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520 GENERALIZATION OF CIRCUIT EQUATIONS 

Of particular int.erest is the result 163 if the network is excited by a 
single source. Letting this one be E1, we have in this special case 

p =Pav+ Re [E;1 eJ'2wt] (164) 

Taking E1 as phase reference and denoting the input admittance angle 
by"'' we have 

I E1I1 I 
p =Pav+ COB (2<.it + 'I') 

2 
However, noting Eq. 157, 

I E1I1 I 
2 

so that Eq. 165 can be written 

(165) 

(166) 

P =Pav+ VPav2 + Qav2 
COS (2<.it +'I') (167) 

a result which shows that the amplitude of the double-frequency sinus­
oid equals the magnitude of the vector power. 

7 Equivalence of Kirchhoff and Lagrange Equations 
In this article we wish to show that Lagrange's equations, which 

express the equilibrium of a system in terms of its associated energy 
functions, are identical with the Kirchhoff-law equations so far as the 
end results are concerned. We need first some preliminary relations 
which can readily be seen from Eqs. 111, 112, 113 for the functions 
F, T, Vin terms of the loop currents. If we differentiate partially with 
respect to a particular loop current, we find 

aF z 
- . = E R;kik (168) 
aii k=t 

aT z 
-. = E Likik 
ai; k-1 

av 1 

- = E S;kqk 
aq; k-1 

(169) 

(170) 

These results may most easily be obtained if one considers the perti­
nent function written out completely as T is in Eq. 121. It is then 
obvious that a particular loop current, say i 2 , is contained in all terms 
of the second row and second column, and only in these terms. Hence, 
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EQUIVALENCE OF KIRCHHOFF AND LAGRANGE EQUATIONS 521 

if we differentiate partially with respect to i 2 , no other terms are in­
volved, and we find 

(171) 

where we note that the term with L22 yields a factor 2 because the 
derivative of i 2

2 is involved. However, since L;k = Lk;, we can rewrite 
this result as 

from which Eq. 169 follows. Equations 168 and 170 are obtained in 
the same manner. In all three, the summation involved is a simple 
summation on the index k. 

If we differentiate Eq. 169 totally with respect to time, we have 

d (aT\ ' dik 
dt ai) = A:~ Li,, dt 

and Eq. 170 can be rewritten as 

so that with Eq. 168 we obtain 

!:. (a~ + a~ + av = E (Lik !:. + Rik + sikfdt) iA: 
dt a~) aii aq, A:-1 dt 

(173) 

(174) 

(175) 

Reference to the Kirchhoff voltage-law Eqs. 108 now shows that these 
may alternatively be written 

d (aT\ aF av 
dt ~) + ai, + aqi = eli, i = 1, 2, .. ·, l (176) 

This form, in which the voltage equilibrium equations are expressed 
in terms of the energy functions, is known as the Lagrangian equations. 
From the way in which they are here obtained, it is clear that they are 
equivalent to the Kirchhoff-law equations although their outward 
appearance does not place this fact in evidence. 
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