PROVISIONAL APPLICATION NUMBER	20/143	Subclass	ASS	Scan (4 No	
	AP	OVIS	IONA	L V	
					(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

PATENT	APPLICATION	SERIAL	NO.	

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

08/21/2000 CCHAU1 00000104 60225059

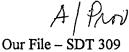
01 FC:114

75.00 OP

PTO-1556 (5/87)

*U.S. GPO: 1999-459-082/19144

UNITED STATES PATENT AND TRADEMARK OFFICE


COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D.C. 2023I
www.uspto.gov

SERIAL NUMBER 60 /225,059	FILING DATE 08/14/2000 RULE	CLASS GROU		OUP ART UNIT		ATTORNEY DOCKET NO. SDT 309			
APPLICANTS Stephen F. Gass, Wilsonville, OR; James David Fulmer, Tualatin, OR; Joel F. Jensen, Redwood City, CA; Benjamin B. Schramm, Los Gatos, CA; Robert L. Chamberlain, Raleigh, NC; ** CONTINUING DATA **********************************									
	yes no no Met aft Allowance	SHEET DRAWII			INDEPENDENT CLAIMS -				
ADDRESS Stephen F Gass Esq SD3 LLC 22409 S W Newland Road Wilsonville ,OR 97070 TITLE Logic control for fast-acting safety system									
RECEIVED No.	ES: Authority has been to charge/ for followir	credit DEPOSIT ACC	DUNT ti	All Fees 1.16 Fees (Filing) 1.17 Fees (Processing Ext. of time) 1.18 Fees (Issue) Other Credit					

Date: August 14, 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Assistant Commissioner for Patents **Box PROVISIONAL PATENT APPLICATION**Washington, D.C. 20231

Sir:

Transmitted herewith for filing is a PROVISIONAL patent application of SD3, LLC.

For: LOGIC CONTROL FOR FAST-ACTING SAFETY SYSTEM

Also enclosed are:

X Eleven (11) sheets of drawings.

X Appendix A.

X A check in the amount of \$75.00 is enclosed for payment of the filing fee.

PROVISIONAL APPLICATION SMALL ENTITY

Basic Filing Fee \$75.00

Respectfully submitted,

KOLISCH, HARTWELL, DICKINSON,

McCORMACK & HEUSER

Stephen F. Gass

Registration No. 38,462

520 S.W. Yamhill Street, Suite 200

Portland, Oregon 97204

Telephone: (503) 224-6655

Facsimile: (503) 295-6679

Attorney for SD3, LLC

"Express Mail" Mailing Label No. EL695152711US Date of Deposit -- August 14, 2000

I hereby certify that the attached documents are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents, Box PROVISIONAL PATENT APPLICATION, Washington, D.C. 20231.

Renee Knigh

5

10

LOGIC CONTROL FOR FAST-ACTING SAFETY SYSTEM

Field of the Invention

The present invention relates to safety systems, and more particularly to a highspeed safety system for use on power equipment.

Background of the Invention

Beginning with the industrial revolution and continuing to the present, mechanized equipment has allowed workers to produce goods with greater speed and less effort than possible with manually-powered tools. Unfortunately, the power and high operating speeds of mechanized equipment creates a risk for those operating such machinery. Each year thousands of people are maimed or killed by accidents involving power equipment.

As might be expected, many systems have been developed to minimize the risk of injury when using power equipment. Probably the most common safety feature is a guard that physically blocks an operator from making contact with dangerous components of machinery, such as belts, shafts or blades. In many cases, guards are effective to reduce the risk of injury, however, there are many instances where the nature of the operations to be performed precludes using a guard that completely blocks access to hazardous machine parts.

Various systems have been proposed to prevent accidental injury where guards cannot effectively be employed. For instance, U.S. Patent Nos. 941,726, 2,978,084, 3,011,610, 3,047,116, 4,195,722 and 4,321,841, the disclosures of which are incorporated herein by reference, all disclose safety systems for use with power presses. These systems utilize cables attached to the wrists of the operator that either pull back a user's hands from the work zone upon operation or prevent operation until the user's hands are outside the danger zone. U.S. Patent Nos. 3,953,770, 4,075,961, 4,470,046, 4,532,501 and 5,212,621, the disclosures of which are incorporated herein by reference, disclose radio-frequency safety systems which utilize radio-frequency signals to detect the presence of a user's hand in a dangerous area of the machine and thereupon prevent or interrupt operation of the machine.

5

10

U.S. Patent Nos. 4,959,909, 5,025,175, 5,122,091, 5,198,702, 5,201,684, 5,272,946, and 5,510,685 disclose safety systems for use with meat-skinning equipment, and are incorporated herein by reference. These systems interrupt or reverse power to the motor, or disengage a clutch, upon contact with a user's hand by any dangerous portion of the machine. Typically, contact between the user and the machine is detected by monitoring for electrical contact between a fine wire mesh in a glove worn by the user and some metal component in the dangerous area of the machine. Although such systems are suitable for use with meat skinning machines, they are relatively slow to stop the motion of the cutting element because they rely on the operation of solenoids or must overcome the inertia of the motor. However, because these systems operate at relatively low speeds, the blade does not need to be stopped rapidly to prevent serious injury to the user.

U.S. Patent Nos. 3,785,230 and 4,026,177, the disclosures of which are herein incorporated by reference, disclose a safety system for use on circular saws to stop the blade when a user's hand approaches the blade. The system uses the blade as an antenna in an electromagnetic proximity detector to detect the approach of a user's hand prior to actual contact with the blade. Upon detection of a user's hand, the system engages a brake using a standard solenoid. Unfortunately, such a system is prone to false triggers and is relatively slow acting because of the solenoid. U.S. Patent No. 4,117,752, which is herein incorporated by reference, discloses a similar braking system for use with a band saw, where the brake is triggered by actual contact between the user's hand and the blade. However, the system described for detecting blade contact does not appear to be functional to accurately and reliably detect contact. Furthermore, the system relies on standard electromagnetic brakes operating off of line voltage to stop the blade and pulleys of the band saw. It is believed that such brakes would take 50ms-1s to stop the blade. Therefore, the system is too slow to stop the blade quickly enough to avoid serious injury.

None of the safety systems mentioned above disclose any method or mechanism for ensuring that the system is operational before setting the blade or other dangerous

10

portion of the machine in motion. In addition, none of the systems mentioned above disclose any method or mechanism for preventing false triggers during initial startup or monitoring the operating status of the machinery to prevent triggering the safety system when the blade is stationary. Further, none of the above-mentioned systems disclose any method or mechanism for allowing a user to disable the safety system under certain conditions.

Brief Description of the Drawings

- Fig. 1 is a schematic block diagram of a machine with a fast-acting safety system according to the present invention.
- Fig. 2 is a schematic diagram of an exemplary safety system in the context of a machine having a circular blade.
- Fig. 3 is a flowchart diagram of an exemplary self-test logic sequence according to the present invention.
- Figs. 4A-C are flowchart diagrams of an exemplary self-test and operational sequence according to the present invention.
- Fig. 5 is a schematic block diagram of a logic controller according to a first exemplary implementation of the present invention.
- Fig. 6 is a schematic diagram of a user interface according to the present invention.
- Fig. 7 is a schematic diagram of a firing capacitor charge and test circuit according to the first exemplary implementation of the present invention.
- Fig. 8 is a schematic block diagram of a logic controller according to a second exemplary implementation of the present invention.
- Fig. 9 is a schematic diagram of a firing capacitor charge and test circuit according to the second exemplary implementation of the present invention.
- Fig. 10 is an isometric view of an exemplary pawl adapted for measuring pawl-toblade spacing according to the present invention.
- Fig. 11 is a schematic diagram of an exemplary circuit for detecting blade-to-pawl spacing according to the present invention.

5

10

Exhibits

Exhibit A are exemplary software instructions and functional flowcharts suitable for use with the PIC16C63A-20/SO controller.

Detailed Description and Best Mode of the Invention

A machine according to the present invention is shown schematically in Fig. 1 and indicated generally at 10. Machine 10 may be any of a variety of different machines adapted for cutting workpieces, such as wood, including a table saw, miter saw (chop saw), radial arm saw, circular saw, band saw, jointer, planer, etc. Machine 10 includes an operative structure 12 having a cutting tool 14 and a motor assembly 16 adapted to drive the cutting tool. Machine 10 also includes a safety system 18 configured to minimize the potential of a serious injury to a person using machine 10. Safety system 18 is adapted to detect the occurrence of one or more dangerous conditions during use of machine 10. If such a dangerous condition is detected, safety system 18 is adapted to engage operative structure 12 to limit any injury to the user caused by the dangerous condition.

Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10.

It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of machine 10. For example, operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14. Alternatively, operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions. As a further alternative, operative structure 12 may include one or more transport mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14.

5

10

Motor assembly 16 includes one or more motors adapted to drive cutting tool 14. The motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms. Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces. The particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10. For example, in table saws, miter saws, circular saws and radial arm saws, cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade. For a jointer or planer, the cutting tool typically includes a plurality of radially spaced-apart blades. For a band saw, the cutting tool includes an elongate, circuitous tooth-edged band.

Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the machine. The control subsystem is configured to control machine 10 in response to the inputs it receives.

Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14. As another example, the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Serial No. 60/182,866, the disclosure of which is herein incorporated by reference. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly.

10

Once activated in response to a dangerous condition, reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14, disconnect motor assembly 16 from power source 20, place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Serial No. _____, entitled "Cutting Tool Safety System," filed August 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. Retraction of the cutting tool from its operating position is described in more detail in U.S. Provisional Patent Application Serial No. _____, entitled "Retraction System For Use In Power Equipment," filed August 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.

The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in Fig. 1, reaction subsystem 24 is configured to stop the movement of cutting tool 14 and includes a brake mechanism 28, a biasing mechanism 30, a restraining mechanism 32, and a release mechanism 34. Brake mechanism 28 is adapted to engage operative structure 12 under the urging of biasing mechanism 30. During normal operation of machine 10, restraining mechanism 32 holds the brake mechanism out of engagement with the operative structure. However, upon receipt of an activation signal by reaction subsystem 24, the brake mechanism is released from the restraining mechanism by release mechanism 34, whereupon, the brake mechanism quickly engages at least a portion of the operative structure to bring the cutting tool to a stop.

It will be appreciated by those of skill in the art that the exemplary embodiment depicted in Fig. 1 and described above may be implemented in a variety of ways

10

depending on the type and configuration of operative structure 12. Turning attention to Fig. 2, one example of the many possible implementations of safety system 18 is shown. System 18 is configured to engage an operative structure having a cutting tool in the form of a circular blade 40 mounted on a rotating shaft or arbor 42. Blade 40 includes a plurality of cutting teeth (not shown) disposed around the outer edge of the blade. As described in more detail below, braking mechanism 28 is adapted to engage the teeth of blade 40 and stop the rotation of the blade. U.S. Provisional Patent Application Serial No. _______, entitled "Translation Stop For Use In Power Equipment," filed August 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference, describes other systems for stopping the movement of the cutting tool. U.S. Provisional Patent Application Serial No. ______, entitled "Table Saw With Improved Safety System," filed August 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Serial No. ______, entitled "Miter Saw With Improved Safety System," filed August 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference, describe safety system 18 in the context of particular types of machines 10.

In the exemplary implementation, detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40. The detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46, capacitively coupled to blade 40 to detect any contact between the user's body and the blade. Typically, the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10. Alternatively, detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc. In any event, the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Serial No. ________, entitled "Contact Detection System For Power Equipment," filed August 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Serial No. ________, entitled "Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,"

10

filed August 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.

Control subsystem includes one or more instruments 48 that are operable by a user to control the motion of blade 40. Instruments 48 may include start/stop switches, speed controls, direction controls, etc. Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48. Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of logic controller 50 will be described below. Various exemplary embodiments and implementations of a blade motion detection system are described in U.S. Provisional Patent Application Serial No. ______, entitled "Motion Detecting System For Use In Safety System For Power Equipment," filed August 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.

In the exemplary implementation, brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade. Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade. As one example, the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40. In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66. In the illustrative embodiment shown in Fig. 2, pawl 60 is pivoted into the teeth of blade 40. It should be understood that sliding or rotary movement of pawl 60 may also be used. The spring is adapted to urge pawl 60

5

10

into the teeth of the blade with sufficient force to grip the blade and quickly bring it to a stop.

The pawl is held away from the edge of the blade by a restraining member in the form of a fusible member 70. The fusible member is constructed of a suitable material adapted to restrain the pawl against the bias of spring 66, and also adapted to melt under a determined electrical current density. Examples of suitable materials for fusible member 70 include NiChrome wire, stainless steel wire, etc. The fusible member is connected between the pawl and a contact mount 72. Preferably member 70 holds the pawl relatively close to the edge of the blade to reduce the distance pawl 60 must travel to engage blade 40. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade. Typically, the pawl is held approximately 1/32-inch to ¼-inch from the edge of the blade by fusible member 70, however other pawl-to-blade spacings may also be used within the scope of the invention.

Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76. The firing subsystem is coupled to contact mount 72, and is configured to melt fusible member 70 by passing a surge of electrical current through the fusible member. Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22, the logic controller sends an activation signal to firing subsystem 76, which melts fusible member 70, thereby releasing the pawl to stop the blade. Various exemplary embodiments and implementations of reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Serial No. , entitled "Firing Subsystem For Use In Fast Acting Safety System," filed August 14, 2000 by SD3, LLC, U.S. Provisional Patent Application Serial No. _____, entitled "Spring-Biased Brake Mechanism for Power Equipment," filed August 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Serial No. _____, entitled "Brake Mechanism For Power Equipment," filed August 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.

5

10

It will be appreciated that activation of the brake mechanism will require the replacement of one or more portions of safety system 18. For example, pawl 60 and fusible member 70 typically must be replaced before the safety system is ready to be used again. Thus, it may be desirable to construct one or more portions of safety system 18 in a cartridge that can be easily replaced. For example, in the exemplary implementation depicted in Fig. 2, safety system 18 includes a replaceable cartridge 80 having a housing 82. Pawl 60, spring 66, fusible member 70 and contact mount 72 are all mounted within housing 82. Alternatively, other portions of safety system 18 may be mounted within the housing. In any event, after the reaction system has been activated, the safety system can be reset by replacing cartridge 80. The portions of safety system 18 not mounted within the cartridge may be replaced separately or reused as appropriate. Various exemplary embodiments and implementations of a safety system using a replaceable cartridge are described in more detail in U.S. Provisional Patent Application Serial No. entitled "Replaceable Brake Mechanism For Power Equipment," filed August 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Serial No. _____, entitled "Brake Positioning System," filed August 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.

While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Application Serial Nos. 60/182,866 and 60/157,340, the disclosures of which are herein incorporated by reference.

Considering logic controller 50 now in more detail, it will be appreciated that the logic controller may be configured to perform a variety of functions depending on the particular type of machine 10 and/or the application. For example, logic controller 50 may be configured to conduct various self-test safety checks when the machine is switched on or off and during use, to ensure that detection subsystem 22 is operating

5

10

properly and to prevent inadvertent triggering of reaction subsystem 24. Additionally, the logic controller may be configured to control one or more display devices to inform a user of the status of machine 10 and safety system 18. Furthermore, logic controller 50 may be implemented in a variety of ways including using one or more custom application specific integrated circuits (ASICs), microprocessors, micro-controllers, digital logic circuits, and/or analog circuits, etc.

In one exemplary embodiment, logic controller 50 is configured to perform the self-check logic sequence shown in Fig. 3. The exemplary sequence begins when the user initially supplies power to the system, indicated at 901. The logic system first checks to determine whether the spacing between the blade and pawl is correct, as indicated at 902. The blade-to-pawl spacing may be measured by any suitable mechanism such as described in more detail below. If the spacing is outside acceptable limits, the system responds with an error signal, indicated at 903. The error signal may be an audible and/or visible signal, etc. In one embodiment described in more detail below, control subsystem includes a user interface adapted to indicate the status of the machine and annunciate any error conditions. Preferably, the logic system remains in the error state and prevents further operation of the machine until the correct blade-to-pawl spacing is detected.

If the blade-to-pawl spacing is acceptable, the logic system determines whether the input signal produced on charge plate 44 by detection subsystem 22 is being detected at a sufficient amplitude on charge plate 46, as indicated at 904. This step ensures that the reaction subsystem will not be triggered accidentally upon start-up due to a fault in the detection subsystem, a grounded blade, incorrectly placed charge plates, etc. If the proper input signal is not detected, logic controller 50 responds with an error signal 903. It will be appreciated that either the same or a different error signal may be produced for each fault condition.

If the proper input signal is detected, the logic controller proceeds to determine whether a fusible member is present, as indicated at step 905. The presence of a fusible member may be determined by any suitable means such as described in more detail below. If no fusible member is present, logic controller 50 returns an error signal 903. If a

10

fusible member is detected, the logic controller then checks the electrical charge stored by firing subsystem 76, as indicated at 906. This step ensures that sufficient charge is present to melt the fusible member if the dangerous condition is detected. Exemplary circuitry for detecting sufficient charge is described in more detail below. If sufficient charge is not detected within a determined time period, the logic controller responds with an error signal 903.

In the sequence depicted in Fig. 3, after the predetermined checks are completed, logic controller 50 allows power to be sent to motor assembly 16, as indicated at 907. It will be appreciated that the electrical sequence described above typically is completed within no more than a few seconds if no faults are detected. In addition to an initial power-up sequence, logic controller 50 may be configured to perform any of a variety of checks during operation. For example, the rotation of the blade may be monitored by known mechanisms and the firing system may be disabled when the blade is not moving. This would allow the user to touch the blade when it is stopped without engaging brake mechanism 28. Various exemplary embodiments and implementations of a blade motion detection system are described in U.S. Provisional Application entitled Motion Detection System for Use in Safety System for Power Equipment, filed August 14, 2000, by SD3, LLC.

It will appreciated that many variations on the logic sequence described above may be implemented within the scope of the invention. For example, some embodiments of logic controller 50 may include a battery, a capacitor or other charge storage device to ensure the detection and reaction subsystems will continue to function at least temporarily after power to the machine is turned off. As another example, power to the motor assembly may be shut off if an error occurs other than contact detection such as incorrect blade-to-charge plate spacing, insufficient charge on the charge storage devices, etc. Thus, logic controller 50 may be implemented to provide any of a variety of safety and/or operational functions as desired.

Additionally, since reaction subsystem 24 is configured to stop cutting tool 14 upon contact with a user's body, it may also be desirable to stop motor assembly 16, or at

10

least the portion of the motor assembly adapted to drive the cutting tool, to prevent damage to the motor as it tries to drive the stalled cutting tool. However, since machine 10 typically is designed with the expectation that the cutting tool may stop due to binding, etc., it will usually be sufficient to turn off the motor assembly within a few seconds. This can be accomplished simply by cutting power to the motor. For example, when machine 10 includes a magnetic contactor switch 48, the logic controller may be adapted to interrupt the circuit holding the magnetic contactor closed so that power to the motor is interrupted. It should be understood that this step is optional, in that interrupting power to the machine's motor assembly is neither necessary nor sufficient to prevent serious injury to the user when the user touches the machine's cutting tool. Therefore, the principal benefit of this step is to reduce the likelihood of damaging the motor assembly or drive system while the brake system is preventing rotation or other movement of the cutting tool. It will be appreciated that there are many other suitable ways of stopping motor assembly 12 which are within the scope of the invention. As one example, power to the motor assembly may be controlled directly by safety stop 30 (e.g., through solid state on/off switches, etc.). This embodiment is described in more detail in U.S. Provisional Application entitled Contact Detection System for Power Equipment, filed August 14, 2000, by SD3, LLC. Also, it is possible to simply allow existing overload circuitry to trip in and turn off the stalled motor.

Since the contact detection subsystem described above relies on certain electrical properties of the human body, the use of safety system 18 while cutting some materials, such as foil-coated insulation, may cause the detection circuitry to falsely register contact with a user. In addition, as described in U.S. Provisional Application entitled Contact Detection System for Power Equipment, filed August 14, 2000, by SD3, LLC, extremely green wood may cause false triggers in some types of detection subsystems due to the relatively high dielectric constant of green wood. Therefore, it may be desirable to provide a manual bypass or override control that prevents the brake from operating for a particular cutting operation. A suitable override control may include a mechanical switch between fusible member 70 and firing system 76. Alternatively, the switch may be a

5

10

single-use switch configured to reset itself after each use. As a further alternative, safety system 18 may include sensors adjacent the workpiece to detect the presence of foil, green wood, etc., and disable the reaction subsystem automatically. This latter alternative relieves the user of having to remember to disable and re-enable the brake system.

In any event, the override control may be configured in a variety of ways depending on the application and the level of safety desired. For example, the override control may be configured to time-out (i.e., turn off), if the user does not switch the machine on within a predetermined time (e.g., 3, 5 or 10 seconds, etc.). This would prevent the user from actuating the override control and then becoming distracted before proceeding to cut the workpiece and forgetting the safety system had been disabled. In some embodiments, it may be desirable to allow a user to override the error caused by a failed self-test (e.g., no fusible member, insufficient stored charged, missing or incorrectly installed cartridge 80, etc.). In other embodiments, logic controller 50 may be configured to require that the detection and reaction subsystems are operational before allowing the user to override any errors.

Typically, the override control is configured to reduce the likelihood that it will be actuated accidentally by the user. For example, the override control switch may be located away from the remaining operator switches and away from an area on machine 10 where the user is likely to accidentally bump against while using the machine. Alternatively or additionally, override control switch 48 may include a cover or similar barrier which the user must remove or overcome before the switch can be actuated. Such covered switches are known to those of skill in the art. As an additional safety measure, logic controller 50 may be configured to produce a visual and/or audible alarm or warning when the override is actuated. Furthermore, where logic controller 50 is adapted to control the supply of power to motor assembly 16, the logic controller may be configured to "pulse" the motor one or more times to alert the user that the blade is about to begin moving with the safety system disabled. This would alert a user, who accidentally actuated the override while in contact with the blade, to quickly move away from the blade.

10

In view of the above considerations, an alternative embodiment of logic controller 50 may be configured to perform the self-test and detection logic shown schematically in Figs. 4A-C. The main logic sequence, indicated generally at 910 in Fig. 4A, begins when machine 10 is first connected to power source 20, as indicated at 911. Logic controller 50 begins sequence 910 by performing a system integrity check, as indicated at 912. The system integrity check may include any one or more of a variety of checks which typically will vary depending on the particular type and configuration of machine 10. In the exemplary embodiment, system integrity check 912 includes testing the sufficiency of power source 20 (here, standard line current) by any suitable means which are known to those of skill in the art. The system integrity check may also include driving the detection signal onto charge plate 44 and attempting to detect the signal at charge plate 46. Failure to detect the detection signal at charge plate 46 may indicate a number of problems such as an electronic failure in detection subsystem 22, a mis-positioned or grounded charge plate, grounded blade, etc. Exemplary system integrity check 912 also includes a pawl-toblade spacing test to ensure that pawl 60 is properly positioned adjacent blade 40 so that the pawl will engage and stop the blade if released. Exemplary mechanisms for detecting correct blade-to-pawl spacing are described in more detail below. If any of the tests performed during system integrity check 912 is negative, logic controller turns motor assembly 16 off (if on), as indicated at 913, and outputs an error signal to the user, as indicated at 914. Once the user corrects the error and resets the logic controller (e.g., by disconnecting and then reconnecting the power to machine 10), the system integrity check is repeated.

If system integrity check 912 is successful, logic controller 50 proceeds to check fusible member 70 as well as the stored charge in firing subsystem 76, as indicated at 915. If either the fusible member test or the stored charge test is negative, the logic controller turns off the motor assembly, indicated at 913, and then outputs an error signal, indicated at 914. It may be desirable to repeat step 915 one or more times, or provide a delay between steps 912 and 915 to ensure that firing subsystem 76 has sufficient time to build up the electrical charge.

10

If both the fusible member and firing subsystem tests are successful, logic controller then proceeds to one of two operational loops depending on whether the user-operable override switch has been activated, as indicated at 916. It will be appreciated that testing for a user override signal after performing the fusible member/charge storage test prevents a user from overriding safety system 18 unless the safety system is functional. Thus, for example, if a contact detection occurs and the brake is triggered, the user cannot proceed to operate the system until the fusible member, and/or pawl, and/or firing subsystem, etc., is replaced (typically by replacing cartridge 80). Alternatively, step 915 may be eliminated from the main operational loop. This would allow machine 10 to be operated regardless of whether safety system 18 was completely functional by engaging the override.

In any event, if the override has been actuated, logic controller 50 proceeds to operate in an override loop, as indicated at 917 and detailed in Fig. 4B. Typically, logic controller 50 first outputs a warning signal, as indicated at 918 and described above. Next, at step 919, the logic controller checks the status of START switch 48, which is operable by a user to turn on motor assembly 16. As described above, logic controller may be configured to read START switch 48 as being "on" only if it is actuated within a predetermined period after the override is enabled. If the START switch is "off," logic controller 50 turns off the motor assembly (if on), as indicated at 920, and exits the override loop as indicated at 921. As shown in Fig. 4A, the logic controller returns to the system integrity check at the end of the override loop. Thus, the logic controller will continue to perform the system integrity check and the fusible member/stored charge tests until the START switch is actuated. This ensures that if a user engages the override and then delays actuating the START switch, the system will not turn on the motor assembly if a failure occurs between the time the override is enabled and the time the START switch is actuated.

If, at step 919, the START switch is on, logic controller proceeds to turn on motor assembly 16, as indicated at 922. The motor assembly remains on until STOP switch 48 is actuated by the user, as indicated at 923. Once the STOP switch is actuated, logic

10

controller 50 turns off the motor assembly, as indicated at 920, and exits the override loop at 921. As mentioned above, logic controller returns to step 912 after exiting the override loop.

If, at step 916, the override has not been engaged by the user, logic controller 50 proceeds to the detection loop 925, which is shown in detail in Fig. 4C. In the exemplary embodiment, detection loop 925 is depicted with two logic paths which are executed simultaneously. In a first path 926 the logic controller monitors detection subsystem 22, while in a second path 927 the logic controller continually rechecks the fusible member and stored charge in firing subsystem 76. This dual-path operation ensures that machine 10 will be shut down if a failure occurs while the blade is in motion. It will be appreciated by those of skill in the art that the dual-path operation may be implemented in a variety of ways including the use of interrupts, state machines, etc. Alternatively, the two paths may be implemented in a single sequential loop. However, since testing of the stored charge consumes several milliseconds or even several seconds in some embodiments, it is typically desirable, in those embodiments, to execute both paths simultaneously so that several milliseconds or more do not pass between successive contact detection measurements.

Path 927 includes testing fusible member 70 and the charge stored by firing subsystem 76, as indicated at 928. This test is continuously repeated unless and until either the fusible member test or the stored charge test fails, at which point logic controller 50 turns the motor assembly off, as indicated at 929, and outputs an error message, as indicated at 930. The logic controller also stops executing test 928 when it exits the detection loop or when an error in path 926 occurs, as described below. The tests of fusible member 70 and firing subsystem 76 at step 928 may be the same as, or different than, the tests that are used in the main loop at step 915. In any event, the logic controller must be reset from step 930, as described above.

Path 926 is the contact detection path and includes testing for excessive impedance loading on the blade, as indicated at 931. Step 931 ensures that power will not be supplied to the motor assembly if the capacitive load on the blade is so high that the

5

10

detection subsystem might not be able to detect a contact between the blade and the user. This might occur for a variety of reasons. For example, if the blade is cutting highly dielectric materials (e.g., green wood), the capacitive load on the blade will increase. This issue is described in more detail in CASE 1.

As another example, the user might accidentally actuate the START switch while in contact with the blade. Since some exemplary detection subsystems rely on a sudden change (rather than an absolute level) in the signal detected at charge plate 46, step 931 ensures that the safety system will not allow the blade to begin rotating if the user is touching the blade when the START switch is actuated. In this embodiment, the logic controller is configured to set the value for excessive capacitive loading at approximately at least that amount of loading caused when a user contacts the blade. However, it will be appreciated that it is within the scope of the invention to configure logic controller 50 to recognize any desired amount of capacitive loading as being excessive.

If the capacitive load on the blade is too high, logic controller 50 outputs an error signal, at 932, and turns off motor assembly 16 (if on), as indicated at step 933. The logic controller then exits the detection loop, at 934, and returns to system integrity check 912 in the main operational loop shown in Fig. 4A. It will be appreciated that safety system 18 will not be enabled during the several seconds it takes the blade to spin down. This is because the capacitive loading is too high to accurately detect contact with the user, and is likely to trigger even though no contact has occurred. In alternative embodiments, the logic controller may continue to monitor for contact detection while the blade is rotating and actuate the firing system if contact is detected. Alternatively, the logic controller may be configured to actuate the firing system if the loading becomes too high.

Once the logic controller returns to the main loop after detecting a high capacitive loading error, the user may nevertheless operate machine 10 by engaging the override. If the user does not actuate the override, safety system 18 will not supply power to motor assembly 16 until the capacitive loading problem is corrected.

If, at step 931, the capacitive loading on the blade is within defined limits, the logic controller proceeds to test the contact detection signal from detection subsystem 22,

10

as indicated at 935. If contact is detected, the logic controller determines whether the blade is rotating, as indicated at 936. If the blade is rotating, the logic controller actuates the firing subsystem, at 937, turns off motor assembly 16, at 929, and outputs an error, at 930. The logic controller must then be reset as described above.

However, if the blade is not rotating at step 936, then the logic controller outputs an error signal, at step 932, turns off the motor assembly (if on), at 933, and exits the detection loop, at 934. Thus, if a user touches the blade when it is not rotating, the safety system will detect the contact but will not actuate the firing subsystem. This allows a user to change or adjust the blade without actuating the brake. However, the user would typically remove power from machine 10 before adjusting or replacing the blade, in which case, neither safety system 18 nor motor assembly 16 would be operable.

If no contact is detected at step 935, logic controller 50 checks the status of STOP switch 48, as indicated at 938. If the STOP switch is actuated, the logic controller turns off the motor assembly (if on), as indicated at 939, and checks for blade rotation, as indicated at 940. If the blade is rotating, the logic controller loops back to step 931 so that the contact detection is active as long as the blade continues to rotate. Thus, if a user actuates the STOP switch and then contacts the blade before it spins down, safety system 18 will react to stop the blade. Once the blade ceases to rotate, the logic controller exits the detection loop, as indicated at 934.

If the STOP switch has not been actuated at step 938, the logic controller checks the status of START switch 48, as indicated at 941. If the START switch has been actuated, the logic controller turns the motor assembly on (if off), and loops back to repeat the contact detection, as indicated at 942. If the START switch has not been actuated, the logic controller turns off the motor assembly (if on), as indicated at 939, and checks for blade rotation, at 940. The logic controller continues to execute the detection loop until the blade stops, at which point the logic controller exits the detection loop, as indicated at 934. Thus, the logic controller is configured to continuously monitor for contact detection whenever the blade is rotating and the user has not engaged the override.

5

10

Those of skill in the art will appreciate that control subsystem 26 and logic controller 50 may be implemented using many different components and many different configurations. Therefore, while two exemplary implementations are described below, it should be understood that any other suitable implementation is also within the scope of the invention.

A first exemplary implementation is illustrated schematically in Fig. 5. Logic controller 50 takes the form of a PIC16C63A-20/SO controller available from Microchip Technology, Inc., of Chandler, Arizona. The logic controller is coupled to power source 20, contact detection subsystem 22, and a user interface 178. The user interface may include any suitable mechanism adapted to display signals to a user and to allow a user to input signals to the logic controller. Examples of suitable user interface mechanisms which are known to those of skill in the art include lights, display screens, buzzers, sirens, switches, buttons, knobs, etc. In one exemplary embodiment depicted in Fig. 6, user interface 178 includes START, STOP, and OVERRIDE switches to allow the user to input control commands, and a pair of LED lights which indicate the system status. The LED lights may indicate system status in a variety of ways such as color, blinking, etc.

The logic controller is also connected to control motor assembly 16 via a suitable motor control circuit 174, such as is described in more detail in U.S. Provisional Application entitled Contact Detection System for Power Equipment, filed August 14, 2000, by SD3, LLC, and to firing subsystem 76. When the logic controller receives a signal from detection subsystem 22 that contact between the user and blade has occurred, the logic controller actuates firing subsystem 76 and stops motor assembly 16. The operation and testing sequences are implemented by software instructions stored within, and executable by, the logic controller. It will be appreciated that the software instructions may take a variety of forms. One set of software instructions suitable for use with the PIC16C63A-20/SO controller, as well as function flowcharts, are provided in Appendix A.

The logic controller of the exemplary implementation depicted in Fig. 5 is configured to conduct a variety of self-tests before enabling power to motor control 174,

5

10

as well as whenever the blade is moving. For example, the logic controller is configured to evaluate the line voltage supplied by power source 20, and to shut off the motor if the voltage drops below a minimum value sufficient to operate the safety system. The logic controller is also adapted to test the contact sense signal received from the detection subsystem to ensure the charge plates are correctly positioned, that the detection signal is properly coupled across the blade, and that the capacitive load on the blade is within defined limits. Further, the logic controller is also coupled to a blade rotation sense component 177. Examples of suitable mechanisms for detecting blade rotation are described in U.S. Provisional Application entitled Motion Detection System for Use in Safety System for Power Equipment, filed August 14, 2000, by SD3, LLC.

In addition, logic controller 50 is also adapted to detect whether firing subsystem 76 has sufficient stored charge to melt fusible member 70. It will be appreciated that detection of sufficient stored charge in the firing subsystem may be carried out in a variety of ways depending on the configuration of the firing system. In each of the exemplary implementations described herein, firing subsystem 76 includes a single 390µF firing capacitor 620 configured to discharge through fusible member 70 via a suitable SCR 621 connected to ground. Exemplary firing subsystems 76 are described in greater detail in U.S. Provisional Application entitled Firing Subsystem for Use in a Fast-Acting Safety System, filed August 14, 2000, by SD3, LLC.

In the implementation depicted in Fig. 5, the firing capacitor is both charged and tested by a buck-boost regulator 175, which is shown in greater detail in Fig. 7. Buck-boost regulator 175 includes a buck-boost charger 183 that steps up an 32-volt supply input to 180 volts for charging the firing capacitor. Logic controller 50 provides a 125khz input to control the buck-boost cycle of the charger. A regulator circuit 184 monitors the voltage on the firing capacitor and turns charger 183 on or off as necessary to maintain the charge near 180 volts. Regulator circuit 184 is constructed with a predetermined amount of hysteresis so that the charger will go on when the firing circuit voltage falls below 175 volts and turn off when the voltage reaches 180 volts, as set by the voltage divider inputs and feedback to comparator 185.

5

10

The output of comparator 185 is fed to logic controller 50. The logic controller monitors both the time required to charge and to discharge the firing capacitor based on the state of the output of comparator 185. Thus, the controller can verify that the firing capacitor is operating properly and storing adequate charge. If the firing capacitor cannot reach 180 volts quickly enough or discharges too rapidly, the logic controller determines that the firing capacitor or charging system has failed and takes appropriate action based on its programming.

It should be noted that regulator circuit 184 measures the voltage across the firing capacitor through fusible member 70. As a result, the regulator circuit is also testing the integrity of the fusible member since a missing or failed fusible member would prevent the regulator circuit from detecting the voltage on the firing capacitor. While testing both the firing capacitor charge and fusible member with a single mechanism or test provides obvious savings of both processor cycle time and component costs, the fusible member may alternatively be tested separately from the firing capacitor charge within the scope of the invention.

A second exemplary implementation of logic controller 50 is illustrated schematically in Fig. 8. Logic controller 50 is implemented by a 87C752 controller available from Philips Semiconductor of Sunnyvale, California As in the first exemplary implementation described above, the logic controller of the second implementation is coupled to power source 20, contact detection subsystem 22, firing subsystem 76, user interface 178, motor control 174, and blade rotation sense 177. Suitable examples of power source 20, contact detection subsystem 22, and motor control 174 are described in more detail in U.S. Provisional Application entitled Contact Detection System for Power Equipment, filed August 14, 2000, by SD3, LLC. Exemplary firing subsystems 76 are described in more detail in U.S. Provisional Application entitled Firing Subsystem for Use in a Fast-Acting Safety System, filed August 14, 2000, by SD3, LLC. Exemplary circuitry and mechanisms for sensing blade rotations are described in more detail in U.S. Provisional Application entitled Motion Detection System for Use in Safety System for Power Equipment, filed August 14, 2000, by SD3, LLC.

5

10

As shown in Fig. 9, the firing capacitor charging circuit for the second implementation is regulated by an enable line from logic controller 50. By deactivating the charging circuit, the logic controller can monitor the capacitor voltage through an output to an analog-to-digital converter (A/D) line on the logic controller. When the capacitor is not being charged, it will normally discharge at a relatively known rate through the various paths to ground. By monitoring the discharge rate, the controller can insure that the capacitance of the capacitor is sufficient to burn the fusible member. Optionally, the logic controller may be configured to measure the voltage on the firing capacitor at a plurality of discharge intervals to evaluate the integrity of the capacitor. In one embodiment, the logic controller measures the capacitor voltage at three defined intervals during a discharge cycle, which should correspond to 3%, 5% and 7% of the full charge voltage. The logic controller may be configured to interpret a low voltage at any of the discharge intervals as a failure, or may require a low voltage at two or more discharge intervals to indicate a failure.

As with the first exemplary implementation described above, the logic controller is configured to test the firing capacitor through fusible member 70, thereby simultaneously testing the fusible member. Alternatively or additionally, the logic controller may test the fusible member independently of the capacitor by monitoring the capacitor voltage during charging.

As mentioned above, logic controller 50 may also be configured to monitor the pawl-to-blade spacing. It is well known in the art that many cutting tools such as saw blades do not have precisely uniform dimensions. As a result, when a new blade is installed on a saw, the pawl may no longer be correctly spaced from the blade. An incorrectly positioned pawl may slow the stopping speed of the pawl or prevent the pawl from stopping the blade. Therefore, to ensure the blade is stopped with uniform braking speed, it may be necessary to adjust the position of the pawl whenever a blade is replaced. Exemplary mechanisms and methods for automatically positioning the pawl are described in U.S. Provisional Application entitled Brake Positioning System, filed August 14, 2000, by SD3, LLC. However, regardless of whether the pawl is

5

10

automatically positioned, configuring logic controller 50 to detect incorrect blade-to-pawl spacing provides an additional level of assurance that a user is protected against accidental contact with the blade.

It will be appreciated that there are many ways in which incorrect spacing between blade 40 and pawl 60 may be detected. As one example, Fig. 10 illustrates a pawl 945 having a capacitive system for detecting correct pawl spacing. Similar to pawl 40 shown in Fig. 2, pawl 945 may include a portion 946 that is beveled or otherwise shaped to quickly and completely engage the teeth of a cutting tool. In addition, pawl 945 includes a pair of generally parallel, spaced-apart arms 947 which extend beyond portion 946. Arms 947 are disposed to extend on either side of the blade, without touching the blade, when the pawl is in place adjacent the blade. Each arm includes a capacitor plate 826 disposed on the inside surface of the arm adjacent the blade. Conductive leads 949 run from each capacitor plate 826 to suitable blade detector circuitry (not shown).

Capacitor plates 826 are positioned on arms 947 such that, when the pawl spacing is within a desired range, the blade extends between the two capacitor plates. It will be appreciated that the capacitance across plates 826 will vary depending on whether the blade is positioned between the plates. The blade detector circuitry is configured to drive an electrical signal through conductive leads 949 and detect changes in the capacitance across the plates.

Suitable circuitry that may be used with pawl 945 is well known to those of skill in the art. One exemplary pawl-to-blade spacing detection circuit is indicated generally at 824 in Fig. 11. As described above and in U.S. Provisional Application entitled Contact Detection System for Power Equipment, filed August 14, 2000, by SD3, LLC, and U.S. Provisional Application entitled Apparatus and Method for Detecting Dangerous Conditions in Power Equipment, filed August 14, 2000, by SD3, LLC, one exemplary contact detection system suitable for use with the present invention applies an electrical signal to the blade via a drive plate (not shown). This signal can be picked up by either or both of plates 826 and monitored to insure that it has an amplitude in a predetermined range. In particular, the amplitude detected by plates 826 will fall off rapidly with

10

distance from the blade. Therefore, by monitoring the detected amplitude, proper spacing can be verified. If the proper signal is not detected, circuit 824 conveys an error signal to logic controller 50, which prevents operation of machine 10 until proper pawl-to-blade spacing is detected. Other examples include circuits similar to the exemplary contact detection circuits described in U.S. Provisional Application entitled Contact Detection System for Power Equipment, filed August 14, 2000, by SD3, LLC.

Capacitor plates 826 can optionally be shaped to detect when the pawl is too close to the blade as well as not close enough. Alternatively, two pairs of capacitor plates may be positioned on the pawl: one pair to detect if the pawl is too close to the blade, and the other pair to detect if the pawl is too far from the blade. In any event, the detector circuitry is configured to transmit an error signal to logic controller 50, which then takes appropriate action.

While one exemplary automatic pawl spacing detection system has been described above, it will be appreciated that there are many possible variations within the scope of the invention. For example, both capacitor plates may be positioned on the same side of the blade rather than on opposite sides. The capacitor plates and/or blade detection circuitry may be separate from the pawl. In the latter case, for example, the capacitor plates and detection circuitry may be mounted on a separate electronics board associated with the pawl. Alternatively, the capacitor plates may be replaced with one or more lightemitting diodes and detectors such that, when the pawl is properly positioned, the blade obstructs the optical path between the diodes and detectors. Other methods of detecting the proximity of the blade to the pawl are also possible. As a further option, capacitor plates 826 may function as charge plates 44, 46 as well as pawl-spacing detectors. In addition, a detection plate may be mounted on beveled face 946 of the pawl. This plate can be used to detect the drive input signal used for contact detection. The amplitude of the signal detected at the plate will be inversely proportional to the space between the plate and the teeth of the blade. If this signal does not have an amplitude over a given threshold, the system would interpret this as indicating that the pawl face is not close enough to the blade.

10

In embodiments where portions of safety system 18 are mounted in a replaceable cartridge 80, logic controller may also be configured to detect whether the cartridge is properly connected to the remainder of the safety system. One exemplary method of testing for an operable connection with the cartridge is by testing a component mounted in the cartridge (e.g., the fusible link, charge stored by firing system, etc.). Alternatively, a cable (not shown) connecting cartridge 80 to logic controller 50 may include a separate signal line which is grounded or otherwise biased when the cartridge is connected. In addition to detecting an operable connection to the cartridge, the correct blade-to-pawl spacing may be detected by measuring the blade-to-cartridge spacing. For example, capacitor plates 826 may be placed on cartridge housing 82 rather than on the pawl itself. Furthermore, failure of the blade-to-cartridge spacing test could also be used to detect an inoperable connection to the cartridge.

As described above, the present invention provides a reliable, effective and fast-acting system for preventing serious injuries to operators of power cutting machinery. While a few specific embodiments of safety system 18 and particularly control subsystem 26 have been described, those of skill in the art will appreciated that the present invention may be adapted in numerous ways for use in a wide variety of applications. Therefore, it will be understood that all such adaptations and applications are within the scope of the invention.

It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions.

```
2
                                                              SAWBRK.ASM
                                      Control Program for Benchsaw Brake
ten By: Bo hamberlain, 29 June, 2000
                            Written By: Bo
  8
                                          p=16C63a
                                                                               ; PIC16C63a is the target processor
                        LIST
10
                        include <pl6c63a.inc>
                                                                               ; Standard definitions for PIC16C63a
13
14
15
                                          H'0020'; 100mS software timer
H'0021'; 200mS software timer
H'0022'; 500mS software; timer
H'0023'; Software; timer
                        Local GP register definitions
                                                                 100mS software timer
16
      TMR100
                        equ
                        egu
18
      TMR500
                                                             ; Software Timer A, nominally 1 Sec.
; Software timer B, nominally 4 Sec.
; Software Timer C, nominally 10 Sec.
; Stored value from Timer 0
19
      STMRA
                         equ
20
      STMRB
                                           H'0024'
                         equ
                                          H'0025'
H'0026'
H'0027'
      STMRC
                         equ
22
      COUNT
                         equ
                                                                UART XMT Data, either Hex 88 or FF
Flag - a transition on TRIG_SENSE occurred
Flag - sense circuit is out of calibration
Flag - trigger cap is in charge cycle
Flag - 100mS timer has overflowed
Flag - Running
23
      XDATA
                         equ
                                           H'0028'
24
      TRIGFL
                         equ
25
                                           H'0029'
      UNCALFL
                        equ
      {\tt CHRGFL}
                                           H'002A'
26
                         equ
                                           H'002B'
27
      TMRFL
                         equ
                                           H'002C'
28
      SMRUN
                                                                 Flag - Running:
Flag - Running: in Bypass Mode
Flag - Waiting: for Bypass Mode
Flag - Waiting: for blade to stop
Flag - saw brake armed
Flag - process: PWM duty cycle
Flag - last PWM correction direction was up
Flag - last PWM correction direction was down
Flag - Hall sensor not functioning
Integration factor for PID Regler
Saved W register
                         equ
29
                                           H'002D'
      SMBPS
                         equ
                                           H'002E'
H'002F'
30
      WTBPS
                         equ
31 WTSTP
32 ARMFL
                         equ
                                           H'0030'
                         equ
                                           H'0031'
3ã PWMFL
                         equ
34 PWMUP equ
35 PWMDN equ
36 HSENSE equ
37 INTFACT equ
                                           H'0032'
H'0033'
                                           H'0034'
                                            H'0035'
                                                             ; Integration factor for PID Regler
; Saved W register
; Saved Status register
; Saved PWM duty cycle - MSB
; Saved PWM duty cycle - 8 LSB's
; Blink rate register for self-test - high byte
; Blink rate register for self-test - low byte
; Min discharge time register
; Flag - ARMFL should be set if supplies in regulation
; Flag - Initial arming timeout has passed
; 2 second low voltage software timer
; Scratchpad register, various uses
; OPTION register
30 WSAV
39 SSAV
40 PWMHI
                                           н'0036'
                         equ
                                           H'0037'
                         equ
                                            н'0038'
                         equ
equ
 41 PWMLO
                                            H'0039'
                                            H'003A'
 4±2 BITBHI
                         equ
 43,445
                                           H'003B'
       BITBLO
                         equ
                                            H'003C'
      MTREG
                         equ
equ
       PARMFL
                                            H'003D'
 46
                                            H'003E'
       PARMTO
                          equ
47
48
49
50
                                            H'003F'
       LVTMR
                          equ
       TEMP
                                            H'0040'
                          equ
                                            H'0081'
       OPTREG
                         equ
 51
                                                                       52
                         Local constant definitions
                                           H'00FF'; Preload value for OPTION register; MSB 7 RBPU/ Port B pullups disabled; 6 INTEDG Int. on rising edge of RB0
54
55
        OPTVL
 56
                                                                                                    TMRO clock from pin RA4
Inc. TMRO on falling edge
Assigns prescaler to WDT
ler MSB \
 57
                                                                                 5 TOCS
 58
                                                                                 4
                                                                                    TOSE
 59
                                                                                 3 PSA
 60
                                                                                    Prescaler MSB
 61
                                                                                                                       > Set to / by 128
 62
                                                                       LSB 0 Prescaler LSB /
                                                                 Preload value for INTCON register

MSB 7 GIE Global interrupt enabled
6 PEIE Peripheral interrupts enabled
5 TOIE TMR0 interrupt disabled
4 INTE RB0/INT ext. int. disabled
3 RBIE Port B int. on change enabled
2 TOIF Timer 0 overflow flag
1 INTF RB0/INT flag
LSB 0 RBIF Port B change flag
 63
       ICONA
                          equ
                                            H'00C8'
 64
 65
 66
 67
 68
 69
 70
                                                                  LSB 0 RBIF Port B change flag
Preload value for INTCON register w/RB0 Int.
MSB 7 GIE Global interrupt enabled
                                            H'00D8'
       ICONB
                          equ
 73
                                                                                                  Peripheral interrupts enabled TMRO interrupt disabled RBO/INT ext. int./enabled Port B int. on change enabled
 74
75
                                                                                 6 PEIE
                                                                                                                                                                                  Appendix A
                                                                                 5 TOIE
 76
77
                                                                                                                                                                                 Page 1 of 21
                                                                                     INTE
                                                                                    RBIE
```

```
78
79
                                                                           2 TOIF
                                                                                            Timer overflow flag
                                                                               INTF
                                                                                            RBO/INT flag
                                                                                            Port B change flag
                                                                   LSB 0 RBIF
                                                                                                                                      w/UART and Timer 1
bled
       ICONC
                                         H'00C0'
                                                                reload
                                                                               value for INTCON regist
                        equ
                                                                                            Global interrupt bled
Peripheral interrupts enabled
TMR0 interrupt disabled
                                                                           7
 82
                                                                   MSB
                                                                               GIE
                                                                               PEIE
                                                                            6
 83
 84
                                                                               TOIE
                                                                            4
                                                                               INTE
                                                                                            RBO/INT ext. int. disabled
                                                                                            Port B int. on change disabled
Timer overflow flag
RBO/INT flag
 86
                                                                            3
                                                                               RBIE
 87
                                                                               TOIF
                                                                            1
                                                                               INTF
 88
                                                                   LSB 0
                                                                                            Port B change flag
                                                                               RBIF
                                                                               value for PIE1 register
       PIE1LD
                                          H'0011'
                                                               Preload
                                                                   MSB 7
                                                                               Reserved
                                                                            6
                                                                               Reserved
                                                                               RCIE UART Receive Int. disabled
TXIE UART Transmit Int. enabled
SSPIE SSP Interrupt disabled
 93
  95
                                                                               CCP1IE CCP1 Interrupt disabled TMR2IE TMR2 Match Int. disabled TMR1IE TMR1 Overflow Int. enabled
  96
  97
  98
                                                                   LSB 0
                                          H'003F'
                                                                                value for TRISA
       PRTA
                                                               Preload
                         equ
100
                                                                   MSB
                                                                               Not used
                                                                               Not used
RA5 OVRVLT -
101
                                                                             6
102
                                                                                                           input
                                                                                RA4 CAL_SENSE - TMR0 clock input
RA3 CAP_THRESH - input
103
104
                                                                               RA3 CAP_THRESH - input
RA2 Bypass Switch - input
RA1 Stop Switch - input
RA0 Start Switch - input
value for TRISB
RB7 - Not used - output
RB6 - Not used - output
RB5 - Not used - output
RB4 - TRIG_SENSE - input (IOC)
RB3 - Not used - output
105
106
                                                                    LSB 0
107
108 PRTB
                                          H'0013'
                                                               Preload
                         equ
109
110
111
112
                                                                    MSB
                                                                            7
                                                                             6
                                                                             4
                                                                                        - Not used - output
- Not used - output
115
                                                                                RB3
                                                                               RB2 - Not used - output
RB1 - Low Voltage Sense - input
RB0 - Ext. Int. - input (Hall Sensor)
Value for TRISC
RC7 - UART Data - output
RC6 - UART Clock - output
RC5 - Not used - output
RC4 - SCR Trigger - output
RC3 - Motor On - output
RC2 - PWM - output
RC1 - Green LED - output
                                                                                RB2
                                                                    LSB 0
112 PRTC
                          equ
                                          H'0000'
                                                               Preload
                                                                    MSB
120
121
                                                                             5
122]
                                                               2 RC2 - PWM - output

1 RC1 - Green LED - output

LSB 0 RC0 - Red LED - output

Preload value for TRISC, Trigger HiZ

MSB 7 RC7 - UART Data - output

6 RC6 - UART Clock - output

5 RC5 - Not used - output

4 RC4 - SCR Trigger - input (HiZ)

3 RC3 - Motor On - output

2 RC2 - PWM - output

1 RC1 - Green LED - output

LSB 0 RC0 - Red LED - output

Timer 1 Configuration
124
125
125) PRTC2
                                           H'0010'
                          equ
12<del>7</del> 128
129
132
133
135 TMR1CON equ
                                           H'0001'
                                                                             17
                                                                                 Configuration
                                                                Timer
 136
                                                                    MSB
                                                                                 Not used
137
                                                                             6
                                                                                 Not used
                                                                                 T1CKPS1 - Prescaler MSB\
 138
                                                                                                                                     > div. by 1
                                                                             4 T1CKPSO - Prescaler LSB/
3 T1OSCEN - Oscillator disabled
2 T1SYNC - Not used - internal clock
1 TMR1CS - Use Internal Clock - 200nS
0 TMR1ON - Start Timer
 140
 142
 143
                                                                    LSB
                                                                             2 Configura
7 Not used
 145 TMR2CON equ
                                           H'0004'
                                                                Timer
                                                                                 Configuration
 146
                                                                    MSB
                                                                                 TOUTPS3 - Postscaler MSB'
TOUTPS2 - Postscaler
 147
                                                                              6
 149
                                                                                                                                          > div. by 1
                                                                              4 TOUTPS1 - Postscaler
3 TOUTPS0 - Postscaler LSB/
2 TMR2ON - Starts Timer
 150
 151
                                                                                                                                                                         Appendix A
 153
                                                                              1 T2CKPS1 - Prescaler MSB
                                                                                                                                                                        Page 2 of 21
                                                                                                                                     > div. by 1
```

```
LSB 0 T2CKPS0 - Prescaler LSB/
156
      PWM1CON equ
                                     H'000C'
                                                       CCP1 Configuration as PWM Timer
157
                                                          MSB
                                                                  7 Not used
                                                                  6 Not used
5 CCP1X - PWM Duty Cycle
4 CCP1Y - PWM Duty Cycle LsB
158
159
160
                                                                  3 CCP1M3 - Mode MSB\
2 CCP1M2 - Mode
161
162
163
                                                                                                          > PWM Mode
                                                           1 CCP1M1 - Mode
LSB 0 CCP1M0 - Mode LSB/
164
165
                                                       UART TX Configuration

MSB 7 CSRC - Use clock from BRG

6 TX9 - 8 bit transmission

5 TXEN - Transmit enabled

4 SYNC - Synchronous mode
       UARTTX
                                     H'00B0'
166
                      equ
167
168
169
170
171
                                                                      Not used
                                                                      BRGH - Not used
TRMT - Read only
TX9D - XMT bit 9 - Not used
172
                                                                   2
173
                                                           LSB 0
 174
 175
       UARTRX
                                     н'0080'
                                                        UART RX
                                                                      Configuration
                      equ
                                                                      SPEN - UART Function selected
RX9 - 8 bit reception
SREN - Single Receive disabled
CREN - Cont. Receive disabled
                                                           MSB
 176
 177
                                                                   6
 178
 179
                                                           3 Not used
2 FERR - Read only
1 OERR - Read only
LSB 0 RX9D - RCV bit 9 - Not used
 180
 181
 182
 183
                                     H'0001'
H'0009'
                                                       Constant value 1
Set Baud Rate to 500kHz
 184
       ONE
                       equ
 185
       BAUDRG
                       equ
                                                       Set Baud Rate to DUNKHZ
Set PWM period to 51.2uS
Set initial duty cycle to 70%
Preload for PWMLO - 4 times PWMDC (8 LSB's)
Set Timer 1 high byte for 400uS
Set Timer 1 low byte for 400uS
 186 PWMPER
187 PWMDC
                                     H'00FF'
                       equ
 187 PWMDC
188 PWMLOPL
                                     H'00B3'
                       equ
                                     H'00CC'
H'00F8'
                      equ
189 THIGH equ
190 THOW equ
191 T100PL equ
192 MS200PL equ
193 MS300PL equ
                                      H'0030'
                                     H'00FA'
H'0002'
H'0002'
                                                        100mS Software Timer preload
200mS Software Timer preload
                                                        300mS Software Timer preload
 194 MS500PL equ
195 S1PL equ
196 S2PL equ
                                      H'0005'
                                                        500mS Software Timer preload
                                      H'000A'
                                                        1 Sec Software Timer preload
                                      H'0014'
                                                       2 Sec Software Timer preload
3 Sec Software Timer preload
4 Sec Software Timer preload
                                      H'001E'
 197 S3PL
                       equ
 198 S4PL
                                      H'0028'
                       equ
 199 S5PL
200 S6PL
201 S7PL
202 S8PL
                                      H'0032'
H'003C'
                                                        5
                                                            Sec Software Timer
                       equ
                                                                                               preload
                                                        6 Sec Software Timer preload
7 Sec Software Timer preload
                       equ
                                      H'0046'
                       equ
                                                     ; 8 Sec Software Timer preload
; 9 Sec Software Timer preload
                                      H'0050'
                       equ
 203 S9PL
204 S10PL
205 CHRGON
                                      H'005A'
                        equ
                                      H'0064'
                        equ
                                                     ; 10 Sec Software Timer preload
                                                    ; Data byte to charge trigger cap.
; Data byte to turn off charge
; Bit in Port C for red LED
; Bit in Port C for green LED
; Bit in Port C for saw motor
; Bit in Port C for trigger signal
                                      H'0088'
                        equ
                                      H'00FF'
 206 CHRGOFF
                       equ
        RLED
                                      H'0000'
  207
                        equ
                                      H'0001'
H'0003'
 208 GLED
                        equ
  209 MOT
                        equ
                                      H'0004'
  210 TRIG
                        equ
  211 LVOLT
                                      H'0001'
                                                     ; Bit in Port B for low voltage detector
                        equ
                                      H'0000'
H'0001'
  212
        SWON
                                                        Bit in Port A for start switch
                        equ
 213 SWOFF
214 SWBPS
                                                     ; Bit in Port A for stop switch
; Bit in Port A for bypass switch
; Bit in Port A for charge threshold
                        equ
                                     H'0002'
                        equ
  215
        THRESH
                                      H'0003'
                        equ
                                                     ; Bit in Port A for charge threshold
; Bit in Port A for overvoltage threshold
; WDT timed out bit in status register
; 100uS delay preload
; Lower deadzone limit - 50
; Upper deadzone limit - 150
                                      H'0005'
H'0004'
  216
        OVRVLT
                        equ
  217
        WDTO
                        equ
  218 DL100US equ
                                      H'0022'
                                      H'0032'
  219 LOWLIM
                       equ
  220 HILIM
                                      H'0096'
                        equ
                                      H'00C6'
  221 MAXLIM
                                                     ; Max proportional limit -
                                                                                                       198
                        equ
                                      H'000A'
                                                     ; Maximum integrator value
; Max PWM duty cycle - 97%
; Min PWM duty cycle - 3%
  222 MAXINT
                        equ
  223 MAXPWM
                                       H'00E0'
                        equ
        MINPWM
                                       H'001F'
                        equ
                                                        Max cap discharge remainder time - 5 S
Min cap discharge remainder time - 3.5 S
Mask to clear MSB of PWM duty cycle
                                      H'0032'
  225 MAXTIME equ
                                      H'0023'
  226 MINTIME equ
227 PWMMASK equ
                                      H'007F'
                                                        Mask to set MSB of PWM duty cycle
1-of-4 blink of red LED for self-test
2-of-4 blink of red LED for self-test
3-of-4 blink of red LED for self-test
  228 PWMORM
                        equ
                                      H'0080'
  229 BITER1
                        equ
                                      H'0001'
                                                                                                                                                   Appendix A
                                      H'0005'
  230 BITER2
                        equ
                                                                                                                                                   Page 3 of 21
  231 BITER3
                                       H'0015'
                        equ
```

```
H'0055'; 4-of-4 blink of red LED for self-test H'00FF'; Solid red LED for self-test
232 BITER4
                  eau
233 BITER5
                 equ
        ******
235
                 Program code
236
237
                               H'0000'; Entry point after reset STATUS,WDTO; Test if reset was caused by Watchdog
238 page0
                  org
                  btfss
239
240
                   goto
                               shutdn ; Watchdog Timer timeout, shut saw down
                                           ; Normal reset, initialize the Watchdog Timer ; Jump past ISR to main program
                   clrwdt
241
                               main
242
                   goto
243
245;
                   Interrupt Service Routine
246
246 ;
247 isr
                               H'0004'; Entry point for ISR WSAV; Save W without status change
                   org
248
                   movwf
                               STATUS,W ; Save STATUS without status change
SSAV ; Nibbles are swapped
249
                   swapf
250
251;
252 ; ******
253 ;
                   Test for Trigger Interrupt - 8µS Interval
 254
                               INTCON,RBIF ; Test for Trigger transition
tstuart ; Not trigger, test UART TX int.
PORTB,W ; Read PORTB to clear mismatch
INTCON,RBIF ; Clear interrupt flag
TRIGFL ; Clear trigger flag
 255 tsttrg btfss
 256
                   goto
 257
                   movf
 258
                   bcf
 259
                   clrf
 260;
 261
 262
                   Restore W and STATUS register and return
                   Placed here out of sequence to save a GOTO (2 cycles) in the highest frequency ISR
 263
264
 266 isrrtn swapf
                                SSAV, W
                                            ; Restore STATUS without status change
                                STATUS ; Nibbles are swapped back
WSAV,F ; Restore W without status change
WSAV,W ; Nibbles are swapped and then swapped back
 267
268
269
                   movwf
                   swapf
270
271
272
273
;
                    retfie
                    Test for UART Transmit Interrupt - 16µS Interval
 27≛4
 275 tstuart btfss
276 goto
277 movf
278 movwf
                                PIR1,TXIF; Test for UART TX interrupt tsttmr; Not UART, test Timer l interrupt XDATA,W; Reload XMT register
                                TXREG
 27.9
                               PIR1, TXIF; Clear interrupt flag
                    bcf
 Test if trigger pulses were received within the last 16uS
 285
                    movf
                                {\tt TRIGFL}, {\tt F}; Dummy move to set Z status bit
                                TRIGFL,F; Dummy move to set Z status bit
STATUS,Z; Z bit set if flag clear (trigger pulses)
settfl; Clear, all OK, set flag for next cycle
TRIGFL,W; Shift LSB into C status bit
STATUS,C; C bit clear if TRIGFL is non-zero and LSB is 0
settfl; Increment TRIGFL for another pass
ARMFL,F; No trigger pulses, test armed flag
STATUS,Z; Z bit set if flag clear (not armed)
sawtrg; Armed, shut down saw with brake
TRIGFL; Not armed, set flag for next cycle
TRIGFL,F; All OK, set trigger flag for next cycle
isrrtn
 286
                    bt.fsc
 287
                    goto
 288
                    rrf
 289
                    btfsc
 290
                    goto
 291
                    movf
 292
                    btfss
 293
                    call
 294
                    clrf
 295 settfl incf
 296
                    goto
                                 isrrtn
 298 ;*****
                   **********************
                    Test for Timer 1 Overflow - 400\mu S Interval
 299
 300 ;
                                PIR1, TMRIIF; Test for Timer 1 overflow hallint; Not Timer 1, must be Hall sensor interrupt TlHIGH; Reload Timer 1
 301 tsttmr btfss
 302
                    goto
 303
                    movlw
 304
                    movwf
                                 TMR1H
 305
                    movlw
                                 T1LOW
                                                                                                                             Appendix A
  306
                    movwf
                                 TMR1L
                                                                                                                             Page 4 of 21
 307
                    bcf
                                 PIR1, TMRlIF; Clear interrupt flag
                    movf
                                 TMR0,W ; Save Timer 0 count
 308
```

```
309
                    movwf
                                  COUNT
                                  TMR0 ; Reset Timer 0
PWMFL,0 ; Set process PWM duty cycle flag
310
                     clrf
                    bsf
311
312
                     goto
                                   isrrtn
313 ;
Process Hall Sensor Interrupt
315
                    The Hall Sensor interrupt
The Hall Sensor interrupt is only enabled during the
wait for the saw blade to stop rotating after the stop
switch has been pressed. The interval is one interrupt
per rotation of the arbor shaft. The 1 S timer is reset
with this interrupt. When 1 second has passed without an
interrupt, the wait cycle will end. If the 1 S timer times
316
317
318
319
320
                     interrupt, the wait cycle will end. If the 1 S timer times out without this interrupt being called, the Hall Sensor has
321
322
323
                     failed and the saw will be shut down.
324
                                                 ; Load Software Timer A for 1 second period
325 hallint movlw
                                   SIPL
                                   STMRA
326
                     movwf
327
                                   HSENSE
                                                 ; Clear Hall sensor flag
                     clrf
328
                     bcf
                                   INTCON,INTF ; Clear interrupt flag
329
                     goto
                                   isrrtn
330
331
                       ****************
332
                     System Subroutines
333
                     Adjust PWM Duty Cycle Subroutine
PWM duty cycle is adjusted upwards to decrease drive
voltage and decrease value in COUNT register. PWM
duty cycle is adjusted downwards to increase drive
voltage and increase value in COUNT register.
This subroutine implements an almost purely integrating
 334
 335
 336
337
338
 339
 340
                     regulator.
                                   UNCALFL ; Clear uncalibrated flag PWMFL ; Clear flag that called this routine TMR100,F ; Dec 100mS timer, set flag and reload on 0 \,
       adjpwm clrf
                      clrf
345 345 347
                      decfsz
                     goto
bsf
                                    ckcnt
                                    TMRFL,0 ; Set 100mS timeout flag
                                    T100PL
                                                 ; Reload 100mS timer
                     movlw
 348
                     movwf
                                   TMR100
                                   COUNT, F; Dummy move to set Z status
STATUS, Z; Z bit set if COUNT is 0
chklow; COUNT > 0, check lower deadzone limit
 34<u>9</u>
350
        ckcnt
                     movf
                     btfss
 351
352
                     qoto
354
355
356
                     COUNT = 0 - Adjust PWM down by INTFACT to increase amplitude
                                   PWMUP,F; Test if last correction direction was up STATUS,Z; Z bit set if not up INTFACT; Last direction up, clear INTFACT before increment INTFACT,F; Increment INTFACT by 3
                     movf
 357
358
359
                     btfss
                      clrf
                      incf
 360
                      incf
                                    INTFACT, F
 361
                      incf
                                    INTFACT, F
                                    PWMUP ; Clear PWMUP flag
PWMDN,0 ; Set PWMDN flag
INTFACT,W ; Subtract INTFACT from PWMLO
 362
                      clrf
 363
                      bsf
                     movf
 364
                      subwf
                                    PWMLO, F
 365
 366
                                    STATUS, C; C bit set if PWMLO does not underflow
                      btfss
                                   STATUS,C; C bit set if PWMLO does not underflow PWMHI,F; Decrement duty cycle MSBs on underflow PWMHI,O; Test for duty cycle under 3% incint; 2nd MSB set, duty cycle cannot be under 3% PWMHI,I; Test for duty cycle under 3% incint; MSB set, duty cycle cannot be under 3% MINPWM; Test PWMLO for duty cycle under 3% PWMLO,W
  367
                      decf
 368
                      btfsc
                      goto
btfsc
 369
 370
 371
                      goto
 372
                      movlw
 373
                      subwf
                                    STATUS,C; C bit clear if duty cycle is less than 3% incin; Duty cycle greater than 3% MINPWM; Limit duty cycle to 3%
 374
                      btfsc
 375
                      goto
 376
                      movlw
 377
                      movwf
                                    PWMLO
                                    incint
 378
                      goto
                                                 ; Load lower deadzone limit into W
  379 chklow
                    movlw
                                    LOWLIM
                                    COUNT, W; Subtract from COUNT
STATUS, C; C bit set if COUNT > or = lower deadzone limit
  380
                      subwf
 381
                      btfsc
                                                  ; COUNT > or = lower deadzone limit
 382
                      goto
                                    chkhi
                                                                                                                                           Appendix A
  383 ;
                      0 < COUNT < Lower Deadzone Limit - Adjust PWM down by 1
```

```
386 ;
                                   {\tt INTFACT} ; Set {\tt INTFACT} to 1
387
                     clrf
                                   INTFACT, F
388
                     incf
                                                    Rlear PWMUP flag
                     clrf
                                   PWMUP
389
      bsf PWMDN,0 at PWMDN flag
; Use SUBWF instead of DLcf here to get carry status bit set
movlw ONE ; COUNT is below lower deadzone limit
subwf PWMLO,F; "Decrement" PWMLO
btfss STATUS,C; C bit set if PWMLO does not underflow
DWMHT.F: Decrement duty cycle MSBs on underflow
390
391
392
393
394
395
                                   PWMHI, 0; Test for duty cycle under 3% setpwm; 2nd MSB set, duty cycle cannot be under 3% PWMHI, 1; Test for duty cycle under 3% setpwm; MSB set, duty cycle under 3% MINPWM; Test PWMLO for duty cycle under 3% DYMLO MINPWM
396
                     btfsc
                     goto
397
398
                     btfsc
399
                     goto
400
                     movlw
401
                     subwf
                                   PWMLO, W
                                   STATUS,C; C bit clear if duty cycle is less than 3% setpwm; Duty cycle greater than 3% MINPWM; Limit duty cycle to 3%
402
                     btfsc
403
                     goto
404
                     movlw
405
                     movwf
                                   PWMLO
406
                      goto
                                    setpwm
                                   HILIM ; Load upper deadzone limit into W
COUNT,W; Subtract from COUNT
STATUS,C; C bit set if COUNT > or = upper deadzone limit
407 chkhi
                     movlw
408
                     subwf
409
                     btfsc
                     goto
                                                 ; COUNT > or = upper deadzone limit
410
                                    chkmax
411;
412
                     Lower Deadzone Limit < COUNT < Upper Deadzone Limit - No Change
414
415
                                    INTFACT; COUNT in deadzone, clear INTFACT
                     clrf
                                    PWMUP
                                                 ; Clear PWM correction direction flags
416
                      clrf
417 clrf
418 goto
419 chkmax movlw
                                    PWMDN
                                    pwmrtn
                                   MAXLIM ; Load max limit into W
COUNT,W ; Subtract from COUNT
STATUS,C ; C bit set if COUNT > or = max limit
ovrmax ; COUNT > or = than max limit
420
                      subwf
421
422
423
424
                     btfsc
                      goto
 425 ;
426 ;
427
                      Upper Deadzone Limit < COUNT < Max Limit - Adjust PWM up by 1
                                    INTFACT ; COUNT < max limit, set INTFACT to 1
                      clrf
 428
                                    INTFACT, F
                      incf
                                    PWMUP,0; Set PWMUP flag
PWMDN; Clear PWMDN flag
PWMLO,F; Increment 8 LSB's
 429
                      bsf
                      clrf
 430
431
432
439
                      incf
                                    STATUS, Z ; Z bit set on increment overflow
                      btfsc
                                   PWMHI,F; Increment duty cycle MSBs on overflow PWMHI,0; Test for duty cycle over 97% setpwm; 2nd MSB clear, duty cycle cannot be over 97% PWMHI,1; Test for duty cycle over 97% setpwm; MSB clear, duty cycle cannot be over 97% setpwm; MSB clear, duty cycle cannot be over 97% MAXPWM; Test PWMLO for duty cycle over 97% PWMLO,W
                      incf
 434
435
436
                      btfss
                      goto
                      Ďtfss
 437
438
                      goto
                      movlw
 439
                      subwf
                                    STATUS,C;
 440
                      btfss
                                                       C bit set if duty cycle > or = 97%
                                    setpwm ; Duty cycle less than 97% MAXPWM ; Limit duty cycle to 97%
 441
                      goto
 442
                      movlw
 443
                                    PWMLO
                      movwf
 444
                      goto
                                    setpwm
 445
        ;**********************
 446
                      COUNT > Max Limit - Adjust PWM up by INTFACT to decrease amplitude
 447
 448 ;
 449 ovrmax
                                    PWMDN,F; Test if last correction direction was down
                      movf
                                    STATUS, Z; Z bit set if not down
INTFACT; Last direction down, clear INTFACT before increment
INTFACT, F; Increment INTFACT by 2
INTFACT, F
 450
                      btfss
 451
                      clrf
 452
                      incf
 453
                      incf
 454
455
                      bsf
                                    PWMUP,0 ; Set PWMUP flag
                                    PWMDN ; Clear PWMDN flag
INTFACT,W ; Add INTFACT to PWMLO
                      clrf
                                    PWMDN
 456
                      movf
 457
                      addwf
                                     PWMLO, F
                                    PWMHIO, F
STATUS, C; C bit set on add overflow
PWMHI, F; Increment duty cycle MSBs on overflow
PWMHI, 0; Test for duty cycle over 97%
incint; 2nd MSB clear, duty cycle cannot be over 97%
PWMHI, 1; Test for duty cycle over 97%
 458
                      btfsc
 459
                      incf
                                                                                                                                            Appendix A
 460
                      btfss
                                                                                                                                           Page 6 of 21
 461
                      goto
                      btfss
```

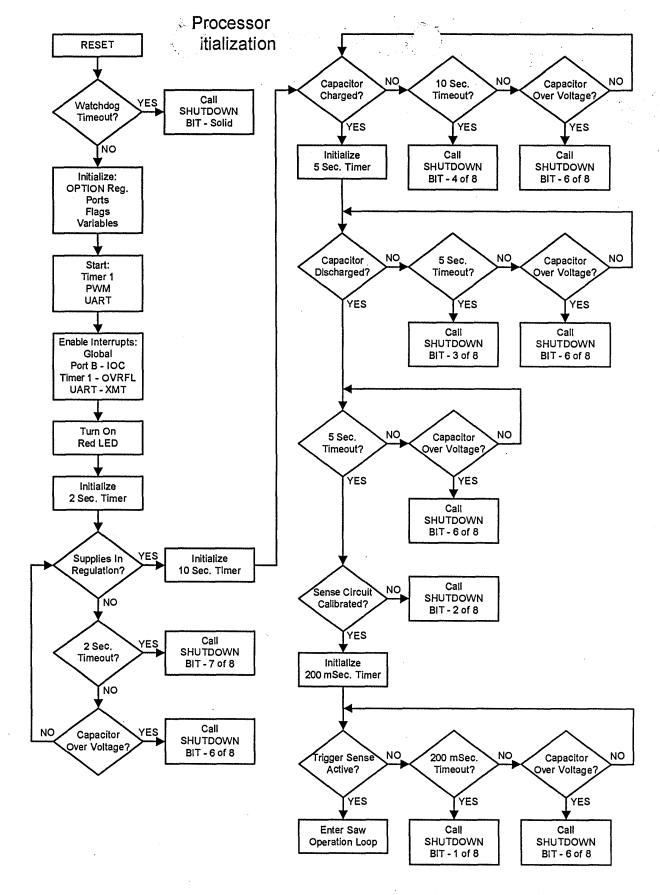
```
incint ; MSB clear, duty cycle cannot be over 97% MAXPWM ; Test PWMLO for duty cycle over 97% PWMLO,W
463
                 goto
464
                 mov1w
465
                 subwf
                                         C C bit set if duty cycle > or = 1ty cycle less than 97%; Limit duty cycle to 97%
                             STATUS, C
466
                 btfss
467
                 goto
                             incint
                 movlw
                             MAXPWM
468
469
                 movwf
                             PWMLO
470
471
                 Adjust Integrator Value And Load New Duty Cycle
472
473
                             INTFACT,F ; Increment INTFACT
MAXINT ; Check INTFACT for limit condition
INTFACT,W
474 incint incf
475
                             MAXINT
                 movlw
476
477
                  subwf
                             STATUS,C; C bit set if INTFACT over (or equal to) max setpwm; INTFACT not over max
                 btfss
                              MAXINT ; Limit INTFACT to max
INTFACT
478
                 goto
479
                 movlw
480
                  movwf
                              UNCALFL,0 ; Set UNCAL flag if INTFACT is being limited PWMHI,W ; Shift PWMHI LSB into carry bit PWMLO,W ; Shift carry to PWMLO MSB with LSB shifted out
481
                 bsf
482 setpwm rrf
483
                  rrf
                             TEMP; Move duty cycle value to tmp register for shift TEMP, W rite value back in W w/2nd LSB shifted out PWMMASK; Clear MSB of shifted PWMLO PWMHI,1; Test 2nd MSB of duty cycle PWMORM; Set MSB of shifted PWMLO if duty cycle MSB set CCP1CON,4; Clear PWM duty cycle LSB's CCP1CON.5
484
                  movwf
                  rrf
485
                  and1w
486
487
                  btfsc
488
                  xorlw
489
                  bcf
                  bcf
                              CCP1CON, 5
490
491
                  btfsc
                              PWMLO,0
                                            Test LSB of PWMLO
                              CCP1CON,4; Set PWM duty cycle LSB
PWMLO,1; Test 2nd LSB of PWMLO
CCP1CON,5; Set PWM duty cycle 2nd LSB
 492
                  bsf
493
                  btfsc
494 bsf
495 movwf
496 pwmrtn return
490;
                              CCPR1L ; Load shifted PWMLO into PWM duty cycle register
498
                  Trigger Saw Brake Subroutine - Does Not Return
                              PORTC,TRIG ; Trigger saw brake
PORTC,MOT ; Stop saw motor
 501
      sawtrg bsf
                  bsf
 502
 503
504
                  movlw
                              CHRGOFF ; Turn off capacitor charging
                  movwf
                              XDATA
                                          ; Set interrupts for UART and Timer 1 only
 505
506
                  mov1w
                              ICONC
                              INTCON
                  movwf
 507
508
509
510
                  movlw
                              DL100US; Delay for 100uS to be sure SCR is latched
                  movwf
                              TEMP
      d11p1
                  decfsz
                              TEMP, F
                              dllp1
                  goto
 511
                              TRISC
                                          ; Set FSR to point to TRISC
                  mov1w
 512
513
                  movwf
                              FSR
                              PRTC2
                                          ; Set Trigger output to HiZ
                  movlw
 514
                  movwf
                              INDF
                   movlw
 515
                              BITER4
                                          ; Set BIT blinker to 8-0f-8
 516
                  movwf
                              BITTBLO
 517
                  movwf
                              BITBHI
 518
                              sdsaw
                                          ; Complete saw shutown with LED blinking
                  goto
       ; *********************
 520
                  Shutdown Saw Subroutine - Does Not Return
 521
 522
                              PORTC, MOT ; Stop saw motor CHRGOFF ; Turn off capacitor charging
 524
                  movlw
 525
                   movwf
                               XDATA
 526
                                          ; Set interrupts for UART and Timer 1 only
                               ICONC
                   mov1w
 527
                  movwf
                               INTCON
                               ARMFL ; Clear the armed flag
CCP1CON,4 ; Reset PWM duty cycle to 70%
CCP1CON,5
 528 sdsaw
                   clrf
 529
                   bcf
 530
                   bcf
 531
                   movlw
                               PWMDC
                               CCPR1L
                   movwf
 533 bcf PORTC,GLED; Turn off green LED
534; Blink red LED according to pattern in BITBHI/LO, endless loop
535 movlw MS300PL; Initialize 300mS software timer
                               TMR500
 536
                   movwf
                               PWMFL,F; Dummy move to set Z status
STATUS,Z; Z bit clear if PWMFL is set
dllp2; No 400µS timeout, continue wait loop
                                                                                                                      Appendix A
 537 dllp2
                   movf
                               PWMFL, F
                                                                                                                      Page 7 of 21
  538
                   btfsc
 539
                   goto
```

```
PWMFL ; 400µS timeout, clear flag
TMR100,F; Dec 100mS timer, reload on 0
dllp2 ; No 100mS timeout, continue wait loop
T100PL 100mS timeout, reload 100mS timeout
540
                clrf
541
                decfsz
542
                goto
543
                movlw
544
                movwf
                           TMR100
                           TMR500,F, Dec. TMR500 and blink red LED ir 0 dllp2; No 500mS timeout, continue wait loop
545
                decfsz
546
                goto
     ; 300mS timeout, blink red LED
547
                           BITBHI,F; Shift LSB of BITLHI into C bit
BITBLO,F; Shift C into MSB of BITBLO, LSB into C bit
STATUS,C; C is set if red LED should be on
548
                rrf
549
                rrf
550
                btfsc
                           setrled;
551
                goto
552
                bcf
                           PORTC, RLED; Turn off Red LED
     goto setmsb; Set BITBHI MSB to equal former BITBLO LSB setrled bsf PORTC, RLED; Turn on Red LED; Set BITBHI MSB to previous BITBLO LSB value to complete loop shift setmsb bcf BITBHI,7; Preclear BITBHI MSB btfsc STATUS,C; C bit still valid from shift instruction bsf BITBHI,7; Sets MSB if former LSB was l movlw MS300PL; Reinitialize 300mS software timer
553
554 setrled bsf
555
556 setmsb
557
558
559
560
                            TMR500
                movwf
561
                goto
                            dllp2
562
     ; **********************
563
564
                Processor initialization
     ;
565
566 main
                movlw
                            OPTREG ; Load FSR to point to OPTION register
                movwf
movlw
567
                            FSR
568
                            OPTVL
                                      ; Initialize OPTION register
569
                movwf
                            INDF
570
                 clrf
                            PORTA
                                      ; Clear Ports before configuring outputs
574
574
574
                 clrf
                            PORTB
                 clrf
                            PORTC
                 bsf
                            PORTC, MOT ; Set saw motor off
                movlw
                            TRISA
                                      ; Set FSR to point to TRISA
575
576
577
577
579
580
581
                movwf
                            FSR
                            PRTA
                                       ; Initialize TRIS for PORTA
                movlw
                 movwf
                            INDF
                 incf
                            FSR,F
                            PRTB
                                       ; Initialize TRIS for PORTB
                 movlw
                 movwf
                            INDF
                            FSR, F
                 incf
582
583
                movlw
                            PRTC
                                       ; Initialize TRIS for PORTC
                            INDF
                 movwf
584
585
586
587
          ***************
                 Initialize Flags and Variables
 588
                                      ; Clear all flags
                 clrf
                            TRIGFL
589
590
                 clrf
                            UNCALFL
                 clrf
                            CHRGFL
 591
                 clrf
                            TMRFL
                 clrf
 592
                            SMRUN
 593
                 clrf
                            SMBPS
                 clrf
clrf
                            WTBPS
WTSTP
594
 595
 596
                 clrf
                            ARMFL
 597
                 clrf
                            PWMFL
598
599
                 clrf
                            PWMUP
                 clrf
                            PWMDN
 600
                 clrf
                            PARMFL
 601
                 clrf
                            PARMTO
 602
                 clrf
                            HSENSE
                                       ; Initialize Hall sensor flag
 603
                 bsf
                            HSENSE, 0
                 clrf
                            INTFACT ; Initialize variable INTFACT Tl00PL ; Initialize 100mS Software Timer
                            INTFACT ;
 604
 605
                 movlw
 606
                 movwf
                            TMR100
 607
                 movlw
                            CHRGON
                                      ; Initialize variable XDATA for cap charging
 608
                            XDATA
                 movwf
 609
                 clrf
                            PWMHI
                                       ; Initialize PWM duty cycle variables to 70%
 610
                            PWMHI, 1
                 bsf
 611
                 movlw
                            PWMLOPL
 612
                 movwf
                            PWMLO
 613
                 movlw
                            MAXTIME; Initialize min discharge time register
                 movwf
                            MTREG
                                                                                                             Appendix A
 614
                            BITER5
                 movlw
                                       ; Initialize BIT error blinker - solid red
 616
                 movwf
                            BITBLO
```

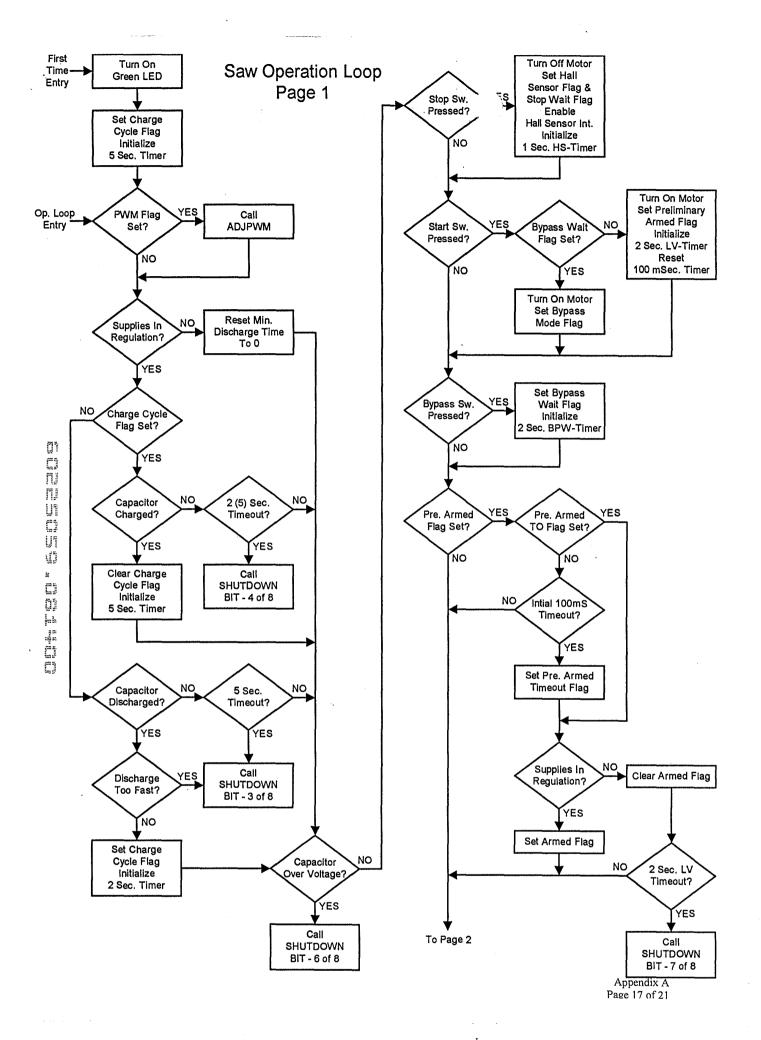
```
617
              movwf
                       BITBHI
618;
619 ;*
620 ;
              Initialize Timer
621 ;
                        T1HIGH ; initialize Timer 1 high byte
              movlw
622
623
              movwf
                        TMR1H
                                 ; Initialize Timer 1 low byte
624
              movlw
                        T1LOW
625
              movwf
                        TMR1L
                        TMR1CON; Configure Timer 1 and start
626
              movlw
627
              movwf
                        T1CON
628;
           ++++*
629
630 ;
              Initialize PWM
631 ;
                                 ; Load FSR to point to PR2 register
                        PR2
              movlw
632
633
              movwf
                        FSR
              mov1w
                        PWMPER ; Initialize PWM period
634
635
              movwf
                        INDF
                        PWMDC
                                 ; Initialize PWM duty cycle
              mov1w
636
637
              movwf
                        CCPR1L
                        TMR2CON; Initialize and start Timer 2
638
              mov1w
639
              movwf
                        T2CON
                        PWM1CON ; Initialize CCP1 for PWM mode
640
              movlw
641
                        CCP1CON
              movwf
642 ;
643 ;***********************************
644 ;
645 ;
              Initialize UART
646
              movlw
                        SPBRG
                                  ; Load FSR to point to Baud Rate register
647
              movwf
                        FSR
648
649
650
651
                        BAUDRG ; Initialize Baud Rate
              mov1w
                        INDF
              movwf
                        TXSTA
                                  ; Load FSR to point to TX con. register
              mov1w
              movwf
                        FSR
652
653
654
655
                        UARTTX ; Initialize TX con. register
              mov1w
              movwf
                        INDF
               mov1w
                        UARTRX ; Initialize RX con. register
              movwf
                        RCSTA
                        XDATA,W ; Load first data byte
65<u>6</u>
              movf
657
658
               movwf
                        TXREG
659
660
               Set Interrupt Enables
661
662
663
664
               mov1w
                        PIE1
                                  ; Load FSR to point to PIE1 register
               movwf
                        FSR
                        PIE1LD ; Initialize PIE1 register
               mov1w
665
               movwf
                        INDF
666
667
               movlw
                         ICONA
                                  ; Initialize INTCON register
               movwf
                        INTCON
 668 ;
 669
 670
               Initial System Self-Test
671 ;
672
               bsf
                        PORTC, RLED; Turn on the red LED
 673
     ; ************************
 675
676
677
               Wait Until Supplies Are Stable
               Waits two seconds for supplies to stabilize. Shuts saw down if supplies are under voltage
 678
 679
               movlw
                         S2PL
                                  ; Setup 2 second timer
                         STMRC
 680
               movwf
 681 vtstlpl btfss
                         PORTB, LVOLT ; Test Low Voltage sense bit
                        PORTB, LVOLT; Test Low Voltage sense bit itcc; Sense bit clear, supplies in regulation TMRFL, F; Dummy move to set Z status STATUS, Z; Z bit set if TMRFL is clear vtskl; TMRFL not set, check overvoltage TMRFL; Flag set, clear flag and dec. counter STMRC, F; TMRFL set, dec. STMRC and shutdown if 0 vtskl; 2 S not up, check overvoltage
 682
               goto
               movf
 683
 684
               btfsc
               goto
clrf
 685
 686
 687
               decfsz
                                  ; 2 S not up, check overvoltage ; Supplies not regulated, set BIT blinker to 7-of-8
 688
               goto
                         vtsk1
                         BITER4
               movlw
 689
                         BITBLO
 690
               movwf
                                                                                                Appendix A
 691
               mov1w
                         BITER3
               movwf
                                                                                               Page 9 of 21
 692
                         BITBHI
                         shutdn ; Shut saw down
 693
               call
```

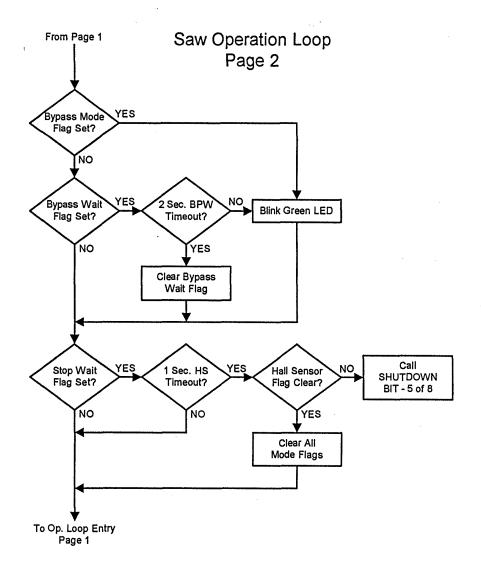
```
PORTA, OVRVLT; OVRVLT is high if link is blown
                        btfsc
694 vtskl
695
                         goto
                                         PWMFL,F; Dummy move to set Z status
STATUS,Z Z bit set if PWMFL is clear
adjpwm at PWM duty cycle to maintain
696
                         movf
697
                         btfss
698
                                                                                                                                      ibration
                         call
                                          vtstlpl; roop back for another pass
699
                         goto
700
701
                        Initial Trigger Capacitor Charge - Within 10 Seconds
702
703
704 itcc
                                          S10PL
                                                           ; Setup 10 second timer
                         movlw
705
                                          STMRC
                                        STMRC
PORTA, THRESH; THRESH high if cap under voltage dischgl; Threshold reached, test discahrge
TMRFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if TMRFL is clear
clskl; TMRFL not set, check overvoltage
TMRFL; Flag set, clear flag and dec. counter
STMRC,F; TMRFL set, dec. STMRC and shutdown if 0
clskl; 10 S not up, check overvoltage
BITER4; Cap did not charge, set BIT blinker to 4-of-8
BITBLO
706 chglp1 btfss
707
                         goto
708
                         {\tt movf}
709
710
711
712
713
                         btfsc
                         goto
                          clrf
                         decfsz
                         goto
714
                         movlw
715
716
717
                         movwf
                                          BITBLO
                                          BITBHI
                         clrf
                                          shutdn ; Shut saw down PORTA,OVRVLT ; OVRVLT is high if link is blown
                          call
718 clskl
                         btfsc
719
                         goto
                                          blnlnk
                                          PWMFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if PWMFL is clear
adjpwm; Set PWM duty cycle to maintain calibration
chglp1; Loop back for another pass
BITER4; Overvoltage, link blown??, set BIT blinker to 6-of-8
720
721
                         movf
                         btfss
                          call
                          goto
723
 724 blnlnk movlw
725
726
727
728
                         movwf
                                           BITBLO
                                           BITER2
                         movlw
                         movwf
                                          RTTRHT
                                                           ; Shut saw down
                          call
                                          shutdn
 729
 739 ;************
731 ; Initia
732 ;
703 dischg1 movlw
                          Initial Trigger Capacitor Discharge - Discharge < 5
                                                            ; Setup 5 second timer
                                          STMRB
PORTA, THRESH; THRESH low if cap at voltage
wtrest; Threshold reached, wait for 5 S timeout
TMRFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if TMRFL is clear
dclskl; TMRFL not set, check overvoltage (comp. fail)
TMRFL; Flag set, clear flag and dec. counter
STMRB,F; TMRFL set, dec. STMRB and shutdown if 0
dclskl; 5 S not up, check overvoltage (comp. fail)
BITER3; Cap did not discharge, set BIT blinker to 3-of-8
BITBLO
 734
735
736
737
738
740
741
742
                          movwf
                                           STMRB
        dchglp1 btfsc
                          goto
                          movf
                          btfsc
                          goto
clrf
                          decfsz
                          goto
 743
744
                          movlw
                          movwf
                                           BITBLO
 745
                          clrf
                                           BITBHI
 746 call
747 dclskl btfsc
                                           shutdn ; Shut saw down PORTA,OVRVLT ; OVRVLT is high if link is blown
 748
                          goto
                                           blnlnk
 749
                                            PWMFL, F
                                                             ; Dummy move to set {\tt Z} status
                           movf
                                          PWMFL, F; Dummy move to set Z status
STATUS, Z; Z bit set if PWMFL is clear
adjpwm; Set PWM duty cycle to maintain calibration
dchglpl; Loop back for another pass
TMRFL, F; Dummy move to set Z status
STATUS, Z; Z bit set if TMRFL is clear
dclsk2; TMRFL not set, check overvoltage (comp. fail)
TMRFL; Flag set, clear flag and dec. counter
STMRB, F; TMRFL set, dec. STMRB and continue self-test if 0
dclsk2; 5 S not up, check overvoltage (comp. fail)
chkcal; Continue self-test with calibration check
PORTA, OVRVLT; OVRVLT is high if link is blown
 750
                          btfss
 751
                          call
  752
                           goto
  753 wtrest
                          movf
 754
755
                          btfsc
                           goto
  756
                           clrf
                           decfsz
  758
                           goto
                           goto
  759
                                            PORTA, OVRVLT; OVRVLT is high if link is blown
  760 dclsk2 btfsc
  761
                                            blnlnk
                           goto
                                            PWMFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if PWMFL is clear
adjpwm; Set PWM duty cycle to maintain calibration
wtrest; Loop back for another pass
  762
                           movf
  763
                           btfss
  764
                           call
  765
                           goto
  766
                                                                   **********
                                                                                                                                                                         Appendix A
  768 ;
                          Check In Calibration Flag
                                                                                                                                                                       Page 10 of 21
  770 chkcal movf
                                           UNCALFL, F ; Dummy move to set Z status
```

```
771
                   btfsc
                                 STATUS, Z ; Z bit 0 if sense circuit not in cal
772
773
774
                                 chktrg
BITER2
                                             ; In calibration, check for trigger sense
                    goto
                                              ; Sense circuit not in cal, set BIT blinker to 2-of-8
                    movlw
                                 BITBLO
                   movwf
                                 BITBHI
775
                    clrf
776
                    call
                                 shutdn > shut saw down
777
778
779
                   Check For Active Trigger Sense Circuit
780 ;
781 chktrg
                                 TRIGFL,F; Dummy move to set Z status
                                 STATUS,Z; Z bit set if TRIGFL 0 (sense circuit active) sawop; Enter saw operation loop, self test passed MS200PL; Initialize 200mS software timer
782
                    btfsc
                    goto
783
784
                    movlw
785
                                  TMR200
                    movwf
                                 TRIGFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if TRIGFL 0 (sense circuit active)
sawop; Enter saw operation loop, self test passed
TMRFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if TMRFL is clear
786
      ttstlpl movf
787
                    btfsc
788
789
                    goto
                    movf
790
                    btfsc
791
                                  ttstskl ; TMRFL not set, check overvoltage
                    goto
                                 TMRFL ; Flag set, clear flag and dec. counter
TMR200,F; TMRFL set, dec. TMR200 and shutdown if 0
ttstskl; 200mS not up, check overvoltage
BITERl; No triggers from sense, set BIT blinker to 1-of-8
792
793
                     clrf
                    decfsz
794
                    goto
795
                    movlw
796
797
                    movwf
                                  BITBLO
                                  BITBHI
                    clrf
                                  shutdn ; Shut saw down PORTA,OVRVLT ; OVRVLT is high if link is blown
798
                     call
799 ttstskl btfsc
800
                    goto
                                  blnlnk
                                 PWMFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if PWMFL is clear
adjpwm; Set PWM duty cycle to maintain calibration
ttstlpl; Loop back for another pass
801
                    movf
802
                    btfss
                     call
804
805 ;
                     goto
 805; *************************
807 ;
808 ;
809 ;
                     Saw Operational Loop
                    Loop begins with a simplified self-test that is repeated in the loop. Only the capacitor charge/discharge cycle is monitored, which also tests the link. If the trigger
 810 ;
811;
812;
813;
814;
                     circuit malfunctions, nothing will happen until the saw is started, at which time the link will blow. The loop time is variable (according to mode) but is well under 20µS,
                     except when the adjpwm routine is called.
 815;
                                  PORTC, RLED; Self-test passed, turn off the red LED PORTC, GLED; Turn on the green LED S5PL; Setup 5 second timer, wait for charge cycle
 81<u>6</u> sawop
                     bcf
817
818
819
                     bsf
                     movlw
                     movwf
                                  STMRC
                                  CHRGFL,0; Set charge cycle flag
PWMFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if PWMFL is clear
adjpwm; Set PWM duty cycle to maintain calibration
PORTB,LVOLT; Test low voltage sense, skip self-test if set
 820
821
                     bsf
                    movf
      oploop
 822
                     btfss
 823
                     call
 824
                     btfss
                     goto
                                   runstst
 826
                     movlw
                                  MAXTIME; Low voltage, reset min discharge time register
 827
                     movwf
                                  MTREG
                                                ; Check for overvoltage on cap (still works OK)
 828
                                  blt
                     goto
                                  CHRGFL, F; Dummy move to set Z status
STATUS, Z; Z bit set for discahrge cycle
 829 runstst movf
 830
                     btfsc
 831
                                  tstdchg; Goto discharge cycle processing
                     goto
 832
 833 ; **
                     Charge Cycle Self-Test
 835
                                  PORTA, THRESH; THRESH high if cap under voltage dchgpr; Threshold reached, setup for discahrge test TMRFL, F; Dummy move to set Z status STATUS, Z; Z bit set if TMRFL is clear
 836
                     btfss
 837
                     goto
                     movf
 838
 839
                     btfsc
                                  blt ; TMRFL not set, check for overvoltage
STMRC,F; TMRFL set, dec. STMRC and shutdown if 0
blt ; 2 (5) S not up, check for overvoltage
BITER4 ; Cap did not charge, set BIT blinker to 4-of-8
 840
                     goto
 841
                     decfsz
 842
                     goto
                     movlw
 844
                     movwf
                                   BITBLO
                                                                                                                                      Appendix A
 845
                     clrf
                                   BITBHI
                                               ; Shut saw down ; Set charge cycle flag to discharge
                                                                                                                                    Page 11 of 21
 846
                     call
                                   shutdn
 847 dchgpr
                     clrf
```

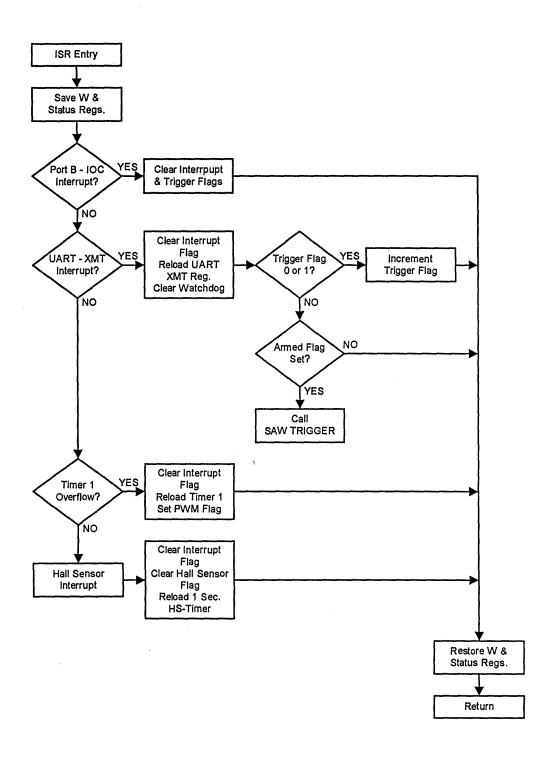

```
848 ,
                                       S5PL
                                                       ; Setup 5 second timer
                       movlw
849
                       movwf
                                       STMRB
850
                                                       ; Continue Op Loop
                        goto
                                       oplpa
851
852
853;
                       Discharge Cycle Scif-Test
854
855 tstdchg btfsc
                                       PORTA, THRESH; THRESH low if cap at voltage
                                       mintm2; Threshold reached, test min. time TMRFL, F; Dummy move to set Z status STATUS, Z; Z bit set if TMRFL is clear
856
                        goto
857
                       movf
858
                        btfsc
                                       blt ; TMRFL not set if imark is clear
blt ; TMRFL not set, check for overvoltage (comp. fail)
STMRB,F; TMRFL set, dec. STMRB and shutdown if 0
blt ; 5 S not up, check for overvoltage (comp. fail)
BITER3 ; Cap did not discharge, set BIT blinker to 3-of-8
859
                        goto
860
                        decfsz
861
                        goto
862
                        movlw
                                        BITBLO
                        movwf
863
864
                        clrf
                                        BITBHI
                                       shutdn ; Shut saw down
MTREG,W; Load W with min. discharge time value
STMRB,W; Subtract min. time from current timer value
STATUS,C; C bit l if timer value > or = min. time
setchrg; Discharge OK, set up for charge cycle
BITER3; Cap discharged too fast, set BIT blinker to 3-of-8
BITBLO
                        call
866 mintm2
                       movf
                        subwf
867
 868
                        btfss
 869
                        goto
 870
                        movlw
 871
                                        BITBLO
                        movwf
 872
                        clrf
                                        BITBHI
                        call
                                        shutdn
                                                          Shut saw down
                                        {\tt MINTIME}\ ;\ {\tt Test\ if\ MTREG\ value\ is\ greater\ than\ MINTIME}
 874 setchrg movlw
 875
                        subwf
                                        MTREG, W
                                        STATUS,C; C bit 1 if MTREG value > or = MINTIME MTREG,F; MTREG not at min, decrement
                        btfsc
 876
 877
                        decf
 878
                        movlw
                                        S2PL
                                                        ; Setup 2 second timer
                                        STMRC
 879
880
                        movwf
                        bsf
                                        CHRGFL, 0 ; Set charge cycle flag
 881
882
        ;*********************
 883 ;
                        Blown Link Test
 884 ;
885 blt
                        btfss
                                        PORTA, OVRVLT; OVRVLT is high if link is blown
 886
887
                                        oplpa
BITER4
                         goto
                        movlw
                                                        ; Overvoltage, link blown??, set BIT blinker to 6-of-8
 888
889
                        movwf
                                        BITBLO
                                        BITER2
                         movlw
 89<u>0</u>
891
                        movwf
                                        RTTRHT
                                        shutdn ; Shut saw down
                         call
 8<u>93</u>
894
8<u>95</u>
                        ***********
                         Self-Test Complete - Operational Code Begins
                                         PORTA, SWOFF; Test stop switch
 896 oplpa
                        btfss
 897
898 rdswl
                                        stopop ; Process stop switch depression PORTA, SWON ; Test start switch strtop ; Process start switch depression
                         btfss
 899
                         goto
  900 rdsw2
                                         PORTA, SWBPS; Test bypass switch
                         btfss
                                                       ; Process bypass switch depression
                                        bpswt
 901
                         goto
 902
  903 ;***
  904
                         Set Armed Flag
                        The Armed Flag is set only if the supplies are in regulation, and not before 100mS after the Start switch was pressed. An interval of 100mS is allowed to pass before the Low Voltage Sense bit is tested. It the sense bit is high, a wait of up to two seconds is allowed before the Armed Flag is set. This is to allow the saw motor to come up to speed. The start current drawn by the saw motor can cause the internal supplies to drop out of regulation if the AC supply to the saw is weak. If the voltages are not in regulation within two seconds, the saw is shut down. The Armed Flag is reset any time the Low Voltage
  905
  906
  907
  908
  909
  910
  911
  912
  913
                         shut down. The Armed Flag is reset any time the Low Voltage
Sense bit is high after saw operation has begun. A total of
  914
  915
                         Sense bit is high after saw operation has begun. A total of two seconds of such operation is allowed during any one run period before the saw is shut down. This is to prevent the saw from being used in marginal AC supply situations where the internal supplies are dropping in and out of regulation. Such circumstances may occur if the AC supply is weak and the saw is being used under heavy load or if another tool on the same weak circuit is started and causes the line voltage to
  916
  918
  919
  920
  921
                                                                                                                                                             Appendix A
  922
                                                                                                                                                           Page 12 of 21
  923
                         drop.
                                         PARMFL,F; Dummy move to set Z status
                       movf
  924 paproc
```

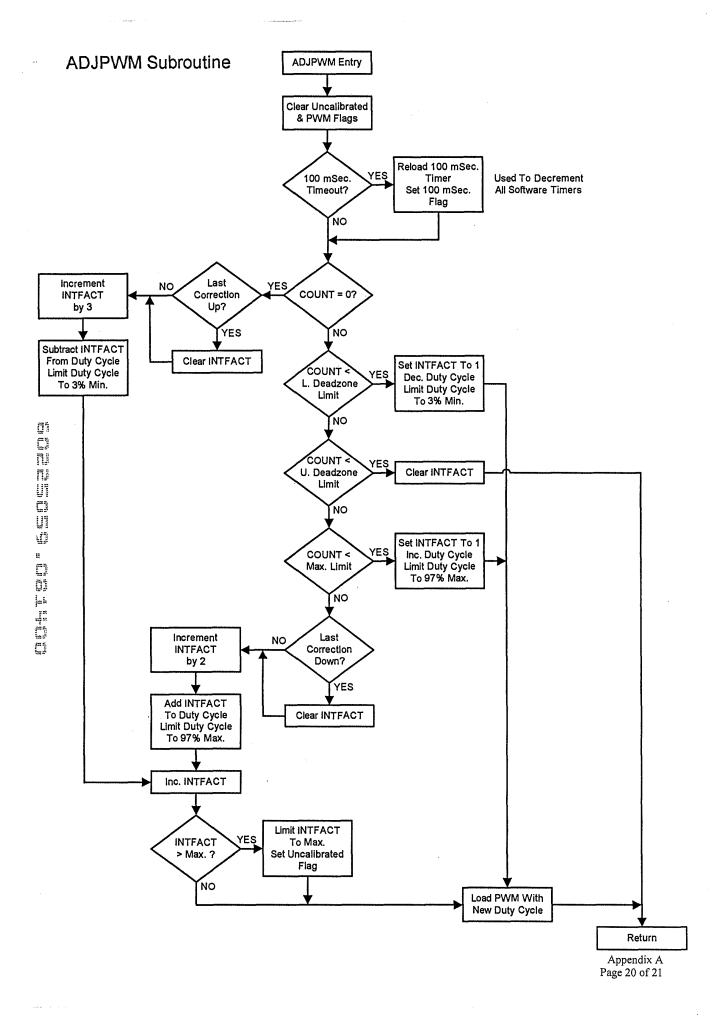
```
925
                       btfsc
926
                       goto
927
                       movf
928
                       btfss
929
                       goto
                                       TMRFL, F; Dummy move to set Z status
STATUS, Z; Z bit set if TMRFL is clear
oplpb; Initial 100mS wait not over, continue Op Loop
PARMTO, 0; 100mS has passed, set initial timeout flag
930
                       movf
931
                       btfsc
932
                       goto
933
                       bsf
                                       PORTB, LVOLT; Test Low Voltage Sense input
934 tstlvs btfss
                                       PORTB, LVOLT; Test Low Voltage Sense input starfl; Supplies in regulation, set armed flag ARMFL; Low voltage, clear armed flag TMRFL, F; Dummy move to set Z status STATUS, Z; Z bit set if TMRFL is clear oplpb; No 100mS timer flag, continue Op Loop LVTMR, F; 100mS flag set, dec. 2 second timer, shut down on 0 oplpb; 2 seconds not up, continue Op Loop BITER4; 2 seconds of low voltage passed, set BIT blinker to 7-of-8 BITBLO
935
                       goto
936
                       clrf
937
                       movf
938
                       btfsc
 939
                        goto
940
                        decfsz
941
942
                        goto
                       movlw
 943
                       movwf
                                       BITBLO
 944
                       movlw
                                       BITER3
 945
                       movwf
                                       BITBHI
                                       shutdn ; Shut saw down ARMFL,0 ; Everything OK, set armed flag (already set or not)
                        call
 946
 947 starfl bsf
 948
 949 ;*********************
 950 ;
                       Blink Green LED In Bypass Operation
                                       SMBPS,F; Dummy move to set Z status
STATUS,Z; Z bit clear if bypass operation
blskl; Bypass mode, blink LED
WTBPS,F; Test for bypass wait mode
STATUS,Z; Z bit clear if in wait for bypass mode
oplpc; Not in wait for bypass mode, continue Op Loop
TMRFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if TMRFL is clear
oplpc; TMRFL not set, continue Op Loop
TMR500,F; TMRFL set, dec. TMR500 and toggle LED if 0
oplpc; 500mS not up, continue Op Loop
PORTC,GLED; Bit is set if Green LED is on
setgled; Not on, turn on
PORTC,GLED; On, turn off
tmrini; Reinitialize 500mS timer
PORTC,GLED; Turn on Green LED
MS500PL; Reinitialize 500mS software timer
 951;
 952 oplpb
 953
                        btfss
 954
                        goto
 955
                        {\tt movf}
 956
                        btfsc
 957
958
959
960
                        goto
       blsk1
                        movf
                        btfsc
                        goto
decfsz
 961
 962
963
964
965
                        goto
                        goto
                        bcf
 966
967
968
968
                        goto
         setgled bsf
                        movlw
                                        MS500PL; Reinitialize 500mS software timer
         tmrīni
                        movwf
                                        TMR500
 9≱0
 97777
                       ****************
                        Wait For Blade To Stop
                                        WTSTP,F; Dummy move to set Z status STATUS,Z; Z bit clear if wait mode for blade stop
        oplpc
                        movf
                                       oplpd ; Continue Op Loop
TMRFL,F; Dummy move to set Z status
STATUS,Z; Z bit set if TMRFL is clear
oplpd ; TMRFL not set, continue Op Loop
STMRA,F; TMRFL set, dec. STMRA and clear flags if 0
oplpd ; 1 S not up, continue Op Loop
WTSTP ; 1 S timed out, clear blade stop wait flag
 976
977
                        goto
                        movf
  978
                        btfsc
 979
                        goto
 980
                         decfsz
                        goto
clrf
  981
  982
                                        SMBPS ; Clear bypass mode flag
ARMFL ; Clear armed flag
PARMFL ; Clear preliminary armed flag
PARMTO ; Clear arming initial timeout flag
SMRUN ; Clear run flag
  983
                         clrf
  984
                         clrf
                                        ARMFL
 985
                         clrf
  986
                         clrf
  987
                         clrf
  988
                                         PORTC, GLED; Green LED may have blinked off, turn on
                                                     ; Disable Hall sensor interrupt
  989
                        movlw
                                         ICONA
  990
                                         INTCON
                        movwf
                                        HSENSE,F; Dummy move to check Hall sensor flag STATUS,Z; Z bit set if Hall sensor was active
  991
                         movf
  992
                         btfsc
                                        oplpd
BITER4
                                                       ; Hall sensor OK, continue Op Loop
; Hall sensor defective, set BIT blinker to 5-of-8
  993
                         goto
  994
                         movlw
  995
                                        BITBLO
                        movwf
  996
                         movlw
                                         BITER1
  997
                                         BITBHI
                         movwf
  998
                         call
                                         shutdn
                                                        ; Shut saw down
  999;
                                                                                                                                                            Appendix A
                                                                                                                                                         Page 13 of 21
1000
1001;
                        Wait After Bypass Switch Depression
```


```
Wait mode persists for 2 seconds after Bypass Switch
1002
 1003;
1004;
                       depression
                                                         Z bit clear if in wait for by, mode
                      movf WTBPS,F Dummy move to set Z status
btfsc STATUS, Z bit clear if in wait for by, mode
goto oplpe , Continue Op Loop
movf TMRFL,F; Dummy move to set Z status
btfsc STATUS,Z; Z bit set if TMRFL is clear
goto oplpe ; TMRFL not set, continue Op Loop
decfsz STMRA,F; TMRFL set, dec. STMRA and clear WTBPS if 0
goto oplpe ; 2 S not up, continue Op Loop
clrf WTBPS ; Clear wait for bypass
bef PORTC.GLED: Green LED may have blinked off, turn on
                                     WTBPS.F
                                                       Tummy move to set Z status
 1005 oplpd movf
 1006
 1007
 1008
 1009
 1010
  1011
  1012
  1013
                                      PORTC, GLED; Green LED may have blinked off, turn on
  1014
  1015
  1016
  1017
                       End of Op Loop
  1018 ;
                     c1rf
  1019 oplpe
                                      TMRFL
                                                  ; Clear TMR100 flag
  1020
                        goto
                                      op1oop
  1021 ;
          1022
  1023
                        Stop Switch Processing
  1024 ;
1025 stopop movf
                                     SMRUN,F; Dummy move to set Z status
STATUS,Z; Z bit clear if in run mode
stpskl; Not running, cancel wait in bypass mode
WTSTP,F; Dummy move to set Z status
STATUS,Z; Z bit clear if stop switch already read
rdswl; Already read, check remaining switches
PORTC,MOT; Stop op processing, turn off motor
WTSTP,0; Set WTSTP flag
SlPL; Load Software Timer A for 1 second period
STMRA
  1026
                        btfsc
  1027
                        goto
  1028
                        movf
  1029
                        btfss
  1030
                         goto
  1031
                         bsf
                        bsf
  1032
  1033
                         mov1w
  1034
                         movwf
                                       STMRA
  1035
1036
1037
                         mov1w
                                                    ; Enable Hall sensor interrupt
                                       ICONB
                         movwf
                                       INTCON
                                      HSENSE,0 ; Set Hall sensor flag
rdswl ; Check remaining switches
                         bsf
                                      rdsw1
  1038
                         goto
  1039; May not be in wait in bypass mode, but clear it just in case
1040 stpsk1 clrf WTBPS ; Clear wait in bypass mode flag
1040 bsf PORTC,GLED; Green LED may have blinked off, turn on
  1042
                                       rdsw1
                                                    ; Check remaining switches
                         goto
  1043
  1044
1045
1046
                        Start Switch Processing
                                      SMRUN,F; Dummy move to set Z status STATUS,Z; Z bit clear if in run mode rdsw2; Already running, check remaining switch
   1047 strtop movf
  1048
1049
                         btfss
                         goto
                                       WTBPS,F; Dummy move to set Z status
STATUS,Z; Z bit clear in bypass wait mode
strnmd; Not in bypass wait mode, start arm processing
WTBPS; In bypass wait mode, clear WTBPS flag
   1050
                         movf
   105
                         btfsc
   1052
                         goto
   1053
                         c1rf
                         bsf
   1054
                                       SMBPS,0; Set run in bypass mode flag
          goto
strnmd bsf
   1055
                                       stsk1
                                       PARMFL,0; Set preliminary armed flag
S2PL; Setup 2 second low voltage timer
   1056
   1057
                         movlw
   1058
                                       LVTMR
                         movwf
   1059
                         movlw
                                       T100PL
                                                    ; Reset 100mS timer to start new period
   1060
                                       TMR100
                         movwf
                                       TMRFL ; Clear TMR100 flag
SMRUN,0 ; Set run flag
   1061
                         clrf
   1062 stsk1
                                       PORTC, MOT; Turn motor on rdsw2; Check remaining switch
   1063
                         bcf
                         goto
   1064
   1065
   1066
                         Bypass Switch Processing
   1067;
   1068
                                      SMRUN,F; Dummy move to set Z status
STATUS,Z; Z bit clear if in run mode
paproc; Already running, continue Op Loop
WTBPS,F; Dummy move to set Z status
STATUS,Z; Z bit clear in bypass wait mode
paproc; Already in bypass wait mode, continue Op Loop
WTBPS,0; Set WTBPS flag
   1069 bpswt
                         movf
   1070
                         btfss
   1071
                         goto
   1072
                         movf
   1073
                         htfss
   1074
                         goto
   1075
                         bsf
                                                     ; Load Software Timer A for 2 second period
                                                                                                                                              Appendix A
   1076
                         mov1w
                                       S2PL
                                                                                                                                            Page 14 of 21
   1077
                         movwf
                                       STMRA
   1078
                         mov1w
                                       MS500PL; Initialize 500mS software timer
```

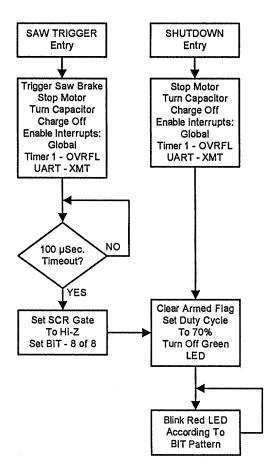

1079 movwf TMR500
1080 bcf PORTC,GLED; Turn off the green LED
1081 goto paproc; Continue Op Loop
1082;
1083 end

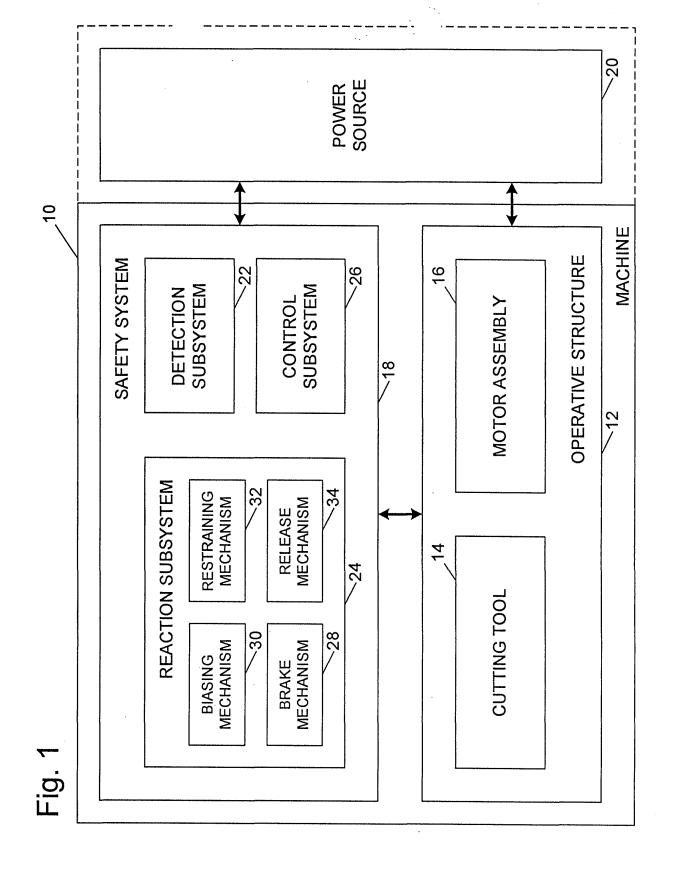
Appendix A Page 15 of 21

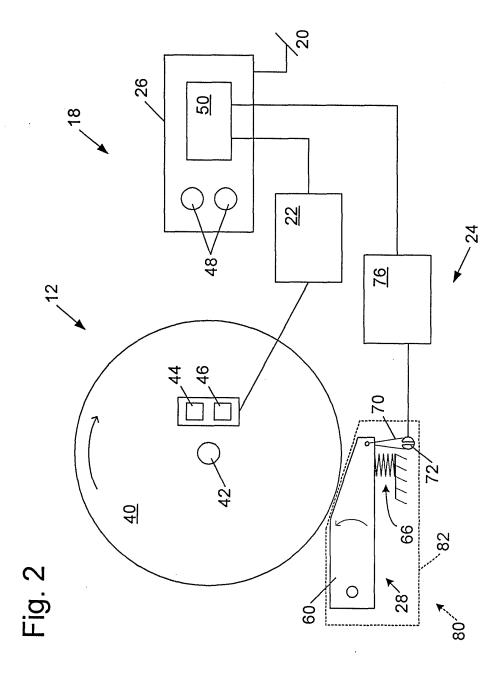

Appendix A Page 16 of 21

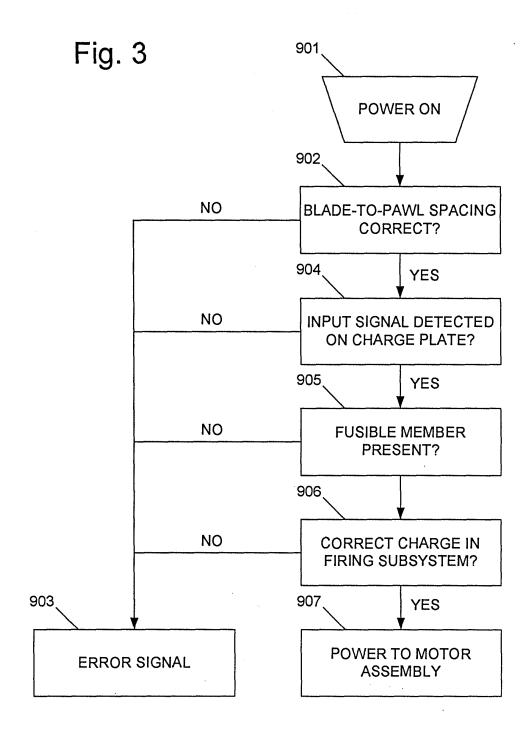


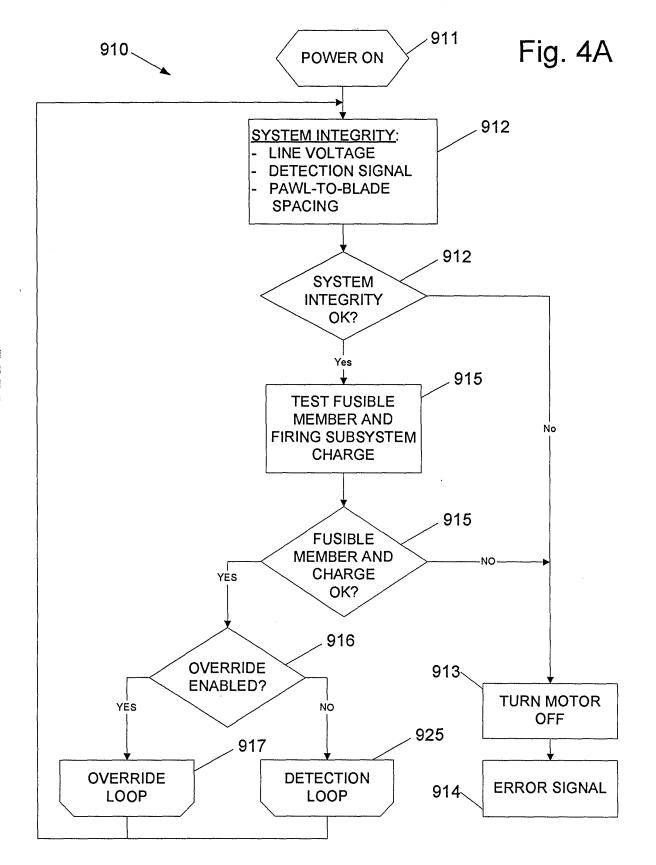
Appendix A Page 18 of 21

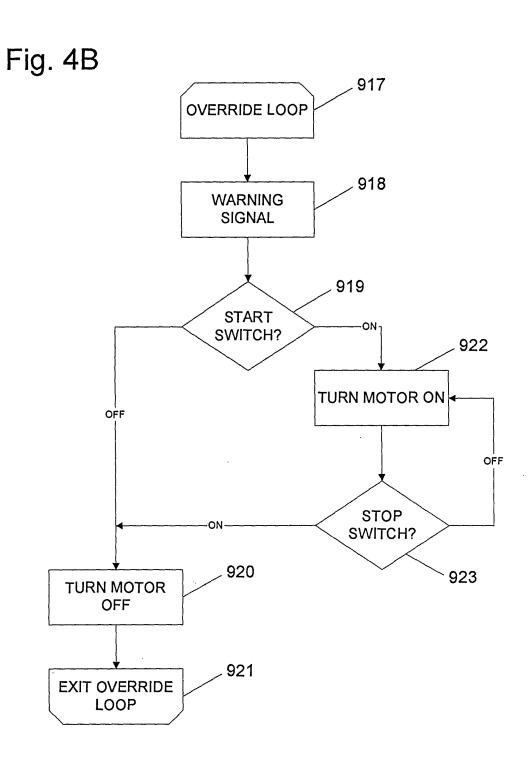

Interrupt Service Routine

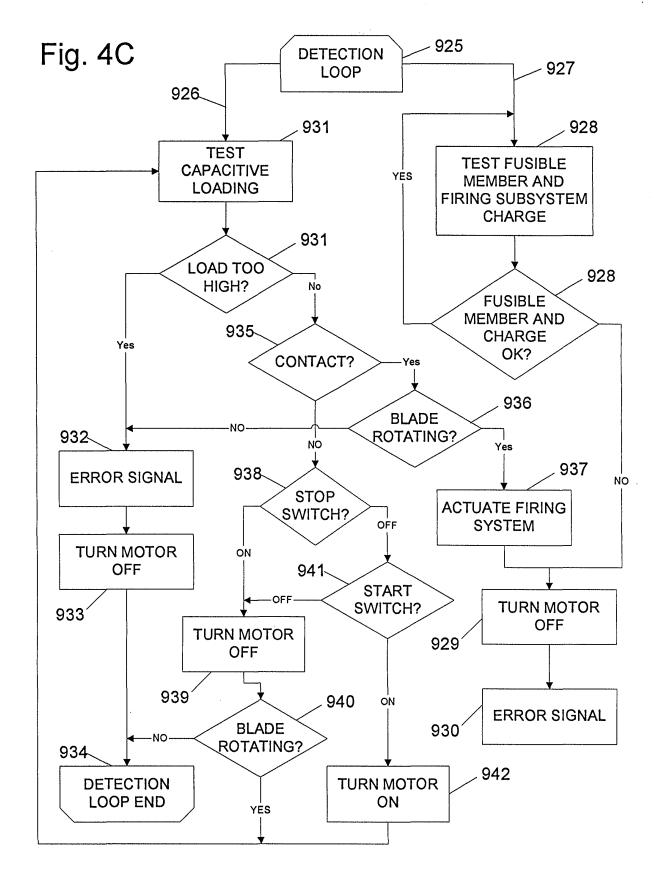

Appendix A Page 19 of 21

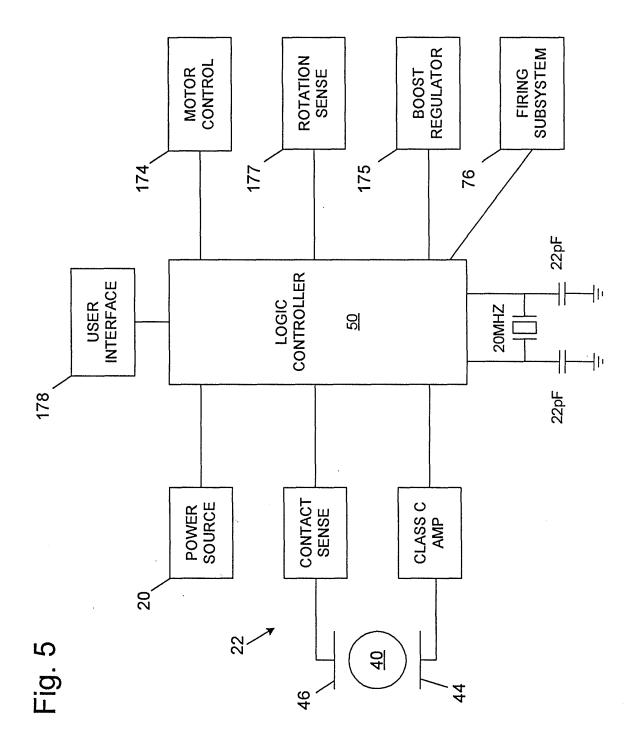


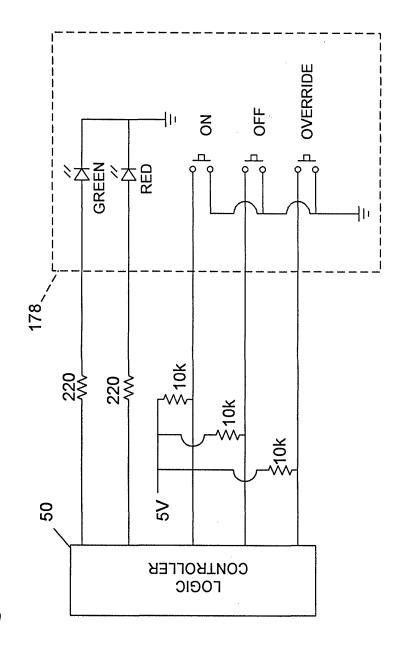

SAW TRIGGER & SHUTDOWN Subroutines

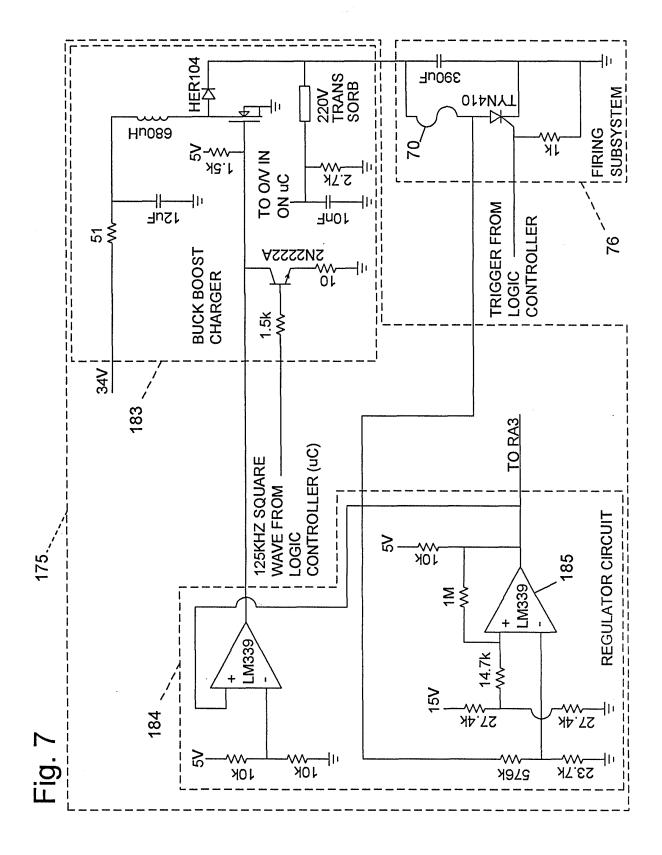



Appendix A Page 21 of 21









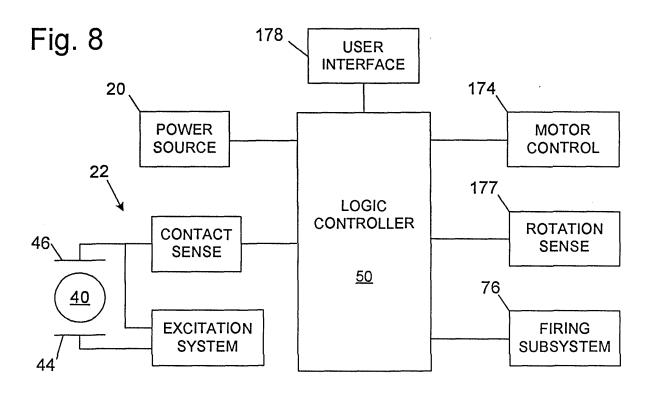


Fig. 9

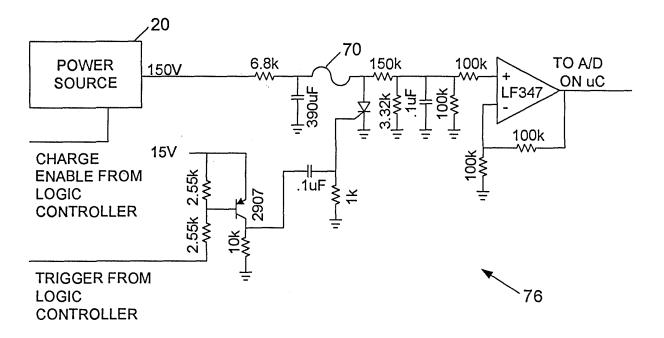
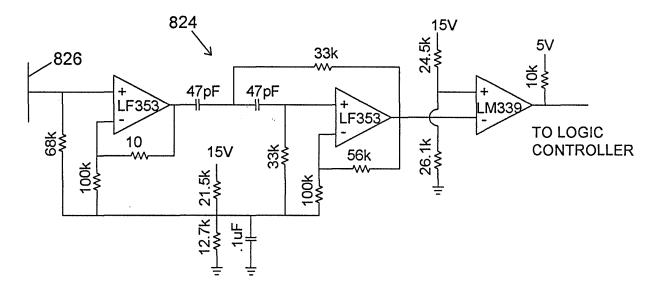


Fig. 10


949

949

826

947

Fig. 11

United States Patent and Trademark Office

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D.C. 2023I
www.uspto.gov

APPLICATION NUMBER 60/225,059

FILING/RECEIPT DATE 08/14/2000

FIRST NAMED APPLICANT

ATTORNEY DOCKET NUMBER

SDT 309

Kolisch Hartwell Dickinson McCormack & Heuser Stephen F Gass 520 S W Yamhill Street Suite 200 Portland, OR 97204 FORMALITIES LETTER

OC0000000055552899

Date Mailed: 11/14/2000

NOTICE TO FILE MISSING PARTS OF PROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(c)

Filing Date Granted

An application number and filing date have been accorded to this provisional application. The items indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The statutory basic filling fee is insufficient.
 Applicant must submit \$ 75 to complete the basic filling fee and/or file a small entity statement claiming such status (37 CFR 1.27).
- To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of \$50 for a non-small entity, must be submitted with the missing items identified in this letter.
- The provisional application cover sheet under 37 CFR 1.51(c)(1) is required identifying:
 - the name(s) of the inventor(s).
 - either city and state or city or foreign country of the residence of each inventor.
- The balance due by applicant is \$ 125.

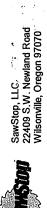
A copy of this notice MUST be returned with the reply.

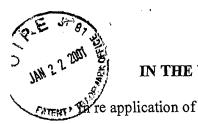
Customer Service Center

Initial Patent Examination Division (703) 308

PART 3 - OFFICE COPY

202


 $file://C:\APPS\PreExam\correspondence\2_C.xml$


11/13/00

Assistant Commissioner for Patents Washington, D.C. 20231

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Date: January 15, 2001

STEPHEN F. GASS, JAMES DAVID FULMER, JOEL F. JENSEN, BENJAMIN B. SCHRAMM,

and ROBERT L. CHAMBERLAIN

Serial No.

60/225,059

Filed

August 14, 2000

For

LOGIC CONTROL FOR FAST-ACTING SAFETY SYSTEM

Assistant Commissioner for Patents Box Missing Part Washington, D.C. 20231

Sir:

RESPONSE TO NOTICE TO FILE MISSING PARTS OF PROVISIONAL APPLICATION

In response to the Notice to File Missing Parts of Provisional Application dated November 14, 2000, applicants herewith submit a revised Provisional Application for Patent Cover Sheet which includes the names of the inventors and their respective city and state of residence, as requested in the Notice.

Also enclosed is a duplicate copy of the Notice to File Missing Parts of Provisional Application and a check in the amount of \$25.00 for payment of the surcharge.

Please direct all future communications relating to the above-identified provisional patent application to applicants' undersigned attorney:

Stephen F. Gass, Esq. SD3, LLC 22409 S.W. Newland Road

Wilsonville, Oregon 97070 Telephone: (503) 638-6201 Facsimile: (503) 638-8601

Page 1 - RESPONSE TO NOTICE TO FILE MISSING PARTS ... Serial No. 60/225,059

Please contact applicants' undersigned attorney if there are any questions or if anything further is required.

Respectfully submitted,

Stephen F. Gass

Registration No. 38,462

SD3, LLC

22409 S.W. Newland Road Wilsonville, Oregon 97070 Telephone: (503) 638-6201

Facsimile: (503) 638-8601

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the U.S. Postal Service as first class mail, postage prepaid, in an envelope addressed to: Assistant Commissioner for Patents, Box Missing Part, Washington, D.C. 20231 on January 15, 2001.

Stephen F. Gass

Date of Signature: January 15, 2001

Page 2 - RESPONSE TO NOTICE TO FILE MISSING PARTS ... Serial No. 60/225,059

PROVISIONAL APPLICATION FOR PATENT COVER SHEET This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

INVENTOR(S)					
Given Name (first and middle [if any]) Family Name or Surname			Residence (City and either State or Foreign Country)		
Stephen F.			Wilsonville, Oregon		
X Additional inventors are being	ng named on thel_ sepa	rately number	ed sheets attached h	ereto	
	TITLE OF THE IN	VENTION (28)	characters max)		
LOGIC CONTROL	FOR FAST-ACTING	G SAFETY	SYSTEM		
Direct all correspondence to:	CORRESP	ONDENCE A	DDRESS		
Customer Number				Place Cust Bar Code I	tomer Number
OR 1	ype Customer Number her	e		Day Code I	
X Firm or Individual Name	Stephen F. Gas	ss, Esq.			
Address	22409 S.W. Newland Road				
Address		· · · · · · · · · · · · · · · · · · ·		y	·
City	Wilsonville	State	Oregon	ZIP 970	070
Country	U.S.A.	Telephone	5036386201		3-638-8601
	ENCLOSED APPLICA	TION PARTS	(check all that appl	(צ'	
X Specification Number of F	~ \ \ \ \ \ \		CD(s), Number		
X prev. submit Drawing(s) Number of She	eets 11*	_	_ 		
* prev. submit Application Data Sheet. Se	ted e 37 CFR 1.76	L	Other (specify)		
METHOD OF PAYMENT OF FIL	ING FEES FOR THIS PRO	VISIONAL AF	PLICATION FOR PA	ATENT	
	ntity status. See 37 CFR 1.2				FILING FEE
A check or money order is enclosed to cover the filing fees (prev. submitted) AMOUNT (\$)					
The Commissioner is hereby authorized to charge filing \$75.00 fees or credit any overpayment to Deposit Account Number:					
Payment by credit card. Form PTO-2038 is attached.					
The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.					
X No.					
Yes, the name of the U.S. Government agency and the Government contract number are:					
Respectfully submitted, Date 1/15/01					
SIGNATURE REGISTRATION NO. 38,462				38,462	
TYPED or PRINTED NAME Stephen F. Gass, Esq.			Docket N		SDT 309P
TELEPHONE (503) 638-6201 SDT 309P					L

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

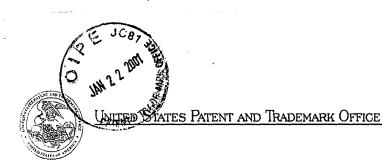
This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C. 20231.

PROVISIONAL APPLICATION COVER SHEET Additional Page

PTO/SB/16 (8-00)

Approved for use through 10/31/2002. OMB 0651-0032

U.S. Patant and Trademark Office; U.S. DEPARTMENT OF COMMERCE


Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlass it displays a valid OMB control number.

Type a plus sign (+)

		Docket Number	SDT 309P	inside this box → +		
	INVENT	OR(S)/APPLICANT				
Given Name (first and middle [if any])	Residence Family or Surname (City and either State or Foreign Co					
James David	Fulmer		Tualatin, Oregon			
Joel F.	Jensen		Redwood City	Redwood City, California		
Benjamin B.	Schramm		Los Gatos, California			
Robert L.	Chambe	rlain	Raleigh, Nor	th Carolina		
		,				

Number $\frac{1}{}$ of $\frac{1}{}$

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D.C. 2023I
www.uspto.gov

APPLICATION NUMBER

FILING/RECEIPT DATE

FIRST NAMED APPLICANT

ATTORNEY DOCKET NUMBER

60/225,059

08/14/2000

SDT 309

Kolisch Hartwell Dickinson McCormack & Heuser Stephen F Gass 520 S W Yamhill Street Suite 200 Portland, OR 97204

Date Mailed: 11/14/2000

NOTICE TO FILE MISSING PARTS OF PROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(c)

Filing Date Granted

An application number and filing date have been accorded to this provisional application. The items indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The statutory basic filing fee is insufficient.
 Applicant must submit \$ 75 to complete the basic filing fee and/or file a small entity statement claiming such status (37 CFR 1.27).
- To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of \$50 for a non-small entity, must be submitted with the missing items identified in this letter.
- The provisional application cover sheet under 37 CFR 1.51(c)(1) is required identifying:
 - the name(s) of the inventor(s).
 - either city and state or city or foreign country of the residence of each inventor.

• The balance due by applicant is \$ 125.

A copy of this notice MUST be returned with the reply.

00000054 60225059

Customer Service Center

Initial Patent Examination Division (703) 308-1202

PART 2 - COPY TO BE RETURNED WITH RESPONSE

70:22

01/25/2001 AGDITOM

file://C:\APPS\PreExam\correspondence\2_B.xml

11/13/00

PTO/SB/122 (10-00)
Approved for use through 10/31/2002. OMB 0651-0035
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
to a collection of information unless it displays a valid OMB control number. Under the Paperwork Reduction Act of 1995, no persons are required to re

CHANGE OF CORRESPONDENCE ADDRESS

Application

Address to: Assistant Commissioner for Patents Washington, D.C. 20231

spond to a wheeledn of information unless it displays a valid of the confirm fulling				
Application Number	60/225,059			
Filing Date	August 14, 2000			
First Named Inventor	Stephen F. Gass			
Group Art Unit				
Examiner Name				
Attorney Docket Number	SDT 309P			

Please change the Correspondence Address for the above-identified application to: Customer Number Type Customer Number here OR Place Customer Number Bar Code Label here				Number Bar Code
X Firm <i>or</i> Individual Name	Stephen F. Gass, Es	q.		
Address	SD3, LLC			
Address	22409 S.W. Newland	Road		
City	Wilsonville	State	Oregon	ZIP 97070
Country	U.S.A.			
Telephone	(503) 638–6201	Fau	(503)	638–8601
data associated with an existing Customer Number use "Request for Customer Number Data Change" (PTO/SB/124). I am the : Applicant/Inventor. Assignee of record of the entire interest. Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96). X Attorney or Agent of record. Registered practitioner named in the application transmittal letter in an application without an executed oath or declaration. See 37 CFR 1.33(a)(1). Registration Number				
Typed or Printed Name Stephen F. Gass, Esq.				
Signature				
Date January 17, 2001				
NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple forms if more than one signature is required, see below.				
Total of 1 forms are submitted.				

Burden Hour Statement: This form is estimated to take 3 minutes to complete. Time will vary depending upon the needs of the Individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

PTO/SB/68 (02-10)
Approved for use through 07/31/2012. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

REQUEST FOR ACCESS TO	AN ABANDONEL	APPLICAT	ION UNDER 37 CFR 1.14
Bring completed form to: File Information Unit, Suite 3A20 2800 South Randolph Street Arlington, VA 22206	In re Application of Application Number		Filed
Telephone: (703) 756-1800	60 /225	,059	8-14-2000
	/ /	,	Paper No. #5
I hereby request access under 37 CFR 1.14(a)(1) application, which is not within the file jacket of which is identified in, or to which a benefit is cla	a pending Continued	Prosecution Ap	oplication (CPA) (37 CFR 1.53(d)) and
United States Patent Application Publication	ı No	, pa	age,line,
United States Patent Number 27, 100	,483	lumn Fra	, line,
WIPO Pub. No.	/ , page	, line	
A member of the public, acting without a powe the FIU. If the member of the public is entitled Public Patent Application Information Retrieval Terminals that allow access to Public PAIR are be entitled to obtain a copy of all or part of the purchased through the Office of Public Record For published applications that are still pending the file contents; the pending application as For unpublished applications that are still pending that has: (a) issued as a U.S. patent, application publication, or an internation member of the public may obtain a condocument in the file of the pending application is incorporated by rerespistration, a U.S. patent application with PCT Article 21(2), a member of the	to a copy of the applicate system (Public PAIR) of a available in the Public application file upon pards upon payment of the grant amount of the public originally filed; or any oding: n is claimed under 35 Upon (b) published as a state on all patent application properties of the file contents; plication. ference or otherwise idepublication, or an intermed available.	tion file, then the on the USPTO in Search Room. If yment of the appearance of the appearance of the appearance of the appearance of the pending app	e file is made available through the atternet web site (www.uspto.gov). The member of the public may also propriate fee. Such copies must be a (37 CFR 1.19(b)). copy of: file of the pending application. 20, 121, or 365 in another application registration, a U.S. patent cordance with PCT Article 21(2), a polication as onginally filed; or any patent, a statutory invention opplication publication in accordance
Signature Soy Le 5 Typed of printed name Registration Number, if application of the second of the s	zable	Approved by:	Date POR PTO USE ONLY finitials) AUG 1 5 2015

This collection of information is required by 37 CFR 1.11 and 1.14. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending up the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Onics, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. BRING TO: File Information Unit, Suite 3A20, 2800 South Randolph Street, Arlington, Virginia.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

(12) United States Patent Gass et al.

US 7,100,483 B2 (10) Patent No.:

(45) Date of Patent:

Sep. 5, 2006

(54) FIRING SUBSYSTEM FOR USE IN A FAST-ACTING SAFETY SYSTEM

Inventors: Stephen F. Gass, Wilsonville, OR (US); Andrew L. Johnston, Redwood City, CA (US); Joel F. Jensen, Redwood City, CA (US); Sung H. Kim, Palo Alto, CA (US); David A. Fanning, Vancouver, WA (US); Robert L.

Assignee: SD3, LLC, Wilsonville, OR (US)

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 527 days. Notice:

Chamberlain, Raleigh, NC (US)

Appl. No.: 09/929,240 (21)

(65)

(22)Filed: Aug. 13, 2001

Prior Publication Data

US 2002/0020263 A1 Feb. 21, 2002

Related U.S. Application Data

(60) Provisional application No. 60/225,056, filed on Aug. 14, 2000, provisional application No. 60/225,057, 14, 2000, provisional application No. 60/225,057, filed on Aug. 14, 2000, provisional application No. 60/225,058, filed on Aug. 14, 2000, provisional application No. 60/225,059, filed on Aug. 14, 2000, provisional application No. 60/225,089, filed on Aug. 14, 2000, provisional application No. 60/225,094, filed on Aug. 14, 2000, provisional application No. 60/225, 169, filed on Aug. 14, 2000, provisional application No. 60/225,170, filed on Aug. 14, 2000, provisional application No. 60/225,200, filed on Aug. 14, 2000, provisional application No. 60/225,201, filed on Aug. 14, 2000, provisional application No. 60/225,206, filed on Aug. 14, 2000, provisional application No. 60/225,206, filed on Aug. 14, 2000, provisional application No. filed on Aug. 14, 2000, provisional application No. 60/225,210, filed on Aug. 14, 2000, provisional application No. 60/225,211, filed on Aug. 14, 2000, provisional application No. 60/225,212, filed on Aug. 14, 2000.

(51) Int. Cl. B26D 5/00 (2006.01)

(52) U.S. Cl. 83/58; 83/DIG. 1; 83/522.12; 192/129 R

(58) Field of Classification Search 83/DIG. 1. 83/62.1, 62, 72, 58, 76.7, 788, 581, 471.2, 83/477.1, 477.2, 522.12, 526, 397.1, 522.121; 144/154.5, 356, 384, 391, 427, 286.5; 29/708, 29/254, 413; 324/550, 424; 408/5; 56/10.9, 29/254, 413; 324/550, 424; 408/5; 56/10.9, 56/11.3; 192/192 A, 129 R, 130; 102/202.7; 89/1.56; 137/68.12, 72, 76; 188/5, 6; 169/57, 169/59, 42, DIG. 3; 74/2; 403/2, 28; 411/2, 411/39, 390; 335/242, 1, 132; 318/362; 241/32.5; 337/239, 148, 1, 5, 10, 17, 140, 337/170, 190, 237, 401, 290, 404, 405; 218/2, 218/154; 307/639, 328, 115, 326, 142, 117, 307/126, 131; 451/409; 280/806; 297/480 application file for complete search history. See application file for complete search history.

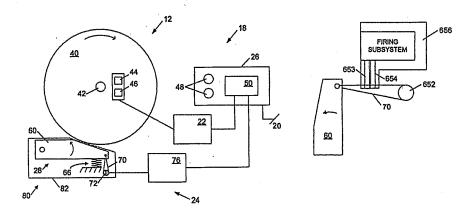
References Cited (56)

U.S. PATENT DOCUMENTS

1/1874 Doane et al. 0,146,886 A (Continued)

FOREIGN PATENT DOCUMENTS

297525 6/1954 CH


OTHER PUBLICATIONS Gordon Engineering Corp., Product Catalog, Oct. 1997, pp. cover, 1, 3 and back, Brookfield, Connecticut, US.

Primary Examiner—Timothy V. Eley Assistant Examiner—Jason Prone

ABSTRACT

Cutting machines with high-speed safety systems, and firing subsystems used in high-speed safety systems, are disclosed. The cutting machines may include a detection system adapted to detect a dangerous condition between a cutting tool and a person. A reaction system performs a specified action, such as stopping the cutting tool, upon detection of the dangerous condition. A fusible member or explosive may be used to trigger the reaction system to perform the specified action. A firing subsystem may be used to fuse the fusible member or fire the explosive upon detection of the dangerous condition. dangerous condition.

18 Claims, 8 Drawing Sheets

INITIALS	ID NO.	DATE
	108188	111300
	INITIALS	INITIALS ID NO.

(LEFT INSIDE)

APPROVED FOR LICENSE

Date Entered	CONTENTS	Date Received
or Counted		or Mailed
<i>y</i> .		
	1. Applipation papers.	
	2. Oller File, residence	11-100
1-31-01	3. / response	1-82-01
1-31-01	4. Chance of address	13301
	5. Peficit goracless	8-5-15
	6. //	
	7.	
	8.	
X	9	
	10	
	11.	
	12	
	13	
	14	
	15	
	16	
	17	
	18	
	19	
	20	
	21	
	22.	
	23	
	24	
	25	
	26	
	27	
	28	
	29	
	30	
	31	
	20	

(LEFT OUTSIDE)