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Abstract. Configuration was one of the first tasks successfully ap-
proached via AI techniques. However, solving configuration problems can
be computationally expensive. In this work, we show that the decompo-
sition of a configuration problem into a set of simpler and independent
subproblems can decrease the computational cost of solving it. In partic-
ular, we describe a novel decomposition technique exploiting the compo-
sitional structure of complex objects and we show experimentally that
such a decomposition can improve the efficiency of configurators.

1 Introduction

Each time we are given a set of components and we need to put (a subset
of) them together in order to build an artifact meeting a set of requirements,
we actually have to solve a configuration problem. Configuration problems can
concern different domains. For instance, we might want to configure a PC, given
different kinds of CPUs, memory modules, and so on; or a car, given different
kinds of engines, gears, etc. Or we might also want to configure abstract entities
in non-technical domains, such as students’ curricula, given a set of courses.

In early eighties, configuration was one of the first tasks successfully
approached via AI techniques, in particular because of the success of
R1/XCON [10]. Since then, various approaches have been proposed for auto-
matically solving configuration problems. In the last decade, instead of heuristic
methods, research efforts were devoted to single out formalisms able to capture
the system models and to develop reasoning mechanisms for configuration. In
particular, configuration paradigms based on Constraint Satisfaction Problems
(CSP) and its extensions [12, 13, 1, 18] or on logics [11, 3, 16] have emerged.

In the rich representation formalisms able to capture the complex constraints
needed in modeling technical domains, the configuration problem is theoretically
intractable (at least NP-hard, in the worst case) [5, 15, 16]. Despite the theoret-
ical complexity, many real configuration problems are rather easy to solve [17].
However, in some cases the intractability does appear also in practice and solv-
ing some configuration problems can require a huge amount of CPU time. These
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ones are rather problematic situations in those tasks in which low response time
is required. E.g. in interactive configuration the response time should not ex-
ceed a few seconds and on-line configuration on the Web imposes even stricter
requirements on this configurator feature.

There are several ways that can be explored to control computational com-
plexity in practice: among them, making use of off-line knowledge compilation
techniques [14]; providing the configurator with a set of domain-specific heuris-
tics, with general focusing mechanisms [6] or with the capability of re-using past
solutions [4]; defining techniques for automatically decomposing a problem into
a set of simpler subproblems [9, 8]. These approaches are not in alternative and
configurators can make use of different combinations of them. However it makes
sense to investigate to what extent each one of them can contribute to the im-
provement of the efficiency of configurators. In the present work, we focus on
automatic problem decomposition, since to the best of our knowledge this issue
has not received much attention in the configuration community.

In [7] a structured logical approach to configuration is presented. Here we
commit to the same framework as that described there and we present a novel
problem decomposition mechanism that exploits the knowledge on the com-
positional structure (i.e. the knowledge relevant to parts and subparts) of the
complex entities that are configured. We also report some experimental results
showing its effectiveness.

Section 2 contains an overview of the conceptual language, while Section 3
defines configuration problems and their solutions. In Section 4 a formal defini-
tion of the bound relation, which problem decomposition is based on, is given;
moreover, in that same section, a configuration algorithm making use of decom-
position is reported and illustrated by means of an example. Section 5 reports
the experimental results, while Section 6 contains some conclusions and a brief
discussion.

2 Conceptual Language

In the present paper the FPC (Frames, Parts and Constraints) [7] language is
adopted to model the configuration domains. Basically, FPC is a frame-based
KL-One like formalism augmented with a constraint language.

In FPC, there is a basic distinction between atomic and complex components.
Atomic components are the basic building blocks of configurations and they are
described by means of properties, while complex components are structured en-
tities whose characterization is given in terms of subparts which can be complex
components in their turn or atomic ones. FPC offers the possibility of orga-
nizing classes of (both atomic and complex) components in taxonomies as well
as the facility of building partonomies that (recursively) express the whole-part
relations between each complex component and its (sub)components. A set of
constraints restricts the set of valid combinations of components and subcompo-
nents in configurations. These constraints can be either specific to the modeled
domain or derived from the user’s requirements.
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CONSTRAINTS
Associated with PC class
"In any PC, if there is a EIDE main printed circuit board and at least one SCSI device, 
 then there must be a controller SCSI"
[co1](<has_mot,has_mpcb>)(in MPCB_EIDE) AND 
      ((<has_hd1>)(in HD_SCSI(1;7)) OR (<has_cdr1>)(in CDR_SCSI(1;1)) OR 
       (<has_cdw1>)(in CDW_SCSI(1;1)) 
     )==>(<has_mot,has_cs>)(1;1)

Associated with Motherboard class
"In any motherboard, if there is a SCSI main printed circuit board, 
 then there should be no controller SCSI"
[co2](<has_mpcb>)(in MPCB_SCSI)==>(<has_cs>)(0;0)

Associated with CD Tower class
"In any CD tower, there must be at least one CD reader or CD writer"
[co3](<has_cdr2>,<has_cdw2>)(1;14)

PC

has_cdr1(0;1)

Hard Disk

HD
EIDE

HD
SCSI

has_hd1(1;7)

Disk Array

has_da(0;1)

has_mon(1;1)

has_k(1;1)

has_hd2(1;7)

STRING

Keyboard
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manuf_m(1;1)manuf_k(1;1)

Fig. 1. A simplified PC conceptual model (CMPC)

We illustrate FPC by means of an example; for a formal description, re-
fer to [7]. In fig. 1 a portion of a simplified conceptual model relevant to
PC configuration is represented. The classes of complex components (e.g. PC,
Motherboard, ...) are represented as rectangles, while classes of atomic com-
ponents (e.g. Main Printed Circuit Board, CD reader, ...) are represented
as ellipses. Partonomic roles represent whole-part relations and are drawn as
solid arrows. For instance, the PC class has the partonomic role has mot, with
minimum and maximum cardinalities 1, meaning that each PC has exactly one
motherboard; partonomic role has cdr1, whose minimum and maximum cardi-
nalities are 0 and 1, respectively, expresses the fact that each PC can optionally
have one CD reader, and so on. It is worth noting that the motherboard is a
complex component having 1 to 4 RAM modules (see the has ram partonomic
role), one main printed circuit board (has mpcb role), that can be either the
SCSI or the EIDE type, etc.
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Descriptive roles represent properties of components and they are drawn as
dashed arrows. For example, the Monitor component has a string descriptive
role manuf m, representing the manufacturer.

Each constraint is associated with a class of complex components and is
composed by FPC predicates combined by means of the boolean connectives
∧,∨,¬,→. A predicate can refer to cardinalities, types or property values of
(sub)components. The reference to (sub)components is either direct through
partonomic roles or indirect through chains of partonomic roles. For example, in
fig. 1 [co2] is associated with the Motherboard class and states that, if has mpcb
role takes values in MPCB SCSI (i.e. the main printed circuit board is the SCSI
type), then has cs relation must have cardinality 0 (i.e. there must be no SCSI
controller). An example of a chain of partonomic roles can be found in [co1]:
the consequent of the constraint [co1] (associated with PC class) states that the
role chain 〈has mot, has cs〉 has cardinality 1, i.e. the PC component has one
Motherboard with one SCSI Controller. [co3] shows an example of a union of
role chains: a component of type CD Tower must have 1 to 14 CD readers or
CD writers.

3 Configuration Problems

A configuration problem is a tuple CP = 〈CM, T, c, C, V 〉, where CM is a con-
ceptual model, T is a partial description of the complex object to be configured
(the target object), c is a complex component occurring in T (either the target
object itself or one of its complex (sub)components) whose type is C (which is
a class of complex objects in CM) and V is a set of constraints involving com-
ponent c. In particular, V can contain the user’s requirements that component c
must fulfill.

Given a configuration problemCP , the task of the configurator is to refine the
description T by providing a complete description of the component c satisfying
both the conceptual description of C in CM and the constraints V , or to detect
that the problem does not admit any solution.
Configuration Process We assume that the configurator is given a main con-
figuration problem CP0 = 〈CM, (c), c, C, REQS〉, where c represents the target
object, whose initial partial description T ≡ (c) contains only the component c;
REQS is the set of requirements for c (expressed in the same language as the
constraints in CM1). Therefore, the goal of the configurator is to provide a
complete description of the target object (i.e. of an individual of the class C)

1 It is worth pointing out that the user actually specifies her requirements in a higher
level language (through a graphic interface) and the system performs an automatic
translation into the representation language. This translation process may also per-
form some inferences, e.g. if the user requires a PC with a CD tower containing at
least one CD reader and at least one CD writer, the system infers also an upper
bound for the number of components of these two kinds, as in requirements req3
and req4 in fig. 2, where the upper bound 7 is inferred for both the number of CD
readers and of CD writers that the CD tower can contain.
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The manufacturer of the monitor must be the same as that of the keyboard
[req1](<has_mon,manuf_m>)=(<has_k,manuf_k>)

It must have a disk array
[req2](<has_da>)(1;1)

It must have a CD tower with at least one CD reader and at least one CD writer
[req3](<has_cdt,has_cdr2>)(1;7)
[req4](<has_cdt,has_cdw2>)(1;7)

It must have no more than 4 SCSI devices
[req5](<has_cdr1>,<has_cdw1>,<has_hd1>,<has_cdt,has_cdr2>,<has_cdt,has_cdw2>,

       <has_da,has_hd2>)(in CDR_SCSI U CDW_SCSI U HD_SCSI(0;4)) 

Fig. 2. User’s Requirements for a PC (REQSPC)

satisfying the model CM and fulfilling the requirements REQS (such a descrip-
tion is a solution of the configuration problem) or to detect that the problem does
not admit any solution (i.e. that such an individual does not exist). Since CM
is assumed to be consistent, this last case happens only when the requirements
REQS are inconsistent w.r.t. CM . A sample description of an individual PC
satisfying the conceptual model CMPC in fig. 1 and fulfilling the requirements
listed in fig. 2 is reported in fig. 4.f.

The configuration is accomplished by means of a search process that progres-
sively refines the description of c. At each step the configuration process selects
a complex component in T (starting from the target object), it refines the de-
scription T by inserting a set of direct components of the selected component
(by choosing both the number of these components and their type) and then it
configures all the direct complex components possibly introduced in the previous
step. If, after a choice, any constraint (either in CM or in REQS) is violated,
then the process backtracks. The process stops as soon as a solution has been
found or when the backtracking mechanism cannot find any open choice. In the
last case, CP does not admit any solution.

4 Decomposing Configuration Problems

Because of the inter-role constraints, both those in CM and those in REQS,
a choice made by the configurator for a component can influence the valid choices
for other components. In [9, 8] it is shown that the compositional knowledge
(i.e. the way the complex product is made of simpler (sub)components) can be
exploited to partition the constraints that hold for a given component into sets in
such a way that the components involved in constraints of two different sets can
be configured independently. While such a decomposition has been proved useful
in reducing the actual computational effort in many configuration problems, here
we present an enhancement of such a decomposition mechanism that considers
constraints as dynamic entities instead of static ones.
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4.1 Bound and Unbound Constraints

The decomposition capability is based on a bound relation among constraints. We
assume that, in any configuration, each individual component cannot be a direct
part of two different (complex) components, neither a direct part of a same
component through two different whole-part relations (exclusiveness assumption
on parts).

Let CP = 〈CM, T, c, C, V 〉 and CONSTRS(C) be a configuration problem
and the set of constraints associated with C in CM , respectively and let u, v, w ∈
V ∪CONSTRS(C). The bound relation Bc is defined as follows: if Pu and Pv are
two predicates occurring in u and in v, respectively, that mention both a same
partonomic role p of C then uBcv (i.e. if u and v refer, through their predicates,
to a same part of c, then they are directly bound in c); if uBcv and vBcw then
uBcw (i.e. u and w are bound by transitivity in c). It is easy to see that Bc is
an equivalence relation.

To solve CP = 〈CM, T, c, C, V 〉, the configurator must refine the description
of c by specifying the set COMPS(c) of its components and subcomponents.
In particular, it specifies the type of each element in COMPS(c) and, for each
partonomic role occurring in the conceptual description of type C (the type
of component c) in CM , it specifies which elements in COMPS(c) play that
partonomic role.

If S1 and S2 are two different equivalence classes of constraints induced by the
relation Bc, let COMPSS1(c) and COMPSS2(c) be the sets of components in
COMPS(c) referred to by constraints in S1 and in S2, respectively. Given the
exclusiveness assumption on parts, these two sets are disjoint and, for every pair
of components c1 ∈ COMPSS1(c) and c2 ∈ COMPSS2(c), there is no constraint
in V ∪ CONSTRS(C) linking them together. It follows that the choices of the
configurator relevant to the components in COMPSS1(c) do not interact with
those relevant to the components in COMPSS2(c). In other words, S1 and S2

represent two mutually independent configuration subproblems.

4.2 Decomposition Mechanisms

In fig. 3 a configuration algorithm making use of decomposition is sketched. For
lack of space, let us illustrate the algorithm just by means of an example. Let’s
suppose that the user wants to configure a PC (described by the conceptual
model CMPC in fig. 1) meeting the set REQSPC of requirements stated in
fig. 2.

At the beginning, the configurator is given the problem CP0 = 〈CMPC , (pc1),
pc1, PC, REQSPC〉. Besides the requirements REQSPC , the set of constraints
associated with PC in CMPC are also considered to fully specify the problem
(statement in row 3 of the algorithm in fig. 3). This initial situation is represented
in fig. 4.a.
Initial Decomposition Step (statements in rows 5 and 6). Before starting
the actual configuration process, the configurator attempts to decompose the
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(1) configure(CM,T,c,C,V){
(2)   SUBPROBLEMS = <>;
(3)   - add to V the constraints associated with C in CM;
(4)   currentSP=V;
(5)   S=decompose(CM,T,c,currentSP);
(6)   for each s in S push(s, SUBPROBLEMS);
(7)   while(SUBPROBLEMS    <>){
(8)     currentSP=pop(SUBPROBLEMS);
(9)     if(no choice made for the direct components of c involved in currentSP){
(10)       T = insertDirectComponents(CM,T,c,currentSP);
(11)       if(T== FAILURE) return FAILURE;
(12)    }else{
(13)       - choose a direct complex component d of c that has not been configured 
             yet and that is involved in currentSP (let D be the type of d);
(14)       T=configure(CM,T,d,D,currentSP);
(15)       if(T==FAILURE) BACKTRACK;
(16)      }
(17)     - remove satisfied constraints from currentSP;
(18)     if(not solved currentSP){
(19)        currentSP=reviseConstraints(CM,c,currentSP);
(20)        S=decompose(CM,T,c,currentSP);
(21)        for each s in S push(s,SUBPROBLEMS);}
(22)   }//while
(23)   - complete T by inserting all the components and subcomponents of c not 
         involved in the constraints in V
(24)   return T;
(25) }//configure

6=

Fig. 3. Configuration algorithm overview

constraints that hold for the target object pc1. To do this, it partitions the con-
straints
currentSP = [req1, . . . , req5, co1] into a set of equivalence classes by comput-
ing the bound relation Bpc1 in this set: it is easy to see that the constraints
req2, . . . , req5, co1 are bound in pc1 according to the definition of the bound
relation. Instead, req1 is not bound with any other constraint belonging to
currentSP . It follows that currentSP can be partitioned into the two equiva-
lence classes of contraints S1 = [req2,. . . ,req5, co1] and S2 = [req1], each one
entailing a configuration subproblem.
Resolution of Subproblems (while statement in rows 7 to 22). These subprob-
lems are mutually independent. One subproblem is chosen as the current one (in
this example that one relevant to the constraints S1 = [req2, . . . , req5, co1]) and
the other ones (in this example only that one relevant to S2 = [req1]) are pushed
into the SUBPROBLEMS stack (see fig. 4.b).
Insertion of Direct Components (statement in row 10). To solve S1 the
configurator refines the description of the target object by inserting in it only
those direct components of pc1 involved in the constraints relevant to the current
subproblem. More precisely, the configurator considers each partonomic role p of
PC class occurring in the constraints belonging to S1 and makes for p two basic
choices: it chooses the number of direct components, playing the partonomic
role p, to insert into the configuration and, for each one of them, it chooses its
type. In this example, let’s suppose that a CD reader, a CD writer, a hard disk
(all of the SCSI type), a motherboard, a CD tower and a disk array are inserted
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T1=(pc1)

SUBPROBLEMS = <>
currentSP = [req1,...,req5,co1]

a)

T1=(pc1)

SUBPROBLEMS = <S2 = [req1]>
currentSP = S1 = [req2,...,req5,co1]

b)

T2=(pc1 <has_cdr1 (cdr_scsi1)>
        <has_cdw1 (cdw_scsi1)>
        <has_hd1 (hd_scsi1)>
        <has_mot (mb1)>
        <has_cdt (cdt1)>
        <has_da (da1)>)

SUBPROBLEMS = 
    <S2 = [req1],S12 = [req3,req4,req5]>
currentSP = S11 =[co1’]

c)

T3=(pc1 <has_cdr1 (cdr_scsi1)>
        <has_cdw1 (cdw_scsi1)>
        <has_hd1 (hd_scsi1)>
        <has_mot (mb1 <has_mpcb (mpcb_scsi1)>
                      <has_cs ()>
                      <has_cpu (cpu1)>
                      <has_ram (ram1,ram2,ram3,ram4)>)>
        <has_cdt (cdt1)>
        <has_da (da1)>)

SUBPROBLEMS = <S2 = [req1]>
currentSP = S12 = [req3,req4,req5]

d)

T4=(pc1 <has_cdr1 (cdr_eide1)>
        <has_cdw1 (cdw_eide1)>
        <has_hd1 (hd_scsi1)>
        <has_mot (mb1 <has_mpcb (mpcb_scsi1)>
                      <has_cs ()>
                      <has_cpu (cpu1)>
                      <has_ram (ram1,ram2,ram3,ram4)>)>
        <has_cdt (cdt1 <has_cdr2 (cdr_scsi1)>
                       <has_cdw2 (cdw_scsi1)>)>
        <has_da (da1 <has_hd2 (hd_scsi2)>)>)

SUBPROBLEMS = <>
currentSP = S2 = [req1]

e)

T5=(pc1 <has_cdr1 (cdr_eide1)>
        <has_cdw1 (cdw_eide1)>
        <has_hd1 (hd_scsi1)>
        <has_mot (mb1 <has_mpcb (mpcb_scsi1)>
                      <has_cs ()>
                      <has_cpu (cpu1)>
                      <has_ram (ram1,ram2,ram3,ram4)>)>
        <has_cdt (cdt1 <has_cdr2 (cdr_scsi1)>
                       <has_cdw2 (cdw_scsi1)>)>
        <has_da (da1 <has_hd2 (hd_scsi2)>)>
        <has_mon (acme_mon1)>
        <has_k (acme_k1)>)

SUBPROBLEMS = <>
currentSP = S2 = []

f)

Fig. 4. A configuration example

into the current configuration (fig. 4.c). Since configuration is accomplished by
means of a search process, it is worth pointing out that all the open choices (for
instance, the alternative EIDE type for the CD reader, the CD writer and the
hard disk, or the possibility of inserting more than one hard disk) have to be
remembered as they may be explored as a consequence of a backtracking.
Removal of Satisfied Constraints (statement in row 17). The current tenta-
tive configuration T2 does not contradict any constraint relevant to the current
subproblem, moreover requirement req2 (imposing the existence of a disk array
in the configured PC) is now satisfied and it can be removed from currentSP .
The truth values of the other constraints belonging to currentSP cannot be
computed yet, since the configurator has not yet configured all the parts of the
target object which these constraints refer to. For instance, a CD tower has
been inserted into the current tentative configuration T2, but it has not been
configured yet; therefore, up to this point, it is impossible to know how many
CD readers the CD tower will contain and thus the truth value of req3 is still
unknown. Since currentSP still contains some constraints (whose truth values

Page 8 of 14 FORD 1108



Automatically Decomposing Configuration Problems 47

are unknown) referring to parts of some direct components of pc1 not yet con-
sidered by the configurator, the subproblem relevant to currentSP is not solved
yet.
Further Decomposition Step (rows 18 to 21). After having refined the de-
scription of pc1 with the insertion of some of its direct components, the config-
urator attempts a further decomposition of the current subproblem.
Revision of Constraints and Re-computation of Bound Relation. To
perform this decomposition step, the configurator dynamically updates the form
of the constraints in currentSP (i.e. the constraints are treated as dynamic en-
tities). In this sample case, even if the truth value of constraint co1 cannot be
determined in the tentative configuration T2, for some predicates occurring in
co1 it is possible to say whether they are true or false. In particular, the pred-
icates (〈has hd1〉)(in HD SCSI(1; 7)), (〈has cdr1〉)(in CDR SCSI(1; 1)) and
(〈has cdw1〉)(in CDW SCSI(1; 1)) are all true in T2. Therefore, in the context
of the choices made by the configurator and that leaded to T2, these predicates
can be substituted by their truth values in co1 and co1 can be simplified in the
following way:

[co1′](〈has mot, has mpcb〉)(in MPCB EIDE) → (〈has mot, has cs〉)(1; 1).
Since the revision of the constraints relevant to the current subproblem may

remove some predicates from the constraints (as it happens for co1 in this exam-
ple), it may happen that some constraints that were previously bound have now
become unbound, therefore it makes sense to compute the bound relation again,
in this revised set of constraints. In our example, the relation Bpc1 induces a parti-
tioning of the revised set of constraints currentSP = [req3, req4, req5, co1′] into
the two classes S11 = [co1′] and S12 = [req3, req4, req5] of bound constraints.
This means that in the context of tentative configuration T2 (fig. 4.c), the current
subproblem has been further decomposed into a set of independent subproblems.
Resolution of Subproblems (while statement in rows 7 to 22). As in the
previous execution of the body of the while, the configurator chooses one sub-
problem as the current one (in this case, currentSP = S11) while the other
ones (in this case only that one relevant to S12) have been pushed into the
SUBPROBLEMS stack. All the direct components of pc1 involved in the set
currentSP of constraints have already been inserted into the tentative configu-
ration. To solve S11, the motherboard mb1 needs to be configured: indeed, co1′

refers both to the main printed circuit board and to the optional SCSI controller,
which are mb1 components (rows 13 to 15). This means solving the configuration
problem CPmb1 = 〈CMPC , T 2, mb1, Motherboard, {co1′}〉.

The configuration of mb1 has to take into account both the set S11 of con-
straints and constraint co2 associated with Motherboard class in CMPC (fig. 1).

In this example, a SCSI main printed circuit board mpcb scsi1 is inserted into
the tentative configuration, therefore no SCSI controller is inserted (because of
co2). To complete the configuration of mb1, the configurator inserts also a CPU
(cpu1) and four memory modules (fig. 4.d). Constraint co1′ is now satisfied,
thus it is removed from currentSP . Since currentSP does not contain any

Page 9 of 14 FORD 1108



48 Luca Anselma et al.

other constraint, the configuration of mb1 represents a solution to the current
subproblem. The subproblem entailed by S12 = [req3, req4, req5] becomes the
current one.

This subproblem involves the pc1 direct complex components cdt1 and da1.
It should be clear that there is no way of extending the tentative configuration
T 3 by configuring these two components while satisfying the constraints in S12.

Indeed, req3 and req4 require that at least one CD reader and at least one
CD writer are inserted into cdt1 and, given the conceptual model CMPC , these
two devices must be the SCSI type. The conceptual model states also that all
the hard disks in the disk array are the SCSI type (and that there is at least
one hard disk in a disk array). However, T 3 already contains 3 SCSI devices; it
follows that pc1 would have at least 6 SCSI devices and this is in contradiction
with requirement req5. Therefore the configuration process has to backtrack
and to revise some choices. It is worth noting that it would be useless to find an
alternative configuration for the motherboard, since mb1 was configured while
considering the subproblem relevant to S11, which was independent from the one
entailed by S12 (for which the failure occurred). Therefore, let’s suppose that
the backtracking mechanism changes from SCSI to EIDE the types of the CD
reader and of the CD writer playing the partonomic roles has cdr1 and has cdw1,
respectively. After that, the tentative configuration T 4 is produced (fig. 4.e). It
is easy to see that T 4 satisfies all the constraints in S1 = [req2, . . . , req5, co1],
therefore it represents a solution to the first of the two subproblems the main
configuration problem CP0 was decomposed into (see above).

To solve the main problem, the tentative configuration T 4 must be extended
in order to solve the subproblem entailed by S2 = [req1] too. T 5 in fig. 4.f is
a global solution.

This simple example illustrates a situation in which the configurator succeeds
in further decomposing the current subproblem, after having inserted the direct
components of the target object which the current set currentSP of constraints
refer to. However, it is worth noting that, in general, the configurator attempts
to further decompose the current subproblem also after having completely con-
figured each direct complex component of the target object (see the algorithm
in fig. 3). Moreover, for the sake of simplicity, the example focuses only on the
problem decomposition performed by partitioning the constraints relevant to the
target object: it should be noticed that the decomposition is not limited to the
target object, but, on the opposite, it is recursively performed also when config-
uring its complex (sub)components (by the execution of the recursive invocation
in row 14) .

5 Experimental Results

The algorithm described in the previous section has been implemented in a con-
figuration system written in Java (JDK 1.3). In this section we report some
results from tests conducted with a computer system configuration domain. The
experiments are aimed at testing the performance of the configuration algorithm
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described in this paper and at comparing it (w.r.t. the computational effort) with
a configuration strategy without decomposition and with the most performant
decomposition strategy previously defined is this framework, the one called in [9]
“strategy 3” (see [8, 9]). We call the algorithm in [9] static decomposition algo-
rithm and the algorithm in Section 4.2 dynamic decomposition algorithm. All
experiments were performed on a Mobile Pentium III 933 MHz 256 MB Win-
dows 2000 notebook.

Using the computer system model, we generated a test set of 200 configura-
tion problems; for each of them we specified the type of the target object (e.g.
a PC for graphical applications) and some requirements that must be satisfied
(e.g. it must have a CD writer of a certain kind, it must be fast enough and so on).
In 83 problems we intentionally imposed a set of requirements inconsistent with
the conceptual model (in average, these problems are quite hard). A problem is
considered solved iff the configurator provides a solution or it detects that the
problem does not admit any solution. For each problem the CPU time and the
number of backtrackings that it required have been measured. The configuration
algorithms include some random choices: e.g. after decomposing a problem, the
selection of the current subproblem (see Section 4.2) is performed randomly. To
reduce the bias due to “lucky” or “unlucky” random choices, every experiment
was performed ten times and the average values of measured parameters were
considered.

The strategy with dynamic decomposition proves to be effective in reducing
the time and the number of backtrackings required by a problem to be solved
w.r.t. both the algorithm without decomposition and the algorithm with static
decomposition. Figure 5 shows the frequency histograms of the CPU times. On
the X axis is reported the time interval taken in consideration and on Y axis is re-
ported the number of problems solved within the given interval. The chart shows
that the dynamic decomposition is rather effective in “moving” CPU times to
low values, particularly to values less than 3 seconds. Figure 6 reports the relative
cumulative distribution graphs for CPU times. In this case the Y axis reports
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the cumulative frequencies of problems solved within the given interval. It may
be worth to notice that the 90th percentile for strategy without decomposition
is 164 s, for static decomposition it is 68 s, while it is 2.5 s for strategy with
dynamic decomposition. Results regarding CPU times are reflected by those re-
garding the number of backtrackings. Histograms and graphs are similar to those
reported for CPU times (because of space constraints it is not possible to show
them here). The 90th percentile for the number of backtrackings is 14293 for
no decomposition, 8056 for static decomposition and 323 for dynamic decom-
position, resulting in a significative reduction of the number of backtrackings,
too.

6 Conclusion and Discussion

In some configuration domains the theoretical intractability of configuration
problems can appear also in practice since a few configuration problems can re-
quire a huge amount of CPU time to be solved. Some tasks, such as interactive
configuration and on-line configuration on the Web, need low response times by
the configurator, therefore the issue of controlling in practice the computational
complexity of configuration problems should be dealt with.

In this paper we have investigated the role of problem decomposition in
improving the efficiency of configurators.

Other researchers have recognized the importance of decomposition in solving
difficult configuration problems. In particular, in [2], the authors stress the need
of designing modular configuration models with low interaction among modules
in such a way that the modules can be solved one by one. However, little attention
has been paid to provide the configurator with mechanisms to automatically
decompose configuration problems.

We have defined a decomposition technique, in a structured logical approach
to configuration, that exploits compositional knowledge in order to partition
configuration problems into a set of simpler (and independent) subproblems.

In [9, 8] some decomposition mechanisms were presented. Although these
decomposition techniques have proved to be useful in reducing CPU times, still
they do not allow to solve the large majority of the problems in a time acceptable
for interactive and on-line configuration, i.e. in less than few seconds. In this work
we have extended both the one called in [8] constraints-splitting decomposition
and those defined in [9]. Differently from constraints-splitting decomposition, the
mechanism presented here allows the configurator to perform decomposition re-
cursively by partitioning both the constraints directly associated with the target
object and those associated with its components and subcomponents. Moreover,
in the decomposition techniques defined in [9, 8], the constraints are treated
as static entities, while here we have proposed an improved mechanism that is
able to perform more decompositions by dynamically simplifying the constraints
during the configuration process.
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Some experimental results conducted in a computer system configuration
domain are reported which show the effectiveness of the decomposition technique
presented here.

Few cases of the test set still required a huge amount of CPU time (more
than 60 s), therefore we do not claim that decomposition is the ”silver bullet”
for difficult configuration problems. However, the experimental results suggest
that it can play an important role in increasing the efficiency of configurators,
therefore it is worth investigating various integrations of decomposition and other
techniques (off-line knowledge compilation, re-using past solutions and so on).
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[15] T. Soininen, E. Gelle, and I. Niemelä. A fixpoint definition of dynamic constraint
satisfaction. In LNCS 1713, pages 419–433, 1999. 39

Page 13 of 14 FORD 1108



52 Luca Anselma et al.
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