M68HC11

Reference Manual

M68HC11

Microcontrollers

M68HC11RM/D
Rev. 6.1

Copyright Freescale Semiconductor, Inc. 2002, 2007

Exhibit 1009
Page 1 of 18

rcbt90
Text Box
Copyright Freescale Semiconductor, Inc. 2002, 2007

The original pdf version of this document has been modified to remove references to Motorola only, otherwise the original
content has not been modified.

For More Information On This Product, Exhibit 1009
Go to: www.freescale.com Page 2 of 18

rcbt90
Text Box
The original pdf version of this document has been modified to remove references to Motorola only, otherwise the original content has not been modified.

M6BHC11

Reference Manual

To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.

M68HC11 — Rev. 6.1 Reference Manual

3

For More Information On This Product, Exhibit 1009
Go to: www.freescale.com Page 3 of 18

http://www.motorola.com/semiconductors/

Revision History

Revision _ Page
Date L evel Description Number(s)
June, A Reformatted to meet current publications standards
2001 Index — Updated 631
February, 5 Figure 9-4. Baud Rate Control Register (BAUD) — Address 307
2002 designation corrected to $102B
ADD Instruction —Corrected table head from ADCA to ADDA 496
AND Instruction — Corrected table head from ADCA to ANDA 498
ASL Instruction —Corrected table heads ASLA (IMM) to ASLA 499
(INH) and ASI B (DIR) to ASL B (INH)
ASR Instruction — Corrected table heads ASRA (IMM) to ASRA 501
(INH) and ASRB (DIR) to ASRB (INH)
April, 6 BIT Instruction — Corrected second table entry for Data under
2002 BITA (IND,Y) from AS ta A5 and under BITB (IND.Y) from ES to 510
E5
CLR Instruction — Corrected table head from CLRA (IMM) to 529
CLRA (INH) and CI RB (DIR) to CI RB (INH)
STY Instruction — Corrected second table entry for Data under 584
STY (IND,X) EE to EF
WA Instruction — Changed | bit designation from 1 to — 598
Reference Manual M68HC11 — Rev. 6.1
4
For More Information On This Product, Exhibit 1009

Go to: www.freescale.com Page 4 of 18

6.3 Programmer’s

Central Processor Unit (CPU)
Programmer’s Model

This section discusses the CPU architecture, addressing modes, and
the instruction set (by instruction types). Examples are included to show
efficient ways of using this architecture and instruction set. To condense
this section, detailed explanations of each instruction are included in
Appendix A. Instruction Set Details. These explanations include
detailed cycle-by-cycle bus activity and Boolean expressions for
condition code bits. This section should be used to gain a general
understanding of the CPU and instruction set.

Model

Figure 6-1 shows the programmer’s model of the M68HC11 CPU. The
CPU registers are an integral part of the CPU and are not addressed as
if they were memory locations. Each of these registers is discussed in
the subsequent paragraphs.

7 ACCUMULATOR A 0 7 ACCUMULATOR B 0 AB
15 DOUBLE ACCUMULATOR D 0 D
15 INDEX REGISTER X 0 IX
15 INDEX REGISTER Y 0 Y
15 STACK POINTER 0 SP
15 PROGRAM COUNTER 0 PC
7 0
CONDITION CODE REGISTER S X H | N Z V C CCR

M68HC11 — Rev. 6.1

CARRY

OVERFLOW

ZERO

NEGATIVE

I INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
XINTERRUPT MASK

STOP DISABLE

Figure 6-1. M68HC11 Programmer’s Model

Reference Manual

Central Processor Unit (CPU)

199

Exhibit 1009
Page 5 of 18

For More Information On This Product,
Go to: www.freescale.com

Central Processor Unit (CPU)

6.3.1 Accumulators (A, B, and D)

6.3.2 Index Registers

Reference Manual

Accumulators A and B are general-purpose 8-bit accumulators used to
hold operands and results of arithmetic calculations or data
manipulations. Some instructions treat the combination of these two
8-bit accumulators as a 16-bit double accumulator (accumulator D).

Most operations can use accumulator A or B interchangeably; however,
there are a few notable exceptions. The ABX and ABY instructions add
the contents of the 8-bit accumulator B to the contents of the 16-bit index
register X or Y, and there are no equivalent instructions that use A
instead of B. The TAP and TPA instructions are used to transfer data
from accumulator A to the condition code register or from the condition
code register to accumulator A; however, there are no equivalent
instructions that use B rather than A. The decimal adjust accumulator A
(DAA) instruction is used after binary-coded decimal (BCD) arithmetic
operations, and there is no equivalent BCD instruction to adjust B.
Finally, the add, subtract, and compare instructions involving both A and
B (ABA, SBA, and CBA) only operate in one direction; therefore, it is
important to plan ahead so the correct operand will be in the correct
accumulator.

(X and)

The 16-bit index registers X and Y are used for indexed addressing
mode. In the indexed addressing mode, the contents of a 16-bit index
register are added to an 8-bit offset, which is included as part of the
instruction, to form the effective address of the operand to be used in the
Instruction. In most cases, instructions involving index register Y take
one extra byte of object code and one extra cycle of execution time
compared to the equivalent instruction using index register X. The
second index register is especially useful for moves and in cases where
operands from two separate tables are involved in a calculation. In the
earlier M6800 and M6801, the programmer had to store the index to
some temporary location so the second index value could be loaded into
the index register.

M68HC11 — Rev. 6.1

200

Central Processor Unit (CPU)

For More Information On This Product, Exhibit 1009
Go to: www.freescale.com Page 6 of 18

Central Processor Unit (CPU)
Programmer’s Model

The ABX and ABY instructions along with increment and decrement
instructions allow some arithmetic operations on the index registers, but,
In some cases, more powerful calculations are needed. The exchange
instructions, XGDX and XGDY, offer a simple way to load an index value
into the 16-bit double accumulator, which has more powerful arithmetic
capabilities than the index registers themselves.

It is very common to load one of the index registers with the beginning
address of the internal register space (usually $1000), which allows the
indexed addressing mode to be used to access any of the internal 1/0
and control registers. Indexed addressing requires fewer bytes of object
code than the corresponding instruction using extended addressing.
Perhaps a more important argument for using indexed addressing to
access register space is that bit-manipulation instructions are available
for indexed addressing but not for extended addressing.

6.3.3 Stack Pointer (SP)

The M68HC11 CPU automatically supports a program stack. This stack
may be located anywhere in the 64-Kbyte address space and may be
any size up to the amount of memory available in the system. Normally,
the stack pointer register is initialized by one of the first instructions in an
application program. Each time a byte is pushed onto the stack, the
stack pointer is automatically decremented, and each time a byte is
pulled off the stack, the stack pointer is automatically incremented. At
any given time, the stack pointer register holds the 16-bit address of the
next free location on the stack. The stack is used for subroutine calls,
interrupts, and for temporary storage of data values.

When a subroutine is called by a jump-to-subroutine (JSR) or branch-to-
subroutine (BSR) instruction, the address of the next instruction after the
JSR or BSR is automatically pushed onto the stack (low half first). When
the subroutine is finished, a return-from-subroutine (RTS) instruction is
executed. The RTS causes the previously stacked return address to be
pulled off the stack, and execution continues at this recovered return
address.

M68HC11 — Rev. 6.1 Reference Manual

Central Processor Unit (CPU) 201

For More Information On This Product, Exhibit 1009
Go to: www.freescale.com Page 7 of 18

Central Processor Unit (CPU)

Whenever an interrupt occurs (provided it is not masked), the current
instruction finishes normally, the address of the next instruction (the
current value in the program counter) is pushed onto the stack, all of the
CPU registers are pushed onto the stack, and execution continues at the
address specified by the vector for the highest priority pending interrupt.
After completing the interrupt service routine, a return from interrupt
(RTI) instruction is executed. The RTI instruction causes the saved
registers to be pulled off the stack in reverse order, and program
execution resumes as if there had been no interruption.

Another common use for the stack is for temporary storage of register
values. A simple example would be a subroutine using accumulator A.
The user could push accumulator A onto the stack when entering the
subroutine and pull it off the stack just before leaving the subroutine. This
method is a simple way to ensure a register(s) will be the same after
returning from the subroutine as it was before starting the subroutine.

The most important aspect of the stack is that it is completely automatic.
A programmer does not normally have to be concerned about the stack
other than to be sure that it is pointing at usable random-access memory
(RAM) and that there is sufficient space. To ensure sufficient space, the
user would need to know the maximum depth of subroutine or interrupt
nesting possible in the particular application.

There are a few less common uses for the stack. For instance, the stack
can be used to pass parameters to a subprogram, which is fairly
common in high-level language compilers but is often overlooked by
assembly-language programmers. There are two advantages of this
technique over specific assignment of temporary or variable locations.
First, the memory locations are only needed for the time the subprogram
is being executed; they can be used for something else when the
subprogram is completed. Second, this feature makes the subprogram
re-entrant so that an interrupting program could call the same
subprogram with a different set of values without disturbing the
interrupted use of the subprogram.

In unusual cases, a programmer may want to look at or even manipulate
something that is on the stack, which should only be attempted by an

experienced programmer because it requires a detailed understanding
of how the stack operates. Monitor programs like BUFFALO sometimes

Reference Manual M68HC11 — Rev. 6.1
202 entral Processor Unit (CPU)
For More Information On This Product, Exhibit 1009

Go to: www.freescale.com Page 8 of 18

Central Processor Unit (CPU)
Programmer’s Model

place items on a stack manually and then perform an RTI instruction to
go to a user program. This technique is an odd use of the stack and RTI
instruction because an RTI would normally correspond to a previous
interrupt.

6.3.4 Program Counter (PC)

The program counter is a 16-bit register that holds the address of the
next instruction to be executed.

6.3.5 Condition Code Register (CCR)

This register contains five status indicators, two interrupt masking bits,
and a STOP disable bit. The register is named for the five status bits
since that is the major use of the register. In the earlier M6800 and
M6801 CPUs, there was no X interrupt mask and no STOP disable
control in this register.

The five status flags reflect the results of arithmetic and other operations
of the CPU as it performs instructions. The five flags are half carry (H),
negative (N), zero (Z), overflow (V), and carry/borrow (C). The half-carry
flag, which is used only for BCD arithmetic operations (see 6.5.1.2
Arithmetic Operations), is only affected by the add accumulators A and
B (ABA), ADD, and add with carry (ADC) addition instructions (21
opcodes total). The N, Z, V, and C status bits allow for branching based
on the results of a previous operation. Simple branches are included for
either state of any of these four bits. Both signed and unsigned versions
of branches are provided for the conditions <, <, =, #, 2, or >.

The H bit indicates a carry from bit 3 during an addition operation. This
status indicator allows the CPU to adjust the result of an 8-bit BCD
addition soitis in correct BCD format, even though the add was a binary
operation. This H bit, which is only updated by the ABA, ADD, and ADC
instructions, is used by the DAA instruction to compensate the result in
accumulator A to correct BCD format.

M68HC11 — Rev. 6.1 Reference Manual

Central Processor Unit (CPU) 203

For More Information On This Product, Exhibit 1009
Go to: www.freescale.com Page 9 of 18

Freescale Semiconductor, Inc.

Central Processor Unit (CPU)

The N bit reflects the state of the most significant bit (MSB) of a result.
For twos complement, a number is negative when the MSB is set and
positive when the MSB is 0. The N bit has uses other than in
twos-complement operations. By assigning an often tested flag bit to the
MSB of a register or memory location, the user can test this bit by loading
an accumulator.

The Z bit is set when all bits of the result are 0s. Compare instructions
do an internal implied subtraction, and the condition codes, including Z,
reflect the results of that subtraction. A few operations (INX, DEX, INY,
and DEY) affect the Z bit and no other condition flags. For these
operations, the user can only determine = and #.

The V bitis used to indicate if a twos-complement overflow has occurred
as a result of the operation.

The C bit is normally used to indicate if a carry from an addition or a
borrow has occurred as a result of a subtraction. The C bit also acts as
an error flag for multiply and divide operations. Shift and rotate
instructions operate with and through the carry bit to facilitate
multiple-word shift operations.

In the M6BHC11 CPU, condition codes are automatically updated by
almost all instructions; thus, it is rare to execute any extra instructions to
specifically update the condition codes. For example, the load
accumulator A (LDAA) and store accumulator A (STAA) instructions
automatically set or clear the N, Z, and V condition code flags. (In some
other architectures, few instructions affect the condition code bits; thus,
it takes two instructions to load and test a variable.) The challenge in a
Motorola processor lies in finding instructions that specifically do not
alter the condition codes in rare cases where that is desirable. The most
important instructions that do not alter condition codes are the pushes,
pulls, add B to X (ABX), add B to Y (ABY), and 16-bit transfers and
exchanges. It is always a good idea to refer to an instruction set
summary such as the pocket guide (Motorola document order number
MC68HC11A8RG/AD) to check which condition codes are affected by a
particular instruction.

Reference Manual M68HC11 — Rev. 6.1
204 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product, Exhibit 1009

Go to: www.freescale.com Page 10 of 18

Central Processor Unit (CPU)
Programmer’s Model

The STOP disable (S) bit is used to allow or disallow the STOP
instruction. Some users consider the STOP instruction dangerous
because it causes the oscillator to stop; however, the user can set the S
bit in the CCR to disallow the STOP instruction. If the STOP instruction
is encountered by the CPU while the S bit is set, it will be treated like a
no-operation (NOP) instruction, and processing continues to the next
instruction.

The interrupt request (IRQ) mask (I bit) is a global mask that disables all
maskable interrupt sources. While the | bit is set, interrupts can become
pending and are remembered, but CPU operation continues
uninterrupted until the | bit is cleared. After any reset, the | bit is set by
default and can be cleared only by a software instruction. When any
interrupt occurs, the | bit is automatically set after the registers are
stacked but before the interrupt vector is fetched. After the interrupt has
been serviced, an RTI instruction is normally executed, restoring the
registers to the values that were present before the interrupt occurred.
Normally, the | bit would be 0 after an RTI was executed. Although
interrupts can be re-enabled within an interrupt service routine, to do so
IS unusual because nesting of interrupts becomes possible, which
requires much more programming care than single-level interrupts and
seldom improves system performance.

The XIRQ mask (X bit) is used to disable interrupts from the m pin.
After any reset, X is set by default and can be cleared only by a software
instruction. When XIRQ is recognized, the X bit (and | bit) are
automatically set after the registers are stacked but before the interrupt
vector is fetched. After the interrupt has been serviced, an RTI
instruction is normally executed, causing the registers to be restored to
the values that were present before the interrupt occurred. It is logical to
assume the X bit was clear before the interrupt; thus, the X bitwould be 0
after the RTI was executed. Although m can be re-enabled within an
interrupt service routine, to do so is unusual because nesting of
interrupts becomes possible, which requires much more programming
care than single-level interrupts.

M68HC11 — Rev. 6.1 Reference Manual

Central Processor Unit (CPU) 205

For More Information On This Product, Exhibit 1009
Go to: www.freescale.com Page 11 of 18

Central Processor Unit (CPU)
M68HCL11 Instruction Set

6.5.1.1 Loads, Stores, and Transfers

Almost all MCU activities involve transferring data from memories or
peripherals into the CPU or transferring results from the CPU into
memory or I/O devices. The load, store, and transfer instructions
associated with the accumulators are summarized in Table 6-1.
Additional load, store, push, and pull instructions are associated with the
index registers and stack pointer register (see 6.5.2 Stack and Index
Register Instructions).

Table 6-1. Load, Store, and Transfer Instructions

Function Mnemonic | IMM | DIR | EXT | INDX | INDY | INH

Clear Memory Byte CLR X X X

Clear Accumulator A CLRA

Clear Accumulator B CLRB

Load Accumulator A LDAA

Load Accumulator B LDAB

Load Double Accumulator D LDD

Pull A from Stack PULA X
Pull B from Stack PULB X
Push A onto Stack PSHA X
Push B onto Stack PSHB X
Store Accumulator A STAA

Store Accumulator B STAB

Store Double Accumulator D STD

Transfer Ato B TAB X
Transfer A to CCR TAP X
Transfer B to A TBA X
Transfer CCR to A TPA X
Exchange D with X XGDX X
Exchange D with Y EGDY X

M68HC11 — Rev. 6.1 Reference Manual
Central Processor Unit (CPU) 215
For More Information On This Product, Exhibit 1009

Go to: www.freescale.com Page 12 of 18

Central Processor Unit (CPU)

6.5.1.2 Arithmetic Operations

Reference Manual

This group of instructions supports arithmetic operations on a variety of
operands; 8- and 16-bit operations are supported directly and can easily
be extended to support multiple-word operands. Twos-complement
(signed) and binary (unsigned) operations are supported directly. BCD
arithmetic is supported by following normal arithmetic instruction
sequences, using the DAA instruction, which restores results to BCD
format. Compare instructions perform a subtract within the CPU to
update the condition code bits without altering either operand. Although
test instructions are provided, they are seldom needed since almost all
other operations automatically update the condition code bits.

Table 6-2. Arithmetic Operation Instructions

Function Mnemonic | IMM |DIR [EXT [INDX | INDY | INH

Add Accumulators ABA X
Add Accumulator B to X ABX X
Add Accumulator B to Y ABY X
Add with Carry to A ADCA X | X | X X X

Add with Carry to B ADCB X | X | X X X

Add Memory to A ADDA X X X X X

Add Memory to B ADDB X X X X X

Add Memory to D (16 Bit) ADDD X | X | X X X
Compare Ato B CBA X
Compare A to Memory CMPA

Compare B to Memory CMPB

Compare D to Memory (16 Bit) CPD X | X | X X X
Decimal Adjust A (for BCD) DAA X
Decrement Memory Byte DEC X X X
Decrement Accumulator A DECA X
Decrement Accumulator B DECB X
Increment Memory Byte INC X X X
Increment Accumulator A INCA X
Increment Accumulator B INCB X

M68HC11 — Rev. 6.1

216

For More Information On This Product,
Go to: www.freescale.com

Central Processor Unit (CPU)

Exhibit 1009
Page 13 of 18

Central Processor Unit (CPU)
M68HCL11 Instruction Set

Table 6-2. Arithmetic Operation Instructions (Continued)

Function Mnemonic |IMM |DIR [EXT [INDX | INDY | INH

Twos Complement Memory Byte NEG X X X

Twos Complement Accumulator A NEGA

Twos Complement Accumulator B NEGB

Subtract with Carry from A SBCA X | X | X X X
Subtract with Carry from B SBCB X | X | X X X
Subtract Memory from A SUBA X X X X X
Subtract Memory from B SUBB X X X X X
Subtract Memory from D (16 Bit) SUBD X | X | X X X

Test for Zero or Minus TST X X X

Test for Zero or Minus A TSTA X
Test for Zero or Minus B TSTB X

6.5.1.3 Multiply and Divide

One multiply and two divide instructions are provided. The 8-bit by 8-bit
multiply produces a 16-bit result. The integer divide (IDIV) performs a
16-bit by 16-bit divide, producing a 16-bit result and a 16-bit remainder.
The fractional divide (FDIV) divides a 16-bit numerator by a larger 16-bit
denominator, producing a 16-bit result (a binary weighted fraction
between 0 and 0.99998) and a 16-bit remainder. FDIV can be used to
further resolve the remainder from an IDIV or FDIV operation.

Table 6-3. Multiply and Divide Instructions

Function Mnemonic INH
Multiply (A x B 0 D) MUL
Fractional Divide (D+ X O X;rO D) FDIV
Integer Divide (D + X O X;rO D) IDIV
M68HC11 — Rev. 6.1 Reference Manual
Central Processor Unit (CPU) 217
For More Information On This Product, Exhibit 1009

Go to: www.freescale.com Page 14 of 18

Central Processor Unit (CPU)

6.5.1.4 Logical Operations

Reference Manual

This group of instructions is used to perform the Boolean logical
operations AND, inclusive OR, exclusive OR, and one’s complement.

Table 6-4. Logical Operation Instructions

Function Mnemonic |IMM | DIR |EXT [INDX|INDY | INH

AND A with Memory ANDA X | X | X X X
AND B with Memory ANDB X | X | X X X
Bit(s) Test A with Memory BITA X | X | X X X
Bit(s) Test B with Memory BITB X | X | X X X
One’s Complement Memory Byte COM X X X
One’s Complement A COMA

One’s Complement B COMB

OR A with Memory (Exclusive) EORA X | X | X X X
OR B with Memory (Exclusive) EORB X | X | X X X
OR A with Memory (Inclusive) ORAA X | X | X X X
OR B with Memory (Inclusive) ORAB X | X | X X X

M68HC11 — Rev. 6.1

218

For More Information On This Product,
Go to: www.freescale.com

Central Processor Unit (CPU)

Exhibit 1009
Page 15 0f 18

Central Processor Unit (CPU)
M68HCL11 Instruction Set

6.5.1.5 Data Testing and Bit Manipulation

This group of instructions is used to operate on operands as small as a
single bit, but these instructions can also operate on any combination of
bits within any 8-bit location in the 64-Kbyte memory space. The bit test
(BITA or BITB) instructions perform an AND operation within the CPU to
update condition code bits without altering either operand. The BSET
and BCLR instructions read the operand, manipulate selected bits within
the operand, and write the result back to the operand address. Some
care is required when read-modify-write instructions such as BSET and
BCLR are used on I/O and control register locations because the
physical location read is not always the same as the location written.

Table 6-5. Data Testing and Bit Manipulation Instructions

Function Mnemonic | IMM | DIR | EXT | INDX | INDY

Bit(s) Test A with Memory BITA X X X X X

Bit(s) Test B with Memory BITB X X X X

Clear Bit(s) in Memory BCLR X X X

Set Bit(s) in Memory BSET X X X

Branch if Bit(s) Clear BRCLR X X X

Branch if Bit(s) Set BRSET X X X
M68HC11 — Rev. 6.1 Reference Manual
Central Processor Unit (CPU) 219

For More Information On This Product, Exhibit 1009

Go to: www.freescale.com Page 16 of 18

Central Processor Unit (CPU)

6.5.1.6 Shifts and Rotates

Reference Manual

All the shift and rotate functions in the M68BHC11 CPU involve the carry
bit in the CCR in addition to the 8- or 16-bit operand in the instruction,
which permits easy extension to multiple-word operands. Also, by
setting or clearing the carry bit before a shift or rotate instruction, the
programmer can easily control what will be shifted into the opened end
of an operand. The arithmetic shift right (ASR) instruction maintains the
original value of the MSB of the operand, which facilitates manipulation
of twos-complement (signed) numbers.

Table 6-6. Shift and Rotate Instructions

Function Mnemonic [IMM [DM | EXT | INDX | INDY | INH

Arithmetic Shift Left Memory ASL X X X

Arithmetic Shift Left A ASLA X
Arithmetic Shift Left B ASLB X
Arithmetic Shift Left Double ASLD X
Arithmetic Shift Right Memory ASR X X X

Arithmetic Shift Right A ASRA X
Arithmetic Shift Right B ASRB X
(Logical Shift Left Memory) (LSL) X X X

(Logical Shift Left A) (LSLA) X
(Logical Shift Left B) (LSLB) X
(Logical Shift Left Double) (LSLD) X
Logical Shift Right Memory LSR X X X

Logical Shift Right A LSRA X
Logical Shift Right B LSRB X
Logical Shift Right D LSRD X
Rotate Left Memory ROL X X X

Rotate Left A ROLA X
Rotate Left B ROLB X
Rotate Right Memory ROR X X X

Rotate Right A RORA X
Rotate Right B RORB X

The logical-left-shift instructions are shown in parentheses because

there is no difference between an arithmetic and a logical left shift. Both
mnemonics are recognized by the assembler as equivalent, but having

both instruction mnemonics makes some programs easier to read.

M68HC11 — Rev. 6.1

220

For More Information On This Product,

Go to: www.freescale.com

Central Processor Unit (CPU)

Exhibit 1009
Page 17 of 18

Central Processor Unit (CPU)
M68HCL11 Instruction Set

6.5.2 Stack and Index Register Instructions

Table 6-7 summarizes the instructions available for the 16-bit index
registers (X and Y) and the 16-bit stack pointer.

Table 6-7. Stack and Index Register Instructions

Function Mnemonic | IMM | DIR | EXT | INDX | INDY | INH
Add Accumulator B to X ABX X
Add Accumulator B to Y ABY X
Compare X to Memory (16 Bit) CPX
Compare Y to Memory (16 Bit) CPY
Decrement Stack Pointer DES X
Decrement Index Register X DEX X
Decrement Index Register Y DEY X
Increment Stack Pointer INS X
Increment Index Register X INX X
Increment Index Register Y INY X
Load Index Register X LDX X X X X X
Load Index Register Y LDY
Load Stack Pointer LDS X X X X X
Pull X from Stack PULX X
Pull Y from Stack PULY X
Push X onto Stack PSHX X
Push Y onto Stack PSHY X
Store Index Register X STX X
Store Index Register Y STY
Store Stack Pointer STS X
Transfer SP to X TSX X
Transfer SPto Y TSY X
Transfer X to SP TXS X
Transfer Y to SP TYS X
Exchange D with X XGDX X
Exchange D with Y XGDY X
M68HC11 — Rev. 6.1 Reference Manual
Central Processor Unit (CPU) 221
For More Information On This Product, Exhibit 1009

Go to: www.freescale.com Page 18 of 18

	Revision History
	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. General Description
	1.1 Contents
	1.2 Introduction
	1.3 General Description of the MC68HC11A8
	1.4 Programmer’s Model
	1.5 Product Derivatives

	Section 2. Pins and Connections
	2.1 Contents
	2.2 Introduction
	2.3 Packages and Pin Names
	2.3.1 MC68HC11A8
	2.3.2 MC68HC11D3/MC68HC711D3
	2.3.3 MC68HC11E9/MC68HC711E9
	2.3.4 MC68HC811E2
	2.3.5 MC68HC11F1
	2.3.6 MC68HC24 Port Replacement Unit

	2.4 Pin Descriptions
	2.4.1 Power-Supply Pins (VDD and VSS)
	2.4.2 Mode Select Pins (MODB/VSTBY and MODA/LIR)
	2.4.3 Crystal Oscillator and Clock Pins (EXTAL, XTAL, and E)
	2.4.4 Crystal Oscillator Application Information
	2.4.4.1 Crystals for Parallel Resonance
	2.4.4.2 Using Crystal Oscillator Outputs
	2.4.4.3 Using External Oscillator
	2.4.4.4 AT-Strip versus AT-Cut Crystals

	2.4.5 Reset Pin (RESET)
	2.4.6 Interrupt Pins (XIRQ and IRQ)
	2.4.7 A/D Reference and Port E Pins (VREFL, VREFH, and PE7–PE0)
	2.4.8 Timer Port A Pins
	2.4.9 Serial Port D Pins
	2.4.10 Ports B and C and STRA and STRB Pins

	2.5 Termination of Unused Pins
	2.6 Avoidance of Pin Damage
	2.6.1 Zap and Latchup
	2.6.2 Protective Interface Circuits
	2.6.3 Internal Circuitry — Digital Input-Only Pin
	2.6.4 Internal Circuitry — Analog Input-Only Pin
	2.6.5 Internal Circuitry — Digital I/O Pin
	2.6.6 Internal Circuitry — Input/Open-Drain-Output Pin
	2.6.7 Internal Circuitry — Digital Output-Only Pin
	2.6.8 Internal Circuitry — MODB/VSTBY Pin
	2.6.9 Internal Circuitry — IRQ/VPPBULK Pin

	2.7 Typical Expanded Mode System Connections
	2.8 Typical Single-Chip Mode System Connections
	2.9 System Development and Debug Features
	2.9.1 Load Instruction Register (LIR)
	2.9.2 Internal Read Visibility (IRV)
	2.9.3 MC68HC24 Port Replacement Unit (PRU)

	Section 3. Configuration and Modes of Operation
	3.1 Contents
	3.2 Introduction
	3.3 Hardware Mode Selection
	3.3.1 Hardware Mode Select Pins
	3.3.2 Mode Control Bits in the HPRIO Register

	3.4 EEPROM-Based Configuration (CONFIG) Register
	3.4.1 Operation of CONFIG Mechanism
	3.4.2 CONFIG Register

	3.5 Protected Control Register Bits
	3.5.1 RAM and I/O Mapping Register (INIT)
	3.5.2 Protected Control Bits in the TMSK2 Register
	3.5.3 Protected Control Bits in the OPTION Register

	3.6 Normal MCU Operating Modes
	3.6.1 Normal Single-Chip Mode
	3.6.2 Normal Expanded Mode

	3.7 Special MCU Operating Modes
	3.7.1 Testing Functions Control Register (TEST1)
	3.7.2 Test-Related Control Bits in the BAUD Register
	3.7.3 Special Test Mode
	3.7.4 Special Bootstrap Mode
	3.7.4.1 Loading Programs in Bootstrap Mode
	3.7.4.2 Executing User Programs in Bootstrap Mode
	3.7.4.3 Using Interrupts in Bootstrap Mode
	3.7.4.4 Bootloader Firmware Options

	3.8 Test and Bootstrap Mode Applications
	3.9 Example 3-1: Programming CONFIG (Uses Special Test Mode)

	Section 4. On-Chip Memory
	4.1 Contents
	4.2 Introduction
	4.3 Read-Only Memory (ROM)
	4.4 Random-Access Memory (RAM)
	4.4.1 Remapping Using the INIT Register
	4.4.2 RAM Standby

	4.5 Electrically Erasable Programmable ROM (EEPROM)
	4.5.1 Logical and Physical Organization
	4.5.2 Basic Operation of the EEPROM
	4.5.3 Systems Operating Below 2-MHz Bus Speed (E Clock)
	4.5.4 EEPROM Programming Register (PPROG)
	4.5.5 Programming/Erasing Procedures
	4.5.5.1 Programming
	4.5.5.2 Bulk Erase
	4.5.5.3 Row Erase
	4.5.5.4 Byte Erase
	4.5.5.5 CONFIG Register

	4.5.6 Optional EEPROM Security Mode

	4.6 EEPROM Application Information
	4.6.1 Conditions and Practices to Avoid
	4.6.2 Using EEPROM to Select Product Options
	4.6.3 Using EEPROM for Setpoint and Calibration Information
	4.6.4 Using EEPROM during Product Development
	4.6.5 Logging Data
	4.6.6 Self-Adjusting Systems Using EEPROM
	4.6.7 Software Methods to Extend Life Expectancy

	Section 5. Resets and Interrupts
	5.1 Contents
	5.2 Introduction
	5.3 Initial Conditions Established During Reset
	5.3.1 System Initial Conditions
	5.3.1.1 Central Processor Unit (CPU)
	5.3.1.2 Memory Map
	5.3.1.3 Parallel Input/Output (I/O)
	5.3.1.4 Timer
	5.3.1.5 Real-Time Interrupt
	5.3.1.6 Pulse Accumulator
	5.3.1.7 Computer Operating Properly (COP) Watchdog
	5.3.1.8 Serial Communications Interface (SCI)
	5.3.1.9 Serial Peripheral Interface (SPI)
	5.3.1.10 Analog-to-Digital (A/D) Converter
	5.3.1.11 Other System Controls

	5.3.2 CONFIG Register Allows Flexible Configuration
	5.3.3 Mode of Operation Established
	5.3.4 Program Counter Loaded with Reset Vector

	5.4 Causes of Reset
	5.4.1 Power-On Reset (POR)
	5.4.2 COP Watchdog Timer Reset
	5.4.3 Clock Monitor Reset
	5.4.4 External Reset

	5.5 Interrupt Process
	5.5.1 Interrupt Recognition and Stacking Registers
	5.5.2 Selecting Interrupt Vectors
	5.5.3 Return from Interrupt

	5.6 Non-Maskable Interrupts
	5.6.1 Non-Maskable Interrupt Request (XIRQ)
	5.6.2 Illegal Opcode Fetch
	5.6.3 Software Interrupt

	5.7 Maskable Interrupts
	5.7.1 I Bit in the Condition Code Register
	5.7.2 Special Considerations for I-Bit-Related Instructions

	5.8 Interrupt Request
	5.8.1 Selecting Edge Triggering or Level Triggering
	5.8.2 Sharing Vector with Handshake I/O Interrupts

	5.9 Interrupts from Internal Peripheral Subsystems
	5.9.1 Inhibiting Individual Sources
	5.9.2 Clearing Interrupt Status Flag Bits
	5.9.3 Automatic Clearing Mechanisms on Some Flags

	Section 6. Central Processor Unit (CPU)
	6.1 Contents
	6.2 Introduction
	6.3 Programmer’s Model
	6.3.1 Accumulators (A, B, and D)
	6.3.2 Index Registers (X and Y)
	6.3.3 Stack Pointer (SP)
	6.3.4 Program Counter (PC)
	6.3.5 Condition Code Register (CCR)

	6.4 Addressing Modes
	6.4.1 Immediate (IMM)
	6.4.2 Extended (EXT)
	6.4.3 Direct (DIR)
	6.4.4 Indexed (INDX and INDY)
	6.4.5 Inherent (INH)
	6.4.6 Relative (REL)

	6.5 M68HC11 Instruction Set
	6.5.1 Accumulator and Memory Instructions
	6.5.1.1 Loads, Stores, and Transfers
	6.5.1.2 Arithmetic Operations
	6.5.1.3 Multiply and Divide
	6.5.1.4 Logical Operations
	6.5.1.5 Data Testing and Bit Manipulation
	6.5.1.6 Shifts and Rotates

	6.5.2 Stack and Index Register Instructions
	6.5.3 Condition Code Register Instructions
	6.5.4 Program Control Instructions
	6.5.4.1 Branches
	6.5.4.2 Jumps
	6.5.4.3 Subroutine Calls and Returns (BSR, JSR, and RTS)
	6.5.4.4 Interrupt Handling (RTI, SWI, and WAI)
	6.5.4.5 Miscellaneous (NOP, STOP, and TEST)

	Section 7. Parallel Input/Output
	7.1 Contents
	7.2 Introduction
	7.3 Parallel I/O Overview
	7.4 Parallel I/O Register and Control Bit Explanations
	7.4.1 Port Registers
	7.4.2 Data Direction Registers

	7.5 Detailed I/O Pin Descriptions
	7.5.1 Port A
	7.5.1.1 PA2–PA0 (IC3–IC1) Pin Logic
	7.5.1.2 PA6–PA3 (OC5–OC2) Pin Logic
	7.5.1.3 PA7 (OC1 and PAI) Pin Logic
	7.5.1.4 Port A Idealized Timing

	7.5.2 Port B
	7.5.2.1 Port B Pin Logic
	7.5.2.2 Port B Idealized Timing
	7.5.2.3 Special Considerations for Port B on MC68HC24 PRU

	7.5.3 R/W (STRB) Pin
	7.5.3.1 R/W (STRB) Pin Logic
	7.5.3.2 Special Considerations for STRB on MC68HC24 PRU

	7.5.4 Port C
	7.5.4.1 Port C Pin Logic for Expanded Modes
	7.5.4.2 Summary of Port C Idealized Expanded Mode Timing
	7.5.4.3 Port C Single-Chip Mode Pin Logic
	7.5.4.4 Port C Idealized Single-Chip Mode Timing
	7.5.4.5 Special Considerations for Port C on MC68HC24 PRU

	7.5.5 AS (STRA) Pin
	7.5.5.1 AS (STRA) Pin Logic
	7.5.5.2 Special Considerations for STRA on MC68HC24 PRU

	7.5.6 Port D
	7.5.6.1 PD0 (RxD) Pin Logic
	7.5.6.2 PD1 (TxD) Pin Logic
	7.5.6.3 PD2 (MISO) Pin Logic
	7.5.6.4 PD3 (MOSI) Pin Logic
	7.5.6.5 PD4 (SCK) Pin Logic
	7.5.6.6 PD5 (SS) Pin Logic
	7.5.6.7 Idealized Port D Timing

	7.5.7 Port E
	7.5.7.1 Port E Pin Logic
	7.5.7.2 Idealized Port E Timing

	7.6 Handshake I/O Subsystem
	7.6.1 Simple Strobe Mode
	7.6.1.1 Port B Strobe Output
	7.6.1.2 Port C Simple Latching Input

	7.6.2 Full-Input Handshake Mode
	7.6.3 Full-Output Handshake Mode
	7.6.3.1 Normal Output Handshake
	7.6.3.2 Three-State Variation of Output Handshake

	7.6.4 Parallel I/O Control Register (PIOC)
	7.6.5 Non-Handshake Uses of STRA and STRB Pins

	Section 8. Synchronous Serial Peripheral Interface
	8.1 Contents
	8.2 Introduction
	8.3 SPI Transfer Formats
	8.3.1 SPI Clock Phase and Polarity Controls
	8.3.2 CPHA Equals Zero Transfer Format
	8.3.3 CPHA Equals One Transfer Format

	8.4 SPI Block Diagram
	8.5 SPI Pin Signals
	8.6 SPI Registers
	8.6.1 Port D Data Direction Control Register (DDRD)
	8.6.2 SPI Control Register (SPCR)
	8.6.3 SPI Status Register (SPSR)

	8.7 SPI System Errors
	8.7.1 SPI Mode-Fault Error
	8.7.2 SPI Write-Collision Errors

	8.8 Beginning and Ending SPI Transfers
	8.8.1 Transfer Beginning Period (Initiation Delay)
	8.8.2 Transfer Ending Period

	8.9 Transfers to Peripherals with Odd Word Lengths
	8.9.1 Example 8-1: On-Chip SPI Driving an MC144110 D/A
	8.9.2 Example 8-2: Software SPI Driving an MC144110 D/A

	Section 9. Asynchronous Serial Communications Interface
	9.1 Contents
	9.2 Introduction
	9.3 General Description
	9.3.1 Transmitter Block Diagram
	9.3.2 Receiver Block Diagram

	9.4 SCI Registers and Control Bits
	9.4.1 Port D Related Registers and Control Bits (PORTD, DDRD, and SPCR)
	9.4.2 Baud-Rate Control Register (BAUD)
	9.4.3 SCI Control Register 1 (SCCR1)
	9.4.4 SCI Control Register 2 (SCCR2)
	9.4.5 SCI Status Register (SCSR)
	9.4.6 SCI Data Register (SCDR)

	9.5 SCI Transmitter
	9.5.1 8- and 9-Bit Data Modes
	9.5.2 Interrupts and Status Flags
	9.5.3 Send Break
	9.5.4 Queued Idle Character
	9.5.5 Disabling the SCI Transmitter
	9.5.6 TxD Pin Buffer Logic

	9.6 SCI Receiver
	9.6.1 Data Sampling Technique
	9.6.2 Worst-Case Baud-Rate Mismatch
	9.6.3 Double-Buffered Operation
	9.6.4 Receive Status Flags and Interrupts
	9.6.5 Receiver Wakeup Operation
	9.6.5.1 Idle-Line Wakeup
	9.6.5.2 Address-Mark Wakeup

	9.7 Baud-Rate Generator
	9.7.1 Timing Chain Block Diagram
	9.7.2 Baud Rates versus Crystal Frequency

	9.8 SCI Timing Details
	9.8.1 Operation as Transmitter Is Enabled
	9.8.2 TDRE and Transfers from SCDR to Transmit Shift Register
	9.8.3 TC versus Character Completion
	9.8.4 RDRF Flag Setting versus End of a Received Character

	Section 10. Main Timer and Real-Time Interrupt
	10.1 Contents
	10.2 Introduction
	10.3 General Description
	10.3.1 Overall Timer Block Diagram
	10.3.2 Input-Capture Concept
	10.3.3 Output-Compare Concept

	10.4 Free-Running Counter and Prescaler
	10.4.1 Overall Clock Divider Structure
	10.4.1.1 Prescaler
	10.4.1.2 Overflow
	10.4.1.3 Counter Bypass (Test Mode)

	10.4.2 Real-Time Interrupt (RTI) Function
	10.4.3 Computer Operating Properly (COP) Watchdog Function
	10.4.4 Tips for Clearing Timer Flags

	10.5 Input-Capture Functions
	10.5.1 Programmable Options
	10.5.2 Using Input Capture to Measure Period and Frequency
	10.5.3 Using Input Capture to Measure Pulse Width
	10.5.4 Measuring Very Short Time Periods
	10.5.5 Measuring Long Time Periods with Input Capture and Overflow
	10.5.6 Establishing a Relationship between Software and an Event
	10.5.7 Other Uses for Input-Capture Pins

	10.6 Output-Compare Functions
	10.6.1 Normal Input/Output Pin Control Using OC5–OC2
	10.6.2 Advanced Input/Output Pin Control Using OC1
	10.6.2.1 One Output Compare Controlling up to Five Pins
	10.6.2.2 Two Output Compares Controlling One Pin

	10.6.3 Forced Output Compares

	10.7 Timing Details for the Main Timer System
	10.8 Listing of Timer Examples

	Section 11. Pulse Accumulator
	11.1 Contents
	11.2 Introduction
	11.3 General Description
	11.3.1 Pulse Accumulator Block Diagram
	11.3.2 Pulse Accumulator Control and Status Registers

	11.4 Event Counting Mode
	11.4.1 Interrupting after N Events
	11.4.2 Counting More Than 256 Events

	11.5 Gated Time Accumulation Mode
	11.5.1 Measuring Times Longer Than the Range of the 8-Bit Counter
	11.5.2 Configuring for Interrupt after a Specified Time

	11.6 Other Uses for the PAI Pin
	11.7 Timing Details for the Pulse Accumulator

	Section 12. Analog-to-Digital Converter System
	12.1 Contents
	12.2 Introduction
	12.3 Charge-Redistribution A/D
	12.4 A/D Converter Implementation on MC68HC11A8
	12.4.1 MC68HC11A8 Successive-Approximation A/D Converter
	12.4.2 A/D Charge Pump and Resistor-Capacitor (RC) Oscillator
	12.4.3 MC68HC11A8 A/D System Control Logic
	12.4.4 A/D Control/Status Register (ADCTL)
	12.4.5 A/D Result Registers (ADR4–AD1)

	12.5 A/D Pin Connection Considerations

	Appendix A. Instruction Set Details
	A.1 Contents
	A.2 Introduction
	A.3 Nomenclature
	A.4 M68HC11 Instruction Set
	ABA - Add Accumulator B to Accumulator A
	ABX - Add Accumulator B to Index Register X
	ABY - Add Accumulator B to Index Register Y
	ADC - Add with Carry
	ADD - Add without Carry
	ADDD - Add Double Accumulator
	AND - Logical AND
	ASL - Arithmetic Shift Left
	ASLD - Arithmetic Shift Left Double Accumulator
	ASR - Arithmetic Shift Right
	BCC - Branch if Carry Clear
	BCLR - Clear Bit(s) in Memory
	BCS - Branch if Carry Set
	BEQ - Branch if Equal
	BGE - Branch if Greater than or Equal to Zero
	BGT - Branch if Greater than Zero
	BHI - Branch if Higher
	BHS - Branch if Higher or Same
	BIT - Bit Test
	BLE - Branch if Less than or Equal to Zero
	BLO - Branch if Lower (Same as BCS)
	BLS - Branch if Lower or Same
	BLT - Branch if Less than Zero
	BMI - Branch if Minus
	BNE - Branch if Not Equal to Zero
	BPL - Branch if Plus
	BRA - Branch Always
	BRCLR - Branch if Bit(s) Clear
	BRN - Branch Never
	BRSET - Branch if Bit(s) Set
	BSET - Set Bit(s) in Memory
	BSR - Branch to Subroutine
	BVC - Branch if Overflow Clear
	BVS - Branch if Overflow Set
	CBA - Compare Accumulators
	CLC - Clear Carry
	CLI - Clear Interrupt Mask
	CLR - Clear
	CLV - Clear Twos Complement Overflow Bit
	CMP - Compare
	COM - Complement
	CPD - Compare Double Accumulator
	CPX - Compare Index Register X
	CPY - Compare Index Register Y
	DAA - Decimal Adjust Accumulator A
	DEC - Decrement
	DES - Decrement Stack Pointer
	DEX - Decrement Index Register X
	DEY - Decrement Index Register Y
	EOR - Exclusive OR
	FDIV - Fractional Divide
	IDIV - Integer Divide
	INC - Increment
	INS - Increment Stack Pointer
	INX - Increment Index Register X
	INY - Increment Index Register Y
	JMP - Jump
	JSR - Jump to Subroutine
	LDA - Load Accumulator
	LDD - Load Double Accumulator
	LDS - Load Stack Pointer
	LDX - Load Index Register X
	LDY - Load Index Register Y
	LSL - Logical Shift Left
	LSLD - Logical Shift Left Double
	LSR - Logical Shift Right
	LSRD - Logical Shift Right Double Accumulator
	MUL - Multiply Unsigned
	NEG - Negate
	NOP - No Operation
	ORA - Inclusive OR
	PSH - Push Data onto Stack
	PSHX - Push Index Register X onto Stack
	PSHY - Push Index Register Y onto Stack
	PUL - Pull Data from Stack
	PULX - Pull Index Register X from Stack
	PULY - Pull Index Register Y from Stack
	ROL - Rotate Left
	ROR - Rotate Right
	RTI - Return from Interrupt
	RTS - Return from Subroutine
	SBA - Subtract Accumulators
	SBC - Subtract with Carry
	SEC - Set Carry
	SEI - Set Interrupt Mask
	SEV - Set Two’s Complement Overflow Bit
	STA - Store Accumulator
	STD - Store Double Accumulator
	STOP - Stop Processing
	STS - Store Stack Pointer
	STX - Store Index Register X
	STY - Store Index Register Y
	SUB - Subtract
	SUBD - Subtract Double Accumulator
	SWI - Software Interrupt
	TAB - Transfer from Accumulator A to B
	TAP - Transfer from Accumulator A to CCR
	TBA - Transfer from Accumulator B to A
	TEST - Test Operation (Test Mode Only)
	TPA - Transfer from CCR to Accumulator A
	TST - Test
	TSX - Transfer from SP to Index Register X
	TSY - Transfer from SP to Index Register Y
	TXS - Transfer from Index Register X to SP
	TYS - Transfer from Index Register Y to SP
	WAI - Wait for Interrupt
	XGDX - Exchange Double Accumulator and Index Register X
	XGDY - Exchange Double Accumulator and Index Register Y

	Appendix B. Bootloader Listings
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

