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Abstract--Detecting computer intrusions has become an 
increasingly potential research area in recent years. More and 
more attacks are conducted towards various kinds of information 
system. To integrate the research works in this area Defense 
Advanced Research Projects Agency (DARPA) has established a 
corpus for evaluating the different intrusion detection technique. 
In this study we have used the data set provided by the corpus 
which has been collected by the Massachusetts Institute of 
Technology (MIT) Lincoln Laboratory. Of the two types of 
intrusion detection techniques – signature recognition and 
anomaly detection -- we have developed a multivariate statistical-
based anomaly detection technique, namely, Canberra technique. 
It does not suffer from the normality assumption of the data. The 
Canberra distance metric is used for similarity/dissimilarity 
comparison. We applied the metric in this research to find out 
which activity differs from the norm profile established during 
training and raise signal if the deviation is significant. We applied 
a small set of data containing both normal and attack events and 
set up three test cases – ideal, mixed and noisy – to determine its 
robustness. In the ideal test case all the attacks events are placed 
in together. In the mixed test case, the normal and attacks are 
evenly mixed. In the noisy test case small number of normal 
events are placed between the attack sessions. By plotting the 
performance of Canberra distance metric in these test cases 
through Receiver Operating Characteristics (ROC) curve we 
conclude that the technique perform very well only in ideal case. 
The paper also addresses the future direction of this research. 
 

Index Terms--Intrusion Detection; Canberra; Multivariate 
Statistical Process Control 

I. INTRODUCTION 

ith the rapid development of the Internet and e-
commerce systems and increasing number of hackers in 

recent years network security has become a critical issue. An 
intrusion stems either from inside the network or outside the 
network and can steal classified information or create havoc in 
the network and halt normal user activities, incurring huge 
monetary and credibility losses. In case of internal attack the 
event activity log on the hosts, from which the attack has been 
performed, has to be analyzed to perceive the intrusive 
activities. External attacks can be detected by analyzing the 
pattern of network traffic data along with the activities in the 
victim hosts. In this paper we study the robustness of an 
intrusion detection techniques by applying host event activity 
logs. The paper is organized as follows. Section II describes 
some of the existing intrusion detection techniques. Section III 
summarizes the information about audit data used in this study. 
Section IV and V present the Canberra technique and 
experimentation used in testing its robustness respectively. 

Section VI analyzes the results. Section VII addresses the 
future direction. Section VIII summarizes the paper. 

II. INTRUSION DETECTION TECHNIQUES 
Existing intrusion detection techniques can be classified into 

two categories - anomaly detection techniques and signature 
recognition (also coined as "misuse detection" in some 
literature) techniques [1] [2]. Signature recognition techniques 
maintain a database of known intrusions and try to match 
observed activities with the known attacks. Anomaly detection 
techniques establish a norm profile using normal activities and 
detect any deviation of observed activities from the norm 
profile. Signature detection technique is very good in detecting 
known attacks, whereas anomaly detection techniques can 
detect variants of known attacks and new attacks as well. 
Therefore, these two types of techniques complement each 
other.  

Signature recognition techniques have been used in most of 
existing intrusion detection systems, including NSM/ASIM, 
NetRadar, IDES/NIDES, EMERALD, NetRanger, Stalker, 
CMDS, NetStalker, TCP Warpper, Tripwire, SATAN, and 
STAT [1]–[7]. Intrusion signatures have been characterized as 
strings, event sequences, activity graphs, and intrusion 
scenarios consisting of event sequences, their preconditions 
and target compromised states. Finite state machines [3], 
colored Petri Nets [4], associate rules [5] and production rules 
of expert systems [6] [7] have been used to represent and 
recognize intrusion signatures. Intrusion signatures are either 
manually encoded or automatically learned through data 
mining. The most significant drawbacks of signature-based 
approaches are: 1) it can detect only those attacks that it was 
trained to, 2) novel or event variants of common attacks often 
go undetected, 3) in a scenario where new kinds of attacks are 
detected very frequently, signature recognition techniques are 
not feasible.  

Three types of anomaly detection techniques exist in use: 
string-based, specification-based, and statistical-based [8]–
[14]. String-based anomaly detection techniques [13] [15] 
collect sequences of system calls or audit events that appears 
in normal activities, represent those sequences as strings and 
build norm profile, and employ either negative selection [13] 
or positive selection [15] to determine whether an observed 
string deviates from the string-based norm profile. 
Specification-based anomaly detection techniques [14] use 
predicates in formal logic to build the norm profile, and 
applies logical reasoning to determine the consistency of 
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observed activities with the norm profile. Statistical-based 
anomaly detection techniques use statistical properties of 
normal activities to build a norm profile, and employ statistical 
tests to determine whether observed activities deviate 
significantly from the norm profile. The drawbacks of anomaly 
detection techniques are: 1) well-known attacks may not be 
detected if they fit the established profile of the user, 2) A 
malicious user who knows that she is being profiled can 
change her profile slowly overtime to essentially train the 
anomaly detection method to learn her malicious behavior as 
normal, 3) a high false-positive rate may result for a narrowly 
trained detection algorithm, or a high false-negative rate may 
result for a broadly trained anomaly detection approach. 

Statistical-based anomaly detection techniques are 
inherently capable of handling variations and noises involved 
in normal activities, which the string-based anomaly detection 
techniques and specification-based anomaly detection 
techniques lack. A norm profile must consider and represent 
variations of normal activities for distinguishing truly 
anomalous activities from expected variations of normal 
activities. 

Most of the studies on statistical-based anomaly detection 
techniques [8]–[12] are based on a statistical technique 
developed for IDES/NIDES. Their technique computes test 
statistics (called Q statistic and S statistic) using data on a 
single measure. This technique is sensitive to the normality 
assumption, i.e., if data on a measure are not normally 
distributed, the technique yields a high false alarm rate. 
Moreover, the statistical norm profile is built for only one 
measure of activities in information systems and hence the 
technique is univariate. However, intrusions often affect 
multiple measures of activities collectively. Anomalies 
resulting from intrusions may cause deviations on multiple 
measures in a collective manner which their technique fails to 
recognize. To address the lack of multivariate analysis 
techniques for intrusion detection in existing work, we have 
developed a statistical-based multivariate analysis technique, 
namely, Canberra, and applied it towards intrusion detection 
and tested its performance in several scenarios. 

III. DATA SOURCE 

The Information Systems Technology Group of 
Massachusetts Institute of Technology (MIT) Lincoln 
Laboratory, under Defense Advanced Research Projects 
Agency (DARPA) Information Technology Office and Air 
Force Research Laboratory (AFRL) sponsorship has collected 
and distributed the network data containing normal and 
intrusive activities and developed a guideline for evaluating 
existing intrusion detection systems in 1998 [16]. They have 
created normal traffic similar to that on a government site 
containing 100's of users on 1000's of virtual hosts. There are 
three types of data - network traffic data, system level audit 
data and file system state data. We use only the system level 
audit data which is collected by the Solaris Basic Security 
Module (BSM). 

The BSM audit data is provided into two parts - training 
data and testing data. The training data set consists of seven 
weeks of network-based attacks in the midst of normal 
background data. The testing data contains another two weeks 
of data which contain all those attacks that were in training 
data and also new types of attacks. The data records in testing 
data set are not labeled. The attacks were drawn roughly 
evenly from four general classes of attacks - surveillance, 
denial of service, user-to-root and remote-to-local. There are 
more than 300 instances of 32 different attacks arising from 7 
attack scenarios Detail information about these attacks can be 
found in [17]. 

We build a small set of data in two ways - the normal events 
are adopted from the public section of the 1998 MIT Lincoln 
Laboratory data and the attack events are collected through 
attack simulation at the Information Systems and Assurance 
lab, ASU. There are 2316 normal events in the training data. 
There are 7 attack sessions in the testing data which are 215, 
225, 54, 36, 413, 247 and 35 events in length respectively and 
arises from three types of attacks, namely, password guessing, 
suspicious program usage and port scanning. Since anomaly 
detection techniques are trained with normal events only, we 
do not include any attack events during training. We train the 
technique by scanning the training data twice. In the first scan 
we build the long term profile by computing the mean 
observation value and in the second scan we build an empirical 
distribution by computing the mean and standard deviation of 
the Canberra distance metric computed for each of the normal 
events. We have put 703 normal events and 1225 attack events 
in the testing data set. During testing we calculate the Canberra 
distance metric from the observation value and then use the 
mean and standard deviation of the Canberra distance metrics 
and compare with the upper limit to produce a signal.  

We use the computer audit data collected from MIT Lincoln 
Laboratory. The Basic Security Module (BSM) of UNIX 
monitors each ongoing event in the computer system. There 
are 284 different types of events. In UNIX, there are thousands 
of commands available. But the audit events are more close to 
the core of the operating system, hence the event type is more 
representative than the actual command sequences used. For 
example, we can use any text editor, such as, vi, ed, pico to 
edit a file, but most of the time the audit event stream will 
contain the following event types: AUE_EXECVE, 
AUE_OPEN_R, AUE_ACCESS, AUE_STAT. We refer to 
this approach as "event type testing" [18] [19]. 

IV. CANBERRA TECHNIQUE 
The main objective in our research is to group the incoming 

events into normal events or attack events by calculating 
intrusion warning (IW) values using some effective distance 
metrics. The distance metric value is used to find the similarity 
or dissimilarity of the current observation from the already 
established normal profile. The IW value tells us how far the 
observed activity is from the norm profile in a 0 to 1 scale. An 
IW value of 1 means that the observed activity belongs to an 
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attack sequence, a value of 0 indicates that it is normal. The 
values between 0 to 1 tell us the intrusiveness of the event, the 
higher the value, the higher the intrusiveness. This normalized 
IW value gives us more information than the raw distance 
metric value. 

To find the distance between normal profile and current 
observation value, we can use many distance metrics. The 
Euclidean (straight-line) distance between two k-dimensional 
observations x = [x1, x2, …, xk]' and y = [y1, y2, …, yk]' is: 
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The statistical distance between the same two observations 
is of the form 
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Ordinarily, A = S-1, where S contains the sample variances 
and covariances.  

Another distance measure is the Minkowski metric 
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For m = 1, d(x, y) measures the "city-block" distance 
between two points in k-dimensions. For m = 2, d(x, y) 
becomes the Euclidean distance. In general, varying m changes 
the weight given to larger and smaller differences. Two 
additional popular measures of "distance" or dissimilarity are 
given by the Canberra metric and the Czekanowski coefficient. 
Both of these measures are defined for nonnegative variables 
only. The Canberra metric and the Czekanowski coefficient 
are given by equations (4) and (5) [20]. 
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We have applied only the Canberra metric in this research. 
In our case we want to measure how much the current 
observation value differs from the established mean 
observation value. The nominator in the Canberra metric 
equation signifies the difference and the denominator in fact 
normalizes the difference. We modify the Canberra metric 
equation in this way: 
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V. EXPERIMENT 
We need to convert the incoming event stream to a stream of 

observation values. During training we compute the expected 
value of the observation values. After that, we build empirical 

distribution for the Canberra technique by computing the 
distance metrics and their mean and standard deviation. We set 
upper control limit for using the mean and standard deviation. 
During testing we compute the observation values and the 
Canberra distance metric and then compare it with the upper 
control limit set during training stage. We signal an event as 
abnormal if its observation value exceeds the upper control 
limit; otherwise, if the observation value stays within the limit 
we consider the event as normal. 

We have to use an efficient method to calculate the 
observation values from the system audit event stream as the 
quality of the statistical techniques depends on it. Since there 
are 284 types of events in BSM audit data, number of 
categories k, i.e., number of attributes or variables associated 
with each event is 284. An event can only be one of the event 
types. Therefore, the observation value is a 284-dimensional 
vector vector O = (O1, O2, … O284). We can calculate the 
vector by counting the number of event types that appeared in 
the event stream so far. 

We can use the exponentially weighted moving average 
(EWMA) technique for smoothing out the observation values. 
When we choose an appropriate smoothing constant λ, the 
observation measure reflects the “most recent past” 
characteristics of variables. We can use the following formulae 
for calculating the observation value of the nth event in the 
event stream:  

) ..., , ,( ,284,2,1 nnnn OOO=O , n ≥ 0 (7) 

1 , ,  )-(1  n-ini OO ×+×= λϑλ ;  

Oi, 0 = 0, 1 ≤ i ≤ k, and k = 284 (8) 
 In formula (7), On is the smoothed observation vector for 
the nth event. The individual dimensional values are computed 
using formula (8) where, Oi,n is the smoothed observation 
value for category (event type) i for the nth event, θ is an 
indicator function which 1 if the category i is present in the 
current observation, 0 otherwise, Oi,n-1 is the previous 
smoothed observation, λ is the smoothing constant (0 < λ < 1). 
The smoothing constant is usually set to 0.3 [21]. With this 
“most recent past” approach, we add the time characteristic 
into the observation value. The observation value not only 
shows the current probability distribution of category vector, 
but also reflects the recent period probability distribution.  

We have used ) ..., , ,( 28421 XXX=X  to calculate the 
expected value of each of the variables being tracked. It 
reflects a long period characteristic of the variables we 
observe. We use the following incremental formula:  
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Combining the “most recent past” method for the 
observation with X  for the expected value, we get the 
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following formula that calculates the statistics for the Canberra 
technique: 
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A nice property of this multivariate technique is that for 
number of variables larger than 30, nC follows a normal 
distribution approximately [26]. In our case, number of 
variables is 284 hence it follows normal distribution without 
regard of what distribution each of the individual variables 
follow. We can therefore use the 3-sigma limit to signal 
whether the observed activity in concern is anomalous or not. 
The upper limit is calculated using the mean and variance of 

nC : 

CSC Limit Upper (UL)  3+=  (11) 

We apply the following formula for calculating IW value: 
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If, during testing, nC value for an observation exceeds this 
upper limit, the IW level is set to 1 and an alert signal is 
generated, otherwise the IW level is lower than 1 and the 
observation is considered to be normal. However, we can not 
safely guarantee that the “normal” events, that do not exceed 
the upper limit, are normal events in reality. 

To get a better understanding of the robustness of Canberra 
technique, we arranged the testing data in three different ways. 
In the first method, we put all the training events and then all 
the testing events - an ideal testing environment for the 
techniques. In the second method we divide the training events 
into two halves and put the attack events in between. There are 
seven attack sessions inside the attack events. The seven attack 
sessions contain 215, 225, 54, 36, 413, 247 and 35 attack 
events respectively. We put 400 normal events followed by the 
first four attack sessions (530 attack events), then the rest of 
the normal events (303 events) followed by the remaining 3 
attack sessions (695 attack events). This way of organizing the 
events during testing tells us how Canberra technique performs 
when normal and attack events are intermixed and the length 
of normal and attack sessions are nearly equal. In the third way 
of testing we put 100 normal events before each attack session. 
This way of mixing the normal and attack events shows us how 
Canberra technique performs in a noisy environment where 
much of the attacks are concealed inside the normal events.  

VI. RESULTS 
We now present the results obtained in the three testing 

cases – ideal, mixed and noisy. We plot Receiver Operating 
Characteristics (ROC) curve using the IW values. The ROC 
approach analyzes the tradeoff between false alarm and 
detection rates for detection systems. It was developed in the 

field of signal detection [22] [23]. It has now become the 
standard approach to evaluate detection systems and have been 
used in language and speaker identification [24] and medical 
risk prediction [25]. ROC curves for intrusion detection 
indicate how the attack detection rate changes as internal 
threshold are varied to generate more or fewer false alarms to 
tradeoff detection accuracy against analyst workload. 
Measuring the detection rate alone indicates only the types of 
attacks that an intrusion detection system may detect, it does 
not indicate the human workload required to analyze false 
alarms generated by normal background traffic. Low false 
alarm rate with high detection rate means that the detection 
output can be trusted and human labor required to confirm any 
detection is minimized. 
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Figure 1 ROC Curves for Canberra Metric in Three Test Cases 

From the figure we understand that Canberra technique 
performs ideally in the ideal test case. It achieved 100% attack 
detection rate at 0% false alarm rate. Its performance 
deteriorates in the mixed case and achieves 100% detection 
rate only after 42% false alarm rate. In the noisy test case it 
gets to 100% attack detection rate after 85% false alarm rate. 

From the result it is evident that Canberra technique perform 
very good only when normal and attack events are widely 
separated. When normal events are intermixed with attack 
sessions it does not perform that well and it misses many 
attacks and raises too many false alarms. And in the noisy test 
case, it treats the normal events as noise and as a result false 
alarm increases. Therefore, we conclude that Canberra 
technique is good only at special condition and does not 
perform at acceptable level in all cases. 

VII. FUTURE DIRECTION 
The data set used in this study corresponds only to 5 minutes 

of BSM audit data. We need to apply a multi-day data set to 
test the scalability of the Canberra technique as well. It will be 
interesting to find out how Canberra technique performs in 
detecting small attack sessions amidst of huge number of 
normal events. In our study we maintained a singe event 
stream for both normal and attack sessions during training and 
testing. As our next step we will maintain separate event 
stream for normal and attack sessions during training and 
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investigate how it affects the performance of the Canberra 
technique. 

VIII. SUMMARY 
In this paper we have described the Canberra technique and 

its implementation and applied it towards detecting attacks in a 
small subset of the 1998 MIT Lincoln laboratory data. We 
tested the performance of Canberra technique in three test 
setup – ideal, mixed and noisy. We presented the performance 
of the technique in these three cases through ROC curve. We 
found out that Canberra performs very well only in ideal case, 
its performance is not acceptable in other cases.  
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