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1. 

SYSTEMAND METHOD OF ENHANCNG 
EFFICIENCY AND UTILIZATION OF 

MEMORY BANDWIDTH IN 
RECONFIGURABLE HARDWARE 

RELATED APPLICATIONS 

The present invention claims the benefit of U.S. Provi 
sional Patent application Ser. No. 60/479,339 filed on Jun. 
18, 2003, which is incorporated herein by reference in its 
entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates, in general, to enhancing the 

efficiency and utilization of memory bandwidth in reconfig 
urable hardware. More specifically, the invention relates to 
implementing explicit memory hierarchies in reconfigurable 
processors that make efficient use of off-board, on-board, 
on-chip storage and available algorithm locality. These 
explicit memory hierarchies avoid many of the tradeoffs and 
complexities found in the traditional memory hierarchies of 
microprocessors. 

2. Relevant Background 
Over the past 30 years, microprocessors have enjoyed 

annual performance gains averaging about 50% per year. 
Most of the gains can be attributed to higher processor clock 
speeds, more memory bandwidth and increasing utilization 
of instruction level parallelism (ILP) at execution time. 
As microprocessors and other dense logic devices (DLDs) 

consume data at ever-increasing rates it becomes more of a 
challenge to design memory hierarchies that can keep up. 
Two measures of the gap between the microprocessor and 
memory hierarchy are bandwidth efficiency and bandwidth 
utilization. Bandwidth efficiency refers to the ability to 
exploit available locality in a program or algorithm. In the 
ideal situation, when there is maximum bandwidth effi 
ciency, all available locality is utilized. Bandwidth utiliza 
tion refers to the amount of memory bandwidth that is 
utilized during a calculation. Maximum bandwidth utiliza 
tion occurs when all available memory bandwidth is uti 
lized. 

Potential performance gains from using a faster micro 
processor can be reduced or even negated by a correspond 
ing drop in bandwidth efficiency and bandwidth utilization. 
Thus, there has been significant effort spent on the devel 
opment of memory hierarchies that can maintain high band 
width efficiency and utilization with faster microprocessors. 
One approach to improving bandwidth efficiency and 

utilization in memory hierarchies has been to develop ever 
more powerful processor caches. These caches are high 
speed memories (typically SRAM) in close proximity to the 
microprocessor that try to keep copies of instructions and 
data the microprocessor may soon need. The microprocessor 
can store and retrieve data from the cache at a much higher 
rate than from a slower, more distant main memory. 

In designing cache memories, there are a number of 
considerations to take into account. One consideration is the 
width of the cache line. Caches are arranged in lines to help 
hide memory latency and exploit spatial locality. When a 
load suffers a cache miss, a new cache line is loaded from 
main memory into the cache. The assumption is that a 
program being executed by the microprocessor has a high 
degree of spatial locality, making it likely that other memory 
locations in the cache line will also be required. 
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2 
For programs with a high degree of spatial locality (e.g., 

stride-one access), wide cache lines are more efficient since 
they reduce the number of times a processor has to suffer the 
latency of a memory access. However, for programs with 
lower levels of spatial locality, or random access, narrow 
lines are best as they reduce the wasted bandwidth from the 
unused neighbors in the cache line. Caches designed with 
wide cache lines perform well with programs that have a 
high degree of spatial locality, but generally have poor 
gather/scatter performance. Likewise, caches with short 
cache lines have good gather/scatter performance, but loose 
efficiency executing programs with high spatial locality 
because of the additional runs to the main memory. 

Another consideration in cache design is cache associa 
tivity, which refers to the mapping between locations in 
main memory and cache sectors. At one extreme of cache 
associativity is a direct-mapped cache, while at another 
extreme is a fully associative cache. In a direct mapped 
cache, a specific memory location can be mapped to only a 
single cache line. Direct-mapped caches have the advantage 
of being fast and easy to construct in logic. The disadvantage 
is that they suffer the maximum number of cache conflicts. 
At the other extreme, a fully associative cache allows a 
specific location in memory to be mapped to any cache line. 
Fully associative caches tend to be slower and more com 
plex due to the large amount of comparison logic they need, 
but suffer no cache conflict misses. Oftentimes, caches fall 
between the extremes of direct-mapped and fully associative 
caches. A design point between the extremes is a k-set 
associative cache, where each memory location can map to 
k cache sectors. These caches generally have less overhead 
than fully associative caches, and reduce cache conflicts by 
increasing the value of k. 

Another consideration in cache design is how cache lines 
are replaced due to a capacity or conflict miss. In a direct 
mapped cache, there is only one possible cache line that can 
be replaced due to a miss. However, in caches with higher 
levels of associativity, cache lines can be replaced in more 
that one way. The way the cache lines are replaced is 
referred to as the replacement policy. 

Options for the replacement policy include least recently 
used (LRU), random replacement, and first in-first out 
(FIFO). LRU is used in the majority of circumstances where 
the temporal locality set is smaller than the cache size, but 
it is normally more expensive to build in hardware than a 
random replacement cache. An LRU policy can also quickly 
degrade depending on the working set size. For example, 
consider an iterative application with a matrix size of N 
bytes running through a LRU cache of size M bytes. If N is 
less than M, then the policy has the desired behavior of 
100% cache hits, however, if N is only slightly larger than 
M, the LRU policy results in 0% cache hits as lines are 
removed just as they are needed. 

Another consideration is deciding on a write policy for the 
cache. Write-through caches send data through the cache 
hierarchy to main memory. This policy reduces cache coher 
ency issues for multiple processor Systems and is best Suited 
for data that will not be re-read by the processor in the 
immediate future. In contrast, write-back caches place a 
copy of the data in the cache, but does not immediately 
update main memory. This type of caching works best when 
a data just written to the cache is quickly requested again by 
the processor. 

In addition to write-through and write-back caches, 
another kind of write policy is implemented in a write 
allocate cache where a cache line is allocated on a write that 
misses in cache. Write-allocate caches improve performance 
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when the microprocessor exhibits a lot of write followed by 
read behavior. However, when writes are not subsequently 
read, a write-allocate cache has a number of disadvantages: 
When a cache line is allocated, it is necessary to read the 
remaining values from main memory to complete the cache 
line. This adds unnecessary memory read traffic during store 
operations. Also, when the data is not read again, potentially 
useful data in the cache is displaced by the unused data. 

Another consideration is made between the size and the 
speed of the cache: Small caches are typically much faster 
than larger caches, but store less data and fewer instructions. 
Less data means a greater chance the cache will not have 
data the microprocessor is requesting (i.e., a cache miss) 
which can slow everything down while the data is being 
retrieved from the main memory. 
Newer cache designs reduce the frequency of cache 

misses by trying to predict in advance the data that the 
microprocessor will request. An example of this type of 
cache is one that Supports speculative execution and branch 
prediction. Speculative execution allows instructions that 
likely will be executed to start early based on branch 
prediction. Results are stored in a cache called a reorder 
buffer and retired if the branch was correctly predicted. Of 
course, when mis-predictions occur instruction and data 
bandwidth are wasted. 

There are additional considerations and tradeoffs in cache 
design, but it should be apparent from the considerations 
described hereinbefore that it is very difficult to design a 
single cache structure that is optimized for many different 
programs. This makes cache design particularly challenging 
for a multipurpose microprocessor that executes a wide 
variety of programs. Cache designers try to derive the 
program behavior of “average' program constructed from 
several actual programs that run on the microprocessor. The 
cache is optimized for the average program, but no actual 
program behaves exactly like the average program. As a 
result, the designed cache ends up being Sub-optimal for 
nearly every program actually executed by the micropro 
cessor. Thus, there is a need for memory hierarchies that 
have data storage and retrieval characteristics that are opti 
mized for actual programs executed by a processor. 

Designers trying to develop ever more efficient caches 
optimized for a variety of actual programs also face another 
problem: as caches add additional features, the overhead 
needed to implement the added features also grows. Caches 
today have so much overhead that microprocessor perfor 
mance may be reaching a point of diminishing returns as the 
overhead starts to cut into performance. In the Intel Pentium 
III processor for example, more than half of the 10 million 
transistors are dedicated to instruction cache, branch pre 
diction, out-of-order execution and SuperScalar logic. The 
situation has prompted predictions that as microprocessors 
grow to a billion transistors per chip, performance increases 
will drop to about 20% per year. Such a prediction, if borne 
out, could have a significant impact on technology growth 
and the computer business. 

Thus, there is a growing need to develop improved 
memory hierarchies that limit the overhead of a memory 
hierarchy without also reducing bandwidth efficiency and 
utilization. 

SUMMARY OF THE INVENTION 

Accordingly, an embodiment of the invention includes a 
reconfigurable processor that includes a computational unit 
and a data access unit coupled to the computational unit, 
where the data access unit retrieves data from an on 
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4 
processor memory and Supplies the data to the computa 
tional unit, and where the computational unit and the data 
access unit are configured by a program. 
The present invention also involves a reconfigurable 

processor that includes a first memory of a first type and a 
data prefetch unit coupled to the memory, where the data 
prefetch unit retrieves data from a second memory of a 
second type different from the first type, and the first and 
second memory types and the data prefetch unit are config 
ured by a program. 

Another embodiment of the invention includes a recon 
figurable hardware system that includes a common memory, 
also referred to as external memory, and one or more 
reconfigurable processors coupled to the common memory, 
where at least one of the reconfigurable processors includes 
a data prefetch unit to read and write data between the unit 
and the common memory, and where the data prefetch unit 
is configured by a program executed on the system. 

Another embodiment of the invention includes a method 
of transferring data that includes transferring data between a 
memory and a data prefetch unit in a reconfigurable pro 
cessor, transferring data between the prefetch unit and a data 
access unit, and transferring the data between a computa 
tional unit and the data access unit, where the computational 
unit, data access unit and the data prefetch unit are config 
ured by a program. 

Additional embodiments of the invention are set forth in 
part in the description that follows, and in part will become 
apparent to those skilled in the art upon examination of the 
following specification, or may be learned by the practice of 
the invention. The advantages of the invention may be 
realized and attained by means of the instrumentalities, 
combinations, compositions, and methods particularly 
pointed out in the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a reconfigurable processor in which the 
present invention may be implemented; 

FIG. 2 shows computational logic as might be loaded into 
a reconfigurable processor, 

FIG. 3 shows a reconfigurable processor as in FIG. 1, but 
with the addition of data access units; 

FIG. 4 shows a reconfigurable processor as in FIG. 3, but 
with the addition of data prefetch units: 

FIG. 5 shows reconfigurable processor with the inclusion 
of external memory; 

FIG. 6 shows reconfigurable processors with external 
memory and with an intelligent memory controller, 

FIG. 7 shows a reconfigurable processor having a com 
bination of data prefetch units and data access units feeding 
computational logic; 

FIG. 8 shows the bandwidth efficiency and utilization 
gains obtained when utilizing a data prefetch unit and an 
intelligent memory controller to perform Strided memory 
references; 

FIG. 9A and FIG.9B show the bandwidth efficiency and 
utilization gains obtained when utilizing a data prefetch unit 
and an intelligent memory controller to perform Subset 
memory references in X-Y plane; 

FIG. 10A and FIG. 10B show the bandwidth efficiency 
and utilization gains obtained when utilizing a data prefetch 
unit and an intelligent memory controller to perform Subset 
memory references in X-Z plane; 

FIG. 11A and FIG. 11B show the bandwidth efficiency 
and utilization gains obtained when utilizing a data prefetch 
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unit and an intelligent memory controller to perform Subset 
memory references in Y-Z plane; 

FIG. 12A and FIG. 12B show the bandwidth efficiency 
and utilization gains obtained when utilizing a data prefetch 
unit and an intelligent memory controller to perform Subset 
memory references in a mini-cube: 

FIG. 13 shows the bandwidth efficiency and utilization 
gains obtained when utilizing a data prefetch unit and an 
intelligent memory controller to perform indirect memory 
references; 

FIG. 14 shows the bandwidth efficiency and utilization 
gains obtained when utilizing a data prefetch unit and an 
intelligent memory controller to perform Strided memory 
reference together with computation. 

DETAILED DESCRIPTION 

1. Definitions: 
Direct execution logic (DEL)—is an assemblage of 

dynamically reconfigurable functional elements that enables 
a program to establish an optimized interconnection among 
selected functional units in order to implement a desired 
computational, data prefetch and/or data access functionality 
for maximizing the parallelism inherent in the particular 
code. 

Reconfigurable Processor is a computing device that 
contains reconfigurable components such as FPGAs and 
can, through reconfiguration, instantiate an algorithm as 
hardware. 

Reconfigurable Logic—is composed of an interconnec 
tion of functional units, control, and storage that implements 
an algorithm and can be loaded into a Reconfigurable 
Processor. 

Functional Unit is a set of logic that performs a specific 
operation. The operation may for example be arithmetic, 
logical, control, or data movement. Functional units are used 
as building blocks of reconfigurable logic. 
Macro is another name for a functional unit. 
Memory Hierarchy is a collection of memories 
Data prefetch Unit is a functional unit that moves data 

between members of a memory hierarchy. The movement 
may be as simple as a copy, or as complex as an indirect 
indexed strided copy into a unit stride memory. 

Data access Unit is a functional unit that accesses a 
component of a memory hierarchy, and delivers data directly 
to computational logic. 

Intelligent Memory Control Unit is a control unit that 
has the ability to select data from its storage according to a 
variety of algorithms that can be selected by a data requester, 
Such as a data prefetch unit. 

Bandwidth Efficiency is defined as the percentage of 
contributory data transferred between two points. Contribu 
tory data is data that actually participates in the recipients 
processing. 

Bandwidth Utilization is defined as the percentage of 
maximum bandwidth between two points that is actually 
used to pass contributory data. 

2. Description 
A reconfigurable processor (RP) 100 implements direct 

executable logic (DEL) to perform computation, as well a 
memory hierarchy for maintaining input data and computa 
tional results. DEL is an assemblage of dynamically recon 
figurable functional elements that enables a program to 
establish an optimized interconnection among selected func 
tional units in order to implement a desired computational, 
data prefetch and/or data access functionality for maximiz 
ing the parallelism inherent in the particular code. The term 
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6 
DEL may also be used to refer to the set of constructs such 
as code, data, configuration variables, and the like that can 
be loaded into RP 100 to cause RP 100 to implement a 
particular assemblage of functional elements. 

FIG. 1 presents an RP 100, which may be implemented 
using field programmable gate arrays (FPGAs) or other 
reconfigurable logic devices, that can be configured and 
reconfigured to contain functional units and interconnecting 
circuits, and a memory hierarchy comprising on-board 
memory banks 104, on-chip block RAM 106, registers 
wires, and a connection 108 to external memory. On-chip 
reconfigurable components 102 create memory structures 
such as registers, FIFOs, wires and arrays using block RAM. 
Dual-ported memory 106 is shared between on-chip recon 
figurable components 102. The reconfigurable processor 100 
also implements user-defined computational logic (e.g., Such 
as DEL 200 shown in FIG. 2) constructed by programming 
an FPGA to implement a particular interconnection of 
computational functional units. In a particular implementa 
tion, a number of RPs 100 are implemented within a 
memory Subsystem of a conventional computer, such as on 
devices that are physically installed in dual inline memory 
module (DIMM) sockets of a computer. In this manner the 
RPs 100 can be accessed by memory operations and so 
coexist well with a more conventional hardware platform. It 
should be noted that, although the exemplary implementa 
tion of the present invention illustrated includes six banks of 
dual ported memory 104 and two reconfigurable compo 
nents 102, any number of memory banks and/or reconfig 
urable components may be used depending upon the par 
ticular implementation or application. 
Any computer program, including complex graphics pro 

cessing programs, word processing programs, database pro 
grams and the like, is a collection of algorithms that interact 
to implement desired functionality. In the common case in 
which static computing hardware resources are used (e.g., a 
conventional microprocessor), the computer program is 
compiled into a set of executable code (i.e., object code) 
units that are linked together to implement the computer 
program on the particular hardware resources. The execut 
able code is generated specifically for a particular hardware 
platform. In this manner, the computer program is adapted 
to conform to the limitations of the static hardware platform. 
However, the compilation process makes many compro 
mises based on the limitations of the static hardware plat 
form. 

Alternatively, an algorithm can be defined in a high level 
language then compiled into DEL. DEL can be produced via 
a compiler from high level programming languages such as 
C or FORTRAN or may be designed using a hardware 
definition language Such as Verilog, VHDL or a schematic 
capture tool. Computation is performed by reconfiguring a 
reconfigurable processor with the DEL and flowing data 
through the computation. In this manner, the hardware 
resources are essentially adapted to conform to the program 
rather than the program being adapted to conform to the 
hardware resources. 

For purposes of this description a single reconfigurable 
processor will be presented first. A sample of computational 
logic 201 is shown in FIG. 2. This simple assemblage of 
functional units performs computation of two results ("A+ 
B' and “A+B-(B*C)) from three input variables or operands 
“A”, “B” and “C”. In practice, computational units 201 can 
be implemented to perform very simple or arbitrarily com 
plex computations. The input variables (operands) and out 
put or result variables may be of any size necessary for a 
particular application. Theoretically, any number of oper 
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ands and result variables may be used/generated by a 
particular DEL. Great complexity of computation can be 
Supported by adding additional reconfigurable chips and 
processors. 

For greatest performance the DEL 200 is constructed as 
parallel pipelined logic blocks composed of computational 
functional units capable of taking data and producing results 
with each clock pulse. The highest possible performance that 
can be achieved is computation of a set of results with each 
clock pulse. To achieve this, data should be available at the 
same rate the computation can consume the data. The rate at 
which data can be supplied to DEL 200 is determined, at 
least in significant part, by the memory bandwidth utiliza 
tion and efficiency. Maximal computational performance 
can be achieved with parallel and pipelined DEL together 
with maximizing the memory bandwidth utilization and 
efficiency. Unlike conventional static hardware platforms, 
however, the memory hierarchy provided in a RP 100 is 
reconfigurable. In accordance with the present invention, 
through the use of data access units and associated memory 
hierarchy components, computational demands and memory 
bandwidth can be matched. 

High memory bandwidth efficiency is achieved when only 
data required for computation is moved within the memory 
hierarchy. FIG.3 shows a simple logic block 300 comprising 
computational functional units 301, control (not shown), and 
data access functional units 303. The data access unit 303 
presents data directly to the computational logic 301. In this 
manner, data is moved from a memory device 305 to the 
computational logic and from the computational logic back 
into a memory device 305 or block RAM memory 307 
within an RP 100. 

FIG. 4 illustrates the logic block 300 with an addition of 
a data prefetch unit 401. The data prefetch unit 401 moves 
data from one member of the memory hierarchy 305 to 
another 308. Data prefetch unit 401 operates independently 
of other functional units 301, 302 and 303 and can therefore 
operate prior to, in parallel with, or after computational 
logic. This independence of operation permits hiding the 
latency associated with obtaining data for use in computa 
tion. The data prefetch unit deposits data into the memory 
hierarchy within RP 100, where computational logic 301, 
302 and 303 can access it through data access units. In the 
example of FIG.4, prefetch unit 401 is configured to deposit 
data into block RAM memory 308. Hence, the prefetch units 
401 may be operated independently of logic block 300 that 
uses prefetched data. 
An important feature of the present invention is that many 

types of data prefetch units can be defined so that the 
prefetch hardware can be configured to conform to the needs 
of the algorithms currently implemented by the computa 
tional logic. The specific characteristics of the prefetch can 
be matched with the needs of the computational logic and 
the format and location of data in the memory hierarchy. For 
example, FIG. 9A and FIG. 9B show an external memory 
that is organized in a 128 byte (16 word) block structure. 
This organization is optimized for Stride 1 access of cache 
based computers. A stride 128 access can result in a very 
inefficient use of bandwidth from the memory, since an extra 
120 bytes of data is moved for every 8 bytes of requested 
data yielding a 6.25% bandwidth efficiency. 

FIG. 5 shows an example of data prefetch in which there 
are no bandwidth gains since all data fetched from external 
memory blocks is also transferred and used in computational 
units 301 through memory bank access units 303. However, 
bandwidth utilization is increased due to the ability of the 
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8 
data prefetch units 501 to initiate a data transfer in advance 
of the requirement for data by computational logic. 

In accordance with an embodiment of the present inven 
tion, data prefetch units 601 are configured to communicate 
with an intelligent memory controller 603 in FIG. 6 and can 
extract only the desired 8 bytes of data, discard the remain 
der of the memory block, and transmit to the data prefetch 
unit only the requested portion of the stride 128 data. The 
prefetch units 601 then delivers that data to the appropriate 
memory components within the memory hierarchy of the 
logic block 300. 

FIG. 6 shows the prefetch units 601 delivering data to the 
RP's onboard memory banks 305. An onboard memory bank 
data access unit 303 then delivers the data to computational 
logic 301 when required. The data prefetch units 501 couple 
with an intelligent memory controller 601 in the implemen 
tation of FIG. 6 that supports a strided reference pattern, 
which yields a 100% bandwidth efficiency in contrast to the 
6.25% efficiency. Although illustrated as a single block of 
external memory, multiple numbers of external memories 
may be employed as well. 

In FIG. 7, the combination of data prefetch units 701 and 
data access units 703 feeding computational logic 301 such 
that bandwidth efficiency and utilization are maximized is 
shown in FIG. 7. In this example strided data prefetch units 
701 fetch only the required data words from external 
memory. FIG. 8 demonstrates the efficiency gains enabled 
by this combination. Prefetch units 701 deliver the data into 
stream memory components 705 that is accessed by stream 
data access units 703. The stream data access units 703 fetch 
data from the stream based on valid data bits that are 
provided to the stream by the data prefetch units 701 as data 
is presented to the stream. Use of the stream data access unit 
allows computational logic to be activated upon initiation of 
the data prefetch operation. This, in turn, allows computa 
tion to start with the arrival of the first data item, signaled by 
valid data bits. Computational logic 301 does not have to 
await arrival of a complete buffer of data in order to proceed. 
This elimination of latency increases the bandwidth utiliza 
tion, by allowing data transfer to continue uninterrupted and 
in parallel with computation. 

FIG. 8 illustrates the efficiency gains enabled by the 
configuration of FIG. 7. FIG. 8 shows a plurality of memory 
blocks 800 in which only one memory element 801 exists in 
each memory block 800. The configuration of FIG. 7 allows 
the desired portions 801 of each memory block 800 to be 
compacted into a transfer buffer 805. The desired data 
elements 801 are compacted in order. Since only the con 
tents of the transfer buffer 805 need be transferred to the 
computational logic, a significant increase in transfer effi 
ciency can be realized. 

FIGS. 9A/9B, 10A/10B, 11A/11B and 12A/12B show 
bandwidth efficiency gains that are achieved in various 
situations when a Subset of stored data is required for 
computation. Applications store data in a specific order in 
memory. However it is often the case that the actual refer 
ence pattern required during computation is different from 
the ordering of data in memory. FIGS. 9A/9B, 10A/10B, 
11A/11B and 12A/12B show an example of a X,Y,Z coor 
dinate oriented data which is stored such that striding though 
the X axis is the most efficient for retrieving blocked data. 

Coupling data prefetch units in the RP 100 with an 
intelligent memory controller 601 in the external memory 
yields a significant improvement in bandwidth efficiency 
and utilization. Four examples are presented in the FIGS. 
9A/9B, 10A/10B, 11A/11B and 12A/12B in which the 
shaded memory locations indicate desired data. The Figures 
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illustrate an intelligent memory controller's response to each 
of four different data prefetch units requests for data. Again, 
an important feature of the present invention is the ability to 
implement various kinds or styles of prefetch units to meet 
the needs of a particular algorithm being implemented by 
computational elements 301. For ease of illustration, each 
example shows the same set of computational logic, how 
ever, in most cases the function being implemented by 
components 301 would change and therefore alter the deci 
sion as to which prefetch strategy is most appropriate. In 
accordance with the present invention, the prefetch units are 
implemented in a manner that is optimized for the imple 
mented computational logic. 

FIGS. 9A/9B shows response to a request from an XY 
slice data prefetch unit. FIGS. 10A/10B shows response to 
a XZ-slice data prefetch unit request. FIGS. 11A/11B shows 
response to a YZ-slice data prefetch unit request. FIGS. 
12A/12D shows the response to a SubCube data prefetch 
unit request. In each of these examples the data prefetch 
units are configured to pass information to the intelligent 
memory controller 601 to identify the type of request that is 
being made, as well as a data address and parameters, in this 
case, defining the slice size or Sub-cube size. 
One of the largest bandwidth efficiency and utilization 

gains can be seen in the case of a Gather data prefetch unit 
working in cooperation with an intelligent memory control 
ler 601. FIG. 13 illustrates the activity in the external 
memory controller 601. In this example an index array 1301 
and a data array 1303 reside in memory. A gather data 
prefetch unit in an RP 100 requests a gather by specifying 
the access type as 'gather, and providing a pointer to index 
array 1301, and another pointer to the data array 1303. The 
memory controller uses the index array 1301 to select 
desired data elements, indicated by shading, and then deliv 
ers an in order stream of data to the prefetch unit. Gains are 
made by delivering only requested data from transfer buffer 
1305 (not the remainder of a data block as in cache line 
oriented systems) by eliminating the need to transfer an 
index array either to the processor or to the memory con 
troller, and by eliminating the start/stop time required when 
the data is not streamed to the requestor. 
A further bandwidth efficiency and utilization gain is 

made when coupling a data prefetch unit with memory 
controller capable of computation. FIG. 14 illustrates activ 
ity in a cooperating memory controller having a computa 
tional component 1407 in response to a data prefetch unit. 
Here the prefetch units requests a “strided compute', pro 
viding parameters for an operator, and addresses, and strides 
for data to be operated upon. In FIG. 14, the data to be 
operated on comprises “X” data 1401 and “Y” data 1403. 
The data 1401 and 1403 are processed by computational 
component 1407 to generate a resultant value that is a 
specified function of X and Y as indicated by F(X,Y) in FIG. 
14. The resultant values are then passed to the requesting 
prefetch unit via transfer buffer 1405. In this case only 
computed results are passed and no operand data need to 
transferred. Accordingly, where the desired data, indicated 
by shading in FIG. 14, resides across multiple blocks, 
efficiency is achieved not only by avoiding transfer of the 
undesired data Surrounding the desired data, but also 
because only the result is transferred, not the original data 
1401/1403. 

EXAMPLES 

Some programming examples utilizing the memory hier 
archy of the present invention will now be illustrated. The 
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10 
first example illustrates how a computational intensive 
matrix multiplication problem may be handled by the explic 
itly parallel and addressable storage of the present invention. 

Example 1 

Explicit Parallel and Addressable Storage 

Consider the matrix multiplication C=AxB, where: 
A is a matrix of size M rows by 64 columns; 
B is a matrix of size 64 rows by N columns; and 
C is a matrix of size M rows by N columns. 

The size and shape of this problem typically arises in the 
context of LU decomposition in linear algebra libraries (e.g., 
LAPACK). The operation count for this problem would be 
2*M*N*64, and the total data necessary to transport would 
be (M*64+N*64+M*N), making the problem quite compu 
tationally intensive. 
The dot-product formulation of the matrix multiplication 

may be represented as the following a triple-nested loop: 

On a conventional microprocessor with static execution 
resources, these loops would be arranged to give Stride-one 
data access where possible and also block or tile these uses 
to facilitate data cache hits on the B and A matrices, which 
are read many times. With the configurable memory hier 
archy of the present invention, matrix B may be stored in 
on-board BRAM memory 307 and rows of matrix A in 
registers. 
The rows of matrix B may be stored in independently, 

locally declared BRAM arrays (B0, B1, ... B63). The rows 
are stored as independent memory structures, and may be 
accessed in parallel. Rows of matrix A may be stored in 64 
registers described with scalar variables. With these explicit 
data structures, the following pseudo code can describe the 
matrix multiplication: 
Load B into BRAM; 

Load ith Row of A into registers A00 to A63; 

A02*b2+//inner loop produces 
A03*b3+/128 results per 
A04*b4+//clock cycle. 64 rows 
A05*b5+//of B are read in 
A06*b6+//parallel 

The code is designed to minimize the amount of data 
motion. The A and B matrices are read once and the C matrix 
is written just once at it is produced. When computational 
resources permit, the i loop could also be unrolled to process 
multiple rows of matrix A against matrix B in the inner loop. 
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Processing two rows of A, for example, would produce 256 
computational results per clock cycle. 

Example 2 

Irregular Memory Access 

Benchmarks have been developed for measuring the 
ability of a computer system to perform indirect updates. An 
indirect update, written in the C programming language, 10 
looks like: 

for (I = 0: I < N, I-+) { 
ADIndex III) = ADIndex II + BI: 15 

Typically, A is a large array, and Index has an unpredictable 
distribution. The benchmark generally forces memory ref- 20 
erences to miss in cache, and for entire cache lines to be 
brought in for single-word updates. The problem gets worse 
as memories get further away from processors and cache 
lines become wider. 

In this example, the arrays have 64-bit data. To complete 25 
one iteration of this loop, 24 bytes of information is required 
from memory and 8 bytes are written back for a total of 32 
bytes of memory motion per iteration. On an implicit 
architecture with cache-lines of width W bytes, each itera 
tion results in the following memory bus traffic: 30 

1. Index II: 8 bytes per iteration due to stride-1 nature: 
2. BI: 8 bytes per iteration due to stride-1 nature; and 
3. Alindex II: W bytes read and written per iteration. 

The total amount of bus traffic is 2*W+16 bytes periteration. 
On an average microprocessor today, W=128 so an iteration 
of this loop results in 272 bytes of memory traffic when only 
32 bytes is algorithmically required, making only 12% of the 
data moved as being useful for the problem. 

In addition, because microprocessors rely on wide cache 
lines and hardware pre-fetching strategies to amortize the 
long latency to main memory, only a small number of 
outstanding cache-line misses are typically tolerated. 
Because of the irregular nature of this example, hardware 
pre-fetching provides little benefit, making it difficult to 
keep the memory bus Saturated, even with the large amount 
of wasted memory traffic. Bus utilization on the micropro 
cessor processing only consumes about 700 MB/sec of the 
3.2 GB/sec available, or 22%. Combining the poor bus 
utilization with the relatively small amount of data that is 
useful results in the microprocessor executing at about 2.5% 
of peak. 
The memory hierarchy of the present invention does not 

require that memory traffic be organized in a cache-line 
structure, permitting loop iteration to be accomplished with 
the minimum number of bytes (in this case 32 bytes of 
memory traffic). In addition, data pre-fetch functional units 
may be fully pipelined, allowing full use of available 
memory bus bandwidth. Data storing may be handled in a 
similar pipelined fashion. An example of the pseudo code 
that performs the random update in the memory hierarchy 
looks like: 
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for (i-0; I < N-Gather size: I=I+Gather size) { 65 
gather (A, Index, I, A local, Gather size) 

12 

-continued 

for (j=); j < Gather size; j++) { 
A local = A local + B; 

scatter (A local, Index, &AI, Gather size): 

This loop will pipeline safely as described by the pseudo 
code provided that the index vector has no repeated values 
within each Gather size segment. If repeats are present, then 
logic within the gather unit can preprocess the Index vector 
and B vector into safe sub-lists that can be safely pipelined 
with little or no overhead. 

CONCLUSION 

It should be apparent that the scaleable, programmable 
memory mechanisms enabled by the present invention are 
available to the exploit available algorithm locality and 
thereby achieve up to 100% bandwidth efficiency. In addi 
tion, the scaleable computational resources can be leveraged 
to attain 100% bandwidth utilization. As a result, the present 
invention provides a programmable computational system 
that delivers the maximum possible performance for any 
memory bus speed. This combination of efficiency and 
utilization yields orders of magnitude performance benefit 
compared with implicit models when using an equivalent 
memory bus. 

Although the invention has been described and illustrated 
with a certain degree of particularity, it is understood that the 
present disclosure has been made only by way of example, 
and that numerous changes in the combination and arrange 
ment of parts can be resorted to by those skilled in the art 
without departing from the spirit and scope of the invention, 
as hereinafter claimed. 

We claim: 
1. A reconfigurable processor that instantiates an algo 

rithm as hardware comprising: 
a first memory having a first characteristic memory band 

width and/or memory utilization; and 
a data prefetch unit coupled to the memory, wherein the 

data prefetch unit retrieves only computational data 
required by the algorithm from a second memory of 
second characteristic memory bandwidth and/or 
memory utilization and places the retrieved computa 
tional data in the first memory wherein the data 
prefetch unit operates independent of and in parallel 
with logic blocks using the computional data, and 
wherein at least the first memory and data prefetch unit 
are configured to conform to needs of the algorithm, 
and the data prefetch unit is configured to match format 
and location of data in the second memory. 

2. The reconfigurable processor of claim 1, wherein the 
data prefetch unit is coupled to a memory controller that 
controls the transfer of the data between the memory and the 
data prefetch unit and transmits only portions of data desired 
by the data prefetch unit and discards other portions of data 
prior to transmission of the data to the data prefetch unit. 

3. The reconfigurable processor of claim 1, wherein the 
data prefetch unit receives processed data from on-processor 
memory and writes the processed data to an external off 
processor memory. 

4. The reconfigurable processor of claim 1, wherein the 
data prefetch unit comprises at least one register from the 
reconfigurable processor. 
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5. The reconfigurable processor of claim 1, wherein the 
data prefetch unit is disassembled when another program is 
executed on the reconfigurable processor. 

6. The reconfigurable processor of claim 1 wherein said 
second memory comprises a processor memory and said 
data prefetch unit is operative to retrieve data from a 
processor memory. 

7. The reconfigurable processor of claim 6 wherein said 
processor memory is a microprocessor memory. 

8. The reconfigurable processor of claim 6 wherein said 
processor memory is a reconfigurable processor memory. 

9. A reconfigurable hardware system, comprising: 
a common memory; and 
one or more reconfigurable processors that can instantiate 

an algorithm as hardware coupled to the common 
memory, wherein at least one of the reconfigurable 
processors includes a data prefetch unit to read and 
write only data required for computations by the algo 
rithm between the data prefetch unit and the common 
memory wherein the data prefetch unit operates inde 
pendent of and in parallel with logic blocks using the 
computational data, and wherein the data prefetch unit 
is configured to conform to needs of the algorithm and 
match format and location of data in the common 
memory. 

10. The reconfigurable hardware system of claim 9. 
comprising a memory controller coupled to the common 
memory and the data prefetch unit that transmits to the 
prefetch unit only data desired by the data prefetch unit as 
required by the algorithm. 

11. The reconfigurable hardware system of claim 9. 
wherein the at least of the reconfigurable processors also 
includes a computational unit coupled to the data access 
unit. 

12. The reconfigurable hardware system of claim 11, 
wherein the computational unit is supplied the data by the 
data access unit. 
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13. A method of transferring data comprising: 
transferring data between a memory and a data prefetch 

unit in a reconfigurable processor, and 
transferring the data between a computational unit and the 

data access unit, wherein the computational unit and 
the data access unit, and the data prefetch unit are 
configured to conform to needs of an algorithm imple 
mented on the computational unit and transfer only data 
necessary for computations by the computational unit, 
and wherein the prefetch unit operates independent of 
and in parallel with the computational unit. 

14. The method of claim 13, wherein the data is written 
to the memory, said method comprising: 

transferring the data from the computational unit to the 
data access unit; and 

writing the data to the memory from the data prefetch 
unit. 

15. The method of claim 13, wherein the data is read from 
the memory, said method comprising: 

transferring only the data desired by the data prefetch unit 
as required by the computational unit from the memory 
to the data prefetch unit; and 

reading the data directly from the data prefetch unit to the 
computational unit through a data access unit. 

16. The method of claim 15, wherein all the data trans 
ferred from the memory to the data prefetch unit is processed 
by the computational unit. 

17. The method of claim 15, wherein the data is selected 
by the data prefetch unit based on an explicit request from 
the computational unit. 

18. The method of claim 13, wherein the data transferred 
between the memory and the data prefetch unit is not a 
complete cache line. 

19. The method of claim 13, wherein a memory controller 
coupled to the memory and the data prefetch unit, controls 
the transfer of the data between the memory and the data 
prefetch unit. 
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