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Abstract--Detecting computer intrusions has become an
increasingly potential research area in recent years. More and
more attacks are conducted towards various kinds of information
system. To integrate the research works in this area Defense
Advanced Research Projects Agency (DARPA) has established a
corpus for evaluating the different intrusion detection technique.
In this study we have used the data set provided by the corpus
which has been collected by the Massachusetts Institute of
Technology (MIT) Lincoln Laboratory. Of the two types of
intrusion detection techniques — signature recognition and
anomaly detection -- we have developed a multivariate statistical-
based anomaly detection technique, namely, Canberra technique.
It does not suffer from the normality assumption of the data. The
Canberra distance metric is used for similarity/dissimilarity
comparison. We applied the metric in this research to find out
which activity differs from the norm profile established during
training and raise signal if the deviation is significant. We applied
a small set of data containing both normal and attack events and
set up three test cases — ideal, mixed and noisy — to determine its
robustness. In the ideal test case all the attacks events are placed
in together. In the mixed test case, the normal and attacks are
evenly mixed. In the noisy test case small number of normal
events are placed between the attack sessions. By plotting the
performance of Canberra distance metric in these test cases
through Receiver Operating Characteristics (ROC) curve we
conclude that the technique perform very well only in ideal case.
The paper also addresses the future direction of this research.

Index Terms--Intrusion Detection; Canberra; Multivariate
Statistical Process Control

1. INTRODUCTION

With the rapid development of the Internet and e-
commerce systems and increasing number of hackers in
recent years network security has become a critical issue. An
intrusion stems either from inside the network or outside the
network and can steal classified information or create havoc in
the network and halt normal user activities, incurring huge
monetary and credibility losses. In case of internal attack the
event activity log on the hosts, from which the attack has been
performed, has to be analyzed to perceive the intrusive
activities. External attacks can be detected by analyzing the
pattern of network traffic data along with the activities in the
victim hosts. In this paper we study the robustness of an
intrusion detection techniques by applying host event activity
logs. The paper is organized as follows. Section II describes
some of the existing intrusion detection techniques. Section III
summarizes the information about audit data used in this study.
Section IV and V present the Canberra technique and
experimentation used in testing its robustness respectively.

Section VI analyzes the results. Section VII addresses the
future direction. Section VIII summarizes the paper.

II. INTRUSION DETECTION TECHNIQUES

Existing intrusion detection techniques can be classified into
two categories - anomaly detection techniques and signature
recognition (also coined as "misuse detection" in some
literature) techniques [1] [2]. Signature recognition techniques
maintain a database of known intrusions and try to match
observed activities with the known attacks. Anomaly detection
techniques establish a norm profile using normal activities and
detect any deviation of observed activities from the norm
profile. Signature detection technique is very good in detecting
known attacks, whereas anomaly detection techniques can
detect variants of known attacks and new attacks as well.
Therefore, these two types of techniques complement each
other.

Signature recognition techniques have been used in most of
existing intrusion detection systems, including NSM/ASIM,
NetRadar, IDES/NIDES, EMERALD, NetRanger, Stalker,
CMDS, NetStalker, TCP Warpper, Tripwire, SATAN, and
STAT [1]-[7]. Intrusion signatures have been characterized as
strings, event sequences, activity graphs, and intrusion
scenarios consisting of event sequences, their preconditions
and target compromised states. Finite state machines [3],
colored Petri Nets [4], associate rules [5] and production rules
of expert systems [6] [7] have been used to represent and
recognize intrusion signatures. Intrusion signatures are either
manually encoded or automatically learned through data
mining. The most significant drawbacks of signature-based
approaches are: 1) it can detect only those attacks that it was
trained to, 2) novel or event variants of common attacks often
go undetected, 3) in a scenario where new kinds of attacks are
detected very frequently, signature recognition techniques are
not feasible.

Three types of anomaly detection techniques exist in use:
string-based, specification-based, and statistical-based [8]—
[14]. String-based anomaly detection techniques [13] [15]
collect sequences of system calls or audit events that appears
in normal activities, represent those sequences as strings and
build norm profile, and employ either negative selection [13]
or positive selection [15] to determine whether an observed
string deviates from the string-based norm profile.
Specification-based anomaly detection techniques [14] use
predicates in formal logic to build the norm profile, and
applies logical reasoning to determine the consistency of
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observed activities with the norm profile. Statistical-based
anomaly detection techniques use statistical properties of
normal activities to build a norm profile, and employ statistical
tests to determine whether observed activities deviate
significantly from the norm profile. The drawbacks of anomaly
detection techniques are: 1) well-known attacks may not be
detected if they fit the established profile of the user, 2) A
malicious user who knows that she is being profiled can
change her profile slowly overtime to essentially train the
anomaly detection method to learn her malicious behavior as
normal, 3) a high false-positive rate may result for a narrowly
trained detection algorithm, or a high false-negative rate may
result for a broadly trained anomaly detection approach.

Statistical-based anomaly detection techniques are
inherently capable of handling variations and noises involved
in normal activities, which the string-based anomaly detection
techniques and specification-based anomaly detection
techniques lack. A norm profile must consider and represent
variations of normal activities for distinguishing truly
anomalous activities from expected variations of normal
activities.

Most of the studies on statistical-based anomaly detection
techniques [8]-[12] are based on a statistical technique
developed for IDES/NIDES. Their technique computes test
statistics (called Q statistic and S statistic) using data on a
single measure. This technique is sensitive to the normality
assumption, i.e., if data on a measure are not normally
distributed, the technique yields a high false alarm rate.
Moreover, the statistical norm profile is built for only one
measure of activities in information systems and hence the
technique is univariate. However, intrusions often affect
multiple measures of activities collectively. Anomalies
resulting from intrusions may cause deviations on multiple
measures in a collective manner which their technique fails to
recognize. To address the lack of multivariate analysis
techniques for intrusion detection in existing work, we have
developed a statistical-based multivariate analysis technique,
namely, Canberra, and applied it towards intrusion detection
and tested its performance in several scenarios.

1m. DATA SOURCE

The Information Systems Technology Group of
Massachusetts Institute of Technology (MIT) Lincoln
Laboratory, under Defense Advanced Research Projects
Agency (DARPA) Information Technology Office and Air
Force Research Laboratory (AFRL) sponsorship has collected
and distributed the network data containing normal and
intrusive activities and developed a guideline for evaluating
existing intrusion detection systems in 1998 [16]. They have
created normal traffic similar to that on a government site
containing 100's of users on 1000's of virtual hosts. There are
three types of data - network traffic data, system level audit
data and file system state data. We use only the system level
audit data which is collected by the Solaris Basic Security
Module (BSM).
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The BSM audit data is provided into two parts - training
data and testing data. The training data set consists of seven
weeks of network-based attacks in the midst of normal
background data. The testing data contains another two weeks
of data which contain all those attacks that were in training
data and also new types of attacks. The data records in testing
data set are not labeled. The attacks were drawn roughly
evenly from four general classes of attacks - surveillance,
denial of service, user-to-root and remote-to-local. There are
more than 300 instances of 32 different attacks arising from 7
attack scenarios Detail information about these attacks can be
found in [17].

We build a small set of data in two ways - the normal events
are adopted from the public section of the 1998 MIT Lincoln
Laboratory data and the attack events are collected through
attack simulation at the Information Systems and Assurance
lab, ASU. There are 2316 normal events in the training data.
There are 7 attack sessions in the testing data which are 215,
225, 54, 36, 413, 247 and 35 events in length respectively and
arises from three types of attacks, namely, password guessing,
suspicious program usage and port scanning. Since anomaly
detection techniques are trained with normal events only, we
do not include any attack events during training. We train the
technique by scanning the training data twice. In the first scan
we build the long term profile by computing the mean
observation value and in the second scan we build an empirical
distribution by computing the mean and standard deviation of
the Canberra distance metric computed for each of the normal
events. We have put 703 normal events and 1225 attack events
in the testing data set. During testing we calculate the Canberra
distance metric from the observation value and then use the
mean and standard deviation of the Canberra distance metrics
and compare with the upper limit to produce a signal.

We use the computer audit data collected from MIT Lincoln
Laboratory. The Basic Security Module (BSM) of UNIX
monitors each ongoing event in the computer system. There
are 284 different types of events. In UNIX, there are thousands
of commands available. But the audit events are more close to
the core of the operating system, hence the event type is more
representative than the actual command sequences used. For
example, we can use any text editor, such as, vi, ed, pico to
edit a file, but most of the time the audit event stream will
contain the following event types: AUE EXECVE,
AUE OPEN R, AUE ACCESS, AUE STAT. We refer to
this approach as "event type testing”" [18] [19].

IV. CANBERRA TECHNIQUE

The main objective in our research is to group the incoming
events into normal events or attack events by calculating
intrusion warning (IW) values using some effective distance
metrics. The distance metric value is used to find the similarity
or dissimilarity of the current observation from the already
established normal profile. The IW value tells us how far the
observed activity is from the norm profile in a 0 to 1 scale. An
IW value of 1 means that the observed activity belongs to an
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attack sequence, a value of 0 indicates that it is normal. The
values between 0 to 1 tell us the intrusiveness of the event, the
higher the value, the higher the intrusiveness. This normalized
IW value gives us more information than the raw distance
metric value.

To find the distance between normal profile and current
observation value, we can use many distance metrics. The
Euclidean (straight-line) distance between two k-dimensional
observations X = [x{, X2, ..., x;]'and Y = [y1, 2, ..., V] 1s:

d(GY) =45 =) + (6, = p2)7 +ot (5, = 3,)

=J(X-y)'(x-y)

The statistical distance between the same two observations
is of the form

d(x,y) = (X -y)'A(X-Y) )

Ordinarily, A = S", where S contains the sample variances
and covariances.

(M

Another distance measure is the Minkowski metric
d(x.y) :[;lx,- il } (3)
For m = 1, d(X, y) measures the "city-block" distance
between two points in k-dimensions. For m = 2, d(X, Y)
becomes the Euclidean distance. In general, varying m changes
the weight given to larger and smaller differences. Two
additional popular measures of "distance" or dissimilarity are
given by the Canberra metric and the Czekanowski coefficient.
Both of these measures are defined for nonnegative variables
only. The Canberra metric and the Czekanowski coefficient
are given by equations (4) and (5) [20].
k |‘xi -y i|
dX,y)=>——— 4
(x.y) E(Xﬁyi) “4)

23 min(x;, v,)
d(xy)=1-———— (5)
;(‘xi +y i)

We have applied only the Canberra metric in this research.
In our case we want to measure how much the current
observation value differs from the established mean
observation value. The nominator in the Canberra metric
equation signifies the difference and the denominator in fact
normalizes the difference. We modify the Canberra metric
equation in this way:

C= |0bserved - expected |

(6)

Alldimensions (0bserved + expected)

V. EXPERIMENT

We need to convert the incoming event stream to a stream of
observation values. During training we compute the expected
value of the observation values. After that, we build empirical
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distribution for the Canberra technique by computing the
distance metrics and their mean and standard deviation. We set
upper control limit for using the mean and standard deviation.
During testing we compute the observation values and the
Canberra distance metric and then compare it with the upper
control limit set during training stage. We signal an event as
abnormal if its observation value exceeds the upper control
limit; otherwise, if the observation value stays within the limit
we consider the event as normal.

We have to use an efficient method to calculate the
observation values from the system audit event stream as the
quality of the statistical techniques depends on it. Since there
are 284 types of events in BSM audit data, number of
categories k, i.e., number of attributes or variables associated
with each event is 284. An event can only be one of the event
types. Therefore, the observation value is a 284-dimensional
vector vector O = (O;, O,, ... Oy4). We can calculate the
vector by counting the number of event types that appeared in
the event stream so far.

We can use the exponentially weighted moving average
(EWMA) technique for smoothing out the observation values.
When we choose an appropriate smoothing constant A, the
observation measure reflects the “most recent past”
characteristics of variables. We can use the following formulae
for calculating the observation value of the n™ event in the
event stream:

0,=(0,,,0,,,..,0,,,),n20 (7)
Oin=AxI3+(1-A)x0,

z,n-l;
0,0=0,1<i<k and k=284 (8)

In formula (7), O,, is the smoothed observation vector for
the n™ event. The individual dimensional values are computed
using formula (8) where, O;, is the smoothed observation
value for category (event type) i for the n™ event, 0 is an
indicator function which 1 if the category i is present in the
current observation, 0 otherwise, O;,; is the previous
smoothed observation, 4 is the smoothing constant (0 <1 < 1).
The smoothing constant is usually set to 0.3 [21]. With this
“most recent past” approach, we add the time characteristic
into the observation value. The observation value not only
shows the current probability distribution of category vector,
but also reflects the recent period probability distribution.

We have used §=(}1,}2,...,?284) to calculate the

expected value of each of the variables being tracked. It
reflects a long period characteristic of the variables we
observe. We use the following incremental formula:

— _ (n_l)}(i,n—l) + OG.n

Xim = ;
n

X0 =0,1<i<kn=0and k=284 9)

Combining the “most recent past” method for the

observation with X for the expected value, we get the
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following formula that calculates the statistics for the Canberra
technique:

k
c =3

10
n i=1 O(i’n) ( )

A nice property of this multivariate technique is that for
number of variables larger than 30, C, follows a normal

distribution approximately [26]. In our case, number of
variables is 284 hence it follows normal distribution without
regard of what distribution each of the individual variables
follow. We can therefore use the 3-sigma limit to signal
whether the observed activity in concern is anomalous or not.
The upper limit is calculated using the mean and variance of

C .

Upper Limit (UL) = C +3 S, (11)

We apply the following formula for calculating IW value:

-_— M CVI
mw,)= mlnlil,a:l (12)

If, during testing, C, value for an observation exceeds this

upper limit, the IW level is set to 1 and an alert signal is
generated, otherwise the IW level is lower than 1 and the
observation is considered to be normal. However, we can not
safely guarantee that the “normal” events, that do not exceed
the upper limit, are normal events in reality.

To get a better understanding of the robustness of Canberra
technique, we arranged the testing data in three different ways.
In the first method, we put all the training events and then all
the testing events - an ideal testing environment for the
techniques. In the second method we divide the training events
into two halves and put the attack events in between. There are
seven attack sessions inside the attack events. The seven attack
sessions contain 215, 225, 54, 36, 413, 247 and 35 attack
events respectively. We put 400 normal events followed by the
first four attack sessions (530 attack events), then the rest of
the normal events (303 events) followed by the remaining 3
attack sessions (695 attack events). This way of organizing the
events during testing tells us how Canberra technique performs
when normal and attack events are intermixed and the length
of normal and attack sessions are nearly equal. In the third way
of testing we put 100 normal events before each attack session.
This way of mixing the normal and attack events shows us how
Canberra technique performs in a noisy environment where
much of the attacks are concealed inside the normal events.

VI. RESULTS

We now present the results obtained in the three testing
cases — ideal, mixed and noisy. We plot Receiver Operating
Characteristics (ROC) curve using the IW values. The ROC
approach analyzes the tradeoff between false alarm and
detection rates for detection systems. It was developed in the
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field of signal detection [22] [23]. It has now become the
standard approach to evaluate detection systems and have been
used in language and speaker identification [24] and medical
risk prediction [25]. ROC curves for intrusion detection
indicate how the attack detection rate changes as internal
threshold are varied to generate more or fewer false alarms to
tradeoff detection accuracy against analyst workload.
Measuring the detection rate alone indicates only the types of
attacks that an intrusion detection system may detect, it does
not indicate the human workload required to analyze false
alarms generated by normal background traffic. Low false
alarm rate with high detection rate means that the detection
output can be trusted and human labor required to confirm any
detection is minimized.

Ideal Test Case = = = = Mixed Test Case

Noisy Test Case

0.8 .

0.6

0.4 -

Attack Detection Rate
.

.
0.2 -

0.0

0.0 0.2 0.4 0.6 0.8 1.0

False Alarm Rate

Figure 1 ROC Curves for Canberra Metric in Three Test Cases

From the figure we understand that Canberra technique
performs ideally in the ideal test case. It achieved 100% attack
detection rate at 0% false alarm rate. Its performance
deteriorates in the mixed case and achieves 100% detection
rate only after 42% false alarm rate. In the noisy test case it
gets to 100% attack detection rate after 85% false alarm rate.

From the result it is evident that Canberra technique perform
very good only when normal and attack events are widely
separated. When normal events are intermixed with attack
sessions it does not perform that well and it misses many
attacks and raises too many false alarms. And in the noisy test
case, it treats the normal events as noise and as a result false
alarm increases. Therefore, we conclude that Canberra
technique is good only at special condition and does not
perform at acceptable level in all cases.

VII. FUTURE DIRECTION

The data set used in this study corresponds only to 5 minutes
of BSM audit data. We need to apply a multi-day data set to
test the scalability of the Canberra technique as well. It will be
interesting to find out how Canberra technique performs in
detecting small attack sessions amidst of huge number of
normal events. In our study we maintained a singe event
stream for both normal and attack sessions during training and
testing. As our next step we will maintain separate event
stream for normal and attack sessions during training and
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investigate how it affects the performance of the Canberra
technique.

VIII. SUMMARY

In this paper we have described the Canberra technique and
its implementation and applied it towards detecting attacks in a
small subset of the 1998 MIT Lincoln laboratory data. We
tested the performance of Canberra technique in three test
setup — ideal, mixed and noisy. We presented the performance
of the technique in these three cases through ROC curve. We
found out that Canberra performs very well only in ideal case,
its performance is not acceptable in other cases.
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