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[57] ABSTRACT

Determining the self-motion in space of an imaging
device (e.g., a television camera) by analyzing image
sequences obtained through the device. Three-dimen-
sional self-motion is expressed as a combination of rota-
tions about the horizontal and vertical camera axes and
the direction of camera translation. The invention com-
putes the rotational and translational components of the
camera self-motion exclusively from visual information.
Robust performance is achieved by determining the
direction of heading (i.e., the focus of expansion) as a
connected region instead of a single location on the
image plane. The method can be used to determine
when the direction of heading is outside the current
field of view and when there is zero or very small cam-
era translation.
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SYSTEM FOR COMPUTING THE SELF-MOTION
OF MOVING IMAGES DEVICES

FIELD OF THE INVENTION

The present invention pertains to imaging and partic-
ularly to three-dimensional interpretation of two-di-
mensional image sequences. More particularly, the in-
vention pertains to determination of three-dimensional
self-motion of moving imaging devices.

BACKGROUND OF THE INVENTION

Visual information is an indispensable clue for the
successful operation of an autonomous land vehicle.
Even with the use of sophisticated inertial navigation
systems, the accumulation of position error requires
periodic corrections. Operation in unknown environ-
ments or mission tasks involving search, rescue, or ma-
nipulation critically depend upon visual feedback.

Assessment of scene dynamics becomes vital when
moving objects may be encountered, e.g., when the
autonomous land vehicle follows a convoy, approaches
other vehicles, or has to detect moving threats. For the
given case of a moving camera, such as one mounted on
the autonomous land vehicle, image motion can supply
important information about the spatial layout of the
environment (“motion stereo”) and the actual move-
ments of the land vehicle.

Previous work in motion analysis has mainly concen-
trated on numerical approaches for the recovery of
three-dimensional (3-D) motion and scene structure
from two-dimensional (2-D) image sequences. The most
common approach is to estimate 3-D structure and
motion in one coinputational step by solving a system of
linear or non-linear equations. This technique is charac-
terized by several severe limitations. First, it is known
for its notorious noise-sensitivity. To overcome this
problem, some researchers have extended this tech-
nique to cover multiple frames. Secondly, it is designed
to analyze the relative motion and 3-D structure of a
single rigid object. To estimate the egomotion of an
autonomous land vehicle (ALV), having the imaging
device or camera, and the accompanying scene struc-
ture, the environment would have to be treated as a
large rigid object. However, rigidness of the environ-
ment cannot be guaranteed due to the possible presence
of moving objects in the scene. The consequence of
accidentally including a moving 3-D point into the
system of equations, representing the imaged environ-
. ment, in the best case, would be a solution (in terms of
motion and structure) exhibiting a large residual error,
indicating some non-rigid behavior. The point in mo-
tion, however, could not be immediately identified from
this solution alone. In the worst case (for some forms of
motion), the system may converge towards a rigid solu-
tion (with small error) in spite of the actual movement
in the point set. This again shows another (third) limita-
tion: there is no suitable means of expressing the ambi-
guity and uncertainty inherent to dynamic scene analy-
sis. The invention, that solves the aforementioned prob-
lems, is novel in two important aspects. The scene struc-
ture is not treated as a mere by-product of the motion
computation but as a valuable means to overcome some
of the ambiguities of dynamic scene analysis. The key
idea is to use the description of the scene’s 3-D structure
as a link between motion analysis and other processes
that deal with spatial perception, such as shape-from-
occlusion, stereo, spatial reasoning, etc. A 3-D intepre-

2

tation of a moving scene can only be correct if it is
acceptable by all the processes involved.

Secondly, numeral techniques are largely replaced by
a qualitative strategy of reasoning and modeling. Basi-
cally, instead of having a system of equations approach-
ing a single rigid (but possibly incorrect) numerical
solution, multiple qualitative interpretations of the
scene are maintained. All the presently existing inter-

10 pretations are kept consistent with the observations
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made in the past. The main advantage of this approach
of the present invention is that a new interpretation can
be supplied immediately when the currently favored
interpretation turns out to be unplausible.

The problem of determining the motion parameters
of a moving camera relative to its environment from a
sequence of images is important for applications for
computer vision in mobile robots. Short-term control,
such as steering and braking, navigation, and obstacle
detection/avoidance are all tasks that can effectively
utilize this information.

SUMMARY OF THE INVENTION

The present invention deals with the computation of
sensor platform motion from a set of displacement vec-
tors obtained from consecutive pairs of images. It is
directed for application to autonomous robots and land
vehicles. The effects of camera rotation and translation
upon the observed image are overcome. The new con-
cept of “fuzzy” focus of expansion (FOE), which marks
the direction of vehicle heading (and provides sensor
rotation), is exploited. It is shown that a robust perfor-
mance for FOE location can be achieved by computing
a 2-D region of possible FOE-locations (termed “Fuzzy
FOE”) instead of looking for a single-point FOE. The
shape of this FOE is an explicit indicator of the accu-
racy of the result. Given the fuzzy FOE, a number of
very effective inferences about the 3-D scene structure
and motion are possible and the fuzzy FOE can be
employed as a practical tool in dynamic scene analysis.
The results are realized in real motion sequences.

The problem of understanding scene dynamics is to
find consistent and plausible 3-D interpretations for any
change observed in the 2-D image sequence. Due to the
motion of the autonomous land vehicle (ALV), contain-
ing the scene sensing device, stationary objects in the
scene generally do not appear stationary in the image,
whereas moving objects are not necessarily seen in
motion. The three main tasks of the present approach
for target motion detection and tracking are: (1) to
estimate the vehicle’s motion; (2) to derive the 3-D
structure of the stationary environment; and (b 3) to
detect and classify the motion of individual targets in
the scene. These three tasks are interdependent. The
direction of heading (i.e., translation) and rotation of the
vehicle are estimated with respect to stationary loca-
tions in the scene. The focus of expansion (FOE) is not
determined as a particular image location, but as a re-
gion of possible FOE-locations called the fuzzy FOE.
We present a qualitative strategy of reasoning and mod-
eling for the perception of 3-D space from motion infor-
mation. Instead of refining a single quantitative descrip-
tion of the observed environment over time, multiple
qualitative interpretations are maintained simulta-
neously. This offers superior robustness and flexibility
over traditional numerical techniques which are often
ill-conditioned and noise-sensitive. A rule-based imple-
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mentation of this approach is discussed results on real
ALYV imagery are presented.

The system of the present invention tracks stationary
parts of the visual environment in the image plane, using
corner points, contour segments, region boundaries and
other two-dimensional tokens as references. This results
in a set of 2-D displacement vectors for the selected
tokens for each consecutive pair of camera images. The
self-motion of the camera is modeled as two separate
rotations about horizontal and the vertical axes passing
through the lens center and a translation in 3-D space. If
the camera performs pure translation along a straight
line in 3-D space, then (theoretically) all the displace-
ment vectors extend through one particular location in
the image plane, called the focus of expansion (FOE)
under forward translation or focus of contraction
(FOC) under backward translation. The 3-D vector
passing through the lens center and the FOE (on the
image plane) corresponds to the direction of camera
translation in 3-D space.

The invention can provide the directions of instanta-
neous heading of the vehicle (FOE) within 1° and self
motions of moving imaging devices can be accurately
obtained. This includes rotations of =5° or larger in
horizontal and vertical directions. To cope with the
problems of noise and errors in the displacement field, a
region of possible FOE-locations (i.e., the fuzzy FOE)
is determined instead of a single FOE.

In practice, however, imaging noise, spatial discreti-
zation errors, etc., make it impractical to determine the
FOE as an infinitesimal image location. Consequently, a
central strategy of our method is to compute a region of
possible FOE-locations (instead of a single position)
which produces more robust and reliable results than
previous approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of the present
invention.

FIG. 2 is a diagram showing an extended application
of the invention to three-dimensional scene construct-
ing.

FIG. 3 shows a camera model and corresponding
coordinate system.

FIG. 4 illustrates a successive application of horizon-
tal and vertical rotation of the camera.

FIG. 5 diagrams the effect of a focus of expansion
location (FOE) for pure camera translation.

FIG. 6illustrates the concept of the FOE for discrete
time steps during the motion of a vehicle having the
camera.

FIG. 7 shows the amount of expansion from the FOE
for discrete time steps.

FIGS. 8q and 8b display a displacement field caused
by horizontal and vertical rotation and translation of the
camera and a derotated displacement field, respectively.

FIGS. 9a and 95 show an image plane and a rotation
space, respectively.

FIGS. 10g and 106 show mappings of a polygon from
rotation space to an image plane and vice versa, respec-
tively.

FIGS. 11a-fillustrate a changing rotation polygon.

FIG. 12 illustrates an intersection of displacement
vectors with a vertical line which, if moved, changes
the variance of intersection.

FIG. 13 shows a displacement field used to evaluate
various error functions.
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FIGS. 14a-d reveal the standard deviation of inter-
section at a vertical cross section at position x for differ-
ent amounts of vertical rotation.

FIGS. 15a-d reveal the standard deviation of inter-
section (square root) at a vertical cross section at posi-
tion x for different amounts of vertical rotation with no
horizontal rotation and with no pixel noise applied to
the image locations.

FIGS. 16a-d reveal the standard deviation of inter-
section (square root) at a vertical cross section at posi-
tion x for different amounts of vertical rotation with no
horizontal rotation and with =1 pixels of noise applied
to the image locations.

FIGS. 17a-d reveal the standard deviation of inter-
section (square root) at a vertical cross section at posi-
tion x for different amounts of vertical rotation with no
horizontal rotation and with =2 pixels of noise applied
to the image locations.

FIGS. 18a-d show the location of minimum intersec-
tion standard deviation under varying horizontal rota-
tion with the horizontal location of the FOE marked xf.

FIGS. 19a-d show the amount of minimum intersec-
tion standard deviation under varying horizontal rota-
tion and with no noise added to the image locations.

FIGS. 20a-d show the amount of minimum intersec-
tion deviation under varying horizontal rotation and
with 2 pixels noise added to the image locations.

FIG. 21 illustrates intersecting displacement vectors
with two vertical lines which lie on the same side of the
FOE.

FIGS. 22a-d show the correlation coefficient for the
intersection of displacement vectors at two vertical
lines under varying horizontal rotations with no noise
added.

FIGS. 23a-d show the correlation coefficient for the
intersection of displacement vectors at two vertical
lines under varying horizontal rotations and with =2
pixels of noise added to the image locations.

FIG. 24 illustrates displacement vectors and measure-
ment of their error.

FIG. 25 shows how to determine the optimum two-
dimensional shift for a set of displacement vectors.

FIG. 26 reveals how FOE locations are dismissed if
the displacement field resulting from the application of
the optimal shift results in a vector not pointing away
from the FOE.

FIGS. 27a-d illustrate the displacement field and
minimum error at selected FOE locations.

FIGS. 28a-e¢ display the effects of increasing the
average length of displacement vectors upon the shape
of the error function.

FIGS. 29a-¢ display the effects of increasing residual
rotation in a horizontal direction upon the shape of the
error function for relatively short vectors.

FIGS. 30a-¢ display the effects of increasing residual
rotation in a vertical direction upon the shape of the
error function for relatively short vectors.

FIGS. 31a-e show the effects of increasing residual
rotation in horizontal and vertical directions upon the
shape of the error function for relatively short vectors.

FIGS. 31/~ indicate the amount of optimal linear
shift obtained under the same conditions in FIGS.
3la-e.

FIGS. 32a-e show the effects of the uniform noise
applied to image point coordinates for a constant aver-
age vector length.

Exhi
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FIGS. 33a¢ and 33b reveal the different effects of
uniform noise applied to image point coordinates for
shorter and longer average vector lengths, respectively.

FIG. 34 reveals a side view of a camera traveling
parallel to a flat surface.

FIGS. 35a-i show an original image sequence taken
from a moving vehicle after edge detection and point
detection with the selected points located at the lower-
left corners of their marks.

FIG. 35j—p show the original image sequence after
edge detection and point selection.

FIG. 36a-p illustrate the displacement vectors and
estimates of vehicles motion for the image sequence
shown in FIGS. 35a-p.

FIG. 37 illustrates a specific hardware implementa-
tion of the embodiment of the invention.

DESCRIPTION OF THE PRESENT
EMBODIMENT

FIGS. 1 and 2 reveal the main portions of the present
invention. FIG. 2 also expands on 3-D interpretations of
2-D images in items 118 and 120. Item 116 incorporates
portions of items 122 and 124 of FIG. 1. First, signifi-
cant features (points, boundaries, corners, etc.) are ex-
tracted by feature extraction and tracking 114 from the
image data 112 and the 2-D displacement vectors are
computed for this set of features. For the examples
shown here, points were selected and tracked between
individual frames by item 114. Automatic techniques
suitable for this task are in the related art. In the second
step, the vehicle’s direction of translation, i.e. the focus
of expansion (FOE), and the amount of rotation in space
are determined. The effects of vehicle motion on the
FOE computation is described below. Nearly all the
necessary numerical computation is perforated in the
FOE computation stage, which also is described below.
The third step (at 2-D change analysis 118) constructs
an internal 3-D model of the scene. Also disclosed are
the concepts and operation of the qualitative scene
model 120. Experiments with the present invention on
real imagery taken from a moving ALV are discussed
below.

System 110 contains the following three main com-
ponents—token tracking 114, FOE seeker 124 and opti-
mal derotation 122—in FIG. 1. The 2-D displacement
vectors for selected image tokens are determined in the
first stage (token tracking 114). Since those original
displacement vectors are caused by some arbitrary and
(at this point) unknown camera motion, including cam-
era rotations, they do not yet exhibit the characteristic
radial pattern of pure camera translation.

The second component (FOE seeker 124) selects a set
of candidate locations for the FOE and forms a con-
nected image region of feasible FOE-locations plus the
range of corresponding camera rotations, based on the
results from the third component (optimal derotation
122). A particular FOE-location is feasible, if the corre-
sponding error value (computed by the optimal derota-
tion module 122) is below some dynamically adjusted
threshold. The size of the final FOE-region reflects the
amount of uncertainty contained in the visual informa-
tion (large regions reflect high uncertainty).

The third component (optimal derotation 122) deter-
mines the optimal 3-D camera rotations for a particular
(hypothesized) FOE-location. This is accomplished by
simulating the effects of reverse camera rotations upon
the given set of displacement vectors. The camera is
virtually rotated until the modified displacement field is
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closest to a radial expansion pattern with respect to the
selected FOE-location. Module 122 returns the neces-
sary amount of reverse rotation and the deviation from
a radial displacement field (i.e., an error value).

Component 123, comprising FOE seeker 124 and
optimal derotation 122, represents the fuzzy FOE
means which outputs the region of possible FOE loca-
tions.

The first step of the present invention is to estimate
the vehicle’s motion relative to the stationary environ-
ment using visual information. Arbitrary movement of
an object in 3-D space and thus the movement of the
vehicle itself can be described as a combination of trans-
lation and rotation. While knowledge about the com-
posite vehicle motion is essential for control purposes,
only translation can supply information about the spa-
tial layout of the 3-D scene (motion stereo). This, how-
ever, requires the removal of all image effects results
from vehicle rotation. For this purpose, we discuss the
changes upon the image that are caused by individual
application of the “pure” motion components.

It is well-known that any rigid motion of an object in
space between two points in time can be decomposed
into a combination of translation and rotation. While
many researchers have used a velocity-based formula-
tion of the problem, the following treatment views mo-
tion in discrete time steps.

The viewing geometry involves a world coordinate
system, (XYZ) as illustrated in FIG. 3. FIG. 3 shows
the camera-centered coordinate system 130, lens center
126, image plane 128, and angles ¢, 8 and Vs of rotation.
The origin 0 of coordinate system 130 is located at lens
center 126. Focal length f is the distance between lens
center 126 and image plane 128. Each 3-D point (XYZ)
may be mapped onto image location (X,Y). Angles ¢, 6
and Vs specify angles of camera rotation about the X,Y
and Z axes, respectively. Given the world coordinate
system, a translation T=(U V W)T applied to a point in
3-D X=(X 'Y Z)Tis accomplished through vector addi-
tion:

&)

N o~ >

U
v+
w

A 3-D rotation R about an arbitrary axis through the
origin of coordinate system 130 can be described by
successive rotations about its three axes:

R = R¢R9R|p where 2)

- 3
10 [\] @)

0 cos¢ —sind
0 sing cosd

rotation about the X-axis,

- (3b)
cos@ 0 sinf
=0 1 0

—sinf 0 cosf

rotation about the Y-axis,

= (3e)
cosyy siny O
—siny cosy O

Lo 0o 1

rotation about the Z-axis.
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A general rigid motion in space consisting of transla-
tion and rotation is described by the transformation
M:X—X'=RgRgR(T+X) @

Its six degrees of freedom are U, V, W, ¢, 0, .

This decomposition is not unique because the transla-
tion could be as well applied after the rotation. Also,
since the multiplication of the rotation matrices is not
commutative, a different order of rotations would result
in different amounts of rotation for each axis. For a
fixed order of application, however, this motion decom-
position is unique.

To model the movements of the vehicle, the camera
is considered as being stationary and the environment as
being moving as one single rigid object relative to the
camera. The origin 0 of coordinate system 130 is located
in the lens center 126 of the camera.

The given task is to reconstruct the vehicle’s or the
camera’s egomotion from visual information. It is there-
fore necessary to know the effects of different kings of
vehicle or camera motion upon the camera image.
Under perspective imaging, a point in space X=X Y
Z)T is projected onto a location on the image plane
X=(X Y)Tsuch that

where f is the focal length of the camera (see FIG. 3).

The effects of pure camera rotation are accounted
for. Ignoring the boundary efforts when the camera is
rotated around its lens center 126, the acquired image
changes but no new views of the environment are ob-
tained. Pure camera rotation merely maps the image
into itself. The most intuitive effect results from pure
rotation about the Z-axis of the camera-centered coor-
dinate system 130, which is also the optical axis. Any
point in the image moves along a circle centered at the
image location x=(0 0 ). In practice, however, the
amount of rotation Y of the vehicle about the Z-axis is
small. Therefore, vehicle rotation is confined to the X-
and Y-axis, where significant amounts of rotation occur.

The vehicle or camera undergoing rotation about the
X-axis by an angle - ¢ and the Y-axis by an angle - 0
moves each 3-D point X to point X' relative to the
camera.

X—X'=R¢.Rp.X 6)
cos@ Q sind X

— | singsing cos¢ —sindcose Y
—~cosdsing sindg  cospcosh zZ

Consequently x, the image point of X, moves tp x’ given
by

X cosf + Zsinf
—X cosdsing + Y sind + Z cosdcoséd

X =f (7a)

, X sindsin@ + Y cosd — Z sindcost

(7o)
ry=rs —X cospsing + Ysind + Z cosdcosd

Inverting the perspective transformation for the origi-
nal image point x yields.
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The 2-D rotation mapping rgrewhich moves each
image point x=(x y) into the corresponding image point
x"=(x'y’) under camera rotation R¢R74 (i.e., a particular
sequence of “pan” and “tilt” is given by

RpRe(X): X = X
rero(x): x = (xy) = x' = (xy)

(92)

X =f x cos@ sinf
7/ —~xcosdsind + p sing + fcosdcosd

x singsin@ + y cosd — fsindcos

It is important to notice that this transformation con-
tains no 3-D variables and is therefore a mapping of the
image onto itself. This demonstrates that no additional
information about the 3-D structure of the scene can be
obtained under pure camera rotation.

An interesting property of this mapping should be
mentioned at this point, which might not be obvious.
Moving an image point on a diagonal passing through
the center of the image at 45° by only rotating the cam-
era does not result in equal amounts of rotation about
the X- and the Y-axis. This is again a consequence of the
successive application of the two rotations Rgand R¢,
since the first rotation about the Y-axis also changes the
orientation of the camera’s X-axis in 3-D space. It also
explains why the pair of equations in (7) is not symmet-
ric with respect to 6 and ¢.

In measuring the amount of camera rotation, the
problem to be solved is the following: Given are two
image locations xo and x1, which are the observations of
the same 3-D point at time to and time t;. The question
here is the amount of rotation Ryoo and R7s which ap-
plied to the camera between time toand time t1, would
move image point Xo onto X assuming that no camera
translation occurred at the same time. If Rgand Ry4 are
applied to the camera separately, the points in the image
move along hyperbolic paths. If pure horizontal rota-
tion were applied to the camera, a given image point xo
would move on a path described by

(10)

2+ x2
ro(xo): ¥ = ¥ m

Similarly pure vertical camera rotation would move an
image point x; along

11
ro(x1): x* = x an

2 L2
£+

Since the 3-D rotation of the camera is modeled as
being performed in two separate steps (Refollowed by
Ry), the rotation mapping rergcan also be separated into
refollowed by re. In the first step, applying pure (hori-
zontal) rotation around the Y-axis rg, point xp is moved
to an intermediate image location x.. The second step,
applying pure (vertical) rotation around the X-axis rg,
takes point X, to the final image location x;. This can be
expressed as
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ry 6 = rery, where &)

rg: xo = (xQv0) — xc = (xXc¥c)
rg: Xe = (xye) — x1 = (xw1)

FIG. 4 reveals a successive application of horizontal
and vertical rotation. Image point X is to be moved to
location x1 by pure horizontal and vertical camera rota-
tion. Horizontal rotation (about the Y-axis) is applied
first, moving xo to x¢, which is the intersection point of
the two hyperbolic paths for horizontal and vertical
rotation. In a second step, xis taken to x1. Then the two
rotation angles 6 and ¢ are found directly. Further in
FIG. 4, the image point x.=(xcyc) is the intersection
point of the hyperbola passing through xg resulting from
horizontal camera rotation (10) with the hyperbola
passing through xi resulting from vertical camera rota-
tion (11). Intersecting the two hyperbolae gives the
image point x., with

xc = fx1 [
Je = o £+ 22+ 74
¢ R + 2202 + y21) — x2y2o

] (13a)

:'i (13b)
The amount of camera rotation necessary to map Xo

onto 1 by applying Refollowed by Rgyis finally obtained
as

£+ 2% + 5%
2 + 202 + ¥ — v

— 1% 1 X0 (14)
6 = tan 7 tan 7

Ce—iZe Y1 (15
¢ = tan i tan 7

When the vehicle or camera undergoes pure transla-
tion between time t and time t', every point on the vehi-
cle is moved by the same 3-D vector T=(U V W)T.
Again, the same effect is achieved by keeping the cam-
era fixed and moving every point X;in the environment
to X/ by applying -T.

Since every stationary point in the environment un-
dergoes the same translation relative to the camera, the
imaginary lines between corresponding points XX/ are
parallel in 3-D space.

It is a fundamental result from perspective geometry
that.the images of parallel lines pass through a single
point in the image plane called a “vanishing point.”
When the camera moves along a straight line, every
(stationary) image point seems to expand from this van-
ishing point or contract towards it when the camera
moves backwards. This particular image location is
therefore commonly referred to as the focus of expan-
sion (FOE) or the focus of contraction (FOC). Each
displacement vector passes through the FOE creating
the typical radial expansion pattern shown in FIG. 5.
FIG. 5 reveals the location of the FOE. With pure
vehicle translation, points in the environment (A,B)
move along 3-D vectors parallel to the vector pointing
from lens center 126 to the FOE in camera plane 128
(FIG. 3). These vectors form parallel lines in space
which have a common vanishing point (the FOE) in the
perspective image.

As can be seen in FIG 5, the straight line passing
through the lens center of the camera and the FOE is
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also parallel to the 3-D displacement vectors. There-
fore, the 3-D vector OF points in the direction of cam-
era translation in space. Knowing the internal geometry
of the camera (i.e., the focal length f), the direction of
vehicle translation can be determined by locating the
FOE in the image. The actual translation vector T ap-
plied to the camera is a multiple of the vector OF which
supplies only the direction of camera translation but not
its magnitude. Therefore,

T=AOF=A{xy/]7, AeR. (16)
Since most previous work incorporated a velocity-
based model of a 3-D motion, the focus of expansion has
commonly been interpreted as the direction of instanta-
neous heading, i.e., the direction of vehicle translation
during an infinitely short period in time. When images
are given as “snapshots” taken at discrete instances of
time, the movements of the vehicle must be modeled
accordingly as discrete movements from one position in
space to the next. Therefore, the FOE cannot be inter-
preted as the momentary direction of translation at a
certain point in time, but rather as the direction of accu-
mulated vehicle translation over a period of time.

FIG. 6 illustrates the concept of FOE for discrete
time steps. The motion of vehicle 132 between two
points in time can be decomposed into a translation
followed by a rotation. The image effects of pure trans-
lation (FOE,) are observed in image I,. FIG. 6 shows
the top view of vehicle 132 traveling along a curved
path at two instances in time toand t;. The position of
the vehicle 132 in space is given by the position of a
reference point on the vehicle P and the orientation of
the vehicle is Q. FIG. 6 also displays the adopted
scheme of 3-D motion decomposition. First, the transla-
tion T is applied which shifts the vehicle’s reference
point (i.e., lens center 126 of the camera) from position
Poto position Py without changing the vehicle’s orienta-
tion . The 3-D translation vector T intersects image
plane 128 at FOE,. In the second step the vehicle is
rotated b w to the new orientation 1. Translation T
transforms image Ipinto image I'y, which again is trans-
formed into I by rotation w. The important fact is that
FOE, is observed at the transition from image Ip to
image I'y, which is obtained by derotating image I by
— . Throughout the present description , this scheme
(FIG. 6) is used as a model for vehicle or camera mo-
tion.

The amount of camera translation can be measured.
FIG. 7 shows the geometric relationships for the 2-D
case. The amount of expansion from the FOE for dis-
crete time steps is illustrated. FIG. 7 can be considered
as a top view of the camersa, i.e., a projection onto the
X/Z-plane of the camera-centered coordinate system
130. The cross section of the image plane is shown as a
straight line. The camera moves by a vector T in 3-D
space, which passes through lens center 126 and the
FOE in camera plane 128. The 3-D Z-axis is also the
optical axis of the camera. The camera is translating
from left to right in the direction given by T=(XA)T.

" A stationary 3-D point is observed at two instances of
time, which moves in space relative to the camera from
X to X', resulting in two images x and x'.
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w=[fJmor =7 223 ]

Using the inverse perspective (8) transformation yields

an

=L xand (18)
X
z=z-az=Lxr-Lx-an
From similar triangles (shaded in FIG. 7)
AX _ AZ (19)
xf I
and therefore
Z=AZ;V—=A21+X,.—XJ‘. (20)
X —Xx X — X

Thus, the rate of expansion of image points froimn the
FOE contains direct information about the distance of
the corresponding 3-D points from the camera. Conse-
quently, if the vehicle is moving along a straight line
and the FOE has been located, the 3-D structure of the
scene can be determined from the expansion pattern in
the image. However, the distance Z of a 3-D point from
the camera can only be obtained up tot he scale factor
AZ, which is the distance that the vehicle advanced
along the Z-axis during the elapsed time.

When the velocity of the vehicle (AZ /t) in space is
known, the absolute range of any stationary point can
be computed. Alternatively, the velocity of the vehicle
can be obtained if the actual range of a point in the scene
is known (e.g., from laser range data). In practice, of
course, any such technique requires that the FOE can
be located in a small area, and the observed image
points exhibit significant expansion away from the
FOE. As shown below, imaging noise and camera dis-
tortion pose problems in the attempt to assure that both
of the above requirements are met.

If a set of stationary 3-D points {(X;X/)}is observed,
then of course the translation in the Z-direction is the
same for every point.

Zi~2'i=2;—Zj=AZ for all i,j. @
Therefore, the range of every point is proportional to
the observed amount of expansion of its image away
from the FOE

x'i — xf
X' — xi

@)

Zi= « ,

which renders the relative 3-D structure of the set of
points.

The effects of camera translation T can be formulated
as a mapping t of a set of image locations {x;} into an-
other set of image locations {x';}. Unlike in the case of
pure camera rotation, this mapping not only depends
upon the 3- D translation vector but also upon the ac-
tual 3-D location of each individual point observed.
Therefore, in general, t is not simply a mapping of the
image onto itself. However, one important property of
t can be described exclusively in image plane 128,
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12
namely that each point must map onto a straight line
passing through the original point and one unique loca-
tion in the image (the FOE). This means that if vehicle
132 is undergoing pure translation , then there must
exist an image location xssuch that the mapping t satis-
fies the condition radial-mapping t (x4 I, I'):

t = {(xpxDeIxl | x'; = xi + pilxi — %P, (23)

pieR, pi = 0}.

When the vehicle is not undergoing pure translation
or rotation but combined 3-D motion (i.e., translation
and rotation) of the form R¢R4T, the effects in the
image are described by a transformation d (for displace-
ment) which is a combination f rgreand t:

d:I—T'=ry0 rot (D), Q24
wherein I={x;}, I'={x';} are the two sets of corre-
sponding image points. FIG. 8a and 8b show a typical
displacement field for a camera undergoing horizontal
and vertical rotation as well as translation. The points
x;€ I are marked with small circles 138. Rectangle 134
marks the area of search for the FOE. The derotated
displacement is illustrated in FIG. 86 with the FOE
marked by circle 136.

By decomposing a composite displacement field d
into its three components ry, s, and t, the vehicle’s
rotation and direction of translation in space can be
computed from the information available in the image.
This problem is addressed below. As discussed in the
previous section, the 3-D motion M of the vehicle is
modeled by a translation T followed by a rotation
Regabout the Y-axis and a rotation Rgabout the X-axis:

M=RgRgT. 25
This results in a mapping d from the original image Ipat
time Tp into the new image I; at time t).

D:lp—I1=rgrglo=r100 r6l'0 (26)
The intermediate image I'o (26) is the result of the trans-
lation component of the vehicle’s motion and has the
property of being a radial mapping (23). Unlike the two
images Ipand Iy, which are actually given, the image I'g
is generally not observed, except when the camera rota-
tion is zero. It serves as an intermediate result to be
reached during the separation of translational and rota-
tional motion components.

The question at this point is whether there exists more
than one combination of rotation mappings re and
rgwhich would satisfy this requirement, i.e., if the solu-
tion is unique. It has been pointed out above that the
decomposition of 3-D motion into R¢, Rg, Ry, and t is
unique for a fixed order of application. This does not
imply, however, that the effects of 3-D motion upon the
perspective image are unique as well.

Related art has shown that seven points in two per-
spective views sufficient to obtain a unique interpreta-
tion in terms of rigid body motion and structure, except
for a few cases where points are arranged in some very
special configuration in space. Further art reports com-
puter experiments which suggest that six points are
sufficient in many cases and seven or eight points yield
unique interpretations in most cases.
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Due to its design and the application, however, the
motion of a typical autonomous land vehicle (ALV) in
space is quite restricted. The vehicle can only travel
upright on a surface and its large wheelbase allows for
only relatively small changes in orientation. It is also
heavy and thus exhibits considerable inertia. Therefore,
the final motion parameters must lie within a certain
narrow range and it can be expected that a unique solu-
tion can be found even in cases when the number of

points is near or above the minimum.
The fact that

I'g=rg~! r¢'lll=tlo @7
suggests two different strategies for separating the mo-
tion components: (1) FOE from rotation—40 succes-
sively apply combinations of inverse rotation mappings
to1 ™ g1~ hrgr T g ~hrpr T lrgr !

to the second image I, until the resulting image I' is a
radial mapping with respect to the original image Io.
The locate the FOE xg in Ip and (2) rotation from FOE
—successively select FOE—Ilocations (different direc-
tions of vehicle translation) Xp, Xp, . . - Xz in the origi-
nal image Ip and then determine the inverse rotation
mapping rg;~ 'rg;~! that yields a radial mapping with
respect to the given FOE xg in the original image Io.

Both alternatives were investigated under the as-
sumption of restricted, but realistic vehicle motion, as
stated earlier. It turned out that the major problem in
the FOE-from-rotation approach is to determine if a
mapping of image prints is (or is close to being) radial
when the location of the FOE is unknown. Of course, in
the presence of noise, this problem becomes even more
difficult. The second approach was examined after it
appeared that any method which extends the given set
of displacement vectors backwards to find the FOE is
inherently sensitive to image degradations.

Although there have been a number of suggestions
for FOE-algorithms in the past, no results of implemen-
tations have been demonsstrated on real outdoor imag-
ery. One reason for the absence of useful results might
be that most researchers have tried to locate the FOE in
terms of a single, distinct image location. In practice,
however, the noise generated by merely digitizing a
perfect translation displacement field may keep the
resulting vectors from passing through a single pixel.
Even for human observers it seems to be difficult to
determine the exact direction of heading (i.e., the loca-

10

tion of the FOE on the retina). Average deviation of 50

human judgement from the real direction has been re-
ported to be as large as 10° and up to 20° in the presence
of large rotations. It was, therefore, an important prem-
ise in this work that the final algorithm should deter-
mine an area of potential FOE-locations (called the
“fuzzy FOE”) instead of a single (but probably incor-
rect) point.

The FOE may be obtained from rotation. In this
method, the image motion is decomposed in two steps.
First, the rotational components are estimated and their
inverses are applied to the image, thus partially “dero-
tating” the image. If the rotation estimate was accurate,
the resulting displacement field after derotation would
diverge from a single image location (the FOE). The
second step verifies that the displacement field is actu-
ally radial and determines the location of the FOE. For
this purpose, two problems have to be solved: (1) how
to estimate the rotational motion components without

14
knowing the exact location of the FOE, and (2) how to
measure the “goodness of derotation” and locate the
FOE.

The rotational components can be estimated. Each
vector in the displacement field is the sum of vector
components caused by cawmnera rotation and camera
translation. Since the displacement caused by transla-
tion depends on the depth of the corresponding points
in 3-D space (equation 18), points located at a large
distance from the camera are not significantly affected
by camera translation. Therefore, one way of estimating
vehicle rotation is to compute 8 and ¢from displace-
ment vectors which are known to belong to points at far
distance. Under the assumption that those displacement
vectors are only caused by rotation, equations 14 and 15
can be applied to find the two angles. In some situations,
distant points are selected easily. For example, points on
the horizon are often located at a sufficient distance
from the vehicle. Image points close to the axis of trans-
lation would be preferred because they expand from the
FOE slower than other points at the same depth. How-
ever, points at far distances may not always be available
or may not be known to exist in the image. In those
cases, the following method for estimating the rota-
tional components can be used. The design of the ALV
(and most other mobile robots) does not allow rapid
changes in the direction of vehicle heading. Therefore,
it can be assumed that the motion of the camera be-
tween two frames is constrained, such that the FOE can
change its location only within a certain range. If the
FOE was located in one frame, the FOE in the subse-
quent frame must lie in a certain image region around
the previous FOE location. FIG. 9a shows an image
plane which illustrates this situation. The FOE of the
previous frame was located at the center of square 140
which outlines the region of search for the current
FOE, thus the FOE in the given frame must be inside
square 140. Three displacement vectors are shown
P1-P1’, P2—P2’, P3—P3’). The translational compo-
nents (P1—Q1,P2—Q2, P3—Q3) of those displacement
vectors and the FOE (inside square 140) are not known
at this point in time but are marked in FIG. 9a.

The main idea of this technique is to determine the
possible range of camera rotations which would be
consistent with the FOE lying inside marked region
140. Since the camera rotates about two axes, the result-
ing range of rotations can be described as a region in a
2-D space. FIG. 9b shows this rotation space with the
two axes §and ¢corresponding to the amount of camera
rotation around the Y-axis and the X-axis, respectively.
The initial rotation estimate is a range of =10° in both
directions which is indicated by a square 142 in rotation
space of FIG. 9b.

In general, the range of possible rotations is described
by a closed, convex polygon in rotation space. A partic-
ular rotation (6, ¢') is possible if its application to every
displacement vector (i.e., to its endpoint) yields a new
vector which lies on a straight line passing through the
maximal FOE-region. The region of possible rotations
is successively constrained by applying the following
steps for every displacement vector (FIG. 10z and 10b).
First apply the rotation mapping defined by the vertices
of the rotation polygon to the endpoint P’ of the dis-
placement vector P—P’ 146. This yields a set of image
points P;. Second, connect the points P; to a closed
polygon 148 in the image. Polygon 148 is similar to the
rotation polygon 144 but distorted by the nonlinear
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rotation mapping as shown in FIG. 10a. Third, intersect
polygon 146 in the image with open triangle 150 formed
by the starting point P of the displacement vector 146
and defined by two tangents 152 and 154 onto the maxi-
mal FOE-region. Rotations that would bring the end-
point of the displacement vector outside triangle 150 are
not feasible. The result is a new (possibly empty) poly-
gon 156 in the image plane. Fourth, new polygon 156
from the image plane back into the rotation space of
FIG. 9b. Fifth, rotation polygon 158 is empty (number
of vertices is zero), then stop. No camera rotation is
possible that would make all displacement vectors inter-
sect the given FOE-region. Repeat the process using a
larger FOE-region.

FIGS. 11g, 115 and 11c show the changing shape of
the rotation polygon during the application of this pro-
cess to the three displacement vectors in FIG. 8.

Since the mapping from rotation space to the image
plane is nonlinear (equation 9), the straight lines be-
tween vertices in the rotation polygon 160 do not corre-
spond to straight lines in the image. They are, however,
approximated as straight lines in order to simplify the
intersection with the open triangle. The dotted lines in
the image plane show the actual mapping of the rotation
polygon onto the image. It can be seen that the devia-
tions from straight lines are small and can be neglected.
FIG. 11a shows rotation polygon after examining dis-
placement vector P1—-P1'. Any camera rotation inside
the polygon would move the endpoint of the displace-
ment vector (P1) into the open triangle formed by
targets 164 and 166 through P1 to the maximal FOE-
region given by square 68 in the image plane. The actual
mapping of the rotation polygon into the image plane is
shown with a dotted outline.

FIG. 115 reveals the rotation polygon 170 after exam-
ining displacement vectors P1—>P1’ and P2—P2'.

FIG. 11(c) shows the final rotation polygon after
examining the three displacement vectors P1—P1’,
P2->P2'and P3—P3'. The amount of actual camera
rotation (8= —2.0°, =5.0°) is marked with a small
circle (arrow) 172.

Increasing the number of displacement vectors im-
proves the rotation estimate. In practice, the amount of
camera rotation can be constrained to a range of below
1° in both directions. Rotation can be estimated more
accurately when the displacement vectors are short,
i.e., when the amount of camera translation is small.
This is in contrast to estimating camera translation
which is easier with long displacement vectors.

The situation when the rotation polygon becomes
empty requires some additional considerations. As men-
tioned earlier, in such a case no camera rotation is possi-
ble that would make all displacement vectors pass
through the given FOE-region. This could indicate one
of the two alternatives. First, at least one of the dis-
placement vectors belongs to a moving object. Second,
the given FOE-region does not contain the actual loca-
tion of the FOE, i.e., the region is not feasible. The
latter case is of particular importance. If a region can be
determined not to contain the FOE, then the FOE must
necessarily lie outside this region. Therefore, the above
method can not only be used to estimate the amount of
camera rotation, but also to search for the location of
the FOE. Unfortunately, if the rotation polygon does
not become empty, this does not imply that the FOE is
actually inside the given region. It only means that all
displacement vectors would pass through this region,
not that they have a common intersection inside this
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region. However, if not all vectors pass through a cer-
tain region, then this region cannot possibly contain the
FOE. The following recursive algorithm searches a
given region for the FOE by splitting it into smaller
pieces (divide-and-conquer):

MIN-FEASIBLE (region, min-size, disp-vectors):
if SIZE (region) < min-size then return (region)
else

if FEASIBLE (region, disp-vectors) then

return (union)

MIN-FEASIBLE (sub-region-1, min-size,
disp-vectors),

MIN-FEASIBLE (sub-region-2, min-size,
disp-vectors),

MIN-FEASIBLE (sub-region-n, min-size,
disp-vectors)))
else return (nil) {region does not contain the FOE}

This algorithm searches for the smallest feasible FOE-
region by systematically discarding sub regions from
further consideration. For the case that the shape of the
original region is a square, subregions can be obtained
by splitting the region into four subsquares of equal size.
The simple version shown here performs a depth-first
search down to the smallest subregion (limited by the
parameter “min-size”), which is neither the most ele-
gant nor the most efficient approach. The algorithm can
be significantly improved by applying a more sophisti-
cated strategy, for example, by trying to discard subre-
gions around the perimeter first before examining the
interior of a region. Two major problems were encoun-
tered with the latter method. First, the algorithm is
computationally expensive since the process of comput-
ing feasible rotations must be repeated for every subre-
gion. Second, a small region is more likely to be dis-
carded than a larger one. However, when the size of the
region becomes too small, errors induced by noise,
distortion or point-tracking may prohibit displacement
vectors from passing though a region which actually
contains the FOE.

Although this algorithm is not employed in the fur-
ther treatment, it suggests an interesting alternative
which departs significantly from traditional FOE-
algorithms. Its main attractiveness is that it is inherently
region-oriented in contrast to most other techniques
which search for a single FOE-location. For the pur-
pose of estimating the amount of rotation, the method
using points at far distance mentioned earlier is proba-
bly more practical. Two other alternatives for locating
the FOE once the rotation components have been esti-
mated are discussed in the following,.

Locating the FOE in a partially derotated image may
be attempted. After applying a particular derotation
mapping to the displacement field, the question is how
close the new displacement field is to a radial mapping,
where all vectors diverge from one image location. If
the displacement field is really radial, then the image is
completely derotated and only the components due to
camera translation remain. Two different methods for
measuring this property are noted. One method used the
variance of intersection at imaginary horizontal and
vertical lines. The second method computes the linear
correlation coefficient to measure how “radial” the
displacement field is. The variance of intersection in
related art suggests to estimate the disturbance of the
displacement field by computing the variance of inter-
sections of one displacement vector with all other vec-
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tors. If the intersections lie in a small neighborhood,
then the variance is sinall, which indicates that the dis-
placement field is almost radial. The problem can be
simplified by using an imaginary horizontal and vertical
line instead, whose orientation is not affected by differ-
ent camera rotations. FIG. 12 shows 5 displacement
vectors P1—P’ . . . Ps’ intersecting a vertical line at x at
y1...Ys. Moving the vertical line from x towards x¢
will bring the points of intersection closer together and
will thus result in'a smaller variance of intersection. The
point of intersection of a displacement vector Pi—P/
with a vertical line at x is given by

@8

—~

xy'i — yix'i
LA LA

xi— X';

The variance of intersection of all displacement vectors
with the vertical line at position x is

. 2
e s 5 A
N I:f,x,:,aéx’i i :] }

To find the vertical cross section with minimum in-
tersection variance, the first derivative of (29) with
respect to x is set to zero. The location xg of minimum
intersection variance is then obtained. Similarly, the
position of a horizontal cross section with minimal in-
tersection variance can be obtained.

The square root of the variance of intersection (stan-
dard deviation) at a vertical line was evaluated on the
synthetic displacement field shown in FIG. 13. The
actual FOE is located in the center of the image. Square
174 around the center (100 pixels in both directions)
marks the region over which the error functions are
evaluated.

FIGS. 14a, b, c and d show the distribution of the
intersection standard deviation for increasing residual
rotations in vertical direction in the absence of noise.
The horizontal rotation is 1° in all cases represented by
these Figures. Locations of displacement vectors are
presented by real numbers (not rounded to integer val-
ues). In FIG. 14a, no residual rotation exists, i.e., the
displacement field is perfectly radial. The value of the
horizontal position of the cross section varies 100
pixels around the actual FOE. The standard deviation is
zero for x=xs (the x-coordinate of the FOE) and in-
creases linearly on both sides of the FOE. In FIGS.
14b-d, the residual vertical rotation is increased from
0.2° to 1.0°, The bold vertical bar marks the horizonal
position of minimum standard deviation, the thin bar
marks the location of the FOE (Xj). It can be seen that
the amount of minimum standard deviation rises with
increasing disturbance by rotation, but that the location
of minimum standard deviation does not necessarily
move away from the FOE.

FIGS. 15-17 show the same function under the influ-
ence of noise. In FIG. 152-d, noise was applied except
that by merely rounding the locations of displacement
vectors to their nearest integer values. These Figures
show standard deviation of intersection (square root) at
a vertical cross section at position x for different
amounts of vertical rotation with no horizontal rotation.
Uniform noise of %1 pixels was added to the image
locations in FIGS. 16a-d. In FIGS. 17a-d, uniform
noise of £2 pixels was applied to the image locations. It
can be seen that the effects of noise are similar to the

29)
1
¥(x) = N I i,x,2 v Pi —
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effects caused by residual rotation components. The
purpose of this error function is to determine where the
FOE is located, and how “radial” the current displace-
ment field is.

If the displacement field is already perfectly dero-
tated, then the location of minimum intersection stan-
dard deviation is the location of the FOE. Ideally, all
vectors pass through the FOE, such that a cross section
through the FOE vyields zero standard deviation. The
question is how well the FOE can be located in an
image which is not perfectly derotated. FIG. 18a-d plot
the location of minimum intersection standard deviation
under varying horizontal rotation. The vertical rotation
is kept fixed for each plot. Horizontal camera rotations
from —1° to +-1° are shown on the abscissa (rot). The
ordinate (x0) gives the location of minimum standard

- deviation in the range of #=100 pixels around the FOE
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(marked xf). The location of minimum standard devia-
tion depends strongly on the amount of horizontal rota-
tion. '

A problem is that the location of minimum standard
deviation is not necessarily closer to the FOE when the
amount of rotation is less. The function is only well
behaved in a narrow range around zero rotation, which
means that the estimate of the camera rotation must be
very accurate to successfully locate the FOE. The sec-
ond purpose of this error function is to measure how
“radial” the displacement field is after partial derota-
tion. This should be possible by computing the amount
of minimum intersection standard deviation. Intuitively,
a smaller amount of minimum intersection standard
deviation should indicate that the displacement field is
less disturbed by rotation. FIGS. 19a-d and 20a-d show
that this is generally true by showing the amount of
minimum intersection standard deviation under varying
horizontal rotation. For the noise-free case in FIG. 19,
the amount of minimum intersection standard deviation
becomes zero in the absence of horizontal and vertical
rotations, indicating that the derotation is perfect. Un-
fortunately, the function is not well behaved even in this
relatively small range of rotations (%1.0°). The curve
exhibits some sharp local minima where an algorithm
searching of an optimal derotation would get trapped
easily. FIGS. 19a-d show the same function in the pres-
ence of £2 pixels of uniform noise added to image
locations.

The second method, utilizing linear correlation, of
measuring how close a displacement field is to a radial
pattern again uses the points y11-yi15 and y21-yas of
intersection at vertical (or horizontal) lines x1 and x as
illustrated in FIG. 21. The displacement vectors
P;—P'; through Ps—P’s are intersected by two vertical
lines X1 and X3, both of which lie on the same side of
the FOE that is within area 176. Since the location of
the FOE is not known, the two lines X; and X; are
simply located at a sufficient distance from any possible
FOE-location. This results in two sets of intersection
points {(x1, y1)} and {(x2, y2)}. If all displacement
vectors emanate from one single image location, then
the distances between corresponding intersection points
in the two sets must be proportional, i.e,

s - 30
Yy yx{ Pk ol ik (30)
Y=Yy o ¥y Yk

Therefore, a linear relationship exists between the verti-
cal coordinates of intersection points on these two lines.
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The “goodness” of this linear relationship is easily mea-
sured by computing the correlation coefficient for the
y-coordinates of the two sets of points. The resulting
coefficient is a real number in the range from —1.0 to
+1.0. If both vertical lines are on the same side of the
FOE, then the optimal value is + 1.0. Otherwise, if the
FOE lies between the two lines, the optimal coefficient
is — 1.0. The horizontal position of the two vertical lines
is of no importance, as long as one of these conditions is
satisfied. For example, the left and right border lines of
the image can be used.

FIGS. 22a-d and 23a-d show plots for the correla-
tion coefficient for intersection of displacement vectors
at two vertical lines under varying horizontal rotations,
under the same conditions as in FIGS. 19¢-d and 20a-d.
No noise was applied for FIG. 224-d. In FIGS. 23g-d,
a uniform noise of £2 pixels was added to the image
locations. The optimal coefficient is +1.0 (horizontal
axis) in FIGS. 22a-d. The shapes of the curves of FIGS.
22a-d and 23g-d are similar, respectively, to FIGS.
19a-d and 20a-d for the minimum standard deviations
shown above earlier, with peaks at the same locations. It
is apparent, however, that each curve has several loca-
tions where the coefficient is close to the optimum value
(+1.0), i.e., no distinct global optimum exists which is
not only the case in the presence of noise (FIGS.
23a-d). This fact makes the method of maximizing the
correlation coefficient useless for computing the FOE.

The main problem encountered in computing the
FOE from rotation, just described above, is that none of
the functions examined was well behaved, making the
search for an optimal derotation and the location of the
FOE difficult. Disturbances induced by noise and resid-
ual rotation components are amplified by extending
short displacement to straight lines and computing their
intersections. The method, rotation from FOE, de-
scribed below avoids this problem by guessing an FOE-
location first and estimating the optimal derotation for
this particular FOE in the second step.

Given the two images Ip and I; of corresponding
points, the main algorithmic steps of this approach are:
(1) Guess an FOE-location xA? in image Io(for the cur-
rent iteration i); (2) Determine the derotation mapping
rg—!, ry—! which would transform image I; into an
image I't such that the mapping (xA9, Io, I'y) deviates
from a radial mapping (equation 23) with minimum
error E®; and (3) Repeat steps (1) and (2) until an FOE-
location x£%) with the lowest minimum error E®) is
found.

An initial guess for the FOE-location is obtained
from knowledge about the orientation of the camera
with respect to the vehicle. For subsequent pairs of
frames, the FOE-location computed from the previous
pair can be used as a starting point.

Once a particular xshas been selected, the problem is
to compute the rotation mappings ro—!and ry—! which,
when applied to the image I;, will result in an optimal
radial mapping with respect to Ip and xz

To measure how close a given mapping is to a radial
mapping, the perpendicular distances between points in
the second image (x'}) and the “ideal” displacement
vectors is measured. The “ideal” displacement vectors
line on straight lines passing through the the FOE xrand
the points in the first image x; (see FIG. 24) which illus-
trates measuring the perpendicular distance d; between
lines from xsthrough points x;in the second image. The
sum of the squared perpendicular distances d;is the final
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error measure. For each set of corresponding image
points (x;el, x'/€l'), the error measure is defined as

2 (€3]

1 xxi X ).yx’,-] .

Exp=SE=3d4=3| ———
(=3 Ei=%d i[lxml

In the following, it is assumed that the amount of
residual image rotation in horizontal and vertical direc-
tion is moderately small (less than 4°). In most practical
cases, this condition is satisfied, provided that the time
interval between frames is sufficiently small. However,
should the amount of vehicle rotation be very large for
some reason, a coarse estimate of the actual rotation can
be found (as described above) and applied to the image
before the FOE computation. With small amounts of
rotation, the actual rotation mapping, where points
move on horizontal and vertical hyperbolic paths, can
be approximated by a horizontal and vertical shift with
constant length over the entire image. Under this condi-
tion, the inverse rotation mapping r¢—!, re=! can be
approximated by a adding a constant vector s=(sxsy)
which is independent of the image location:

1'1=r9'1r¢‘111=8+11‘ (32)
Given two images I and I the error measure (equation
31) becomes

(33)
E(xps) = 3 [""X_T i X i + 9P ]
i jx's]|

where x; ¢ I and x'«€l. For a given FOE-location x4 the
problem is to minimize E with respect to the two un-
knowns sy and sy. To reduce this problem to a one-
dimensional search, one point xg, called the “guiding
point”, is selected in image I which is forced to maintain
zero error (see FIG. 25) wherein one vector xg is se-
lected from the set of displacement vectors to determine
the optimum 2-D shift to be applied to points x';, given
a FOE-location xz. First x'g is forced onto the line x/xg
and then the entire image I'={x'y, x5, . .. } is translated
in the direction of this line until the error value reaches
a minimum. Therefore, the corresponding point x'g must
lie on a straight line passing through xrand x,. Any shift
s applied to the image I' must keep x’g on this straight
line, so

X'g+s=xr+Mxg—xpfor all s, (34a)
for all s, and thus,
s=Xxf—xg+Mxg—xp) (AR). (34b)

For A=1, s=xg—x'g, which is the vector x';—x,. This
means that the image I' is shifted such that xg and x'g
overlap. This leaves A as the only free variable and the
error function (equation 33) is obtained as

EQ) = 3 M + Bi — CJ? 33
1

=N = 2 + 01— 32

Ai = 7 O = g = xp = (i = xpg = 3
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-continued
Bi = 7= 01 = ypi = ¥
Ci= # i = xp0'i — ¥'p-

Differentiating equation 35 with respect to A and forc-
ing the resulting equation to zero yields the parameter
for the optimal shift s,y as

3AiC; — ZA4;B
242

(36)
}‘Dpl =

The optimal shift syprand the resulting minimum error
Z(Agpr) for the given FOE-location xsis obtained by
inserting Aop: into equations (34b) and (35) respectively,
giving

Eninxp) = Moy 3%\ + Mgp(Z4:B; — 2ACH - G7)
23BC; + IB% + :C%

The normalized error E, shown in the following results
(shown in FIGS. 27-32) is defined as

En(xp = \] % Eminep

where N is the number of displacement vectors used for
computing the FOE.

Since in a displacement field caused by pure camera
translation all vectors must point away from the FOE,
this restriction must hold for any candidate FOE-loca-
tion (as illustrated in FIG. 25). If after applying sqp: (x)
to the second image I', the resulting displacement field
contains vectors pointing towards the hypothesized x5
then this FOE-location is prohibited and can be dis-
carded from further consideration such is the case at
point x; in FIG. 26. FIG. 26 shows a field of 5 displace-
ment vectors. The optimal shift se for the given xris
shown as a vector in the lower right-hand corner. When
Sopt is applied to point x';, the resulting displacement
vector (shown fat) does not point away from the FOE.
Since its projection onto the line x/x{ points towards the
FOE, it is certainly not consistent with a radial expan-
sion pattern.

The final algorithm for determining the direction of
heading as well as horizontal and vertical camera rota-
tions is the “find-FOE algorithm” which consists the
steps: (1) Guess an initial FOE x/0, for example the
FOE-location obtained from the previous pair of
frames; (2) Starting from x/, search for a location x/P*
where Emin (X/P?) is a minimum. A technique of steepest
descent is used, where the search proceeds in the direc-
tion of least error; and (3) Determine a region around
X#P* in which the error is below some threshold. The
search for this FOE-area is conducted at FOE-locations
lying on a grid of fixed width. In the examples shown,
the grid spacing is 10 pixels on both x- and y-directions.

The error function E(xy) is computed in time propor-
tional to the number of displacement vectors N. The
final size of the FOE-area depends on the local shape of
the error function and can be constrained not to exceed
a certain maximum M. Therefore, the time complexity
is OMN).

The first set of experiments was conducted on syn-
thetic imagery to investigate the behavior of the error
measure under various conditions, namely, the average
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length of the displacement vectors (longer displacement
vectors lead to a more accurate estimate of the FOE),
the amount of residual rotation components in the im-
age, and the amount of noise applied to the location of
image points. FIGS. 27a-d shows the distribution of the
normalized error E, (x/) for a sparse and relatively short
displacement field containing 7 vectors. Residual rota-
tion components of 2° in horizontal and vertical di-
rection are present in FIGS. 27b-d to visualize their
effects upon the image. This displacement field was
used with different average vector lengths (indicated as
length-factor) for the other experiments on synthetic
data. The displacement vector through the guiding
point is marked with a heavy line. The choice of this
point is not critical, but it should be located at a consid-
erable distance from the FOE to reduce the effects of
noise upon the direction of the vector xmg FIGS.
27a-d, which show displacement field and minimum
error at selected FOE-locations, the error function is
sampled in a grid with a width of 10 pixels over an area
of 200 by 200 pixels around the actual FOE, which is
marked by small square 178. At each grid point, the
amount of normalized error is (equation 41) indicated
by the size of the circle 180. Heavy circles 180 indicate
error values which are above a certain threshold. Those
FOE-locations that would result in displacement vec-
tors which point towards the FOE (as described above)
are marked as prohibited (+). It can be seen that the
shape of the 2-D error function changes smoothly with
different residual rotations over a wide area and exhibits
its minimum close to the actual location of the FOE.
FIG. 27a represents no residual rotation, FIG. 27b rep-
resents 2.0° of horizontal camera rotation (to the left),
FIG. 27c¢ represents 2.0° of vertical rotation (upwards),
and FIG. 27d represents —2.0° vertical rotation (down-
wards).

FIGS. 28 to 33 show the effects of various conditions
upon the behavior of this error function in the same 200
by 200 pixel square round the actual FOE as in FIGS.
27a-d.

FIGS. 28a-e show how the shape of the error func-
tion depends upon the average length (with length fac-
tors varying from 1 to 15) of the displacement vectors in
the absence of any residual rotation or noise (except
digitization noise). The minimum of the error function
becomes more distinct with increasing amounts of dis-
placement. FIGS. 29a-¢ show the effect of increasing
residual rotation in horizontal direction upon the shape
of the error function for relatively short vectors (length
factor of 2.0) in absence of noise.

FIGS. 30g-¢ show the effect of residual rotation in
vertical direction upon the shape of the error function
for short vectors (length factor of 2.0) in absence of
noise. Here, it is important to notice that the displace-
ment field used is extremely nonsymmetric along the
Y-axis of the image plane. This is motivated by the fact
that in real ALV images, long displacement vectors are
most likely to be found from points on the ground,
which are located in the lower portion of the image.
Therefore, positive and negative vertical rotations have
been applied in FIGS. 30a-¢.

In FIGS. 31a-j, residual rotations in both horizontal
and vertical direction, respectively, are present, for
short vectors with a length factor of 2.0. In FIGS.
31a-e, the error function is quite robust against rota-
tional components in the image. FIGS. 31/~ show the
amounts of optimal linear shift s,5; under the same con-
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ditions. The result in FIG. 31e shows the effect of large
combined rotation of 4.0°/4.0° in both directions. Here,
the minimum of the error function is considerably off
the actual location of the FOE because of the error
induced by using a linear shift to approximate the non-
linear derotation mapping. In such a case, it would be
necessary to actually derotate the displacement field by
the amount of rotation equivalent to sgp found at the
minimum of this error function and repeat the process
with the derotated displacement.

The effects of various amounts of uniform noise ap-
plied to image point coordinates for a constant average
vector length of 5.0, are shown in FIGS. 32a-¢. For this
purpose, a random amount (with uniform distribution)
of displacement was added to the original (continuous)
image location and then rounded to integer pixel coor-
dinates. Random displacement was applied in ranges
from ==0.5 to 4.0 pixels in both horizontal and verti-
cal direction. The shape of the error function becomes
flat around the local minimum of the FOE with increas-
ing levels of the noise. The displacement field contains
only 7 vectors. What is observed here is that the abso-
lute minimum error increases with the amount of noise.
FIGS. 32a-¢ thus serve as an indicator for the amount
of noise present in the image and the reliability of the
final result.

The length of the displacement vectors is an impor-
tant factor. The shorter the displacement vectors are,
the more difficult it is to locate the FOE correctly in the
presence of noise. FIGS. 33a and 336 show the error
functions for two displacement fields with different
average vector lengths (length factor 2.0 and 5.0, re-
spectively). For the shorter displacement field (length-
factor 2.0) in FIG. 33, the shape of the error function
changes dramatically under the same amount of noise
(compare FIG. 31a). A search for the minimum error
(i.e., local minimum ) inevitably converge towards an
area 182 indicated by the small arrow, far off the actual
FOE. For the image with length-factor 5.0 (FIG. 33b),
the minimum of the error function coincides with the
actual location of the FOE 178. The different result for
the same constellation of points in the FIG. 324 is
caused by the different random numbers (noise) ob-
tained in each experiment. This experiment confirms
that a sufficient amount of displacement between con-
secutive frames is essential for reliably determining the
FOE and thus, the direction of vehicle translation.

The performance of this FOE algorithm is shown
below on a sequence of real images taken from a mov-
ing ALV. Also, it is shown how the absolute velocity of
the vehicle can be estimated after the location of the
FOE has been determined. The essential measure used
for this calculation is the absolute height of the camera
above the ground which is constant ad known. Given
the absolute velocity of the vehicle, the absolute dis-
tance from the camera of 3-D points in the scene can be
estimated using equation 20.

Next, velocity over ground may be computed. After
the FOE has been computed following the steps out-
lined above, the direction of vehicle translation and the
amount of rotation are known. From the derotated
displacement field and the location of the FOE, the 3-D
layout of the scene can be obtained up to a common
scale factor (equation 20). As pointed out above, this
scale factor and, consequently, the velocity of the vehi-
cle can be determined if the 3-D position of one point in
space is known. Furthermore, it is easy to show that it
is sufficient to know only one coordinate value of a
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point in space to reconstruct its position in space from
its location in the image.

Since the ALV travels on a fairly flat surface, the
road can be approximated as a plane which lies parallel
to the vehicle’s direction of translation (see FIG. 34).
This approximation holds at least for a good part of the
road in the field of view of the camera 184. FIG. 34
shows a side view of camera 184 traveling parallel to
flat surface 186. Camera 184 advances in direction Z,
such that a 3-D point on ground surface 186 moves
relative to camera 184 from Zgto Z;. Depression angle
& can be determined from the location of FOE 188 in
image 128. Height of camera 184 above ground surface
186 is given.

Since the absolute height of camera 184 above the
ground 186 is constant and known, it is possible to esti-
mate the positions of points 192 and 194 on road surface
186 with respect to the vehicle 132 (of FIG. 6) in abso-
lute terms. From the changing distances between points
192 and 194 and camera 184, the actual advancement
and speed can be determined.

First, a coordinate system 130 is introduced which
has its origin O in the lens center 126 of the camera 184.
The Z-axis of coordinate system 130 passes through
FOE 188 in the image plane 128 and aims in the direc-
tion of translation. The original camera-centered coor-
dinate system (X Y Z) 130 is transformed into the new
frame (X' Y' Z') merely by applying horizontal and
vertical rotation until the Z-axis lines-up with FOE 188,
The horizontal and vertical orientation in terms of
“pan” and “tilt” are obtained by “rotating” FOE 188
(x7yp) into the center of image 128 (OO) using equations

14 and 15 in the following:
o= a1 % o
(40)

- —tan-t| pp——o

The two angles ¢rand ¢srepresent the orientation of
camera 184 in 3-D with respect to the new coordinate
system (X' Y’ Z'). This allows determination of the 3-D
orientation of the projecting rays passing through image
points yoand yi by use of the inverse perspective trans-
formation. A3-D point X in the environment whose
image x=(xy) is given, lies on a

“én

X cosfy sinbssindys —sindy cosds
X={Y |=«x|0 cosdr sinds y
z sinfy —cosBssinds cosfy cosdr f

For points 192 and 194 on road surface 186 of FIG. 34,
the Y-coordinate is —h which is the height of camera
184 above ground 186. Therefore, the value of k; for a
point on the road surface (X ys) can be estimated as

—h

—— 42)
T yscosBy + fsindy

Ks

and its 3-D distance is found by inserting y; into equa-
tion 41 as
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Xssinfr — yscos@sindy — feosdcosds (43)

Zi= —h -
s yscosds + foings

If a point on the ground is observed at two instances
of time, x;at time t and x'; at t', the resulting distances
from the vehicle Z;at t and Z'sat t’ yield the amount of
advancement AZ; (t, t') and estimated velocity Vs (t, t')
in this period as

AZ(tt)=Zs— 25 44)
Vdtr) = EIS.._:_?L . (45)

Image noise and tracking errors have a large impact
upon the quality of the final velocity estimate. There-
fore, the longest available displacement vectors are
generally selected for this measurement, i.e., those vec-
tors which are relatively close to the vehicle. Also, in
violation of the initial assumption, the ground surface is
never perfectly flat. In order to partially compensate
these errors and to make the velocity estimate more
reliable, the results of the measurements on individual
vectors are combined. The length of each displacement
vector |x;—X';| in the image is used as the weight for its
contribution to the final result.

Given a set of suitable displacement vectors
S={xi—x'i}, the estimate of the distance traveled by the
vehicle is taken as the weighed average of the measure-
ments AZ; on individual vectors

-~ 2(]x; — x';|AZ) (46)
AZ@r) = —Sm ==

and the final estimate for the vehicle velocity is
Ve = t,A_Z —. @n

This computation was applied to a sequence of real
images which is described below.

In the following, results of the FOE-algorithm and
computation of the vehicle’s velocity over ground are
shown on a real image sequence taken from the moving
ALV. The original sequence was provided on standard
video tape with a frame-rate of 30 per second. Out of
this original sequence, images were taken in 0.5 second
intervals, i.e., at a frame rate of 2 per second in order to
reduce the amount of storage and computation. The
images were digitized to a spatial resolution of
512512, using only the Y-component (luminance) of
the original color signal.

FIGS. 35a-i show the edge image of frames 182-190
of an actual test, with points 1-57 being tracked and
labeled with ascending numbers. FIGS. 35q¢-i show the
original image sequence taken from the moving ALV
after edge detection and point detection. Selected points
1-57 are located at the lower-left corners of their marks.
FIGS. 35j-p (frames 191-197), which include additional
points 58-78, show the original image sequence taken
after edge detection and point selection. An adaptive
windowing technique was developed as an extension of
relaxation labeling disparity analysis for the selection
and matching of tracked points. The actual image loca-
tion of each point is the lower left corner of the corre-
sponding mark. The resulting data structure consists of
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a list of point observations for each image (time), e.g.,
time to: (P tox1 y1) (P2tox2 y2) (P3tox3y3) . . . ) time
t(Prtixiy) Patix2y2) Patixsys) . ..)

Points are given a unique label when they are encoun-
tered for the first time. After the tracking of a point has
started, its label remains unchanged until this point is no
longer tracked. When no correspondence is found in the
subsequent frame for a point being tracked, either be-
cause of occlusion, or the feature left the field of view,
or because it could not be identified, tracking of this
point is discontinued. Should the same point reappear
again, it is treated as a new item and given a new label.
Approximately 25 points per image have been selected
in the sequence shown in FIGS. 35¢-i. In the search for
the focus of expansion, the optical FOE-location from
the previous pair of frames is taken as the initial guess.
For the very first pair of frames (when no previous
result as available), the location of the FOE is guessed
from the known camera setup relative to the vehicle.
The points which are tracked on the two cars (24 and
33) are assumed to be known as moving and are not
used as reference points to compute the FOE, vehicle
rotation, and velocity. This information is eventually
supplied by the reasoning processes in conjunction with
the qualitative scene model (FIG. 2).

FIGS. 36a-p illustrative the displacement vectors and
estimates of vehicle motion for the image sequence
shown in FIGS. 35a—p. shaded area 190 marks the possi-
ble FOE locations and circle 178 inside of area 190 is the
FOE with the lowest error value. The FOE-ratio mea-
sures the flatness of the error function inside area 190.

Also, FIGS. 36a-p show the results of computing the
vehicle’s motion for the same sequence as in the previ-
ous Figure. Each frame t displays the motion estimates
for the period between t and the previous frame t—1.
Therefore, no estimate is available at the first frame
(182). Starting from the given initial guess, the FOE-
algorithm first searches for the image location, which is
not prohibited and where the error function (equation
35) has a minimum.

The optimal horizontal and vertical shift resulting at
this FOE-location is used to estimate the vehicle’s rota-
tions around the X- and Y-axis. This point, which is the
initial guess for the subsequent frame, is marked as a
small circle inside the shaded area. The equivalent rota-
tion components are shown graphically on a % 1° scale.
They are relatively small throughout the sequence such
that it was never necessary to apply intermediate dero-
tation and iteration of the FOE-search. Along with the
original displacement vectors (solid lines), the vectors
obtained after derotation are shown with dashed lines.

After the location with minimum error has been
found, it is used as the seed for growing a region of
potential FOE-locations. The growth of the region is
limited by two restrictions: (1) The ratio of maximum to
minimum error inside the region is limited, i.e.,

Eni/E"min =Pi§ Plim

(see equation 40 for the definition of the error function
En). No FOE-location for which the error ratio pf ex-
ceeds the limit p/im is joined to the region. Thus the final
size of the region depends on the shape of the error
function. In this example, the ratio p/im was set at 4.0.
Similarly, no prohibited locations (FIG. 26) are consid-
ered; (2) The maximum size of the region M is given by
the given FOE-region region regardless of their error
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values. The resulting error ratio pm®=max(p’) for the
points inside the region indicates the shape of the error
function for this area. A low value for the ratio pmax
indicates a flat error function. The value for pmex is
shown as FOE-RATIO in every image.

For the computation of absolute vehicle velocity,
only a few prominent displacement vectors were se-
lected in each frame pair. The criteria were that the
vectors be located below the FOE and that their length
be more than 20 pixels. The endpoints of the selected
(derotated) vectors are marked with dark dots. The
parameter used for the computation of absolute ad-
vancement is the height of the camera above the
ground, which is 3.3 meters (11 feet).

FIG. 37 illustrates hardware embodiment 200 of the
present invention. Camera 202 may be a Hitachi televi-
sion camera having a 48° vertical field of view and a 50°
horizontal field of view. Camera 202 may be set at a
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depression angle of 16.3° below the horion. Image se-
quence 204 acquired by camera 202 are transmitted to
tracking means 206 comprising an 128 processor 208 and
a VAX 11/750 computer 210. Tracking means 206
tracks tokens between frames of image sequences 204.
The output of means 206 goes to means 212 for match-
ing of tokens and corresponding images. For the two
different computers 210 and 218, a VAX-Symbolics
bidirectional network protocol means 214 is connected
between means 212 and means 216 which includes Sym-
bolics 3670 computer 218, though it is possible to use
one computer thereby eliminating means 214. Com-
puter 218 provides processing for obtaining fuzzy focus
of expansion and rotations/translation estimates of mo-
tion. The language environment used with computer
218 is Common LISP.

The methods and processes in the embodiment of the
present invention are implemented with the ensuing
programming.

common-|isp; Fonts: CPTFONT;

i .Hﬂﬂﬂﬂ"H#Hﬂﬂ#ﬂ###ﬂﬁif HHHHHE Y

Il!

(dofru le cruk-sl ngl o-fnn-'du

(deciare (saiience smaximum-saliences))

=)
#L (progn

-

(setq ?eframe-window~2+ ’frame-window-2)
(creste-window ?sframe-window-2« ’graphics

(+ ?«frame-origin-xs 15)
(= ?sframe-origin-ys 100)

(+ ?eframe-origin-xe ?shor-sizes 15)

(+ ?eframe-origin-ys ?ever-sizes -100)

*Image Plane 2 t)

(setg ?sframe-wdw-stream-2s (window-stream ?sframe-vindow-2¢))

(setg ?eframe-window-1e ’frame-window-1)
*graphics

(creats-window ?sframe-window-1s
(+ ?«frame-origin-xs 15)

(- ?sframe-origin-ys 100)

(+ ?eframe-origin-xs
(+ ?sframe-origin-ys
*"Image Plane 1" t)

?ex-disp-sizes 15)
?sy-disp-sizes -100)

(setq ?eframe-wdw-stream-1s (window-stream ?sframe-window-1¢))

(setg 7eframe-wdw-streams ?sframe-wdw-stream-2+)
(setq ?sframe-arrays (createa-shadow-array ?aframe-wdw-streams))
(setq ?Peframe-wdw-streams 7eframe-wdw-stream-1ls

?sframe-windows ?eframe-window-1e)
(setg ?sframe-arrayls (creste-shadoe-array 7eframe-wdw-streams))
(clear-zl-window ?sframe-wdw-streams))

R
(defrule create-multiplie-frame-wdws
(deciare (salience smaximum-saliences))
(block)
=5
(bind ?x-step (+ ?sx-sizes 28))
(bind ?y-step (+ 7sy-sizes 43))
(for row from 0 to 2 do
(for col from 0 to 3 do
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(bind ?wdwenr (+ (+ row 4) col))
(bind ?wdw (aref ?eframe-arraye ?wdw-nr))
(if (<= ?wdw=nr ?emax-frame-numbers) then
(crczto-'indo' ?wdw ’graphics
s col ?x-step) (» row ?y-step
(+ (= (+ col 1) ?x-step) 1% (¢ (s (+» row 1) ?y-step 1))
(format nil "t = ~,1F sec" (s« ?wdw-nr 0.5)) nil) ¢
(line 0 O ?sx~sizes 0 1 7 Pwdw)
(line O Pey-gizes ?ex-sizes Puy-sizes 1 7 ?wdw)
(lin@ 0 0 O ?sy-sizew 1 7 ?wdw)
(line ?ex~gizes O ?ex-sizes ?sy-sizes 1 7 ?wdw))))
( ;make window for tracas
creste-window ’trace-window ’graphics
(v 3 7x-stap) (s 2 ?y-step)
(+ (= (+3'1) Pxostep) 1) (s (s (+ 2 1) Py-step 1))
(format nil "Point Traces®) %)
(line 1 1 ?ex-sizes 1 2 7 ’trace-window)
(line 1 ?ey-sizes ?e¢x-sizes Psy-sizes 2 7 ’'trace-window)
(line1 11 ?sy-sizes 2 7 ’trace-window)
(line ?ex-sizes 1 Pex-sizes ?sy-sizes 2 7 ’trace-window)

i HE I

oo A HET B B R

'(c‘!‘sfrulo read-original-point-set

11
i
1

e
112
vee

(step read-data)
(cur-time ?ct ?)

=)
fL(let ((file=name

(make-snap-file~-name ?ct)))

(setg ?epoints-iists (read-new-facts file-name)) ;returns nil.if file nonexistant

(cond ((null ?epoints~|ists) (assert (end-of-data ?¢t)))
(¢t (eval 7spoints-lists))))

ké;frulo clear-displacement-|ist
(declare (saliencs smaximum-saliences))
(step read-data)
x>
§L(progn

(setq ?sdisp-origs ’
(setq ?sdisp-stats ’

0)]
Q)
(setq ?sdisp-mods '(})))

(defrule fill-displacement-|ist
(step read-data)
(cur-time ?ct ?pt)
(ip ?label ?ct ?x2 ?y2)
(ip ?1abel 7pt Tx1 ?yl)
(case

{(mob ?1abel)

2)

fL(push (list ?label
(= ?x1 ?soffset-hors)
(- ?yl ?soffset-vers)
(- ?x2 ?soffset-hors)
(- ?y2 ?eoffset-vers))
?sdisp-mobs))

(otherwise
=)
$L(push (list ?label
(- ?x1 ?so0ffset-hors)

HHHHHH SR
RUL ES - READING DATA

243 213 13 2 lllllll:;;lllll]j‘llllllllll;“l]lllllllllll#*’**
¥ ; Ul: s : IR ERRRERRRERRRARRRRRRR RS RARRRRRRRRRRRRRRRR N

3 23

111 {444 $ RUL ES - TRACING PQINTS

343 ryet 3 3 llljlllllll**‘ljllllllllllllllll‘lxlj“jjjjxlli**
Ty "y T [ 4 [ ERERSR SRR RRRRRtRRRRRRERRRERARRRRRRRSRARER RS
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(= ?yl ?eoffset-vers)
(- 7x2 ?soffset-hors)
(= ?y2 ?soffset-vers))
7sdisp-state)))
=>
$L(push (list ?label
(= ?x1 ?soffset-hors)
(= ?yl ?soffsat-vers)
(= ?x2 ?soffset-hors)
(- ?y2 7soffset-vers))
?+disp-origs)

)

,,.iiiii##iiii##i####i####i#iiii#iii#iiiiiiii#ii%##i####iii###fif#####i#i#i##
i HERHHEHHHHE RULES -

{::#ili#iii#fiiiii##i####ii#i####i#i#ii#ii#ii#iii##t#ii!!!ii#i!i##i####i####i

(defrule SWITCH-WINOOW

(declare (salience smaximum-saliences))

(cur-time ?ct ?)

(step display-data)

=)

L (setq ?sframe-wdw-streams ?«frame-wdw-strean-1s
?sframe-windowe 7sframe-window-1x)

)

e

(defrule SHOW-DISPLACEMENT
(declare (saliencs -1))
(cur-time ?ct ?)
(step display-data)
=)
(clear-zl-window ?sframe-wdw-streams)
(retrieve ?ct ?sframe-wdw-streame ?sframe-arrays)
(label-window ?sframe-windows (format nil "FRAME “D' ?ct))
(mark-|ist-of-points (cdr Tepoints-lists) ?ct ?sframe-wdw-streams)
(rectangle 0 0 (- ?sx-sizes 2) (- Pey-sizes 1) 1 7 ?«frame-windows)

(show-iabeled-disp 7edisp-origs ?eframe-wdw-streams t) ;dashed=nil solid=t
)
:::. i Hi ###i###‘f‘f#'#:##::::::5:#:#####:::::::;:5#:##55#
S tiiiis H #4344 R UL E S - FINDING THE FOE
a:;- iidiiiiiiE iiidittidisipaidtattasatiiiidiidtiiatitdidiiidiiiisaiad

(dcfrul- CLEAR-DEROTATED-DISPLACEMENTS
(deciars (salience smaximum-saliencss))
(step find-foe)
=)

§L(setg ?edisp-derots '(}))

{defrule WAKE-INITIAL-FOE-GUESS
(goal (foe-guess ? ? ?ct))
(cur-time ?ct ?pt)
(case
((foe-est ?xfp ?xyp ? ? 7pt)
=
>
(assert (foe-guess ?xfp 7xyp ?ct))) ;use previous FOE as new guess
(otherwise
=)
(assert (foe-guess 0 -8Q ?¢t))))

(defrule FIND-THE-FOE-ANO-DEROTATE
(step find-foe)
(cur-time ?ct 7)
(foe-guess ?xfg ?yfg ?ct)
=>
L(let ((theta 0.0) (phi 0.0) (advancement 0.0) (growstep 10))

(multiple-value-bind (foe-locations area error-ratio)
(find-foe ?xfg ?yfg 7sdisp-stats growstap)
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(setq ?efoe-locationss foe-locations)

(unlcns (endp foe~locations)
- (multiple-valus-bind (xf yf sx sy error) (vaiues-list (car foe-locations))

(multipie-value-setq (theta phi) (actual-rot xf yf (+ xf sx) (+ yf sy)))

(sstq ?+disp-derote (derotate ?edisp-origs theta phi))
(setq ?sdisp-stats (dcrotato ?sdisp-state theta phi))

(setq ?edisp-exts (set-min-max-dist ?sdisp-derots foe-locations 10))
- ;add new information to the dipiacement vectors

(show-iabeled-disp ?sdisp-derots ?sframe-wdw-streams nil) ;dashed lines

(mark-foe-area foe-locations growstep ?sframe-wdw-streams) ;stepsize = 10
(mark-foe-specs area error-ratio 270 600 ?sframe-windows)

(mark-rotation theta phi 50 80 400 ?»frame-windows)

(muitiple=value-sety
(advancement ?sdisp-references)
(speed-above-ground ?sdisp-stats foe-iocations 20))
(mark-speed-vectors ?sdisp-references ?sframe-windows)
(mark-advancement advancement 270 860 ?sframe-windows)

(assert (foe-est =(+ xf) =(+ yf) =(+s xf) =(+ yf) ?ct)

' (rot~est =(+ theta) =(+ phi) =(+ thets) =(+ phi) ?ct)
: (derotated 7ct))))))
) .
;;:#fllififiiilli!#;iii;;::;i#f’#i4#1*iiiiiiii#ii#if?f###iiiifi!if##fii###iii

i 1HHHIHHHIN
o HEHHHRBHERH BT HH T HBHEHHHHH B

(defruie write-results-to-fiie

(step write-data)

(cur-time ?ct ?)

(derotated ?ct)

(foe-est ?xfl ?yfl ?xf2 ?yf2 ?ct)

(rot-est 7rxl ?ryl ?rx2 ?ry2 ?ct)

=

>

$L(let
((fila=name (make-disp-file-name 7ct))
;assert foe-est, rot-est, displacement-list

(assert-list

(append
(list 'assert
(list ’foc—cst ?xf1 ?yfl 7xf2 ?yf2 Pct) ;center foe
(list ’rot-est ?rxl ?ryl ?rx2 ?ry2 ?ct) ;estim rotation
. (list 'foe-locations 7ct ?sfoe-locationss)) ;1ist of foe-locat
rons (mapcar §’(iambda (x) (cons ’dv (cons ?ct x))) '
?sdisp-exts)))) ;displacement vectors
(write-asssrtion assert-list file-name))
) .
A HEHHHHEH I
IIiII HHH R HH B

(d.frulc eliminate-old-points ;points (tracked)
(deciare (salience (+ sminimum-saliences 3)))
(cur-time ? 7past)
?to-kill ¢~ (point ? 7 ? ?tik:(< ?%i (- ?past 2)))
=)
(retract ?to-kill)

IRE)
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FRUDU:)skIee)DRIVE)croate)foefun.Iisp_s

D,#TD1PsT[Begin using 006 escapes] (0 O (NIL 0) (NIL NIL NIL) *CPTFONT®)(1 0 (NIL 0)
(NIL :BOLD-EXTENDED NIL) *CPTFONTB®)0;;; -e- Mode: LISP; Base: 10; Package: ART-USER

; syn
tax: common-lisp; Fonts: CPTFONT,CPTFONTB; Tab-Width: 4; -s-

té‘f:onstant
;neighborhood offsets, contains x/y-offsets for 8 neighbors
; .
i 131211 |
;141 101 => ex ¥V oay
; 151617}

ltnbioffto (make-array (8 2) :initial-contents
"((10) (1-1) (0-1) (-1 -1) (-10) (-11) (01) (1))
)

v -
11

&&;fun 1find-foe O(xf-guess yf-gusss disp-iist growstep)
(let

((bigstep 10) (smalistep 5) (disp-for-foe) (foe-iocations nil)
(final-size 16) (error-ratio 1))

(uniess (endp disp-list)
(setq disp-for-foe (select-guide-vector disp-list 100))

(initialize-search) ;restact the hash-table for quick references
; (show-error-grid xf-guess yf-guess step disp-for-foe)
(muttiple-valye-bind (found stuck xc yc err-c)

(search-pool xf-guess yf-guess -1.0 bigstep smalistep disp-for-ioe) ;s
earch for minimum ‘

(multiple-vaiue-setg (foe-~locations final-size error-ratio)

(grow-foe~area-2 xc yc final-size growstep disp-for-foe))))
;expand area

(caluos foe-locations final-size error-ratio)) ;riturn list of foe-locations (center i
s first)

12

11

XN

(defun 1select-guide-vector O(disp-list N)

;sort for lowest starting point vector

(ot ((disp-list-copy (copy-list disp-list)))

(keep-n-elsments (c!:sort disp-list-copy §’> :key §’third) N))

é‘fun keep-n-e/sments (a-list n)
;return only the first n eiements of a~list
(cond

)
(

((and (consp a-iist) (O n 0))
)§cons (car a-list) (keep-n-elements (cdr a-list) (-~ n 1))))
(¢ nil

iy - - -
2é‘fun show-error-grid (xf-guess yf-guess step disp-for-foe)

(do ((yf (- yf-quess 100) (+ yf step))) ((> yf (+ yf- 100
(do ((xf (- xf-guess 100) (+ xf 5509{))(((§ x?uzzsxf—gzlls 100)))

(multiple-value-bind (status x-shift y-shift error feasible)

f
ind-opt-shift xf yf disp-for-foe) (

(setq error, (= 1.0 (sqgrt error))) ; (sqrt error)
(cond
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((>= 8.0 error)
(circle (+ ?eoffset-hors xf) (+ ?soffset-vers yf)
(t error 1 7 'frame-window))
(circle (+ Psoffset-hors xf) (+ ?soffset-vers yf)
8 2 7 'frame-window)))
(uniess feasible
(line (+ ?eoffset-hors xf -4) (+ ?soffset-vers yf)
(+ ?7soffset-hors xf 4) (+ 7eoffset-vers yf) 1 7 'frame-window)
(lina (+ ?soffset-hors xf) (+ Peoffset-vers yf -4)

) (+ 7eoffsat~hors xf) (+ ?eoffset-vers yf 4) 1 7 'frame
-window))))) ,
)

11

IR K

(defun lactual-rot0 (x1 yl x2 y2) ;disp-vector vertex)
;; determine the hor/vertical rotation necsssary to move (x1 yl) into (x2 y2)
;;"disp-vector®= (xc yc¢ xd yd)
;i "vertex? = (xrot yrot xpos ypos tag)
(1ot ((xyf) (f-2 (float (= ?efocal-lengths ?sfocal-lengths)))

(y10-2) (x20-2) ;displacement on the axes
(xc) (ye)
(x1-2) (y1-2) (x2-2) (y2-2))

(sstq

x1-2 (» x1 x1) y1-2 (s yl y1)
x2-2 (s x2 x2) y2-2 (» y2 y2))
(setq
y10-2 (float (/ (s -2 yl-2) (+ -2 x1-2)))
x20-2 (float (/ (= f-2 x2-2) (+ f-2 y2-2))))
(setg xyf (/ (= x20-2 yl10-2) f-2))
;;find intersection of ths two hyperbolae

(setq xc (sqrt (/ (+ x20-2 xyf) (- 1.0 (/ xyf £-2))
(setg yc (sgrt (/ (» y10-2 (+ f-2 (« xc xc))) f-2))
(erite-line (format nil ""% “F “F' xc yc))
(cond ((¢ x2 0)
(setq xc (- xc))))
(cond ((< y1 0)
(setq yc (- ye))))
(values
(z1::/ (round (+ 100.0 57.29578
(atan (s ?afocal-lengths
(/ (- xc x1)
(» £=2 (s xc x1))))))) 100.0)
(z1::/ (round (« 100.0 57.29878
(atan (= ?sfocal-lengths
(/ (- y2yc)
(+ £-2 (» yc ¥2))))))) 100.0) xc yc))

M
)

)
(defun lactual-ro0 (x1 yl x2 y2) ;disp-vector vertex)
;; determine the hor/vertical rotation necessary to move (x1 yi) into (x2 y2)
;;'disp-vector®= (xc yc xd yd)
;;%vertex® = (xrot yrot xpos ypos tag)
(let ((xyf) (f-2 (float (= ?+focal-iengths ?sfocal-lengths)))
(yl10-2) (x20-2) ;displacement on the axes
(xc 0.0) (ye 0.0)
(x1-2) (y1-2) (x2-2) (y2-2))

(setq
x1-2 (= x1 x1) y1-2 (s yl yl)
x2-2 (+ x2 x2) y2-2 (* y2 y2))
(setg
y10-2 (float (/ (s -2 y1-2) (+ f-2 x1-2}))
x20-2 (float (/ (» -2 x2-2) (s -2 y2-2))))
(setq xyf  (/ (» x20-2 y10-2) -2))
;;find intersection of the two hyperbolae
setq xc (s ?sfocal-lengths x2
(setq ( s (sqrt (/ (¢ -2 x1-2 y1-2) (= (= (+ f-2 x1-2) (+ f-2 y2-2)

) ) cal-tengthe 41
s (s70C3I~ .
(sata ye ( ¢ y(;qrt (/ (+ f-2 y2-2 x2-2) (= (= (+ f-2 y2-2) (+ -2 11-2)
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) (= ¥1-2 x1-2))))))

(write=line (format nil *"X “F ~F® xc yc))
(cond ((K x2 0)
(setq xc (- xc))))
(cond ((< y1 0)
(setq yc (- yc))))
(valuss
(z1::/ (round (+ 100.0 57.29578
(atan (s ?efocal-lengths
(/ (= xc x1)
(+ f=2 (= xc x1))))))) 100.0)
(zl::/ (round (s 100.0 57.29578
(atan (s ?sfocai-lengths
(/ (-2 yc)
(¢ -2 (s yc ¥2))))))) 100.0) xc ye))

)
(defun lactualO (xl yl x2 y2) ;disp-vector vertex)
;; determine the hor/vertical rotation necessary to move (xl yl) into (x2 y2)
;;"disp-vector®= (xc yc xd yd)
;;"vertex? = (xrot yrot xpos ypos tag)
(let ((xyf) (f-2 (float (+ ?efocal-lengths 7sfocal-lengths)))

(y10-2) (x20-2) ;displacement on the axes

(xe 0.0) (yec 0.0)

(x1-2) (y1-2) (x2-2) (y2-2) (A) (B))

(sstq
x1-2 (* x1 x1) y1-2 (s yl1 y1)
x2-2 (= x2 x2) y2-2 (* y2 y2))
(setq A (/ x2-2 (+ -2 y2-2)))
(setg B (/ y1-2 (+ f-2 x1-2)))

(setg xc (sqrt
(s £-2 x2-2 (/ (+ f-2 x1-2 y1-2)
(= (» (¢ £-2 y2-2) (+ -2 x1-2)) (= x2-2 y1-2)
NN
(setg yc (sqrt .
(s $-2 y1-2 (/ (+ -2 y2-2 x2-2)
) (= (= (» f-2 x1-2) (+ -2 y2-2)) (s y1-2 x2-2)

(write-line (format nil *°%X “F “F® xe y¢))

(setg xc (sgrt (s« A -2 (/ (+ 1.0 B) (- 1.0 (+ A B))))
(setq yc (sart (» B -2 (/ (+ 1.0 A) (-~ 1.0 (» A B))))

(write~line (format nil "X “F “F¥ xc yc))
(cond ((< x2 0)
(setq xc (- xc))))
(cond ((< y1 0)
(setq yc (- yc))))
(values
(z1::/ (round (s 100.0 57.29578
(atan (s 7efocal-lengths
(/ (- xe x1)
(+ £-2 (' xc x1))))))) 100.0)
(z1::/ (round (s 100.0 57.29578
(atan (» ?«focal-lengths
{(/ (- y2 yec)
; (+ -2 (= yc ¥2))))))) 100.0) xc yc))

»h J“,‘= = - -

(d.fun.r-al ~rot (x2 y2 theta phi)
;;apply the rotation specified by theta/phi to the image point x2 y2
let

))
)]

( (xr) (yr) (finv {/ 1.0 ?sfocal-lengths))
(hsin 0.0) (hcos 0.0) (vsin 0.0) (vcos 0.0)
(denom 0.0))

(setq
hsin (sin (s 7edeg-rads theta))
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hcos (cos (s ?sdeg-rads theta))
vsin (sin (» ?sdeg-rads (- phi)))
veos (cos (s ?edeg-rade (- phi))))
(setq denom (+ (- (s finv x2 hsin vcos)) (s finv y2 vsin) (s hcos vcos)))

(s:tq(/ go (s x2 heos) (s ?sfocai-lengths hsin)) denom)
yr (/ (+ (» x2 hsin vsin) (» y2 vcos) (- (» ?»focal-lengths hcos vsin)))
denom))
(tist xr yr))

)

v

11 -

té‘fun shift (disp-orig x-shift y-shift)
(lat ((tabel) (x1) (y1) (x2) (y2)
.ghsin) (hcos) (vsin) (vcos) (denom) (disp-derot '()))

’
(doli;t-(disp-voc disp~orig) ;disp-vec =(x1 yl x2 y2)
(mul?:plo-vlluo—sctq (label x1 yl x2 y2) (values-list disp-vec))
push

(list tabel x1 y1 (+» x2 x-shift) (+ y2 y-shift)) disp-derot))
disp-derot)

)
Zé‘tun derotate (disp-orig theta phi) ;theta,phi in DEGREES (not 10 s deg)
let :
((hsin) (hcos) (vsin) (vcos) (denom) (disp-derot '(}))
(doligé (disp-vec disp-orig) ;disp-vec =(x1 yl x2 y2)
Emultiplc-v.luc-bind (label x1 yl1 x2 y2) (values-list disp-vec)
setq

hsin (sin (s ?sdeg-rads theta))
hcos (cos (* ?sdeg-rads theta))
vsin (sin (» ?sdeg-rads (- phi)))
vecos (cos (e ?sdeg-rads (- phi))))
(setq denom
(+ (= (» ?sfinve x2 hsin vcos)) (s ?sfinve y2 vsin) (e hcos vcos)))

(push

(list label x1 yl .
(zt::/ (round (s 10.0 !
(/ (+ {» x2 hcos) (+ ?sfocal-lengths hsin)) denom))) 10.0)
(zl::/ (round (» 10.0
(/ (+ (+ x2 hsin vsin) (= y2 vcos) (- (s ?sfocal-lengthe hcos vsin)))

denom))) 10.0))
. disp-derot)))
disp-derot)

)

‘;xggzlllllllllll
A2 ai 0200000220002 )
. d3d333433382333483
2 l"”"'l’l’l"""’"
.. 3 asst it bii4$
IR 25 822 RRRRRRRRRRES

2a;fvnr
sfoe-hashs (make-hash-tabie :test §’equal :size 200)
)

: té;fun initialize-sesrch ()
(cirhash sfoe-hashs)
)
té;fun add-to-map (member x y sx sy err feasibie)
(setf (gethash (format nil "74D-"40% x y) sfoe-hashs)
(list member x y sx sy err feasibla))

NN

#H T R
FUNCTIONS FOR OPTIMUM SHIFT .
HHHHHHHHHHEHB R HHHHHH

be "0l

bn be aile
s fbe whin

)

éé:fun get-from-map (x y)
(et ((entry (gethash (format nil *=4D-"4D0" x y) sfoae-hashs)))
(cond ((co?:p 9T§;§) (values-list sntry))
ni
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Eéifun find-opt-shift (xf yf disp-list)
(lot ((mu) (m) (x) (y) (sx) (sy) (error) (feasibie))

;first try to find (xf,yf) in hash-table
(multiple-value-setq (®m x y sx sy error feasible) (get-from-map xf yf))

(when (null m) ;NOT in table
(muitipis-value-satq (sx sy mu error) (compute-opt-shift xf yf disp-list))
(setq feasible (check-feasible xf yf sx sy disp-list))

(setq m 'P)

(add-to-map m xf yf sx sy error feasibie)) ;memorize as "probed?

(valuss m sx sy error feasible))

ké;fun compute-opt-shift (xf yf disp-list)
;first slement in displaco-ont list contains

jguide = (xg yg xg’ yg’)

(lat {(A2-sum Q) (B2-sum 0) (C2-sum 0)
(AB-3us 0) (AC-sum 0) (BC-sum 0) (N 1) (label)
(xgl) (ygl) (x92) (yg2) ;guide displacement vector
(xgf) (ygf)
(x¢) (ys) (length) (mu)
(x~-shift) (y-shift) (crror) i
(Ai) (Bi) (Ci))

(muitiple-vaiue-setq (label xgl ygl x92 yg2) (values-list (car disp-list)))

;(circle (+ ?soffset-hors xg2) (+ ?roffset-vers yg2) 3 2 7 ’frame-window)
(aetq
xgf (- xgl xf)  ygf (- ygl yf))

tdol:st (disp-vector (cdr disp-list))’

(multiple=value-bind (label x1 yl x2 y2) (valuos-l:at dl:p-vcctor)
(‘.th- (- x1 xf) ys (- yl yf)
length (sgrt (+ (s xe xs) (s ye ye))))
(unless (zerop length)
(setq
xe (/ xs length)
yo (/ ye length) ; (xe,ye) unit vector from FOE to Pi

Ai (- (» yo xgf) (s xe ygf))
Bi (+ ye (- x2 x¢2))

Ci (s xe (= y2 yg2))

A2-sum (+ A2-sum (s Ai AQ))
B2-sum (+ B2-sum (+ Bi Bi))
C2-sum (+ C2-sum (« Ci Ci))
AB-sum (+ AB-sum (= Ai Bi))
AC-sum (+ AC-sum (s Ai Ci))
BC-sum (+ BC-sum (« Bi Ci))
N (+ N1)))))

;evaluate sums
se .
( mu {/ (= AC-sum AB-sum) A2-sum)
x-shift (zl::/ (round (= 10.0 (+ (- xf xg2) (s mu xgf)))) 10.0)
y-shift (zl::/ (round (« 10.0 (+ (- yf yg2) (» mu ygf)))) 10.0)
error  (zl::/ (round (e 10. 0
] (+ (= mu mu A2-sum)

(» 2.0 mu (- AB-sun AC-sum))

(» -2.0 BC-sum)

B2-sum C2-sum)

N))) 10.0))

(valucs x=shift y-shift mu (max 0.0 error))) ;return multiple values

té‘fun check-feasible (xf yf x-shift y-shift disp-list)
jchecks if this FOE (xf,yf) with the shift applied (x-shift,y-shift)
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;is a feasibie one
(lct ((dx1) (dyl) (dx2) (dy2) (x1) (x2) (y1) (y2) (label)

. (tolerance 4) (min-shift -50) (max-shift 50))
(:ond
i((or (> xf 200) (< xf -200) (> yf 200) (< yf -200)) nit)
,((or > x-shift max-shift) (< x-shift min-shift)

; (> y-shift max-shift) (< y-shift min-shift)) nil)
*
(doiist (disp-vector disp-list t) ;returns t if passes through
Emultxplo-vlluo—sotq (labei x1 yl1 x2 y2) (valuos-llst disp~vector))
setq

dxl (- x1 xf)

dyl (- y1 yf)

dx2 (- (+» x2 x-shift ) xf)

dy2 (= (+ y2 y-shift ) yf))
°

(setq ;m
ake dx2/dy2 ionger
dx2 (cond ((plusp dx2) (+ dx2 tolerance)) (¢t (- dx2 tolerance)))
(uh dy2 (cond ((piusp dy2) (+ dy2 tolerance)) (¢t (- dy2 tolerance))))
when
(> (+ ( dxl dx1) (= dyl dyl)) (+ (» dx2 dx2) (e dy2 dy2)))
(retura nil)))))) ;if still larger =) imposs
ible shift
)

i
(defun search-poo! (x-guess y-guess threshold bigstep smalistep disp-1ist)
;starting from (x-guess,y-guess) the minimum of the foe-area is searched

(et ((xc x-guess) (yc y-guess) (xn) (yn)
(err=c) (err-n) (xs) (ys) (11) (S) (S-from) (S-to)
(stuck nil) (found nil) (feasiblse) (m)
(xold nil) (yold nil))
;probe 1st point
(multiple-value-setq (m xs ys err-c feasible) (find-opt-shift xc yc disp-list))

(do ((step bigstep (/ step 2))) ((< step smalistep)) ;reduce step-size vhen stuck

(setq xold xc yold ye) N

(setg S-from 0 S-to 7) f
irst probe all around

(setq stuck nil)

(do ((it 1 (+iit 1))) (stuck)

(muitiple-value-setg (S xn yn err-n feasible) ;S..direction in which min
was fnd
(min-neighbor xc yc err-c S-from S-to step feasible disp-list))
(cond
(( err=n err-c) ;nsw minimum found

(setg .
XC xn  y¢ yn  err-c err-n)
(when ?eshow-foe-searchs
(line (+ ?soffset-hors xoid) (+ ?soffset-vers yold)
(+ ?eoffset-hors xc) (¢ Teoffset-vers yc) 4 7 ’frame-window

) (setg xold xc yoid ye)

(cond
((<= srr=c threshold)
(setq found t))
;we are inside the pooi!
(¢
(cond
((evenp S)
(setq
S-from (mod (+ S 7) 8) ;search S
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-1
S-to (mod (+ S 1) 8)))
t
( (setq
S-from (mod (+ S 6) 8) ;search S
2 S-to  (mod (+ S 2) ) jtrom corn
er (t
;NO new minimum found!
(setq stuck t))))) ;STUCK outside the
pool!

(values found stuck xc yc err-c))
Ill
(defun min-neighbor (xc yc err-c S-from S-to stcp feasibie disp-list)
;probe the error-function at neighbors S-from inciuding S-to
;if feasible = true (xc/yc was in a feasible area)
; then if none of the neighbors are feasible then take min-neighbor
eiss take the min-neigbor among the feasibise

else

taks the min-neighbor among the feasible

(I-t ((err-min 9999) (x-nln) (y-min) (S-min) (m))

(do ((n S-from (mod (+ n 1) 8)) (done nil)) (done)
(ot
((xn (+ xc (= step (aref snb-offe« n Q)
(yn (+ yc (= stap (aref snb-offs n 1)))))
;get neighbors error
(multiple-value-bind (m xs ys err-n n-feasibie) (find-opt-shift xn yn disp-list)

D),
)

(cond
((and (not feasible) n-feasible) it
ransition into fsasible region
(setq
feasible ¢
S-min n
err-min err-n
X-min xn
y-min  yn))
(t
(when (< err-n err-min)
(setq
S-min n
err-min err=n
X=-min xn

y-min  yn)))))
(setq done (= n S-t0))))

(values S-min x-min y-min srr-min feasible))

)

lll

(d-fun outline (x-start y-start threshoid step disp-list)
;outline the area with error{zthreshold using raster-width "step®

; (x-start,y-start) is inside this area and one of its neighbors must
;be ouc3|d¢

; (1) set initial direction S

;(2) until back at the starting-point (x-start,y-start)
; (22) step in direction S
; (2b) set new direction S

?Ioe ((S) (xc) (yc) (err-c))

; .
(multiple-value-setq (S xc yc err-c) ;8et initial direction & new point
(init-outline x-start y-start threshold step disp-list))
(filled=circle (+ 7soffset-hore xc) (+ ?soffset-vers yc)
2 7 ’frame-window)
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) i
(do ((iter 1 (+ iter 1))) ((or (and (= xc x-start) (= yc y-start))))
(multiple-value-setq (S xc yc err-c)
(continue-outiine S xc yc threshold step disp-list))
(filled-circle (+ ?soffset-hors xc) (+ 7soffset-vers yc)
2 7 'frame-window)))

)
jijemmm==s
té‘fun init-out!iine (x-start y-start threshold step disp-liist)
;assumes that for at least one nsighbor of (x-start,y-start) is > threshold
;searches neighbors for (= threshold to start outline in counter-clockwise
;order
;(1) probe neigbors in CCN order until one with error > threshold is found
;(2) from this neighbor find next in CCW order whose error is <= thresholid
; if none does exist, return (x-start,y-start).

tlct ((xe) (ye) (sx) (sy) (failure nil) (m))
Y(1) find point OUTSIDE the area

(unless ;if not fo
und during iteration
( (do ((n O (+ n 1)) (found nil)) ((or found (> n 7)) found)
let
((xn (+ x-start (s step (aref snb-offs n 0))))
(yn (+ y-start (» step (aref snb-offs n 1))))
(11) (err-n))
;get neighbors error
(multiple-vaiue-setq (m sx sy err-n) (find-opt-shift xn yn disp-list))

(cond ;
((> err-n threshold) ;point OUTSIDE area found
(sstg
found ¢
S n))
(t (uniess (check-feasible xn yn sx sy disp-list) ;not feasible
(setq
;= outside
found ¢
S )N
(return-from init-outline (values nil nil nil nil))) ;failure

(2) find first point CON inside area

(uniess
(do ((i 0 (+ i 1))
(n (mod (+ S1) 8) (mod (+ n 1) 8))
(found nil))
( ((or found (> i 7)) found)
let
((xn (+ x~-start (s step (aref snb-offs n 0})))
(yn (+ y-start (s step (aref snb-offe n 1))))
(11)~ (err=n)) ) '
;gst neighbors error
(multipie~valua-setq {(m sx sy err-n) (find-opt-shift xn yn disp-1ist))

(when ({= err-n threshold) ;point OUTSIDE are
a found i
(when (check-feasible xn yn sx sy disp-list) ;feasible
. (setq
found ¢
S n
XC xn
ye yn
arr-c err-n)))))
(return-from init-outliine (values nii nil nil nil))) ;failure
(values S xc yc err-c))
)

e mewaeas
112

té‘fun continue-out!ine (S-prev x-start y-start threshold step disp-list)
; ;assumes that for at least one neighbor of (x-start,y-start) is ) threshold
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;soarch;s neighbors for (= threshold to start outline in counter-clockwise
;jorder

glct ((xe) (ye) (sx) (sy) (failure nil) (w))

;S-prev is the search direction which lead to (x-start,y-start)

tunloss :
(do ((i O (+ i 1))
E:oi:zdngt)i-pr.v 7) 8) (mod (+ n 1) 8))
(e ((or found (O i 6)) found)
.
((xn (+ x-start (» step (aref snb-offs n 0))))
2{?)(2 y-st;;t (» step (aref snb-offs n 1))))
err-n
;get neighbors error
(muitiple~value-setg (m 3x sy || err-n) (find-opt-shift xn yn disp-list))
found (when (<= err-n threshold) ;point OUTSIDE are
a foun
(vhen (check-feasible xn yn sx sy disp-list) ;feasible
(setg
found t
S n
xc xn
ye yn
err-c err-n)))))

(return-from continue-outline (values nil nil nil nil))) ;faiture

(vaiues S xc yc err-c))

)

lll

(d.fun grow-foe-ares (x-start y-start size step disp-list)

;from the starting point grow the FOE area in the direction of smalles error
untll the nubsr of raster points in "size' is reached

(|et ((xe) (ye) (sx) (sy) (m) (feasible)
(err-c) (err-n) (pending-foes ’()) (foe-locations ’()) (N 1))

(muléiplo-valuc-sotq (m sx sy err-c feasibie)
(find-opt-shift x-start y-start disp-list))

(push (list err-c x-start y-start sx sy feasibie) pending-foes)

{do ((i 1 (+ i 1)) ;until the desired number of membe
rs
((or (> i size) (endp pending-foes)))
(multiple-vaiue-setg (err-c xc yc sx sy feasible)

(values-list (pop pending-foes)))

(sdd-to-map 'M xc yc sx sy err-c feasible) ;mark as MEMBER in
hash-table ;
(push (list xc yc sx sy err-c) foe-locations) ;add to foe-locati
ons
;(circla (+ 7soffset-hors xc) (+ ?eoffset-vers yc)
; step 1 7 ’frame-window)

;gce srror-values of neigbors

(do ((nb O (+ nb 1))) ((> rb 7))
(let

(yn (» yc (» step (aref snb-offs nb 1

;bry to find (xn,yn) in hash-table

(nultxplc-valuo-s-tq (m sx sy err-n feasible)
(find-opt-shift xn yn disp-list))

(uniess (or (equal m 'M) (equal m ’R))

({(xn (+ xc (s stap (aref snb-offs nb Ogg

s

)
) () () (™)

; (xn,yn) has not been in t
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he pending-foes

(add-to-map 'R xn yn sx sy err-n feasible) ;mark as REMEMBER
ED.
(setg N (+ N 1))
(setq pending-foes
nsert~in-order into list
(ci:marge ’list
pending-foes
(list (list err-n xn yn sx sy feasible))

#'< :kay ’car))))))

(reverse foe-locations)) ireturn list of foe-locations with centar-point in first p
os.

(defun l1grow-foe-aresa-20 (x-start y-start size step disp-!ist)
;;from the starting point grow the FOE area in the direction of smallest error
; ithe neighbors of the point with the lowast error on the xisting boundary are
; ;added to the boundsry

tlot ((xe) (yc) (sx) (sy) (m) (feasible)
(min-error) (max-error) (error-ratio)
(error-limit)
(err-c) (err-n) (pending-foes ’()) (foe-locations '()) )

(multiple-value-setq (m sx sy err-c feasibia)
(find-opt-shift x-start y-start disp-list))
(setq foe-locations (list (list x-start y-start sx sy err-c))
pending-;ozs (list (list err-c x-start y-start sx sy feasible))

min-error err-¢

max-error err-¢

error-iimit (+ 4.0 err-c))
ot error limit

;(circle (¢ ?soffset-hors x-start) (+ Proffset-vers y-start)
; step 1 7 ’'frame-window)

;grow until either: :
;(8) the maximum area is reached (> size)
;(b) no mors points could be added becauss the surrounding locations are p

rohibited
;(e) a sufficient error level has been reached by the border points
(do () ;until the desired number
of members

. ((or (>= N size) (endp pending-foes)))
(multiple=value-setq (err-c xc yc sx sy feasible)

(values~list (pop pending-foes)))
;get one at the boundary

;got error-values of neigbors
(fd: ((nb O (+ nb 1))) ((> nd 7))
.
((xn (+ xc (+ step (aref snb-off= nb 0)))) ,d

(yn (+ yc (* step (aref snb-offs nb 1)))) (x) (y) (w))

(myltiple-value-setq (m sx sy err-n feasible)
(find-opt-shift xn yn disp-list))

etermine whers neighbor is

(unless (or

(not feasibie) ;point is not feasible
(equal = 'M) ;point is already in the set
(> err-n error-limit))
(push (list xn yn sx sy err-n) foe-locations) ;add neigh

bor to foe-locations
;(circia (+ ?soffset-hors xn) (+ ?eoffset-vers yn)
; step 1 7 ’frame-window)

;(write=line (format nil *"Xadding "D “D* xn yn))
(add-to-map 'M xn yn sx sy err-n feasible) im
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ark as MEMBER

nsert-in-order into list

)

IR

(setq min-error (min min-error err-n)
max-error (max max-error err-n)

N (+« N 1))
(setq pending-foes

(cl:marge ’list
pending-foes
(list (list err-n xn yn sx sy feasible))

$'< tkey ‘car))))))

(setq foe-locations (reverse foe-locations))

;return list of foe-locations with center-point in first pos.
(sstq error-ratio (/ max-error min-error)) .
(vaiues fos-locations N error-ratio))

té;fun 1mark-foe-Oarea (foe-locations step wdw)

(let ((half-step (floor (= 0.5 step))))

(dolist (foe foe-locations) B

(multiple-value-bind (xn yn sx sy err-c) (values-list fos)
(shade-rectangle 2 (floor (+ step ?sscale-hors)) (floor (s stap 7escaie-ve

rs))
(floor (s (+ ?soffset-hors (- xn half-stap)) ?sscale-hors))
(floor (s (+ ?ecffset-vers (- yn haif-stap)) ?sscale-vers)) 7 wdw)))
(unless (null foe-iocations) ;mark center FOE
(multiple=valus-bind (xc yc sx sy err-c) (values-iist (car foe-locations))
(z!::s3end wdw :draw-filled-in-circle
(floor (= (+ ?soffset-hors xc) 7escale~hors))
(floor (s (+ ?soffset-vers yc) 7sscale-vers)) 3 2)
(z1::send wdw :draw-circle
(floor (s (+ ?soffset-hors xc) ?sscale-hors))
N (floor (s (+ ?soffsst-vers yc) ?sscale-vers)) 3 7))))

(defun lmark-rotation O(thsta phi scale xc yc wdw-name)

(let ((xcs (floor (s xc 7sscaie-hors))) (ycs (floor (s yc ?vscale-vers))))

(tot ((xI1 (- xcs 50)) (y}! (- ycs 50)) (xrr (+ xcs 50)) (yrr (+ ycs 50)))
(filled-rectangie xll yll xrr yrr 2 wdw-name)

(rectangle xI! yll xrr yrr 1 7 wdw-name)

(text (format nil "YEHICLE ROTATION®) (- xcs 65) (- yl! 15) xrr (- yil 15) 7 ’TR108

nil wdw-name)

)

)

(line xlii yes xrr ycs 1 7 wdw-name)
(do ((x xtl (+ x 5))) ((> x xrr)) ;draw x-scale
(line x (= ycs 3) x (+ yes 3) 1 7 wdwe=name)) .
(do ((x xil (+ x 25))) (> x xrr))
(line x (=~ ycs 6) x (+ yes 6) 1 7 wdw-name))
(taxt "+1.0% (- xIi 23) (+ yes 3) xrr (+ ycs 3) 7 'TR1O ni! wdw-name)
(text *-1.0" (+ xrr 3) (+ ycs 3) (¢ xrr 100) (+ ycs 3) 7 *TR1O nil wdw-name)

(line xecs yli xcs yrr 1 7 wdw-name)
(do ({y y!! (+y 8))) (O yyrr)) ;draw y-scale
(line (~ xes 3) y (» xcs 3) y 1 7 wdw=name))
(do ((y y!I (+y 25))) (O>y yrr))
(line (- xc3 6) ¥y (+ xcs 6§) y 1 7 wdw=name))
(text "+1.0 deg” (- xcs 22) (- yll 4) xer (- yi! 4) 7 'TR10. nil wdw-name)
(text *-1.0% (- xcs 8) (+ yrr 15) xrr (+ yrr 15) 7 ’TR10 nil wdw=-name)

(line xcs yes (+ xcs (round (s theta scale))) ycs 5 7 wdw-name)
(line xcs ycs xcs (+ yes (round (+ phi scale))) 5 7 wdw-name))

té‘fun imark-foe-specs O(area error-ratic xc yc wdw-name)

; (text (format nil "FOE-LOCATIONS: “D* ares)

iOnRoad Ltd.
Exhibit 1005-0073



4,969,036
57 58

;xc ye (+ xc 100) yc 6 'TR128 nil wdw-name)
(text (format nil "FOE-RATID = ~,1F" error-ratio)

xe (+ yc 20) (+ xc 100) (+ yc 20) 6 'TR128 nil wdw-name)

~

k fun imark-advancemsent Q(advance xc yc wdw-name)
(if (nuil advancs) -

(taxt (format nil "ADVANCED «e--?)
xc ye (» xc 100) yc 6 ’TR128 nil wdwename)

(text (format nil "ADVANCED ~,1F m" advance)
) x¢ ye (+ x¢ 100) yc 8 'TR128 nil wdw~-name))
{defun 1SET-MIN-MAX-DIST O(disp-orig foe-iocations step)
;add useful information to displacement data
;(locations and expansion with respect to the FOE-iocations)
(lets ((ext-list ’()) (labei) (x1) (y1) (x2) (y2) (d1) (d2) (N)
(dx1) (dyl) (dx2) (dy2)
{min-exp 3)
(min=-con 3)
(margin (¢ step O. 5))
(xfl (first (car foe-locations)))
(yfl (second (car foe-locations))))

(dolist (dv disp-orig) : ;got. through list
of dispiacement vectors
(let ((dmin most-positive-fixnum) (dmax most-negative-fixnum)
(sbove 'A) (below 'B) (left ’L) (right 'R} (expands ’E) (contrac

ts ’X)
(xf-min nil) (xf-max nil) (yf-min nil) (yf-max nil))
(multiple-vaiue-setq (label x1 yl x2 y2) (vaiues-list dv))
(sstg N 1)
(dolist (foe foe-locations) ;g0 through all FOE-locati
ons
(multiple~value-bind (xf yf sx sy error) (values-list foe)
(setq dxl (- x1 xf) A ;dist foe -) X1
dyl (- yl yf) : )
dx2 (- x2 xf) ;dist foe <> X2
dy2 (- y2 yf)) ,
i (when (< x1 (+ xf margin)) (setq right 'X)) ;determine relativ
e
(when (> x1 (- xf margin)) (setq left 'X)) ;location to FOE-a
res
(when (< yl (+ yf margin)) (setq below X))
(when (> yl (- yf margin)) (sstq above ’X))
(setg d1 (sgrt (+ (e dx1 dx1) (e dyl dyl)))
d2 (sqrt (+ (= dx2 dx2) (s dy2 dy2))))
(when (and (<= N 1) (€ d2 (- dl min-con))) (setq contracts 'C)
(write-line (format nil "contracts "D “F “F “F °F "D D “F “F*
label x1 yl x2 y2 d1 d2)))
;needs only to contract towards ON
E foe
(setq N (+ N 1))
(cond . .
((or (< (abs dx1) margin) (< (abs dyl) margin)) ;too ciose
to FOE-region

(setq dmin O dmax 9999

expands X))
(t
(when ({ d1 damin )
;determine min/max dist of X1
(setq dmin dl
xf-min xf
;closest FOE to x1/yl
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(wh i1 dna yf-min yf))
;determine min/max dist of X1 when (> x)
(setg dmax dl

fe
;closest FOE to x1/yl xfomax xf

yf-max yf))

(when (< d2 (+ d1 min-exp)) (setg sxpands 'X))))))
;must expand from every foe
(push
(list label left right above below expands contracts
xl yl x2 y2 xf-min yf-min xf-max yf-max)
ext-list))) .

ext-list)
)

té‘fun 1speed-above-ground0 (disp-list foe-locations min-iength)
;1st element of disp-list is the guiding vector
;1st eisment of foe-locations is the most trustworthy FOE

; (1) align camera coordinate system with world coordinate system such that the FOE
;points in the direction of the world’s Z-axis

(myltiple-valus=bind (xf yf) (values-list (car foe-locations))
(lsts ((focal-length 549) ;40 mm lens ?
(disp-for-speed (select-speed-vectors disp-list xf yf min-length)))
lj
(cond
((consp disp-for-speed)
;some disp-vectors suit
(multipie-value-bind (theta phi) (actual-rot xf yf 0 Q) i3
lign foe with Z-axis
(lete
((hsin (sin (= ?sdeg-rade theta)))
(hcos (cos (= ?=deg-rads theta)))
(vsin (sin (= ?sdeg-rads phi)))
(vcos (cos (» ?edeg-rads phi))
(21) (22) (dZ-sum 0.0) (¥-sum 0.0))

(dotist (dv disp-for-speed) ;loop to evaluate more tha
n one vector later ' )
(multipie-value-bind (label x1 yl x2 y2 length) (vaiues-li
st dv)

‘ (setq Z1 (/ (+ (s x1 hsin) (- (s yl hcos vsin)) (¢ focal-|
ength hcos veos))
(+ (» yl vcos) (» focal-length vsi

") (setq 22 (/ (+ (= x2 hsin) (= (+ y2 hcos vsin)) (s focal-i
ength hecos vcos))
(» (» y2 vcos) (s focal-length vsi
M) |
(setq dz-sum (+ dz-sum (» length ?sabove-grounds (- Z1 12)
)

¥-sum (+ ¥-sum length))))
(values (/ dz-sum W-sum) disp-for-speed)))) ;return estimated
distance traveled

(& nil))))

;and disp-vectors used
)

zé;fun 1select-speed-vectors O(disp-iist xf yf min-length)
(let ((speed-iist '()))
(setq min-length (« min-iength min-length))
(dolist (dv disp-list)
(multiple-vaiue-bind (label x1 yl x2 y2) (values-list dv)
(let ((length (+ (» (= x2 x1) (= x2 x1)) (= (- y2 y1) (= y2 y1)))))
(when (and (D= length min-length) (> yl (+ yf 50)))
(push (list label x1 yl x2 y2 (sqrt length)) speed-iist)))
M
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(sort speed-list §'> :key §’car)) ;sort for longest vectors

defun lmark-speed-vectorsO (disp-references wdw-name)
(dolist (dv disp-refersnce)
(multiple=-value-bind (label x1 yl x2 y2) (values~iist dv)
(filled=circle (round (¢ (+ x2 ?woffset-hors) ?escale-hors))
(round (» (+ y2 ?voffset-vers) sscale-vers)) 3 7 wdw-name)))

)
(

)

;#L(z1::1cad "FRODQ:>burger>DRIVE)createdfoefun.lisp® ’au nil)
(defun doit ()
(let ((disp '((1 91 -36 135 -6) (2 135 -6 263 80)) )
(foe ’((29 =97 0 0 0))))
(1speed-above-ground0 disp foe))

FRODO:>sk|ee>DRIVE)reasondgetdata.art.7

;i3 =e= Mode: ART; Base: 10; Package: ART-USER; syntax: common-|isp; Fonts: CPTFONT; -s-

yit

s IR T R T R
i34 R UL E S - READING DATA
i HHHEHHHH B HBHBHHHH

té‘frulo read-displacement-data
(step read-data)
(cur-time ?ct 7)

=)
fL(let ((data (read-new-facts (make-disp-file-name ?ct))))

(cond ({null data) (assert (end-of-data ?ct))) ;file was not found
(t (eval data)))) ;assert those facts
)

11

v 3883383333
IRRR 44484888481
.o a333383844
111 )RS ERETET
v - 2383882828
111 TERTRTTRT

HHHHE B
RUL ES - REMOVING DATA

34338333333433342333333303323333443433343

2 3 1333313318
I T IR I I I N I NI I I T I I T I NIRRT NIRRT I I I IEIYTY

e sdbn sibn
whin obie 20be
4hs sbbe obe

(defruile forget-displacement-data
(declare (salience 10))
(step read-data)
(cur-time 7ct 7past)
(split
(Pto-deists (- (dv ?past 37))

(?to-delets ¢- (foe-est $? ?past))

(Tto-delets ¢~ (rot-est $? 7?past))

(7to-delete (- (foe-locations ?past $7)))
=)

(retract 7to-delets)
) : '

FRODO: >skiee)DRIVE>giobais.art.42

;;;V--- Mode: ART; Base: 10; Package: ART-USER; syntax: common-lisp; -e-

s v
r1
e

té‘feonst&nt sedge-directorys *FRODO:>ob_detecdprlt®)
(defconstant ssnap-directorys "FRODO:>ob_detacdprl®)
(defconstant edisp-directorys "FRODQ:>ob_detecdpri®)

té‘fglobal
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Pepoints-lists = ()

?epoints~]ist-2¢ = ’()

?edisp-origs = '() ;original (observed) dispiacsment vectors
?edisp-derots x ' () ;derotated displacement vectors
?sdisp-exts = ’()

?edisp-perfects = ’()

?edisp-stats = ’() N

?s+disp-mobs = ’()

?«disp-refersnces = ’() ;displacement vectors used for measuring speed overe groun

?sfoe-locationss = () ;

—~ a

1

defgiobal
;single frame window
?eframe-windows = nil
?eframe-window-1s = nil
?sframe-window=2s = nil
?sframe-wdw-straams = nil
?sframe-wdw-stream-1s = nil
?eframe-wdw-stream-2s = nil
7eframe-arrays = nil
?sframe-arrayls = nil
7sframe-origin-xs = 10
?sframe-origin-ys = 100

?ehor-maxs = 512
Pever-maxs = 442 ;448

?shor-sizes = (+ ?shor-maxs 0) ;512
Pever-sizes x (+ ?aver-maxs 42) ;

)

(defglobal
?sshow-foe-searchs = nil
)

(defglobal

;muitiple frame windows

?enum-of-interpretationss = 9

?swdw-namess = §L(make-array ’(15) :initial-contents

'( frame-0 frame-1 frame-2 frame-3 frame-4

frame-5 frame-6 frame-7 frame-8 frame-9
frame-10 frame-11 frame-12 frame-13 frame-14))

?swdw-streamss = jL (make-array ’(15))

Pewdws = nil

?ex-gizes = 768 ;for 1.5x scale images

Pey-gizes = 583

7ex-disp-sizes = (+ Pex-sizes 0) ; 768

?ay~disp-sizes = (+ Tey-sizes 42) ; 714

?sscale-~hors = (/ 7sx-sizes 512.0)

Pescale-vers = (/ Tey-sizes 442.0)

?smax~frame-numbers = 50

?send-of-simulations = ?emax-frame-numbers

)

(defglobai
;vehicle data
?sabove-grounds = 3.94 | ;metars
?sfocal-|engthe = 505.3 ;in pixels
?efinve = §L{/ 1.0 Pefocal-lengths)
?soffset-hors = 247 ;centar of the image plane
?soffset-vers = 201
?ehor-rots = 0.0 ;pan
7ever-rots = 0.511 ;bilte

)

i

(defglobal

;constants for perspective transformation

?edeg-rade = 0.01745329252

?srad-deds = 57.2957795

?ssin-hores = (sin (s (/ pi 180.0) ?«hor-rots)) ;horizontal sine
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?acos-hors = (cos (s (/ pi 180.0) Pehor-rots)) ;horizontal cosine
?esin-vers = (sin (s (/ pi 180.0) ?sver-rots)) ;vertical sine
) ?ecos-vers = {cos (» (/ pi 180.0) ?«ver-rots)) ;vertical cosine
z&;fglobal

;retention time
?eretention~-times = 2 i

;graphic details
?emark-radiuss = §

)

t&‘fglobal
7estat-counts = 0

)

1

FRODO:)skleed)DRIVE)z-windows.lisp.32

Ji; me= Modc; LISP; Syntax: zetalisp; Fonts: CPTFONT,CPTFONTB; Package: au; Base: 10;

-
e
112
21

té‘fvar eframe-wdws nil

té‘fvar sframe-bit-arrs nil

)
té‘fvar +frarr347689654334» nil
)
t"fvar sarrs nil -
) -
(defun lmake-edge-file-name O(frame)
) (z]::format nil *""Adedgedf D.wdw" sedge-directorys frame)
té;fun 1make-snap-file-name O(framoa
(z!::format nil *"Adsnap>f~D.art® esnap-directorys frame)
) .
té‘fun imake-disp-fiie-name O(frame) _
(z1::format nil ""A)disp>f™D.art* »disp-directorys frame)
)
i

(defun lcreate-frame=window O(label h-pos v-pos h-size v-size)
;creatas a3 graphics window and returns it as an object
;label must be a string
(let ((wdw

(tv:make-window
. "tv:window -
?:position (list h-pos v-pos)
rinside-size (list h-size v-size)

:label (list ':string label)

:biinker-p nil

:save-bits ¢

:expose-p t)))

- v e e o

wdw)

rr
(defun lcreate-shadow-array O(wdw)
;creates an array which can hoid the entire window
(multipie-value-bind (h-size v-size)
(z}::send wdw :inside-size)
(tv:make-sheet-bit-array wdw h-size v-size))

iOnRoad Ltd.
Exhibit 1005-0078



4,969,036
67 68
)

(defun lcopy-window=to-arrayQ (wdw arr)
;jcopies the contents of wdw to arr
(z1::3end wdw :expose)
(multipie~-value-bind (h-size v-size)

(zl::send wdw :inside-size)
(zl:send wdw
:bitblt-from-sheet
tv:alu-seta
h-size v-size 0 0 arr 0 0))

)

(defun lcopy-array-to-window O(wdw arr)
;copies the contents of arr to wdw
(zl::3end wdw :expose)
(multiple~vaive-bind (h-size v-sizs)

(z!::3end wdw :inside-size)
(z1:send wdw
thitbit N
tv:alu-seta
h-size v-size arr 0 0 0 0))

)
té;fun zooml-array-to-window O(wdw arr)
;200ms the contents of arr to wdw
(z1::3end wdw :expose)
(let ((a arr) (b ?eframe-srrayle))
(deciare (sys:array-register-1d a b))
(do ((i 0 (¢ i1))) (0= i Pwy-sizes))
(et ((k (s i ?sx-sizes)
(1 (s (floor (/] i 7escale-vers)) ?shor-maxs)}))
(do ((j 0 (+] 1)) (O= ] ?ex-sizes))
(setf (sys:%ld-aref b (+ j k))
. (sys:X1d-aref a (+ (floor (// ] ?sscale-hors)) 1)))))))
(muitiple=value=bind ( h-size v-size )
(z1::send wdw :inside-size)
(z]:send wdw
thithlt
tv:alu-seta
h-size v-size ?sframe-arrayls O 0 0 0))

é‘fun 1dump-shadow-array0 (arr file-name)
(sys:dump-forms-to-file file-name
(list
(list 'setq ’efrarr347689654334+ arr)))

)
(

)

ké‘fun 1load-shadow-array0 (filename)
(z1::10ad fiiename)
sfrarr347580854334+

té‘fun lclear-zi-windowO (wdw)
(z1::3end wdw :expose)
(z!::3end wdw :clear-window)

t&‘fun 1shade-rectanglie O(spacing width height x0 yO alu wdw)
(2)::3end wdw :draw-rectangle width height x0 yO 7) ;clear to black

(do ((x x0 (+ x 1)) (w O (+ w 1))) ((> w width))
(uniess (zerop (mod x spacing))
(z!::3end wdw :draw-iine x yO x (+ yO height) 2))) ;erase vertical line

(do ((y y0 (+ ¥y 1)) (h O (+h 1)) ((> h height))

(unless (zerop (mod y spacing)) ) )
(z!::send wdw :draw-line xO y (+ x0 width) y 2 ))) ;erase horizontal line

)«
té;fun 1store O(wdw arr)
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(copy-window=to-array wdw arr) )
(dump-shadow-array arr "FRODO:>burger)driveddata)sequ2)edge.wdw”)

(defun lrstrieve O(frame wdw arr)
(setg arr
{load-shadow-array (make-edge-file-name frame)))
(z1::send wdw :expose)
(zoom-array-to-window wdw arr)

té;fun 1show-labeled-disp O(disp-|ist wdw-stream solid)

(dolist (d disp-iist)
(muitiple-value-bind (label x1 yl x2 y2) (values-list d)
(setq x1 (round (s (+ 7soffset-hors x1) 7escale-hors))
yl (round (» (+ Tsoffset-vers yl) ?sscale-vers))
x2 (round (s (+ ?eoffset-hors x2) ?sscale-hors))

y2 (round (s (+ 7eoffset-vers y2) 7sscale-vers))) .
(z)::3end wdw-stream :draw-filled-in-circie x2 y2 2 2) ;erase circle area
(z1::send wdw-stream :draw-circle x2 y2 2 7) ;draw outar circle
(cond (solid '

(21::send wdw-stream :draw-line x1 yl x2 y2 7))
(t (zi::send wdw-stream :draw-dashed-line x1 yl x2 y2 7 5)))))

)

vew
1

t&‘fun lascii-to-windowQ (filename wdw n)

zlet ((instring (make-string 100)) (pix) (x))
(z1::3end wdw :expose)
(with-open-file (infile filename)

(do ((i O (» i 1)) ((or (nuil instring) O= i n})))
(setq instring (read-line infile nil nil nil)
pix 0)

(do ((j O (+ ] 1))) ((or (>= j 86) (null instring)))
(setq x (- (char-cede (char inatring j)) 48))

(do ((b O (+b1))) (O=b6))
(when (logbitp b x)
;(point (+ b (= j 6)) i 17 wdw))

(z1::send wdw :draw-point (+ b (+ j 8)) i
tv:alu-seta )))))))

)
(defun transfer-edge-images (first last)
(let ((wdw) (arr)
(help-file
(format nil "FRODO:>burger)>ORIVE)data)sequ2dedgedfxxx.txt®)))
;*frodo:dhatemdedge-test. txt?)))

;creats window
(setq wdw (creates-frame-window "TWO-CAR SEQUENCE" 0 O 512 512))
(setq arr (creats-shadow-array wdw)) ;

(do ((i first (+ i 1))) (> i last))
let

((srcsip-file
(format nil
;"srcsip://dynol//drive//dataf/twocar//time2100//f D/ /edge. txt"
;%altura://mntl//users//burger//edge®
"isavax://n//altura//mntl//users//iming//temp asc*

)]
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(local-file

(format nil 'FRODU:)jning)tcnp.wdv'))
(labali

(format nil "TEST IMAGE")))

(clear-zl-window wdw)
(zl::send wdw ’:draw-string
(z1::string (format nil *TEST IMAGE")) &0 40)

;get edge-file from SRCSIP
(zi::copyf sresip-file heip-fiie)

;(zi::3end wdw ’:set-label
; (list *:string
; (z1::string (format nil "SEQUENCE 2 - FRANE ~D* i)

;display it in window
(ascii-to-window help-file wdw 512)

;dump window to local edge.wdw file
(copy-window-to-array wdw arr)
(dump-shadow-array arr local-file)

;delets heip-file
;(21::deletaf help-file)
)

)
(ééfun redisplay-edge-images (first last)
(let ((wdw) (arr))

;creates window

(setq wdw (create-frame-window "TWO-CAR SEQUENCE® 0 0 512 512))
(setq arr (create-shadow-array wdw))

(do ((i first (+ i 1))) (O i last))
(let

((local-file (make-edge-file-name i))
; (format nil 'FRDDO:)burgcr)DRIVE)data)scqu2)0dgo)f'D.-d-' D))

;retrieve image from iocal edge.wdw file
(setq arr (load-shadow-array local-file))
(copy-array-to-window wdw arr)

)
té‘fun redisplay-marked-edge-images (first last)
(let ((wdwl) (wdw2) (arr) (snapshot) (locai-file))

;create window

(setq wdwl (create-frame-window "TWO-CAR SEQUENCE" 10 10 §12 512))
(setq wdw2 (create-frame-window "TWO-CAR SEQUENCE" 540 10 512 512))
(setq arr (create-shadow-array wdwl))

(do ((i first (+ i 1))) (O i last))
(let ((wdw
(cond ((oddp i) wdwl) (t wdw2))))
(setg locai-file (make-edge-file-name i))
jretrisve image from local edge.wdw file
(setq arr (lcad-shadow-array local-file))
(copy-array-to~window wdw arr)
(setg snapshot
; (read-back-snapshot i))
§nlrk-list-of-points snapshot i wdw))
)
)

11

11

té‘fun trace-points (start end first-point)
(zi::pkg-goto ’au)
(let ({wdw) (arr) (image-file)
(frame)
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(point=list ’()) (snapshot '()))

(setq wdw (create-frame-window "TWO-CAR SEQUENCE" 0 0 512 512)
arr (create-shadow-array wdw))
(z1::3end wdw :expose)
(tv:with-mouse-and-buttons-grabbed-on-sheet (wdw)
{tv:mouse-set-biinker-definition v
':character 2 6 ’:on ’:set-character 20 *fonts:mouse)
(setg tv:who-|ine-mouse-grabbed-documentation
TIMAGE: L:forward M:skip R:backward CORNER: L:next point M:exit
R:delets this point")
;trace point after point

(do ((point first-point (+ point 1)) (done nil)) (done) ;loop thry points
(setq point-iist ’())
(setq frame start)

(do ((new-point nil))
((or done new-point)) ;loop through frames

iretrieve image from local edge.wdw file
(setq image-file
(make-edge-fiie-name frame))
; (zl::string~append
jsedge-directorys "f¥(z|::format nj| *-D* frame) ".wdw"))

(setq arr (load-shadow-array image-file))
(copy-array-to-window wdw arr)
(display-point-number wdw point)

jretrieve pravious point marks in this frame
(setq snapshot
(read-back-snapshot frame))

;display previous point marks
(mark-list-of-points snapshot frame wdw)
;display current marks (if any)
(mark-list-of-points point-iist frame wdw)

(muitiple-vaiue-bind (code x y) (tv:-ait-for-ncuso-button-down)
(case tv:mouse-last-buttons
((1) ;left button
(cond
((in-number-fieid x y) ;elicked inside point-number
(cond ((endp point-list)
(write-line (format nil "ess NO TRACE SO FAR exz')))

;forward to new point
(write-out-list-of-points point-list)
(setq new-point t))))

(unless (endp point-list)
(when (= (third (car point-list)) frame)
(pop point-list))) ;remove point for previous mark

;mark point
(push (list ’ip point frame x y) peint~list)
(mark-single-point point x y wdw)
(write=line (format nil "~A® point-list))
(cond ((< frame end)

;90 forward to next frame

(setg frame (+ frame 1)))
t

(¢

¢ (write-out-list-of-points point-list)
(setq new-point £)))))
((2) ;middie button

cond

g(in-nunbor-ficld xy) iclicked inside point-number
;terminate from point-tracking .
(unless (endp point-list) ;first save last point

(write~out=list-of-points point-list))
(setq done t))
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;if point has not been marked yet, just go forward
(cond ((and (endp point-list) (¢ frame end))

(setg frame (+ frame 1)))
jalse give error message

(¢ (write~iine (format nil "eas NO SKIPPING NOW +22"))}})))

((4) ;right button
(cond
((in-number-field x y)
;delets this point
(setg point-list ’())
(setq frame start))

;elicked inside point-number

(t
;step one frame back
(uniess (<= frame start)

(setq frame (- frame 1))))))
NN

%dcfun in-number-field (x y)
) (and (> x 470) (< y 30))

(defun display-point-number (wdw pn)
(et ((x! 40) (y! 30))
(zl::3end wdw ’:draw-rectangie x| yl (- 512 xI) yi tvialu-andca)
(21::3end wdw ’:draw-line (- 512 xI1) 0 (- 512 xl) yi) !
(21::3end wdw ’:draw-line (- 512 x|) y! 512 yi)
(zl::3end wdw ’':draw-string
(zi::string (format nii *P7D* pn)) (+ (- 512 x1) 5) (- y! 8)))

)

Zé;fun write-out-|ist-of-points (point-list)
;append to frame-file
(let ((snapshot))

(dolist (point point-1iist)

(muitipie-value-bind (ip pid frame x y)

(values-list point)
(setq snapshot

(read-back-snapshot frame)) ;pass {ilename here
(cond

((rull snapshot)

( (write-out-snapshot (list ’assert point) frame))

t

(write-out-snapshot (cons ’assert (cons point snapshot)) frame))))))

)
(defun write-out-snapshot (snspshot frame)
(let ((snap-file
(make-snap-file-name frame)))
(with-open-file
(outfile snap-file :direction :output
rif-exists :new-version
tif-does-not-exist :crests)
(format outfile '*"A “X' snapshot)))
)

(é.fun read-back-snapshot (frame)
(let ((frame-file (make-snap-file-name frame))
(exist) (old-snapshot.nil))
(setg exist (probe-file frame-file))
(cond
( exist
i(with-open-file
(infile frame-file :direction :input
:if-does-not-exist nil)
(setq old-snapshot (read infile))) o -
(cdr old=snapshot)) ;eliminate "assert® from beginning of list

(t nil)))
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(defun mark-single-point (pt x y wdw)
(let ((X(ficor (s x ?xscaie~hors))) (Y (floor (e y Psscale~vers))))
(cond ((< pt 100)
(z!::send wdw ’:draw-triangie XY (+ X10) Y X (» Y <10) tv:aiu-andca)
(z!::30nd wdw ’:draw-line X Y X (+ Y -10) tv:alu~ior)
(zi::3end wdw ’:draw-line X Y (+ X 10) Y tv:alu<ior)

(z1::3end wdw ’:draw-filled-in-circie (+ X 10) (+ Y ~10) 10 tv:alu-andca)
(z!::send wdw ':draw-circie (+ X 10) (+ Y «10) 10 tv:alu-ior)
(multiple=value-bind (txt xc ye)
(centar-text X (+ Y -20) (+ X 20) Y (format nil *D* pt) ’cptfont)
(z)::3end wdw ’:draw-string txt xc ye)))
((< pt 1000)
(z1::30nd wdw ’:draw-triangle X Y (+ X 10) Y X (+ Y -10) tv:alu-sndca)
(z1::30nd wdw ’:draw=line X Y X (+ Y -10) tv:alu-ior)
(zi::send wdw ’':draw-line X Y (+ X 10) Y tv:siu-ior)

(z1::30nd wdw ’:draw-filled-in-circle (+ X 15) (+» Y -15) 15 tv:alu-andca)
(z1::30nd wdw ’:draw-circie {+ X 15) (+ Y -15) 15 tv:alu-ior)
(muitiple-value-bind (txt xc yc)
(conter-text X (+ Y -30) (+ X 30) Y (format nii " D" pt) ’cptfont)
(z1::38nd wdw ’:draw-string txt xc ye)))
((< pt 10000)
(z)::30nd wdw ’:draw-trisngie X Y (+ X 10) Y X (+ Y -10) tv:alu-andca)
(z1::38nd wdw ’:draw-line X Y X (¢ Y =10) tv:alu-ior)
(zl::38nd wdw ’':draw-line X Y (+ X 10) Y tv:alu-ior)

(z!::30nd wdw ’:draw-filled-in-circle (+ X 20) (+ Y -20) 20 tv:alu-andca)
(z]::send wdw ’:draw-circle (+ X 20) (¢ Y -20) 20 tv:alu-jor)
(multipie=value=bind (txt xc yc)
(conter-text X (+ Y -40) (s X 40) Y (format nil *~D¥ pt) ’cptfont)
(zi::3end wdw ’:draw-string txt xc yc)))))

)
(defun mark-list-of-points (point-list frame wdw)
(dolist (assertion point-list)
(multipie-vaiue-bind (ip pid fr x y) (values-list assertion)
(when (= frame fr) (mark-single-point pid x y wdw))))

(defun relabal-snapshots (first-frame)

(let ({N 1) (old-snapshot] (new-snapshot) (old-label-list '())
(new-label) (oid-new))

(do ((frame first-frame (+ frame 1)) (done nil ()))
((or (» frame (+ first-frame 100)) done))

(setq old-snapshot (read-back-snapshot frame))
(write-iine (format nil ""Xreading frame "D “A" frame old-snapshot))
(cond '

((consp old-snapshot) ;does exist

(setq
old-snapshot (reverse old-snapshot)
new-snapshot '())
(dolist (point oid-snapshot)
(muitiple-value-bind (ip old-label time x y)
(vaiues-list point)

(setq old-new (find oid-label oid-label-list :key ’car))
(cond ;this is a new label
((null old=-new)
(setq new-label N
N (+ N 1))
(push (list oid-labe! new-label) cld-label-list)
(write-line (format nil "new "D -) “D* old-iabel new-label)))
(t . ;this is an old label
(setq new-labe! (second clid-new)) .
(write-line (format nil %old "D =) “D* old-label new-iabel))))

(push (list ip new-label time x y) nc';snapshot)))
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(writs-out-snapshot (cons ’assert new-snapshot) frame))

) (t (sstq done t)))))

;does not exist

; #1(z1::1cad *FRODO:Dburger>DRIVE>z-windows.|isp® ’au nil);
; #.(art-load "FRODO:>burger)DRIVE)datadsequ2dtracedpointl.art?)

We claim:
1. An imaging device capable of determining its own
self-motion from its imaging, comprising:
imaging means for detecting a sequence of images in
a field of view;

token tracking means, connected to said imaging
means, for determining two-dimensional displace-
ment vectors of selected tokens for each consecu-
tive pair of images, and wherein said token tracking
means tracks stationary parts of a visual environ-
ment in the images, using two-dimensional, refer-
ences such as corner points, contour segments,
region boundaries as references, from image to
image, wherein the two-dimensional displacement
vectors are the result of camera motion;

seeker means, connected to said token tracking

means, for selecting candidate locations for focus
of expansion under forward translation of said im-
aging means and for focus of contraction under
backward translation of said imaging device, for
forming a connected image region of the candidate
locations and a range of corresponding rotations,
and for outputting focus of expansion or contrac-
tion and image rotation estimates; and

optimal rotation means, connected to said token

tracking means and to said seeker means, for deter-
mining optimal three-dimensional rotation angles
plus an error value for a selected candidate location
for focus of expansion or contraction.

2. Apparatus of claim 1 wherein:

said seeker means receives signals conveying the

two-dimensional displacement vectors from said
token tracking means; and

said optimal rotation means receives signals convey-

ing the two-dimensional displacement vectors from
said token tracking means and signals conveying a
single focus of expansion or contraction location
from said seeker means, and sends the determined
optimal three-dimensional rotation angles (pan and
tilt) plus the error value for the single: focus of
expansion or contraction location, to said seeker
means.

3. Apparatus of claim 2 wherein said optimal rotation
means determines the optimal three-dimensional rota-
tion angles (an and tilt) for the single focus of expansion
(direction of heading) or contraction location, by simu-
lating the effects of reverse imaging means rotations
upon a given set of displacement vectors from said
token tracking means, and thus virtually rotating said
sensing device until a modified displacement field ap-
proaches closest to a radial expansion pattern relative to
the selected candidate location for focus of expansion or
contraction, the optimal three-dimensional (pan and tilt)
rotation angles indicating needed reverse rotation of
said imaging means and the error value, wherein said

error value is a deviation from a radial displacement
field.

4. Apparatus of claim 3 wherein said optimal rotation

means determines velocity of said imaging device.
5. An imaging system capable of determining its self-
motion from its imaging, comprising:
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derotation means for derotating two-dimensional
displacement vectors from consecutive pairs of
two-dimensional images to remove rotational ef-
fects of said imaging system;

first computing means, connected to said derotation

means, for computing a fuzzy focus of expansion
(FOE) from the two-dimensional displacement
vectors, wherein the fuzzy FOE is a two-dimen-
sional region of possible focus-of-expansion loca-
tions on a two-dimensional image; and

second computing means, connected to said derota-

tion means, for computing self-motion parameters
of said imaging system, from the fuzzy FOE.

6. System of claim 5 further comprising:

sensing means for acquiring the two-dimensional

images; feature detection means, connected to said
sensing means, for detecting, extracting and track-
ing features in the two-dimensional images; and
third computing means, connected to said feature
detection means, for computing the two-dimen-
sional displacement vectors from the features.

7. An imaging system in an environment, capable of
determining its self-motion from its imaging, compris-
ing:

computing means for computing possible focus of

expansion (FOE) locations within images of said
imaging system, from two-dimensional displace-
ment vectors;
combining means, connected to said computing
means, for combining possible FOE locations,
thereby resulting in a fuzzy FOE that indicates
approximate direction of heading and amount of
rotation in space of said imaging system; and

derotation means, connected to said computing
means, for removing rotation of said imaging sys-
tem from the images so as to output derotated two-
dimensional displacement vectors to said comput-
ing means.

8. System of claim 7 further comprising:

acquisition means for acquiring the successive images

of the environment of said imaging system;
selecting means, connected to said acquisition means,
for selecting features from the images; and
matching means, connected to said selecting means
and to said computing means, for matching the
features of the successive images, thereby resulting
in the two-dimensional displacement vectors be-
tween distinct features of the successive images.

9. A method for determining self-motion of an imag-
ing system in an environment, comprising:

computing a focus of expansion (FOE) location from

two-dimensional displacement vectors of succes-
sive two-dimensional images;

computing a fuzzy FOE region that is a qualitative

indication the FOE location, wherein the fuzzy
FOE region is an area of possible FOE locations
for each image;

determining an approximate direction of heading and

amount of rotation of said imaging system, relative
to its own reference coordinate system, from the
fuzzy FOE; and
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removing the effects of rotation of said imaging sys- selecting features in the images; and
tem from the displacement vectors. determining the two-dimensional displacement vec-
10. Method of claim 9 further comprising: tors for the features of each pair of the successive
acquiring the successive two-dimensional images of images.
the environment of said imaging system; 5 ¥k ok o o
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CERTIFICATE OF CORRECTION

PATENTNO. : 4,969,036
DATED . November 6, 1990
INVENTOR(S) : Bir Bhanu and Wilhelm Burger

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 79, line 54, after "angles" delete "an" and

substitute with --pan--.

Column 80, line 25, after "images;" make "feature"
a new paragraph.

Signed and Sealed this
Twenty-first Day of July, 1992

Attest:

DOUGLAS B. COMER

Attesting Officer Acting Commissioner of Patents and Trademarks

iOnRoad Ltd.
Exhibit 1005-0087



