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GLOSSARY OF SYMBOLS 

This list identifies some symbols that are not necessarily defined every time they 
appear in the text. 

a acceleration; absorption d' detectability index 
coefficient ( dB per D directivity; dipole strength 
distance}; Sabine DI directivity index 
absorptivity 

DNL detected noise level 
aE random-incidence energy 

DT detection threshold absorption coefficient 
A sound absorption qJ) diffraction factor 

AG array gain e specific energy 

b loss per bounce; decay E total energy 

parameter Ek kinetic energy 
b(0, </)} beam pattern Ep potential energy 
B magnetic field; EL echo level 

susceptance ~ time-averaged energy 
BL bottom loss density 
~ adiabatic bulk modulus ~i instantaneous energy 
~T isothermal bulk modulus density 

C speed of sound J instantaneous force; 

c~ group speed frequency (Hz) 

Cp phase speed Jr resonance frequency 

C electrical capacitance; Ju, Ji upper, lower half-power 

acoustic compliance; frequencies 

heat capacity F peak force amplitude; 
C,,p heat capacity at constant frequency (kHz) 

pressure Fe effective force amplitude 
Cvp specific heat at constant g spectral density of a 

pressure transient function; 

Cv heat capacity at constant sound-speed gradient; 
volume acceleration of gravity; 

cv specific heat at constant aperture function 

volume G conductance 

CNEL community noise C§ adiabatic shear modulus 
equivalent level (dBA) h specific enthalpy 

d detection index H(0, </)) directional factor 

Page 2 of 72



H(TK) population function LrPN tone-corrected perceived 
I time-averaged acoustic noise level 

intensity; current, Lx x-percentile-exceeded 
effective current sound level (dBA, fast) 
amplitude LNP noise pollution level (dBA) 

Ire/ reference acoustic m mass 
intensity m, radiation mass 

I(t) instantaneous acoustic M acoustic inertance; 
intensity bending moment; 

IIC impact isolation class molecular weight; 
IL intensity level acoustic Mach number, 
ISL intensity spectrum level flow Mach number 

.']; time-averaged spectral .M, microphone sensitivity 

density of intensity .M,.;£ microphone sensitivity 

.<J,(t) instantaneous spectral level 

density of intensity Mref reference microphone 

i' impulse sensitivity 

k wavenumber N loudness (sone) 
➔ 

NCB balanced noise criterion k propagation vector 

kB Boltzmann's constant curves 

kc,km coupling coefficients NEF noise exposure forecast 

e discontinuity distance NL noise level 

L inductance NR noise reduction 

LA A-weighted sound level NSL noise spectrum level 

(dBA) p acoustic pressure 

Le C-weighted sound level 
p peak acoustic pressure 

(dBC) amplitude 

Ld daytime average sound Pe effective acoustic pressure 

level (dBA) amplitude 

Ldn day-night averaged sound Pref reference effective acoustic 

level (dBA) pressure amplitude 

Le evening average sound PR privacy rating 

level (dBA) Pr Prandtl number 

Leq equivalent continuous PSL pressure spectrum level 
sound level (dBA) PTS permanent threshold shift 

Lex noise exposure level (fP hydrostatic pressure 
(dBA) QJ>o equilibrium hydrostatic 

LEPN effective perceived noise pressure 
level q charge; source strength 

L11 hourly average sound level density; thermal energy; 
(dBA) scaled acoustic pressure 

L1 intensity level re 10-12 (pl poc2) 

W/m2 Q quality factor; source 
LN loudness level (phon) strength (amplitude of 

L11 night average sound level volume velocity) 

(dBA) (continued on back endpapers) 
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PREFACE 

Credit for the longevity of this work belongs to the original two authors, Lawrence 
Kinsler and Austin Frey, both of whom have now passed away. When Austin 
entrusted us with the preparation of the third edition, our goal was to update 
the text while maintaining the spirit of the first two editions. The continued 
acceptance of this book in advanced undergraduate and introductory graduate 
courses suggests that this goal was met. For this fourth edition, we have continued 
this updating and have added new material. 

Considerable effort has been made to provide more homework problems. The 
total number has been increased from about 300 in the previous editions to over 
700 in this edition. The availability of desktop computers now makes it possible for 
students to investigate many acoustic problems that were previously too tedious 
and time consuming for classroom use. Included in this category are investigations 
of the limits of validity of approximate solutions and numerically based studies of 
the effects of varying the various parameters in a problem. To take advantage of 
this new tool, we have added a great number of problems (usually marked with a 
suffix "C" ) where the student may be expected to use or write computer programs. 
Any convenient programming language should work, but one with good graphing 
software will make things easier. Doing these problems should develop a greater 
appreciation of acoustics and its applications while also enhancing computer skills. 

The following additional changes have been made in the fourth edition: 
(1) As an organizational aid to the student, and to save instructors some time, 
equations, figures, tables, and homework problems are all now numbered by chap­
ter and section. Although appearing somewhat more cumbersome, we believe the 
organizational advantages far outweigh the disadvantages. (2) The discussion of 
transmitter and receiver sensitivity has been moved to Chapter 5 to facilitate early 
incorporation of microphones in any accompanying laboratory. (3) The chapters 
on absorption and sources have been interchanged so that the discussion of 
beam patterns precedes the more sophisticated discussion of absorption effects. 
(4) Derivations from the diffusion equation of the effects of thermal conductivity 
on the attenuation of waves in the free field and in pipes have been added to 
the chapter on absorption. (5) The discussions of normal modes and waveguides 

iii 
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iv PREFACE 

have been collected into a single chapter and have been expanded to include 
normal modes in cylindrical and spherical cavities and propagation in layers. 
(6) Considerations of transient excitations and orthonormality have been en­
hanced. (7) Two new chapters have been added to illustrate how the principles 
of acoustics can be applied to topics that are not normally covered in an under­
graduate course. These chapters, on finite-amplitude acoustics and shock waves, 
are not meant to survey developments in these fields. They are intended to intro­
duce the relevant underlying acoustic principles and to demonstrate how the funda­
mentals of acoustics can be extended to certain more complicated problems. 
We have selected these examples from our own areas of teaching and research. 
(8) The appendixes have been enhanced to provide more information on physical 
constants, elementary transcendental functions (equations, tables, and figures), 
elements of thermodynamics, and elasticity and viscosity. 

New materials are frequently at a somewhat more advanced level. As in the 
third edition, we have indicated with asterisks in the Contents those sections in 
each chapter that can be eliminated in a lower-level introductory course. Such a 
course can be based on the first five or six chapters with selected topics from the 
seventh and eighth. Beyond these, the remaining chapters are independent of each 
other (with only a couple of exceptions that can be dealt with quite easily), so that 
topics of interest can be chosen at will. 

With the advent of the handheld calculator, it was no longer necessary for text­
books to include tables for trigonometric, exponential, and logarithmic functions. 
While the availability of desktop calculators and current mathematical software 
makes it unnecessary to include tables of more complicated functions (Bessel 
functions, etc.), until handheld calculators have these functions programmed into 
them, tables are still useful. However, students are encouraged to use their desktop 
calculators to make fine-grained tables for the functions found in the appendixes. 
In addition, they will find it useful to create tables for such things as the shock 
parameters in Chapter 17. 

From time to time we will be posting updated information on our web site: 
www.wiley.com/college/kinsler. At this site you will also be able to send us 
messages. We welcome you to do so. 

We would like to express our appreciation to those who have educated us, 
corrected many of our misconceptions, and aided us: our coauthors Austin R. Frey 
and Lawrence E. Kinsler; our mentors James Mcgrath, Edwin Ressler, Robert T. 
Beyer, and A. 0. Williams; our colleagues 0. B. Wilson, Anthony Atchley, Steve 
Baker, and Wayne M. Wright; and our many students, including Lt. Thomas Green 
( who programmed many of the computer problems in Chapters 1-15) and L. Miles. 

Finally, we offer out heartfelt thanks for their help, cooperation, advice, and 
guidance to those at John Wiley & Sons who were instrumental in preparing 
this edition of the book: physics editor Stuart Johnson, production editor Barbara 
Russiello, designer Kevin Murphy, editorial program assistants Cathy Donovan 
and Tom Hempstead, as well as to Christina della Bartolomea who copy edited 
the manuscript and Gloria Hamilton who proofread the galleys. 

Alan B. Coppens 
Black Mountain, NC 

James V. Sanders 
Monterey, CA 
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Chapter 9 

CAVITIES 
AND WAVEGUIDES 

9.1 INTRODUCTION 

In this and the next chapter we concentrate on the confinement of acoustic energy 
to closed or partly closed regions of space. In completely enclosed spaces, two­
and three-dimensional standing waves can be stimulated. The normal modes 
associated with these standing waves determine the acoustic behavior of rooms, 
auditoriums, and concert halls. If the space is open in one or two dimensions, it can 
form a waveguide. Applications of waveguides include surface-wave delay lines, 
high-frequency electronic systems, folded-horn loudspeakers, and propagation of 
sound in the oceans and the atmosphere. 

9.2 THE RECTANGULAR CAVITY 

Consider a rectangular cavity of dimensions Lx, Ly, Lz, as indicated in Fig. 9.2.1. 
This box could represent a living room or auditorium, a simple model of a concert 
hall, or any other right-hexahedral space that has few windows or other openings 
and fairly rigid walls. Such applications will be encountered in Chapter 12. Assume 
that all surfaces of the cavity are perfectly rigid so that the normal component of 
the particle velocity vanishes at all boundaries, 

(ap, _ (ap, _ 0 
ax Jx=O ax Jx=Lx 

(ap), _ (ap), _ 0 
ay y=o ay y=Ly 

(9.2.1) 

(ap, _ (ap, _ 0 
az Jz=O az Jz=Lz 

246 
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9.2 THE RECTANGULAR CAVITY 

/ 

/ 
/ 
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I 
I 

z 

}-------

247 
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Figure 9.2.1 The rectangular cavity with 
dimensions Lx, Ly, and L2 • 

Since acoustic energy cannot escape from a dosed cavity with rigid boundaries, 
appropriate solutions of the wave equation are standing waves. Substitution of 

p(x, y, z, t) = X(x)Y(y)Z(z)ej"'t (9.2.2) 

into the wave equation and separation of variables (as performed in Chapter 4) 
results in the set of equations 

(!2 +k;)x = o 

(!2 +A;)Y = 0 

(::2 +k;)z = o 

where the angular frequency must be given by 

(w I c)2 = k2 = ~ + ~ + ~ 

(9.2.3) 

(9.2.4) 

Application of the boundary conditions (9.2.1) shows that cosines are appropriate 
solutions, and (9.2.2) becomes 

Plmn = Azmn cos kxzX cos kymY cos kznZ ei"'lmnt 

where the components of k are 

kxz = l1r/Lx 

kym = mTT/Ly 

kzn = nTT/Lz 

l = 0, 1, 2, .. . 

m = 0, 1,2, .. . 

n = 0, 1,2, .. . 

Thus, the allowed angular frequencies of vibration are quantized, 

(9.2.5) 

(9.2.6) 

(9.2.7) 
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Each standing wave given by (9.2.5) has its own angular frequency (9.2.7) and can 
be specified by the ordered integers (l,m,n). 

The form (9.2.5) gives three-dimensional standing waves in the cavity with 
nodal planes parallel to the walls. Between these nodal planes the pressure varies 
sinusoidally, with the pressure within a given loop in phase, and with adjacent 
loops 180° out of phase. Comparison of the mathematical developments of this 
section with those for the rectangular membrane with fixed rim of Section 4.3 
reveals similarities and analogs: 

1. If only those modes for which n = 0 are considered, the z component of the 
propagation vector vanishes, and the resulting standing wave patterns become 
two-dimensional, like those for the rectangular membrane. 

2. A rigid boundary for a pressure wave in a fluid is analogous to a free boundary 
for a membrane displacement wave in that both correspond to respective 
antinodes. The distribution of nodes and antinodes of these respective pressure 
and displacement waves in planes perpendicular to any axis will be identical 
for the same dimensions and modal numbers. Similarly, a pressure release 
boundary for a fluid is analogous to a fixed boundary for a membrane, both 
requiring nodes in pressure and displacement, respectively. 

If a pressure source is located anywhere on a nodal surface of a normal 
mode of pressure, that mode will not be excited. The closer a source is to an 
antinode of the mode, the greater the excitation of that mode. Similarly, a pressure­
sensitive receiver will have greatest output if it is placed at an antinode of the 
mode. These effects are used to either emphasize or suppress selected modes or 
families of modes. For example, if it is desired to excite and detect all the modes 
of a rectangular room, the source and receiver must be placed in the comers 
(junctions of three surfaces). (If, in a hard-walled room like a shower, one hums 
at an eigenfrequency and moves around in the enclosure, strong fluctuations in 
loudness will be heard, with maxima when the head is close to a comer or any 
other pressure antinode. In contrast, the hummer will experience difficulty in 
trying to drive a mode at a pressure node.) 

If two or more modes have the same eigenfrequency, they are called degenerate. 

Degenerate modes can be isolated by judicious placement of the source and 
receiver. A receiver placed on a nodal plane of one of a set of degenerate modes 
will not respond to that mode. Similarly, a source located at a node of one of the 
degenerate modes cannot excite that mode. 

Just as a standing wave on a string could be considered as two traveling waves 
moving in opposite directions, the standing waves in the rectangular cavity can be 
decomposed into traveling plane waves. If the solutions (9.2.5) are represented in 
complex exponential form and expanded as a sum of products, it is seen that 

P - !A "'""' ei(w1mnt±kx1X±kymY±kznZ) lmn - 8 lmnL (9.2.8) 
± 

where the summation is taken over all permutations of plus and minus signs. 
Each of these eight terms represents a plane wave traveling in the direction of its 
propagation vector k1mn whose projections on the coordinate axes are ±kx1, ±kym, 
and ±kzn. Thus, the standing wave solution can be viewed as a superposition of 
eight traveling waves (one into each octant) whose directions of propagation are 
fixed by the boundary conditions. 
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*9.3 THE CYLINDRICAL CAVITY 

Figure 9.3.1 shows a rigid-walled, right circular cavity with radius a and height L. In 
cylindrical coordinates (Appendix A7), the Helmholtz equation V2p + k2p = 0 with p = 
Pexp(jwt) becomes 

a2P 1 aP 1 a2P a2P - + -- + -- + - + k2P = 0 
ar2 r ar r2 afJ2 az2 

and the boundary conditions at the rigid walls are 

If a solution of the form 

P(r,fJ,z) = R(r)0(fJ)Z(z) 

is assumed, separation of variables results in three equations: 

where 

d2Z 
dz2 = -~1Z 

d20 - = -m20 
dfJ2 

d2R dR 2 
r2 dr2 + r dr + (k;,nr2 - m )R = 0 

These equations have solutions 

Z = coskz1Z 

@ = COS(mfJ + 'Ylmn) 

R = Jm(kmnr) 

(9.3.1) 

(9.3.2) 

(9.3.3) 

(9.3.4) 

(9.3.5) 

(9.3.6) 

with m = 0, 1, 2, ... (since 0 must be single valued), kz1L = l'TT', where l = 0, 1, 2, ... , and 
k,,ina = j;,111 , where j~n is the nth extremum of the mth Bessel function of the first kind. The 
normal modes are designated by the three integers (l,m,n), which denote the number of null 
surfaces in the z, (), and r directions, respectively. The pressure of the (l,m,n) mode is 

where the angular frequencies are determined from 

(w1mn/c)2 = ktmn = k;,n + k;i 

(9.3.7) 

(9.3.8) 

Comparison with the discussion of the circular membrane with fixed rim of Section 4.4 
shows that the introduction of the third spatial dimension z has, as in the rectangular case, 
simply introduced a new component of the propagation vector. 
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L 

,,..------------

Figure 9.3.1 The right circular cylindrical cavity 
with height L and radius a. 

Just as for the circular membrane, if there were an inner boundary, i.e., a perfectly 
reflecting cylinder with radius r = b < a and no acoustic field for r < b, then the Bessel 
functions Y m(lcmnr) would also be acceptable solutions and the boundary conditions at r = a 
and r = b would have to be satisfied by some combination A1mnlm(lcmnr) + B1mn Y m(lcmnr). 

As with the rectangular cavity, the standing waves in the cylindrical cavity can be 
expressed as traveling waves. Expand cos(kzz) in terms of exponentials, use 2] n = H~1> + H~2>, 
and then, purely for ease of interpretation, expand the Hankel functions in their asymptotic 
approximations. The resulting eight terms in each Plmn have the forms 

(9.3.9) 

with all permutations of the + and - signs. We have suppressed amplitude factors and 
the -y's. (See Problem 9.3.1.) These describe eight conical traveling waves whose phases 
are shaded according to the polar angle 8. In general, the surfaces of constant phase are 
conical spirals. The intersection of a surface of constant phase with the z plane forms a spiral 
that propagates with a radial speed w1mnlkmn outward (or inward), appearing to emanate 
from (or disappear into) the origin. The propagation vectors have angles of elevation and 
depression given by± tan-1(kzi/lcmn)-

*9.4 THE SPHERICAL CAVITY 

The Helmholtz equation in spherical coordinates (Appendix A7) is 

- r2- + -- smfJ- + ---- +k2r2P = 0 a ( aP) 1 a ~. aP) 1 a2P 
ar ar sin fJ afJ afJ sin2 (J a<J,2 

(9.4.1) 

and the boundary condition for a rigid-walled sphere of radius a is 

(aP) _ O 
ar r=a 

(9.4.2) 

For a solution of the form 

P = R(r)0(8)<1>(</>) (9.4.3) 
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separation of variables gives 

d24> 
- + m2<1> = 0 
d<j,2 

1 d (. . d@) ( 2 m2 
) 

sin0 d0 \smO d0 + 11 - sin20 @ = O (9.4.4) 

- r2- + (k2r2 - 112)R = 0 d ( dR) 
dr dr 

where m and Tl are the separation constants. 
Solutions for the 4> dependence are 

<l>m = A cos(mq, + 'Ylmn) (9.4.5) 

Since <I> must be single valued, m must be integral. As discussed in Section 4.4, each phase 
angle 'Ylmn must be determined by the initial conditions. If there is no condition to determine 
'Ylmn, then except for m = 0 each <l>m must be considered a pair of degenerate modes. (They 
can be made orthogonal if, for example, one is chosen to be cos mq, and the other sin mq,.) 

The equation for @ is related to the Legendre equation. Solutions to this equation that 
are continuous, single valued, and finite must have 112 = l(l + 1), where I = 0, 1, 2, ... , and 
must also have m :5 I. These solutions are the associated Legendre functions of the first kind of 
order I and degree m, denoted by Pf1(cos 0). (See Appendix A4 for more details and properties 
of these functions.) 

The equation for the radial dependence can be rewritten as 

d2R dR 
r2 dr2 +2rdr +[k2r2-l(l+l)]R=0 (9.4.6) 

The solutions to this equation that are finite at the origin of rare the spherical Bessel functions 
of order I: 

(9.4.7) 

[If the cavity is the space between two perfectly reflecting concentric boundaries of radii a 
and b, then the spherical Bessel functions of the second kind, y1(k1nr), are also admissible 
solutions.] For a rigid-walled cavity, k1na = {1~ where lfn are the extrema of hn• 

The pressure amplitude in the cavity is then 

(9.4.8) 

and the angular frequencies are given by wzn = ck1n• The lack of any dependence of the 
propagation constant on m means that all modes having the same values of I and n but 
different values of m are degenerate. 

A study of the spherical Bessel functions shows that the lowest eigenfrequency, found 
from k11a = 2.08, is shared by the single (1, 0, 1) mode and the pair (1, 1, 1). Together they 
constitute a threefold degeneracy. The spatial pressure distributions of the three are 

(sinkur cosk11r) 
P101 = A101 (kur)2 - kur cos0 

P(lJ _ A(l) (sinkur _ coskur) . 0 ,1,. 

111 - 111 (k )2 k sm cos.,, ur 11r 
(9.4.9) 

Pc2J _ Ac2J (sinkur _ cosk11r) . 0 . ,1,. 

111 - 111 (k )2 k sm sm'II 11r ur 
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(1,0,1) 

(a) 

(2,0,1) 

(b) 

a 

CHAPTER 9 CAVITIES AND WAVEGUIDES 

(1,1,1) [2] 

(2,1,1) [2] (2,2, l) [2] 

(0,0,2) Figure 9.4.1 Nodal surfaces for the lowest three sets of norm.al 
modes in a rigid-walled spherical cavity of radius r = a. (a) w101 = 

(c) wm = 2.08 c/a. (b) w201 = w211 = w221 = 3.34c/a. (c) w002 = 4.49 c/a. 

The next set of modes, forming a fivefold degeneracy, have k21a = 3.34. The radial 
dependence is h(k21r) and the angular dependences are one mode with (l, m, n) = (2, 0, 1), 
two modes with (2, 1, 1), and two with (2, 2, 1). The third set, for which k02a = 4.49, 
has a single member with radial dependence j0(koir) = (sinko2r)/(k02r) and no angular 
dependence since P0(cos 0) = 1. Nodal surfaces for the lowest three sets of normal modes 
are shown in Fig. 9.4.1. 

9.5 THE WAVEGUIDE 
OF CONSTANT CROSS SECTION 

Waveguides having different, but uniform, cross sections and the same boundary 
conditions will display similar behaviors. We will develop the properties for a 
waveguide with a rectangular cross section, as shown in Fig. 9.5.1, and then 
generalize the results to other cross-sectional geometries. Assume the side walls to 
be rigid and the boundary at z = 0 to be a source of acoustic energy. The absence of 
another boundary on the z axis allows energy to propagate down the waveguide. 
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X 

z 

y 

Figure 9.5.1 The rectangular 
waveguide with dimensions Lx 
and Ly, 

253 

This suggests a wave consisting of standing waves in the transverse directions 
(x and y) and a traveling wave in the z direction. 

Since the cross section is rectangular and the boundaries are rigid, acceptable 
solutions are 

Pim = Aim coskx1XcoskymY ej(wt-kzz) 

kz = [(w/c)2- (Jc;1 + ~m)]112 

kx1 = l1r/Lx 

kym = m1r/Ly 

l = 0, 1, 2, .. . 

m = 0, 1,2, .. . 

Since w can have any value, kz is not fixed. 

(9.5.1) 

It is convenient to define k1m as the transverse component of the propagation 
vector. For a rectangular cross section, 

and the required value of kz can be written more succinctly as 

kz = [(w/c)2 - kfm]1/2 

(9.5.2) 

(9.5.3) 

When w/c > kzm, then kz is real. The wave advances in the +z direction and is 
called a propagating mode. The limiting value of w I c for which k1m remains real is 
given by w I c = k1m, and this defines the cutoff angular frequency 

I W/m = ck1m I (9.5.4) 

for the (l, m) mode. If the input frequency is lowered below cutoff, the argument 
of the square root in (9.5.3) becomes negative and kz must be pure imaginary 

kz = ±j[kfm - (w/c)2]112 (9.5.5) 

The minus sign must be taken on physical grounds so that p - 0 as z - oo, and 
(9.5.1) has the form 

(9.5.6) 

This is an evanescent standing wave that attenuates exponentially with z. No energy 
propagates down the waveguide. If the waveguide is excited with a frequency 
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just below the cutoff frequency of some particular mode, then this and higher 
modes are evanescent and not important at appreciable distances from the source. 
All modes having cutoff frequencies below the driving frequency may propagate 
energy and may be detected at large distances. 

In a rigid-walled waveguide, only plane waves propagate if the frequency of the 
sound is sufficiently low. For a waveguide of rectangular cross section of greater 
dimension L, this frequency is easily shown to be/= c/2L. 

The phase speed of a mode is 

Cp = w/kz = c/[l - (k1mlk)2]1 12 = c/[1 - (wzm/w)2]112 (9.5.7) 

and is greater than c. An understanding of this is obtained by writing the cosines 
in (9.5.1) in complex exponential form. The solution then consists of the sum 

P _ !A 'ei(wt±k:r1X±ky,,,y-kzz) 
lm - 4 lmL 

± 

(9.5.8) 

(Note that only the minus sign appears before kz.) The propagation vector k for 
each of the four traveling waves makes an angle 8 with the z axis given by 

(9.5.9) 

so that the phase speed (9.5.7) is 

Cp = c/cos8 (9.5.10) 

This is simply the speed with which a surface of constant phase appears to 
propagate along the z axis. (See Problems. 9.2.3 and 9.3.2.) 

Figure 9.5.2 gives the surfaces of constant phase for the two component waves 
that represent the (0,1) mode of a rigid-walled rectangular waveguide. The waves 
exactly cancel each other for y = Ly /2, so that there is a nodal plane midway 
between the walls. At the upper and lower walls the waves are always in phase so 
that the pressure amplitude is maximized at these (rigid) boundaries. The apparent 
wavelength Az measured in the z direction is Az = A/(cos8). 

The lowest mode for a rigid-walled waveguide is the (0, 0) mode. For this 
case, kz = k and the four component waves collapse into a single plane wave that 
travels down the axis of the waveguide with phase speed c. For all other modes, 
the propagation vectors of the component waves can be at angles to the waveguide 
axis, one pointing into each of the four forward octants. From (9.5.9) and (9.5.10), at 
frequencies far above the cutoff of the (l, m) mode, we have w >> w1m so that 8 tends 
to zero and the waves are traveling almost straight down the waveguide with 
Cp = c. As the input frequency is decreased toward cutoff, the angle 8 increases 
so that the component waves travel in increasingly transverse directions. If we 
imagine that each component wave carries energy down the waveguide by a 
process of continual reflection from the walls (much like a bullet ricocheting down 
a hard-walled corridor), and remember that the energy of a wave is propagated 
with speed c in the direction of k = k/k, then we see that the speed with which 
energy moves in the z direction is given by the group speed Cg = ck · z, the projection 
of the component wave velocity along the waveguide axis, 

CK = ccos8 = c[l - (wzmlw)2] 112 (9.5.11) 
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y 

Figure 9.5.2 Component plane 
waves for the (0,1) mode in a rigid­
walled, rectangular cavity. These waves 
travel with speed c in directions that 

z make angles :z.0 with the z axis of the 
waveguide. 

For a given angular frequency w, each modal wave with w1m < w has its own 
individual values of Cp and Cg. The behaviors of the group and phase speeds as 
functions of frequency for three modes in a rigid-walled waveguide are shown in 
Fig. 9.5.3. 

It is straightforward to generalize the above discussion and derive the behavior 
of a rigid-walled waveguide with a circular cross section of radius r = a. Separation 
of variables and solution results in 

Pml = Amif m(km1r) cos m0 ej(wt-k,z) 

kz = [(w I c}2 - ~i]112 
(9.5.12) 

where r, 0, and z are the cylindrical coordinates, lm is the mth order Bessel function, 
and the allowed km1 are determined by the boundary condition for the rigid wall, 

(9.5.13) 

where j~1 are the extrema of lm(z). These values are tabulated in Appendix AS. 
Once the values of km1 are found, all the salient results developed for rectangular 
waveguides can be applied simply by substituting the values of km1 for a circular 
waveguide. For example, the (0, 0) mode is a plane wave that propagates with 
Cp = c for all w > 0. The nonplanar mode with the lowest cutoff frequency is the 
(1, 1) mode (the first "sloshing" mode) with cutoff frequency wn = 1.84 cf a or 
/11 = 100/a for air. It is of great practical importance that for frequencies below /11 
only plane waves can propagate in a rigid-walled, circular waveguide. 

2 

~ 
t: 

1 

~ 
C 

0 

(0,0) 

W/,m Wl',m' 

w 

Figure 9.5.3 Group and phase 
speeds for the lowest three 
normal modes in a rigid-walled 
waveguide. 
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*9.6 SOURCES AND TRANSIENTS 
IN CAVITIES AND WAVEGUIDES 

Up to this point we have not dealt with the acoustic source. If we know the pressure or 
velocity distribution of the source, then these can be related to the behavior of the pressure 
or the velocity of the total acoustic field as was done for membranes in Section 4.10. In what 
follows we will sketch the development of a few special cases to demonstrate the basics. 

Assume that a rigid-walled rectangular enclosure is excited by a point impulsive pressure 
source (like a cap or starter pistol shot). This is the three-dimensional extension and analog 
of the impulsive point excitation of a rectangular membrane. The source can be described 
by an initial condition at t = 0 of 

p(x,y,z,0) = 5(x - xo) 5(y- yo) 5(z - zo) (9.6.1) 

and this must be matched to (9.2.5). Since the spac·e must be quiescent before the pressure 
impulse, the particle velocity field throughout the enclosure must be zero at t = 0. This 
requires A1mn = A1mn so that the real pressure standing waves are cosinusoidal in time and 
we must have 

5(x - Xo) 5(y- yo) 5(z - Zo) = LA1mn coskxzXCOSkymycoskznZ (9.6.2) 
l,m,n 

Inversion and use of orthogonality to solve for the coefficients provides the resultant 
pressure field, 

8 
p(x,y,z,t) = LL L Lcoskx1Xocoskymyocoskznzocoskx1Xcoskymycoskwzcosw1mnt 

x Y z l,m,n 

(9.6.3) 

This result is simply an extension of what has been done before. Application to cylindrical 
enclosures proceeds similarly with no surprises. If there are losses, each standing wave will 
decay as exp(-P1m11t). 

Excitation of the enclosure by a monofrequency source presents a few more difficulties: 
losses must be included, and these require introduction of the frequency dependence of the 
amplitude of each of the driven lossy standing waves. Excitation of the cavity with losses 
by a monofrequency source is deferred until Section 12.9. 

In the case of excitation of a waveguide of uniform cross section on the plane z = 0, 
assume that the source distribution is 

p(x, y, O, t) = P(x, y)ei"'1 (9.6.4) 

Again, p can be written as a superposition of the normal modes of the waveguide as in 
Section 4.10. For a waveguide with rectangular cross section and rigid walls, we have 

p(x, y, z, t) = L Aim cos kxzX cos kymY ei(wt-k,z) 
1,m 

Evaluation at z = 0 and use of (9.6.4) gives 

P(x, y) = L Aim cos kx1X cos kymy 
1,m 

from which we can determine the required values of Aim• 

(9.6.5) 

(9.6.6) 

The existence of three speeds Cp, Cg, and c in the description of each traveling wave in 
a waveguide serves to elucidate the propagation behavior of transient signals. First, we 
will develop some general results based on the metJwd of stationary phase and then examine 
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more exactly the behavior of a particular transient. Consider a well-defined pulse generated 
at the source and propagating down the waveguide. Recalling the elements of Fourier 
superposition stated in Section 1.15, we can write the dependence of the pulse on distance 
and time in the form of a weighted superposition of monofrequency components. The 
spectral density g(w) can be found from the behavior of the source at z = 0. If, instead of 
exp(jwt), the source generates a known signature f(t), then 

(9.6.7) 
1 Ice . g(w) = - f(t)e-Jwt dt 

2'1T -cc 

The extension of (9.6.5) to a transient excitation becomes 

p(x, y, z, t) - ~ [ A,. cos k,,x cos k,,.y r. g(w )eK•l-k,,) d,,, l (9.6.8) 

(Recall that kz is a function of w and is different for each nondegenerate wave.) Because 
of the distance-dependent phase in the integrand, it is clear that the pulse will evolve in 
shape as it travels along the z axis. If the pulse is initially well defined, then g(w) is a 
smoothly varying function of frequency and strong over a broad bandwidth. In this case, 
the portion of the integrand that contributes the most to the pulse is that for which the 
phase is nearly stationary (constant) as a function of frequency. For other frequencies the 
phase of the integrand is rapidly varying so that adjacent cycles of the integrand tend to 
cancel. Thus, the major portion of the pulse will begin near the time for which the phase is 
stationary, and for each mode this time is found from 

d 
dw (wt - kzz) = 0 

dkz 
t = -z 

dw 

(9.6.9) 

The speed with which this major portion of the pulse travels down the waveguide is the 
group speed, 

(9.6.10) 

[It is straightforward to show that this is identical with (9.5.11) for the waveguide of 
rectangular cross section, but (9.6.10) is more general and can be applied to any lossless 
dispersive medium.] The phase speed Cp of each frequency component of the signal is, of 
course, still given by 

(9.6.11) 

Now, let us analyze a simple transient signal exciting a single mode of the waveguide. 
Write the pressure Pim and the z component Uz1m of the particle velocity it1m associated with 
the (I, m) normal mode in the forms 

P1m(X, y, Z, t) = P1m(X, y)f(z, t) 

Uzfm(X, y, Z, t) = P1m(X, y)v(z, t) 
(9.6.12) 
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If at the source location, z = 0, the function v(O, t) is taken to be l(t)I PoC, where l(t) is the 
unit step function, then with the help of Table 1.15.1 and standard acoustic relations, 

v(z, t) = - - -;-eJ<wt-k,,z) dw 1 1 Joo 1 · 
PoC 27T -oo JW 

f(z, t) = _1_ f"" ;-ei<wt-k,z) dw 
27TC -oo Jkz 

(9.6.13) 

Evaluation of f(z, t) from a more general table of Fourier transforms or use of Problems 
9.6.5-9.6.7 gives 

f(z, t) = lo (w1m Jt2 - T2) · l(t_ - n T = zlc (9.6.14) 

where T = zlc is the time of flight of the leading edge of the signal, which travels with 
the free field speed of sound c. [The basic mechanism for sound propagation, collisions 
between molecules, is not changed by the presence of boundaries. Consequently, the first 
information that the source has been turned on must arrive at z by the shortest path ( directly 
down the z axis) with speed c.] 

Recognizing that the Bessel function behaves very much like a cosinusoidal function of 
the same argument (and with a slightly shifted phase), write the argument of / 0 in the form 
appropriate for a traveling wave with instantaneous angular frequency w and propagation 
constant k21 

w1m[f - (zlc)2]112 = wt kzz (9.6.15) 

Differentiating with respect tot gives w as a function of z and t, and differentiation with 
respect to z does the same for ku 

w = W1mt / [f - (zl c)2 ]112 

kz = W1mz/ { c2[f - (zlc)2]112} 

(9.6.16) 

Examination of the first of (9.6.16) shows that when t is just slightly larger than T, 
corresponding to the earliest portions of the signal arriving at location z, w is very much 
larger than WJm• For very long elapsed times, t >> T, the cutoff angular frequency appears 
at z. Higher frequencies arrive much faster than do lower frequencies, and none less than 
the cutoff value propagate down the waveguide. If this first equation is solved for zl t in 
terms of w1m I w, we get 

zit = c[l - (w1ml w)2]112 (9.6.17) 

This gives the time tat which the portion of the signal with angular frequency w will appear 
at z. Thus zit is the group speed Cg for energy associated with angular frequency w, 

(9.6.18) 

Taking the ratio of the two equations in (9.6.16) and then eliminating zit with (9.6.17) gives 
the phase speed Cp associated with the angular frequency w, 

(9.6.19) 

These are identical with the earlier results. 
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*9.7 THE LAYER AS A WAVEGUIDE 

Another important case of waveguide propagation is encountered when a source radiates 
into a horizontally stratified fluid contained between two horizontal planes. This and the 
following sections will provide a simplified introduction to the normal-mode approach to 
this subject. For further information and more mathematically sophisticated methods of 
analysis, start with the references.1 

In cylindrical coordinates, assume a point source with time dependence exp(jwt) and 
unit pressure amplitude at a distance of 1 m is located at a depth z = z0 on the axis (r = 0) 
within a layer of fluid that is bounded at two depths by perfectly reflecting planes (Fig. 
9.7.1) at z = 0 and z = H. The speed of sound within the layer of fluid can be a function of 
depth z, but not of ranger. If the pressure field is written as p(r, z, t) = P(r, z) exp(jwt), then 
the appropriate Helmholtz equation is found from (5.16.5) to be 

[ 1 a ( a ) a2 (w )2] 2 -- r- + - + - P(r,z) = --«5(r)«5(z - z0) 
rh h ~ C r 

(9.7.1) 

where S(r - r0) has been expressed in cylindrical coordinates with the help of Problem 
5.16.3. Since this is a case of waveguide propagation, we can assume a solution of the form 

(9.7.2) 
n 

where Zn satisfies the one-dimensional Helmholtz equation solution 

(9.7.3) 

and Kn is the separation constant. With appropriate normalization, the Zn form an orthonormal 
set of eigenfunctions, 

LH Zn(z)Zm(Z) dz = Snm 

Substitution of (9.7.2) and (9.7.3) into (9.7.1) yields 

(9.7.4) 

~ [Zn} :r t d:,n ) + K~ZnRn] = - ~ S(r) S(z - Zo) (9.7.5) 

Multiplication by Zm, integration over the depth, and use of orthonormality gives an 
inhomogeneous Helmholtz equation for Rn, 

o~---------------r 
Zo •P<r.z,t) 

Ht-----------------

z 

(9.7.6) 

Figure 9.7.1 The fluid layer with 
a source at depth z0 between two 
perfectly reflecting parallel planes. 

10fficer, Sound Transmission, McGraw-Hill (1958). Stephen (ed.), Underwater Acoustics, Wiley (1970). 
Frisk, Ocean and Seabed Acoustics, Prentice Hall (1994). 
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The solution of this equation corresponding to outgoing waves and valid for all r (including 
the origin) is 

(9.7.7) 

so that the complex pressure field is given by 

p(r, z, t) = -j,rreiwt L, Zn(Zo)Zn(z)Hf>(Knr) (9.7.8) 
n 

The allowed values of the Kn and the form of the orthonormal functions Zn(z) are found by 
solving (9.7.3) with the desired speed of sound profile and appropriate boundary conditions. 

In many circumstances the separation constants are not all discrete but may also be 
continuous over some interval of K. The solutions to (9.7.3) for these continuous values of 
K form a set of continuous eigenfunctions. Fortunately, these continuous eigenfunctions 
are associated with untrapped energy or evanescent modes and generate waves significant 
only close to the source. They can therefore be neglected for our purposes. 

At sufficiently large distances the Hankel functions can be replaced with their asymptotic 
forms and (9.7.8) becomes 

p(r, Z, t) = -j L,(21r / Knr)112 Zn(Zo)Zn(Z)ei(wt-Knr+1r/4) (9.7.9) 
n 

Thus, each term of (9 .7.8) is a propagating cylindrical wave with phase speed Cp = w I Kn. 

The values of the discrete Kn are fixed, but the magnitude of the propagation vector k = w I c 
can be a function of depth. The angle (} of elevation or depression of the local direction 
of propagation of the traveling wave is found from cos(} = Kn/k(z). Thus, each traveling 
wave corresponds to a collection of rays traveling in the fluid whose local directions of 
propagation at each depth z are given by the angles ±O(z). 

A convenient analogy can be used to provide further insight for readers having some 
acquaintance with quantum mechanics. Write the minimum value of the speed of sound as 
Cmin. Then with the definitions 

En = (w/Cmin)2 - K! 
U(z) = (w/Cmin)2 - (w/c)2 

(9.7.10) 

the Helmholtz equation (9.7.3) takes on the form 

d2Zn 
dz2 + [En - U(z)IZn = 0 (9.7.11) 

This is the one-dimensional time-independent Schroedinger equation with h2 /2m = 1. The 
definition of the minimum speed Cmin ensures in this analog that U(z) is the potential energy 
well (with zero minimum value) and En is the energy level of the wave function Zn(z). 
Now the argument about continuous and discrete values of K 11 can be couched in quantum 
mechanical terms. If the potential energy U(z) has a finite maximum value, then quantum 
states having energies En large enough that the wave function extends to infinity in either 
or both directions along the z axis form a continuous set of eigenfunctions so that En and 
therefore Kn take on continuous values. Thus, unbound quantum states correspond to the 
untrapped and evanescent modes. When the energy levels lie within the potential well, 
each wave function has two turning points, E11 and Kn have discrete values, and these states 
correspond to the modes trapped in a channel. For a given speed of sound profile, U(z) 
depends on w 2• The well becomes more deeply notched with higher walls as frequency 
increases above cutoff. This means that for a given normal mode the vertical "spread" of 
the function over depth will tend to be greatest for frequencies close to cutoff and diminish 
as frequency increases. 
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For all but a handful of profiles (9.7.3) must be solved by numerical computation. Among 
those that can be solved analytically, there are a couple of simple cases that provide some 
physical insight. 

*9.8 AN ISOSPEED CHANNEL 

Assume that a layer of fluid has constant speed of sound c0 throughout and is contained by 
a pressure release surface at z :::::: 0 and a rigid bottom at z :::::: H. The boundary conditions 
are Z(O) :::::: 0 and aZ/ az :::::: 0 at z = H. Solution of (9.7.3) is straightforward, 

kzn :::::: (n - ½}7T/H 

and the values of the separation constants Kn are determined by 

(9.8.1) 

(9.8.2) 

For values of kzn exceeding w/c0 the associated Kn values must be imaginary. This yields 
waves that do not propagate, but decay exponentially with range. Thus, all waves with 
indices n exceeding the integer N given by 

N ~ (H/7r)(w/co) + ½ (9.8.3) 

are evanescent and important only near r :::::: 0. At larger distances, the solution is well 
approximated by 

2 N (211")1/2 . p(r,z, t) = -jH ~ - sinkznZo sinkznZ e1<"'t-1<nr+-rr/4) 
n=1 KnY 

(9.8.4) 

The phase speed Cp associated with each mode is given by (9.5.7) with wn replacing w1m: 

(9.8.5) 

*9.9 A TWO-FLUID CHANNEL 

Let a fluid layer of constant density Pl and sound speed c1 overlie a fluid bottom of constant 
density P2 and sound speed c2 > c1 . Let the surface of fluid 1 be a pressure release boundary 
at z :::::: 0 and let the interface between the two fluids be at a depth z :::::: H. Figure 9. 9 .1 shows 
the geometry. Because the fluid bottom has a greater speed of sound, reflection in fluid 1 
from the interface at z :::::: H will be total for grazing angles of incidence less than the grazing 
critical angle given by cos Oc = C1 I C2. 

0 
Fluid 1 

Z1nCz) Ct 

H 

Z2nCz) C2 

Fluid 2 

z 

Pressure release 

Pi 

P2 

r 

Figure 9.9.1 A channel consisting 
of a fluid layer of depth H with sound 
speed C1 and density Pl overlaying 
a fluid bottom of infinite depth with 
sound speed c2 and density P2. 
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While c is a function of depth, it is a constant within each layer but changes discontinu­
ously across the interface. We therefore separate the Helmholtz equation 

into two equations, one for each region, 

{ !, + [(:)' -~ ]} 2 1,(z) = O 

{ !, + [(:)' - •in Z2n(z) = 0 

(9.9.1) 

O:sr:sH 

(9.9.2) 

The boundary conditions are (1) p1 = 0 at z = 0, (2) p1 = p2 and Uzt = Uzz at z = H, and 
(3) P2 - 0 as z - 00 • These give us 

Ztn(O) = O 

Ztn(H) = Z2n(H) 

_!_ (dZtn) = _!_ (dZ2n) 
Pt dz H pz dz H 

limZ2n(Z) = 0 
z->oo 

(9.9.3) 

Solutions that satisfy the boundary conditions at the surface, at the interface, and at infinite 
depth are 

Z1n(Z) = sinkznZ O:sz:sH 

Z2n(z) = sink2nH e-f3n(z-H) 

k;n = (w/c1)2 - K~ 

(9.9.4) 

/3; = K~ - (w/c2)2 

Both kzn and f3n must be real for trapped normal modes. This restricts Kn to the interval 
w I Ci :s Kn :s w I Ct and is equivalentto 

(9.9.5) 

Manipulation of the boundary conditions at z = H provides a transcendental equation 
for the allowed values of kzn (and therefore Kn) at each angular frequency, 

Definition of 

allows (9.9.6) to be expressed in a form amenable to graphical or numerical analysis, 

tany = -by/(a2 - y2)t;z 

(9.9.6) 

(9.9.7) 

(9.9.8) 

See Fig. 9.9.2. The tangent curves have been numbered to designate the associated 
normal mode. Since a is proportional to frequency, the tangent curves will be intersected 
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Figure 9.9.2 Graphical solutions for the lower modes of propagation at 
various frequencies in a shallow-water channel with a fast fluid bottom. 
The top layer is water with c1 = 1500 m/s, p1 = 1000 kg/m3, and 
thickness H = 30 m. The bottom is quartz sand with c2 = 1730 m/s, 
p2 = 2070 kg/m3, and infinite thickness. The driving frequencies are (a) 
60 Hz, (b) 90 Hz, and (c) 150 Hz. 

263 

at different points as the frequency is changed. This is suggested in the figure by the three 
curves (a), (b) and (c). Since each curve is asymptotic to the appropriate value of a(oo), it is 
clear that as a increases with oo the line y = a moves to the right and more normal modes 
can be excited. The nth normal mode cannot be excited until a .::: (n - ½ )1r, and substitution 
of this into (9.9.7) gives the cutoff angular frequencies, 

OOn = (n _ l) 1r _1_ 
C1 2 H sin0c 

(9.9.9) 

Once the Kzn have been obtained, Kn and f3n can be found from (9.9.4). Combination of 
(9.9.7) and (9.9.9) shows that a is closely related to the ratio of input frequency to the cutoff 
value, 

oo a - = ---,-
OOn (n - ½)1r 

(9.9.10) 

Figure 9.9.3 reveals the depth dependence of a mode. As the frequency is increased above 
the cutoff frequency for the nth mode, the value of kznH increases from (n - ½)1r at cutoff to 
n1r as oo ---+ 00• The pressure has an antinode at the interface z = Hat cutoff and approaches 
having a node there at high frequencies. Thus, the interface appears to be rigid at cutoff and 
pressure release at high frequencies. Evaluation of Kn at cutoff gives Kn = oon/c2, and (9.9.4) 
shows that f3n = 0 so that the normal mode has an extended tail down to infinite depths. As 
frequency increases above cutoff, Kn increases, f3n becomes positive real, and the tail decays 
more rapidly with depth. As frequency becomes arbitrarily large, the tail disappears. This 
is consistent with the discussion after (9.7.11) about the diminishing vertical extent of the 
normal mode with increasing frequency. 

Trying to form an orthonormal set from Zn by assuming Zn = AnZ1n in the layer and 
Zn = AnZ2n below the layer will not work because of the discontinuity in slope across the 
boundary at z = H. Applying the orthonormality condition to (9.9.1) gives 

("' ~ (zm dZn -Zn dZm)dz = 0 Jo dz dz dz 
(9.9.11) 
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Figure 9.9.3 The depth dependence of the pressure amplitude for various 
driving frequencies in the shallow-water channel for Figure 9.9.2. (a) First 
propagating mode. (b) Second propagating mode. For each mode, the 
driving frequency increases from just above cutoff (upper left), where 
the bottom behaves like a rigid surface, to a high frequency (lower right), 
where the behavior of the bottom approaches that of a free surface. 
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Integrating and applying the boundary conditions results in 

H-

(Z dZn _ z dZm ) = O 
mdz ndz 

H+ 
(9.9.12) 

where the upper evaluation is accomplished by approaching the boundary from fluid 
1 (z increasing to H) and the lower by approaching the boundary from fluid 2. Direct 
substitution of the boundary conditions (9.9.3) into (9.9.12) shows that the equation cannot 
be satisfied by the above assumption. However, the slightly more complicated choice 

(9.9.13) 

does satisfy (9.9.12). Thus, (9.9.13) forms a set of orthogonal eigenfunctions with respect to 
the weighting function J p1 I p(z). Normalization of the set provides the required values of 
the An for orthonormality, 

1 fH ioo 2 Pl 2 A2 = Z1nCz)dz + - Z2n(z)dz 
n O P2 H (9.9.14) 

The acoustic pressures in fluid 1 and fluid 2 are found by substituting (9.9.13) into (9.7.8), 

p1(r,z,t) = -j1r LA~sinkznzosinkznzHil(Knr)eiwt 
n 

- -j L(21r I Knr)112 A~ sinkznZo sinkz11Z ei(wl-KnY+1r/4) 

n 
(9.9.15) 

P2(r,z, t) = -j1r LA~ sinkznZo sinkznZ e-fl,,(z-H) Hb2l(Knr)ei'"1 

n 

- -j L(21T' I Knr)112A~ sinkznZo sinkznZ e-fl,,(z-H)ej(wt-K,,r+1r/4) 

n 

Calculation of the group and phase speeds is a little tricky and the details are treated in 
Problem 9.9.8. Results can be expressed in implicit forms, 

, sin2 0 = 1- C 

1 + (bcoty)2 

(9.9.16) 

~~ = 1 _ (sin0csiny)2 
Cgn Cpn sin2 y + b2(cos2 y-ycoty) 

where (n - ½)1r s y s n1r. Since y increases monotonically with frequency, certain prop­
erties of the group and phase speeds can be determined. (1) At cutoff cosy = 0 and (9.9.16) 
shows that Cpn = Cgn = c2• With increasing frequency, (2) the phase speed falls monotoni­
cally toward an asymptotic value of c1 and (3) the group speed also approaches the value 
c1, but from below, so that (4) the group speed has a minimum value that is less than c1 at 
some intermediate frequency. See Fig. 9.9.4 and Problem 9.9.14C. 

The fact that for each mode the group speed has a minimum and approaches c2 for 
frequencies near cutoff leads to a complicated waveform for a transient excitation. The 
following general features, sketched in Fig. 9.9 .5, can be identified with propagation in each 
mode. 
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Figure 9.9.4 Group and phase 
speeds for a normal mode 
propagating in an isospeed 
shallow-water channel of depth H 
with a fast fluid bottom. The speed 
of sound in the channel is c1 and 
that in the bottom is c2• 

1. The first arrival reaches the receiver at a time t = r I c2. It consists of Fourier components 
of the transient having frequencies very close to the cutoff value for the mode and 
propagating with the group speeds near cutoff. As time increases, slightly higher 
frequencies traveling with lower group speeds will arrive. Th.is portion of the signal is 
the ground wave and corresponds to energy propagating along the boundary in fluid 2 
and radiating back into the layer. 

2. At a later time t = r/c1, the highest frequency components arrive with group speeds at 
and slightly below c1 and are superimposed on the trailing portion of the ground wave. 
Th.is high-frequency portion is the water wave and corresponds to the high-frequency 
energy that is propagated radially outward in the channel with angles of elevation and 
depression very close to zero. 

3. For still later times the increasing frequencies in the ground wave and the decreasing 
frequencies in the water wave become similar and merge into a signal traveling at group 
speeds slightly above the minimum group speed for the mode. This Airy phase comes to 
a relatively abrupt termination when the energy traveling at the minimum group speed 
arrives. 

Water wave Airy phase 

Ground wave 

Figure 9.9.5 Sketch of the signal received from a transient propagated in a shallow­
water channel with a fast fluid bottom. (After Ewing, Jardetzky, and Press, Elastic Waves 
in Layered Media, McGraw-Hill, 1957.) 
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Appendixes 

Al CONVERSION FACTORS AND PHYSICAL CONSTANTS 

(a) Conversions between SI and CGS 

Quantity Multiply SI by to obtain CGS 

Length meter (m) 102 centimeter (cm) 
Mass kilogram (kg) 10' gram (g) 
Trme second (s) 1 second (s) 
Force newton (N) 1()5 dyne 
Energy joule (J) 107 erg 
Power watt (W) 107 erg/s 
Volume density kg/m3 10-3 g/cm3 
Pressure pascal (Pa) 10 dyne/cm2 

Speed m/s 102 cm/s 
Energy density J/m3 10 erg/cm3 
Elastic modulus Pa 10 dyne/cm2 

Coefficient of viscosity Pa· s 10 dyne· s/cm2 

Volume velocity m3/s 106 cm3/s 
Acoustic intensity W/m2 103 erg/(s · cm2) 

Mechanical impedance N·s/m 103 dyne· s/cm 
Specific acoustic impedance Pa· s/m 10-1 dyne· s/cm3 
Acoustic impedance Pa· s/m3 10-s dyne· s/cm5 

Mechanical stiffness Nim 103 dyne/cm 
Magnetic flux density tesla (T) HY' gauss 

(b) Other Conversions(= designates exact conversions) 

1 lb (mass)= 0.45359237 kg 
1 in. = 2.54 cm 
1 ft = 0.3048 m 
1 yd= 0.9144m 
1 fathom = 1.8288 m 
1 mi (U.S. statute) = 1.609344 km 
1 mi (international and U.S. nautical) = 1 nm = 1.852 km = 6076 ft 
1 mph= 0.44704 m/s = 1.609344 km/h 
1 knot= 1 nm/h = 1.852 km/h = 0.5144 m/s = 1.1508 mph 
1 bar = 1 x 105 Pa = 1 x 106 dyne/ cm2 = 14.5037 psi 
1 kgf/m2 = 9.80665 Pa 
1 ft H2O (39.2°F) = 2.98898 X 103 Pa 
1 in. Hg (32°F) = 3.38639 X 1D3 Pa 
1 lbf/in.2 (psi) = 6.89476 X 1D3 Pa 
1 atm = 1.01325 bar = 14.6959 psi (lbf/in.2) = 1.03323 X 1D4 kgf/m2 

= 33.8995 ft H2O (39.2°F) = 29.9213 in. Hg (32°F) 
°C = K - 273.15 = i(°F - 32) 

508 
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(c) Physical Constants 

Acceleration of gravity g 9.80665 (standard) m/s2 
Avogadro constant A 6.022 X 1026 km.01-1 

Boltzmann constant kB 1.3807 X 10-23 J/K 
Gas constant 9Jt, 8.3145 J/(mol · K) 

8.3145 X 103 J/(kmol · K) 
Molecular weight M 

Dry air 28.964 kg/kmol 
H20 18.016 kg/kmol 

Specific gas constant r 
Dry air 287.06 J/(kg · K) 
H20 (gas) 461.50 J/(kg · K) 

A2 COMPLEX NUMBERS 

Let x and y be real functions and define j = ;-::i. Then from 

. x3 x5 
smx = x - - + - - · · · 

3! 5! 

x2 x4 
cosx = 1- - + - - ... 

2! 4! 

x2 x3 
tf = l+x+-+-+··· 

2! 3! 

we obtain Euler's identity 
I el6 = cos6 + jsin6 

and thus 

If 

then 

If 

then 

ei6 + e-i6 
cos6 = 2 

f = X + jy = Aei6 

Re{f} = x = Acos6 

Im{f} = y = Asin6 

1£1 = Jx2 + y2 

6 = tan-1(y/x) 

f* = x - jy = Ae-i6 

f = Fei(nwt+6) 

ei6 - e-i6 
sin6 = 2j 

+ Imaginary 

-Imaginary 

g = Gei(nwt+tf,) 

1£sl = 1£11sl = FG 

(Re{f}Re{g})T = ½Re{fg*} = ½Re{f*g} = ½FGcos(6 - cf,) 

509 

X 

In the last expression, T = 2 '1T I w. If n = 0 then the factors of ½ must be deleted. 
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Al CIRCULAR AND HYPERBOLIC FUNCTIONS 

Letz = x + jy. 

sinhz = (~ - e-z)/2 

tanh z = sinh z/ cosh z 

:z sinh z = cosh z 

sin(jy) = j sinh y 

cos(jy) = coshy 

coshz = (eZ + e-z)/2 

cothz = 1/ tanhz 

:z cosh z = sinh z 

sinh(jy) = j sin y 

cosh(jy) = cosy 

sinz = sinxcoshy + jcosxsinhy 

cosz = cosxcoshy - jsinxsinhy 

sinhz = sinhxcosy + jcoshxsiny 

coshz = coshxcosy + jsinhxsiny 

sin2 z + cos2 z = 1 

cosh2 z - sinh2 z = 1 

In the following equations, the companion relationships can be obtained by 
differentiation with respect to z1 and/ or z2. 

sin(z1 + z2) = sinz1 cosz2 + cosz1 sinz2 

sinh(z1 + z2) = sinhz1 coshz2 + coshz1 sinhz2 

2 sin z1 sin z2 = cos(z1 - z2) - cos(z1 + z2) 

2sinhz1 sinhz2 = cosh(z1 + z2) - cosh(z1 - z2) 

Useful summations are 

~ ( fJ) _ sin(N8 /2) cos[(N - 1)8 /2] 
~ cos n - sin(fJ/2) 

~ . ( fJ) _ sin(N8 /2) sin[(N - 1)8 /2] 
~ sm n - sin(8 /2) 

A4 SOME MATHEMATICAL FUNCTIONS 

In this appendix, z = x + jy with x and y real, the index 11 is a real number, and l, m, 
and n are real integers. Any other restrictions on these quantities will be explicitly 
noted. We will quote relationships pertinent to the text. For complete properties, 
see Abramowitz and Stegun, Handbook of Mathematical Functions, Dover (1965). 

( a) Gamma Function 

The gamma function, while not necessary, is convenient. For arguments with 
positive real part, it is given by 

z = 0 
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Useful equalities are 

r(½) = Fr 

f(l) = 1 

( ) 1 · 3 · 5 · · · (2n - 1) J; f n + l = ------- Tr 
2 2n 

f(n + 1) = n! 

f(z + 1) = zf(z) 

(b) Bessel-Functions, Modified Bessel Functions, and Struve Functions 

The differential equation 

2d2w dw 2 2 4(z/2)v+l 
z - + z- + (z - v )w = -----

dz2 dz for (v + ½) 

511 

has homogeneous solutions that are any linear combinations AJ v(z) + BY v(z) of the 
Bessel function of the first kind Jv(z) and the Bessel function of the second kind 
Y v(z) [also known as Weber's function or Neumann's function and sometimes 
notated as Nv(z)]. The specific combinations 

Ht1>(z) = Jv(z) + jYv(z) Ht2>(z) = J v(z) - jY v(z) 

are the Bessel functions of the third kind, the Hankel functions. The particular 
solution of the differential equation is the Struve function Hv(z). The index v 
designates the order of the functions. 

In the rest of this appendix, all functions are understood to be of argument z 
unless otherwise written. 

For integral orders, 

The Wronskian for J v and Y v is 

Series expansions for orders O and 1, useful for small z, are 

z2 z4 z6 
lo = 1 - 22 + 22 . 42 - 22 . 42 . 62 + ... 

z 2z3 3.z5 
Ji= 2+ 2·42 -2-42 ·62 +··· 

2 1 
Y1 = ---+··· 

Tr z 
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512 APPENDIX A4 SOME MATHEMATICAL FUNCTIONS 

2(z2 z4 z6 ) 
Hi = 1r 12 · 3 - 12 · 32 · 5 + 12 · 32 · 52 · 7 - ... 

where 'Y = 0.57721 ... is Euler's constant. 
Approximations useful for large z and I arg zl < 1r are 

fv -+ J2/1rzcos(z - v1r/2 - 1r/4) 

Y v -+ J2; 1rz sin(z - v1r /2 - 1r I 4) 

H~i) -+ J2/1rzexp[j(z - v1r/2 - 1r/4)] 

H~2> -+ J2; 1rz exp[-j(z - v1r /2 - 1r I 4)] 

1 r(½) (z)v-i 
Hv - Yv -+ 1r f (v + ½) 2 

Let Cv represent any linear combination of Bessel functions of order v. Then 
some recurrence and differential relations for the Bessel and Struve functions are 

C + C 2vCv v-i v+i = z 

d 
dzCo = -Ci ~ (_!_c ) = _ _!_c +l dz zv v zv v 

d 2 
-Ho= - -Hi 
dz 1r 

! (zvCv) = zvCv-i 

:z (zVHv) = zvHv-i 

Useful integral representations are 

2 f-rr/2 2 f-rr/2 J0(z) = - cos(z cos 8) d8 H0(z) = - sin(z cos 8) d8 
'TT' 0 'TT' 0 

ln(z) = ---- cos(zcos8)sin2n8 d8 = - 1- ezcoso cosn8 d8 (z/2t i-rr (-~n f2-rr . 

for (n + ½) o 21r o 

The arguments of J v for which the function has real zeros and extrema are real 
and defined as jvn and j~n- Relevant evaluations include 

fv(jvn) = 0 
., ., 

J ( •1 ) J vn J ( ., ) J vn J ( ., ) v Jvn = - v-i Jvn = - v+i Jvn 
V V 

With these defined arguments, normalizations for orthogonal Bessel functions of 
the first kind are facilitated with 
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The modified Bessel function Iv satisfies the differential equation 

d2w dw 
z2- + z- - (z2 + v2)w = 0 

dz2 dz 

and is related to J v by 

All other needed relationships follow from the substitution jz for the argument z 
in the preceding equations for Jv(z). For example, 

I I = 2v1 v-1 - v+l v 

d 
-Io = I1 
dz 

( c) Spherical Bessel Functions 

z 

The spherical Bessel functions jn(z) of the first kind, Yn(z) of the second kind, and 
hn(z) of the third kind, and any linear combination of them satisfy the differential 
equation 

d2w dw 
z2 dz2 + 2z dz + [z2 - n(n + l)]w = O 

They are related to the Bessel functions by 

jn = J 71' /2z J n+ 1/2 

Yn = J 71' /2z Yn+l/2 

h(l,2) = ,-;;:;: H(l,2) 
n ✓ 71' I LZ n+ 1/2 

Explicit forms for jn are 

. sinz 
Jo= -

z 

. (3 1) . 3 )2 = - - - smz - - cosz 
z3 z z2 

(d) Legendre Functions 

. sinz cosz 
)1 = -- - --z2 z 

. 2n + 1. . 
}n+l = --Jn - Jn-1 

z 

The Legendre function P1(z) of degree land order mis a solution of the differential 
equation 

2 d2w dw /i m2 ) 
(1 - z ) dz2 - 2z dz + ~(l + 1) - 1 - z2 w = 0 

The greatest order for any degree is limited by m < l. While the Legendre functions 
are in general rather complicated functions of z, our interest is restricted to their 
behavior for real arguments x lying in the interval lxl < 1. 
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For spherical standing waves, x = cos fJ. For the zeroth order Legendre func­
tions, m = 0 and the order superscript is suppressed. These are the Legendre 
polynomials. They can be obtained from 

Pn(X) = - 1- dn (x2 - 1r 
2nn! dxn 

and the lowest four integral degrees are 

Po= 1 P1 = cosfJ 

P2 = ½(3 cos2 fJ - 1) P3 = ½(Scos3 fJ - 3cosfJ) 

Higher orders, the associated Legendre functions, can be obtained from 

so that 

P{ = - sinfJ P½ = -3 sin fJ cos fJ 

P~ = 3sin2 fJ 

PJ = - ~ sinfJ(Scos2 fJ - 1) 

P~ = 15 sin2 fJ cos fJ 

~ = -15sin3 fJ 

Two recurrence relations are 

(I - m + 1)~1 = (21 + l)xPf' - (I + m)Pf'_1 

Pi+l = (1 - x2)-112 [(1 - m)xPr - (l + m)Pz:d 

A5 BESSEL FUNCTIONS: TABLES, GRAPHS, 
ZEROS, AND EXTREMA 

(a) Table: Bessel and Modified Bessel Funct.ions 
of the First Kind of Orders 0, 1, and 2 

X /o(x) /i(x) /z(x) Yo(x) Y1(x) Y2(x) Io(x) I1(x) Ii(x) 
0 1.0000 0 0 -oo -00 -oo 1.0000 0 0 
0.1000 0.9975 0.0499 0.0012 -1.5342 -6.4590 -127.6448 1.0025 0.0501 0.0013 
0.2000 0.9900 0.0995 0.0050 -1.0811 -3.3238 -32.1571 1.0100 0.1005 0.0050 
0.3000 0.9776 0.1483 0.0112 -0.8073 -2.2931 -14.4801 1.0226 0.1517 0.0113 
0.4000 0.9604 0.1960 0.0197 -0.6060 -1.7809 -8.2983 1.0404 0.2040 0.0203 
0.5000 0.9385 0.2423 0.0306 -0.4445 -1.4715 -5.4414 1.0635 0.2579 0.0319 
0.6000 0.9120 0.2867 0.0437 -0.3085 -1.2604 -3.8928 1.0920 0.3137 0.0464 
0.7000 0.8812 0.3290 0.0588 -0.1907 -1.1032 -2.9615 1.1263 0.3719 0.0638 
0.8000 0.8463 0.3688 0.0758 -0.0868 -0.9781 -2.3586 1.1665 0.4329 0.0844 
0.9000 0.8075 0.4059 0.0946 0.0056 -0.8731 -1.9459 1.2130 0.4971 0.1083 
1.0000 0.7652 0.4401 0.1149 0.0883 -0.7812 -1.6507 1.2661 0.5652 0.1357 
1.1000 0.7196 0.4709 0.1366 0.1622 -0.6981 -1.4315 1.3262 0.6375 0.1671 
1.2000 0.6711 0.4983 0.1593 0.2281 -0.6211 -1.2633 1.3937 0.7147 0.2026 
1.3000 0.6201 0.5220 0.1830 0.2865 -0.5485 -1.1304 1.4693 0.7973 0.2426 
1.4000 0.5669 0.5419 0.2074 0.3379 -0.4791 -1.0224 1.5534 0.8861 0.2875 
1.5000 0.5118 0.5579 0.2321 03824 -0.4123 -0.9322 1.6467 0.9817 0.3378 
1.6000 0.4554 0.5699 0.2570 0.4204 -0.3476 -0.8549 1.7500 1.0848 0.3940 
1.7000 0.3980 0.5778 0.2817 0.4520 -0.2847 -0.7870 1.8640 1.1963 0.4565 
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(continued) 

X Jo(x) Ji(x) h(x) Yo(x) Y1(x) Y2(x) Io(x) I1(x) I2(x) 
1.8000 0.3400 0.5815 0.3061 0.4774 -0.2237 -0.7259 1.9896 1.3172 0.5260 
1.9000 0.2818 0.5812 0.3299 0.4968 -0.1644 -0.6699 2.1277 1.4482 0.6033 
2.0000 0.2239 0.5767 0.3528 0.5104 -0.1070 -0.6174 2.2796 1.5906 0.6889 
2.1000 0.1666 0.5683 0.3746 0.5183 -0.0517 -0.5675 2.4463 1.7455 0.7839 
2.2000 0.1104 0.5560 0.3951 0.5208 0.0015 -0.5194 2.6291 1.9141 0.8891 
2.3000 0.0555 0.5399 0.4139 0.5181 0.0523 -0.4726 2.8296 2.0978 1.0054 
2.4000 0.0025 0.5202 0.4310 0.5104 0.1005 -0.4267 3.0493 2.2981 1.1342 
2.5000 -0.0484 0.4971 0.4461 0.4981 0.1459 -0.3813 3.2898 2.5167 1.2765 
2.6000 -0.0968 0.4708 0.4590 0.4813 0.1884 -0.3364 3.5533 2.7554 1.4337 
2.7000 -0.1424 0.4416 0.46% 0.4605 0.2276 -0.2919 3.8417 3.0161 1.6075 
2.8000 -0.1850 0.4097 0.4777 0.4359 0.2635 -0.2477 4.1573 3.3011 1.7994 
2.9000 -0.2243 0.3754 0.4832 0.4079 0.2959 -0.2038 4.5027 3.6126 2.0113 
3.0000 -0.2601 0.3391 0.4861 0.3769 0.3247 -0.1604 4.8808 3.9534 2.2452 
3.1000 -0.2921 0.3009 0.4862 0.3431 0.3496 -0.1175 5.2945 4.3262 2.5034 
3.2000 -0.3202 0.2613 0.4835 0.3071 0.3707 -0.0754 5.7472 4.7343 2.7883 
3.3000 -o.3443 0.2207 0.4780 0.2691 0.3879 -0.0340 6.2426 5.1810 3.1027 
3.4000 -0.3643 0.1792 0.4697 0.22% 0.4010 0.0063 6.7848 5.6701 3.4495 
3.5000 -0.3801 0.1374 0.4586 0.1890 0.4102 0.0454 7.3782 6.2058 3.8320 
3.6000 -0.3918 0.0955 0.4448 0.1477 0.4154 0.0831 8.0277 6.7927 4.2540 
3.7000 -0.3992 0.0538 0.4283 0.1061 0.4167 0.1192 8.7386 7.4357 4.7193 
3.8000 -0.4026 0.0128 0.4093 0.0645 0.4141 0.1535 9.5169 8.1404 5.2325 
3.9000 -0.4018 -0.0272 0.3879 0.0234 0.4078 0.1858 10.3690 8.9128 5.7983 
4.0000 -0.3971 -0.0660 0.3641 -0.0169 0.3979 0.2159 11.3019 9.7595 6.4222 
4.1000 -0.3887 -0.1033 0.3383 -0.0561 0.3846 · 0.2437 12.3236 10.6877 7.1100 
4.2000 -0.3766 -0.1386 0.3105 -0.0938 0.3680 0.2690 13.4425 11.7056 7.8684 
4.3000 -0.3610 -0.1719 0.2811 -0.12% 0.3484 0.2916 14.6680 12.8219 8.7043 
4.4000 -0.3423 -0.2028 0.2501 -0.1633 0.3260 0.3115 16.0104 14.0462 9.6258 
4.5000 -0.3205 -0.2311 0.2178 -0.1947 0.3010 0.3285 17.4812 15.3892 10.6415 
4.6000 -0.2%1 -0.2566 0.1846 -0.2235 0.2737 0.3425 19.0926 16.8626 11.7611 
4.7000 -0.2693 -0.2791 0.1506 -0.2494 0.2445 0.3534 20.8585 18.4791 12.9950 
4.8000 -0.2404 -0.2985 0.1161 -0.2723 0.2136 0.3613 22.7937 20.2528 14.3550 
4.9000 -0.2097 -0.3147 0.0813 -0.2921 0.1812 0.3660 24.9148 22.1993 15.8538 
5.0000 -0.1776 -0.3276 0.0466 -0.3085 0.1479 0.3677 27.2399 24.3356 17.5056 
5.1000 -0.1443 -0.3371 0.0121 -0.3216 0.1137 0.3662 29.7889 26.6804 19.3259 
5.2000 -0.1103 -0.3432 -0.0217 -0.3313 0.0792 0.3617 32.5836 29.2543 21.3319 
5.3000 -0.0758 -0.3460 -0.0547 -0.3374 0.0445 0.3542 35.6481 32.0799 23.5425 
5.4000 -0.0412 -0.3453 -0.0867 -o.3402 0.0101 0.3439 39.0088 35.1821 25.9784 
5.5000 -0.0068 -0.3414 -0.1173 -0.3395 -0.0238 0.3308 42.6946 38.5882 28.6626 
5.6000 0.0270 -0.3343 -0.1464 -0.3354 -0.0568 0.3152 46.7376 42.3283 31.6203 
5.7000 0.0599 -0.3241 -0.1737 -0.3282 -0.0887 0.2970 51.1725 46.4355 34.8794 
5.8000 0.0917 -0.3110 -0.1990 -0.3177 -0.1192 0.2766 56.0381 50.9462 38.4704 
5.9000 0.1220 -0.2951 -0.2221 -0.3044 -0.1481 0.2542 61.3766 55.9003 42.4273 
6.0000 0.1506 -0.2767 -0.2429 -0.2882 -0.1750 0.2299 67.2344 61.3419 46.7871 
6.1000 0.1773 -0.2559 -0.2612 -0.2694 -0.1998 0.2039 73.6628 67.3194 51.5909 
6.2000 0.2017 -0.2329 -0.2769 -0.2483 -0.2223 0.1766 80.7179 73.8859 56.8838 
6.3000 0.2238 -0.2081 -0.2899 -0.2251 -0.2422 0.1482 88.4616 81.1000 62.7155 
6.4000 0.2433 -0.1816 -0.3001 -0.1999 -0.25% 0.1188 96.9616 89.0261 69.1410 
6.5000 0.2601 -0.1538 -0.3074 -0.1732 -0.2741 0.0889 106.2929 97.7350 76.2205 
6.6000 0.2740 -0.1250 -0.3119 -0.1452 -0.2857 0.0586 116.5373 107.3047 84.0208 
6.7000 0.2851 -0.0953 -0.3135 -0.1162 -0.2945 0.0283 127.7853 117.8208 92.6150 
6.8000 0.2931 -0.0652 -0.3123 -0.0864 -0.3002 -0.0019 140.1362 129.3776 102.0839 
6.9000 0.2981 -0.0349 -0.3082 -0.0563 -0.3029 -0.0315 153.6990 142.0790 1125167 
7.0000 0.3001 -0.0047 -0.3014 -0.0259 -0.3027 -0.0605 168.5939 156.0391 124.0113 
7.1000 0.2991 0.0252 -0.2920 0.0042 -0.2995 -0.0885 184.9529 171.3834 136.6759 
7.2000 0.2951 0.0543 -0.2800 0.0339 -0.2934 -0.1154 202.9213 188.2503 150.6296 
7.3000 0.2882 0.0826 -0.2656 0.0628 -0.2846 -0.1407 222.6588 206.7917 166.0035 
7.4000 0.2786 0.10% -0.2490 0.0907 -0.2731 -0.1645 244.3410 227.1750 182.9424 
7.5000 0.2663 0.1352 -0.2303 0.1173 -0.2591 -0.1864 268.1613 249.5844 201.6055 
7.6000 0.2516 0.1592 -0.2097 0.1424 -0.2428 -0.2063 294.3322 274.2225 222.1684 
7.7000 0.2346 0.1813 -0.1875 0.1658 -0.2243 -0.2241 323.0875 301.3124 244.8246 
7.8000 0.2154 0.2014 -0.1638 0.1872 -0.2039 -0.2395 354.6845 331.0995 269.7872 
7.9000 0.1944 0.2192 -0.1389 0.2065 -0.1817 -0.2525 389.4063 363.8539 297.2914 
8.0000 0.1717 0.2346 -0.1130 0.2235 -0.1581 -0.2630 427.5641 399.8731 327.5958 
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(b) Graphs: Bessel Functions of the First Kind 
of Orders 0, 1, 2, and 3 

1 

0.8 
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0.4 
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8 0 ....,., 

-0.2 

-0.4 

-0.6 

-0.8 

-1 
0 2 4 6 8 10 12 

X 

14 16 18 20 

(c) Zeros: Bessel Functions of the First Kind, JmUmn) = 0 

~ 0 1 2 

0 - 2.40 5.52 
1 0 3.83 7.02 
2 0 5.14 8.42 
3 0 6.38 9.76 
4 0 7.59 11.06 
5 0 8.77 12.34 

( d) Extrema: Bessel Functions 
of the First Kind, J:,,(j:,,n) = 0 

~ 
1 2 

0 0 3.83 
1 1.84 5.33 
2 3.05 6.71 
3 4.20 8.02 
4 5.32 9.28 
5 6.41 10.52 

jmn 

3 4 5 

8.65 11.79 14.93 
10.17 13.32 16.47 
11.62 14.80 17.96 
13.02 16.22 19.41 
14.37 17.62 20.83 
15.70 18.98 22.22 

., 
]mn 

3 4 5 

7.02 10.17 13.32 
8.54 11.71 14.86 
9.97 13.17 16.35 

11.35 14.59 17.79 
12.68 15.96 19.20 
13.99 17.31 20.58 
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(e) Table: Spherical Bessel Functions 
of the First Kind of Orders O, 1, and 2 

X jo(x) ji(x) ji(x) 

0 1.000 0 0 
0.1000 0.9983 0.0333 0.0007 
0.2000 0.9933 0.0664 0.0027 
0.3000 0.9851 0.0991 0.0060 
0.4000 0.9735 0.1312 0.0105 
0.5000 0.9589 0.1625 0.0164 
0.6000 0.9411 0.1929 0.0234 
0.7000 0.9203 0.2221 0.0315 
0.8000 0.8967 0.2500 0.0408 
0.9000 0.8704 0.2764 0.0509 
1.0000 0.8415 0.3012 0.0620 
1.1000 0.8102 0.3242 0.0739 
1.2000 0.7767 0.3453 0.0865 
1.3000 0.7412 0.3644 0.0997 
1.4000 0.7039 0.3814 0.1133 
1.5000 0.6650 0.3962 0.1273 
1.6000 0.6247 0.4087 0.1416 
1.7000 0.5833 0.4189 0.1560 
1.8000 0.5410 0.4268 0.1703 
1.9000 0.4981 0.4323 0.1845 
2.0000 0.4546 0.4354 0.1984 
2.1000 0.4111 0.4361 0.2120 
2.2000 0.3675 0.4345 0.2251 
2.3000 0.3242 0.4307 0.2375 
2.4000 0.2814 0.4245 0.2492 
2.5000 0.2394 0.4162 0.2601 
2.6000 0.1983 0.4058 0.2700 
2.7000 0.1583 0.3935 0.2789 
2.8000 0.1196 0.3792 0.2867 
2.9000 0.0825 0.3633 0.2933 
3.0000 0.0470 0.3457 0.2986 
3.1000 0.0134 0.3266 0.3027 
3.2000 -0.0182 0.3063 0.3054 
3.3000 -0.0478 0.2848 0.3067 
3.4000 -0.0752 0.2622 0.3066 
3.5000 -0.1002 0.2389 0.3050 
3.6000 -0.1229 0.2150 0.3021 
3.7000 -0.1432 0.1905 0.2977 
3.8000 -0.1610 0.1658 0.2919 
3.9000 -0.1764 0.1409 0.2847 

517 

X jo(x) ji(x) jz(x) 

4.0000 -0.1892 0.1161 0.2763 
4.1000 -0.1996 0.0915 0.2665 
4.2000 -0.2075 0.0673 0.2556 
4.3000 -0.2131 0.0437 0.2435 
4.4000 -0.2163 0.0207 0.2304 
4.5000 -0.2172 -0.0014 0.2163 
4.6000 -0.2160 -0.0226 0.2013 
4.7000 -0.2127 -0.0426 0.1855 
4.8000 -0.2075 -0.0615 0.1691 
4.9000 -0.2005 -0.0790 0.1521 
5.0000 -0.1918 -0.0951 0.1347 
5.1000 -0.1815 -0.1097 0.1170 
5.2000 -0.1699 -0.1228 0.0991 
5.3000 -0.1570 -0.1342 0.0811 
5.4000 -0.1431 -0.1440 0.0631 
5.5000 -0.1283 -0.1522 0.0453 
5.6000 -0.1127 -0.1586 0.0277 
5.7000 -0.0966 -0.1634 0.0106 
5.8000 -0.0801 -0.1665 -0.0060 
5.9000 -0.0634 -0.1679 -0.0220 
6.0000 -0.0466 -0.1678 -0.0373 
6.1000 -0.0299 -0.1661 -0.0518 
6.2000 -0.0134 -0.1629 -0.0654 
6.3000 0.0027 -0.1583 -0.0780 
6.4000 0.0182 -0.1523 -0.0896 
6.5000 0.0331 -0.1452 -0.1001 
6.6000 0.0472 -0.1368 -0.1094 
6.7000 0.0604 -0.1275 -0.1175 
6.8000 0.0727 -0.1172 -0.1244 
6.9000 0.0838 -0.1061 -0.1299 
7.0000 0.0939 -0.0943 -0.1343 
7.1000 0.1027 -0.0820 -0.1373 
7.2000 0.1102 -0.0692 -0.1391 
7.3000 0.1165 -0.0561 -0.1396 
7.4000 0.1214 -0.0429 -0.1388 
7.5000 0.1251 -0.0295 -0.1369 
7.6000 0.1274 -0.0163 -0.1338 
7.7000 0.1283 -0.0033 -0.1296 
7.8000 0.1280 0.0095 -0.1244 
7.9000 0.1264 0.0218 -0.1182 
8.0000 0.1237 0.0336 -0.1111 
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(f) Graphs: Spherical Bessel Functions 
of the First Kind of Orders 0, 1, and 2 

1 

0.8 

0.6 

0.4 ,....._ 
~ 
--.," 

0.2 

0 

-0.2 

APPENDIX A5 BESSEL FUNCTIONS 

-0.4 -----~~~~~-~-~-~-~-~ 
0 2 4 6 8 10 12 14 16 18 20 

X 

(9) Zeros: Spherical Bessel Functions of the First Kind,jm(,mn) = 0 

(mn 

~ 0 1 2 3 

0 - 3.14 6.28 9.42 
1 0 4.49 7.73 10.90 
2 0 5.76 9.10 12.32 
3 0 6.99 10.42 13.70 
4 0 8.18 11.70 15.04 
5 0 9.36 12.97 16.35 

(h) Extrema: Spherical Bessel Functions 
of the First Kind, j/,, <,:nn) = 0 

(:,m 

~ 1 2 3 

0 0 4.49 7.73 
1 2.08 5.94 9.21 
2 3.34 7.29 10.61 
3 4.51 8.58 11.97 
4 5.65 9.84 13.30 
5 6.76 11.07 14.59 

4 5 

12.57 15.71 
14.07 17.22 
15.51 18.69 
16.92 20.12 
18.30 21.53 
19.65 22.90 

4 5 

10.90 14.07 
12.40 15.58 
13.85 17.04 
15.24 18.47 
16.61 19.86 
17.95 21.23 
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A6 TABLE OF DIRECTIVITIES AND IMPEDANCE 
FUNCTIONS FOR A PISTON 

Directivity Functions Impedance Functions 
(x = ka sin 6) (x = 2/ca) 

X Pressure Intensity Resistance Resistance 

2h(x) 
(2/~x) J R1(x) X1(x) 

X 

0.0 1.0000 1.0000 0.0000 0.0000 
0.2 0.9950 0.9900 0.0050 0.0847 
0.4 0.9802 0.9608 0.0198 0.1680 
0.6 0.9557 0.9134 0.0443 0.2486 
0.8 0.9221 0.8503 0.0779 0.3253 

1.0 0.8801 0.7746 0.1199 0.3969 
1.2 0.8305 0.6897 0.1695 0.4624 
1.4 0.7743 0.5995 0.2257 0.5207 
1.6 0.7124 0.5075 0.2876 0.5713 
1.8 0.6461 0.4174 0.3539 0.6134 

2.0 0.5767 0.3326 0.4233 0.6468 
2.2 0.5054 0.2554 0.4946 0.6711 
2.4 0.4335 0.1879 0.5665 0.6862 
2.6 0.3622 0.1326 0.6378 0.6925 
2.8 0.2927 0.0857 0.7073 0.6903 

3.0 0.2260 0.0511 0.7740 0.6800 
3.2 0.1633 0.0267 0.8367 0.6623 
3.4 0.1054 0.0111 0.8946 0.6381 
3.6 0.0530 0.0028 0.9470 0.6081 
3.8 +0.0068 0.00005 0.9932 0.5733 

4.0 -0.0330 0.0011 1.0330 0.5349 
4.5 -0.1027 0.0104 1.1027 0.4293 
5.0 -0.1310 0.0172 1.1310 0.3232 
5.5 -0.1242 0.0154 1.1242 0.2299 
6.0 -0.0922 0.0085 1.0922 0.1594 
6.5 -0.0473 0.0022 1.0473 0.1159 

7.0 -0.0013 0.00000 1.0013 0.0989 
7.5 +0.0361 0.0013 0.9639 0.1036 
8.0 0.0587 0.0034 0.9413 0.1219 
8.5 0.0643 0.0041 0.9357 0.1457 
9.0 0.0545 0.0030 0.9455 0.1663 
9.5 0.0339 0.0011 0.9661 0.1782 

10.0 +0.0087 0.00008 0.9913 0.1784 
10.5 -0.0150 0.0002 1.0150 0.1668 
11.0 -0.0321 0.0010 1.0321 0.1464 
11.5 -0.0397 0.0016 1.0397 0.1216 
12.0 -0.0372 0.0014 1.0372 0.0973 
12.5 -0.0265 0.0007 1.0265 0.0779 

13.0 -0.0108 0.0001 1.0108 0.0662 
13.5 +0.0056 0.00003 0.9944 0.0631 
14.0 0.0191 0.0004 0.9809 0.0676 
14.5 0.0267 0.0007 0.9733 0.0770 
15.0 0.0273 0.0007 0.9727 0.0880 
15.5 0.0216 0.0005 0.9784 0.0973 

16.0 0.0113 0.0001 0.9887 0.1021 
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A7 VECTOR OPERATORS 

In these relations the scalars J and g and .. the vectors A and B can be functions of 
time as well as space. The magnitude of A is A. 

V2J = V · (VJ) 

v2 .A = vcv . A> - v x v x A 
V X (VJ)= 0 

V · (V X .A) = 0 

V(fg) = J Vg + gVJ 
V . (!.A) =JV · A + A . VJ 

V X (!.A) = (VJ) X A+ J(V X .A) 

V(.A . B) = (A . V)B + (B . V).A + A X (V X B) + B X (V X .A) 

V X (A X B) = .A(V . B) - B(V . .A) + (B . V).A - (A . V)B 

(.A· V).A = ½V(.A ·.A) -AX V X A 

( a) Cartesian Coordinates 

dV = dxdydz 

A. d.A = AdA 
dt dt 

(x,y,z) 

VJ= ,/J + flaJ + ,_aJ 
ax ay az / y 

V . .A = aAx + aAy + aAz X 

ax ay az 
a2J a2J a2J 

v2J= -+-+-ax2 ay2 az2 

V x A = x (aAy _ aAz) + fl (aAz _ aAx ) + z (aAx _ aAy) 
az ay ax az ay ax 

(b) Cylindrical Coordinates 

dV = rdrd0 dz 

VJ = 1r aJ + i) ! aJ + z aJ 
ar r a0 az 

.. 1a 1a a 
V ·A= --(rAr) +--Ao+ -Az rar ra0 az 

v2 1 a ( aJ) 1 a2J a2J 
f = r ar r ar + r2 a02 + az2 X 

' ' ' ' 

/ 
/ 

o ,, I // 
' I / 

------~/ 

y 
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(c) Spherical Coordinates 

dV = ,2 sin8 dr d8 dcp 

V/ = ,af + 8! af + ;J,-1- af 
ar r ae rsin8 acp 

.. 1 a _2 1 a . 1 aA4i 
V·A = _,-(rAr)+ -. -8 - 8(Aosm8)+-. -8 ---:i:" 

,.. ar rsm a rsm a'I' 

v2/ = ]_ !_ ( ,2 af) + 1 a ( sin 8 af) + 1 a2f 
r2 ar \ ar r2 sin 8 ae \ ae r2 sin2 9 acp2 " 

' ' ' ' ' 

521 

(r, 0, t/)) 

I 
I 
I 

' / y 
t/> '- I / ' / '-. I/ 

-------~ 

AS GAUSS'S THEOREM AND GREEN'S THEOREM 

(a) Gauss's Theorem in Two- and Three-Dimensional Coordinate Systems 

Gauss's theorem is a special case of the transport theorem. In three dimensions, 
it is 

fv v • F dV = fs F • n ds 

where ft is the outward unit vector normal to the surface S of the volume V. In 
words, it states that the total o~tward flux of F through a surface S is equal to 
the totality of the divergence of F in the enclosed volume V. In electromagnetism 
it relates the integral over a closed surface of the normal component of the 
electrostatic field to the total enclosed charge. 

A special case is the two-dimensional form, 

where Ft is the unit vector normal to the perimeter C of the surface S in a two­
dimensional coordinate system. 

(b) Green's Theorem 

Green's theorem 

is a consequence of the vector identities 

v • (UVV) = vu • vv + uv2v 

v • (VVU) = vv • vu + vv2u 

and Gauss's theorem. To prove this, take the difference of the above identities and 
integrate it over the volume V within the surface S, 

fvcuv2v- vv2u)dv = fv v • cuvv- vvu)dv 
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and then apply Gauss's theprem to the right side with F = uvy - VVU to convert 
the volume integral of V · F into the surface integral over S of F · fl. 

A9 A LITTLE THERMODYNAMICS AND THE PERFECT GAS 

(a) Energy, Work, and the First Law 

For notational simplicity, the absolute temperature T K will be written without the 
subscript. The First Law of Thermodynamics states that heat, like work, is a form 
of energy, thermal energy. Consequently, the change in internal energy dE of a 
thermodynamic system can be expressed as the sum of the thermal energy aQ 
added to the system and the work aw = -Vi' dV done on the system, 

I dE = aQ + aw = aQ - v; dV I (A9.l) 

This is a statement of the conservation of energy, which was originally postulated 
from empirical observations. The minus sign appears because for negative dV the 
system has been compressed and must have gained energy from the work done on 
it. The work aw done on a system and the thermal energy 8Q given to the system 
as it is taken from an initial to a final state both depend on the specifics of the 
process. They are path dependent. For example, if a system is taken from state 1 with 
pressure Vi'1, volume V1, and temperature T1 to state 2 with~' V2, T2, the amounts 
of work and thermal energy required will depend on whether the system is first 
compressed and then heated, or first heated and then compressed, even though 
the final internal energy must be the same in both cases. The internal energy Eis 
a state function; its value depends only on the state (Vi', V, n of the system and not 
how it got there. 

Let the thermodynamic system have a mass M, where M is the molecular weight 
in grams. This amount of material is defined as 1 mole. (If the mass is the molecular 
weight in kilograms, then the amount is 1 kmol.) If thermal energy aQ is added to 
a 1 mole system whose volume is held constant and the temperature is changed 
by aT, then the molar heat capacity at constant volume is defined as 

Cv = lim (aQ) 
Ar-o ar v 

(A9.2) 

with units J / (mol · K). Since a V = 0 and no work is done on the system, dE = aQ 
over each step of the process and (A9.1) gives 

cav = O) 

Cv = lim (aE) = (aE) 
AT--+o ar v aT v 

(A9.3) 

Analogously, introduce aQ into a 1 mole system under the constraint that the 
pressure remain fixed. The associated temperature change aT is then related to aQ 
by the (molar) heat capacity at constant pressure, 

c<N> = lim (aQ\ 
AT--+O aT )'3' 

(A9.4) 
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Use of (A9.1) now gives 

(a<!P = O) 

(A9.5) 

For a system containing 1 mole of a single substance, the equation of state relates 
the pressure, volume, and temperature so that the internal energy is a function of 
only two of the variables. Thus, the energy can be considered as a function of T 
and Vso that 

aE = (aE) aT + (aE) av aT v av T 
(A9.6) 

If some process now changes the temperature of a system, but holds the pressure 
constant, we can write 

(A9.7) 

We can relate Cv and C!J> by combining (A9.3), (A9.5), and (A9.7), 

c(J> _ Cv = <!P (av) + (aE) (av) aT (1> av T aT f/J> 

(A9.8) 

This will yield a simple result when applied to a perfect gas. 

(b) Enthalpy, Entropy, and the Second Law 

Two other thermodynamic quantities important in acoustics and fluid flow are the 
entha.lpy H and the entropy S. (There are two more, the Gibbs function G = H - TS 
and the Helmholtz function A = E -TS, that need not concern us here.) The enthalpy 
is defined as 

H = E + <!PV (A9.9) 

Since Eis a state function and the product <!PVis a function only of the state of the 
system, the enthalpy is also a state function. Taking the differential of H and using 
the First Law gives dH = 8Q + V d<!P. For an isobaric process, d<!P = 0 at each step 
of the process so that dH = 8Q at each step of the process and aH = aQ. Then 
(A9.4) gives 

Cf/J>=hm- =-. (aH) (aH) 
~T-+o aT (1> aT (1> 

(A9.10) 

In making a transition between an initial and a final state, a system can proceed 
in a way that cannot be undone, an irreversible process. Examples are the free ex­
pansion of a gas, a nuclear detonation, and the diffusion of one gas into another. If, 
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however, a system in equilibrium is acted upon so slowly that it remains essentially 
in equilibrium as it transits from initial to final states, the process is reversible. The 
slow compression of a gas in a perfectly insulated container is an example. 
Reversible processes can be described in terms of the entropy S. If «5Q,ev is the 
thermal energy added to a system during an infinitesimal reversible process at 
temperature T, then the change in the entropy is defined by 

dS = «5Qrev 
T 

(A9.11) 

The Second Law of Thermodynamics, also postulated from empirical observations, 
states that any heat engine must operate between two thermal reservoirs of 
different temperatures. It is equivalent to asserting that the entropy of a system is 
a state function. Thus, for example, if a system starts in state 1 and by whatever 
process ends up in state 2, the entropy change can be calculated by ignoring the 
actual process and instead finding a reversible way of accomplishing the same 
change in state ( e.g., first moving reversibly at constant T1 to V2 and then reversibly 
to T2 at constant V2). The entropy and internal energy are related by 

dE = T dS - <!P dV (A9.12) 

( c) The Perfect Gas 

A perfect gas can be considered as a collection of infinitesimally small, rigid 
particles that exert forces on each other only when they collide ( e.g., a collection of 
perfectly elastic, rapidly moving billiard balls). The absence of interparticle forces 
means that there can be no potential energy. The internal energy of the system is 
then just the sum of the kinetic energies of all the particles, and application of the 
kinetic theory of gases reveals two important results. 

1. The energy of the gas is a function only of temperature, which has the immediate 
consequence 

so that (A9.8) becomes 

(aE) = O av T 

cg]> - Cv = <!P (av\ 
aT )cg> 

(A9.13) 

(A9.14) 

2. The pressure, volume, and temperature of a mole of a perfect gas are related by 
the equation of state, 

I <!PV = ffiT I (A9.15) 

where ffi is the universal gas constant 

ffi = 8.3145 J/(mol·K) (A9.16) 
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litherearenmoles,thenQJ)V = nmT.Intermsofthedensityp,wehavepV = M 
so that 

QI) = prT r = m/M (A9.17) 

where r is the gas constant for the particular gas in question. 

Two important conclusions about the thermodynamic behavior of perfect gases 
can now be drawn. 

1. Since Eis a function only of T, the heat capacities are related by (A9.14) and use 
of the equation of state (A9.15) reveals 

(A9.18) 

so that 

(A9.19) 

2. For an adiabatic process there is no gain or loss of thermal energy so that .dQ = 0. 
We then have 

(A9.20) 

Now, (A9.6), (A9.13), and (A9.3) yield aE = (aE/ aT)v aT = Cv aT so that 
-QJ)a V = Cv.dT for a perfect gas. Use of (A9.15) gives 

-ma VIV = CvaT /T 

Integration of both sides gives -mln(V /Vo) = Cv ln(T /To) or 

(Vo/V)m. = (T /Tofv 

Use of (A9.15) yields the adiabat 

QI) /QJ)o = (pl Po)" 

'Y = C'tf/Cv 

where 'Y is defined as the ratio of heat capacities. 

(A9.21) 

(A9.22) 

(A9.23) 

For a perfect gas with constant heat capacities between states 1 and 2, use of 
aE = Cv.dT and (A9.l) gives <5Q,ev = C'tf dT - V dQJ). Division by temperature to 
obtain the entropy, use of (A9.15) to eliminate V, and then direct integration of 
temperature and pressure between the two states gives 

(A9.24) 
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VI 
N 
0--

(a) Solids 

Solid 

Aluminum 
Brass 
Copper 
Iron (cast) 
Lead 
Nickel 
Silver 
Steel 
Glass (Pyrex) 
Quartz (X-cut) 
Lucite 
Concrete 
Ice 
Cork 
Oak 
Pine 
Rubber (hard) 
Rubber (soft) 
Rubber (rho-c) 

Density 
(kg/m3) 

Po 

2700 
8500 
8900 
7700 

11300 
8800 

10500 
7700 
2300 
2650 
1200 
2600 

920 
240 
720 
450 

1100 
950 

1000 

Adiabatic 
Young's Shear Bulk 
Modulus Modulus Modulus 

(Pa) (Pa) (Pa) 
y cs ~ 

x1010 x1O10 x1010 

7.1 2.4 7.5 
10.4 3.8 13.6 
12.2 4.4 16.0 
10.5 4.4 8.6 

1.65 0.55 4.2 
21.0 8.0 19.0 

7.8 2.8 10.5 
19.5 8.3 17.0 

6.2 2.5 3.9 
7.9 3.9 3.3 
0.4 0.14 0.65 

- - -
- - -
- - -
- - -
- - -

0.23 0.1 0.5 
0.0005 - 0.1 
- - 0.24 

Speed 
(m/s) 

Poisson's C 

Ratio 
<T Bar Bull< 

0.33 5150 6300 
0.37 3500 4700 
0.35 3700 5000 
0.28 3700 4350 
0.44 1200 2050 
0.31 4900 5850 
0.37 2700 3700 
0.28 5050 6100 
0.24 5200 5600 
0.33 5450 5750 
0.4 1800 2650 

- - 3100 
- - 3200 
- - 500 
- - 4000 
- - 3500 

0.4 1450 2400 
0.5 70 1050 
- - 1550 

Characteristic 
Impedance 
(Pa·s/m) 

PoC 

Bar Bull< 

X106 X106 

13.9 17.0 
29.8 40.0 
33.0 44.5 
28.5 33.5 
13.6 23.2 
43.0 51.5 
28.4 39.0 
39.0 47.0 
12.0 12.9 
14.5 15.3 
2.15 3.2 
- 8.0 
- 2.95 
- 0.12 
- 2.9 
- 1.57 

1.6 2.64 
0.065 1.0 
- 1.55 

O ► ~""""' ==o 
►-~ ~ a, 
;1 r-c 
~ r.r1 

Cl} 

0 
~ 

~ 
Cl} 

n 
> r-c 

~ 
~ 

~ 
Cl} 
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VJ 
N 
~ 

(b) Liquids 

Liquid 

Water (fresh) 
Water (sea) 
Alcohol (ethyl) 
Castor ( oil) 
Mercury 
Turpentine 
Glycerin 
Fluid-like sea bottoms 
Red clay 
Calcareous ooze 
Coarse silt 
Quartz sand 

Temperature Density 
(°C) (kg/m3} 

T Po 

20 998 
13 1026 
20 790 
20 950 
20 13600 
20 870 
20 1260 

1340 
1570 
1790 
2070 

Isothermal 
Bulk Ratio 

Modulus of Specific 
(Pa) Heats 
mT 'Y 

X109 

2.18 1.004 
2.28 1.01 
- -
- -

25.3 1.13 
1.07 1.27 
- -

- -
- -
- -
- -

Coefficient 
Characteristic of Shear Specific Thermal 

Speed Impedance Viscosity Heat Conductivity Prandtl 
(m/s) (Pa·s/m) (Pa·s) [J/(kg·K)] [W/(m·K)] Number 

C PoC 11 c~ K Pr 

X106 x10~3 Xl<J3 
1481 1.48 1.00 4.19 0.603 6.95 
1500 1.54 1.07 
1150 0.91 1.20 
1540 1.45 960 
1450 19.7 1.56 0.14 8.21 0.0266 
1250 1.11 1.50 
1980 2.5 1490 

1460 1.96 
1470 2.31 
1540 2.76 
1730 3.58 
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(c) Gases 

Gas Temperature Density Ratio of Speed 
(at 1 atm) (°C) (kg/m3) Specific Heats (m/s) 

T Po 'Y C 

Air 0 1.293 1.402 331.5 
Air 20 1.21 1.402 343 
Oi 0 1.43 1.40 317.2 
COi (f «/M) 0 1.98 1.304 258 
COi (f» /M) 0 1.98 1.40 268.6 
H2 0 0.090 1.41 1269.5 
Steam 100 0.6 1.324 404.8 

Coefficient 
Characteristic of Shear 

Impedance Viscosity 
(Pa·s/m) (Pa·s) 

/JOC 1J 

x10-5 

429 1.72 
415 1.85 
453 2.00 
512 1.45 
532 
114 0.88 
242 1.3 

Specific Thennal 
Heat Conductivity 

[J/(kg·K)] [W/(m·K)] 
c~ K 

X101 

1.01 0.0263 
0.912 0.0245 
0.836 0.0145 

14.18 0.168 

Prandtl 
Number 

Pr 

0.710 
0.744 
0.836 

0.743 

VI 
N 
00 

I 
~ 
> ... 
0 

~ 
Ii 
ij 

I 
== 0 ; 

i 
1ft 

ij 

I 
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All ELASTICITY AND VISCOSITY 

(a) Solids 

529 

Application of an external force to a body distorts the body until internal forces 
arise to counterbalance the applied force and the body assumes a new shape. The 
applied force per unit area is the stress and the fractional changes in dimensions 
are the strains. For small strains of an isotropic solid, we can make two pivotal 
assumptions: (1) the stress and strains are linearly related (Hooke's law), and (2) 
individual stresses cause individual strains and the results combine linearly. The 
various stress-strain relationships can all be expressed in terms of Young's modulus 
Y and Poisson's ratio u. [For a complete development, see Feynman, Leighton, 
and Sands, The Feynman Lectures on Physics, Vol. 2, Chap. 38, Addison-Wesley 
(1965).] 

(1) LoNGllUDINAL COMPRESSION OF A THIN Roo The stress-strain relationship for 
a thin rod under longitudinal compression or extension is developed in Section 
3.3. When a compressive force f is applied to the ends of a bar of cross-sectional 
area Sand length l, the bar will shorten by a small amount al. The strain al/l is 
proportional to the applied stress f IS, 

f IS = -Y lil/l (All.1) 

where the constant of proportionality Y is Young's modulus. (The minus sign is 
consistent with a positive pressure leading to a reduction in volume.) 

(2) Po1ssoN's RAno The change in length of the thin bar is accompanied by 
a change in the transverse dimensions. If all transverse dimensions are labeled r, 
the reaction to the change in length Jil is a proportionate change in the transverse 
dimensions 

lir/r= -ulil/l (All.2) 

where the proportionality constant u is Poisson's ratio. 

(3) UNIFORM VOLUME COMPRESSION Uniform compression is developed in Chap­
ter 5 and gives the stress-strain relationship (5.2.6) 

p = -Wd JiV IV (All.3) 

where s = lip/ p = -a V /V and ~ is the bulk modulus. We can easily relate Wd, 
Y, and u. Impose a uniform compression sequentially on a block of material of 
length l, width w, and thickness t. If p = f IS is applied to the sides delimiting l, 
the fractional change in length will be given by (All.1). If the same compressive 
stress is applied to the sides delimiting w, then l will be pushed back out a little 
and the magnitude of al will be diminished by a factor (1 - u). When the final 
stress is applied to the sides delimiting t, the length will again be pushed back a 
little more and al will be diminished by a total factor of (1 - 2u), so that the actual 
change al is 

al/l = -(1 - 2u)f /YS (All.4) 
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FigureA11.1 

Thus, the direct compression is reduced linearly by each of the compressions in the 
two transverse directions. By symmetry, exactly the same must occur for ilw and 
Jlt. The total change in fractional volume is just the sum of the fractional changes 
in the dimensions, 

il.V IV = illll + ilwlw + iltlt = -3(1 - 2u)plY (All.5) 

where p has replaced/ IS. Direct comparison of (All.3) and (All.5) shows that 

00 = Y 13(1 - 2u) (All.6) 

( 4) SHEAR If an antiparallel couple of forces fare applied to the top and bottom 
surfaces, each of area S, of a cube of height h, the cube will deform as shown in Fig. 
All.1. Dividing the displacement of the upper surface with respect to the lower 
by the height gives the strain. For small strains this is well approximated by the 
angle of deformation 0. The stress is/ IS. The applied stress is proportional to the 
strain, 

JIS = <§0 (All.7) 

where <§ is the modulus of rigidity or shear modulus. This is identical with (3.13.2), 
where 0 = r(dcp I dx) and S = dw dr. The element does not rotate, so the nettorque 
is zero. This requires induced vertical forces of the same magnitude f. Vector 
combination of these direct and induced four forces shows that they are equivalent 
to a pair of compressional forces acting along one diagonal L and a pair of 
extension forces acting along the other. Geometry shows that these compression 
and extension stresses have the same magnitude as the shearing stresses. Just as 
before, the change in length of each diagonal is the sum of the strains from the 
direct compression along the diagonal and the lateral extension perpendicular to 
it. The effects enhance each other, so 

MIL = -(1 + u)f IYS (All.8) 

for the compressed diagonal. A little geometry reveals that Jl.LIL = 012 and thus 

0 = -2(1 +u)JIYS 

Comparison of (All.7) and (All.9) gives us 

<fl= Yl2(1 + u) 

(All.9) 

(All.10) 
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(5) LONGI'IUDINAL BULK COMPRESSION If a compressive stress is applied to the 
ends of a bar that is restricted so that the transverse dimensions cannot change, 
then the bar cannot "relax" against the stress by partially compensating with 
an increase in cross-sectional area. Under this constraint, a greater stress will be 
required to achieve the same longitudinal strain. The result is a larger constant of 
proportionality between stress and strain. We can generalize the previous case of 
bulk compression to consider different values of compressive pairs of forces in the 
three directions. The discussion is straightforward if we assume that the material 
element is a cube of dimension h. Let us compress the cube in the x direction with 
a pair of forces fx and require no expansion or contraction in the y and z directions. 
By symmetry, the transverse forces in the y and z directions necessary to prevent 
any transverse expansion or contraction must equal each other, and we label them 
fy. In the x direction we must have 

ll.h/h = -(Jx - 2ufy)/YS (All.11) 

and in each of the transverse dimensions, for no change of length, 

0 = -[{T - u(jy + fx)]/YS (All.12) 

Solving this equation for /TIS and substituting into (All.11) gives us the rela­
tionship between the applied stress and the resultant strain for longitudinal bulk 
compression, 

ll.h/h = -[(1 + u)(l - 2u)/(l - u)]fx/YS (All.13) 

This can be expressed in simpler form with the help of the bulk modulus 00 and 
modulus of rigidity '11. Using (All.6) and (All.to) results in 

fxlS = (00 + ~'11) ll.h/h (All.14) 

(b) Fluids 

The molecules of a fluid have sufficient kinetic energies to migrate from current 
nearest neighboring molecules to others. This mobility manifests itself in the 
appearance of additional forces that generate macroscopic effects. 

(1) SHEAR V1scos11Y If a fluid is in a state of nonuniform macroscopic motion 
(acoustic propagation, laminar or turbulent flow, etc.) there can be a diffusion 
of momentum among neighboring fluid elements caused by the migration of 
molecules from one element to another. This diffusion of momentum gives rise 
to internal forces that reduce the relative motions of adjacent elements and bring 
the fluid back to a state of uniform motion or to rest. The diffusion of momentum 
occurs whether the fluid is in shear or in longitudinal relative motion, or in 
both. Shear viscosity is an important mechanism of energy transformation from 
collective (acoustic) to random (thermal). If a fluid is subjected to a shear stress 
T, it will respond by developing an attendant shearing motion. The diffusion of 
momentum between neighboring lamina of the fluid will lead to a local steady­
state velocity, or a rate of deformation when the frictional forces counterbalance the 
shearing forces. In the case of simple shear, such as the flow between two infinite 
parallel plates, the velocity of the fluid is parallel to the stress. If the parallel plates 
extend in they and z directions and one is moving uniformly in they direction, 
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then both the shear stress T and the fluid velocity u are in the y direction and 
the magnitude of the stress is proportional to au/ ax, the spatial change in u with 
respect to the (transverse) x direction, 

au 
T = 1]­

ax 
(All.15) 

where the proportionality constant 1J is the coefficient of shear viscosity (Pa · s). 
For more complicated motion, obtaining the relationship between the force 

arising from shear viscosity and the motion is nontrivial. Developing the stress 
and rate of strain tensors within a body possessing shear viscosity and then 
calculating the internal body force per unit mass results in 

(All.16) 

as the contribution to the inhomogeneous wave equation of Section 5.14. The 
interested reader is referred to Temkin, Elements of Acoustics, Wtley (1981). 

(2) VOLUME V1scos11Y For a fluid at rest, the bulk modulus 00 is defined ex­
actly the same as for a solid. This modulus expresses the purely compressive 
(spring-like) properties of the fluid. The frictional effects arising from the transport 
of momentum between adjacent fluid elements are accounted for by the shear 
viscosity. In addition to this, however, there are other mechanisms separate from 
the diffusion of momentum that can lead to losses in some fluids. (1) Under new 
thermodynamic conditions (higher pressure and temperature for a compression), 
some groups of molecules may accommodate a different nearest neighbor config­
uration. This takes time, so that the equilibrium volume (for a constant pressure 
change) lags behind the instantaneous volume. This, although arising from a 
totally separate mechanism, introduces the same kind of an adjustment toward 
equilibrium, requiring a finite duration of time as does shear viscosity. (2) The 
changing conditions may lead to changes in the equilibrium between ionized and 
un-ionized concentrations of a compound (e.g., magnesium sulfate in sea water). 
This can result in a relaxation effect similar to the above, particularly because 
of the association and dissociation of ionized and un-ionized compounds with 
the adjacent ionized and un-ionized water complexes. These provide examples 
of processes that depend on the instantaneous thermodynamic state of the fluid 
element, and that require some time to adjust to new conditions. In effect, all act 
like structural changes that require a finite time during which the fluid attempts to 
find a new equilibrium volume in response to the external stimulus. These adjust­
ments, like the momentum diffusion, exhibit themselves as internal friction-like 
forces but depend only on the externally generated temporal changes in the local 
density. Consequently, by the linearized equation of continuity, they are functions 
only of V · ii, the rate of strain of the fluid element, but not on the flow. Since 
the forces on fluid elements arise from the gradient of the pressure, and thus the 
gradient of the density, it is reasonable to introduce them into Euler's equation as 
a body force per unit volume (see Section 5.14), 

F B(r, t) = 11B vcv • u) (All.17) 

where 1]B is the coefficient of bulk viscosity (also known as the coefficient of volume 
viscosity, expansion coefficient of viscosity, and so forth). 
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Al2 THE GREEK ALPHABET 

A A a a alpha N N V V nu 
B B f3 p beta s ';:t { ~ xi -r r 'Y 'Y gamma 0 0 0 0 omicron 
ii Do 8 6 delta II n 1T 1T pi 
E E e 8 epsilon p p p p rho 
z z ' t zeta I I u (J' sigma 
H H .,, 11 eta T T T 1' tau 
e 8 e 8 theta y y V " upsilon 
I I " L iota <I> fl> <I> cf> phi 
K K K K kappa X X X X chi 
A A A A. lambda q, 'II 

"' "' psi 
M M /L ... mu n 0 w U) omega 
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A-weighted sound level, 360 
Absorbers, 340 
Absorption 

air, 218, 224, 338 
carbon dioxide, 222 
classical, 217 
pipe,230,233 
random-incidence energy 

coefficient, 339,351 
room,335,350,379 
seawater, 218, 225, 437 
sound,335,340,379 
spatial,58,212 
temporal, 10 
values,218 
wall, rigid, 230,233 
water, 218, 225 

Absorptivity,Sabine,336,341 
Acoustic admittance 

branch,290 
Acoustic impedance, 286 

distributed, 287 
lumped,287 

Acoustic ohm, 287 
Acousticreflex,312,317 
Adiabat 

fluid, 115 
perfect gas, 115 
shock,498 

Admittance, see specific type 
Afternoon effect, 440 
Aircraft noise, 373 
Airy phase, 266 
Ambient noise, 

air, 359,375 
water, 449, 450 

Amplitude modulation, 35 
Amplitude shading, 199,203, 

208 
Anechoic, 334 
Angle of intromission, 158 
Angular frequency, see specific 

type of frequency 

Antinode, 47 
Antireciprocity, 

electroacoustic, 393 
Antiresonance,48,76 
Aperture function, 203 
Array gain, 191 
Attenuation (see also 

Absorption) 
bubbles, 238 
fogs, 235 
scattering, 240 

Auralharmonics,322 

Backscattering, see Scattering 
Baffle, 175 
Balanced noise criterion, 364 
Band level, 304 
Bandwidth, 29, 303,454,464 

critical, 318 
Barrier, 387 
Beam ... , see Directional 

factor 
Beats, 24, 321 
Bending moment, 79 
Blast wave, 500 
Blast wind, 494 
Blend, 348 
Body force, 141 
Bottom bounce, 443 
Bottom loss, 444 
Boundary layer 

thermal, 232 
viscous, 229 

Breathing sphere, see Source 
Brisance, 504 
Bulk modulus 

adiabatic,71,115,161 
isothermal, 121 

C-weighted sound level, 360 
Canonicalequations,391 

antireciprocal, 393 
mechanical dual, 393 

reciprocal, 392 
shifted,393 

Capacitance microphone, see 
Transducer 

Caustic, 140 
Cavitation, 145 
Cavity resonator, 340 
Center frequency, 304 
Channel, see specific type 
Characteristic impedance, 126 

air, 126 
water, 126 
sea water, 436 

Characteristic mechanical 
impedance, 45 

Characteristic time, 10 
Chemical relaxation, 225 
Cochlear potential, 321 
Cocktail party effect, 343 
Coherence, 140 
Coincidence, 163,384 
Combination tones, 321 
Combining bands and tones, 

306 
Community noise, 365 

criteria, 369 
equivalent level, 368, 373 

Complex frequency, 10 
Complex heat capacity, 220 
Complex speed, 213, 220 
Complex wave number, 56 
Condenser microphone, see 

Transducer 
Condensation, 113 
Consonance, 322 
Continuity equation, 117 

mass injection, 141 
Convergence zone, 443 

reswept zone, 148 
Coupling coefficient, 391 

antireciprocal, 394 
effective, 402, 405 
electrostatic transducer, 396 

543 
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544 INDEX 

moving coil transducer, 398 Dirac delta function, see Delta Equation of state 
reciprocal, 393 function adiabat, 115 

Cratering, 505 Direct arrival dynamic,213 
Critical architectural design, 342, fluid, 115 

angle, 157 343 isotherm, 115 
bandwidth, 318 ground wave, 266 perfect gas, 114 
damping, 10 water wave, 266 shock adiabat, 498 
flow,4% Direct sound field, 342 Stokes,242 
ratio, 318 Directional factor, 177, 188, Euler's equation, 119 
ray,441 199 Exponentialhorn,414 
speed of sound, 497 Directivity, 189,192 
state, 497 Directivity index, 190,449 False alarm, 308 
teinperature,497 Discontinuity distance, 481 Far field, 177, 181, 191 

Cross correlation, 311 Dispersion, 82, 212 axial pressure, 177 
Cross section Door, see Partition Fathometer,435,459 

acoustic, 457 Doppler, 453 Filter 
extinction, 234, 240 Doublet, see Source acoustic, 291 
geometric,235,240 Downshift ratio, 489 octave-band, 304 
scattering, 240 1/3-octave band, 304 

Cutoff frequency, 253 Early decay time, 351 Fireball, 500 
Echo level, 448 First arrival, see Direct 

D' Alembertian, 480 Echoic,334 arrival 
Dashpot, 8 Effective Flanking, 379 
Dead room, 334 amplitude, 125 Flange,274 
Debye temperature, 219 length, 274 Flare, 274, 414 
Decay modulus, 10 mass, 284, 286 Flare constant, 415 
Decay parameter, 500 perceived noise level, Flexural waves, 81, 384 
Decay time, 10 373 Flutter, 348 

early, 351 resistance, 286 Formants, 328 
Decay transient 13,353 stiffness, 286 Fourier analysis, 24 
Decibel, 130 Efficiency, 402,405 Fourier transform, 26 
Deep isothermal layer, 438 multipole, 202 spatial, 203 
Deep scattering layer, 461 Eigenfunction, see Normal Fourier's theorem, 24 
Deep sound-channel, 438, 444 mode Free-field reciprocity 
Degrees of freedom, 219 Eigenfrequency, see Natural factor, 175 
Delayed arrival, 347 frequency Frequency, see specific type 
Delta function (see also Source) Eikonal, 135 Fresnel number, 388 

one dimensional, 27 equation, 136 Fundamental, 53 
two dimensional, 106 Elasticity, modulus of, 70 restored, 323 
three dimensional, 142 Electrical admittance 

Density input,399 Gas constant, 115 
acoustic, 114 motional, 400 Gauge pressure, 121 
equilibrium, 113 Electrical impedance, 20 Gauss's theorem, 105, 136, 
instantaneous, 113 blocked, 391 142 
linear, 37 free, 391 Goldberg number, 483 
surface, 91 motional, 404 Green's theorem, 172 
volume, 70, 113 Electroacoustic Ground wave, 266 

Detected noise level, 448 antireciprocity, 393 Group speed, 254, 257 
Detectability index, 309 Electroacoustic reciprocity, 
Detection index, 448 392 Half-power frequencies, 
Detection threshold, 310,448, Electromechanical coupling 16 

463 coefficient, see Harmonics, 53 
Diaphragm,103 Coupling coefficient Hearing impairment, 375 
Difference frequency, 321 Enclosure, see ... room Hearingloss,375 
Difference limen, 317 and ... chamber Heat capacity 
Diffraction,136, 150,388,416 End correction, 27 4 complex, 220 
Diffraction factor, 416 Energy density, 124 complex ratio, 220 
Diffuse sound field, 333 Ensemble, 348 constant pressure, 215, 220 
Diffusion equation, 215,229 Entropy, 115 constant volume, 219 
Dip angle, 406 Equation of continuity, 117, ratio, 115 
Dipole, see Source 141 Heaviside unit function, 29 
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Helmholtz equation, 93 input,45 spectrum level, 303, 450 
inhomogeneous,259 open-circuit, 391 speech interference level, 
lossy,100,103,212,214 reactance, 12 362 
orthogonality, 61 resistance, 8 stationary, 303 
Schroedingerequation,260 short-circuit, 391 tone-corrected perceived, 

Helmholtz resonator, 284, 287, Mechanical ohm, 12, 391 373 
295 Mechanical resonance, see traffic noise index, 372 

Highway noise, 371 Resonance underwater 
Hooke's law, 2, 70 Mel, 326 ambient, 450 
Horn,414 Method of images, 163, 465 radiated, 455 

Method of stationary phase, self, 449,451 
Images, 163,465 256 white, 305 
Impact isolation class, 382 Microphone, see Transducer Normal mode, 53 
Impedance, see specific type Missing fundamental, 323 axial, 349 
Impulse, see Transient Mixed layer, 438, 440 damped,57 

waveguide, 257 Mode, see Normal mode degenerate,105,248,251 
Incoherence, 140 Modulus, see specific type evanescent, 253 
Intelligibility, 362 Mole, 143 grazing,350 
Intensity, 125 Molecular speed, 212 oblique, 349 

level, 130, 303 Molecular thermal relaxation, propagating, 253 
reference, 130 218 tangential, 349 
spectral density, 303 Monopole, see Source Normal mode frequency, see 
spectrumlevel,303 Motional admittance, 400 Natural frequency 

Intimacy, 347 Motionalimpedance,404 Normally-reacting surface, 
Intromission angle, 158 161 
Irrotational flow, 120 n-Alternative forced choice, Notch filter, 450 
Isentropic, 115 310 
Isospeed channel, 261, 465 Natural frequency, 3, 9, 53 Oblique wave, 123, 133, 155 
Isotherm, 115 Navier-Stokes equation, 211 Octave band, 304 

Near field (see also Far field), 1/3-octave band, 304 
Kronecker delta, 60 181,191 Orthogonality, 61 

Neper,214 Orthonormality, 61,259,263 
Laplacian, 92,119 Neutral axis, 79 Overtone, 53 
Lenz's law, 397 Nodal line, 95 
Level (see Noise and Sound) Nodal point, 47 Parallel filters, 318 
Live room, 334 Nodalsurface,177 Parallel processing, 456 
Lloyd's mirror, 163 Noise and Noise level (see also Parameter of nonlinearity, 
Lobes, 177, 192 Sound) 116,480 
Loop,47 aircraft, 373 Parseval's identity, 62 
Loss per bounce, 442 ambient, 359, 375, 449, Partials, 53 
Losses, see Absorption and 450 Particle acceleration, 118 

Attenuation combining,306 Particle displacement, 113 
Loudness, 324 community,365 Particle speed, 40 
Loudness level, 318, 324 community, criteria, 369 Particle velocity, 113 
Loudspeaker, see Transducer community,equivalent scaled,480 
Lumped acoustic element, level, 368, 373 Partition, 162 

283 criterion, balanced, 364 coincidence, 163 
acoustic impedance, 287 detected, 448 coincidence dip, 385 

effective perceived level, coincidence frequency, 
Mach number 373 384 

acoustic,144,480 exposure forecast, 373 door,387 
flow,496 exposure level, 368 double leaf, 381, 382, 385 

Masking,320 exposure limits, 377 flexuralwaves,384 
Mass controlled, 18 highway, 371 mass law, 163, 383 
Mass injection, 141 loudness, cakulating, 325 noisereduction,379 
Mass law, 163, 383 pink,305,380 singleleaf,381,382,383 
Mechanical admittance, 393 pollution level, 372 sound transmission class, 
Mechanicaldual,390,393 rating curves, 364 380 
Mechanical impedance reduction, 379 transmission loss, 379, 383 

(see also Radiation single event exposure level, window,387 
impedance), 12 368 Passive radiator, 413 
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Penetration depth, see Radiation pattern, see Reswept zone, 147 
Boundary layer Directional factor Reverberation, 343, 449, 459 

Perceived noise level Radius of curvature, 79, 139, bandwidth, 464 
effective,373 406,440 Reverberation chamber, 337 
tone-corrected, 373 Radius of gyration, 80 Reverberation field, 342 

Perfect gas, 114 Random-incidence energy Reverberation frequency, 454 
Period,3 absorption coefficient, Reverberation level, 449,461 
Permanent threshold shift, 339,351 Reverberation time, 336 

317,375 Random phase, 140 architectural design, 343 
Phase shading, 203 Range rate, 454 Eyring-Norris, 339 
Phasespeed,40,212,254,384 Rankine-Hugoniot equations, extended, 351 
Phasor, 7, 22 496 humidity, 338 
Phon,318 Rating task, 310 Millington-5ette,356 
Pistonphone, 428 Ray, 135 normal mode, 350 
Pitch, 326 Ray path, 136 optimum, 344 
Pitch shift, 323 Rayl, 126 Sabine,336 
Plane wave, 122 Rayleigh law of scattering, 241 Reynolds number, 235 
Point source, see Source Rayleigh length, 180 Rotational energy, 219 
Poisson's equation, 236 Rayleigh reflection, 157 
Poisson's ratio, 107 Rayleigh sea, 452 Sabin,335 
Population function, 219 Rayleigh scattering, 241 Sabine absorptivity, 336, 341 
Postdetection filter, 311 Reactance, see specific type of Sabine equation, 336 
Power, 14 Impedance Saturation, 491 

law, 324 Receiver, see Source and Sawtooth wave, 35 
Prandtl number, 217 Transducer Scaled acoustic pressure, 479 
Prandtl relation, 497 Receiver operating Scaled particle velocity, 480 
Preferred center frequencies, characteristic, 309 Scaling laws, 503 

304 Reciprocity Scattering strength, 460 
Precedence effect, 343 acoustic, 152, 173 Schroeder frequency, 355 
Pressure calibration, 428 Schroedingerequation,260 

acoustic, 114 electroacoustic, 392 Sea state, 452 
amplification factor, 285 free-field reciprocity factor, loss per bounce, 443 
axial, 177 175 Self noise, 449, 451 
equilibrium, 114 Reference Semitone, 283, 327 
gauge, 121 explosion, chemical, 501 Sensitivity and Sensitivity 
instantaneous, 114 explosion, nuclear, 502 level, 132, 398, 417 
internal, 116 intensity, 130 Shading 
reference, 130 pressure, 130 ainplitude,199,203 
scaled, 479 pressure, axial at 1 m, 189 binomial,208 
spectrum level, 304 sensitivity,132,399,418 phase (see also Steering), 203 
stagnation, 497 speed, 135 triangular, 203 

Privacy, 363 voltage, 132 Shadow zone, 441 
rating, 380 Reflection coefficients, 149 Shallow water channel, 261, 

Probability Refraction, 135, 438 465 
density, 308 Refractive index, 136 method of images, 465 
false alarm, 308 Relaxation transient, 265 
true detection, 308 chemical, 225 Shear modulus, 71, 87, 161 

Product theorem, 199 molecular thermal, 218 Shear wave, 242 
Propagation constant or structural, 225 Shearing strain, 87 

vector, see Wave thermal conductivity, 215 Shearing stress, 87 
number time, 10,212 Shock adiabat, 498 

Pulsating sphere, 171, 187 viscosity, 211 Shock coordinates, 494 
Reliable acoustic path, 446 Single event exposure level, 

Quadrupole, see Source Resistance, see specific type of 368 
Quality factor, 16, 217 Impedance Skin depth, see Boundary 

Resistance controlled, 18 layer 
Radiation boundary Resonance,15,48,76 Skip distance 

condition, 134 Resonance frequency, 15 deep sound channel, 445 
Radiation impedance, 184, 286 Resonant bubble, 238 mixed layer, 442 
Radiation mass, 185 Restored fundamental, 323 Smith chart, 277 
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Snell's law, 138,156,439 
SOFAR channel, 444 
Sonarequations,448 
Sone,324 
Sound absorption, 335, 340, 

379 
Sound and Sound level (see 

also Noise), 130 
A-weighted, 360 
C-weighted, 360 
day-night averaged, 368 
daytime average, 368 
equivalent continuous, 368 
evening average, 368 
hourly average, 368 
meter,360 
nightaverage,368 
percentile-exceeded, 368 
pressure, 130,304 
speed, see Speed of sound 
transmission class, 380 

Source and Receiver (see also 
Transducer) 

cardioid, 425 
continuous line, 176, 190 
dipole, 142, 201 
doublet, 184, 201 
line array, 195 
monopole, 142, 200 
multipole expansion, 199 
parametric array, 488 
piston, 179, 185, 190 
point, 142,200,256,259 
quadrupole, 142,201 
shotgun, 208 
simple, 171, 175 
simple, baffled, 176 
sphere,pulsating, 171,187 
sphere,vibrating, 141,202 
turbulence, 142 

Source level, 188,448,449 
apparent, 457 

Source strength, 175 
density, 200 

Spatial absorption coefficient, 
see Absorption 

Spatial filtering, 203 
Specific acoustic impedance 

(see also Characteristic 
impedance), 126, 286 

absorbing fluid, 214 
air, 126 
normal, 160, 349 
reactance, 126 
resistance, 126 
water, 126 

Specific gas constant, 115 
Specific heat, see Heat capacity 
Spectral density, 27,303 
Spectrum level, 303 

ambient noise, 450 
intensity, 303 
pressure, 304 
self noise, 453 
source,455 
tone,306 

Specular reflection, 166 
Speech intelligibility, 362 
Speech interference level, 362 
Speech privacy, 363 
Speed of sound 

air, 121 
bar, 160 
bulk,149,160 
complex,213,220 
critical, 497 
gradient, 139 
perfect gas, 121 
seawater, 436 
water, 121 
thermodynamic, 114, 119, 

120,212 
Spring constant, 3 
Square wave, 25 
Stagnation 

point,496 
pressure, 497 
ten,perature,497 

Standard. air, 143 
Standing wave ratio, 276 
Stationary, 257,303 
Stationary phase method, 256 
Steady state 

oscillator, 11 
musical instruments, 63 
room, 336, 352 

Stevens power law, 324 
Steering, 197 
Stiffness,3 
Stiffness controlled, 18 
Stokes 

assumption, 217 
relation, 235 
relationship, 242 

Stokes-Navier equation, 211 
Strain, 69 
Stress, 70 
Structural relaxation, 225 
Surface effect, 505 
Surface interference, 446 
Surface layer, 438 

Target strength, 449,457 
Temporal absorption 

coefficient, see 
Absorption 

Temporary threshold shift, 
317,376 

Thermal conductivity, 215 
values, 218 

547 

Thermocline, 438 
Thermodynamic speed of 

speed, 114,119,120, 
212 

Threshold 
audibility, 316 
criterion, 308 
differential, 317 
feeling, 317 
pain, 317 
shift,317,320,375,376 

Trmbre, 63, 274 
Tune constant, 10, 335 
Tone,2 

combination, 321 
combining with band, 306, 

455 
pressure spectrum level, 

306 
semi-, 283, 327 
whole,327 

Tone-corrected perceived 
noise level, 373 

Traffic noise index, 372 
Transducer (see also Source) 

antireciprocal, 393,418 
bimorph, 427 
calibration, 428 
carbon,425 
ceramic, 426 
condenser, 103,418 
crystal, 426 
dynamic, 420 
electrostatic, 394 
electret, 418 
ferroelectric, 427 
fiber-optic, 427 
hom,414 
loudspeaker, 406 
loudspeaker cabinet 

acoustic suspension, 
411 

bass-reflex, 412 
enclosed, 411 
open,412 
passive radiator, 413 

moving-coil, 396, 406, 420 
piezoelectric, 426 
pressure-gradient, 423 
receiver, 416 

antireciprocal, 418 
reciprocal, 418 

reciprocal, 392,418 
reversible, 193,428 
ribbon,423 
sensitivity, 132, 398, 417 
transmitter, 398 

antireciprocal, 403 
reciprocal, 399 

velocity, 423 
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Transduction coefficients, 391 
Transformation factor 

antireciprocal, 393 
electrostatic, 396 
moving coil, 397 
reciprocal, 392 

Transient 
decay, 13, 353 
disturbance, 27 
fluid, 148 
membrane, 106 
musical instruments, 63 
oscillator, 11, 27, 35, 36 
string, 54, 65 
room,352 
shallow water channel, 265 
waveguide, 257 

Transition range 
deep sound channel, 445 
mixed-layer, 441 

Translational energy, 219 
Transmission coefficients, 149 
Transmission loss, 436 

barrier, 388 
bistatic, 449 
bottom bounce, 444 
convergence zone, 443 
deep sound channel, 445 
isospeed channel, 467, 468 
mixed-layer, 442 

monostatic, 449 
normal mode, 468 
partition,379,383,385 
reliable acoustic path, 446 
surface interference, 447 

Transport equation, 136 
Transmitter, see Source and 

Transducer 
Travel time, 140 
Tuning fork, 85 
Turbulence, 142 
Turns ratio, see 

Transformation 
factor 

'Iwo-fluid channel 
fast bottom, 261, 467 
orthonormality, 263 
transient, 265 

1\vo-port network, 390 

Unit step function, 29 
Universal gas constant, 115 

Velocity potential, 114, 120 
Vibrationalenergy,219 
Vibrating sphere, 141,202 
Viscosity 

bulk, 211, 225 
kinematic, 235 
effective, 244 

INDEX 

shear, 211 
values, 218 

Voice level, 362 
Voltage level, 132 
Volume displacement, 99, 

175 
Volume velocity, 175,286 

Wake, 241,459 
Wall, see Partition 
Wall losses, see 

Absorption 
Warmth,345 
Water wave, 266 
Wave analyzer, 34 
Wave equation, 119 

inhomogeneous,140 
lossy,212 
time independent, see 

Helmholtz equation 
Wave number, 43, 56, 122, 

123 
Wavelength, 43 

apparent, 123, 254 
Weighting function, 265 
Window,387 
Wronskian, 134 

Yes-no task, 310 
Young's modulus, 70 
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GLOSSARY OF SYMBOLS 

(continued from front endpapers) 

r specific gas constant; SSL source spectrum level 
characteristic acoustic STC sound transmission class 
impedance; specific Sv scattering strength per unit 
acoustic resistance volume 

rt transition range SWR standing wave ratio 
rs skip distance '::I transmitter sensitivity 
R resistance (acoustic, '::I;;£ transmitter sensitivity level 

electrical, mechanical); 
'::!ret reference transmitter 

reflection coefficient; 
radius of curvature 

sensitivity 

Re Reynolds number T period of motion; 
temperature; tension; 

R range rate transmission coefficient; 
Rm mechanical resistance reverberation time 
R, radiation resistance T1 intensity transmission 
R1 intensity reflection coefficient 

coefficient TK temperature in kelvin 
Rn power reflection coefficient Tern, T me transduction coefficients 
RL reverberation level Tn power transmission 
ROC receiver operating coefficient 

characteristic TL transmission loss 
ffi, universal gas constant TNI traffic noise index (dBA) 
s spring constant; TS target strength 

condensation TSR target strength for 
sL apparent source level reverberation 
s cross-sectional area; surface TTS temporary threshold shift 

area; salinity 5' membrane tension per unit 
SA,SB scattering strengths per unit length 

area ~ 

particle velocity u 
SENEL single event noise exposure u particle speed 

level Lex (dBA) u peak particle velocity 
SIL speech interference level amplitude; volume 
SL source level velocity 
SPL sound pressure level Ue effective particle velocity 
ss sea state amplitude 
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V scaled particle 0 phase angle of impedance 
velocity (u/ c) K thermal conductivity; 

V volume; voltage; effective radius of gyration; 
voltage amplitude; transverse component 
volume displacement of the propagation 

VL voltage level; voice level vector 
(dBA) A wavelength 

Vref reference effective voltage r co times the eikonal; 
amplitude Goldberg number 

w angular frequency; g longitudinal particle 
bandwidth displacement 

w explosive yield - amplitude of { ,.., -
X specific acoustic reactance II time-averaged power 
X electrical reactance Ili instantaneous power 

Xm mechanical reactance p instantaneous density 

Xr radiation reactance (kg/m3); probability 

y transverse displacement density function 

y admittance; Young's Po equilibrium density 

modulus PL linear density (kg/m) 

z specific acoustic impedance Ps surface density (kg/m2) 

z impedance (acoustic, <r Poisson's ratio; standard 

electrical, mechanical) deviation; extinction cross 

Zm mechanical impedance section 

Zr radiation impedance <rs scattering cross section 
7" relaxation time; pulse 

a spatial absorption duration; processing time 

coefficient <P transformation factor; 

/3 temporal absorption 
phase angle; torsion 

coefficient; one-half the 
angle; turns ratio; 

flair constant; a 
inverse turns 

nonlinearity coefficient 
ratio 

<P velocity potential 
ratio of heat capacities; 

attenuation coefficient; w angular frequency (rad/s) 

a nonlinearity coefficient wo natural angular frequency 

boundary layer thickness; Wd damped angular frequency 

skin depth Wu,Wf upper, lower half-power 

1J coefficient of shear angular frequencies 

viscosity; efficiency n solid angle 

1]B coefficient of bulk viscosity ileff effective solid angle 

1Je effective coefficient of 
viscosity 8(v) Dirac delta function of 

0 angle of incictence; phase argumentv 

angle; grazing angle; Dnm Kronecker delta 
horizontal beam width; l(v) Heaviside unit function 
angle of elevation or of argument v (unit step 
depression function) 
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