U in each case shall be taped to the underside of a movable round horizontal rod (A in Figure 10) with the axis of the conductor or conductors parallel to the longitudinal axis of the movable rod and the legs of the U extending vertically downward between a pair of fixed round rods (B in Figure 10) that are 12.7 mm (0.50 in) in diameter. A weight exerting 0.210 \pm 0.003 N (0.75 \pm 0.01 ozf) shall be attached to the free end of each leg. The conductors of the specimens shall be parallel to one another and to the longitudinal axis of the movable rod to which the specimens are taped. The distance between the two rods shall be adjusted to result in the specimens hanging midway between the rods, with a space from specimen to rod of near 1 mm (1/32 in) on each side. A current of 1.5 A shall be passed through the conductor(s).

5.1.19.3 The movable rod shall be started in the pivoted motion (simple harmonic motion) depicted by the dashed lines in Figure 10 at the rate of 12 cycles per minute, each cycle consisting of one complete back-and-forth motion through an angle of 180° centring about the points of flexure. The motion shall be stopped after 6000 cycles and each specimen shall be cut open and examined for broken strands at the points of flexure against the two fixed rods. The wire or cord does not comply where more than half of the strands are broken in any leg of any specimen (12 legs in all) in the 6000 cycles of flexing.

5.1.20 Abrasion test for Types XTW^u, CXTW^u, CXTW-IS^u, and YXTW^u

5.1.20.1 General

The insulation on the 0.325 mm² (22 AWG) size of Types XTW^u and CXTW^u wire and of the straightened individual conductors from finished Type CXTW^u cord shall not wear through to expose the conductor or conductors in 400 or fewer cycles on any of the specimens. Type CXTW-IS^u cord shall not wear through to expose the strength member or the conductor in 400 or fewer cycles on any of the specimens. The insulation on an YXTW wire shall not wear through to expose the conductor in 600 or fewer cycles on any specimens.

5.1.20.2 Apparatus

The apparatus and the specimens shall be in thermal equilibrium with the surrounding air at a temperature of 23.0 \pm 8.0°C (73.4 \pm 14.4°F) throughout the test.

The equipment shall consist of:

- a) A reciprocating table capable of a simple harmonic motion at a rate of 28 cycles per minute;
- b) A weight that exerts 1.1 ± 0.1 N (4.0 ± 0.5 ozf), and
- c) Grade 1/2 (medium) emery cloth.

5.1.20.3 Specimen preparation

Six straight specimens 1000 mm (40 in) long shall be cut from a sample length of the finished wire or straightened conductor from the finished cord and shall be tested without any conditioning.

5.1.20.4 Procedure

One end of each specimen shall be attached to a horizontal reciprocating table while the table is at one end of its travel. The other end of each specimen shall be attached to a weight that exerts 1.1 ±0.1 N (4.0 ±0.5 ozf). Each specimen shall be laid over a quarter cylinder to whose outer surface an unused sheet of grade 1/2 (medium) emery cloth is attached. The radius of the surface of the emery cloth shall be 90 mm (3.5 in). The longitudinal axis of the cylinder shall be horizontal and perpendicular to each of the vertical planes that contain the specimens as they move on and are abraded by the emery cloth.

The table shall be started in its horizontal reciprocating motion (simple harmonic motion) at the rate of 28 cycles per minute, each cycle consisting of one complete back-and-forth motion with a stroke of 160 mm (6.3 in). The table shall be stopped every 50 cycles and the emery cloth shall be shifted slightly to one side so that in subsequent cycles each specimen is abraded by a fresh surface of the cloth.

> UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 Willis Electric Exhibit 2050 Page 59

5.1.20.5 Examination

Following the completion of the 400 cycles of abrasion, the weights shall be removed from the specimens. The cord shall be examined for exposure of conductors. The CXTW-IS^u cord shall be examined for exposure of conductors or strength members.

5.1.21 Flexing test for Types XTW^u, CXTW^u, XTW-IS^u, and YXTW^u

5.1.21.1 General

No more than half the strands in any conductor in the 0.325 mm² (22 AWG) size of Types XTW^u, CXTW^u, and CXTW-IS^u cord and wire shall be broken by 6000 cycles of the flexing. In addition, for type CXTW-IS^u, as a result of the 6000 cycles of flexing, the strength member shall not be damaged and the strength member within the insulation of the Type CXTW-IS^u shall not damage the insulation. Damage of the insulation includes, but is not limited to exposure of the conductor or splitting of the insulation. No more than half the strands in any conductor of a Type YXTW^u wire shall be broken by 9000 cycles of the flexing. No more than half the strands in any conductor of a Type YXTW^u wire shall be broken by 9000 cycles of the flexing.

5.1.21.2 Apparatus

The apparatus and the specimens shall be in thermal equilibrium with the surrounding air at a temperature of 23.0 \pm 8.0°C (73.4 \pm 14.4°F) throughout the test.

The apparatus shall consist of:

- a) Weight exerting 0.210 \pm 0.003 N (0.75 \pm 0.01 ozf);
- b) Fixed round rods 12.7 mm (0.50 in) in diameter, and

c) A movable rod capable of a simple harmonic motion at a rate of 12 cycles per minute in a semi-circular path.

5.1.21.3 Specimen preparation

Six specimens shall be cut from a sample length of the finished wire or cord and shall be tested without any conditioning.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

5.1.21.4 Procedure

Each specimen shall be bent into the form of a flat-bottomed square-cornered U with the legs of the U straight and of equal length. The bottom of the U in each case shall be taped to the underside of a movable round horizontal rod (A in Figure 10) with the axis of the conductor or conductors parallel to the longitudinal axis of the movable rod and the legs of the U extending vertically downward between a pair of fixed round rods (B in Figure 10) that are 12.7 mm (0.50 in) in diameter. A weight exerting 0.210 ± 0.003 N (0.75 ± 0.01 ozf) shall be attached to the free end of each leg. The conductors of the specimens shall be parallel to one another and to the longitudinal axis of the movable rod to which the specimens are taped. The distance between the two rods shall be adjusted to result in the specimens hanging midway between the rods, with a space from specimen to rod of near 1 mm (0.04 in) on each side. A current of 1.5 A shall be passed through the conductor(s).

The movable rod shall be started in the pivoted motion (simple harmonic motion) depicted by the dashed lines in Figure 10 at the rate of 12 cycles per minute, each cycle consisting of one complete back-and-forth motion through an angle of 180° centring about the points of flexure. The motion shall be stopped after 6000 cycles.

5.1.21.5 Examination

Following the completion of the appropriate number of cycles of flexing, the weights shall be removed from the specimens. The wire or cord shall be cut open at the points of flexure against the two fixed rods and the number of broken strands counted in each conductor. In addition, for Type CXTW-IS^u, the strength member at the point of flexure shall be inspected for any damage. The insulation of the Type CXTW-IS^u shall also be inspected for damage.

5.1.22 Low-temperature impact test (Types EV, EVE, and EVT)

5.1.22.1 Electric vehicle cables containing at least one conductor 5.26 mm² (10 AWG) or larger shall not exhibit cracks or ruptures visible to normal or corrected-to-normal vision in the overall jacket component insulation or component shield coverings on at least 8 out of 10 specimens of finished cable when tested in accordance with the test, Cold impact, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE after conditioning for 4 h at minus 25°C or at the lower temperature rating marked on the cable.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL Electric Willis Electric Ex 5.1.23 Crush resistance test (Types EV, EVJ, EVJT, EVE, EVT, and EVJE^m)

5.1.23.1 Finished cable shall be subjected to the test, Crush resistance, in accordance with CAN/CSA-C22.2 No. 2556 or UL 2556; Method 2 (drill rod and plate).

5.1.23.2 Results and calculations - each finished cable shall comply with the minimum average crush force as indicated below:

a) For cable with at least one conductor up to and including 3.31 mm² (12 AWG) conductors -4.45 kN (1,000 lbs).

b) For cable using larger than 3.31 mm² (12 AWG) and up through 33.6 mm² (2 AWG) conductors - 11.1 kN (2,500 lbs).

c) For cable using larger than 33.6 mm² (2 AWG) conductors – 15.6 kN (3,500 lbs).

5.1.24 Breaking strength test for CXTW-S^u and CXTW-IS^u

5.1.24.1 Three specimens of a single conductor CXTW-S^u or CXTW-IS^u containing fibrous (non-metallic) strands complying with Clause 4.1.1.7.2.7 or 4.3.16.2 respectively, shall be subjected to the test described in Clauses 5.1.24.2 and 5.1.24.3. The average and minimum force to cause breakage shall be 249 and 204 N (56 and 46 lbf) respectively.

5.1.24.2 Each specimen shall be cut from a finished cord. The length of the specimen shall be sufficient to allow a spacing of 25 mm (1 in) between the grips of a tensile testing machine. The machine shall be a power-driven machine provided with a device that indicates the maximum load reached. The machine shall be capable of separating the grips at speeds of 500 \pm 25 mm/min (20 \pm 1 in/min), and also at 50 \pm 5 mm/min (2 ±0.2 in/min). The applied load as indicated shall be accurate to 2 percent or less of the value read.

5.1.24.3 The specimen shall be clamped in the tensile machine. The tension shall be increased by separating the clamps at a rate of 53 N/min (12 lbf/min) until the cord breaks. The force at which the cord breaks shall be recorded.

5.1.25 Breaking strength test for CXTW-X^u, LXT-X^u and LXTW-X^u

5.1.25.1 Three specimens of a single conductor CXTW-X^u, LXT-X^u and LXTW-X^u containing fibrous (non-metallic) strands complying with Clause 4.1.1.7.2.7 shall be subjected to the test described in Clauses 5.1.24.2 and 5.1.24.3. The average and minimum force to cause breakage shall be 125 and 102 N (28 and 23 lbf) respectively.

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

57

5.2 Electrical properties

5.2.1 Spark test

The following shall withstand a spark test using an AC test voltage as shown in Table 46:

a) All individual insulated conductors and the jacket of finished duplex or coaxial cable intended for incorporation in completed Type E, EO, ETT, and ETP cables;

- b) All finished individual insulated conductors (including the grounding conductor and any nylon or other covering) intended for incorporation in completed cords and cables; and
- c) All finished integral constructions, before the application of any overall outer braid.

For the spark test on three conductor integral constructions, the grounding conductor need not be connected to either of the other conductors, to the ground, or to any part of the electrical test circuit while the cord is being run through the electrode. DC spark testing is optional (see Note * to Table 46). Compliance shall be determined in accordance with the test, Spark, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-473-ANCE. As an alternative to the spark test, the finished cord or cable shall comply with the dielectric strength test in Clause 5.2.2.

5.2.2 Dielectric strength for all finished types

The finished individual insulated conductors (including any nylon or other covering) of finished flexible cords and cables shall be capable of withstanding for 1 min, without breakdown, the application of an alternating (rms) voltage as indicated in Table 47 between each insulated conductor and between the insulated conductors and any other conductive components and ground, on a specimen at least 15 m (50 ft) in length. All "W" Type cords and electric vehicle cables shall be conditioned in water for a period of at least 6 h prior to testing. All indoor cords shall be conditioned in air at room temperature for a period of at least 6 h prior to testing.

For all "W" Type cords and electric vehicle cables, the dielectric strength test shall be performed in accordance with the test, Dielectric Voltage-Withstand Method 1, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-293-ANCE.

For all indoor type cords, the dielectric strength test shall be performed in accordance with the test, Dielectric Voltage-Withstand Method 1, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-293-ANCE except without immersion in water.

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL Willis Electric Exhibit 2050 5.2.3 Insulation resistance

5.2.3.1 Insulation resistance for all "W" Type cords and electric vehicle cables at 15°C

Before assembly into an outdoor jacketed cord, finished individual insulated conductors (circuit and grounding and including any nylon or other covering) shall be capable of exhibiting an insulation resistance of not less than shown in Table 48 or 49, when a specimen of at least 15 m (50 ft) is tested in water at 15°C immediately following the dielectric strength test described in Clause 5.2.2.

For all other "W" type cords, the cable shall be tested as a complete assembly.

If tested at temperatures different than 15°C, the values shall be corrected to 15°C.

5.2.3.2 Insulation resistance for all indoor cords at room temperature

The insulation resistance between each insulated conductor and between the insulated conductors and any other conductive components and ground shall be not less than 0.76 G Ω ·m (2.5 M Ω ·1000 ft) at 15°C when a specimen of the finished cord at least 15 m (50 ft) in length is tested in air after conditioning for at least 6 h and immediately following the dielectric strength test described in Clause 5.2.2.

5.2.3.3 Test method

Compliance with all insulation resistance tests shall be determined in accordance with the test, Insulation resistance, and Annex E (Determination of temperature correction factor) in CAN/CSA-C22.2 No. 2556, UL 2556, or Annex B in NMX-J-294-ANCE.

5.2.4 Permittivity and stability factor

5.2.4.1 Permittivity - "W" Type cords and electric vehicle cables

5.2.4.1.1 When tested in accordance with the test, Capacitance and relative permittivity, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-040-ANCE, the permittivity of the insulation (with nylon and any other covering removed), shall be as follows:

a) After 14 d of immersion, the capacitance shall not be more than 10 percent greater than the capacitance measured after the first day.

b) After 14 d of immersion, the capacitance shall not be more than 3percent greater than the capacitance measured after 7 d.

5.2.4.1.2 Tests shall be made using three 5 m (16 ft) specimens. Specimens shall be

a) Tested without any polyester tape or similarly non-absorptive separator; and

b) Selected before assembly into finished cord.

The middle 3 m (10 ft) of each specimen shall be immersed continuously in tap water in a temperature of $50^{\circ}C \pm 1^{\circ}C$ for thermoset insulation or $60^{\circ}C \pm 1^{\circ}C$ for thermoplastic insulations for 14 d. The 1 m (3 ft) end portions of each specimen shall be kept dry above the water as leakage insulation. A cover for the tank shall be placed directly above the surface of the water. The water level shall be kept constant.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

5.2.4.2 Stability factor - "W" Type cords and electric vehicle cables

When tested in accordance with test, Stability factor, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-205-ANCE, the insulation (with nylon and any other covering removed), on 3 specimens of 5 m (16 ft) each shall meet one of the following requirements:

a) The stability factor (the numerical difference between the percentage power factors measured with current at average stresses of 3150 V/mm and 1575 V/mm (80 V/mil and 40 V/mil)) after the fourteenth day of immersion shall not be greater than 1.0; or

b) The difference between the stability factors measured after the first and fourteenth days shall not be greater than 0.5.

5.2.5 Standard arcing test for types HPN and HPNW^{c,u}

Types HPN and HPNW^{c,u} cord shall not arc when a specimen of finished cord is connected at one end to a 120 V 48 – 62 Hz ac source of supply through a 15 A fuse or circuit breaker and subjected to a standard test flame 125 mm (5 in) from the other end of the specimen for 2 min. Compliance shall be determined in accordance with the test, Standard arcing test, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

5.2.6 Flex arcing test for types HPN and HPNW^{c,u}

A minimum of three specimens of Types HPN and HPNW^{c,u} cord shall be tested, and each specimen shall be caused to make and break the circuit for 20 cycles. Perforation of the insulation due to arcing, as evidenced by burning or charring of the bleached cheesecloth, in 20 cycles or less indicates a failure. The cheesecloth shall run 29.4 to 31.2 m²/kg (12 to 20 yd²/lb) and have a count of approximately 24-28 by 28-32. Compliance shall be determined in accordance with the test, Flex arcing test, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE. The flexing rate shall be 15 to 20 cycles per min. A make and break shall be considered one cycle.

5.2.7 Continuity of conductors

The conductors in every length of finished flexible cord and cable shall be continuous. Compliance shall be determined in accordance with the test, Continuity, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL lectric Willis Electric Exhi

For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9. :... 80 Willis Electric Exhibit 2050 Page 65

5.2.8 Copper corrosion

5.2.8.1 General

5.2.8.1.1 A bare (uncoated) copper insulated conductor shall show no evidence of corrosion when tested in accordance with the test, Copper corrosion, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE, and when performed at the temperature and for the duration under air oven test described in Table 9.

5.2.8.1.2 An uncoated copper shield in direct contact with an insulation, jacket, and/or tape shall show no evidence of corrosion when tested as noted in Clauses 5.2.8.2 – 5.2.8.5, using the forced-circulation air oven described in the Apparatus under Physical properties (ultimate elongation and tensile strength) in CAN/CSA C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE. The temperature and duration of the air oven test shall be as follows:

- a) Cords and Cable rated 60°C, tested at 7 days at 100°C;
- b) Cords and Cable rated 75°C, tested at 10 days at 100°C;
- c) Cords and Cable rated 90°C, tested at 7 days at 121°C; and
- d) Cords and Cable rated 105°C, tested at 7 days at 136°C.

5.2.8.2 Preparation of specimens

5.2.8.2.1 A complete cable employing the uncoated copper shield in contact with the insulation, jacket and/or tape shall be cut to lengths not less than 300 mm (12 in) that allow for at least one specimen to be placed in the oven vertically.

5.2.8.3 Procedure

5.2.8.3.1 One specimen shall be conditioned at room temperature. The second specimen shall be conditioned in the oven at the specified temperature. Oven temperatures shall be recorded throughout the period of conditioning. The specimen shall then be removed from the oven and allowed to cool to room temperature.

5.2.8.3.2 The cable shall be dissected and the shield on both specimens examined with normal vision.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL Electric Willis Electric

5.2.8.4 Results and calculations

Any evidence of corrosion of the copper shield (normal oxidation or discoloration not caused by the insulation, jacket and/or any tape shall be disregarded) shall be noted.

5.2.8.5 Report

The report shall include, as a minimum, the following:

- a) Test temperature;
- b) Test duration; and
- c) Evidence of corrosion on conditioned and unconditioned specimens.

5.2.9 Flexing of shielded cords (see Clause 4.1.5.6)

The cord shall not be acceptable if any circuit conductor opens in fewer than 15 000 cycles in any of the six specimens when tested in accordance with the test, Flexing of shielded cables, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE. The weight, pulleys, and current used in the test shall be as indicated in Table 61.

5.2.10 Jacket resistance

A nonintegral jacket of thermoplastic or thermosetting material shall exhibit 100 M Ω or more resistance when a specimen of the finished cord (with the overall braid removed, if present) is tested in accordance with the test, Jacket resistance, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

5.2.11 AC leakage current test for low-leakage cords

The AC leakage current test shall be performed in accordance with the test, AC leakage current test through insulation, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-556-ANCE.

5.3 Tests for hoistway cables

5.3.1 Flame test

Finished parallel constructions, finished twisted constructions, and the individual insulated conductors of twisted constructions shall be tested in accordance with Clause 5.1.5.1.

5.3.2 Heat-shock resistance test

5.3.2.1 General

The insulation shall show no cracks, either externally or internally, when a finished parallel construction or one of the insulated conductors of the twisted construction is wound six adjacent turns around a mandrel with a diameter equal to the minor axis of the cable in the case of the parallel construction, or equal to the diameter of the specimen of the insulated conductor in the case of the twisted construction. The sample shall then be exposed for 1 h to a temperature of 121°C ±2°C. After exposure and while still on the mandrel, specimens shall withstand the dielectric strength test of Clause 5.3.4. The insulation shall show no cracks when the specimen is unwound from the mandrel following the dielectric strength test.

5.3.2.2 Twisted conductor construction of hoistway cables with an overall jacket rated 60°C

The jacket and insulation on twisted conductor hoistway cables rated 60°C shall show no cracks when specimens of the finished cable are exposed to a temperature of 121°C ±2°C, for a period of 1 h while wound around a mandrel with a diameter as specified in Table 50.

5.3.2.3 Twisted conductor construction of hoistway cables with an overall jacket rated at 90°C

The jacket and insulation on twisted conductor construction of hoistway cables rated at 90°C shall show no cracks when specimens of the finished cable are exposed to a temperature of 121°C ±2°C for a period of 1 h while wound around a mandrel with a diameter as specified in Table 51.

5.3.2.4 Test method

The tests referenced in Clauses 5.3.2.1, 5.3.2.2, and 5.3.2.3 shall be performed in accordance with the test, Heat-shock resistance, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-190-ANCE.

5.3.3 Cold bend test

5.3.3.1 The tests in Clauses 5.3.3.2 and 5.3.3.3 shall be performed in accordance with the test, Cold bend, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-193-ANCE.

5.3.3.2 The insulation shall show no cracks when a specimen of finished parallel construction, or of one of the insulated conductors of a twisted construction, is wound six close turns around a mandrel with a diameter as specified in Table 52, immediately following exposure at minus 20°C ±1°C for 4 h.

5.3.3.3 The jacket and insulation on the individual conductors of twisted conductor construction hoistway cables with an overall jacket shall show no cracks when a specimen of the finished cable is conditioned at minus 20°C ±1°C for 4 h and, while still at this temperature, is wound the required number of turns around a mandrel with a diameter as specified in Table 53.

> UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9 :... 80 Willis Electric Exhibit 2050 Page 68

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

5.3.4 Dielectric strength

The insulation on a specimen of finished parallel construction and on a specimen of insulated conductor of a twisted construction subjected to the heat-shock resistance test of Clause 5.3.2 shall withstand for 1 min, without breakdown, an alternating (rms) potential of 1500 V between the conductor and the tap water in which the specimen has been immersed, except for its ends, for a period of 1 h, when tested in accordance with the test, Dielectric voltage withstand, in CAN/CSA-C22.2 No. 2556, UL 2556, or NMX-J-293-ANCE.

6 Marking

6.1 General

In addition to the required markings for finished cords and cables covered in Clauses 6.2 and 6.3, additional marks necessary for specific national applications shall be permitted. See Annex C for marking translations.

6.2 Product marking

6.2.1 General

6.2.1.1 Unless otherwise specified, the marking shall consist of surface printing, indent marking, embossing, or a marker tape under the jacket. For types suffixed with a "-B" and with the marking provided on a marker tape, the marker tape shall be located directly under the overall braid. No ampacity or other current designation (except as noted in Clauses 6.2.4(f), 6.6.3, and 6.7.3) or the word "outdoor" shall appear on the flexible cord, electric vehicle cable, elevator cable, or hoistway cable.

6.2.1.2 In the absence of smooth areas on the surface of a jacketed cord, the markings shall be acceptable if durably and legibly printed at intervals no longer than 600 mm (24 in) on a marker tape in the cord.

6.2.2 Intervals

If the marking is not continuous, it shall appear at a maximum interval of 600 mm (24 in).

64

6.2.3 Required markings on all cords

See Clause 6.5.1 for hoistway cables, Clause 6.6.3 for additional markings for recreational vehicles, and Clause 6.7.3 for additional markings for mobile homes and recreational vehicles. All other flexible cords or cables covered by this standard shall have the following markings:

a) A durable distinctive marking throughout its entire length by which the organization responsible for the product is readily identified (examples of acceptable means are name, trademark, or an assigned combination of coloured marker threads);

- b) The type designation;
- c) The maximum temperature rating;

d) The number of conductors and sizes: in Canada and Mexico, the size marking shall be mm^2 (AWG) or AWG (mm²); in the United States, the size marking shall be AWG with optional mm^2 ; and

Note: "mm²" may be replaced by "mm2". The use of either a comma or a period signifies a decimal. For example:

- 1) 3 X 3.31 mm² (12 AWG) or 3 X 3,31 mm2 (12 AWG);
- 2) 3/C 3.31 mm² (12 AWG) or 3/C 3.31 mm2 (12 AWG);
- 3) 3 X 12 AWG or 3/C 12 AWG (US only); and
- 4) 3 X 12 AWG (3.31 mm²) or 3/C 12 AWG (3.31 mm2).
- e) voltage rating.

6.2.4 Additional surface markings on finished product

The following markings, where applicable, shall be surface-marked on the finished product:

a) The low temperature rating for all "W" type cords -50° C, -60° C, or -70° C in accordance with Clause 5.1.6 and electric vehicle cables when rated -40° C, -50° C, -60° C, or -70° C in accordance with Clauses 5.1.6 and 5.1.22;

b) The word "shielded" for cords that are provided with a shield;

c) The words "metal support member" for cords that are provided with a metal core in accordance with Clause 4.1.11.3;

d) The suffix "-B" shall be placed directly after the cord designation for those cords described in Clauses 4.2.8 and 4.3.8. If the cord type already contains the suffix "-R", the "-B" shall follow the "-R".

In Mexico this marking does not apply.

e) "Green conductor for Grounding Only" or "Green conductor with yellow stripes for Grounding Only" for all integral parallel types;

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

65

f) For low-leakage cords conforming to Clause 4.3.14, the wording "Max leakage/3m at __V: _ μ A to green and μ A thru jacket" or "Max. leakage/10 ft. at __V: __ μ A to green and μ A thru jacket", with applicable values from Table 24 inserted;

g) The suffix "-R" shall be placed directly after the cord designation for those cords which comply with the requirements in Clauses 5.1.14, and 5.1.16 - 5.1.18;

In Canada and Mexico, this marking does not apply.

h) "w/thrd" or the words "with thread" placed directly after conductor size on cords that contain conductors with fibrous (non-metallic) thread(s) in accordance with Clause 4.1.1.7.2.6.

In Mexico, this marking does not apply.

i) The suffix "-S" shall be placed directly after the cord designation for single conductor, decorative cords that contain a conductor with a fibrous (nonmeltallic) thread in accordance with Clause 4.1.1.7.2.7 and comply with the breaking strength requirements in Clause 5.1.24.

In Canada and Mexico, this marking does not apply;

j) The suffix "-X" shall be placed directly after the cord designation for single conductor, decorative cords that contain a conductor with a fibrous (nonmeltallic) thread in accordance with Clause 4.1.1.7.2.7 and comply with the breaking strength requirements in Clause 5.1.25.

In Canada and Mexico, this marking does not apply;

k) The suffix "-IS" shall be placed directly after the cord designation for single conductor, 0.325 mm² (22 AWG) CXTW that contain a fibrous (nonmetallic) thread(s) embedded in the insulation in accordance with Clause 4.3.16.1 and complying with the requirements in Clauses 4.3.16.2 – 4.3.16.6.

In Canada and Mexico, this marking does not apply.

6.2.5 Flame test marking

In Canada and the United States, the following applies. Products complying with the applicable flame test shall be marked with at least one of the following:

a) The legend "FT1", to indicate compliance with the flame test requirements of Clause 5.1.5.1;

b) The legend "FT4", to indicate compliance with the flame test requirements of Clause 5.1.5.2;

c) The legend "FT2", to indicate compliance with the flame test requirements of Clause 5.1.5.3; or

d) The legend "VW-1", to indicate compliance with the flame test requirements of Clause 5.1.5.4.

Note: Products marked with "FT4" need not be marked "FT1" or "FT2". Products marked with "VW-1" need not be marked "FT1" or "FT2". Products marked with "FT1" need not be marked "FT2".

In Mexico, the following applies. Flame test markings shall be optional. Use of the following flame markings shall be permitted: "FH" or "FT2"; "FV-2"; "EV-1" or "FT1"; and "FT4".

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

6.2.6 Oil-resistance marking

6.2.6.1 Oil-resistance jacket

Types EO, ETT, ETP, EV, EVJ, EVJT, EVE, EVT, EVJE, HPN, HPNW^{c,u}, and cords marked with the letter "O" included in the type designation (e.g., SJO, STOW, and SEO) shall have a jacket that complies with the specified oil test in Table 12.

The use of the letter "O" is not permitted in the type designation of types ETT, ETP, EV, EVJ, EVJT, EVE, EVT, EVJE, HPN, and HPNW^{c,u}.

6.2.6.2 Oil-resistant insulation and jacket

A cord having both an oil-resistant insulation and jacket complying with the specified oil test in Tables 9 and 12 shall have the letter suffix "OO" included in the type designation (e.g., SJOOW, STOO, and SEOO).

6.3 Optional markings

The following additional information may be printed on the finished product if desired by the manufacturer:

a) The wording "water resistant" or "water resistant 60°C" for "W" type cords and electric vehicle cables;

b) A part, specification, or catalog designation or other required information, provided that it is in no way confusing or misleading;

c) Compound identification expressed in a singular form when the insulation and jacket are of the same material (e.g., "CPE") or expressed in a dual form listing the insulation first and the jacket last when not using common materials; and

d) The marking "-40°C" for "W" type cords.

6.4 Package marking

Notes:

(1) See Annex C for information on translation of caution markings.

(2) For hoistway package marking, see Clause 6.5.2.

6.4.1 A tag on which the information specified in Items (a) to (e) is indicated plainly shall be attached to every shipping length of finished wire or cable. However, if the wire or cable is wound on a reel or coiled in a carton, the tag shall be glued, tied, stapled, or otherwise acceptably attached to the reel or carton instead of to the wire or cable, or the tag shall be eliminated and the information printed or stenciled directly onto the reel or carton. The required information is as follows:

a) Manufacturer's name, assigned file number, registered trade name, or trademark;

b) Date of manufacture by month and year (a code is acceptable);

c) Type designation: "clock" in the case of clock cord^u; "shaver cord" in the case of shaver cord^u;

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL
d) Voltage rating; and

e) The number of conductors and size(s): the marking shall be in accordance with clause 6.2.3(d).

6.4.2 Products complying with Note (2) of Table 13 shall be tagged, marked, or otherwise labelled "Small or large diameter cord in process" and "Not for general use".

6.4.3 A cable that contains one or more optical fibres shall be tagged, marked, or otherwise labelled with the following statement or another statement to the same effect:

"Optical-fibre portion(s) of cable are for installation (optical and electrical functions associated) as described in applicable parts of the *Canadian Electrical Code, Part I*, the *National Electrical Code* (NEC), and *La Norma de Instalaciones Electricas* (NOM 001-SEDE), with levels of energy transmitted not exceeding those of Class I laser radiation (21 CFR Part 1040)."

For a cable that contains one or more optical-fibre members with any individual optical fibre member or group of such members with a metal or other electrically conductive part, the following wording or other wording to the same effect shall be provided:

"Optical-fibre portion(s) of cable contain non-current-carrying metal or other electrically conductive parts".

6.4.4 In Canada and the United States, the following applies. The tag, reel, or carton shall show the following information:

a) "For use in general use extension cord sets only" for Types SPE-2 and SPT-2 cords having conductors composed of 0.166 mm to 0.260 mm (0.0066 in to 0.010 in) wires;

b) "Not for sale to the general public:"

TXc

PXT^c

shaver cord^u

clock cord^u

TPT

TST

single conductor component of CXWT^c

cords with "-B" suffix

NISPT-1, NISP-1, NISPE-1, SPT-1, SP-1, SPE-1, and SPT-2 having 0.519 mm² (20 AWG) conductors.

HPNW^{c,u}; and

c) Single conductor component CXWT^c to be used only for the manufacture of two conductor CXWT^c.

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

In Mexico, these requirements do not apply.

6.5 Hoistway cables

6.5.1 Product marking

The manufacturer's name, "Hoistway Cable", voltage rating, flame rating, and temperature rating shall be durably and legibly printed in ink on the surface of at least one of the conductors of a parallel construction or a twisted construction without a jacket (in a multi-layer cable, the marking shall appear on one of the wires in the outer layer), or on the surface of the jacket of twisted constructions with a jacket. Each conductor shall have its size durably and legibly printed in ink, except in the case of the parallel construction, where marking one conductor with the number and size of conductors indicated in Clause 6.2.3(d), shall be permitted. The number and size of the conductors shall also be marked on the surface of jacketed cables. The distance between the required markings shall not exceed 600 mm (24 in).

6.5.2 Marking on coils, spools, and reels

A tag on which the information specified in Items (a) - (f) is indicated plainly shall be attached to every shipping length of finished wire or cable. However, if the wire or cable is wound on a reel or coiled in a carton, the tag shall be glued, tied, stapled, or otherwise acceptably attached to the reel or carton instead of to the wire or cable, or the tag shall be eliminated and the information printed or stenciled directly onto the reel or carton. The required information is as follows:

- a) Manufacturer's name;
- b) Date of manufacture by month and year;
- c) Type designation "Hoistway Cable";
- d) Voltage rating;
- e) Conductor size(s) and number of conductors;
- f) Temperature rating;

g) For a cable that contains one or more optical fibres, the following statement or another statement to the same effect: "Optical-fibre portion(s) of cable are for installation (optical and electrical functions associated) as described in applicable parts of the *Canadian Electrical Code*, *Part I, National Electrical Code* (NEC), and the *La Norma de Instalaciones Electricas* (NOM-001-SEDE), with levels of energy transmitted not exceeding those of Class I laser radiation (21 CFR Part 1040)"; and

h) For a cable that contains one or more optical-fibre members with any individual optical-fibre member or group of such members with a metal or other electrically conductive part, the following wording or other wording to the same effect: "Optical-fibre portion(s) of cable contain non-current-carrying metal or other electrically conductive parts".

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

6.6 Recreational vehicle cord

6.6.1 General

In Mexico and the United States, Clauses 6.6.2 and 6.6.3 apply. In Canada, the requirements of the CAN/CSA-Z240RV Series apply.

6.6.2 Construction

A flexible cord to be employed in a cord set or power-supply cord that is intended for use in recreational vehicles shall be a Type SOOW, SOW, STOOW, STOW, STW, SEOOW, SEOW, or SEW cord. Such a cord shall have two insulated 2.08 mm² (14 AWG), 3.31 mm² (12 AWG), or 5.26 mm² (10 AWG) circuit conductors and one insulated grounding conductor of the same size as the circuit conductors. For use in the marking specified for the cord surface in Clause 6.6.3, a current rating of 15 A shall apply to cord with 2.08 mm² (14 AWG) circuit conductors; a current rating of 20 A shall apply to cord with 3.31 mm² (12 AWG) circuit conductors; and a current rating of 30 A shall apply to cord with 5.26 mm² (10 AWG) circuit conductors.

6.6.3 Product marking

Type SEW, SOW, SEOW, SEOW, SOOW, STW, STOOW, or STOW cord that complies with the requirements for recreational-vehicle use in Clause 6.6.2 shall be durably surface marked in accordance with Clause 6.2 and with the following wording using the applicable current rating from Clause 6.6.2: "For recreational-vehicle use: _____amperes".

6.7 Mobile home and recreational vehicle cord

6.7.1 General

In Mexico and the United States, Clauses 6.7.2 and 6.7.3 apply. In Canada, the requirements of the CAN/CSA-Z240RV Series apply.

6.7.2 Construction

A flexible cord to be employed in a power-supply cord intended for use in mobile homes and recreational vehicles shall be a Type SOOW, SOW, STOOW, STOW, STW, SEOOW, SEOW, or SEW cord. Such a cord shall either have three insulated 8.37 mm² (8 AWG) circuit conductors and one insulated grounding conductor of the same size as the circuit conductors or have three insulated 13.3 mm² (6 AWG) circuit conductors and one insulated 13.3 or 8.37 mm² (6 or 8 AWG) grounding conductor. For use in the marking specified for the cord surface in Clause 6.7.3, a current rating of 40 A shall apply to this cord with 8.37 mm² (8 AWG) circuit conductors, and a current rating of 50 A shall apply to this cord with 13.3 mm² (6 AWG) circuit conductors.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9 : 30 80 80 Willis Electric Exhibit 2050 Page 75

6.7.3 Product marking

A Type SEW, SOW, SEOW, SEOW, SOOW, STW, STOOW, or STOW cord that complies with the requirements in Clause 6.7.2 shall be durably surface marked in accordance with Clause 6.2 and with one of the following wordings, using the applicable current rating from Clause 6.7.2: "For mobile-home use:_____ amperes" or "For mobile-home or recreational-vehicle use: _____ amperes".

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PN

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 1 Cross-sectional area of stranded conductors and diameter of solid conductors

(See Clause 4.1.1.3.1.)

Conductor size		Maximum diameter of solid conductors		Nominal circular mil area	Maximum cross-sectional area of stranded conductors	
mm ²	(AWG/kcmil)	mm	(in)	(circular mils)	mm ²	(circular mils)
0.162	(25)	0.46	(0.018)	(320)	0.168	(326)
0.205	(24)	0.52	(0.020)	(404)	0.209	(412)
0.259	(23)	0.58	(0.023)	(511)	0.264	(521)
0.325	(22)	0.65	(0.026)	(640)	0.330	(653)
0.519	(20)	0.82	(0.033)	(1 020)	0.525	(1 040)
0.824	(18)	1.03	(0.040)	(1 620)	0.836	(1 652)
1.04	(17)	1.16	(0.046)	(2 050)	1.06	(2 091)
1.31	(16)	1.30	(0.051)	(2 580)	1.34	(2 632)
1.65	(15)	1.47	(0.058)	(3 260)	1.68	(3 325)
2.08	(14)	1.64	(0.065)	(4 110)	2.12	(4 192)
2.63	(13)	1.85	(0.073)	(5 180)	2.68	(5 283)
3.31	(12)	2.07	(0.082)	(6 530)	3.37	(6 661)
4.17	(11)	-	_	(8 230)	4.25	(8 395)
5.26	(10)	_	_	(10 380)	5.36	(10 588)
6.63	(9)	-	-	(13 090)	6.76	(13 352)
8.37	(8)	-	-	(16 510)	8.53	(16 840)
10.6	(7)	-	_	(20 820)	10.75	(21 236)
13.3	(6)	-	-	(26 240)	13.57	(26 765)
16.8	(5)	-	-	(33 090)	17.09	(33 752)
21.2	(4)	-	-	(41 740)	21.55	(42 575)
26.7	(3)	-	-	(52 620)	27.18	(53 672)
33.6	(2)	-	-	(66 360)	34.27	(67 687)
42.4	(1)	-	-	(83 690)	43.27	(85 398)
53.3	(1/0)	-	-	(105 600)	54.59	(107 755)
67.4	(2/0)	-	-	(133 100)	68.78	(135 816)
85.0	(3/0)	-	-	(167 800)	86.73	(171 224)
107.2	(4/0)	-	-	(211 600)	109.39	(215 918)
127	(250)	_	_	(250)	129.59	(255 102)
152	(300)	_	_	(300)	155.10	(306 122)
177	(350)	_	_	(350)	180.61	(357 143)
203	(400)	_	_	(400)	207.14	(408 163)
228	(450)	_	_	(450)	232.65	(459 184)
253	(500)	_	_	(500)	258.16	(510 204)

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 77

72

Table 2 Stranding

(See Clauses 4.1.1.7.1 and 4.4.1.2.)

		Diameter of individual wires				
Cord or cable type	Conductor size**	Mini	Minimum		Maximum	
		mm	(in)	mm	(in)	
SPT-0 ^m	0.325 mm² (22 AWG)	0.125	(0.0049)	0.260	(0.010)	
CXTW ^u , CXWT ^c , XTW ^u	0.325 mm ² (22 AWG)	0.079	(0.0031)	0.165	(0.0065)	
YXTW ^u	0.519 mm ² (20 AWG) and 0.824 mm ² (18 AWG)	0.125	(0.0049)	0.260	(0.010)	
SP-1*, SP-2, SPT-1*, SPT-2,	All sizes	0.125*	(0.0049)*	0.165†	(0.0065)†	
SPT-1W ^{c,u} , SPT-2W ^{c,u} , SVT, SVTO, SVTOO, SV, SVO, SVOO, HPN, HPNW ^{c,u} , HSJ, HSJW ^{c,u} , HSJO, HSJOW, HSJOO, HSJOOW, HPD ^{m,u} , SPE-1*, SPE-2, SVE, SVEO, SVEOO ^u , NISP-1, NISP-2, NISPT-1, NISPT-2, NISPE-1, NISPE-2, DPTW ^{c,u} , DPT ^{c,u} , clock ^u				0.260**	(0.010**)	
SJ, SJT, SJTO, SJTOO, SJO, SJOO, SJOW, SJOOW, S, SO, SOO, SOW, SOOW, SJTW, SJTOW, SJTOOW, ST,	2.63 mm ² (13 AWG) and smaller	0.125	(0.0049)	0.260	(0.010)	
STO, STOO, STW, STOW, STOOW, SP-3, SPT-3, PXWT°, CXWT°, SJE, SJEW, SJEO, SJEOW, SJEOO, SJEOOW, SE, SEW, SEO, SEOW, SEOO, SEOOW, SPE-3, EVJ, EVJE, EVJT, EV, EVE, EVT	3.31 – 33.6 mm ² (12 – 2 AWG)	0.125	(0.0049)	0.410 [‡]	(0.016)‡	
E, EO, ETT, ETP	All sizes	0.125	(0.0049)	0.260	(0.010)	
CXTW ^u , XTW ^u	0.519 mm ² (0.824 mm ² (20 – 18 AWG)	0.125	(0.0049)	0.260	(0.010)	
PXT ^c , TX ^c	0.325 mm ² (22 AWG) and 0.519 mm ² (20 AWG)	0.125	(0.0049)	0.260	(0.010)	
EV, EVE, EVT	42.4 – 67.4 mm² (1 – 2/0 AWG)	Minimun	Minimum 133 strands, stranded size not specified			
	85.0 mm ² – 253 mm ² (3/0 AWG – 500 kcmil)	Minimum 259 strands, stranded size not specified			size not	
All other types (except hoistway cable ^{&})	4.17 mm ² (11 AWG) and smaller	0.125	(0.0049)	0.410	(0.016)	
	5.26 mm ² (10 AWG) and larger [§]	0.125	(0.0049)	0.821	(0.032)	

* For SPT-1, SP-1, and SPE-1^u types, a composition of wires having sizes not smaller than that of 0.079 mm (0.0031 in) for 0.519 mm² (20 AWG) conductors shall be permitted.

** Stranded sizes only permitted in Mexico.

† In Canada and the United States, the following applies. For 2 X 1.31 mm² (16 AWG), 3 X 1.31 mm² (16 AWG), 2 X 0.824 mm² (18 AWG), and 3 X 0.824 mm² (18 AWG) Type SPT-2 and SPE-2^u flexible cords, a diameter of the individual wires in the conductors of 0.166 mm to 0.260 mm (0.0066 in to 0.010 in) shall be permitted when such cords are for use in extension cord sets other than those with cord take-up reels. In Mexico, this is not applicable.

\$ Sizes 0.259 mm² and 0.162 mm² (23 AWG and 25 AWG) strands, respectively, shall be permitted for 33.6 mm² and 21.2 mm² (2 AWG and 4 AWG) size extra-hard-usage cords.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIO Table 2 Continued on Next Page ION FROM UL

Table 2 (Continued)

		Dia	meter of in	dividual wi	res	
Cord or cable type	Conductor size**	Minimum		Maximum		
		mm	(in)	mm	(in)	
§ All conductors of Type DRT ^c cable in sizes 5.26 mm ² (10 AWG) and larger shall be composed of not fewer than 49 strands,						

 5.26 mm^2 (12) G) grounding conductors; for these sizes the grounding conductors may employ a minimum of 7 strands.

[&]See 4.7.3 for hoistway cable conductors.

Table 3 Lay of conductor strands

	Maximum length of lay							
Conductor size,	Bunch-stranded (lay of	Rope-stranded (lay of	Bunch- or rope-strand for HPN and					
0	wires),	rope),	HPNW ^{c,d} (lay of wires),					
mm ² (AWG)	mm (in)	mm (in)	mm (in)					
0.162 (25)	32 (1.25)*	-	-					
0.205 (24)	32 (1.25)*	-	-					
0.259 (23)	32 (1.25)*	-	-					
0.325 (22)	32 (1.25)*	-	-					
0.519 (20)	32 (1.25)	44 (1.75)	-					
0.824 (18)	32 (1.25)	44 (1.75)	25 (1.00)					
1.04 (17)	32 (1.25)	44 (1.75)	25 (1.00)					
1.31 (16)	38 (1.50)	57 (2.25)	32 (1.25)					
1.65 (15)	38 (1.50)	57 (2.25)	32 (1.25)					
2.08 (14)	44 (1.75)	64 (2.50)	41 (1.60)					
2.63 (13)	44 (1.75)	64 (250)	41 (1.06)					
3.31 (12)	51 (2.00)	76 (3.00)	51 (2.00)					
4.17 (11)	51 (2.00)	76 (3.00)	-					
5.26 (10)	64 (2.50)	76 (3.00)	-					
6.63 (9)	64 (2.50)	76 (3.00)	-					
8.37 (8)	70 (2.75)	76 (3.00)	-					
10.6 (7)	_	89 (3.50)	-					
13.3 (6)	_	89 (3.50)	-					
16.8 (5)	_	114 (450)	-					
21.2 (4)	_	114 (4.50)	-					
26.7 (3)	_	140 (5.50)	-					
33.6 (2)	_	140 (5.50)	-					
42.4 (1) or larger	-	16 times finished stranded	-					
		conductor diameter						
* For Types CXTW ^u and J	* For Types CXTW ^u and XTW ^u , and signal conductors in electric vehicle cables. See Clause 4.1.1.7.2.2.							

(See Clauses 4.1.1.7.2.1, 4.1.1.7.2.2, 4.1.1.7.2.4, and 4.4.1.2.)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 79

			Table 4			
Maximum di	rect current	resistance o	f stranded	and solid	conductors	at 20°C, Ω/km

Conductor size		Bare	copper	Coated copper		
mm ²	(AWG/kcmil)	Solid	Stranded*	Solid	Stranded*	
0.162	(25)	108	112.7	112.8	118.7	
0.205	(24)	85.9	89.2	89.3	94.0	
0.259	(23)	68.0	70.6	70.7	74.4	
0.325	(22)	54.0	56.8	56.2	59.7	
0.519	(20)	34.0	35.7	35.3	37.6	
0.824	(18)	21.4	22.4	22.2	23.6	
1.04	(17)	16.9	17.8	17.6	18.7	
1.31	(16)	13.4	14.1	14.0	14.9	
1.65	(15)	10.6	11.2	11.1	11.5	
2.08	(14)	8.45	8.88	8.79	9.34	
2.63	(13)	6.69	7.02	6.95	7.39	
3.31	(12)	5.31	5.58	5.53	5.88	
4.17	(11)	-	4.43	-	4.79	
5.26	(10)	-	3.51	-	3.70	
6.63	(9)	-	2.78	-	3.03	
8.37	(8)	-	2.23	-	2.35	
10.6	(7)	-	1.77	-	1.86	
13.3	(6)	-	1.40	-	1.48	
16.8	(5)	-	1.11	-	1.17	
21.2	(4)	-	0.882	-	0.928	
26.7	(3)	-	0.700	-	0.736	
33.6	(2)	-	0.555	-	0.584	
42.4	(1)	-	0.440	-	0.463	
53.5	(1/0)	-	0.351	-	0.368	
67.4	(2/0)	-	0.279	-	0.293	
85.0	(3/0)	-	0.220	-	0.231	
107.2	(4/0)	-	0.174	-	0.183	
127	(250)	-	0.148	-	0.156	
152	(300)	-	0.125	-	0.131	
177	(350)	-	0.105	-	0.111	
203	(400)	-	0.092	-	0.097	
228	(450)	-	0.082	-	0.086	
253	(500)	-	0.075	-	0.079	

(See Clause 4.1.1.3.1.)

* Applicable for all types of stranding.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR **DISTRIBUTION WITHOUT PERMISSION FROM UL**

		Table 5			
Maximum direct	current resistance	of stranded a	nd solid con	ductors at 25°C, Ω/k	m

(See Clause 4.1.1.3.1.)

Conductor size		Bare o	copper	Coated copper								
mm ²	(AWG/kcmil)	Solid	Stranded*	Solid	Stranded*							
0.162	(25)	109.7	114.5	114.6	120.6							
0.205	(24)	87.3	91.8	91.1	97.0							
0.259	(23)	69.1	71.7	71.8	75.9							
0.325	(22)	55.1	57.9	57.3	60.9							
0.519	(20)	34.7	36.4	36.0	38.4							
0.824	(18)	21.8	22.8	22.6	24.1							
1.04	(17)	17.2	18.2	18.0	19.1							
1.31	(16)	13.7	14.4	14.3	15.2							
1.65	(15)	10.8	11.4	11.3	11.8							
2.08	(14)	8.62	9.06	8.97	9.53							
2.63	(13)	7.17	7.38	7.31	7.77							
3.31	(12)	5.42	5.69	5.64	6.00							
4.17	(11)	-	4.64	-	4.89							
5.26	(10)	-	3.58	-	3.77							
6.63	(9)	_	2.93	_	3.09							
8.37	(8)	-	2.27	-	2.40							
10.6	(7)	-	1.80	-	1.90							
13.3	(6)	_	1.43	_	1.51							
16.8	(5)	-	1.13	-	1.19							
21.2	(4)	-	0.900	-	0.947							
26.7	(3)	-	0.714	-	0.746							
33.6	(2)	-	0.566	-	0.596							
42.4	(1)	-	0.449	-	0.473							
53.5	(1/0)	-	0.358	-	0.376							
67.4	(2/0)	-	0.285	-	0.300							
85.0	(3/0)	-	0.224	-	0.236							
107.2	(4/0)	-	0.178	-	0.187							
127	(250)	-	0.151	-	0.159							
152	(300)	-	0.128	-	0.134							
177	(350)	-	0.107	-	0.113							
203	(400)	-	0.094	-	0.099							
228	(450)	-	0.083	-	0.088							
253	(500)	-	0.077	-	0.080							
* * * * * * * *	<i>c</i> , <i>v</i>											

* Applicable for all types of stranding.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 6
Maximum direct current resistance of stranded and solid conductors at 20°C, Ω /1000 ft
(See Clause 4.1.1.3.1.)

Conduc	tor size	Bare o	opper	Coated copper		
mm ²	(AWG/kcmil)	Solid	Stranded*	Solid	Stranded*	
0.162	(25)	32.9	34.3	34.4	36.2	
0.205	(24)	26.2	27.4	27.1	28.9	
0.259	(23)	20.7	21.5	21.6	22.6	
0.325	(22)	16.5	17.3	17.1	18.2	
0.519	(20)	10.4	10.9	10.8	11.5	
0.824	(18)	6.52	6.83	6.77	7.20	
1.04	(17)	5.15	5.43	5.37	5.70	
1.31	(16)	4.09	4.30	4.27	4.54	
1.65	(15)	3.25	3.41	3.41	3.55	
2.08	(14)	2.58	2.71	2.68	2.85	
2.63	(13)	2.10	2.21	2.19	2.32	
3.31	(12)	1.62	1.70	1.69	1.79	
4.17	(11)	_	1.39	-	1.46	
5.26	(10)	-	1.07	-	1.13	
6.63	(9)	_	0.880	-	0.923	
8.37	(8)	-	0.690	-	0.716	
10.6	(7)	-	0.547	-	0.568	
13.3	(6)	-	0.427	-	0.451	
16.8	(5)	-	0.339	-	0.358	
21.2	(4)	-	0.269	-	0.283	
26.7	(3)	-	0.213	-	0.224	
33.6	(2)	-	0.169	-	0.178	
42.4	(1)	-	0.134	-	0.141	
53.5	(1/0)	-	0.107	-	0.113	
67.4	(2/0)	-	0.085	-	0.090	
85.0	(3/0)	-	0.067	-	0.071	
107.2	(4/0)	-	0.053	-	0.056	
127	(250)	-	0.045	-	0.048	
152	(300)	-	0.038	-	0.040	
177	(350)	-	0.033	-	0.035	
203	(400)	-	0.029	-	0.031	
228	(450)	-	0.026	-	0.027	
253	(500)	_	0.023	_	0.025	

* Applicable for all types of stranding.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR **DISTRIBUTION WITHOUT PERMISSION FROM UL**

Table 7
Maximum direct current resistance of stranded and solid conductors at 25°C, Ω /1000 ft

(See Clause 4.1.1.3.1.)

Conductor size		Bare c	opper	Coated copper			
mm ²	(AWG/kcmil)	Solid	Stranded*	Solid	Stranded*		
0.162	(25)	33.5	34.8	34.9	37.5		
0.205	(24)	26.7	28.1	27.8	29.3		
0.259	(23)	21.1	21.9	22.0	23.0		
0.325	(22)	16.8	17.7	17.5	18.6		
0.519	(20)	10.6	11.1	11.0	11.7		
0.824	(18)	6.65	6.95	6.89	7.35		
1.04	(17)	5.24	5.55	5.49	5.82		
1.31	(16)	4.18	4.39	4.36	4.63		
1.65	(15)	3.30	3.47	3.45	3.62		
2.08	(14)	2.63	2.76	2.73	2.91		
2.63	(13)	2.14	2.25	2.23	2.37		
3.31	(12)	1.65	1.73	1.72	1.83		
4.17	(11)	-	1.41	-	1.49		
5.26	(10)	-	1.09	-	1.15		
6.63	(9)	-	0.865	-	0.941		
8.37	(8)	-	0.692	-	0.732		
10.6	(7)	-	0.548	-	0.580		
13.3	(6)	-	0.436	-	0.460		
16.8	(5)	-	0.345	-	0.364		
21.2	(4)	-	0.274	-	0.289		
26.7	(3)	-	0.217	-	0.229		
33.6	(2)	-	0.173	-	0.182		
42.4	(1)	-	0.137	-	0.144		
53.5	(1/0)	-	0.109	-	0.115		
67.4	(2/0)	-	0.087	-	0.092		
85.0	(3/0)	-	0.069	-	0.073		
107.2	(4/0)	-	0.055	-	0.058		
127	(250)	-	0.046	-	0.049		
152	(300)	-	0.039	-	0.041		
177	(350)	-	0.033	-	0.035		
203	(400)	-	0.029	-	0.031		
228	(450)	-	0.026	-	0.027		
253	(500)	_	0.023	-	0.025		

Applicable for all types of stranding.

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 83

Table 8 Insulations

(See Clause 4.1.2.)

Class no.	Material type Material description Temperature rating, ma		ximum, °C		
			Dry	Wet	Oil
1	Thermoset	NR or IR, SBR, EP or a blend thereof	60	60	60
2	Thermoset	NR or IR, SBR, EP or a blend thereof	75	60	60
3	Thermoset	NR or IR, SBR, IIR, EP, or a blend thereof	90	60	60
4	Thermoplastic	PVC	60	60	60
5	Thermoplastic	PVC	75	60	60
6	Thermoplastic	PVC	90	60	60
7	Thermoplastic	PVC	105	60	60
8	Thermoplastic	PE	60	-	-
9	Thermoplastic	PE	75	-	-
10	Thermoset	XL	90	-	-
11	Thermoset	XL	105	-	-
12	Thermoset	CR, CSM, CPE, NBR/PVC	90	60	60
13	Thermoset	CR, CSM, CPE, NBR/PVC	60	60	60
14	Thermoplastic	TPE	60	60	60
15	Thermoplastic	TPE	90	60	60
16	Thermoplastic	TPE	105	60	60
17	Thermoplastic	PVC	90	-	-
18	Thermoset	CPE, CSM	105	60	60
19	Thermoset	EP	105	60	60
20	Thermoplastic	FEP	105	-	_
Legend:		and the second			
NR OF IR	= natural rubber or polyiso	brene rubber			
SBR	= styrene-butadiene rubbei	r			
EP	= ethylene propylene rubbe	er			
IIR	= isobutylene-isoprene rub	ber			
CPE	= chlorinated polyethylene				
CR	= polychloroprene				
CSM	= chloro-sulphonyl-polyethy	lene			
TPE	= thermoplastic elastomer				
PVC	= polyvinyl chloride or cope	olymer of vinyl chloride and vinyl acetate			
PE	= polyethylene				
XL	= cross-linked polyethylene)			
FEP	= fluorinated ethylene prop	ylene			
NBR	= acrylonitrile butadiene ru	bber			

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

		T	able 9		
Physical	properties	-	insulation	(before	aging)

	Temperate	ure rating, r	maximum,		Before	aging
Class no.		°C			Minimum elongation	Tensile strength, MPa
	Dry	Wet	Oil	Material type	percent	(lbf/in²)
1	60	60	60	Thermoset	200	3.4 (500)
2	75	60	60	Thermoset	200	3.4 (500)
3	90	60	60	Thermoset	200	3.4 (500)
4	60	60	60	Thermoplastic	100	10.3 (1500)
5	75	60	60	Thermoplastic	100	10.3 (1500)
6	90	60	60	Thermoplastic	100	10.3 (1500)
7	105	60	60	Thermoplastic	100	10.3 (1500)
8	60	-	-	Thermoplastic	350	9.65 (1400)
9	75	-	-	Thermoplastic	350	9.65 (1400)
10	90	-	-	Thermoset	150	10.3 (1500)
11	105	-	-	Thermoset	150	10.3 (1500)
12	90	60	60	Thermoset	200	8.3 (1200)
13	60	60	60	Thermoset	200	8.3 (1200)
14	60	60	60	Thermoplastic	200	5.5 (800)
15	90	60	60	Thermoplastic	200	5.5 (800)
16	105	60	60	Thermoplastic	200	5.5 (800)
17	90	-	-	Thermoplastic	100	10.3 (1500)
18	105	60	60	Thermoset	200	8.3 (1200)
19	105	60	60	Thermoset	200	3.4 (500)
20	105	-	-	Thermoplastic	200	17.4 (2500)
(Continued)						

Table 9 Physical properties - insulation (after aging)

					Table 9				
			Physica	I properties (See Clauses &	– insulatic 5.1.1, 5.2.8, ar	on (before ag	ging)		
	Temperati	ure rating	g, maximun	۱,			Before a	iging	
lass no.	Draw	°C	0:1		turne	Minimum elon	gation	Tensile stren (lbf/i	gth, MPa n ²)
1	60	60	60	Thermo	oset	200		3.4 (50)0)
2	75	60	60	Thermo	oset	200		3.4 (50)0)
3	90	60	60	Thermo	oset	200		3.4 (50)))
4	60	60	60	Thermop	olastic	100		10.3 (15	500)
5	75	60	60	Thermop	olastic	100		10.3 (15	500)
6	90	60	60	Thermop	olastic	100		10.3 (15	500)
7	105	60	60	Thermop	olastic	100		10.3 (15	500)
8	60	_	-	Thermop	olastic	350		9.65 (14	100)
9	75	-	-	Thermop	olastic	350		9.65 (14	100)
10	90	-	-	Thermo	oset	150		10.3 (15	500)
11	105	-	-	Thermo	oset	150		10.3 (15	500)
12	90	60	60	Thermo	oset	200		8.3 (12	00)
13	60	60	60	Thermo	oset	200		8.3 (12	00)
14	60	60	60	Thermop	plastic	200		5.5 (80)()
15	90	60	60	Thermop	Diastic	200		5.5 (80)()(
17	00	60	60	Thermon	lastic	200			500)
18	90 105	- 60	- 60	Thermo	naslic	200		83 (12	00)
19	105	60	60	Thermo	nset	200		3.4 (50	00))())
20	105	_	_	Thermon	plastic	200		17.4 (25	500)
			-		(Continued)				/
					Table 9				
			Physic	al properties	s – insulati	on (after ag	ing)		
					After	aging	0.11.1		
			Air ov	en test	recentaria of	IDM 0			recentaria
lass no.				unageo	d value		02 011	unageo	d value
	Oven te	emp.,	Time,	Elongation,	Tensile strength,	Oil temp.,	Time,	Elongation,	Tensile strength
	°C ±2		d	percent	percent	°C ±2	h	percent	percent
1	70		7	65	60	N/A	-	-	-
2	100		10	50	50	N/A	-	-	-
3	110		10	50	50	N/A	-	-	-
4	100		7	65	85	N/A	-	-	-
5	100		10	65	85	N/A	_	-	-
6	12	1	7	65	85	N/A	-	-	-
7	136	6	7	65	85	N/A	-	-	-
8	70		2	75	N/A	N/A	-	-	-
9	100		2	75	N/A	N/A	_	-	-
4.0	12		7	45	70	N/A	_	-	-
10	136		7	45	70	N/A	-	-	-
10 11		· ا	10	50	50	121	18†	60T	60†
10 11 12	110								
10 11 12	110		UL C	OPYRIG	HTED N	IATERIA	L –		
10 11 12	NOT	AUTH	UL C IORIZE	OPYRIG D FOR F	HTED N URTHE	ATERIA	L – ODUCTI	ION OR	
10 11 12	NOT	AUTH ISTR	UL C IORIZE IBUTIC	OPYRIG	HTED N FURTHE	IATERIA R REPR RMISSIO	L – ODUCTI N FROI	ION OR M UL	
10 11 12 Willis E		AUTH ISTR	UL C IORIZE IBUTIC	OPYRIG D FOR I Table 9 Cor	HTED N FURTHE Rinded Bran	ATERIA R REPR Rext/Page/O	L — ODUCTI N FROI Wil	ION OR M UL llis Electric Ex	khibit 205

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

Everstar v. Willis Electric PGR2019-00056

				After	aging					
		Air oven	test				Oil imme	rsion tes	st*	
Class no.		г Г	Ainimum per	centage of		IRM 902	Oil	Minin	num per	rcentage of
	Oven temp.,	Time, E	longation,	Tensile strength,	Oil ten	mp.,	Time,	Elonga	ation,	Tensile strength,
	°C ±2	d	percent	percent	°C ±	<u>-</u> 2	h	perc	ent	percent
13	70	7	65	75	121	1	18†	60	†	60†
14	100	7	75	75	N/A	^	-	-		-
15	121	7	75 75	/5 75	N/A	~	-	-		-
10	136	14	75 65	75 95		<u>`</u>	-	-		-
17	121	7	50	60 50	121	1	- 18+	60	+	- 60+
19	136	7	50	50	ΠΖΙ N/Δ	.	_		.	_
20	232	7	75	75	N/A		_	_		_
ote: Interch	anging insulation Lay o	materials within	the table sha - Service	Il be permitted	d (see Cla d electr	lause 4.1 ric veh	.2.1). iicle cable	es		
ote: Interch	Lay o	materials within f conductors (See C Size of circuit	the table sha - Service Clauses 4.1.4	II be permitted Fable 10 c cords and .1.1, 4.4.4.2, a M	d (see Cla d electr and 4.5.4. aximum	ric veh 2.1.)	.2.1). icle cable wist, mm (ir	es)		
ote: Interch	Lay o	f conductors (See C Size of circuit conductor,	the table sha - Service Clauses 4.1.4	Il be permitted Fable 10 e cords and .1.1, 4.4.4.2, a M Three	d (see Cla d electr and 4.5.4. aximum e-	ric veh 2.1.) lay of tr Four-	.2.1). icle cable wist, mm (ir	es 1) ive-	Si	ix-
ote: Interch	Lay o	materials within f conductors (See C Size of circuit conductor, mm ² (AWG)**	the table sha - Service Clauses 4.1.4 Two- conductor	Il be permitted Table 10 e cords and .1.1, 4.4.4.2, a M pr* Conduct	d (see Cla d electr and 4.5.4. aximum e- ctor*	ric veh 2.1.) lay of to Four- conduc	.2.1). iicle cable wist, mm (ir tor cond	es)) ive- ductor	Si cond	ix- uctor
ote: Interch	Type	f conductors (See C Size of circuit conductor, mm ² (AWG)**	the table sha - Service Clauses 4.1.4 Two- conducte 35 (1.38	Ill be permitted Fable 10 e cords and .1.1, 4.4.4.2, a M Dr* Conduct 3) 44 (1.	d (see Cla d electr and 4.5.4. aximum e- ctor*	lause 4.1 ric veh .2.1.) lay of tr Four- conduc	.2.1). iicle cable wist, mm (ir tor cond	es n) ive- ductor -	Si cond	ix- uctor
SV, SVO, S SV, SVO, S SVTO, SVT SVEO, SVE	Type VOO, SVT, OO, SVE, SOO	f conductors (See C Size of circuit conductor, mm ² (AWG)** 0.824 (18) 1.04 (17)	the table sha - Service Clauses 4.1.4 Two- conducte 35 (1.38 38 (1.50 0.00 (1.57)	Ill be permitted Table 10 cords and .1.1, 4.4.4.2, a M Dr* Conduct 3) 44 (1. 51 (2.	d (see Classified Classi	lause 4.1 ric veh .2.1.) lay of tr Four- conduc	.2.1). iicle cable wist, mm (ir tor cond	es i) ive- ductor - -	Si cond	ix- uctor -
SV, SVO, S SVTO, SVT SVEO, SVE	Type VOO, SVT, OO, SVE, OO	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27)	the table sha - Service Clauses 4.1.4 Two- conductor 35 (1.36 38 (1.50 38 (1.50 38 (1.50) 38 (1.50)	M permittee Table 10 cords and cords and .1.1, 4.4.4.2, a .1.1, 4.4.4.2, a M Thre conduct .1.1, 4.4.4.2, a .1.1, 5.1, 5.1, 5.1, 5.1, 5.1, 5.1, 5.1,	d (see Classified Classi	lause 4.1 ric veh .2.1.) lay of tr Four- conduc	.2.1). iicle cable wist, mm (ir tor cond	es i) ive- ductor - -	Si cond	ix- uctor - -
SV, SVO, S SV, SVO, S SVTO, SVT SVEO, SVE SVEO, SVE	Type VOO, SVT, OO, SVE, OO, S IOW	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18)	the table sha - Service Clauses 4.1.4 Two- conducto 35 (1.38 38 (1.50 38 (1.50 35 (1.38 (1.50 35 (1.38) (1.50) 35 (1.38) (1.50)	Ill be permitted Table 10 cords and 1.1, 4.4.4.2, a M Thre conduct 3) 44 (1. 0) 51 (2. 3) 3) 3) 3) 57 (2.	d (see Classified Classi	lause 4.1 ric veh .2.1.) lay of tu Four- conduc - - - - - - - - - - - - - - - - - - -	.2.1). iicle cable wist, mm (ir tor cond	255 1) 1/ve- 1/uctor - - - - - - - - - - - - -	Si cond 	ix- uctor - - - 3 50)
ote: Interch	Type VOO, SVT, OO, SVE, OO, SVE, OO, SJOW, SO, SOO,	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17)	the table sha - Service Clauses 4.1.4 Two- conducte 35 (1.38 38 (1.50 38 (1.50 35 (1.38 51 (2.00 51 (2.00	Ill be permitted Table 10 cords and .1.1, 4.4.4.2, a M Thre conduct 3) 44 (1. 3) 51 (2. 3) 3) 57 (2. 3) 57 (2.	d (see Classified Classi	lause 4.1 ric veh .2.1.) lay of tr Four- conduc – – – – 64 (2.5 64 (2.5	.2.1). icle cable wist, mm (ir tor cond 0) 76 (0) 76 (es i) ive- ductor - - - (3.00) (3.00)	Si cond 	ix- uctor - - - 3.50)
ote: Interch SV, SVO, S SVTO, SVT SVEO, SVT SVEO, SVE SJ, SJO, S. SJOOW, S, SOW, SOO	Type VOO, SVT, OO, SVE, OO, SVE, OO, SJOW, SO, SOO, W, SJT, SJTO,	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17) 1.31 (16) 1.04 (17) 1.31 (16)	the table sha - Service Clauses 4.1.4 Two- conductor 35 (1.38 (1.50) 38 (1.50) 35 (1.38) 51 (2.00) 51 (2.00) 57 (2.25)	Ill be permitted Table 10 Cords and Cords and .1.1, 4.4.4.2, a M Thre or* Conduct 30 44 (1. 31 51 (2. 32 33 34 35 36 37 39 30 57 (2. 31 32 38 39 57 (2. 32 33 39 30 57 (2. 31 33	d (see Cla d electr and 4.5.4. aximum e- ctor* 75) 00) 00) 25) 25) 25) 50)	lause 4.1 ric veh .2.1.) lay of tr Four- conduc - - - - - 64 (2.5 64 (2.5 70 (2.7	.2.1). icle cable wist, mm (ir tor cond 0) 76 (0) 76 (5) 89 (es i) ve- ductor - - - - - - - - - - - - -	Si cond 	ix- uctor - - - 3.50) 3.50) (4.25)
SV, SVO, S SVTO, SVT SVEO, SVT SVEO, SVE SJ, SJO, S, SJOOW, S, SOW, SOO SJTOO, SJ	Type VOO, SVT, OO, SVE, OO, SVE, OO, SJOW, SO, SOO, W, SJT, SJTO, TW, SJTO, TW, SJTO,	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17) 1.31 (16) 1.04 (17) 1.31 (16) 1.65 (15)	the table sha - Service Clauses 4.1.4 Two- conducto 35 (1.38 38 (1.50 38 (1.50 35 (1.38 51 (2.00 51 (2.00 57 (2.25 57 (2.25)	M permittee Table 10 cords and cords and and .1.1, 4.4.4.2, a m m Three conduct and b) 51 (2. b) 51 (2. b) 57 (2. conduct and conduct b conduct conduct	d (see Classified Classi	lause 4.1 ric veh .2.1.) lay of tr Four- conduc - - - - - 64 (2.5 64 (2.5 70 (2.7 70 (2.7	.2.1). iicle cable wist, mm (ir fitor cond 0) 76 (0) 76 (5) 89 (5) 89 (es ve- ductor - - (3.00) (3.50) (3.50)	Si cond 	ix- uctor - - 3.50) 3.50) (4.25)
SV, SVO, S SV, SVO, S SVTO, SVT SVEO, SVT SJ, SJO, SJ SJOOW, S, SOW, SOO SJTOO, SJ SJTOOW, S STW, STOV	Type Type VOO, SVT, OO, SVE, OO, SVE, OO, SVE, OO, SVE, TOO, SJOW, SO, SOO, W, SJT, SJTO, TW, SJTOW, ST, STO, STOO, W, SJTOW,	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17) 1.31 (16) 1.65 (15) 2.08 (14)	the table sha - Service Clauses 4.1.4 Two- conducto 35 (1.38 38 (1.50 38 (1.50 35 (1.38 (1.50 51 (2.00 51 (2.00 57 (2.28 57 (2.28 64 (2.50	M permittee Fable 10 cords and cords and n i .1.1, 4.4.4.2, a m m Thre conduc 5 3) 44 (1. 5) 51 (2. 3) 5) 57 (2. 5) 64 (2. 5) 64 (2. 5) 64 (2. 5) 83 (3.	d (see Cla d electr and 4.5.4. aximum e- ctor* 75) 00) 00) 25) 25) 50) 50) 25)	lause 4.1 ric veh .2.1.) lay of tr Four- conduc - - - - - - - - - - - - -	.2.1). iicle cable wist, mm (irr tor cond 0) 76 (0) 76 (5) 89 (5) 89 (5) 121	b ive- ductor - - - - - - - - - - - - -	Si cond 	ix- uctor - - 3.50) (4.25) (4.25) (5.50)
SV, SVO, S SV, SVO, S SVTO, SVT SVEO, SVE SJ, SJO, SJ SJOOW, S, SOW, SOO SJTOO, SJ SJTOOW, S STW, STOV SJE, SJEO,	Type Type VOO, SVT, OO, SVE, OO, SVE, OO, SVE, OO, SJOW, SO, SOO, W, SJT, SJTO, TW, SJTOW, ST, STO, STOO, V, STOOW, SJEOO, SJEW,	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17) 1.31 (16) 1.65 (15) 2.08 (14) 2.63 (13)	the table sha - Service Clauses 4.1.4 Two- conducto 35 (1.38 38 (1.50 38 (1.50 38 (1.50 51 (2.00 51 (2.00 51 (2.00 57 (2.25 64 (2.50 64 (2.50 64 (2.50)	Ill be permitted Table 10 cords and 1.1, 4.4.4.2, a M Thre or* Conduct 3) 44 (1. 3) 51 (2. 3) 57 (2. 5) 57 (2. 5) 64 (2. 63 64 (2. 83 (3. 83 (3.	d (see Cla d electr and 4.5.4. aximum e- ctor* 75) 00) 00) 25) 25) 25) 25) 25) 25) 25)	lause 4.1 ric veh .2.1.) lay of tr Four- conduc - - - - - - - - - - - - - - - - - -	.2.1). iicle cable wist, mm (ir tor cond 0) 76 (0) 76 (5) 89 (5) 89 (5) 121 5) 121	es ve- ductor - - (3.00) (3.50) (3.50) (4.75) (4.75)	Si cond 	ix- uctor - - - 3.50) 3.50) (4.25) (4.25) (4.25) (5.50)
ote: Interch	Type VOO, SVT, OO, SVE, OO, SVE, OO, SVE, OO, SVE, Type JOO, SJOW, SO, SOO, W, SJT, SJTO, TW, SJTOW, ST, STO, STOO, V, STOOW, SJEOO, SJEW, EOOW, SE,	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17) 1.31 (16) 1.65 (15) 2.08 (14) 2.63 (13) 3.31 (12)	the table sha - Service Clauses 4.1.4 Clauses 4.1.4 35 (1.38 38 (1.50 38 (1.50 38 (1.50 38 (1.50 51 (2.00 51 (2.00 57 (2.25 64 (2.50 64 (2.50 64 (2.50 76 (3.00	Ill be permittee Table 10 cords and cords and .1.1, 4.4.4.2, a M Thre conduct 3) 44 (1. 3) 51 (2. 3) 57 (2. 5) 64 (2. 5) 64 (2. 5) 83 (3. 9) 83 (3. 9) 83 (3. 9) 89 (3.	d (see Cla d electr and 4.5.4. aximum e- ctor* 75) 00) 00) 25) 25) 50) 25) 25) 50) 25) 50) 25) 50) 25) 50) 25) 50) 25) 50)	lause 4.1 ric veh .2.1.) lay of tr Four- conduc - - - - - - - - - - - - - - - - - -	.2.1). iicle cable wist, mm (ir tor cond 0) 76 (0) 76 (5) 89 (5) 89 (5) 121 5) 121 25) 140	es ve- ductor - - - - - - - - - - - - -	Si cond 	ix- uctor - - - 3.50) 3.50) (4.25) (4.25) (5.50) (5.50) (6.50)
ote: Interch SV, SVO, S SVTO, SVT SVEO, SVT SVEO, SVT SJOOW, S, SOW, SOO SJTOO, SJ SJTOOW, S STW, STOV SJE, SJEO, SJEO, SUO SEO, SEO SEO, SEO	Type VOO, SVT, OO, SVE, OO, SVE, OO, SVE, OO, SVE, Type JOO, SJOW, SO, SOO, W, SJT, SJTO, TW, SJTOW, ST, STO, STOO, V, STOOW, ST, STO, STOO, V, STOOW, SE, SJEOO, SJEW, EOOW, SE, O, SEW, SEOW, W PDU+**	materials within f conductors (See C Size of circuit conductor, mm² (AWG)** 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17) 1.31 (16) 0.100 (27) 0.824 (18) 1.04 (17) 1.31 (16) 1.65 (15) 2.08 (14) 2.63 (13) 3.31 (12) 4.17 (11)	the table sha - Service Clauses 4.1.4 Two- conducte 35 (1.38 38 (1.50 38 (1.50 35 (1.38 51 (2.00 51 (2.00 57 (2.25 57 (2.25 64 (2.50 64 (2.50 76 (3.00 76 (3.00	Ill be permittee Table 10 Cords and Cords and 1.1, 4.4.4.2, a M Thre or* Conduct 30 44 (1. 30 51 (2. 30 57 (2. 30 57 (2. 50 64 (2. 50 64 (2. 50 83 (3. 90 83 (3. 91 89 (3.	d (see Cla d electr and 4.5.4. aximum e- ctor* 75) 00) 00) 25) 25) 25) 50) 50) 25) 25) 50) 50) 50) 50)	lause 4.1 ric veh .2.1.) lay of tr Four- conduc - - - - - - - - - - - - - - - - - -	.2.1). icle cable wist, mm (ir for cond tor cond 0) 76 (0) 76 (5) 89 (5) 89 (5) 121 5) 121 5) 121 5) 140	es ve- ductor - - - - - - - - - - - - -	Si cond 	ix- uctor - - - 3.50) (4.25) (4.25) (4.25) (5.50) (5.50) (6.50) (6.50)

Table 9 (Continued)

Table 10 Lay of conductors – Service cords and electric vehicle cables

	Size of circuit		Maximu	m lay of twist,	mm (in)	
Туре	conductor, mm ² (AWG)**	Two- conductor*	Three- conductor*	Four- conductor	Five- conductor	Six- conductor
SV, SVO, SVOO, SVT,	0.824 (18)	35 (1.38)	44 (1.75)	-	-	-
SVTO, SVTOO, SVE,	1.04 (17)	38 (1.50)	51 (2.00)	-	-	-
SVEO, SVEOO	1.31 (16)	38 (1.50)	51 (2.00)	_	_	_
TST	0.100 (27)	35 (1.38)	—			
SJ, SJO, SJOO, SJOW,	0.824 (18)	51 (2.00)	57 (2.25)	64 (2.50)	76 (3.00)	89 (3.50)
SJOOW, S, SO, SOO,	1.04 (17)	51 (2.00)	57 (2.25)	64 (2.50)	76 (3.00)	89 (3.50)
SOW, SOOW, SJT, SJTO,	1.31 (16)	57 (2.25)	64 (2.50)	70 (2.75)	89 (3.50)	108 (4.25)
SJTOOV, ST. STO, STOO.	1.65 (15)	57 (2.25)	64 (2.50)	70 (2.75)	89 (3.50)	108 (4.25)
STW, STOW, STOOW,	2.08 (14)	64 (2.50)	83 (3.25)	95 (3.75)	121 (4.75)	140 (5.50)
SJE, SJEO, SJEOO, SJEW,	2.63 (13)	64 (2.50)	83 (3.25)	95 (3.75)	121 (4.75)	140 (5.50)
SJEOW, SJEOOW, SE,	3.31 (12)	76 (3.00)	89 (3.50)	108 (4.25)	140 (5.50)	165 (6.50)
SEO, SEOO, SEW, SEOW,	4.17 (11)	76 (3.00)	89 (3.50)	108 (4.25)	140 (5.50)	165 (6.50)
HSJOW, C ⁴ , PD ⁻ , HPD ^{4,,} , HSJ ^{**} , HSJW ^{C,U**} , HSJO ^{**} , HSJOW ^{**} , HSJOO ^{**} , HSJOOW ^{**}	5.26 (10)	89 (3.50)	108 (4.25)	121 (4.75)	152 (6.00)	178 (7.00)

Everstar v. Willis Electric PGR2019-00056

Table 10 (Continued)

	Size of circuit		Maximu	m lay of twist,	mm (in)	
Туре	conductor, mm ² (AWG)**	Two- conductor*	Three- conductor*	Four- conductor	Five- conductor	Six- conductor
S, SO, SOO, SOW, SOOW, ST, STO, STOO, STW, STOW, STOOW, SE, SEO, SEOO, SEW, SEOW, SEOOW	6.63 (9)	89 (3.50)	108 (4.25)	121 (4.75)	15 times the overall diameter of the conductor assembly	15 times the overall diameter of the conductor assembly
					under the jacket	under the jacket
	8.37 (8)	114 (4.50)	127 (5.00)	152 (6.00)	-	-
	10.6 (7)	114 (4.50)	127 (500)	152 (6.00)	-	-
	13.3 (6)	127 (5.00)	152 (6.00)	178 (7.00)	_	-
	16.8 (5)	127 (5.00)	152 (6.00)	178 (7.00)		
	21.2 (4)	152 (6.00)	178 (7.00)	216 (9.50)	-	-
	26.7 (3)	152 (6.00)	178 (7.00)	216 (9.50)		
	33.6 (2)	178 (7.00)	203 (8.00)	254 (10.00)	_	-
DRT ^c , SRD ^{m,u} , SRDT ^{m,u} ,	5.26 (10)		108 (4.25)	120 (4.72)	-	-
SRDE ^{m,u}	6.63 (9)		108 (4.25)	121 (4.75)		
	8.37 (8)		127 (5.00)	150 (5.91)	-	-
	13.3 (6)		152 (6.00)	180 (7.09)	-	-
	21.2 (4)		178 (7.00)	220 (8.66)	-	-
EVJ, EVJE, EVJT, EV, EVE,	All	15 times the	15 times the	15 times the	15 times the	15 times the
		diameter of	diameter of	diameter of	diameter of	diameter of
		the conductor	the conductor	the conductor	the conductor	the conductor
		assembly	assembly	assembly	assembly	assembly
		under the	under the	under the	under the	under the
		jacket	jacket	jacket	jacket	jacket
* In Mexico, the following app	lies. As an alterna	ative to the value	es of the table, i	untwisted condu	ctors shall be pe	ermitted for
two- or three-conductor const	ructions.					

** Two, three, and four conductors only.

Table 11 Jackets

(See Clause 4.1.6.)

			Temperature ratings, maximum. °C	
Class no.	Material type	Material description	Dry Oil	
1.1	Thermoset	NR or IR, SBR, EP or a blend thereof	60	-
1.2	Thermoset	CR, CSM, EP, NBR/PVC, CPE	60	60
1.3	Thermoset	CR, CSM, EP, NBR/PVC, CPE	75	60
1.4	Thermoset	CR, CSM, EP, NBR/PVC, CPE	90	60
1.5	Thermoplastic	PVC	60	60
1.6	Thermoplastic	PVC	75	60
1.7	Thermoplastic	PVC	90	60
1.8	Thermoplastic	PVC	105	60
1.9	Thermoplastic	TPE	60	60
1.10	Thermoplastic	TPE	90	60

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIOnable 117 Continued OF Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Table 11 (Continued)

			Temperatur maximu	re ratings, ım, °C			
Class no.	Material type	Material description	Dry	Oil			
1.11	Thermoplastic	TPE	105	60			
1.12	Thermoset	CPE, CSM, EP	105	60			
Legend: NR or IR	= natural rubber or pol	visoprene rubber					
SBR	= styrene-butadiene ru	bber					
EP	= ethylene propylene rubber						
CPE	= chlorinated polyethyl	ene					
CR	= polychloroprene						
CSM	= chloro-sulphonyl-poly	vethylene					
TPE	= thermoplastic elastor	ner					
PVC	= polyvinyl chloride or copolymer of vinyl chloride and vinyl acetate						
NBR	= acrylonitrile butadien	e rubber					
Note: Due to	o possible incompatibility	v, TPE material of styrenic type is in some case	es not suitable for use in	cords where dire			

Note: Due to possible incompatibility, TPE material of styrenic type is in some cases not suitable for use in cords where direct contact with PVC can occur. A separator is one acceptable means of avoiding direct contact. Other combinations of materials that could be incompatible, if any, are as yet undetected.

Table 12Physical properties – Jackets (before aging)

(See Clauses 5.1.2, 6.2.6.1, and 6.2.6.2.)

			Material type	Befor	e aging
Class no.	Temperature rati	ng, maximum, °C		Minimum Elongation	Tensile strength,
	Dry	Oil		percent	MPa (lbf/in ²)
1.1	60	-	Thermoset	200	8.3 (1200)
1.2	60	60	Thermoset	200†	8.3 (1200)
1.3	75	60	Thermoset	200	8.3 (1200)
1.4	90	60	Thermoset	200	8.3 (1200)
1.5	60	60	Thermoplastic	100	10.3 (1500)
1.6	75	60	Thermoplastic	100	10.3 (1500)
1.7	90	60	Thermoplastic	100	10.3 (1500)
1.8	105	60	Thermoplastic	100	10.3 (1500)
1.9	60	60	Thermoplastic	200	8.3 (1200)
1.10	90	60	Thermoplastic	200	8.3 (1200)
1.11	105	60	Thermoplastic	200	8.3 (1200)
1.12	105	60	Thermoset	200	8.3 (1200)
		(Cont	inued)		

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

ULY 6, 2018		NMX-J-4	36-ANCE-2018	CAN/CSA C2	2.2 NO. 49-18 🔹	UL 62		83
		Phys	ical propert	Table 12 ties – jacke	ts (after agi	ng)		
		Air ov	ven test			Oil imme	rsion test*	
			Minimum pe	ercentage of	IRM 90	02 Oil	Minimum pe	ercentage of
Class no.	Oven temp.,	Time,	Elongation,	Tensile strength,	Oil temp.,	Time,	Elongation,	Tensile strength,
	°C ±2	d	percent	percent	°C ±2	h	percent	percent
1.1	70	7	70	75	NA	-	-	-
1.2	70	7	70	75	121	18	60	60
1.3	100	10	50	50	121	18	60	60
1.4	110	10	50	50	121	18	60	60
1.5	100	7	45	85	60	168	75	75
1.6	100	10	45	70	60	168	75	75
1.7	121	7	45	85	60	168	75	75
1.8	136	7	45	85	60	168	75	75
1.9	100	7	75	75	60	168	75	75
1.10	121	7	75	75	60	168	75	75
1.11	136	7	75	75	60	168	75	75
		_			101	10	00	

Table 12 Physical properties - jackets (after aging)

* Oil tests are required only on Type EO, ETT, and ETP on Types EV, EVJ, EVJT, EVE, EVT, EVJE, or on products with an "O" and "OO" in the type designation (see Clause 6.2.6).

† The elongation requirements for Class 1.2 jackets on coiled Types SVO, SJO, and SO cords shall be 150 percent.

Note: Interchanging jacket materials within the table shall be permitted (see Clause 4.1.6.2).

Table 13 Overall diameter of round service and heater cords

(See Clauses 4.1.5.5, 4.1.7.1, 4.1.8.2, 4.3.14.2, 4.8.8, and 6.4.2.)

		Range of	of overall diameters*	, mm (in)	
Type of cord	Size of conductors, mm ² (AWG)	Two-conductor	Three-conductor	Four-conductor	Five-conductor
HSJ. HSJW ^{c,u}	0.824 (18)	7.24 - 8.38	7.62 - 8.76	8.38 - 9.65	_
HSJO, HSJOO,		(0.285 - 0.330)	(0.300 - 0.345)	(0.330 - 0.380)	_
HSJOW, HSJOOW	1.04 (17)	7.50 - 8.64	7.94 – 9.14	9.02 - 9.98	_
		(0.295 - 0.340)	(0.313 – 0.360)	(0.355 - 0.393)	_
	1.31 (16)	7.75 - 8.89	8.26 - 9.52	9.02 - 10.3	_
		(0.305 - 0.350)	(0.325 - 0.375)	(0.355 - 0.405)	_
	1.65 (15)	9.68 - 10.91	10.3 – 11.5	11.3 – 12.65	-
		(0.381 – 0.429)	(0.406 - 0.452)	(0.445 – 0.498)	-
	2.08 (14)	10.03 – 11.3	10.67 – 11.94	11.7 – 13.1	-
		(0.395 - 0.445)	(0.420 - 0.470)	(0.460 - 0.515)	-
	3.31 (12)	11.1 – 12.3	11.7 – 13.1	13.0 – 14.5	-
		(0.435 - 0.485)	(0.460 - 0.515)	(0.510 – 0.570)	-

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTICTable 13 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd.: 5/2/2019 - 9:38 PN Willis Electric Exhibit 2050 Page 89

Q/	l
07	ľ

		Range o	of overall diameters*,	mm (in)	
	Size of conductors,				
Type of cord	mm² (AWG)	Two-conductor	Three-conductor	Four-conductor	Five-conductor
SV, SVO, SVOO,	0.824 (18)	5.59 - 6.48	5.84 – 6.73	-	-
SVT, SVTO,		(0.220 – 0.255)	(0.230 – 0.265)	-	-
SVIOO, SVE,	1.04 (17)	5.97 - 6.86	6.35 – 7.24	-	-
3VEO, 3VEOO		(0.235 – 0.270)	(0.250 – 0.285)	-	-
	1.31 (16)	6.22 – 7.11	6.60 - 7.49	-	-
		(0.245 - 0.280)	(0.260 – 0.295)	-	-
SJ, SJO, SJOO,	0.824 (18)	7.11 – 8.00	7.62 – 8.51	8.26 – 9.27	-
SJT, SJTO,		(0.280 – 0.315)	(0.300 – 0.335)	(0.325 – 0.365)	-
SJTOO, SJOW,	1.04 (17)	7.24 – 8.26	7.75 – 8.76	8.64 – 9.65	-
SJUOW, SJTW,		(0.285 – 0.325)	(0.305 – 0.345)	(0.340 – 0.380)	-
SJE, SJEO,	1.31 (16)	7.75 – 8.64	8.26 – 9.14	8.89 – 10.0	-
SJEOO, SJEW,		(0.305 – 0.340)	(0.325 – 0.360)	(0.350 – 0.395)	-
SJEOW, SJEOOW	1.65 (15)	8.00 - 8.89	8.51 – 9.52	9.40 – 10.54	-
		(0.315 – 0.350)	(0.335 – 0.375)	(0.370 0.415	-
	2.08 (14)	8.51 – 9.53	9.14 – 10.0	9.91 – 11.0	-
		(0.335 – 0.375)	(0.360 – 0.395)	(0.390 – 0.435)	-
	2.63 (13)	8.76 – 9.91	9.40 - 10.5	10.3 – 11.4	-
		(0.345 – 0.3910)	(0.370 – 0.415)	(0.405 – 0.450)	-
	3.31 (12)	10.3 – 11.6	10.8 – 12.1	11.8 – 13.2	-
		(0.405 – 0.455)	(0.425 – 0.475)	(0.465 – 0.520)	-
	4.17 (11)	10.6 – 11.9	11.3 – 12.6	12.3 – 13.6	-
		(0.420 - 0.470)	(0.445 – 0.495)	(0.485 – 0.535)	-
	5.26 (10)	13.7 – 15.4	14.4 – 16.1	15.9 – 17.8	-
		(0.540 - 0.605)	(0.565 – 0.635)	(0.625 - 0.700)	-

Table 13 (Continued)

DISTRIBUTIO able 13 Continued on Next Page ON FROM UL

		Range	of overall diameters*	, mm (in)	
	Size of				1
	conductors,				
Type of cord	mm ² (AWG)	Two-conductor	Three-conductor	Four-conductor	Five-conductor
S, SO, SOO, SOW,	0.824 (18)	8.64 - 9.78	9.14 - 10.2	9.78 – 10.9	11.7 – 13.0
SOOW, ST, STO,		(0.340 - 0.385)	(0.360 - 0.400)	(0.385 - 0.430)	(0.460 - 0.510)
STOU, STW,	1.04 (17)	8.89 - 9.91	9.40 - 10.54	10.16 – 11.30	11.81 – 13.21
SE, SEO, SEOO,		(0.350 - 0.390)	(0.370 – 0.415)	(0.400 - 0.445)	(0.465 - 0.520)
SEW, SEOW,	1.31 (16)	9.27 – 10.4	9.78 – 10.9	10.4 – 11.7	12.5 – 14.0
SEOOW		(0.365 - 0.410)	(0.385 - 0.430)	(0.410 - 0.460)	(0.490 - 0.550)
	1.65 – (15)	12.07 – 13.46	12.70 – 14.22	13.72 – 15.94	15.62 – 17.52
		(0.475 – 0.530)	(0.500 - 0.560)	(0.540 - 0.610)	(0.615 - 0.690)
	2.08 (14)	12.6 - 14.0	13.2 – 14.6	14.2 – 15.7	16.0 – 17.9
		(0.495 - 0.550)	(0.520 - 0.575)	(0.560 - 0.620)	(0.630 - 0.705)
	2.63 (13)	12.84 – 14.2	13.6 – 15.0	14.6 – 16.0	16.7 – 18.2
		(0.505 - 0.560)	(0.535 - 0.590)	(0.575 – 0.630)	(0.660 - 0.715)
	3.31 (12)	14.4 – 15.9	15.0 – 16.6	16.3 – 18.0	17.8 – 19.6
		(0.565 - 0.625)	(0.590 - 0.655)	(0.640 - 0.710)	(0.700 - 0.770)
	4.17 (11)	14.7- 16.6	15.5 – 17.1	16.7 – 18.4	18.3 – 20.1
		(0.580 - 0.645)	(0.610 - 0.675)	(0.660 - 0.725)	(0.720 - 0.790)
	5.26 (10)	15.6 – 17.4	16.5 – 18.3	17.8 – 19.7	19.3 – 21.3
		(0.615 – 0.685)	(0.650 - 0.720)	(0.700 - 0.775)	(0.760 - 0.840)
	6.63 (9)	16.1 – 18.3	17.0 – 19.2	18.4 – 20.6	20.2 – 22.4
		(0.635 - 0.720)	(0.670 - 0.755)	(0.725 – 0.810)	(0.795 - 0.880)
	8.37 (8)	19.8 – 22.4	21.1 – 23.6	23.5 – 26.7	25.4 - 29.2
		(0.780 - 0.880)	(0.830 - 0.930)	(0.925 - 1.05)	(1.00 – 1.15)
	10.6 (7)	21.8 – 24.3	23.0 – 25.6	25.0 - 28.9	27.4 – 31.2
		(0.860 - 0.960)	(0.909 - 1.01)	(0.988 – 1.14)	(1.08 – 1.23)
	13.3 (6)	23.4 – 26.7	24.6 – 27.9	26.7 - 30.5	30.0 - 33.8
		(0.920 - 1.05)	(0.970 - 1.10)	(1.05 – 1.20)	(1.18 – 1.33)
	16.8 (5)	25.2 – 29.2	26.7 – 30.5	29.2 - 33.0	31.8 – 35.6
		(0.994 – 1.15)	(1.05 – 1.20)	(1.15 – 1.30)	(1.25 – 1.40)
	21.1 (4)	26.9 - 30.7	28.7 – 32.5	31.8 – 36.8	-
		(0.106 - 1.21)	(1.13 – 1.28)	(1.25 – 1.45)	-
	26.7 (3)	29.2 - 33.0	31.0 - 34.8	33.8 - 38.9	-
		(1.15 – 1.30)	(1.22 – 1.37)	(1.33 – 1.53)	-
	33.6 (2)	30.7 - 35.6	33.0 - 38.1	36.8 - 41.9	-
		(1.21 - 1.40)	(1.30 - 1.50)	(1.45 – 1.65)	-

Table 13 (Continued)

* Diameters of constructions that are not covered in the table are not specified.

Notes:

(1) When a metal support member in accordance with Clause 4.1.11 or coiled types or mixed conductor sizes as described in Clauses 4.1.8.2 and 4.1.1.1, respectively, are included, the maximum diameters in this table do not apply. (2) The above tabulated diameters do not apply to a cord that is intended for application in which

i) a fitting is moulded on each end of the cord; or

ii) a fitting is moulded onto one end of the cord and a means of strain relief is moulded on towards the other end of the cord.

(3) Cord types with the suffix "-B" shall be measured under the braid.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 14 Dimensions of two- and three-conductor thermoset parallel types

86	NMX-J-436-ANCE-2018 CAN/CSA C22.2 NO. 49-18 UL 62 JULY 6, 2018						Y 6. 2018			
	Table 14							.,		
	Table 14 Dimensions of two- and three-conductor thermoset parallel types (See Clauses 4.2.1, 4.2.3.1, 4.2.7.1, and 4.2.10, and Figures 1 – 5.)									
		SP-1	NISP-1	SP-2	NISP-2	SP-3	SP-3	SP-3	SP-3	SRD ^{m,u}
		0.519 (20)	0.519 (20)	0.824 (18)	0.824 (18)	0.824 (18)	2.08 (14)	3.31 (12)	5.26 (10)	5.26 - 21.2 (10 - 4)
Size, r	nm² (AWG)	0.824 (18)	0.824 (18)	1.04 (17)	1.04 (17)					.,
				1.31 (16) 2.08	1.31 (16)	1.31 (16)	1.65 (15)			
				(14)*		1.04 (17)				
	Nominal (not a requirement)	0.76 (30)	N/A	1.14 (45)	N/A	1.52 (60)	2.03 (80)	2.41 (95)	2.79 (110)	N/A
	Minimum acceptable average (Dimension A)	N/A	0.38 (15)	N/A	0.76 (30)	N/A	N/A	N/A	N/A	2.54 (100)
Insulation	Minimum thickness at any point (Dimension B)	N/A	0.33 (13)	N/A	0.69 (27)	N/A	N/A	N/A	N/A	N/A
thickness, mm (mils)	Minimum thickness at any point before separation (Dimension F)	0.69 (27)	N/A	1.02 (40)	N/A	1.37 (54)	1.83 (72)	2.18 (86)	2.51 (99)	N/A
	Minimum thickness at any point after separation (Dimension G)	0.33 (13)	N/A	0.69 (27)	N/A	1.02 (40)	1.02 (40)	1.02 (40)	1.02 (40)	1.04 (41)
Minimum thic mm (mils) (D	kness of web, vimension H)	1.14 (45)	N/A	2.03 (80)	N/A	2.79 (110)	2.79 (110)	2.79 (110)	2.79 (110)	2.79 (110)
Minimum dis insulated cor (mils) (Dimer	tance between nductors, mm	N/A	0.38 (15)	N/A	0.51 (20)	N/A	N/A	N/A	N/A	N/A
Minimum dis conductors for grounding co (mils) (Dimer	tance between or a cord with a onductor, mm nsion K)	0.69 (27)	N/A	1.02 (40)	N/A	1.37 (54)	1.37 (54)	1.37 (54)	1.37 (54)	N/A
Minimum acc thickness of grounding co (mils) (Dimer	ceptable insulation on onductor, mm nsion L)	0.38 (15)	N/A	0.38 (15)	N/A	0.38 (15)	0.38 (15)	0.38 (15)	0.38 (15)	N/A
Minimum thic point of insul grounding co (mils) (Dimer	ckness at any ation on nductor, mm nsion M)	0.33 (13)	N/A	0.33 (13)	N/A	0.33 (13)	0.33 (13)	0.33 (13)	0.33 (13)	N/A
Jacket Minimum ave (Dimension (erage mm (mils)	N/A	0.38 (15)	N/A	0.38	N/A	N/A	N/A	N/A	N/A
Minimum poi (mils) (Dimer	nt thickness, mm nsion D)	N/A	0.33 (13)	N/A	0.33 (13)	N/A	N/A	N/A	N/A	N/A
						TERIA	NL -			
	NUT AUTI DISTR	HORIZE	D FOI	K FUR		KEPR	ODUC	; 1 ION OM U	I OR IL	
v. Willis El 9-00056	ectric		raule - F4	Sominue		aye		Willis E	lectric Exh	nibit 2050 Page 92

Everstar v. Willis Electric PGR2019-00056

Table 14 (Continued)

					Туре				
	SP-1	NISP-1	SP-2	NISP-2	SP-3	SP-3	SP-3	SP-3	SRD ^{m,u}
* 2.08 mm ² (14 AWG) SP-2 is	for use in Me	exico only.							

Table 15 Thermoset service cords

2.08 mm ² (14 AWG) SF	SP-1		1000				
2.08 mm ² (14 AWG) SF			NISP-2 SP-3	SP-3 SP-3	SP-3 SRD		
	-2 is for use in Mexi	co only.	•	- 1	- I I		
		Table	15 ruice corde				
	(See Clauses 4.2.1, 4.2.3.1, 4.2.7.1, and 4.2.10, and Figures 3 and 4.)						
		,, .					
			Туре		1		
		Not for hard usage		Hard usage	Extra-hard usage		
	SV, SVO, SVOO	SP-1, SP-2, SP-3	NISP-1, NISP-2	SJ, SJO, SJOO, SJOW, SJOOW	S, SO, SOO, SOW, SOOW		
Femperature ratings, °C	60, 75, 90	60	60	60, 75, 90, 105	60, 75, 90, 105		
Maximum voltage, V	300	300	300	300	600		
Size of conductors, mm ²	0.824, 1.04, 1.31	0.519, 0.824	0.824 – 1.31	0.824 - 5.26	0.824 - 33.6		
(AWG)	(18 17 16)	(SP-1) (20_18) (SP-1)	(NISP-2) (18 – 16)	(18 – 10)	(18 – 2)		
			(NISP-2)	(10 10)			
		0.824 - 1.31 (SP-2)	0.59, 0.824 (NISP-1)				
		(18 – 16), (SP-2)	(20, 18) (NISP-1)				
		0.824 - 5.26					
		(3F-3) (18 – 10) (SP-3)					
Number of conductors	2 or 3	2 or 3	2 or 3	2 - 6	2 or more		
Grounding conductor,	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8		
Grounding conductor, Clause	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8		
Grounding conductor, Clause Conductor: Material	4.1.1.8 Soft, annealed cop	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8		
Grounding conductor, Clause Conductor: Material Size	4.1.1.8 Soft, annealed cop Cross-sectional are	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistanc	4.1.1.8 e (Clause 4.1.1.3.1)	4.1.1.8	4.1.1.8		
Grounding conductor, Clause Conductor: Material Size Stranding	4.1.1.8 Soft, annealed cop Cross-sectional are Size of wires (Clau	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of operators (Clauses 4	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1	4.1.1.8 7.2)	4.1.1.8		
Arounding conductor, Clause Conductor: Material Size Stranding General	4.1.1.8 Soft, annealed cop Cross-sectional are Size of wires (Clau Joints, coatings, se	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1 .1.1.4, 4.1.1.5, and	4.1.1.8 7.2) 4.1.1.6) 4.1.2	4.1.1.8		
Grounding conductor, Clause Conductor: Material Size Stranding General Insulation class, Clause Circuit conductor	4.1.1.8 Soft, annealed cop Cross-sectional ard Size of wires (Clau Joints, coatings, se 4.1.2	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistanc use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1. .1.1.4, 4.1.1.5, and 4.1.2	4.1.1.8 7.2) 4.1.1.6) 4.1.2	4.1.1.8		
Grounding conductor, Clause Conductor: Material Size Stranding General Insulation class, Clause Circuit conductor 50°C	4.1.1.8 Soft, annealed cop Cross-sectional are Size of wires (Clau Joints, coatings, se 4.1.2 1, 13	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2 1, 13	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1 .1.1.4, 4.1.1.5, and 4.1.2 1, 13	4.1.1.8 7.2) 4.1.1.6) 4.1.2 1, 13	4.1.1.8 4.1.2 1, 13		
Grounding conductor, Clause Conductor: Material Size Stranding General Insulation class, Clause Circuit conductor 50°C 75°C	4.1.1.8 Soft, annealed cop Cross-sectional ard Size of wires (Clau Joints, coatings, se 4.1.2 1, 13 2	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2 1, 13 N/A	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1 .1.1.4, 4.1.1.5, and 4.1.2 1, 13 N/A	4.1.1.8 7.2) 4.1.1.6) 4.1.2 1, 13 2	4.1.1.8 4.1.2 1, 13 2		
Grounding conductor, Clause Conductor: Material Size Stranding General nsulation class, Clause Circuit conductor 50°C 275°C 60°C	4.1.1.8 Soft, annealed cop Cross-sectional ard Size of wires (Clau Joints, coatings, se 4.1.2 1, 13 2 3, 12	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2 1, 13 N/A N/A	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1. .1.1.4, 4.1.1.5, and 4.1.2 1, 13 N/A N/A	4.1.1.8 7.2) 4.1.1.6) 4.1.2 1, 13 2 3, 12	4.1.1.8 4.1.2 1, 13 2 3, 12		
Arounding conductor, Clause Conductor: Material Size Stranding General nsulation class, Clause Circuit conductor 50°C 75°C 00°C 105°C	4.1.1.8 Soft, annealed cop Cross-sectional are Size of wires (Clau Joints, coatings, se 4.1.2 1, 13 2 3, 12 N/A	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2 1, 13 N/A N/A N/A	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1 .1.1.4, 4.1.1.5, and 4.1.2 1, 13 N/A N/A N/A	4.1.1.8 7.2) 4.1.1.6) 4.1.2 1, 13 2 3, 12 18, 19	4.1.1.8 4.1.2 1, 13 2 3, 12 18, 19		
Grounding conductor, Clause Conductor: Material Size Stranding General nsulation class, Clause Circuit conductor 50°C 75°C 00°C 105°C Grounding (bonding) conductor:	4.1.1.8 Soft, annealed cop Cross-sectional ard Size of wires (Clau Joints, coatings, se 4.1.2 1, 13 2 3, 12 N/A	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2 1, 13 N/A N/A N/A	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1. .1.1.4, 4.1.1.5, and . 4.1.2 1, 13 N/A N/A N/A N/A	4.1.1.8 7.2) 4.1.1.6) 4.1.2 1, 13 2 3, 12 18, 19	4.1.1.8 4.1.2 1, 13 2 3, 12 18, 19		
Grounding conductor, Clause Conductor: Material Size Stranding General nsulation class, Clause Circuit conductor 50°C 75°C 50°C Grounding (bonding) conductor: 50°C	4.1.1.8 Soft, annealed cop Cross-sectional are Size of wires (Clau Joints, coatings, se 4.1.2 1, 13 2 3, 12 N/A 1, 13	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2 1, 13 N/A N/A N/A N/A 1, 10	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1. .1.1.4, 4.1.1.5, and - 4.1.2 1, 13 N/A N/A N/A N/A 1, 10	4.1.1.8 7.2) 4.1.1.6) 4.1.2 1, 13 2 3, 12 18, 19 1, 13	4.1.1.8 4.1.2 1, 13 2 3, 12 18, 19 1, 13		
Grounding conductor, Clause Conductor: Material Size Stranding General nsulation class, Clause Circuit conductor 50°C 75°C 00°C 105°C Grounding (bonding) conductor: 50°C 25°C	4.1.1.8 Soft, annealed cop Cross-sectional ard Size of wires (Clau Joints, coatings, se 4.1.2 1, 13 2 3, 12 N/A 1, 13 2	4.1.1.8 oper (Clause 4.1.1.2) ea and DC resistance use 4.1.1.7.1), lay of eparators (Clauses 4 4.1.2 1, 13 N/A N/A N/A N/A 1, 10 N/A	4.1.1.8 e (Clause 4.1.1.3.1) wires (Clause 4.1.1 .1.1.4, 4.1.1.5, and 4.1.2 1, 13 N/A N/A N/A 1, 10 N/A	4.1.1.8 7.2) 4.1.1.6) 4.1.2 1, 13 2 3, 12 18, 19 1, 13 2	4.1.1.8 4.1.2 1, 13 2 3, 12 18, 19 1, 13 2		

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIGrable 15 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

ſ			Type		
		Not for hard usage	1	Hard usage	Extra-hard usage
	SV, SVO, SVOO	SP-1, SP-2, SP-3	NISP-1, NISP-2	SJ, SJO, SJOO, SJOW, SJOOW	S, SO, SOO, SOW, SOOW
Minimum average thickness, mm (mils)	0.38 (15)	Table 14	Table 14	0.824 - 4.17 mm ² (18 - 11 AWG) = 0.76 (30) 5.26 mm ² (10 AWG) = 1.14 (45)	0.824 - 1.65 mm ² (18 - 15 AWG) = 0.76 (30) 2.08 - 6.63 mm ² (14 - 9 AWG) = 1.14 (45) 8.37 mm ² - 33.6 mm ² (8 AWG - 2 AWG) = 1.52 (60)
Minimum thickness at any point	90 percent of min. avg.	Table 14	Table 14	90 percent of min. avg.	90 percent of min. avg.
Minimum thickness at point of contact between conductors	80 percent of min. avg.	N/A	N/A	80 percent of min avg.	80 percent of min avg.
Covering on individual conductors (optional), Clause	4.1.3	N/A	N/A	4.1.3	4.1.3
Assembly, Clause	4.1.4	Parallel	Parallel	4.1.4	4.1.4
Optional shielding, Clause	4.1.5	N/A	4.1.5	4.1.5	4.1.5
Jacket class: 60°C 75°C 90°C 105°C	1.1*, 1.2 1.3 1.4 N/A	N/A N/A N/A	1.1, 1.2 N/A N/A N/A	1.1**. 1.2 1.3 1.4 1.12	1.1 [†] 1.2 1.3 1.4 1.12
Minimum and average thickness of jacket, Table	54	N/A	14	54, 55	56, 57, 58
General Clause	4.1.6	N/A	4.1.6	4.1.6	4.1.6
Overall diameter, Clause	4.1.7	N/A	N/A	4.1.7	4.1.7
Overall braid		Cords wi	th "-B" suffix only, (Clause 4.2.8	
Conductor identification, Clause	4.1.9	4.1.9	4.1.9	4.1.9	4.1.9
I ests, Clause: Insulation resistance Cold bend Spark Dielectric strength Continuity Mechanical strength Flexing of shielded cords Jacket resistance Durability of printing Copper corrosion	5.2.3 5.1.6 5.2.1 5.2.2 5.2.7 5.1.4 5.2.9 5.2.10 5.2.10 5.1.12 5.2.8	5.2.3 5.1.6 5.2.1 5.2.2 5.2.7 N/A N/A N/A 5.1.12 5.2.8	5.2.3 5.1.6 5.2.1 5.2.2 5.2.7 N/A 5.2.9 5.2.10 5.2.10 5.1.12 5.2.8	5.2.3 5.1.6 5.2.1 5.2.2 5.2.7 5.1.4 5.2.9 5.2.10 5.1.12 5.2.8	5.2.3 5.1.6 5.2.1 5.2.2 5.2.7 5.1.4 5.2.9 5.2.10 5.1.12 5.2.8
Bend test, nylon covered	5.1.9	_	5.1.9	5.1.9	5.1.9

Table 15 (Continued)

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIOnable 15 Continued OF Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

			Туре		
		Not for hard usage	9	Hard usage	Extra-hard usage
	SV, SVO, SVOO	SP-1, SP-2, SP-3	NISP-1, NISP-2	SJ, SJO, SJOO, SJOW, SJOOW	S, SO, SOO, SOW, SOOW
Tightness of insulation, Clause	N/A	5.1.10	N/A	N/A	N/A
Flame (FT2) (Optional) FT1, FT4, VW-1	5.1.5.3 5.1.5	5.1.5.3 5.1.5	5.1.5.3 5.1.5	5.1.5.3 5.1.5	5.1.5.3 5.1.5
Physical properties, Table Insulation Jacket	9 12	9 N/A	9 12	9 12	9 12
Additional tests for "W" type cords, Clause Weather resistance Insulation resistance Permittivity and stability factor Swelling and blistering	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	5.1.7 5.2.3.1 5.2.4 5.1.11	5.1.7 5.2.3.1 5.2.4 5.1.11
Additional tests for cords suffixed "-B" Clause: Flexibility of braid Additional tests for cords marked "R", Clause: Abrasion Test Mandrel Pinching Test Mandrel Crushing Test	5.1.15 5.1.14 5.1.16 5.1.17	5.1.15 5.1.14 5.1.16 5.1.17	5.1.15 5.1.14 5.1.16 5.1.17 5.1.18	5.1.15 5.1.14 5.1.16 5.1.17 5.1.18	5.1.15 N/A N/A N/A N/A

Table 15 (Continued)

SJ only.

[†] For S only.

Table 16Dryer and range cords

(See Clauses 4.2.1, 4.2.3.1, 4.2.7.1, 4.3.1, 4.3.3.1, 4.3.7.1, and 4.3.10.3.)

	Туре				
	SRD ^{m,u}	SRDE ^{m,u}	SRDT ^{m,u}	DRT⁰	
Temperature ratings, °C	60	90, 105	60, 75, 90, 105	60, 90	
Maximum voltage, V	300	300	300	300	
Size of conductors, mm ² (AWG)	5.26 - 21.2 (10 - 4)	5.26 - 21.2 (10 - 4)	5.26 - 21.2 (10 - 4)	5.26 - 21.2 (10 - 4)	
Number of conductors	3 – 4*	3 – 4*	3 – 4*	4	
Grounding conductor, Clause	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8	
Conductor:					
Material	Soft, annealed coppe	er (Clause 4.1.1.2)			
Size	Cross-sectional area	and DC resistance (C	Clause 4.1.1.3.1)		
Stranding	Size of wires (Clause	e 4.1.1.7.1), lay of wire	es (Clause 4.1.1.7.2)		
General	Joints, coatings, sepa	arators (Clauses 4.1.1	.4, 4.1.1.5, and 4.1.1.	6)	
Assembly	Twisted or parallel	Twisted or parallel	Twisted or parallel	Twisted	
Shielding (optional), twisted only, Clause	4.1.5	4.1.5	4.1.5	4.1.5	
Insulation class:					
60°C	1	N/A	4	4,14	
75°C	N/A	N/A	5	N/A	
90°C	N/A	15	6	6	
105°C	N/A	16	7	N/A	
Minimum acceptable average thickness,	1.14 (45)	1.14 (45)	1.14 (45)	1.14 (45)	
twisted only, mm (mils)					
Minimum thickness	90 percent of min. ac point of contact	cceptable average; 80	percent of min. accept	otable average at	
Covering on individual conductors (optional), Clause	4.3.4	4.3.4	4.3.4	4.3.4	
Insulation/jacket class, parallel only	1.1, 1.2	1.10, 1.11	1.5, 1.6, 1.7, 1.8	N/A	
Jacket class, twisted only	1.1	(90) 1.10	(60) 1.5	(60) 1.5	
		(105) 1.11	(75) 1.6		
			(90) 1.7	(90) 1.7	
			(105) 1.8		
Minimum and minimum average thickness of jacket, twisted only:					
Minimum average thickness, mm (mils)	1.52 (60)	1.52 (60)	1.52 (60)	1.52 (60)	
Minimum thickness, mm (mils)	1.21 (48)	1.21 (48)	1.21 (48)	1.21 (48)	
Thicknesses of parallel construction, Clause	4.3.10.5	4.3.10.5	4.3.10.5	-	
Tests, Clause:					
Insulation resistance	5.2.3	5.2.3	5.2.3	5.2.3	
Cold bend	5.1.6	5.1.6	5.1.6	5.1.6	
Heat-shock resistance	N/A	5.1.8	5.1.8	5.1.8	
Tightness of insulation [†]	5.1.10.3	5.1.10.3	5.1.10.3	N/A	
Spark	5.2.1	5.2.1	5.2.1	5.2.1	
Dielectric strength	5.2.2	5.2.2	5.2.2	5.2.2	
Continuity	5.2.7	5.2.7	5.2.7	5.2.7	
Jacket resistance	5.2.10	5.2.10	5.2.10	5.2.10	
Durability of printing	5.1.12	5.1.12	5.1.12	5.1.12	
Copper corrosion	5.2.8	5.2.8	5.2.8	5.2.8	
Deformation	N/A	5.1.3	5.1.3	5.1.3	

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIGable 16 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

		Туре				
	SRD ^{m,u}	SRDE ^{m,u}	SRDT ^{m,u}	DRT⁰		
Flame (FT2)	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3		
(Optional) FT1, FT4, VW-1	5.1.5	5.1.5	5.1.5	5.1.5		
Physical properties, Table:						
Insulation	9	9	9	9		
Jacket and integral (parallel)	12	12	12	12		
Additional tests for cords marked "-R", Clause:						
Abrasion	5.1.14	5.1.14	5.1.14	-		
Mandrel pinching	5.1.16	5.1.16	5.1.16	-		
Mandrel crushing	5.1.17	5.1.17	5.1.17	-		
Flexing	5.1.18	5.1.18	5.1.18	-		
* For three-conductor cords, parallel (inte	gral) construction sha	ll be permitted.				

Table 16 (Continued)

[†] For integral, parallel constructions only.

Table 17 Special-use cords

(See Clauses 4.2.1 and 4.2.3.1.)

	Туре			
	C ^u	PD ^u		
Maximum temperature, °C	60	60		
Maximum voltage, V	300*	300*		
Size of conductors, mm ² (AWG)	0.824 - 5.26 (18 - 10)	0.824 - 5.26 (18 - 10)		
Number of conductors	2 or more	2 or more		
Grounding conductor, Clause	4.1.1.8	4.1.1.8		
Conductor:				
Material	Soft, annealed copper (Clause 4.1.1.2)			
Size	Cross-sectional area (Clause 4.1.1.3)			
Stranding	Size of wires (Clause 4.1.1.7), Lay of wire	es (Clause 4.1.1.7.2)		
General	Joints, coatings, separators (Clauses 4.1.1.4, 4.1.1.5, and 4.1.1.6)			
Insulation class	1, 13	1, 13		
(Table 8 and Clause 4.1.2)				
Minimum average thickness, mm ²	0.824 – 1.31 (18	- 16) = 0.76 (30)		
(AWG) = mm (mils)	1.65 – 5.26 (15 -	- 10) = 1.14 (45)		
Minimum thickness	90 percent of m	inimum average		
Covering on individual conductors	Cotton or rayon braid	Cotton or rayon braid		
(optional), Clause	4.3.4	4.3.4		
Assembly of conductors	Twisted	Twisted		
Overall fibrous braid (Clause)	N/A	Cotton or rayon (4.1.3.2)		
Braid saturation	N/A	Optional (4.1.3.2.5)		
Tests, Clause:				
Physical properties, insulation:	Table 9	Table 9		
Cold bend	5.1.6	5.1.6		
Flexibility of braid	5.1.15	5.1.15		
Spark	5.2.1	5.2.1		
Dielectric strength	5.2.2	5.2.2		

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIGrable 17 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 97

92

Table 17 (Continued)

	Туре		
	Cu	PD ^u	
Insulation resistance	5.2.3	5.2.3	
Continuity	5.2.7	5.2.7	
Copper corrosion	5.2.8	5.2.8	
Flame (FT2)	5.1.5.3	5.1.5.3	
(Optional) FT1, VW-1	5.1.5.1, 5.1.5.4	5.1.5.1, 5.1.5.4	
* The maximum voltage is 600 provide 1.14 mm (45 mils).	ed that the average thickness of insulation of	n the individual conductors is at least	

Table 18 Dimensions of two- and three-conductor thermoplastic parallel types

					Type						
	SPT-1	NISPT-1	SPT-2	NISPT-2	SPT-3	SPT-3	SPT-3	SPT-3	SPT-0 ^m	SRDT	
	0.519 (20)	0.519 (20)	0.824 (18)	0.824 (18)	0.824 (18)	2.08 (14)	3.31 (12)	5.26 (10)	0.325 (22)	5.26 - 21.2 (10 - 4)	0.5190 (20)
Size range, mm² (AWG)	0.824 (18)	0.824 (18)	1.04 (17) 1.31 (16) 2.08 (14) [*]	1.04 (17) 1.31 (16)	1.04 (17) 1.31 (16)	1.65 (15)					

(See Clauses 4.3.1, 4.3.3.1, 4.3.7.1, 4.3.10.3, and 4.3.11, Table 20, and Figures 1 – 5.)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIC Table 18 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

CTION OR OM UL Willis Electric Exhibit 2050 Page 98

9	3	

JULY 6, 201	8	N	IMX-J-436-	ANCE-201	8 • CAN/0	CSA C22.2	2 NO. 49-18	3 • UL 62				93 93
				Tab	ole 18 (C	Continu	ed)					Vas Do
			_			Туре		-		-	-	wn
		SPT-1	NISPT-1	SPT-2	NISPT-2	SPT-3	SPT-3	SPT-3	SPT-3	SPT-0 ^m	SRDT	DPTW ^{c,@} DPT ^{c,@}
	Nominal (not a require- ment)	0.76 (30)	N/A	1.14 (45)	N/A	1.52 (60)	2.03 (80)	2.41 (95)	2.79 (110)	0.64 (25)	N/A	1.14 y (45) willis e
	Minimum acceptable average (Dimension A)	N/A	0.38 (15)	N/A	0.76 (30)	N/A	N/A	N/A	N/A	N/A	2.54 (100)	lectric co.,Itd. N/A
Insulation	Minimum thickness at any point (Dimension B)	N/A	0.33 (13)	N/A	0.69 (27)	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A
mm (mils)	Minimum thickness at any point before separation (Dimension F)	0.69 (27)	N/A	1.02 (40)	N/A	1.37 (54)	1.83 (72)	2.18 (86)	2.51 (99)	0.58 (23)	N/A	1.02.,,Itd. For Use By
	Minimum thickness at any point after separation (Dimension G)	0.33 (13)	N/A	0.69 (27)	N/A	1.02 (40)	1.02 (40)	1.02 (40)	1.02 (40)	0.28 (11)	1.04(41)	0.69 (27) (27)
Minimum th web, mm (i (Dimension	nickness of mils) ı H)	1.14 (45)	N/A	2.03 (80)	N/A	2.79 (110)	2.79 (110)	2.79 (110)	2.79 (110)	0.96 (38)	2.79 (110)	2.03 CO (80) LTD
Minimum d between in conductors (Dimension	istance sulated , mm (mils) i E)	N/A	0.38 (15)	N/A	0.51 (20)	N/A	N/A	N/A	N/A	N/A	N/A	N/A willis ele
Minimum d between co a cord with conductor, (Dimension	istance onductors for a grounding mm (mils) i K)	0.69 (27)	N/A	1.02 (40)	N/A	1.37 (54)	1.37 (54)	1.37 (54)	1.37 (54)	0.58 (23)	N/A	1.02 ctric co.,ltd., (40)
Minimum a thickness o on groundii mm (mils) (L)	cceptable of insulation ng conductor, (Dimension	0.38 (15)	N/A	0.38 (15)	N/A	0.38 (15)	0.38 (15)	0.38 (15)	0.38 (15)	N/A	N/A	0.38 (15) electric

Table 18 (Continued)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIOnable 18 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

nibit 2050 Page 99 Willis Electric Exhibit 2050

94	Ν	IMX-J-436-	ANCE-201	18 + CAN/(CSA C22.2	2 NO. 49-18	3 + UL 62			JULY 6, 2	2018 Document W
			Tal	ble 18 (C	Continu	ed)					/as [
											00
		Туре									
	SPT-1	NISPT-1	SPT-2	NISPT-2	SPT-3	SPT-3	SPT-3	SPT-3	SPT-0 ^m	SRDT	DPTW ^{c,W} DPT ^{c,W}
Minimum thickness at any point of insulation on grounding conductor, mm (mils) (Dimension M)	0.33 (13)	N/A	0.33 (13)	N/A	0.33 (13)	0.33 (13)	0.33 (13)	0.33 (13)	N/A	N/A	0.33 By (13) villis ele
Jacket: Minimum average mm (mils) (Dimension C) Minimum thickness, mm	N/A N/A	0.38 (15) 0.33	N/A N/A	0.38 (15) 0.33	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A N/A
* 0.00 mm ² (14.414(C) C				(13)			I	<u> </u>			

2.08 mm² (14 AWG) SPT-2 is for use in Mexico only.

Table 19 Dimensions of two- and three-conductor thermoplastic elastomer parallel types

					Туре				
	SPE-1	NISPE-1	SPE-2	NISPE-2	SPE-3	SPE-3	SP-3	SPE-3	SRDE ^{m,u}
	0.519 (20)	0.519 (20)	0.824 (18)	0.824 (18)	0.824 (18)	2.08 (14)	3.31 (12)	5.26 (10)	5.26 – 21.2 (10 - 4)
Size, mm² (AWG)			1.04 (17)	1.04 (17)					.,
	0.824 (18)	0.824	1.31 (16)	1.31 (16)	1.04 (17)	1.65			
		(10)			1.31 (16)	(15)			

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

			-	Table 19 (Continue	ed)				
		005.4		005.0		Туре	005.0	0.0.0	005.0	0005
	Nominal	0.76 (30)	NISPE-1 N/A	SPE-2 1.14 (45)	NISPE-2 N/A	SPE-3 1.52 (60)	2.03	2.41 (95)	N/A	N/A
	(not a require- ment)						(80)			
	Minimum acceptable average (Dimension A)	N/A	0.38 (15)	N/A	0.76 (30)	N/A	N/A	N/A	N/A	2.54 (100)
nsulation	Minimum thickness at any point (Dimension B)	N/A	0.33 (13)	N/A	0.69 (27)	N/A	N/A	N/A	N/A	N/A
inckness, im (mils)	Minimum thickness at any point before separation (Dimension F)	0.69 (27)	N/A	1.02 (40)	N/A	1.37 (54)	1.83 (72)	2.18 (86)	N/A	N/A
	Minimum thickness at any point after separation (Dimension G)	0.33 (13)	N/A	0.69 (27)	N/A	1.02 (40)	1.02 (40)	1.02 (40)	1.024 (41)	1.04 (41)
linimum thio veb, mm (m Dimension l	ckness of ils) H)	1.14 (45)	N/A	2.03 (80)	N/A	2.79 (110)	2.79 (110)	2.79 (110)	2.79 (110)	2.79 (110)
linimum dis etween insi onductors, Dimension l	itance ulated mm (mils) E)	N/A	0.38 (15)	N/A	0.51 (20)	N/A	N/A	N/A	N/A	N/A
finimum dis etween cor ord with a g onductor, m Dimension l	itance inductors for a grounding nm (mils) K)	0.69 (27)	N/A	1.02 (40)	N/A	1.37 (54)	1.37 (54)	1.37 (54)	1.37 (54)	N/A
linimum aco nickness of rounding co mils) (Dime	ceptable insulation on onductor, mm nsion L)	0.38 (15)	N/A	0.38 (15)	N/A	0.38 (15)	0.38 (15)	0.38 (15)	0.38 (15)	N/A
finimum thio oint of insu rounding co mils) (Dime	ckness at any lation on onductor, mm nsion M)	0.33 (13)	N/A	0.33 (13)	N/A	0.33 (13)	0.33 (13)	0.33 (13)	0.33 (13)	N/A
acket 1inimum av mils) (Dime	erage mm nsion C)	N/A	0.38 (15)	N/A	0.38 (15)	N/A	N/A	N/A	N/A	N/A
linimum thi nils) (Dime	ckness, mm nsion D)	N/A	0.33 (13)	N/A	0.33 (13)	N/A	N/A	N/A	N/A	N/A
		UL	COP	(RIGH1	ED M	ATERIA	AL —			
	ΝΟΤ ΔΙ	THOR	ZED F	OR FUI	RTHE	RFPR	20DU	CTION	OR	

Table 19 (Continued)

Table 20Thermoplastic service cords

(See Clauses 4.3.1, 4.3.3.1, 4.3.7.1, 4.3.10.3, and 4.3.11.)

	Туре							
		Not for hard usage)	Hard usage	Extra-hard usage			
	SVT, SVTO, SVTOO	SPT-1, SPT- 1W ^{c,u} , SPT-2, SPT-2W ^{c,u} , SPT-3	NISPT-1, NISPT-2	SJT, SJTO, SJTW, SJTOW, SJTOOW, SJTOO,	ST, STO, STOO, STW, STOW, STOOW			
Temperature ratings, °C	60, 75, 90, 105	60, 75, 90, 105 [§]	60, 75, 90, 105	60, 75, 90, 105	60, 75, 90, 105			
Maximum voltage, V	300	300	300	300	600			
Size of conductors, mm ² (AWG)	0.824, 1.04, 1.31	0.519, 0.824 (SPT-1, SPT- 1W ^{c,u})	0.519, 0.824 (NISPT-1)	0.824 – 5.26	0.824 – 33.6			
	(18, 17, 16)	(20, 18) (SPT-1, SPT-1W ^{c,u})	(20 ,18) (NISPT-1)	(18 – 10)	(18 – 2)			
		0.824 – 1.31, 2.08* (SPT-2, SPT-2W ^{c,u})	0.824 – 1.31 (NISPT-2)					
		(18 – 16, 14*) (SPT-2, SPT- 2W ^{c,u})	(18 – 16) (NISPT-2)					
		0.824 – 5.26 (SPT-3) (18 – 10) (SPT-3)						
Number of conductors	2 or 3	2 or 3	2 or 3	2 – 6	2 or more			
Grounding conductor, Clause	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8			
Conductor: Material Size Stranding General	Soft, annealed cop Cross-sectional are Size of wires (Clau Joints, coatings, se	per (Clause 4.1.1.2) ea and DC resistanc ise 4.1.1.7.1), lay of eparators (Clauses 4	e (Clause 4.1.1.3.1) wires (Clause 4.1.1 4.1.1.4, 4.1.1.5, and	.7.2) 4.1.1.6)				
Insulation class, Clause	4.1.2	4.1.2	4.1.2	4.1.2	4.1.2			
60°C	4	4	4	4, 8***	4, 8***			
75°C	5	5	5	5, 9***	5, 9***			
90°C	6 7	б 7	6 7	б 7 20***	б 7 20***			
Grounding conductor:	1	7	1	7,20	7,20			
60°C	4	4.8	4.8	4. 8***	4. 8***			
75°C	5	5, 9	5, 9	5, 9***	5, 9***			
90°C	6	6, 10	6, 10	6	6			
105°C	7	7, 11	7, 11	7, 20***	7, 20***			
Minimum average thickness, mm (mils)	0.38 (15)	Table 18	Table 18	0.824 - 4.17 mm ² (18 - 11 AWG) = 0.76 (30)	0.824 - 1.65 mm ² (18 - 15 AWG) = 0.76 (30)			
				5.26 mm ² (10 AWG) = 1.14 (45)	2.08 – 6.63 mm ² (14 – 9 AWG) = 1.14 (45)			

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIC Table 20 Continued on Next Page ON FROM UL

Table 20 (Continued)

	Туре								
		Not for hard usage	•	Hard usage	Extra-hard usage				
	SVT, SVTO, SVTOO	SPT-1, SPT- 1W ^{c,u} , SPT-2, SPT-2W ^{c,u} , SPT-3	NISPT-1, NISPT-2	SJT, SJTO, SJTW, SJTOW, SJTOOW, SJTOO,	ST, STO, STOO, STW, STOW, STOOW				
					8.37 mm ² – 33.6 mm ² (8 AWG – 2 AWG) = 1.52 (60)				
Minimum thickness at any point,	90 percent of min. avg.	Table 18	Table 18	90 percent of min. avg.	90 percent of min. avg.				
Minimum thickness at point of contact	80 percent of min. avg.	N/A	N/A	80 percent of min. avg.	80 percent of min. avg.				
Covering on individual conductors (optional), Clause	4.1.3	4.3.10.4	4.1.3	4.1.3	4.1.3				
Assembly, Clause	4.1.4	Parallel	Parallel	4.1.4	4.1.4				
Optional shielding, Clause	4.1.5	N/A	4.1.5	4.1.5	4.1.5				
Jacket class:									
60°C	1.5	N/A	1.5	1.5	1.5				
75°C	1.6	N/A	1.6	1.6	1.6				
90°C	1.7	N/A	1.7	1.7	1.7				
105°C	1.8	N/A	1.8	1.8	1.8				
Minimum and average thickness of jacket, Table	54	N/A	18	54, 55	56, 57, 58				
General, Clause	4.1.6	NA	4.1.6	4.1.6	4.1.6				
Overall braid		Cords	with "-B" suffix only	, 4.3.8					
Overall diameter, Clause	4.1.7	NA	NA	4.1.7	4.1.7				
Conductor identification, Clause	4.1.9	4.1.9	4.1.9	4.1.9	4.1.9				
Tests, Clause:									
Insulation resistance	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3				
Cold bend	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6				
Bend test, nylon-covered	5.1.9	5.1.9	5.1.9	5.1.9	5.1.9				
Heat-shock resistance	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8				
Spark	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1				
Dielectric strength	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2				
Continuity	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7				
AC leakage current	N/A	N/A	N/A	5.2.11	5.2.11				
Mechanical strength	5.1.4	NA	NA	5.1.4	5.1.4				
Flexing of shielded cords	5.2.9	NA	5.2.9	5.2.9	5.2.9				
Jacket resistance	5.2.10	NA	5.2.10	5.2.10	5.2.10				
Durability of printing	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12				
Copper corrosion	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8				
Deformation	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3				
Tightness of insulation, Clause	N/A	5.1.10	N/A	N/A	N/A				
Flame (FT2)	5.1.5.3	5.1.5.3#	5.1.5.3	5.1.5.3	5.1.5.3				
(Optional) FT1, FT4, VW-1	5.1.5	5.1.5#	5.1.5	5.1.5	5.1.5				

UL COPYRIGHTED MATERIAL –

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIOnable 20 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 103

	Table 20 (Continued)										
			Туре								
		Not for hard usage)	Hard usage	Extra-hard usage						
	SVT, SVTO, SVTOO	SPT-1, SPT- 1W ^{c,u} , SPT-2, SPT-2W ^{c,u} , SPT-3	NISPT-1, NISPT-2	SJT, SJTO, SJTW, SJTOW, SJTOOW, SJTOO,	ST, STO, STOO, STW, STOW, STOOW						
Physical properties, Table:											
Insulation	9	9	9	9	9						
Jacket	12	12	12	12	12						
Additional tests for cords suffixed ″-B″, Clause: Flexibility of braid	5.1.15	5.1.15	5.1.15	5.1.15	5.1.15						
Additional tests for "W" type cords, Clause:											
Weather resistance	N/A	5.1.7	N/A	5.1.7	5.1.7						
Insulation resistance	N/A	5.2.3.1	N/A	5.2.3.1	5.2.3.1						
Permittivity and stability factor	N/A	5.2.4	N/A	5.2.4	5.2.4						
Additional tests for cords marked "-R", Clause:											
Abrasion	5.1.14	5.1.14	5.1.14	5.1.14	N/A						
Mandrel pinching	5.1.16	5.1.16	5.1.16	5.1.16	N/A						
Mandrel crushing	5.1.17	5.1.17	5.1.17	5.1.17	N/A						
Flexing	5.1.18	5.1.18	5.1.18	5.1.18	N/A						

* 2.08 mm² (14 AWG) SPT-2 is for use in Mexico only.

*** For types SJT, SJTO, ST and STO marked low leakage only.

§ SPT-1W^{c,u} and SPT-2W^{c,u} rated 105°C may be used as decorative cords for use in the United States only.

For flame test requirements for Mexico, see Clause 4.3.10.6.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 21 Thermoplastic elastomer service cords

(See Clauses 4.3.1, 4.3.3.1. 4.3.7.1, 4.3.10.3, and 4.3.11.)

			Туре		
	1	lot for hard usage		Hard usage	Extra-hard usage
	SVE, SVEO, SVEOO	SPE-1, SPE-2, SPE-3	NISPE-1 ^{m,u} , NISPE-2	SJE, SJEO, SJEW, SJEOW, SJEOOW, SJEOO	SE, SEO, SEOO, SEW, SEOW, SEOOW
Temperature ratings, °C	90, 105	90, 105	90, 105	90, 105	90, 105
Maximum voltage, V	300	300	300	300	600
Size of conductors, mm ² (AWG)	0.824, 1.04, 1.31	0.519, 0.824 (SPE-1) (20, 18) (SPE-1)	0.519, 0.824 (NISPE-1) (20, 18)	0.824 - 5.26	0.824 - 33.6
		0.824 - 1.31, (SPE-2) (18 - 16) (SPE-2) 0.824 - 5.26 (SPE-3)	(NISPE-1) 0.824 – 1.31 (NISPE-2) (18 – 16) (NISPE-2)		(10 2)
Number of conductors		(18 – 10) (SFE-3)	0.07.0	0.6	0.01 moro
	2 01 3	2 01 3	2 01 3	2-0	
Grounding conductor, Clause	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8
Material Size Stranding General	Soft, annealed cop Cross-sectional are Size of wires (Clau Joints, coatings, se	oper (Clause 4.1.1.2) ea and DC resistanc use 4.1.1.7.1), lay of eparators (Clauses 4	e (Clause 4.1.1.3 wires (Clause 4.1 4.1.1.4, 4.1.1.5, ar	.1) I.1.7.2) nd 4.1.1.6)	
Insulation class, Clause	4.1.2	4.1.2	4.1.2	4.1.2	4.1.2
Circuit conductor: 90°C 105°C Grounding conductor: 90°C 105°C	15 16 N/A N/A	15 16 15 16	15 16 15 16	15 16 N/A N/A	15 16 N/A N/A
Minimum average thickness, mm (mils)	0.38 (15)	Table 19	Table 19	0.824 - 4.17 mm ² (18 - 11 AWG) = 0.76 (30) 5.26 mm ² (10 AWG) = 1.14 (45);	$\begin{array}{c} 0.824 - 1.65 \\ mm^2 \ (18 - 15 \\ AWG) = 0.76 \\ (30) \\ 2.08 - 6.63 \\ mm^2 \ (14 - 9 \\ AWG) = 1.14 \\ (45) \\ 8.37 \ mm^2 - \\ 33.6 \ mm^2 \ (8 \\ AWG - 2 \\ AWG) = 1.52 \\ (60) \end{array}$

UL COPYRIGHTED MATERIAL –

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIGrable 21 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050

Page 105

Table 21 (Continued)

	Туре							
	Ν	lot for hard usage		Hard usage	Extra-hard usage			
	SVE, SVEO, SVEOO	SPE-1, SPE-2, SPE-3	NISPE-1 ^{m,u} , NISPE-2	SJE, SJEO, SJEW, SJEOW, SJEOOW, SJEOO	SE, SEO, SEOO, SEW, SEOW, SEOOW			
Minimum thickness at any point	90 percent of min. avg.	Table 19	Table 19	90 percent of min avg	90 percent of min avg.			
Minimum thickness at point of contact	80 percent of min. avg.	N/A	N/A	80 percent of min. avg.	80 percent of min. avg.			
Covering on individual conductors (optional), Clause	4.1.3	NA	NA	4.1.3	4.1.3			
Assembly, Clause	4.1.4	4.3.10	4.3.11	4.1.4	4.1.4			
Optional shielding, Clause	4.1.5	N/A	4.1.5	4.1.5	4.1.5			
Jacket class: 90°C 105°C	1.10 1.11	N/A N/A	1.10 1.11	1.10 1.11	1.10 1.11			
Minimum and average Thickness of jacket, Table Overall braid	54	N/A Cords with ″	19 '-B″ suffix only. Cl	54, 55 ause 4.3.8	56, 57, 58			
General Clause	416	N/A	416	416	416			
Overall diameter, Clause	417	N/A	N/A	4 1 7	417			
Conductor identification Clause	419	419	419	419	419			
Testa Clause:	4.1.0	4.1.0	4.1.0	4.1.0	4.1.0			
Insulation resistance	523	523	523	523	523			
Cold bend	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6			
Heat-shock resistance	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8			
Spark	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1			
Dielectric strength	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2			
Continuity	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7			
Mechanical strength	5.1.4	N/A	N/A	5.1.4	5.1.4			
Flexing of shielded cords	5.2.9	N/A	5.2.9	5.2.9	5.2.9			
Jacket resistance	5.2.10	N/A	5.2.10	5.2.10	5.2.10			
Durability of printing	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12			
Copper corrosion	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8			
Deformation	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3			
Tightness of insulation, Clause	N/A	5.1.10	N/A	N/A	N/A			
Flame (FT2)	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3			
(Optional) FT1, FT4, VW-1	5.1.5	5.1.5	5.1.5	5.1.5	5.1.5			
Physical properties, Table:								
Insulation	9	9	9	9	9			
Jacket	12	N/A	12	12	12			
Additional tests for "W" type cords, Clause:								
Weather resistance	N/A	N/A	N/A	5.1.7	5.1.7			
Insulation resistance	N/A	N/A	N/A	5.2.3.1	5.2.3.1			

UL COPYRIGHTED MATERIAL –

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIOnable 21 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 106

			Type		
	Ν	lot for hard usage	.) po	Hard usage	Extra-hard usage
	SVE, SVEO, SVEOO	SPE-1, SPE-2, SPE-3	NISPE-1 ^{m,u} , NISPE-2	SJE, SJEO, SJEW, SJEOW, SJEOOW, SJEOO	SE, SEO, SEOO, SEW, SEOW, SEOOW
Permittivity and stability factor	N/A	N/A	N/A	5.2.4	5.2.4
Additional tests for cords suffixed "-B", Clause: Flexibility of braid	5.1.15	5.1.15	5.1.15	5.1.15	5.1.15
Additional tests for cords marked "-R", Clause:					
Abrasion	5.1.14	5.1.14	5.1.14	5.1.14	N/A
Mandrel pinching	5.1.16	5.1.16	5.1.16	5.1.16	N/A
Mandrel crushing	5.1.17	5.1.17	5.1.17	5.1.17	N/A
Flexing	5.1.18	5.1.18	5.1.18	5.1.18	N/A

Table 21 (Continued)

Table 22

Decorative cords

(See Clauses 4.3.1, 4.3.3.1, and 4.3.10.3, and Figure 2.)

			Т	уре		
	PXT ^c	PXWT℃	ТХ°	CXWT℃	CXWT ^c	SPT-0 ^m
Maximum temperature, °C	60	60	60	60	60	60, 75, 90, 105
Maximum voltage, V	125	300	125	300	600	300
Size of conductors, mm ² (AWG)	0.325 and 0.519 (22 and 20)	0.325, 0.519, 0.824, and 1.31 (22, 20, 18, and 16)	0.519 (20)	0.325, 0.519, 0.824, and 1.31 (22, 20, 18, and 16)	2.08 and 3.31 (14 and 12)	0.325 (22)
Number of conductors	2	2	2	2***	2***	2 or 3
Conductor:						
Material	Soft annealed	copper (Clause	4.1.1.2)			
Size	Cross-sectiona	I area and DC r	esistance (Claus	se 4.1.1.3.1)		
Stranding	Size of wires (Clause 4.1.1.7.1), lay of wires (0	Clause 4.1.1.7.2)	
General	Joints, coatings	s, separators (C	lauses 4.1.1.4, 4	4.1.1.5, and 4.1.	1.6)	
Conductor identification, Clause	4.1.9	4.1.9	N/A	N/A	N/A	4.1.9
Maximum lay of conductors, Clause	N/A	N/A	4.1.4.1	4.1.4.1	4.1.4.1	N/A
Insulation class	4	4	4	4	4	4, 5, 6, 7
Minimum average thickness, mm (mils)	0.76 (30)*	1.14 (45)*	0.58 (23)	1.14 (45)	1.52 (60)	0.64 (25)*

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIOnable 22 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

		1	1	уре	1	1
	PXT ^c	PXWT ^c	TX°	CXWT°	CXWT ^c	SPT-0 ^m
linimum thickness before separation for arallel), mm (mils)	0.69 (27)	1.02 (40)	N/A	N/A	N/A	0.58 (23)
linimum average nickness (after eparation), mm (mils)	0.33 (13)	1.02 (40)	N/A	N/A	N/A	0.28 (11)
/linimum web thickness, nm (mils)	1.14 (45)	2.16 (85)	N/A	N/A	N/A	0.96 (38) (2 conductors);
						0.58 (23) (3 conductors)
ssembly	Parallel integral	Parallel integral	Twisted	Twisted***	Twisted***	Parallel integra
ests, Clause:						
hysical properties, sulation	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1
eformation	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3
oark test	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1
electric strength	5.2.2	5.2.2	N/A	5.2.2	5.2.2	5.2.2
ontinuity	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7
ime FT2	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3
me VW-1 (optional)	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4**
me FT1 (optional)	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1
4 (optional)	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2
ld bend	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6
eather resistance	N/A	5.1.7	N/A	5.1.7	5.1.7	N/A
arability of print	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12
at-shock resistance	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8
sulation resistance	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3
ermittivity and stability ctor	N/A	5.2.4	N/A	5.2.4	5.2.4	N/A
opper corrosion	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8
ghtness of insulation	5.1.10	5.1.10	N/A	5.1.10	5.1.10	5.1.10
plication	Indoor	Outdoor	Indoor	Outdoor	Outdoor	Indoor
This value is provided for	r information or	nly. It is not a re	quirement.			
For flame test requireme	ents for Mexico	, see Clause 4.3	3.10.6.			

Table 22 (Continued)

Everstar v. Willis Electric PGR2019-00056
Table 22 (Continued)

Table 23 Decorative cords and clock cords

ULY 6, 2018		NM	X-J-436-ANC	E-2018 + C	CAN/CSA C2	2.2 NO. 49-1	8 + UL 62			103
				Table 2	2 (Contin	ued)				
						Туре				
		PX	(T ^c	PXWT ^c	ТХ℃	CXV	VT° (схwт∘	SPT-0 ^m	
*** A mar product to Packagin two-condu	nufacturer is a user who g of single co uctor CXWT	only permitt will ensure onductor CX twisted light	ed to manufa that it is use (WT shall be ting string.".	acture and ed only in tl marked "N	sell the singl ne fabricatior lot for sale to	le conductor o of two-con o the genera	components ductor twiste al public and	s of a two-co d CXWT ligh restricted fo	nductor CX nting strings. r use only in	NT a
			Decor (See C	T ative co Clauses 4.3	Table 23 rds and c .1, 4.3.3.1, a	lock corc nd 4.3.10.3.	is)			
					T.					
	XTW ^u	CXTW ^u	CXTW ^u	YXTW ^u		LXT ^u	SPT-1W ^{c,u}	DPTW ^{c,u}	DPT ^{c,u}	Clocku
Maximum emperature, °C	105	105	105	105	60	60	105	105	105	60, 105
Vaximum /oltage, V	300	300	300	300	300	300	300	300	300	125
Size of conductors, mm ² (AWG)	0.225	0.225	0.162, 0.205, and 0.259 (25, 24, 23)#	0.519 (20) and 0.824 (18)	0.162, 0.205, and 0.259 (25, 24, 23)#	0.162, 0.205, and 0.259 (25, 24, 23)#	0.510 and	0.510.(20)	-	0.510
	0.525, 0.519 and 0.824 (22, 20 and 18)	0.523, 0.519 and 0.824 (22, 20, and 18)	0.525, 0.519 and 0.824 (22, 20, and 18)		0.525, 0.519 and 0.824 (22, 20, and 18)	0.525, 0.519 and 0.824 (22, 20, and 18)	0.824 (20 and 18)	0.519 (20)	(20)	(20)
Number of conductors	2 – 6	2	1	1	1	1	2	2	2	2
Conductor: Material Size Stranding General	Soft anneal Cross-section Size of wire Joints, coat	ed copper (onal area ar s (Clause 4 ings, separa	Clause 4.1.1 nd DC resista .1.1.7.1), lay ators (Clause	.2) ance (Claus of wires (0 es 4.1.1.4, 4	se 4.1.1.3.1) Clause 4.1.1. I.1.1.5, and 4	7.2) 4.1.1.6)				
Conductor dentification	4.1.9	4.1.9	4.1.9	N/A	N/A	N/A	4.1.9	4.1.9	4.1.9	N/A
Maximum ay of conductors	N/A	4.1.4.1	4.1.4.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A
nsulation class	7	7	7	7	7	7	7	7	7	4, 7
Minimum average hickness, mm (mils)	0.76 (30)*	0.76 (30)	0.76 (30)	1.14 (45)*	0.76 (30)	0.76 (30)	0.76 (30)*	1.14 (45)*	1.14 (45)*	0.76 (30)
<i>A</i> inimum hickness before separation or parallel), mm (mils)	0.69 (27)	0.69 (27)	N/A	N/A	0.69 (27)	0.69 (27)	0.69 (27)	1.02 (40) 0.69 (27)	1.02 (40)	0.69 (27

UL COPYRIGHTED MATERIAL –

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIC Table 23 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

: 5/2/2019 - 9:38 Willis Electric Exhibit 2050

1	0	4
	~	-

					Ту	me					ואַן
	XTW ^u	CXTW ^u	CXTW ^u	YXTW ^u	LXTW ^u	LXT ^u	SPT-1W ^{c,u}	DPTW ^{c,u}	DPT ^{c,u}	Clock ^u	lloa
Minimum thickness after separation, mm (mils)	0.33 (13)	N/A	N/A	N/A	N/A	N/A	0.33 (13)	0.69 (27)	0.69 (27)	0.33 (13)	ided By willi
Minimum web thickness, mm (mils)	1.14 (45)	N/A	N/A	N/A	N/A	N/A	1.14 (45)	2.03 (80)	2.03 (80)	1.14 (45)	s electric c
Assembly	Parallel integral	Twisted	Single	Single	Single	Single	Parallel integral	Parallel integral	Parallel integral	Parallel integral	o., Itc
Tests, Clause:											d. willis
Physical properties, insulation	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1	5.1.1	s electi
Deformation	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3	5.1.3	ic
Spark	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	CO.
Dielectric strength	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	,ltd.
Continuity	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	Fo
Flame FT2	N/A	N/A	N/A	N/A	N/A	N/A	5.1.5.3 (manda- tory)	N/A	N/A	5.1.5.3 (manda- tory)	r Use B
Flame VW-1	5.1.5.4 (manda- tory)	5.1.5.4 (manda- tory)	5.1.5.4 (manda- tory)	5.1.5.4 (manda- tory)	5.1.5.4 (manda- tory)	5.1.5.4 (manda- tory)	5.1.5.4 (optional)	5.1.5.4 (manda- tory)	5.1.5.4 (manda- tory)	5.1.5.4 (optional)	y WILLI
Flame FT1	5.1.5.1 (optional)	5.1.5.1 (manda- tory)	5.1.5.1 (manda- tory)	5.1.5.1 (manda- tory)	S ELEC						
Flame FT4 (optional)	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	TRIC
Cold bend	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	2
Weather resistance	5.1.7	5.1.7	5.1.7	5.1.7	5.1.7	N/A	5.1.7	5.1.7	N/A	N/A	
Durability of print	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	will
Heat-shock resistance	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8	5.1.8	is ele
Insulation resistance	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3	5.2.3	etric
Permittivity and stability factor	5.2.4	5.2.4	5.2.4	5.2.4	5.2.4	N/A	5.2.4	5.2.4	N/A	N/A	co.,Itd.
Copper corrosion	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	, willi
Tightness of insulation	5.1.10	5.1.10	5.1.10	5.1.10	5.1.10	5.1.10	5.1.10	5.1.10	5.1.10	5.1.10	s elec
Additional tests for cords marked "-S":											stric co.,Itd.

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIOnable 23 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

chibit 2050 Page 110 Willis Electric Exhibit 2050

aking										
aking										
uning	XTW ^u	CXTW ^u	CXTW ^u 5 1 24	YXTW ^u	LXTW ^u	LXT ^u	SPT-1W ^{c,u}	DPTW ^{c,u} N/A	DPT ^{c,u}	
ength	10/7		0.1.24	10/74	10/71	10/71		1	10/1	11/7 (
dition of									N/A	
rds										
arked										
⊃° eaking	N/A	N/A	5124	N/A	N/A	N/A	N/A	N/A	N/A	N/A
rength			0.1.21					10/7		
orasion	N/A	N/A	5.1.20	N/A	N/A	N/A	N/A	N/A	N/A	N/A
exing	N/A	N/A	5.1.21	N/A	N/A	N/A	N/A	N/A	N/A	N/A
amination	N/A	N/A	4.3.16.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A
nditioning										
Iditional										
rds										
arked										
arked <":	N1/A	N//A	F 1 0F	NI/A	F 1 0F	F 1 0F	N1/A	N1/A	N1/A	N1/A
arked (": eaking ength	N/A	N/A	5.1.25	N/A	5.1.25	5.1.25	N/A	N/A	N/A	N/A
rked (%: eaking ength plication <i>This value i</i> 0.162 – 0.2 Limited to (N/A Outdoor is provided i 259 (25 – 23 0.325 mm ²	N/A Outdoor for information AWG) for t (22 AWG) of	5.1.25 Outdoor on only. It is ypes with "->	N/A Outdoor not a requii X" suffix on! T	5.1.25 Outdoor rement. y Table 24 marking	5.1.25 Outdoor	N/A Outdoor	N/A Outdoor	N/A Indoor	N/A Indoor
arked (": eaking ength pplication This value i 0.162 – 0.2 Limited to (Voltag	N/A Outdoor is provided i 259 (25 – 23 0.325 mm ² ge and le	N/A Outdoor for informatic 8 AWG) for t <u>i</u> (22 AWG) of eakage cu	5.1.25 Outdoor on only. It is ypes with "-) nly urrents for (S ms leakage	N/A Outdoor not a requin X" suffix onl T r surface Gee Clauses Hi	5.1.25 Outdoor rement. y Table 24 marking 4.3.14.3 an ighest rms I	5.1.25 Outdoor of low-le d 6.2.4.) eakage	N/A Outdoor	N/A Outdoor rrent serv	N/A Indoor /ice cords	N/A Indoor S
arked (": eaking ength plication This value i 0.162 – 0.2 Limited to (Voltag	N/A Outdoor is provided in 259 (25 – 23 0.325 mm ² ge and le	N/A Outdoor for informatic 3 AWG) for t (22 AWG) of cakage cu Highest ru current in m flowing (s	5.1.25 Outdoor on only. It is ypes with "-) nly urrents for (S ms leakage nicroampere	N/A Outdoor not a requir x" suffix on r surface See Clauses See Clauses Hi curr fl	5.1.25 Outdoor rement. y Table 24 marking 4.3.14.3 an ighest rms l ent in micro owing (sepa	5.1.25 Outdoor of low-le d 6.2.4.) eakage pamperes irately)	N/A Outdoor	N/A Outdoor	N/A Indoor rice cords	N/A Indoor
arked (": eaking ength oplication This value i 0.162 – 0.2 Limited to (Voltag	N/A <u>Outdoor</u> is provided if 259 (25 – 23 0.325 mm ² ge and le age e, Vac	N/A Outdoor for informatic 3 AWG) for ty (22 AWG) of cakage cu Highest ru current in m flowing (s between e conducto grounding	5.1.25 Outdoor on only. It is ypes with "-) nly urrents for (S ms leakage hicroampere separately) each circuit or and the conductor	N/A Outdoor not a requir x" suffix on r surface See Clauses See Clauses Hi curr flu be condu	5.1.25 Outdoor rement. y Table 24 e marking s 4.3.14.3 an ighest rms I ent in micro owing (sepa stween each uctor and fo to jacket	5.1.25 Outdoor of low-le d 6.2.4.) eakage pamperes irrately) circuit il covering et	N/A Outdoor	N/A Outdoor	N/A Indoor rice cords cord-surfac upA through jacket	N/A Indoor
arked (": eaking ength pplication This value i 0.162 – 0.2 Limited to (Voltag	N/A Outdoor is provided if 259 (25 – 23 0.325 mm ² ge and le age e, Vac	N/A Outdoor for informatic 3 AWG) for ty (22 AWG) of eakage cu Highest rr current in m flowing (s between e conducto grounding 0	5.1.25 Outdoor on only. It is ypes with "	N/A Outdoor not a requir X" suffix onl X" suffix onl T r surface See Clauses See Clauses Hi curr flu be condu	5.1.25 Outdoor rement. y Table 24 marking s 4.3.14.3 an ghest rms I ent in micro owing (sepa stween each uctor and for to jacket 0 - 9	5.1.25 Outdoor of low-led d 6.2.4.) eakage pamperes irately) circuit il covering et	N/A Outdoor eakage-cut Values to Volts	N/A Outdoor	N/A Indoor vice cords cord-surfac through jacket 9	N/A Indoor
arked (": eaking ength plication This value i 0.162 – 0.2 Limited to (Voltag	N/A Outdoor is provided if 259 (25 – 23 0.325 mm ² ge and le rage e, Vac	N/A Outdoor for information 3 AWG) for t (22 AWG) of (22 AWG) of (22 AWG) of eakage cu eakage cu eakage cu eakage cu eakage cu eakage cu	5.1.25 Outdoor on only. It is ypes with "	N/A Outdoor not a requir x" suffix onl T r surface See Clauses Eee Clauses Hi be condu	5.1.25 Outdoor rement. y Table 24 marking 4.3.14.3 an ent in micro owing (sepa stween each uctor and for to jacket 0 - 9 0 - 12	5.1.25 Outdoor of low-lee d 6.2.4.) eakage pamperes urately) c circuit il covering et	N/A Outdoor	N/A Outdoor	N/A Indoor rice cords cord-surfac through jacket 9 12	N/A Indoor
arked (": eaking ength oplication This value i 0.162 – 0.2 Limited to (Voltag Voltag 12 12 12	N/A Outdoor is provided if 259 (25 – 23 0.325 mm ² ge and le age e, Vac	N/A Outdoor for information 3 AWG) for ty (22 AWG) of cakage cut eakage cut Highest rr current in m flowing (s between e conducto grounding 0 0	5.1.25 Outdoor on only. It is ypes with "-) nly urrents for (S ms leakage nicroampere separately) each circuit or and the conductor - 3 - 5 - 7	N/A Outdoor not a requir x" suffix on r surface See Clauses es Hit curr flu be condu	5.1.25 Outdoor rement. y Table 24 e marking 5 4.3.14.3 an ighest rms I ent in micro owing (sepa etween each uctor and for to jacket 0 - 9 0 - 12 0 - 15	5.1.25 Outdoor of low-le d 6.2.4.) eakage pamperes irately) circuit il covering et	N/A Outdoor	N/A Outdoor	N/A Indoor rice cords cord-surfac through jacket 9 12 15	N/A Indoor
arked (": eaking ength pplication This value i 0.162 – 0.2 Limited to (Voltag	N/A Outdoor is provided if 259 (25 – 23 0.325 mm ² ge and le age e, Vac	N/A Outdoor for informatic 3 AWG) for ty (22 AWG) of eakage cu Highest rr current in m flowing (s between e conducto grounding 0 0 0	5.1.25 Outdoor on only. It is ypes with "	N/A Outdoor not a requir X" suffix onl X" suffix onl T r surface See Clauses Gee Clauses Hi curr flu be condu	5.1.25 Outdoor rement. y Table 24 e marking s 4.3.14.3 and ghest rms I ent in micro owing (sepa etween each uctor and for to jacket 0 - 9 0 - 12 0 - 20 0 - 20	5.1.25 Outdoor of low-led d 6.2.4.) eakage pamperes irately) circuit il covering et	N/A Outdoor	N/A Outdoor	N/A Indoor rice cords cord-surfac through jacket 9 12 15 20 12	N/A Indoor
arked (": eaking ength oplication This value i 0.162 – 0.2 Limited to (Voltag Voltag 12 12 12 12 12 12 12 12 12 12	N/A Outdoor is provided if 259 (25 – 23 0.325 mm ² ge and le age e, Vac 20 20 20 20 20 20 40 10	N/A Outdoor for information B AWG) for ty (22 AWG) of eakage cut Highest rr current in m flowing (s between e conductor grounding 0 0 0 0	5.1.25 Outdoor on only. It is ypes with "	N/A Outdoor not a requir X" suffix onl T r surface See Clauses Es Clauses Hi be condu	5.1.25 Outdoor rement. y Table 24 marking 4.3.14.3 an ent in micro owing (sepa etween each uctor and fo to jacket 0 - 9 0 - 12 0 - 15 0 - 20 0 - 18 0 - 24	5.1.25 Outdoor of low-lee d 6.2.4.) eakage pamperes arately) c circuit il covering et	N/A Outdoor	N/A Outdoor	N/A Indoor	N/A Indoor
arked (": eaking ength oplication This value i 0.162 – 0.2 Limited to 0 Voltag Voltag 12 12 12 12 12 12 12 12 12 12	N/A Outdoor is provided if 259 (25 – 23 0.325 mm ² ge and le age e, Vac 20 20 20 20 20 20 40 40 40 40	N/A Outdoor for information 3 AWG) for ty (22 AWG) of cakage cu eakage cu Highest rr current in m flowing (s between e conducto grounding 0 0 0 0 0 0 0	5.1.25 Outdoor on only. It is ypes with "	N/A Outdoor not a requir x" suffix on r surface See Clauses es Hit curr flube condu	5.1.25 Outdoor rement. y Table 24 e marking 5 4.3.14.3 and ghest rms I ent in micro owing (sepa etween each uctor and for to jacket 0 - 9 0 - 12 0 - 15 0 - 20 0 - 18 0 - 24 0 - 30	5.1.25 Outdoor of low-le d 6.2.4.) eakage bamperes irately) circuit il covering et	N/A Outdoor eakage-cut Values to Volts 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 240 240 240	N/A Outdoor	N/A Indoor	N/A Indoor

Table 24

Voltage and leakage currents for surface marking of low-leakage-current service cords

Veltere	Highest rms leakage current in microamperes	Highest rms leakage current in microamperes	Values to be used in cord-surface marking			
source, Vac	between each circuit conductor and the grounding conductor	between each circuit conductor and foil covering to jacket	Volts	μA to green	μA through jacket	
120	0 – 3	0 - 9	120	3	9	
120	0 – 5	0 - 12	120	5	12	
120	0 - 7	0 – 15	120	7	15	
120	0 - 10	0 – 20	120	10	20	
240	0 - 6	0 - 18	240	6	18	
240	0 - 9	0 – 24	240	9	24	
240	0 - 14	0 – 30	240	14	30	
240	0 – 20	0 - 40	240	20	40	

Everstar v. Willis Electric PGR2019-00056

Table 25

	Table 25	ud a					
Clineresistant neater cords							
		Туре					
	HPN, HPNW ^{c,u} (not for hard usage)	HSJO, HSJOW (hard usage)	HSJOO, HSJOOW (hard usage)				
Aaximum temperature, °C	90, 105	90, 105	90, 105				
Maximum voltage, V Size of conductors, mm ² (AWG)	300 0.824 - 3.31 (18 - 12)	300 0.824 - 3.31 (18 - 12)	300 0.824 - 3.31 (18 - 12)				
	2 01 3	2, 3, 01 4	2, 3, 01 4				
	4.1.1.8	4.1.1.8	4.1.1.8				
Conductor: Material Size Stranding General	Soft, annealed copper (C Cross-sectional area and Size of wires (Clause 4.1 Joints, coatings, separate	Clause 4.1.1.2) I DC resistance (Clause 4 .1.7.1), lay of wires (Clau ors (Clauses 4.1.1.4, 4.1.1	.1.1.3.1) se 4.1.1.7.2) .5, and 4.1.1.6)				
nsulation, Clause	4.1.2	4.1.2	4.1.2				
Circuit conductor, Class: 90°C 105°C Grounding conductor, Class: 90°C	12 18 3 10 12	3, 12 18, 19 N/A	3, 12 18, 19 N/A				
105°C Average thickness and minimum thickness at any	11, 18, 19 27 and 28	N/A 29	N/A 29				
Assembly of conductors. Clause	4.4.4	444	444				
	т.т.т	т.т.т					
90°C	N/A	1.4	1.4				
105°C	N/A	1.12	1.12				
warage thickness and minimum thickness mm	N/A	0.76 (30) min. avg.	0.76 (30) min. avg.				
mils)	NI/A	0.61 (24) min point	0.61 (24) min point				
	4.1.0	4.1.0	4.1.0				
	4.1.9	4.1.9	4.1.9				
Tests, Clause: Flame (FT2) Optional) FT1, FT4, and VW-1	5.1.5.3 5.1.5.1, 5.1.5.2, 5.1.5.4	5.1.5.3 5.1.5.1, 5.1.5.2, 5.1.5.4	5.1.5.3 5.1.5.1, 5.1.5.2, 5.1.5.4				
nsulation resistance	5.2.3	5.2.3	5.2.3				
Cold bend	5.1.6	5.1.6	5.1.6				
urcing	5.2.5 and 5.2.6	N/A	N/A				
ipark	5.2.1	5.2.1	5.2.1				
	5.2.2	5.2.2	5.2.2				
onunully	5.2.7	5.2.7	5.2.7				
	5.1.12	5.1.12	5.1.12				
opper corrosion	5.2.8	5.2.8	5.2.8				
igniness of insulation	5.1.10	N/A	N/A				
acket resistance	N/A	5.2.10	5.2.10				
'hysical properties, Table:	_	_	_				
nsulation	9	9	9				
UL COP	YRIGHIEDIMA	IERIAL -					
NOT AUTHORIZED F	OR FURTHER	REPRODUCT	ION OR				

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

Everstar v. Willis Electric PGR2019-00056

Table	25	(Continued)
		· /

	Туре				
	HPN, HPNW ^{c,u} (not for hard usage)	HSJO, HSJOW (hard usage)	HSJOO, HSJOOW (hard usage)		
Jacket	N/A	12	12		
Additional tests for "W" type cords, Clause:					
Weather resistance	5.1.7	5.1.7	5.1.7		
Insulation resistance	5.2.3.1	5.2.3.1	5.2.3.1		
Permittivity and stability factor	5.2.4	5.2.4	5.2.4		
Swelling and blistering	5.1.11	5.1.11	5.1.11		
Additional tests for cords marked "-R", Clause:					
Abrasion	5.1.14	5.1.14	5.1.14		
Mandrel pinching	5.1.16	5.1.16	5.1.16		
Mandrel crushing	5.1.17	5.1.17	5.1.17		
Flexing	5.1.18	5.1.18	5.1.18		

Table 26 **Heater cords**

(See Clauses	4.4.3.1,	4.4.5.1,	and	4.4.5.2.)	

	HPD ^{m,u} (not for hard usage)	HSJ (hard usage)	HSJW ^{c,u} (hard usage)
Maximum temperature, °C	90, 105	90, 105	90, 105
Maximum voltage, V	300	300	300
Size of conductors, mm ² (AWG) Number of conductors	0.824 – 3.31 (18 – 12) 2, 3 or 4	0.824 – 3.31 (18 – 12) 2, 3, or 4	0.824 – 3.31 (18 – 12) 2, 3, or 4
Grounding conductor, Clause	4.1.1.8	4.1.1.8	4.1.1.8
Conductor: Material Size	Soft, annealed copper (C Cross-sectional area and 4.1.1.3.1)		
Stranding General	Size of wires (Clause 4.1. (Clause 4.1.1.7.2) Joints, coatings, separato 4.1.1.5, and 4.1.1.6)	.1.7.1), lay of wires	
Insulation, Clause Circuit conductor, Class:	4.1.2	4.1.2	4.1.2
90°C 105°C Average thickness and minimum thickness at any point, Table	3, 12 18, 19 29	3, 12 18, 19 29	3, 12 18, 19 29
Insulated conductor braid	4.1.3.2 (optional)	N/A	N/A
Assembly of conductors, Clause	4.4.4	4.4.4	4.4.4
Overall fibrous braid	4.1.3.2	N/A	N/A
Jacket class: 90°C	N/A	1.4	1.4

UL COPYRIGHTED MATERIAL –

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIGrable 26 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Willis Electric Exhibit 2050

		Туре	
	HPD ^{m,u} (not for hard usage)	HSJ (hard usage)	HSJW ^{c,u} (hard usage)
105°C	N/A	1.12	1.12
Average thickness and minimum	N/A	0.76 (30) min. avg.	0.76 (30) min. avg.
thickness, mm (mils)	N/A	0.61 (24) min. point	0.61 (24) min. point
Conductor identification, Clause	4.1.9	4.1.9	4.1.9
Tests. Clause:			
Flame (FT2)	5.1.5.3	5.1.5.3	5.1.5.3
(Optional) FT1, FT4, and VW-1	5.1.5.1, 5.1.5.2, 5.1.5.4	5.1.5.1, 5.1.5.2, 5.1.5.4	5.1.5.1, 5.1.5.2, 5.1.5.4
Insulation resistance	5.2.3	5.2.3	5.2.3
Cold bend	5.1.6	5.1.6	5.1.6
Spark	5.2.1	5.2.1	5.2.1
Dielectric strength	5.2.2	5.2.2	5.2.2
Continuity	5.2.7	5.2.7	5.2.7
Durability of printing	5.1.12	5.1.12	5.1.12
Copper corrosion	5.2.8	5.2.8	5.2.8
Jacket resistance	N/A	5.2.10	5.2.10
Flexibility of braid	5.1.15	N/A	N/A
Physical properties, Table:			
Insulation	9	9	9
Jacket	N/A	12	12
Additional tests for cords marked "-W", Clause:	_	_	_
Weather resistance test	N/A	N/A	5.1.17
Insulation resistance	N/A	N/A	5.2.3.1
Permittivity and stability factor	N/A	N/A	5.2.4
Swelling and blistering	N/A	N/A	5.1.11
Additional tests for cords marked "-R", Clause:			
Abrasion test	5.1.14	5.1.14	5.1.14
Mandrel pinching test	5.1.16	5.1.16	5.1.16
Mandrel crushing test	5.1.17	5.1.17	5.1.17
Flexing test	5.1.18	5.1.18	5.1.18

Table 26 (Continued)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 27 Thickness of insulation and web of two-conductor Type HPN and HPNW^{c,u}

(See Clause 4.4.3.2, Table 25, and Figure 2.)

Size of conductor, mm ² (AWG)						
		0.824 – 1.31	1.65, 2.08	3.31		
		(18 – 16)	(15, 14)	(12)		
Thickness of insulation, mm	Nominal*	1.14 (45)	1.52 (60)	2.41 (95)		
(mils)	Minimum at any point before separation	1.02 (40)	1.37 (54)	2.18 (86)		
	Minimum at any point after separation	0.69 (27)	0.69 (27)	1.02 (40)		
Thickness of web (distance between conductors), mm (mils)	Minimum at any point	2.03 (80)	2.03 (80)	2.79 (110)		
* These values are provided for	or information only. They are not requi	rements.				

Table 28 Thickness of insulation and other dimensions of three-conductor Type HPN and HPNW^{c,u}

(See Clause 4.4.3.2, Table 25, and Figure 3.)

		Size of conductor, mm ² (AWG)		
		0.824 – 1.31	1.65, 2.08	3.31
		(18 – 16)	(15, 14)	(12)
	Nominal*	1.14 (45)	1.52 (60)	2.41 (95)
Thickness of insulation, mm	Minimum at any point before separation	1.02 (40)	1.37 (54)	2.18 (86)
(mils)	Minimum at any point after separation	0.69 (27)	0.69 (27)	1.02 (40)
Minimum distance between o	conductors, mm (mils)	1.02 (40)	1.02 (40)	1.37 (54)
Minimum average thickness of insulation on grounding conductors, mm (mils)		0.38 (15)	0.38 (15)	0.38 (15)
Minimum thickness at any point, mm (mils)		0.33 (13)	0.33 (13)	0.33 (13)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 29 Thickness of insulation on Types HSJO, HSJOW, HSJOO, HSJOOW, HSJ, HSJW^{c,u}, and HPD^{m,u}

(See Clause 4.4.3.3 and Tables 25 and 26.)

Size of conductor mm ² (AWC)	Thickness, mm (mils)			
Size of conductor, min- (Awd)	Minimum average	Minimum at any point		
0.824 - 1.31 (18 - 16)	0.76 (30)	0.69 (27)		
1.65 – 3.31 (15 – 12)	1.14 (45)	1.02 (40)		

Table 30 **Tinsel cords**

		Туре	
	Shaver ^{u,*}	TPT	TST
Maximum temperatures, °C	60	60	60
Maximum voltage, V	300	300	300
Conductor size, mm ² (AWG)	0.100 (27)**	0.100 (27)	0.100 (27)
Number of conductors	2	2	2
Conductor construction, Clause	4.5.2.1.2	4.5.2.1	4.5.2.1
Resistance, Clause	4.5.2.2	4.5.2.2	4.5.2.2
Insulation class	4	4	4
Minimum average thickness, mm (mils)	0.76 (30)	0.76 (30)	0.38 (15)
Minimum thickness at any point, mm (mils)	0.69 (27)	0.69 (27)	0.33 (13)
Thickness of web, minimum at any point, mm (mils)	1.14 (45)	1.14 (45)	N/A
Assembly of conductors, Clause	4.5.4	4.5.4	4.5.4
Jacket class	N/A	N/A	1.5
Minimum average thickness, mm (mils)	N/A	N/A	0.76 (30)
Minimum thickness, mm (mils)	N/A	N/A	0.61 (24)
Conductor identification, Clause	4.5.7	4.5.7	4.5.7
Tests, Clause:			
Deformation	N/A	N/A	5.1.3.2
Cold bend	5.1.6	5.1.6	5.1.6
Heat-shock resistance	5.1.8	5.1.8	5.1.8
Spark	5.2.1	5.2.1	5.2.1
Dielectric strength	5.2.2	5.2.2	5.2.2
Continuity	5.2.7	5.2.7	5.2.7
Copper corrosion	5.2.8	5.2.8	5.2.8
Insulation resistance	5.2.3	5.2.3	5.2.3
Jacket resistance	N/A	N/A	5.2.10
Durability of printing	5.1.12	5.1.12	5.1.12
Flame (FT2)	5.1.5.3	5.1.5.3	5.1.5.3
FT1, FT4, VW-1 (Optional)	5.1.5.1,	5.1.5.1,	5.1.5.1,
	5.1.5.2, 5.1.5.4	5.1.5.2, 5.1.5.4	5.1.5.2, 5.1.5
Physical properties, Table:			
Insulation	9	9	9
Jacket	N/A	N/A	12

(See Clauses 4.5, 4.5.3.1, 4.5.3.2, 4.5.3.3, 4.5.5.1, and 4.5.5.2.)

W and smaller hair clippers and shaving appliances.

** Other gauge sizes may be evaluated in accordance with Clause 4.5.2.1.2.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 31 **Elevator travelling cables**

Table 31 Elevator travelling cables								
(See Clauses 4.6, 4.6.2.1 and 4.6.6.1.)								
Туре								
	E	E	EO	EO	ETT	ETT	ETP	ETP
laximum temperature, C	60	60	60	60	60	60	60	60
/laximum voltage, V	300	600	300	600	300	600	300	600
size of conductor, mm ²	0.519 –	3.31 –	0.519 –	3.31 –	0.519 –	3.31 –	0.519 –	3.31 –
AWG)	3.31 (20 –	33.6 (12 –	3.31 (20 –	33.6 (12 –	3.31 (20 –	33.6 (12 –	3.31 (20 –	33.6 (12 -
	12)	2)	12)	2)	12)	2)	12)	2)
onductor:	2 or more							
laterial	Soft, anneale	ea copper (Cl	ause 4.1.1.2)	(0)	1.0.0			
ize	Cross-sectio	nal area and	DC resistance	e (Clause 4.1	.1.3.1)			
tranding	Size of wires	(Clause 4.1.	1.7.1), lay of	wires (Clause	e 4.1.1.7.2)			
ieneral	Joints, coatir	ngs, separato	rs (Clauses 4	.1.1.4, 4.1.1.5	5, and 4.1.1.6)			
sulation class*	1	1	1	1	4	4	4	4
hickness, Table	32	32	32	32	32	32	32	32
raid over insulation, lause	4.6.3.2	4.6.3.2	4.6.3.2	4.6.3.2	4.6.3.2	4.6.3.2	4.6.3.2	4.6.3.2
ssembly of conductors,	4.6.4	4.6.4	4.6.4	4.6.4	4.6.4	4.6.4	4.6.4	4.6.4
Shielding, Clause	4.6.5	4.6.5	4.6.5	4.6.5	4.6.5	4.6.5	4.6.5	4.6.5
acket class	N/A	N/A	1.2	1.2	1.5	1.5	1.5	1.5
outer braid, Clause	4.6.3.3	4.6.3.3	N/A	N/A	N/A	N/A	N/A	N/A
hickness, Clause	N/A	N/A	4.6.6.3	4.6.6.3	4.6.6.3	4.6.6.3	4.6.6.3	4.6.6.3
ests, Clause:								
lame FT1 (mandatory)	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1	5.1.5.1
lame VW-1 (optional)	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4	5.1.5.4
lame FT4 (optional)	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2	5.1.5.2
Cold bend	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6
leat-shock resistance	N/A	N/A	N/A	N/A	5.1.8	5.1.8	5.1.8	5.1.8
Spark	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1
ielectric strength	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2
sulation resistance	5.2.3.2	5.2.3.2	5.2.3.2	5.2.3.2	5.2.3.2	5.2.3.2	5.2.3.2	5.2.3.2
Continuity of conductors	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7
Deformation	N/A	N/A	N/A	N/A	5.1.3	5.1.3	5.1.3	5.1.3
acket resistance	N/A	N/A	5.2.10	5.2.10	5.2.10	5.2.10	5.2.10	5.2.10
Jurability of printing	5112	5112	5 1 12	5 1 12	5 1 12	5 1 12	5 1 12	5112
Copper corrosion	528	528	528	528	528	528	528	528
hysical properties,	0.2.0	0.2.0	0.2.0	0.2.0	0.2.0	0.2.0	0.2.0	0.2.0
able:	9	9	9	9	9	9	9	9
able:			12	12	12	12	12	12
able: Isulation acket	N/A			·				
able: isulation acket Class for insulation over	N/A	tors only. Sei	e Clauses 4 6	.4.4.2 and 4	6.4.5(a) for ins	sulation of du	plex cables	and coaxia

Conduc	tor size	Average thickness,	Minimum thickness,	Minimum thickness at line of contact,
mm ²	(AWG)	mm (mils)	mm (mils)	mm (mils)
0.519 – 1.31	(20 – 16)	0.51 (20)	0.45 (18)	0.40 (16)
1.65 – 3.31*	(15 – 12*)	0.76 (30)	0.69 (27)	0.61 (24)
3.31 – 5.26	(12 – 10)	1.14 (45)	1.02 (40)	0.91 (36)
8.37 – 32.6	(8 – 2)	1.52 (60)	1.37 (54)	1.22 (48)
* 3.31 mm ² (12 AWG) ra	ted 300 V only.			

(See Clause 4.6.2.2.)

Table 33Braid requirements for Type E

(See Clause 4.6.3.3.2.)

Diameter under braid, mm (in)	Minimum thickness of each braid, mm (mils)	Minimum size and ply of yarn, denier/number of ends
0 - 5.08 (0 - 0.20)	0.38 (15)	30/2 or 14/1
5.09 - 8.89 (0.21 - 0.35)	0.43 (17)	26/2 or 12/1
8.90 - 20.3 (0.36 - 0.80)	0.50 (20)	20/2 or 10/1
20.4 - 38.1 (0.81 - 1.50)	0.60 (24)	12/2 or 6/1
38.2 (1.51) and larger	0.78 (31)	3/8

Table 34

Lay of conductors of Types E, EO, ETT, and conductor groups of Type ETP

(See Clauses 4.6.4.1 and 4.6.4.4.3.)

Number of conductors	Maximum length of lay		
2	30 times conductor diameter		
3	35 times conductor diameter		
4	40 times conductor diameter		
5 or more	15 times the overall diameter of the assembly, except that in a multiple layer cable the length of the lay of the conductors in the inner layers shall be not more than 20 times the overall diameter of that layer		
Note: "Conductor diameter" means the diameter of the individual, finished, insulated conductors of which the cord or cable is composed			

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd.

Table 35 Thickness of jacket on Type EO

(See Clause 4.6.6.2.)

Coro diamatar mm (in)	Thickness, mm (mils)			
Core diameter, min (m)	Minimum average	Minimum at any point		
0 - 12.7 (0 - 0.50)	2.03 (80)	1.62 (64)		
12.8 - 19.1 (0.51 - 0.75)	2.41 (95)	1.93 (76)		
19.2 – 25.4 (0.76 – 1.00)	2.79 (110)	2.23 (88)		
25.5 - 38.1 (1.01 - 1.50)	3.17 (125)	2.54 (100)		
38.2 - 50.8 (1.51 - 2.00)	3.56 (140)	2.84 (112)		

Table 36

Thickness of jacket on Types ETT and ETP and minimum thickness of mandatory web(s) on **Type ETP**

(See Clause 4.6.6.2.)

	Thickness, mm (mils)		
Core diameter, mm (in)	Minimum average	Minimum at any point of jacket and web(s)	
0 - 6.3 (0 - 0.25)	0.89 (35)	0.71 (28)	
6.4 - 12.7 (0.26 - 0.50)	1.14 (45)	0.91 (36)	
12.8 – 25.4 (0.51 – 1.00)	1.52 (60)	1.21 (48)	
25.5 (1.01) and larger	2.03 (80)	1.62 (64)	

Notes:

(1) The core diameter shall be measured over the fibrous covering enclosing the conductor assembly for Type ETT. (2) For Type ETP, the core diameter for group constructions shall be determined by measuring the diameter of the largest group, including the fibrous covering if present. For nongroup constructions, the core diameter shall be determined by measuring the diameter of the largest conductor in the cable. (3) Web thickness is the distance (jacket thickness) between conductors, support members, or groups.

Table 37 Hoistway cables

(See Clauses 4.7, 4.7.4.2, and 4.7.5.6.)

	Туре							
		Hoistway cables						
Maximum temperature, °C	60	60 60 90 90						
Maximum voltage, V	300	600						
Size of conductor, mm ² (AWG)	0.519 - 3.31 (20 - 12)	0.824 - 3.31 (18 - 12)	0.519 – 3.31 (20 – 12)	0.824 – 3.31 (18 – 12)				
Conductor:	2 or more							
Material	Soft, annealed copper (Clause 4.1.1.2)							
Size	Cross-sectional area a	Cross-sectional area and DC resistance (Clause 4.1.1.3.1)						
Stranding	Size of wires (Clause 4	4.1.1.7.1), lay of wires (0	Clause 4.1.1.7.2)					
General	Joints, coatings, separa	ators (Clauses 4.1.1.4, 4	1.1.1.5, and 4.1.1.6)					
Insulation class	4	4	17	17				
Thickness, Table	38	38	38	38				
Assembly of conductors, Clause	4.7.5	4.7.5	4.7.5	4.7.5				
Jacket class (optional)	1.5	1.5	1.7	1.7				
Thickness, Table	39	39	39	39				
Test, Clause:								

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIGrable 37 Continued on Next Page ON FROM UL

For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 Willis Electric Exhibit 2050 Page 119

	Type Hoistway cables					
Deformation, insulation, and jacket	5.1.3	5.1.3	5.1.3	5.1.3		
Flame FT1 (mandatory)	5.3.1	5.3.1	5.3.1	5.3.1		
Flame FT4, VW-1 (optional)	5.1.5.2, 5.1.5.4	5.1.5.2, 5.1.5.4	5.1.5.2, 5.1.5.4	5.1.5.2, 5.1.5.4		
Cold bend	5.3.3	5.3.3	5.3.3	5.3.3		
Heat-shock resistance	5.3.2	5.3.2	5.3.2	5.3.2		
Spark	5.2.1	5.2.1	5.2.1	5.2.1		
Dielectric strength	5.3.4 and 5.2.2	5.3.4 and 5.2.2	5.3.4 and 5.2.2	5.3.4 and 5.2.2		
Insulation resistance	5.2.3.2	5.2.3.2	5.2.3.2	5.2.3.2		
Continuity	5.2.7	5.2.7	5.2.7	5.2.7		
Copper corrosion	5.2.8	5.2.8	5.2.8	5.2.8		
Jacket resistance	5.2.10	5.2.10	5.2.10	5.2.10		
Durability of printing	5.1.12	5.1.12	5.1.12	5.1.12		
Physical properties, Table:						
Insulation	9	9	9	9		
Jacket (where applicable)	12	12	12	12		

Table 37 (Continued)

Table 38 Insulation thicknesses for hoistway cables

(See Clauses 4.7.4.3 and 4.7.4.4.)

	600 V cable	es, mm (mils)	300 V cables, mm (mils)		
Size, mm ⁻ (AwG)	Minimum average	Minimum at any point	Minimum average	Minimum at any point	
0.519 (20)	-	-	0.50 (20)	0.45 (18)	
0.824 (18)	0.76 (30)	0.69 (27)	0.50 (20)	0.45 (18)	
1.31 (16)	0.76 (30)	0.69 (27)	0.50 (20)	0.45 (18)	
2.08 (14)	0.76 (30)	0.69 (27)	0.76 (30)	0.69 (27)	
3.31 (12)	0.76 (30)	0.69 (27)	0.76 (30)	0.69 (27)	

Notes:

(1) For 300 V constructions in sizes 0.519 mm² (20 AWG), 0.824 mm² (18 AWG), and 1.31 mm² (16 AWG), an alternative insulation thickness of 0.38 mm (15 mils) minimum average (0.33 mm (13 mils) minimum) for PVC plus 0.10 mm (4 mils) minimum at any point of nylon covering shall be permitted.

UL COPYRIGHTED MATERIAL –

(2) A thickness of 80 percent of the minimum average shall be permitted only at the line of contact between conductors.

DISTRIBUTION WITHOUT PERMISSION FROM UL Willis Electric Exhibit 2050 Page 120

	Та	ble	39	
Jacket	thickness	for	hoistway	cables

(See Clause 4.7.5.6.)

Core diameter, mm (in)	Jacket thic	kness, mm (mils)
	Minimum average	Minimum at any point
0 - 5.7 (0 - 0.40)	0.50 (20)	0.40 (16)
5.8 - 17.7 (0.41 - 0.70)	0.76 (30)	0.61 (24)
17.8 – 25.4 (0.71 – 1.00)	0.88 (35)	0.70 (28)
25.5 - 38.1 (1.01 - 1.50)	1.02 (40)	0.81 (32)
38.2 (1.51) and larger	1.14 (45)	0.91 (36)

Table 40Electric vehicle cable

(See Clauses 4.8, 4.8.3.1, 4.8.7.1, and 5.1.3.2.)

	Туре					
	Hard usage			Extra hard us	sage	
	EVJ	EVJE	EVJT	EV	EVE	EVT
Temperature ratings, °C	60, 75, 90,	90, 105	60, 75, 90,	60, 75, 90,	90, 105	60, 75, 90,
	105		105	105		105
Maximum voltage, V	300			600 or 1000		
Size of conductors, mm ² (AWG)	0.824 – 3.31	(18 – 12)		0.824 – 253 (18 AWG – 500	kcmil)
Number of circuit conductors	2 – 6			2 or more		
Data, signal and communications cables	Optional, any	conductor sizes	s indicated in Ta	able 1		
Optical fibre members	Optional (Clau	use 4.1.12)				
Covering	4.8.4	4.8.4	4.8.4	4.8.4	4.8.4	4.8.4
Grounding conductor, Clause	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8	4.1.1.8
Circuit conductor:						
Material	Soft, annealed copper (Clause 4.1.1.2)		-	-		
Size	Cross-section	al area/DC resi	stance (Clause	4.1.1.3.1)		
Stranding	Size of wires	(Clause 4.1.1.7	.1), lay of wires	(Clause 4.1.1.7	7.2)	
General	Joints, coating	gs, separators (Clauses 4.1.1.4	, 4.1.1.5, and 4	.1.1.6)	
Data/signal/communications						
conductor:						
Material	Soft, annealed	d copper (Claus	e 4.1.1.2)			
Size	Diameter or c	ross-sectional a	rea (Clause 4.1	.1.3.1)		
Stranding	Size of wires	(Clause 4.1.1.7	.1), lay of wires	(Clause 4.1.1.7	7.2)	
General	Joints, coating	gs, separators (Clauses 4.1.1.4	, 4.1.1.5, and 4	.1.1.6)	
Insulation class, Clause	4.1.2	4.1.2	4.1.2	4.1.2	4.1.2	4.1.2
Circuit and signal conductors						
60°C	1, 13	N/A	4	1, 13	N/A	4
75°C	2	N/A	5	2	N/A	5
90°C	3, 12	15	6	3, 12	15	6
105°C	18, 19	16	7	18, 19	16	7
Grounding conductor						
60°C	1, 13	N/A	4	1, 13	N/A	4
75°C	2	N/A	5	2	N/A	5
90°C	3, 12	15	6	3, 12	15	6
105°C	18, 19	16	7	18, 19	16	7

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIOnable 40 Continued OF Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056 Willis Electric Exhibit 2050

Table 40 (Continued)

				Туре		
	Hard usage			Extra hard u	isage	
	EVJ	EVJE	EVJT	EV	EVE	EVT
Insulation thickness when covering is not employed:						
Minimum average thickness, mm (mils)	0.76 (30)			0.325 – 1.65	mm² (22 – 1	5 AWG) 0.76 (30)
				2.08 – 6.63 r	nm² (14 – 9 A	WG) 1.14 (45)
				8.37 – 33.6 r	nm² (8 – 2 A\	NG) 1.52 (60)
				42.4 - 107.2	$mm^2 (1 - 4/0)$	AWG) 2.03 (80)
				127 – 253 m	m² (250 – 50	0 kcmil) 2.41 (95)
Minimum thickness at any point, mm (mils)	0.68 (27)			90 percent of thickness	f the minimum	n average
Minimum thickness at point of contact, mm (mils)	0.61 (24)			80 percent of thickness	f the minimum	n average
Insulation thickness when covering is employed:						
Minimum average thickness, mm (mils)	0.51 (20)			0.325 – 1.65	mm² (22 – 1	5 AWG) 0.51 (20)
				2.08 – 6.63 r	mm² (14 – 9 A	WG) 0.76 (30)
				8.37 – 33.6 r	mm² (8 – 2 A\	NG) 1.14 (45)
				42.4 - 107.2	$mm^2 (1 - 4/0)$	AWG) 1.52 (60)
				127 – 253 m	m ² (250 – 50	0 kcmil) 1.90 (75)
Minimum thickness at any point, mm (mils)	0.45 (18)			90 percent of thickness	f the minimum	n average
Minimum thickness at point of contact of insulation, mm (mils)	0.40 (16)			80 percent of thickness	f the minimum	n average
Minimum nylon thickness, mm (mils) over insulation	0.10 (4)			0.325 – 1.65	mm² (22 – 1	5 AWG) 0.10 (4)
				2.08 – 6.63 r	nm² (14 – 9 A	WG) 0.13 (5)
				8.37 – 33.6 r	mm² (8 – 2 A\	NG) 0.15 (6)
				42.4 - 107.2	$mm^2 (1 - 4/0)$	AWG) 0.18 (7)
				127 – 253 m	m² (250 – 50	0 kcmil) 0.20 (8)
Assembly, Clause	4.1.4	4.1.4	4.1.4	4.1.4	4.1.4	4.1.4
Optional shielding, Clause	4.1.5	4.1.5	4.1.5	4.1.5	4.1.5	4.1.5
Jacket class						
60°C	1.2	N/A	1.5	1.2	N/A	1.5
75°C	1.3	N/A	1.6	1.3	N/A	1.6
90°C	1.4	1.10	1.7	1.4	1.10	1.7
105°C	1.12	1.11	1.8	1.12	1.11	1.8
Minimum and average thickness of jacket, Table	54, 55			57, 58		
General, Clause	4.1.6	4.1.6	4.1.6	4.1.6	4.1.6	4.1.6
Overall diameter, Clause	4.8.8	4.8.8	4.8.8	4.8.8	4.8.8	4.8.8
Conductor identification, Clause	4.1.9	4.1.9	4.1.9	4.1.9	4.1.9	4.1.9
Tests, Clause						
Cold bend	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6	5.1.6
Heat-shock resistance	N/A	5.1.8	5.1.8	N/A	5.1.8	5.1.8
Spark	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1	5.2.1
Dielectric strength	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2	5.2.2
Continuity	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7	5.2.7
Mechanical strength	5.1.4	5.1.4	5.1.4	5.1.4	5.1.4	5.1.4

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

OI AUTHORIZED FOR FURTHER REPRODUCTION OF

DISTRIBUTIO Table 40 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

			Ту	ре		
	Hard usage			Extra hard usage		
	EVJ	EVJE	EVJT	EV	EVE	EVT
Flexing of shielded cords	5.2.9	5.2.9	5.2.9	5.2.9	5.2.9	5.2.9
Jacket resistance	5.2.10	5.2.10	5.2.10	5.2.10	5.2.10	5.2.10
Durability of printing	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12	5.1.12
Copper corrosion	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8	5.2.8
Bend test on nylon-covered conductors	5.1.9	5.1.9	5.1.9	5.1.9	5.1.9	5.1.9
Deformation	N/A	5.1.3	5.1.3	N/A	5.1.3	5.1.3
Low temperature impact (Sizes 10 AWG and larger)	N/A	N/A	N/A	5.1.22	5.1.22	5.1.22
Crush resistance	5.1.23	5.1.23	5.1.23	5.1.23	5.1.23	5.1.23
Flame (FT2)	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3	5.1.5.3
(Optional) FT1, FT4, VW-1	5.1.5	5.1.5	5.1.5	5.1.5	5.1.5	5.1.5
Weather resistance	5.1.7	5.1.7	5.1.7	5.1.7	5.1.7	5.1.7
Insulation resistance	5.2.3.1	5.2.3.1	5.2.3.1	5.2.3.1	5.2.3.1	5.2.3.1
Permittivity and stability factor	5.2.4	5.2.4	5.2.4	5.2.4	5.2.4	5.2.4
Swelling and blistering	5.1.11	N/A	N/A	5.1.11	N/A	N/A
Physical properties, Table						
Insulation	9	9	9	9	9	9
Jacket	12	12	12	12	12	12

Table 40 (Continued)

Table 41 Deformation test

(See Clauses 5.1.3.1.)

Size of conductor, mm ² (AWG)	Mass on insulation specimen, g		
0.162 – 0.325 (25 – 22)	200		
0.519, 0.824, 1.04 (20, 18, 17)	300		
1.31 (16)	400		
1.65 – 42.4 (15 – 1)	500		
53.5 - 107.2 (1/0 - 4/0)	1000		
127 – 253 (250 – 500 kcmil)	2000		
		Test temperature, °C	;
Insulation class:	100 ±2	121 ±2	150 ±2
4, 5, 6, 7, 10, 11, 17		Х	
14, 15, 16			Х
8, 9	X		
Jacket class:			
1.5, 1.6, 1.7, 1.8		Х	
1.9, 1.10, 1.11			Х

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 42Temperature for cold bend test

(See Clause 5.1.6.)

Type of cord	Test temperature
Any "W" cord or "electric vehicle cable" not marked or marked -40°C	–40°C
Any "W" cord or "electric vehicle cable" marked -50°C	–50°C
Any "W" cord or "electric vehicle cable" marked -60°C	-60°C
Any "W" cord or "electric vehicle cable" marked -70°C	-70°C
Any other type of cord	–20°C

Table 43Mandrel diameter for cold bend test

(See Clauses 5.1.6 and 5.1.7.)

Minor diameter of flat cord or overall diameter of round finished cord, mm (in)	Diameter of mandrel, mm (in)	Number of turns around mandrel (see Note 1)
0 - 3.18 (0 - 0.125)	6.5 (0.25)	6
3.19 - 6.35 (0.126 - 0.250)	12.7 (0.50)	6
6.36 - 9.52 (0.251 - 0.375)	19.0 (0.75)	6
9.53 - 12.70 (0.376 - 0.500)	25.4 (1.00)	6
12.71 - 15.88 (0.501 - 0.625)	31.8 (1.25)	6
15.89 - 19.05 (0.626 - 0.750)	38.0 (1.50)	1
19.06 - 22.22 (0.751 - 0.874)	44.5 (1.75)	1
22.23 - 25.40 (0.875 - 1.00)	50.8 (2.00)	1
25.41 – 28.58 (1.01 – 1.13)	57.1 (2.25)	1
28.59 – 31.75 (1.14 – 1.25)	63.5 (2.50)	1
31.76 - 34.92 (1.26 - 1.38)	69.9 (2.75)	1
34.93 – 38.10 (1.39 – 1.50)	76.2 (3.00)	1
38.11 – 41.28 (1.51 – 1.63)	82.6 (3.25)	1
41.29 – 44.45 (1.64 – 1.75)	88.9 (3.50)	1
44.46 - 47.62 (1.76 - 1.88)	95.2 (3.75)	1
47.63 - 50.8 (1.89 - 2.00)	101.6 (4.00)	1
Larger than 50.8 (2.00)	2 X cable diameter	1
Note:		-

(1) The specimen shall be wound six close turns around the mandrel.

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 44 Mandrel diameter for heat-shock resistance test on thermoplastic insulation, mm (in)

(See Clause 5.1.8.1.)

Size of conductor mm ² (AWG)	Types PXT ^c , TX ^c , ETT, ETP, SPT-1, SPE-1, SPT- 1W ^{c,u} , SPT- 0 ^m , clock cord ^u , and individual conduct or of jacketed cords and cables	Type TPT	Shaver cord ^u	Individual conductor of Type TST	Type XTW ^u , CXTW ^u , LXT ^u , LXTW ^u	Type CXWT⁰	Type YXWT ^u	Types SPT-2, SPT- 2W ^{c,u} , SPE-2, PXWT ^c , DPTW ^{c,u} , DPT ^{c,u}	Types SPT-3, SPE-3
0.100 (27)	-	2.4 (0.094)	2.4 (0.094)	2.4 (0.094)	-	-	-	-	-
0.162 (25)	-	-	-	-	2.4 (0.094)	-	-	-	-
0.205 ((24)	-	-	_	_	2.4 (0.094)	-	-	-	-
0.259 (23)	-	-	_	-	2.4 (0.094)	-	-	-	-
0.325 (22)	2.0 (0.078)	-	2.4 (0.094)	-	2.4 (0.094)	3.6 (0.14)	-	4.0 (0.16)	-
0.519 (20)	2.4 (0.094)	-	2.4 (0.094)	-	2.4 (0.094)	3.6 (0.14)	4.0 (0.16)	4.0 (0.16)	-
0.824 (18)	2.8 (0.11)	-	-	-	2.4 (0.094)	3.6 (0.14)	4.0 (0.16)	4.0 (0.16)	5.2 (0.20)
1.04 (17)	3.0 (0.12)	-	-	-	-	-	-	4.6 (0.18)	5.4 (0.21)
1.31 (16)	3.3 (0.13)	-	-	-	-	4.0 (0.16)	-	5.2 (0.20)	5.6 (0.22)
1.65 (15)	3.6 (0.14)	-	-	-	-	-	-	-	5.8 (0.23)
2.08 (14)	4.0 (0.16)	-	-	-	-	6.7 (0.27)	-	5.6 (0.22)	6.0 (0.24)
2.63 (13)	4.4 (0.17)	-	-	-	-	-	-	-	-
3.31 (12)	4.8 (0.19)	-	-	-	-	6.7 (0.27)	-	-	7.1 (0.28)
4.17 (11)	5.2 (0.20)	-	-	-	-	-	-	-	-
5.26 (10)	5.6 (0.22)	-	-	-	-	-	-	-	7.9 (0.31)
6.63 (9)	6.1 (0.24)	-	-	-	-	-	-	-	-
8.37 (8)	6.7 (0.27)	-	-	-	-	-	-	-	-
10.6 (7)	7.3 (0.29)	-	-	-	-	-	-	-	-
13.3 (6)	7.9 (0.31)	-	-	-	-	-	-	-	-
16.8 (5)	8.5 (0.33)	-	-	-	-	-	-	-	-
21.2 (4)	9.1 (0.36)	-	-	-	-	-	-	-	-
26.7 (3)	10.0 (0.39)	-	-	-	-	-	-	-	-
33.6 (2)	11.0 (0.44)	-	-	-	-	-	-	-	-
42.4 (1)	12 (0.48)								
53.5 (1/0)	13 (0.53)								
67.4 (2/0)	15 (0.59)								
85.0 (3/0)	16.5 (0.65)								
107.2 (4/0)	18 (0.71)								
127 - 253	1.5 times								
(250 – 500 komil)	insulated								
Normin)	diameter								

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 45 Mandrel diameter for heat-shock resistance test on jackets

(See Clause 5.1.8.2.)

Overall diameter of finished cord or minor dimension of	Diameter of mandrel, mm (in)
flat cords, mm (in)	
0.0 - 6.35 (0 - 0.250)	12.7 (0.50)
6.36 - 7.92 (0.251 - 0.312)	20.6 (0.81)
7.93 – 9.52 (0.313 – 0.375)	28.6 (1.13)
9.53 - 11.1 (0.376 - 0.437)	34.9 (1.37)
11.2 - 12.7 (0.438 - 0.500)	42.8 (1.69)
12.8 - 14.3 (0.501 - 0.563)	50.8 (2.00)
14.4 - 15.9 (0.564 - 0.625)	54.0 (2.13)
16.0 - 17.4 (0.626 - 0.685)	65.1 (2.56)
17.5 – 19.0 (0.686 – 0.750)	73.0 (2.87)
19.1 – 21.6 (0.751 – 0.850)	79.4 (3.13)
21.7 – 25.4 (0.851 – 1.00)	82.6 (3.25)
25.5 – 28.6 (1.01 – 1.13)	88.9 (3.50)
28.7 – 31.7 (1.14 – 1.25)	95.3 (3.75)
31.8 - 34.9 (1.26 - 1.37)	108 (4.25)
35.0 - 38.1 (1.38 - 1.50)	114 (4.30)
38.2 - 41.3 (1.51 - 1.63)	127 (5.00)
41.4 - 44.4 (1.64 - 1.75)	133 (5.25)
44.5 – 47.6 (1.76 – 1.87)	143 (5.63)
47.7 - 50.8 (1.88 - 2.00)	152 (6.00)
Larger than 50.8 (2.00)	3 X cable diameter

Notes:

(1) For round cable having an overall diameter less than 19 mm (0.748 in), the specimen shall be wound six close turns around the mandrel. For round cable having a diameter of 19 mm (0.748 in) or greater, the specimen shall be wound one complete turn around the mandrel.

(2) For flat cables having a major dimension less than 25 mm (1 in), the specimen shall be wound six turns around the mandrel. For flat cables having a major dimension of 25 mm (1 in) or greater, the specimen shall be wound one turn around the mandrel.

Table 46
Spark test voltage

(See	Clause	5.2.1.)
------	--------	---------

Type of cord or cable	Conductor size, mm ² (AWG)	Average insulation thickness, mm (mils)	AC spark test potential, kV*
SV, SVO, SVOO, SVE, SVEO, SVEOO, SVT, SVTO, SVTOO	0.824, 1.04, 1.31 (18, 17, 16)	0.38 (15)	3
TST	0.100 (27)	0.38 (15)	3
SJ, SJT, SJTO, SJTOO, SJE,	0.325 – 4.17 (22 – 11)	0.76 (30)	6
SJEO, SJEOO, SJO, SJOO, SJOW, SJOOW, SJTW, SJTOW, SJTOOW, SJEW, SJEOW, SJEOOW, EVJT, EVJE, EVJ	5.26 (10)	1.14 (45)	7.5
HSJO, HSJOW, HSJOO, HSJOOW,	0.824 – 3.31 (18 – 16)	0.76 (30)	6
HPD ^{m,u} , HSJ, HSJW ^{c,u}	1.65 – 3.31 (15 – 12)	1.14 (45)	7.5

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIO Table 46 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Type of cord or cable	Conductor size, mm ² (AWG)	Average insulation thickness, mm (mils)	AC spark test potential, kV*
S, SO, SOO, SOW, SOOW, ST, STO, STOO, STW, STOW,	0.325 - 1.65 (22 - 15)	0.76 (30) or 0.51 (20) with nylon covering	6
STOOW, SE, SEO, SEOO, SEW, SEOW, SEOOW EV, EVE, EVT	2.08 - 6.63 (14 - 9)	1.14 (45) or 0.76 (30) with nylon covering	7.5
	8.37 – 33.6 (8 – 2)	1.52 (60) or 1.14 (45)	10
		with hylon covering	
EV, EVE ^{m,u} , EVT	42.4 - 107.2 (1 - 4/0)	2.03 (80) or 1.52 (60) with pylon covering	13
	127 – 253 (250 – 500 kcmil)	2.41 (95) or 190 (75) with nylon covering	15
DRT ^c , SRDE ^{m,u} , SRDT ^{m,u} , SRD ^{m,u}	5.26 - 21.2 (10 - 4)	1.14 (45)	7.5
ТРТ	0.100 (27)	0.76 (30)	6
Shaver cord ^u	0.100 – 0.516 (27 – 20)	0.76 (30)	6
SPT-0 ^m	0.325 (22)	0.64 (25)	4
SPT-1, SPE-1, clock ^u , SP-1, SPT- 1W ^{c,u}	0.519 – 0.824 (20 – 18)	0.76 (30)	6†
SPT-2, SPE-2, SP-2, SPT-2W ^{c,u} , SPT-2, DPTW ^{c,u} , DPT ^{c,u}	0.519 – 1.31 (20 – 16)	1.14 (45)	6†
SPT-2	2.08 (14)	1.14 (45)	6†
SPT-3, SPE-3, SP-3	0.824 – 1.31 (18 – 16)	1.52 (60)	6†
	1.65, 2.08 (15, 14)	2.03 (80)	6†
	3.31 (12)	2.41 (95)	7.5†
	5.26 (10)	2.79 (110)	7.5†
NISPT-1, NISPE-1, NISP-1	0.519 – 0.824 (20 – 18)	0.38 (15)	3†
NISPT-2, NISPE-2, NISP-2	0.824 – 1.31 (18 – 16)	0.76 (30)	5†
TXc	0.519 (20)	0.58 (23)	5
PXT ^c	0.325, 0.519 (22, 20)	0.76 (30)	6
CXWT℃	0.325 – 1.31 (22 – 16)	1.14 (45)	6
	2.08 - 3.31 (14 - 12)	1.52 (60)	7.5
PXWT ^c	0.325 – 1.31 (22 – 16)	1.14 (45)	6
C ^u , PD ^u	0.824 – 1.31 (18 – 16)	0.76 (30)	6
	2.08 - 5.26 (14 - 10)	1.14 (45)	6
CXTW ^u	0.162 - 0.824 (25 - 18)	0.76 (30)	5
YXTW ^u	0.519 – 0.824 (22 – 18)	1.14 (45)	6
XTW ^u	0.325 – 0.824 (22 – 18)	0.76 (30)	6
LXT ^u , LXTW ^u	0.162 - 0.824 (25 - 18)	0.76 (30)	5
HPN† and HPNW ^{c,u} †	0.824 – 1.31 (18 – 16)	1.14 (45)	6
	1.65, 2.08 (15, 14)	1.52 (60)	7.5
	3.31 (12)	2.41 (95)	7.5
E, EO, ETT, ETP	0.519 – 1.31 (20 – 16)	0.51 (20)	3
	1.65 – 3.31 (15 – 12)	0.76 (30)	6
	3.31 – 5.26 (12 – 10)	1.14 (45)	7.5
	8.37 - 33.6 (8 - 2)	1.52 (60)	10
	Duplex cable jacket	Clause 5.2.1	3
Hoistway cable	All 600 V	0.76 (30)	6
	0.824 - 3.31 (18 - 12)		
Hoistway cable	All 300 V	0.51 (20)	3
	0.519 – 3.31 (20 – 12)		

Table 46 (Continued)

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIC Table 46 Continued on Next Page ON FROM UL Willis Electric Exhibit 2050

Table 46 (Continued)

Type of cord or cable	Conductor size, mm ² (AWG)	Average insulation thickness, mm (mils)	AC spark test potential, kV*
* DC values shall be three times the	ac values indicated in the table	9.	
† Before assembly into the flexible co spark test.	ord, the insulation on any grour	nding conductor used shall	withstand the 3000 V

Table 47Dielectric strength test voltage on finished types

(See Clause 5.2.2.)

		Туре							
Size of circuit conductor, mm ² (AWG)	HSJ, HSJW ^{c,u} , HSJO, HSJOW, HSJOO, HSJOOW, HPD ^{m,u} , C ^u , PD ^u , XTW ^u , CXT ^w , YXTW ^u , LXT ^u , LXT ^w , SV, SVO, SVE, SVEO, SVEOO, SVOO, SVT, SVTO, SVTOO, TST, TPT, Shaver cord ^u , clock cord ^u , PXT ^c , CXWT ^c , PXWT ^c	SPE-1, SPE-2, SPE-3, SP-1, SP-2, SP-3, SPT-0 ^m , SPT-1, SPT-1W ^{c,u} , SPT-2, SPT- 2W ^{c,u} , SPT-3, NISPT-1, NISPT-2, NISPE-1, NISPE-2, NISP-1, NISP-2, HPN, HPNW ^{c,u} , DPTW ^{c,u} ,	E, EO, ETT, ETP, Hoistway	SJOW, SJOOW, SJEW, SJEOW, SJEOOW, SJTW, SJTOW, SJTOOW, SJ, SJEOO, SJO, SJEOO, SJO, SJOO, SJT, SJTO, SJTOO, EVJT, EVJE, EVJ	SOW, SOOW, STW, SEW, SEOW, STOW, STOW, STOW, STOOW, S, SE, SEO, SEOO, SO, SOO, ST, STO, STOO, EV, EVE, EVT	DRT ^c , SRDE ^{m,u} , SRDT ^{m,u} , SRD ^{m,u}			
			Test volta	age, V ac	•				
0.100 (27)*	1000	N/A	N/A	N/A	N/A	N/A			
0.128 – 0.259	1250	N/A	N/A	N/A	N/A	N/A			
(26 – 23)**									
0.325 (22)	1250	1000	N/A	2000	2000	N/A			
0.519 (20)	1250	1500	1000	2000	2000	N/A			
0.824 (18)	1500	1500	1500	2000	2000	N/A			
1.04 (17)	1500	1500	N/A	2000	2000	N/A			
1.31 (16)	1500	1500	1500	2000	2000	N/A			
1.65 (15)	2000	1500	1500	2000	2000	N/A			
2.08 (14)	2000	1500	1500	2000	2000	N/A			
2.63 (13)	2000	N/A	N/A	2000	2000	N/A			
3.31 (12)	2000	2000	2000	2000	3000	N/A			
4.17 (11)	2000	N/A	N/A	2000	3000	N/A			
5.26 (10)	N/A	2000	3000	3000	3000	3000			
6.63 (9)	N/A	N/A	N/A	N/A	3000	N/A			
8.37 - 33.6 (8 -	N/A	N/A	4000	N/A	4000	4000			
2)									
42.4 - 107.2 (1 - 4/0)	N/A	N/A	N/A	N/A	5300	N/A			
127 – 253 (250	N/A	N/A	N/A	N/A	6300	N/A			
– 500 kcmil)									
* Types TST, TP1	and shaver cord ^u	only.							

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIOnable 47 Continued OF Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

T-1-1- 47	(O
Table 47	(Continued)

			Ту	ре		
Size of circuit conductor, mm ² (AWG)	HSJ, HSJW ^{c,u} , HSJO, HSJOW, HSJOO, HSJOOW, HPD ^{m,u} , C ^u , PD ^u , XTW ^u , CXTW ^u , YXTW ^u , LXT ^u , LXTW ^u , SV, SVO, SVE, SVEO, SVEOO, SVOO, SVT, SVTO, SVTOO, TST, TPT, Shaver cord ^u , clock cord ^u , PXT ^c , CXWT ^c ,	SPE-1, SPE-2, SPE-3, SP-1, SP-2, SP-3, SPT-0 ^m , SPT-1, SPT-1W ^{c,u} , SPT-2, SPT- 2W ^{c,u} , SPT-3, NISPT-1, NISPT-2, NISPE-1, NISPE-2, NISPE-1, NISP-2, HPN, HPNW ^{c,u} , DPTW ^{c,u} , DPT ^{c,u}	E, EO, ETT, ETP, Hoistway	SJOW, SJOOW, SJEW, SJEOW, SJEOOW, SJTW, SJTOW, SJTOOW, SJ, SJEO, SJO, SJEOO, SJO, SJOO, SJT, SJTO, SJTOO, EVJT, EVJE, EVJ	SOW, SOOW, STW, SEW, SEOW, STOW, STOOW, STOW, STOOW, S, SE, SEO, SEOO, SO, SEOO, SO, STOO, EV, EVE, EVT	DRT ^c , SRDE ^{m,u} , SRDT ^{m,u} , SRD ^{m,u}
			Test volta	age, V ac		
** For shaver cor	d and types CXTW	^u , LXT ^u , and LXTW	^u only.			

Table 48 Minimum insulation resistance of thermoset "W" Types and electric vehicle cables at 15°C

(See Clause 5.2.3.1.)

Size of conductor, mm ² (AWG/kcmil)	Minimum insulation resistance in G Ω •m (M Ω •1000 ft) at 15°C				
	SJOW, SJOOW, HSJW ^{c,u} , HSJOW, HSJOOW, EVJ	SOW, SOOW, EV			
0.325 (22)	275 (902)	275 (902)			
0.519 (20)	237 (778)	237 (778)			
0.824 (18)	210 (690)	210 (690)			
1.04 (17)	200 (655)	200 (655)			
1.31 (16)	180 (590)	180 (590)			
1.65 (15)	165 (511)	215 (704)			
2.08 (14)	145 (475)	200 (655)			
2.63 (13)	135 (444)	180 (592)			
3.31 (12)	120 (395)	165 (540)			
4.17 (11)	115 (378)	150 (493)			
5.26 (10)	140 (460)	140 (460)			
6.63 (9)	-	130 (428)			
8.37 (8)	-	140 (460)			
10.6 (7)	-	128 (422)			
13.3 (6)	-	115 (375)			
15.8 (5)	-	108 (354)			
21.2 (4)	-	95 (310)			
26.7 (3)	-	89 (294)			
33.6 (2)	-	80 (260)			
42.4 (1)	-	90 (295)			
53.5 (1/0)	-	82 (269)			
67.4 (2/0)	-	75 (246)			
85.0 (3/0)	_	67 (220)			
107.2 (4/0)	_	60 (197)			

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIO able 48 Continued on Next Page ON FROM UL

Document Was Downloaded By willis electric co., ltd. willis

Table 48 (Continued)

Size of conductor, mm ² (AWG/kcmil)	Minimum insulation resistance in G Ω •m (M Ω •1000 ft) at 15°C					
	SJOW, SJOOW, HSJW ^{c,u} , HSJOW, HSJOOW, EVJ	SOW, SOOW, EV				
127 (250 kcmil)	-	65 (213)				
152 (300)	-	60 (197)				
177 (350)	-	55 (180)				
203 (400)	-	53 (174)				
228 (450)	-	50 (164)				
253 (500)	-	48 (157)				

Table 49

Minimum insulation resistance of thermoplastic "W" Types and electric vehicle cables at 15°C

(See Clause 5.2.3.1.)

	Minimum insulation resistance in GΩ•m (MΩ•1000 ft) at 15°C								ele
Size of conductor, mm ² (AWG)	СХѠТ⁰	PXWT℃	SJTW, SJTOW, SJTOOW, SJEW, SJEOW, SJEOOW, EVJT, EVJE	STW, STOW, STOOW, SEW, SEOW, SEOOW, EVT, EVE	CXTW ^u , LXTW ^u	YXTWu	XTWu	SPT- 1W ^{c,u}	Ctric DPTW ^{c,u} , SPT-2W ^{c,u}
0.162 (25)	-	-	-	-	82 (267)	-	-	-	μ
0.205 (24)	-	-	-	-	77 (251)	-	-	-	-e
0.259 (23)	-	-	-	-	74 (241)	-	-	-	By
0.325 (22)	85 (279)	85 (279)	67 (220)	67 (220)	69 (225)	-	74 (241)	-	-≦
0.519 (20)	76 (247)	76 (247)	58 (190)	58 (190)	60 (195)	76 (247)	66 (215)	66 (215)	76 (247)
0.824 (18)	66 (215)	66 (215)	52 (170)	52 (170)	45 (150)	66 (215)	53 (175)	53 (175)	66 (295)
1.04 (17)	-	-	50 (160)	50 (160)	-	-	-	-	62 (202)
1.31 (16)	58 (190)	58 (190)	45 (150)	45 (150)	-	-	-	-	58 (190)
1.65 (15)	-	-	41 (137)	54 (173)	-	-	-	-	一구
2.08 (14)	51 (165)	-	36 (120)	50 (160)	-	-	-	-	
2.63 (13)	-	-	34 (113)	45 (149)	-	-	-	-	-6
3.31 (12)	-	-	30 (95)	40 (130)	-	-	-	-	-5
4.17 (11)	-	-	28 (92)	38 (125)	-	-	-	-	_D
5.26 (10)	-	-	34 (110)	34 (110)	-	-	-	-	-\$
6.63 (9)	-	-	-	32 (106)	-	-	-	-	
8.37 (8)	-	-	-	34 (110)	-	-	-	-	-0
10.6 (7)	-	-	-	31 (101)		-			ec
13.3 (6)	-	-	-	29 (95)	-	-	-	-	iric
15.8 (5)	-	-	-	26 (85)		-			c
21.2 (4)	-	-	-	24 (80)	-	-	-	-	- <u>-</u> -
26.7 (3)	-	-	-	21 (70)		-			d.,
33.6 (2)	-	-	-	20 (65)	-	-	-	-	_≦.
42.4 (1)				22 (72)					
53.5 (1/0)				20 (66)					ele
67.4 (2/0)				18 (59)					¢ctr
85.0 (3/0)				16 (52)					ic
107.2 (4/0)				15 (49)					CO.
mm ² (kcmil)									, Itc
127 (250)				16 (52)					

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIGrable 49 Continued on Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

xhibit 2050 Page 130 Willis Electric Exhibit 2050

Document Was Do

Table 49	(Continued)
----------	-------------

	Minimum insulation resistance in GΩ•m (MΩ•1000 ft) at 15°C							Wnl	
Size of conductor, mm ² (AWG)	СХМ⊥с	PXWT℃	SJTW, SJTOW, SJTOOW, SJEW, SJEOW, SJEOOW, EVJT, EVJE	STW, STOW, STOOW, SEW, SEOW, SEOOW, EVT, EVE	CXTW ^u , LXTW ^u	YXTW ^u	XTW ^u	SPT- 1W ^{c,u}	Oaded ^{,u} , DPTW ^{,u} , SPT-2W ^{,u} Illis e
152 (300)				15 (49)					lec
177 (350)				14 (46)					tri
203 (400)				13 (43)					0
228 (450)				12 (39)					o., i
253 (500)				11 (36)					td.

Table 50

Mandrel diameter for heat-shock resistance test for hoistway cables where overall jacket is rated 60° C

	Overall diameter of finished cord, mm (in)	Number of adjacent turns	Diameter of mandrel, mm (in)
ľ	0 - 6.35 (0 - 0.25)	6	12.70 (0.50)
	6.36 - 7.92 (0.251 - 0.30)	6	20.62 (0.81)
	7.93 – 9.52 (0.301 – 0.37)	6	28.57 (1.12)
	9.53 - 5.10 (0.371 - 0.40)	6	34.92 (1.37)
	5.11 - 12.70 (0.401 - 0.50)	6	42.85 (1.69)
	12.71 - 14.27 (0.501 - 0.56)	6	50.80 (2.00)
	14.28 - 15.87 (0.561 - 0.62)	6	53.97 (2.12)
	15.88 - 17.45 (0.621 - 0.69)	6	65.07 (2.56)
	17.46 - 19.05 (0.691 - 0.75)	6	73.02 (2.87)
	19.06 - 21.59 (0.751 - 0.85)	1	79.37 (3.12)
	21.60 - 25.40 (0.851 - 1.00)	1	82.55 (3.25)
	25.41 – 28.57 (1.01 – 1.12)	1	88.90 (3.50)
	28.58 – 31.75 (1.13 – 1.25)	1	95.25 (3.75)
	31.76 (1.251) and larger	1	101.60 (4.00)

(See Clause 5.3.2.2.)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Table 51 Mandrel diameter for heat-shock resistance test for hoistway cables where overall jacket is rated 90°C

(See Clause 5.3.2.3.)

Overall diameter of cable, mm (in)	Number of adjacent turns	Diameter of mandrel as a multiple of the overall diameter of cable
0 - 19.05 (0 - 0.75)	6	3
19.06 - 38.10 (0.751 - 1.50)	180° bend	8
38.11 (1.51 and larger)	180° bend	12

Table 52 Mandrel diameter for cold bend test for non-jacketed hoistway cables

(See Clause 5.3.3.2.)

Size of conductor, mm ² (AWG)	Diameter of mandrel, mm (in)
Parallel construction:	
0.824 (18)	6.5 (0.25)
Twisted construction:	
0.519 (20)	6.5 (0.25)
0.824 (18)	6.5 (0.25)
1.31 (16)	7.0 (0.28)
2.08 (14)	8.0 (0.31)

Table 53 Mandrel diameter for cold bend test for jacketed hoistway cables

(See Clause 5.3.3.3.)

Overall diameter of finished cable, mm (in)	Number of adjacent turns	Diameter of mandrel, mm (in)
6.35 (0.25) and less	6	25.4 (1.00)
6.36 - 7.62 (0.25 - 0.30)	6	31.8 (1.25)
7.63 - 9.52 (0.301 - 0.38)	6	38.1 (1.50)
9.53 - 5.79 (0.381 - 0.42)	6	44.5 (1.75)
5.80 - 12.70 (0.421 - 0.50)	6	50.8 (2.00)
12.71 - 13.97 (0.501 - 0.55)	6	57.2 (2.25)
13.98 - 15.87 (0.551 - 0.63)	6	63.5 (2.50)
15.88 - 19.05 (0.631 - 0.75)	6	76.2 (3.00)
19.06 - 21.59 (0.751 - 0.85)	1	88.9 (3.50)
21.60 - 24.13 (0.851 - 0.95)	1	102 (4.00)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Everstar v. Willis Electric PGR2019-00056

Willis Electric Exhibit 2050

Table 54 Thickness of jackets on cords having up to six conductors

(See Tables 15, 20, 21, and 40.)

Tupo of cord	Size of circuit conductor,	Thick mm (Thickness, mm (mils)	
	mm² (AWG)	Minimum average	Minimum at any point	
SV, SVO, SVOO, SVT, SVTO, SVTOO, SVE, SVEO, SVEOO	0.824, 1.04, 1.31 (18, 17, 16)	0.76 (30)	0.61 (24)	
SJ, SJO, SJOO, SJT, SJTO, SJTOO, SJOW, SJOOW, SJTW, SJTOW, SJTOOW, SJE, SJEO, SJEOO, SJEW, SJEOW, SJEOOW, EVJ, EVJE,, EVJT*	0.824 - 2.63 (18 - 13) 3.31 - 4.17 (12 - 11) 5.26 (10)	0.76 (30) 1.14 (45) 1.52 (60)	0.61 (24) 0.91 (36) 1.22 (48)	
* 10 and 11 AWG are not applicable to T	* 10 and 11 AWG are not applicable to Types EVJ, EVJE, or EVJT.			

Table 55

Thickness of jackets on Types SJ, SJO, SJOO, SJT, SJTO, SJTOO, SJOW, SJOOW, SJTW, SJTOW, SJTOOW, SJE, SJEO, SJEOO, SJEW, SJEOW, and SJEOOW having more than one size of circuit conductor and Types EVJ, EVJE, and EVJT having more than one size conductor

(See Tables 15, 20, 21, and 40.)

Core diameter,	Jacket thickness, mm (mils)	
mm (in)	Minimum average	Minimum at any point
0 - 8.89 (0 - 0.350)	0.76 (30)	0.61 (24)
8.90 - 11.4 (0.351 - 0.450)	1.14 (45)	0.91 (36)
11.5 – 14.0 (0.451 – 0.550)	1.52 (60)	1.22 (48)
14.1 – 22.9 (0.551 – 0.900)	2.03 (80)	1.62 (64)
23.0 - 31.7 (0.901 - 1.25)	2.41 (95)	1.93 (76)
31.8 - 38.1 (1.26 - 1.50)	2.79 (110)	2.23 (88)
38.2 - 50.8 (1.51 - 2.00)	3.17 (125)	2.54 (100)

Table 56

Thickness of jackets on Types S, SO, SOO, SOW, SOOW, ST, STO, STOO, STW, STOW, STOOW, SE, SEO, SEOO, SEW, SEOW, and SEOOW having up to six conductors in sizes 0.824 – 2.63 mm² (18 – 13 AWG) and up to five conductors in sizes 3.31 – 33.6 mm² (12 – 2 AWG)

(See ⁻	Tables	15,	20,	and	21.	.)
-------------------	--------	-----	-----	-----	-----	----

Conduc	tor size	Number of	Thickness,		
		conductors	mm	(mils)	
mm ²	(AWG)]	Minimum average	Minimum at any point	
0.824 – 1.31	(18 – 16)	2 to 4	1.52 (60)	1.22 (48)	
0.824 – 1.31	(18 – 16)	5 or 6	2.03 (80)	1.62 (64)	
1.65 – 2.63	(15 – 13)	2 to 4	2.03 (80)	1.62 (64)	
1.65 – 2.63	(15 – 13)	5 or 6	2.41 (95)	1.93 (76)	
3.31 - 6.63	(12 – 9)	2 to 5	2.41 (95)	1.93 (76)	
8.37	(8)	2 or 3	2.79 (110)	2.23 (88)	
8.37	(8)	4 or 5	3.17 (125)	2.54 (100)	
10.6	(7)	2 to 5	3.17 (125)	2.54 (100)	
13.3	(6)	2 or 3	3.17 (125)	2.54 (100)	

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIOnable 56 Continued OF Next Page ON FROM UL

Everstar v. Willis Electric PGR2019-00056

Conduc	ctor size	Number of conductors	Thic	kness, (mils)
mm ²	(AWG)	1	Minimum average	Minimum at any point
13.3	(6)	4 or 5	3.56 (140)	2.84 (112)
16.8	(5)	2 to 5	3.56 (140)	2.84 (112)
21.2	(4)	2 or 3	3.56 (140)	2.84 (112)
21.2	(4)	4 or 5	3.94 (155)	3.15 (125)
26.7	(3)	2 to 5	3.94 (155)	3.15 (125)
33.6	(2)	2 or 3	3.94 (155)	3.15 (125)
33.6	(2)	4 or 5	4.32 (170)	3.45 (136)

Table 56 (Continued)

Table 57

Thickness of jacket on Types S, SO, SOO, SOW, SOOW, ST, STO, STOO, STW, STOW, STOOW, SE, SEO, SEOO, SEW, SEOW, and SEOOW with conductors of 6.63 mm² (9 AWG) and smaller having a greater number of conductors than in Table 56 having more than one size conductor with all conductors 6.63 mm² (9 AWG) and smaller; and jacket thicknesses of Types EV, EVE, and EVT with all conductors 6.63 mm² (9 AWG) and smaller

(See Tables 15, 20, and 21.)

Core diameter,	Thickness, mm (mils)	
mm (in)	Minimum average	Minimum at any point
0 - 12.7 (0 - 0.500)	2.03 (80)	1.62 (64)
12.8 - 19.1 (0.501 - 0.750)	2.41 (95)	1.93 (76)
19.2 - 25.4 (0.751 - 1.00)	2.79 (110)	2.23 (88)
25.5 - 38.1 (1.01 - 1.50)	3.17 (125)	2.54 (100)
38.2 - 50.8 (1.51 - 2.00)	3.56 (140)	2.84 (112)

Table 58

Thickness of jackets on Types S, SO, SOO, SOW, SOOW, ST, STO, STOO, STW, STOW, STOOW, SE, SEO, SEOO, SEW, SEOW, and SEOOW with 8.37 mm² (8 AWG) and larger conductors having a greater number of conductors than in Table 56; having more than one size conductor with at least one conductor 8.37 mm² (8 AWG) and larger; and thicknesses of jackets of types EV, EVE, and EVT with at least one conductor 8.37 mm² (8 AWG) and larger

(See Tables 15, 20, and 21.)

Core diameter,	Thickness, mm (mils)	
mm (in)	Minimum average	Minimum at any point
0 - 19.0 (0 - 0.749)	3.17 (125)	2.54 (100)
19.1 – 25.4 (0.75 – 1.00)	3.56 (140)	2.84 (112)
25.5 - 31.7 (1.01 - 1.25)	3.94 (156)	3.15 (124)
31.8 - 38.1 (1.26 - 1.50)	4.32 (171)	3.45 (136)
38.2 - 44.4 (1.51 - 1.75)	4.83 (191)	3.86 (152)
44.5 - 50.8 (1.76 - 2.00)	5.21 (206)	4.16 (164)
50.9 - 57.2 (2.01 - 2.25)	5.59 (221)	4.47 (176)
57.3 - 63.5 (2.26 - 2.50)	5.97 (236)	4.78 (189)
63.6 - 70.0 (2.51 - 2.75)	6.35 (251)	5.08 (201)
70.1 - 76.2 (2.76 - 3.00)	6.73 (266)	5.38 (212)
76.3 – 82.6 (3.01 – 3.25)	7.11 (281)	5.69 (225)

UL COPYRIGHTED MATERIAL –

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIO Table 58 Continued on Next Page ON FROM UL

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM

Table 58 (Continued)

	Thickness,	
Core diameter,	mm (mils)	
mm (in)	Minimum average	Minimum at any point
82.7 - 88.9 (3.26 - 3.50)	7.49 (296)	5.99 (236)
89.0 - 100 (3.51 - 3.95)	7.87 (311)	6.30 (249)
101 – 113 (3.96 – 4.45)	8.38 (331)	6.71 (265)
114 - 127 (4.46 - 5.00)	8.76 (346)	7.01 (277)

Table 59

Multiplying factors for the calculation of the diameter of the conductor assembly under the braid

(See Clause A.3.)

Number of conductors	Multiplying factor	Number of conductors	Multiplying factor
2 (without fillers)	1.64	11	4.00
2 (with fillers)	2.00	12	4.15
3	2.15	13	4.24
4	2.41	14	4.41
5	2.70	15	4.55
6	3.00	16	4.70
7	3.00	17	4.86
8	3.31	18	5.00
9	3.62	19	5.00
10	3.93	-	-

Table 60 Test current and fuse protection for "-R" cords

(See Clause 5.1.18.4.1.)

Conductor size, mm ²	Load current, A		Circuit protection, A
(AWG)	Service cords	Heater cords	
0.824 (18)	10	10	15
1.04 (17)	12	13	18
1.31 (16)	13	15	20
1.68 (15)	16	17	25
2.08 (14)	18	20	30

Everstar v. Willis Electric PGR2019-00056

- - - -

Table 61							
Weight,	pulley	diameter,	and	current	for	flexing	test

(See Clause 5.2.9.)

Size of circuit	Force exerted by a	Diameter at bottom of	Current in circ	cuit conductors
conductors in cord,	weight at each end of cord specimen,	pulley (circular groove),	Cord with 2 circuit conductors,	Cord with 3 or more circuit conductors,
mm ² (AWG)	N (lbf)	mm (in)	Α	Α
0.824 (18)	9.8 (2.2)	80 (3.15)	10	7
1.04 (17)	9.8 (2.2)	80 (3.15)	12	9
1.31 (16)	14.7 (3.3)	120 (4.72)	13	10
1.65 (15)	14.7 (3.3)	120 (4.72)	15	12
2.08 (14)	14.7 (3.3)	120 (4.72)	18	15
2.63 (13)	14.7 (3.3)	120 (4.72)	21	17
3.31 (12)	14.7 (3.3)	120 (4.72)	25	20
4.17 (11)	14.7 (3.3)	120 (4.72)	27	23
5.26 (10)	14.7 (3.3)	120 (4.72)	30	25
6.63 (9)	14.7 (3.3)	120 (4.72)	34	29
8.37 (8)	14.7 (3.3)	120 (4.72)	40	35
10.6 (7)	14.7 (3.3)	120 (4.72)	47	39
13.3 (6)	14.7 (3.3)	120 (4.72)	55	45
16.8 (5)	14.7 (3.3)	120 (4.72)	62	52
21.2 (4)	14.7 (3.3)	120 (4.72)	70	60
26.7 (3)	14.7 (3.3)	120 (4.72)	81	69
33.6 (2)	14.7 (3.3)	120 (4.72)	95	80

Table 62 Grounding conductor sizes

(See Clause 4.1.1.8.5.)

Circuit conductor size mm ² (AWG or kcmil)	Minimum grounding conductor size, mm ² (AWG)
42.4 - 67.4 (1 - 2/0)	13.3 (6)
85.0 - 127 (3/0 - 250)	21.3 (4)
152 – 203 (300 – 400)	26.7 (3)
253 (500)	33.6 (2)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Shaver cord^u is acceptable with valleys, but valleys are not required and may be replaced with shallow grooves intended for appearance only.

G

Figure 2 Two-conductor Types SPT-0^m, SPT-1, SPT-2, SPT-3, SPT-1W^{c,u}, SPT-2W^{c,u}, SPE-1, SPE-2, SPE-3, SP-1, SP-2, SP-3, PXT^c, HPN, HPNW^{c,u}, TPT, shaver cord^u, DPTW^{c,u}, DPT^{c,u}, and clock cord^u

(See Clause 4.3.10.1 and Tables 14, 18, 19, 22, and 27.)

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Everstar v. Willis Electric PGR2019-00056

Н

su0633

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PN Willis Electric Exhibit 2050 Page 137

su0442a

Figure 3 Two-circuit conductors Types SPT-1, SPE-1, SP-1, SPT-2, SPE-2, SP-2, SPT-3, SPE-3, SP-3, HPN, and HPNW^{c,u} with grounding conductor

su0441a

Figure 4 Three-circuit conductors Types SPT-0^m, SPT-1, SPE-1, SP-1, SPT-1W^{c,u}, SPT-2, SPT-2W^{c,u}, SPE-2, SP-2, SPT-3, SPE-3, and SP-3 without grounding conductors (See Clause 4.3.10.2 and Tables 14, 15, 18, and 19.)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

su0634

Figure 5 Dimensions of a three-conductor integral Type SRD^{m,u}, SRDE^{m,u}, or SRDT^{m,u} cable (See Clause 4.3.10.5, and Tables 14, 18, and 19.)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Constructions with a cross-section having a definite point P at the outer end of each valley slope.

OP in each case is a straight line from the centre O of a conductor to P on the same segment of the cross-section. Thickness measurements shall not be made on any valley slope.

Constructions with a cross-section having a definite point to mark the outer end of each valley slope.

OT in each case is a straight line from the centre O of a conductor to T, the point of tangency, on the adjacent segment of the cross-section. Thickness measurements shall not be made on any valley slope other than X, which is the intersection of the line OT with the valley slope. Thickness measurements shall be made on each slope segment TX.

Figure 6 Definition of regions of valley slopes on which thickness measurements shall not be made in integral parallel cords and cables

(See Clause 4.3.10.5.)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Everstar v. Willis Electric PGR2019-00056

su0258

mandrel.

Figure 7 Mandrel crushing test

(See Clauses 5.1.16.2 and 5.1.17.4.2.)

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 141

s5549

Figure 8 Mandrel pinching test

(See Clauses 5.1.16.2 and 5.1.17.4.2.)

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 142

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PN Willis Electric Exhibit 2050 Page 143

Figure 9 (Continued) L-Bracket slot details

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED F OR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Figure 9 (Concluded)

UL COPYRIGHTED MATERIAL -NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 PN Page 145

Figure 10 Fixture for flex test (See Clauses 5.1.19.2, 5.1.19.3, and 5.1.21.4.)

Willis Electric Exhibit 2050 Page 146

Annex A (normative) Calculation method for fibrous braids

(See Clause 4.1.3.2.1.)

Note: This Annex is a normative (mandatory) part of this Standard.

A.1 The size, ply, and number of ends of yarn and the length of lay shall result in the per cent coverage Q in each direction being not less than 76, when computed by whichever of the following formulas is applicable:

$$Q = \frac{100 \ NET_{in}}{\sin A}$$

where

Q = percent coverage in one direction

N = number of picks per inch

E = number of ends per pick

 T_{in} = diameter of one end of yarn, in

A = lay angle

$$Q = \frac{NET_{mm}}{25.4 \sin A}$$

where

Q = percent coverage in one direction

N = number of picks per centimetre

E = number of ends per pick

 $T_{\rm mm}$ = diameter of one end of yarn, mm

A = lay angle

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 147 A.2 Picks per centimetre, N, or the number of picks per inch, N, shall be measured by a standard braid counter at three places that are at least 50 mm or 2 in apart in any 300 mm or 12 in section in the centre 1 m or 3 ft of a 1500 mm or a 5 ft specimen of the braid-covered wire. The outer surface of a specimen having a saturated braid shall be wiped with a cloth wet with an organic solvent. The average of the three determinations shall be taken as the picks per centimetre or number of picks per inch for that specimen. Values of yarn diameter T are shown in Table A.1.

Table A.1 Yarn diameter

(See Clause A.2.)

		Yarn dia	meter <i>T</i> ,	
Size and ply of yarn			mm	(in)
12/1	25/2	26/2	0.272	(0.011)
14/1	30/2	-	0.250	(0.010)
36/2	-	-	0.222	(0.009)
20/1	40/2	-	0.210	(0.008)
25/1	26/1	50/2	0.184	(0.007)
30/1	60/2	-	0.171	(0.007)
36/1	-	-	0.157	(0.006)

A.3 The lay angle, *A*, shall be determined by means of whichever of the following formulas is applicable:

$$\tan A = \frac{\pi N(2T_{in} + D_{in})}{K}$$

where

N = number of picks per inch

 T_{in} = diameter of one end of yarn, in

 D_{in} = nominal (calculated) diameter over the insulation for single conductors as indicated in Table A.2, in. In the case of multiple-conductor cables, this equals the diameter under the overall braid, which is equal to the average of the diameters of the finished individual conductors multiplied by the factors shown in Table 59.

K = number of carriers in one direction

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 148

142

$$\tan A = \frac{\pi N(2T_{mm} + D_{mm})}{25.4 \text{ K}}$$

where

N = number of picks per centimetre

 $T_{\rm mm}$ = diameter of one end of yarn, mm

 D_{mm} = nominal (calculated) diameter over the insulation as indicated in Table A.2, mm. In the case of multiple-conductor cables, this equals the diameter under the overall braid, which is equal to the average of the diameters of the finished individual conductors multiplied by the factors shown in Table 59.

K = number of carriers in one direction

Table A.2Nominal diameter over the insulation

(See Clause A.3.)

AWG size of	Stranding	Insulation	thickness,	Nominal d	liameter, D
conductor		mm	(mils)	mm	(mils)
20	Stranded	0.58	(23)	2.18	(0.086)
18	Solid	0.38	(15)	1.78	(0.070)
18	Stranded	0.38	(15)	1.98	(0.078)
18	Stranded	0.51	(20)	2.34	(0.092)
18	Stranded	0.58	(23)	2.39	(0.094)
18	Solid	0.76	(30)	2.54	(0.100)
18	Stranded	0.76	(30)	2.74	(0.108)
16	Stranded	0.51	(20)	2.57	(0.101)
16	Solid	0.76	(30)	2.82	(0.111)
16	Stranded	0.76	(30)	3.05	(0.120)
14	Stranded	1.14	(45)	4.27	(0.168)

A.4 The minimum acceptable number of picks per unit width for the most commonly used braids that are woven on a 16-carrier braider shall be as given in Table A.3 (picks per inch) or in Table A.4 (picks per centimetre). A braid complying with either table shall be considered to have acceptable coverage and an acceptable braid angle. Braids are not limited to those covered by the tables, but other braids and Clause A.4 shall comply with the requirements in Clause 4.1.3.2.1.

The values in Tables A.3 and A.4 were computed by means of the following formulas, as applicable:

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Picks per inch = N =
$$\sqrt{\left[\frac{Q}{100 \text{ ET}_{in}}\right]^2 - \left[\frac{K}{\pi (2T_{in} + D_{in})}\right]^2}$$

Picks per centimeter = N = 25.4
$$\sqrt{\left[\frac{Q}{100 \text{ ET}_{mm}}\right]^2 - \left[\frac{K}{\pi (2T_{mm} + D_{mm})}\right]^2}$$

If these formulas produced a value that resulted in a braid angle less than the acceptable minimum, the value was recomputed by means of the following formulas, as applicable:

Picks per inch = N =
$$\frac{K \tan A}{\pi (2T_{in} + D_{in})}$$

Picks per centimeter = N =
$$\frac{25.4 \text{ K tan A}}{\pi (2T_{mm} + D_{mm})}$$

where

A = minimum acceptable lay angle

Table A.3 Commonly used 16-carrier cotton braids – Yard-pound dimensions

(See Clause A.4)

Size and ply of yarn	Number of ends	Size of co	Size of conductor, thicknesses of insulation, and minimum acceptable number of picks per inch						
		20 AWG, 23 mils	18 AWG, 15 mils	18 AWG, 20 mils	18 AWG, 23 mils	18 AWG, 30 mils	16 AWG, 20 mils	16 AWG, 30 mils	14 AWG, 45 mils
12/1, 25/2, or 26/2	2	23.7	26.3	-	27.7	30.3	-	31.1	33.0
14/1 or	2	30.3	30.1	22.8	22.4	33.8	-	34.6	-
30/2	3	-	-	-	-	22.1	-	20.3	22.3
36/2	3	24.6	24.6	_	22.9	22.4	_	23.2	25.9
20/1 or	2	24.8	38.5	23.5	39.6	41.7	25.8	42.4	-
40/2	3	24.8	24.8	_	23.0	24.0	_	25.1	27.6
25/1, 26/1,	3	25.4	25.4	-	25.9	29.2	-	30.2	32.4
or 50/2	4	_	-	_	-	22.9	-	21.0	-
30/1 or	3	27.6	27.6	_	29.2	32.3	-	33.2	-
60/2	4	_	25.6	_	23.7	23.1	_	22.0	-
36/1	4	25.9	25.9	_	24.0	-	-	-	-

Table A.4	
Commonly used 16-carrier braids – Metric o	dimensions

(See Clause A.4)

Size and ply of yarn	Number of ends	Size of c	Size of conductor, thickness of insulation, and minimum acceptable number of picks per centimetre						
		20 AWG, 0.58 mm	18 AWG, 0.38 mm	18 AWG, 0.51 mm	18 AWG, 0.58 mm	18 AWG, 0.76 mm	16 AWG, 0.51 mm	16 AWG, 0.76 mm	14 AWG, 1.14 mm
12/1, 25/2, or 26/2	2	9.3	10.4	-	10.9	11.9	-	12.3	13.0
14/1 or	2	11.9	11.9	9.0	8.8	13.3	-	13.6	-
30/2	3	_	-	_	_	8.7	-	8.0	8.8
36/2	3	9.7	9.7	_	9.0	8.8	_	9.1	10.2
20/1 or	2	9.8	15.2	9.3	15.6	16.4	10.2	16.7	-
40/2	3	9.8	9.8	_	9.1	9.5	-	9.9	10.9
25/1, 26/1,	3	10.0	10.0	-	10.2	11.5	-	11.9	12.8
or 50/2	4	_	-	_	_	9.0	-	8.3	-
30/1 or	3	10.9	10.9	_	11.5	12.7	-	13.1	-
60/2	4	-	10.1	-	9.3	9.1	-	8.7	-
36/1	4	10.2	10.2	-	9.5	-	-	-	_

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

Willis Electric Exhibit 2050 Page 151

145

Annex B (informative)

Insulated conductor identification

Note: This Annex is an informative (non-mandatory) part of this Standard.

Table B.1 **Conductor combinations**

(See Clause 4.1.9.)

Conductor combination†	Number of insulated conductors	Application			
Black, white	2	For use where grounding is not required on a two-wire circuit having an identified neutral conductor			
Green*, black, white	3	For use where grounding is required on a two-wire circuit having an identified neutral conductor			
Green*, black, red	3	For use where grounding is required on a two-wire circuit having no identified neutral conductor			
Brown, light blue, green/ yellow	3	For use when international colour coding is required (light blue for identified grounded conductor and green/yellow for grounding conductor)			
Green*, black, red, white	4	For use where grounding is required on a three-wire circuit having an identified neutral conductor			
Green*, black, red, blue	4	For use where grounding is required on a three-wire (three- phase) circuit having no identified neutral conductor			
* The use of a combination of green and yellow is permitted. See Clause 4.1.9.1.					

† With the exception of grounded and grounding conductor, the use of other identification colours is permitted.

Willis Electric Exhibit 2050

Annex C (informative) French and Spanish translations of caution markings

Note: This Annex is an informative (non-mandatory) part of this Standard.

(See Clause 6.4.)

English	Spanish	French
Not for sale to the general public	No para la venta al publico	Non destiné à la vente au détail
Small or large diameter cord in process	Cordon de diametro menor o mayor en proceso	Cordon de petit ou grand diamètre en traitement
Not for general use	No para uso general	Ne convient pas pour utilization générale
"Optical-fibre portion(s) of cable are for installation (optical and electrical functions associated) as described in applicable parts of the <i>Canadian</i> <i>Electrical Code</i> , <i>Part I</i> , the <i>National</i> <i>Electrical Code</i> (NFPA 70), and <i>La</i> <i>Norma de Instalaciones Electricas</i> , NOM-001-SEDE with levels of energy transmitted not exceeding those of Class I laser radiation (21 CFR Part 1040)."	"La porción de fibra óptica es para instalación (funciones eléctricas y ópticas asociadas como se describe en las partes aplicables de la norma de instalaciones eléctricas NOM-001- SEDE, Canadian Electrical Code, Parte I, y el National Electrical Code (NFPA 70) con niveles de energía transmitida no mayores de la radiación de la clase I"	«La portion fibre optique du câble doit être installée (fonctions optiques et électriques associées) selon les sections pertinentes du Code canadien de l'électricité, Première partie, du National Electrical Code (NFPA 70) et de la norme mexicaine sur les installations électriques NOM-001- SEDE et les niveaux d'énergie transmise ne doivent pas dépasser ceux du rayonnement laser de classe I (21 CFR Part 1040).»
"Optical-fibre portion(s) of cable contain non-current-carrying metal or other electrically conductive parts."	"La porción de fibra óptica contiene partes metálicas u otras partes conductoras de electricidad, que no llevan corriente eléctrica"	«La portion optique du câble contient des pièces métalliques non porteuses de courant ou autres pièces conductrices d'électricité.»
"shielded"	"Con pantalla"	«Blindé»
"metal support member"	"Elemento metalico de soporte"	«Élément de support métallique»
"Green conductor for Grounding Only"	"Conductor verde solo para puesta a tierra"	«Conducteur vert pour mise à la terre uniquement»
"Green conductor with yellow stripes for Grounding Only"	"Conductor verde con franjas amarillas solo para puesta a tierra"	«Conducteur vert à rayures jaunes pour mise à la terre uniquement»
"Max. leakage/3 m atV: μA to green and μA thru jacket"	Maxima corriente de fuga/3 m aV: µA al verde y µA a traves de la cubierta″	«Courant de fuite max/3 m à V : µA au vert et µA par l'enveloppe»
"water resistant"	"resistente al agua"	«Résistant à l'eau»
"water resistant 60°C"	"resistente al agua 60°C"	«Résistant à l'eau 60°C»

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTIO Table Continued on Next PageSION FROM UL

Table (Continued)

English	Spanish	French
"For use in general use extension cord sets only"	"Para uso en extensiones de uso general únicamente"	«Convient uniquement aux cordons amovibles d'usage général»
Single conductor component CXWT ^c to be used only for the manufacture of two conductor lighting strings CXWT ^c	"Los componentes monoconductores de un cordón tipo CXWT, son para ser usados exclusivamente por un fabricante que elabora un cordón de dos conductores para una cadena de iluminación CXWT"	«Les composants unifilaires CXWT ^c convenient uniquement à la fabrication de jeux de lumières bifiliares CXWT ^c . »

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

148

Туре	Canada	Mexico	U.S.
С	N	N	Y
Clock	N	N	Y
CXTW	N	N	Y
CXWT	Y	N	N
DRT	Y	N	N
DPT	Y	N	Y
DPTW	Y	N	Y
E	Y	Y	Y
EO	Y	Y	Y
ETP	Y	Y	Y
ETT	Y	Y	Y
EV	Y	Y	Y
EVE	Y	Y	Y
EVJ	Y	Y	Y
EVJE	Y	Y	Y
EVJT	Y	Y	Y
EVT	Y	Y	Y
Hoistway cables	Y	N	Y
HPD	N	Y	Y
HPN	Y	Y	Y
HPNW	Y	N	Y
HSJ	Y	Y	Y
HSJO	Y	Y	Y
HSJOO	Y	Y	Y
HSJOOW	Y	Y	Y
HSJOW	Y	Y	Y
HSJW	Y	N	Y
LXT	N	N	Y
LXTW	N	N	Y
NISP-1	Y	Y	Y
NISP-2	Y	Y	Y
NISPE-1	Y	Y	Y
NISPE-2	Y	Y	Y
NISPT-1	Y	Y	Y
NISPT-2	Y	Y	Y
PD	N	N	Y
PXT	Y	N	N
PXWT	Y	N	N
S	Y	Y	Y
SE	Y	Y	Y
SEO	Y	Y	Y
SEOO	Y	Y	Y
SEOOW	Y	Y	Y
SEOW	Y	Y	Y
SEW	Y	Y	Y
Shaver	N	N	Y

Annex D (informative) Products recognized by their respective countries

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIO Table Continued on Next PageSION FROM UL

Everstar v. Willis Electric PGR2019-00056

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 155

Table (Continued)

Туре	Canada	Mexico	U.S.
SJ	Y	Y	Y
SJE	Y	Y	Y
SJEO	Y	Y	Y
SJEOO	Y	Y	Y
SJEOOW	Y	Y	Y
SJEOW	Y	Y	Y
SJEW	Y	Y	Y
SJO	Y	Y	Y
SJOO	Y	Y	Y
SJOOW	Y	Y	Y
SJOW	Y	Y	Y
SJT	Y	Y	Y
SJTO	Y	Y	Y
SJTOO	Y	Y	Y
SJTOOW	Y	Y	Y
SJTOW	Y	Y	Y
SJTW	Y	Y	Y
SO	Y	Y	Y
SOO	Y	Y	Y
SOOW	Y	Y	Y
SOW	Y	Y	Y
SP-1	Y	Y	Y
SP-2	Y	Y	Y
SP-3	Y	Y	Y
SPE-1	Y	Y	Y
SPE-2	Y	Y	Y
SPE-3	Y	Y	Y
SPT-0	N	Y	N
SPT-1	Y	Y	Y
SPT-1W	Y	Y	Y
SPT-2	Y	Y	Y
SPT-2W	Y	Y	Y
SPT-3	Y	Y	Y
SRD	N	Y	Y
SRDE	N	Y	Y
SRDT	N	Y	Y
ST	Y	Y	Y
STO	Y	Y	Y
STOO	Y	Y	Y
STOOW	Y	Y	Y
STOW	Y	Y	Y
STW	Y	Y	Y
SV	Y	Y	Y
SVE	Y	Y	Y
SVEO	Y	Y	Y
SVEOO	Y	Y	Y
SVO	Y	Y	Y
SVOO	Y	Y	Y
SVT	Y	Y	Y

UL COPYRIGHTED MATERIAL -

NOT AUTHORIZED FOR FURTHER REPRODUCTION OR

DISTRIBUTIO Table Continued on Next PageSION FROM UL

Document Was Downloaded By willis electric co., ltd. willis electric co., ltd. For Use By WILLIS ELECTRIC CO LTD willis electric co., ltd., willis electric co., ltd. : 5/2/2019 - 9:38 PM Willis Electric Exhibit 2050 Page 156

Table (Continued)

Туре	Canada	Mexico	U.S.
SVTO	Y	Y	Y
SVTOO	Y	Y	Y
TPT	Y	Y	Y
TST	Y	Y	Y
ТХ	Y	Ν	Ν
XTW	N	Ν	Y

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR **DISTRIBUTION WITHOUT PERMISSION FROM UL**

No Text on This Page

UL COPYRIGHTED MATERIAL – NOT AUTHORIZED FOR FURTHER REPRODUCTION OR DISTRIBUTION WITHOUT PERMISSION FROM UL

333 Pfingsten Road Northbrook, Illinois 60062-2096 847.272.8800

For other locations in the UL family of companies, please visit UL.com/contact